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Abstract. The role of confined phonon mories in determining the energy
relaxation of hot electrons in low-dimensional ssmiconductor microstructures is
discussed within a dielectric continuum mode! for the LO phonon confinement
and » long wavelength Frohlich modei for the electron-phonon interaction.
Numerical results are provided for the hot-eslectron relaxation rate as a function of
slectron temperature and density for GaAs quantum wells and quantum wires by
taking into account emission of slab phonon modes. Comparison with existing
expenimental results shows some evidence for siab phonon emission in inter-
subband slectronic relaxation in reasonably narrow quantum wells. 1t s argued
that most experiments can be interprated in tarms of an electron - bulk phonon
interaction modei (1.6. by taking into account the etfect of confinement only on
the electrons and assuming the phonons to be the usual bulk three-dimensional
phonons) because 8 number of important physical processes. such as screening,
the hot phonon affect, phonon seif-energy correction etc, make it ditficult to

distinguish quantitaw,

fy between various models for phonon confinement,

except perhaps in the narrowest ( < 50 A) wells and wires. Detailed numerical
results for the caiculated intra-subband relaxation rate in GaAs quantum wires sre
provided within the slab phonon and the slectron temperature modsl, including
the effects of dynamical screening, quantum deganeracy and non-equilibrium hot

phonons.

1. introduction

A large number of theoretical papers have recently
appeared [1-21] on the subject of interaction between
free electrons and optical phonons in confined low-
dimensional semiconductor structures such as scmicon-
ductor heterostructures, quantum wells, superlattices
and quantum wires. Whiie it 1s well established (1] that
the cffect of quantum confinement on the electronic
degrees of freedom must be included in any reasonable
theoretical model of electron-phonon interactions in
these microstructures, the ecent emphasis in the litera-
ture has been on the inclusion of confinement eflects on
the phonon modes of the structures and the consequent
modification of the Frolich Hamiltonian describing the
clectron-phonon interaction in the system. Because
Frohlich interaction plays an important quantitative role
in determining many aspe<.s of the electronic propeities
fe.g electron mobility, hot-electron relaxation, inelastic
mean (ree path, polaron effective mass) of micro-
structures, the possible influence of confined phonon
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modes in semiconductor microstructures is of some
interest. The purpose of this paper is to discuss the
quantitative role of confined phonon modes from the
perspective of one particular class of phenomena,
namely, the hot-clectron energy relaxation process in
quantum wells and wires. Qur main concern in this
article is the role of confined phonon modes in the energy
reiaxation of hot electrons in GaAs microstructures with
the particular emphasis on qualitative and quantitative
understanding of recent experimental resuits (22-30).
The most unambiguous evidence for the existence of
confined phonon modes in microstructures comes from
Raman scattering experiments [22-24) in thin GaAs-
AlAs superlattices where confinement effects on both the
acoustic phonons {22] and optical phonons [23, 24] have
directly been observed for layer thicknesses typically
below SOA. Unfortunately, such Raman measurements
cannot tell us much about the role of confined phonon
modes in determining various electronic properties. In
addition, the Raman measurements (and this limitation
applics also to all of the 'so-called’ first principles or
microscopic iattice-dynamical caiculations) are neces-
sarily on superiattices whereas the electronic experiments




are most commonly done on single heterostructures or
quantum wells (or on fairly thick superiattices). More
important than the issue of the existence of confined
phonon modes is the question of thetr quantitative role :n
the electron - phonon interaction Hamiltonian. There are
two related theoretical questions:

(1) How much of an error is one making by assuming
that the confined electrons interact only with the regular
three-dimeasional bulk phonons of the relevant
semiconductor?

(1) If the confinement cffect on phonons 1s indeed
important {Le. the bulk phonon model is a bad one in a
particular experimental situation), what is the correct
medel for calculating the electron-phonon interaction
Hamiltonian in semiconductor microstructures’?

In the following, we address, to a limited extent, both
these issues in the specific context of the hot-electron
energy relaxation problem.

