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OVERVIEW

s

\/4his report describes a research project which measured pilot response to seven control

systems simulating different handling qualities, quantitatively evaluated and compared the
systems based on these measurements, and compared the quantitative system evaluation
based on measured pilot performance with a qualitative evaluation using the Cooper-
Harper technique.

The objective of the project is implementation of a methodology for system evaluation via
pilot performance to complement the current evaluation technique based on subjective
ratings by test pilots. Pilot performance is determined through analysis of objective
dynamic measurements of pilot response typical of flight test environments. In short, the
methodology specifies a general approach fer condensing the typically huge mound of
measured test data accumulated during flight simulation experiments into meaningful
quantities for system evaluation. The key element in the methodology is statistical
modeling of a law for pilot control. Statistical modeling of pilot control provides an
assessment of pilot performance in terms of standard statistical estimation parameters.
The methodology requires that this control model be used to compute control input in a
closed loop tracking task; the accuracy of the control model in performing this task is an
important measure of pilot performance relevant to system evaluation. In addition, these
parameters computed from the dynamic measurements of pilot performance are shown
to enhance understanding of the aspects of the handling qualities underlying subjective
rating techniques such as Cooper-Harper.
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SECTION |
INTRODUCTION

Manual control of an aircraft involves a series of judgments by the pilot in order to
perform some specified sequence of maneuvers. The pilotage task requires the pilot to
extract information from a display, evaluate and estimate the error state of the aircraft with
respect to the assigned task, and respond with control input intended to minimize the
error. Handling qualities, as applied to piloted aircraft, is the preferred term to describe
the characteristics of the aircraft that govern its controllability by the pilot. Controliability
is the ease and precision by which the pilot is able to perform the tasks of aircraft control.
For this research project, seven simulated flight systems were designed to demonstrate
different handling qualities in a simple tracking task. Test pilots flew these simulated
systems under experimental conditions. These pilots rated the systems on a subjective
scale, and data from the experiments were objectively analyzed.

Historically, a subjective assessment by the pilot has been the principal method for
evaluation of handling qualities. Numerical rating scales have been devised for the
purpose of quantifying the subjective assessment by test pilots of their perceived
performance. Over many years, the use of these subjective rating scales has been
refined both in theory and practice. Their shortcomings have been in two areas. First,
replication of subjective ratings is a persistent problem. Second, subjective rating scales
do not provide objective information to engineers as to defects and attributes of their
designed systems.

The objective of this research project is a demonstration of objective evaluation of
handling qualities using recorded pilot response. In flight simulations as well as in actual
flight tests, computers record detaled dynamic information and pilot response. The
research reported here concerns the statistical analysis of pilot response to develop
performance measures for the evaluation of handling qualities. The statistical analysis of
the dynamic information ~enters around modeling the pilot’s control law in the sense that
a "mathematical" law for pilot control input is estimated from the test data. The model
control law is then used to "fly" the same system, and the performance of the model is
then measured. Statistical quantities (called parameters) of the modeling process and
error measures for the model itself make up the primary performance measures defined
in this research.

These performance measures are shown to effectively differentiate between the seven
physical systems evaluatec The performance measures provide objective information
regarding both pilot control techniques and effectiveness in performing the tracking task.
This demonstration is an apgc.cation of a methodology developed by the authors in their
earlier work; see Baldwin and Gantz (1983, 1984).




Additionally, the performance measures from the statistical analysis of pilot response are
shown to be related to the subjective pilot opinion ratings. This relationship between
objective analysis of pilot response and subjective pilot opinion is exploited to enhance
the value of pilot opinion for the evaluation of handling qualities. The diagram in Figure
1 illustrates the relationships between pilot response, pilot opinion, and the evaluation of
handling qualities.

Thus, the objective performance measures based on statistical analysis of pilot response
prove to be an informative and useful complement to subjective performance measures.
The objective performance measures capture the characteristics of pilot response while
performing the tracking task. The captured characteristics are those which influence a
pilot’s subjective evaluation of the controlied system as shown through the correlation of
these objective measures with the subjective Cooper-Harper rating.

The finer details of the control law modeling and the statistical analysis in this project are
sometimes artful and specifically dependent on the systems defined for this research.
However, the methodology including the generic definitions of the major performance
measures is broadly applicable.




Figure 1. Relationships between Pilot Response, Pilot Opinion and Handling Qualities
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SECTION Il
DESCRIPTION OF THE EXPERIMENT

A. Experimental Setup

The simulation is programmed on a Silicon Graphics IRIS 3000 computer to provide
displav and tracking dynamics. An attitude bar symbcl (colored white) displays pitch and
roll relative to an horizon in the same sense as an aircraft artificial horizon. The tracking
target is a red bar-circle symbol representing an aircraft ahead of and in the view of the
pilot. A sketch of the display is shown in Figure 2. The display geometry is similar to an
aircraft gun sight arrangement. Two vertical display scales were used: "normal’ and
"wide". The "normal" vertical display scale is a three centimeter displacement of the target
representing about four degrees at the nilot's eye. The "wide" vertical display scale is
approximately double the "normal" scale. The pilot control device system uses a
commercial two-axis hand controller. The control grip is a spring-restrained, center-
located unit. The hand controller is conveniently located near the pilot's right hand.
Spring gradients are light; however, the unit "feel" is similar to a controller instailed in a
military simulator.

Figure 2. Primary Tracking Task Display

The tracking task used is similar to that in McDonnell (1968). It consists of a primary task
of tracking a target as accurately as possible while performing a secondary task of
maintaining wings level. The pitch of the tracking target is computed as a sum of twelve
sinusoids, modulated by phase shifts in some of the lower frequency components:

n 12
B.(1) =AY sin(@t+() + A, 3 sin(qt+() (1)

=1 i=n+1
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where

Phase shifts are inserted in order to compensate for some unrealistically rapid changes
in target pitch. The frequencies and phase shifts used are listed in Table 1; the number

(o]

€4

3 = I

2

Pitch of the