There have been two proposed macroscopic theoret-
ical models for studying confined phonon modes in
semiconductor microstructures. While both treat the
confined phonon modes as standing waves in the micro-
structure, the two models differ significantly in their
macroscopic boundary conditions. One of them (to be
referred to as the electrostatic or the slab mode model)
uses the usual electromagnetic boundary conditions at
interfaces demanding the continuity of the tangential
component of the E-field {(we take z to be the direction
perpendicular to the well interface and ¢ to be the two-
dimensional wavevector in the xy plane) and the normal
component of the D-field. In the other model (to be
referred to as the mechanical or the guided mode model)
one uses a hydrodynamic description for the lattice-
vibration amplitude and appiies the mechanical bound-
ary conditions. Details of the models have been
extensively disc.. ed and debated in the literature
{9.13-18]. For our purpose it is sufficient to state that
"he electrostatic model has the electric potential, ¢{q, z),
associated with the lattice polanzation field vamishing at
interfaces, whereas in the mechanical model it is the
clectric field component E,(q. 2} (or, equivalently the 2z
component of the optical vibration amplitude) which
vanishes at the interfaces. Since E, = — 3¢/¢z, the two
models indeed have very different implications for the
Frohlich electron - phonon interaction, which is basically
given by —eg(z). The electron-phonon interaction
matrix element in a quantum well of width a, with
0 € z < a.1s given within the electrostatic approximation
by

MiT'(q) = [(4xe’/QiNw o/ /2, — 1/egN2/a)f )2
]
where

Qi=q' +aa Je = mx/a )

and

By - J’o dz2{’(2) 5in(qu2){,(2). 3

Confined phonon modes and hot-electron energy reiaxation

Note that the condition ¢z) = 0 at z = 0, a produces
discrete phonon wavevectors ¢, = g, = mn/a in the 2z
direction with m = 1, 2, 3, etc. This follows from demand-
ing that ¢{z) ~ sin(q,z) = 0 at z = a. In equations (1)-(3),
Q 1s the three-dimensional phonon wavevector; i, j are
clectronic subbands described by wavefunctions £,(2)
and fi7 is the electron - phonon interaction form factor
vhich takes into account both electron and phonon
confinement.
For the mechanical model. (3) 1s modified to

B = L dz {?(2) costqaz)§,(z) @)

with g, =mn'a (and m=1,2,3 ... etc) because the
boundary condition leading to discrete values of g, aie
now applied on the electric field. rather than on the
potential itself. Note that the ionic optica! displacement
and the potential are given by wu, ~ coslq,z) and
¢ ~ sin{q,z)in the slab model, whereas these are reversed
in the guided model. Another way of stating the dif-
ference between the two models is 1o point out that in the
guided mode model u, = 0 at the interface, whereas in the
slab modcl it is the tangential or the in-plane component
of optical-vibration amplitude which is zero at the
interface.

Much has been written on the relative ments of these
two rather simple macroscopic models. Without repeat-
ing various published arguments in detail, we just make
some brief remarks here:

(i) In general. the electron-phonon interaction
strength decreases with an increase in the confined
phonon mode number, m, because of the increase in the
number of nodes of the confinement function. Cal-
culations show that it often suffices 10 have only the
lowest discrete mode allowed under the symmetry of the
situation. We adopt this approximation in all our
calcuiations.

() If the quantum well (or the wire) 1s symmetric so
that the electronic wavefunctions £,(z) are parity eigen-
states, then §i7" = 0 whenever i + j + m = even (odd) for
the slab (gusded) modes, where we classify the quantum
well wavefunction by their parity with i, j even or odd
indicating the corresponding symmetry states. Note that
this has non-trivial consequences for intra-subband scat-
tering (i = ;) for which the lowest slab mode (m = 1) can
participate but the lowest guided mode cannot. Thus,
purely on the grounds of symmetry (assuming. of course,
that real quantum well systems are symmetric so that
panty 1s a good quantum number) we conclude that the
intra-subband scaitering rate due to slab modes s
substantially stronger than that due to the guided modes.
For inter-subband (i = j + 1) relaxation, on the other
hand. the guided modes produce much stronger scatter-
ing than the slab modes because the lowest (m = |)
guided mode can participate in the inter-subband re-
laxation wher=as the lowest siab mode cannot. This aiso
indicates that, other things being equal, for the slab
model, intra-subband relaxation via LO phonon emission
should be substanuially faster than the inter-subband
reiaxation, and vice versa for the guided model. Thus, a
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comparison between intra- and inter-subband energy
relaxation of hot carriers in quantum wells should enabie
one to distinguish between the two alternative models for
phonon confinement in semiconductor nucrostructures.
This criterion clearly favours the electrostatic or the slab
model because, experimentally [25-28), intra-subband
refaxation in GaAs quantum welis is approximately an
order of magnitude faster than the inter-subband re-
laxation process. {The situation 1s not as simpie as it
appears because interface phonons which decay expon-
entially away from the interfaces also contribute to the
scattering, complicating somewhat, but not substantially,
these ssimple symmetry considerations based only on the
slab and guided modes.)

(1) In addition to the siab (or guided) modes which
exist in the bulk of the quantum well (1.e. ¢ ~ sin(qz);
u, ~ cos{q,z)), one could also have in the electrostauc
model surface or interface phonon {31] modes whose
amphitudes (and the consequent electnc potential) decay
exponentially away from the interfaces. Within the
clectrostatic model these modes anse naturally as a
consequence of the boundary conditions (similar to the
surface or interface plasmon problem) and are of
guantitative significance for very thin (< 30A) wells. In
the mechanical model, the guided modes have zero
amplitudes at the interfaces and, therefore, strictly speak-
ing. interface phonon modes are not allowed. This again,
in our opinion, is an argument against the mechanical
boundary conditions. Using the electrostatic boundary
conditions, it 1s easy to incorporate the effect of interface
phonons on the el~ctron-phnnon interaction Hamil-
tonian within the dielectric continuum model. As stated
before, interaction between electrons and interface pho-
nons s negligibly small except for very thin systems.

¢v) In addition to the two macroscopic models dis-
cussed above, one can, of course, calculate the electron-
phonon interaction 1n confined structures microscopi-
cally {9.13.14) by using suitable latuice-dynamical
models. Such calculations, while being conceptually
straightforward, are computationaily intensive and can
be carnied out only for very thin systems and. for obvious
technical reasons, only in superlattice configurations.
Microscopsc calculations demonstrate rather convine-
ingly [9.15.17) that the electrostatic slab model works
very well in microstructures except for the narrowest
confinement (<30A) where the diclectric conunuum
approximation breaks down and an atomistic descrip-
tion becomes necessary (Motivated by the microscopc
models, a new macroscopixc model has been introduced
recently {9] to study electron-phonon interaction 1n
microstructures. This model is intermediate between the
slab model and the guided mode] and combines both sets
of boundary conditions in a dielectric continvum de-
scription.) In general, the microscopic calculations do not
support the macroscopic mechanical guided maode
model. We do mention, however, that such first-pnn-
ciples microscopic calculations are not practical for
direcily calculating experimentally interesting electronsc
properties such as energy relaxation or power loss by hot
clectrons, though the microscopic models have been
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reasonably successful {30] in Jescribing the experimental
phonon dispersion in thin superlattices.

(v) Finally, we note that the most extensively used
model [1,11.12] for calculating clectron-phonon inter-
action in semiconductor microstructures has been the
threz-dimensional phonon approximation (3JDPA) where
the phonons are taken to be tue usual bulk phonons of
the relevant semiconductor material interacting with the
low-dimensionally confined electrons. In quantum wells
or heterojunctions, where the electron dynamics in the 2
direction is quantized. one sums over the free phonon
waveveclor ¢, to obtain an effective two-dimensional
electron-phonon interaction given by

M, (4. q,) = [2rwoe’le, ~ 1/eg))' g + q]) '
x de¢?(2)e"'¢,(=) (5)

which. after the sum over the free phonon wavevector g,,
leads to the following cflective electron-phonon inter-
action matrix ciement:

Mlniq) = IM [ mlq) {6)
where
IM P = (xe*wi o/gN /e, ~ 1:t) M

and
finmlq) = J'dz J d2' &P K, (2K (z)e T (8)

The 3DPA has been very successful in describing the
electron-phonon interaction properties 1n  micro-
structures and often produces results {10,12,15,17] not
very different from that given by the confined phonon
model. In fact, microscopic calculations [15,17] show
that, except in the thinnest samples, IDPA is qualitatively
and semi-quantitatively quite valid in  GaAs
microstructures.

For brevity, we show our formulae (1-8) only for the
2D quantum well case—the quantum wire situation is
similar {19, 21] with the clectron being also quantized
along one ather ( y) direction and the phonon slab modes
being standing waves (described by two discrete indices)
n two directions.

2. Model

With the above background, we now introduce our
model for the calcuiations presented in this paper. We
modei the clectron confinement entirely by an infinite-
square-well potential. All our calkcufations are done
within a Frohlich dielectric continuum slab phonon
model using the electrostatic boundary conditions. For
reasons discussed 1n the introduction we believe that this
mode! works very well for GaAs microstructures, except
perhaps for the narrowest confinement (less than 30 A)
where microscopic, atomistic phonon models are needed.
{Microscopic calculations support our claim.) Even
though we include ir.terface phonons in some of our




calculations (for the 2D results. for example) they are
mostly neglected because their effects for the system sizes
we are interested in (S0 A or larger) are usuaily smail. In
fact, our quantum wire resuits include only the siab
phonons and leave out the interface phonons entirely.
Since the electron wavefunction vanishes (or is very
small) at the interfaces where the interface phonon
amphtude peaks, neglect of interface phonons is usually a
good approximation [10].

We also include dynamical screening and quantum
degeneracy effects throughout our calculations, pro-
viding a quantitative esumate for their importance
(32,33} Since we are considering a fimite electron dens-
ity, it 1s important to keep these quantum effects in the
theory. We also include 1n our theory (11, 34] the many-
body phonon renormalization effect (i.c. the self-energy
correction of the phonon frequencies by the electron gas)
where it is appropriate. At low densities and electron
temperatures, this many-body renormalization is quite
important in 2D systems as has been discussed earlier in
the literature [ 11, 33, 34]. Finally, we include hot-phonon
effect [ 11,32, 33, 35] in our theory through a phenomen-
ological kinetic equation approach assuming a given
value for the hot-phonon lifenme, t,,. For GaAs hetero-
struct.res, the hot-phonon effect is a very important
quantitative correction {11,36]. Throughout this paper
we assume the lattice to be at zero temperature and
adopt an clectron-temperature model [11] for the hot
ciectrons. Thus, our model impiicitly assumes that the
electrons have equilibrated amongst themselves, acquir-
ing a hot-electron distribution at an elevated temperature
T Our task is to calculate the power loss from this hot-
electron gas to the lattice as the coupled system
equilibrates.

For quantum wells we take the z direction to be the
confinement direction, whereas for a quantum wire we
take the addiuonal confinement to be along the y
direction (i.e. infinite square well potentials along the y
and : directions with the clectrons being free 1o move
along the x direction). We neglect ail effects of AlAs in the
barrier region in our calculations. For both quantum
wells and wires, we include only the lowest phonon siab
mode (m = 1) in our calculation. We consider only intra-
subband relaxation in the lowest electronic subband of
the system.

It can be shown that the power loss per hot electron
due to Lo phonon emission 1s given (including the hot-
phonon effect) by the formula 11, 32]

P R
= hw, R
N 1.0"7‘“';0)% \ ¥ 1Ry it

where we assume the lattice to be at 2ero temperature
with n,{ung) the apprepnate Bose factor at the hot-
electron temperature 7. N is the electron number density
and R, 1s the energy relaxation rate at wavevector Q
given by

Ry = — 2AM g1 Im Q. anoh (10)
Here, M, is the approprna‘e clectron-siab phonon

Conhinad phonon moudes and hot-electron energy relsxation

interaction  matrix  element at  wavevector Q =
gl + 4] + g;) and y is the finite-temperature dynam-
cally screered reducible electron polarizability function
defined as

1= xoll —vxo) ' an

where xo is the finite-temperature bare bubble (the
Lindhard function) in the appropnate dimeasion and r1s
the clectron - electron nteraction including the subband
quantization effect.

Due to lack of space we do not show here the detailed
forms of x, and v (for both the quantum well { 1i] and the
quantum wire [21,37}) and of |M,|? for the quantum
wire {19,21]. Their evaluations are standard and can be
found in the Iiterature.

In the next section we present our results based on
this electron-temperature mode! for power loss due to
slab phonon emission 1n GaAs quantum wells and wires
in the eclectron-temperature range 50K < T < 300K.
After presenting a bnef review of some hmited (and
published) quantum well results, we concentrate mostly
on the GzAs quantum wire results which are completely
new.

3. Resuits

3 ). GaAs guantum wells

A rather extensive literature exists on the role of confined
phonons in hot-clectron energy relaxation in GaAs
quantum wells. It 1s well accepted that confined modes
play a quantitative role in thin weils (and superlattices),
generally for thicknesses less than SOA. (This is also
consistent with the conclusions of microscopic calcula-
tions.) In particular, Jain and Das Sarma calculated [10]
the intra-subband and the inter-subband hot-electron
energy relaxation rate in GaAs quantum wells including
cffects of slab and interface modes within the electrostatic
boundary conditions. Their calculation includes the
phonon renormalization effect and uses t,, = 7 ps. Their
results for intra-subband relaxation for two different well
widths are shown in figure |. One can see that for the
SOA well, particularly at lower electron temperatures,
slab mode effects are significant. In general, the interface
phonon contributions are not significant uniess the well
widths are JOA or smaller. Jain and Das Sarma also
pointed out [10] that in thin wells inter-subband energy
relaxation will be substantially reduced due to panty
restrictions artsing from the fact that the lowest slad
mode (m = 1) cannot partcipate in the process. Conse-
quently, they found that the inter-subband relaxation
rate is approximately an order of magnitude slower due
to this slab mode parity restriction. In quantum wells of
finite depths. the electron-phonon interaction is further
weakened, making the inter-subband relaxation time (r)
around 5-10psa, which is in excellent agreement with the
available experimental results [25-27].
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Figure 1. Log,, (power loss per carrier) as a function of
inverse electron temperaturs for two quantum well widths
with bulk denoting the contribution of the slab phonon
modes (trom [10}).

32 GaAs quantum wires

The main results t¢ be presented in this paper are our
new results on inira-subband relaxation in GaAs
quantum wires due to s'1b phonon emission. We assume
the electric quantum limit—i.e. where the lowest 1D
subband is the only occupied levil—and choose electron
density and wire width (o be consistent with this as-
sumption. We include quantum degeneracy, finite-
temperature dynamical screening, hot-phonon effect and
slab modes in the calculation, but neglect phonon self-
energy corrections (which are very small in .D) and
interface phonons (which are negligible except for widths
30 A or smaller).

In figures 2a) and (b}, we show our calculated power
loss per carner for the electron density N = (0°cm ™!
and for two wire widths, L, = L, = SOA and 200A
(where L and L, are the widths of the infinite-square-weil
confinement in the y and z directions), as a function of
the inverse electron temperature. In each figure, we
show results for six different theoretical approximations:
classical, quantum without any screening (i.c. the x in (10)
is replaced by x,) quantum with static screening, and
three different versions cf quentum with dynamical
screeming —one  without any hot-phonon effect (i.c.
t,4 = 0), the other two with hot-phonon effect using two
different values of the hot-phonon lifetime; 1, = | and
7 pe (t,a = Tps is the expected hot-phonon lifetime [38]
in bulk GaAs). The first four approximations neglect the
hot-phonon bottleneck effect and assume t,, = 0. It is
clear that, as in the corresponding 10 GaAs quantum
well case, the hot-phonon effest is the main quantitative
correction on the coergy relaxation process provided
144 > | ps. Of course, one does not know the actual value
for the hot-phonon lifetine [ 28] in GaAs quantum wires,
but it is reasonabie to ~xpect that it is not substantially
different from the bulk vaio= of 7 ps.

In figures Xs) and (b), we show the behaviour of our

— —r—r—r—r—
(@) Ns10®em?; L =L, =50 A
z 10
K
E
]
Q
% 1010
2
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lo-l! i A i i “ " P
0002 0006 0010 0014 0018
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T 108 .
;
3 s ]
3
s 109 .
2
-] I P
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Figure 2. Power loss per carmier as a function of inverse
slectron tempersture for a3 quantum ware with electron
density N=10%cm "' and two wire widths [, =L, =50A
(a) and 200 A (b). for six different approximations. as
described in the text. (See figure 3(a) for the symbois
Jsed in the six spproximations.)

calculated hot-clectron energy relaxation time, t, as a
function of clectron density (for a fixed wire width) and
wire width (for a fized density), respectively. To obtain 1,
we note that our log P versus 1/T plots in figure 2 are
linear in the T = 50-300 K range so that we can write (to
a very good degree of approximationk

P = (hwy o/1)e ™ Mnaite? {12)

which gives us the definition of t, the hot-electron
relaxation time. From figure 3 we see clearly that the hot-
phonon lifetime is the most significant quantitative cor-
rection on the hot-electron energy relaxation in quc stum
wires in the regime of our interest.

Before concluding, we emphasize that our calcuisted
t in figure 3 is not the same as the simple electron-siab
phonon scattering time [16-20] which can be caiculated
by using Fermi's golden rule (and which does not include
quantum degeneracy, finite electron tem srature and
density effects, dynamical screening, hot-phonon lifetime
etc). For the purposz of comparison, in figure 4 we give
our caiculated electron-slab phonon scattering time as a
function of clectron energy, E, for several different values
of the quantum wire width.

4. Conclusion

In this paper we present csiculated results for hot-
electron energy relaxation through the emission of slab




SOftm 1 -Lr=m(),°\ o’ = noser [
25|L R / + st scr 1
i / s dynv
20f /e A
[ ‘ = dyn?

T 15}— / = clas
! A |
10"' < ). -
o,sl. //,/ /f J
e - = i
Oy —
104 105 106 107
Ntemh
1.0
F b L =L_=L
0.8} T
L N=10"cm
0.6}
t(ps) L ot
04r
L
02t
> O
0. i
10 100 1000
LA

Figure 3. Calculated electronic energy relaxation time, 1.
as a function of (a) electron density for a fixed quariium
wire width, and {b) width for a fixed electron density for
the same approximations as 1n figure 2. (Figure 3(a) gives
the legend for the six approximations.)

phonons in GaAs quantum wires witnin an electron-
temperature model. We also bniefly review the corre-
sponding situation for GaAs quantum wells. There are
no currently available experimental results in quantum
wires with which our theory can be compared. Our main
conclusion 15 that, while quantum confinement and
dynamical screening cffects are both important, the most
imporant quantitative correction for the hot-electron
energy relaxation process in GaAs quantum wires arises
from the hot-phonon bo:tleneck effect. at least for wire
widths between S0 and S00 A and clectron densities and
temperatures between 10 and 10°cm "' and 50K and
0K, respectively. We also contend that the electrosta-
tic slab phonon model 1s the appropriate macroscopic

V40— - g p—
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020
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Figure 4. Caiculsted scattering time a8 8 ‘unction of
electiron energy 1n quantum wires for different wne widths
(L, = (,) n A ss shown.
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model Jor calculating hot-electron energy relaxatior in
confined structures. We hope that our theoretical p.e-
dictions will motivate experimental work in the subject.
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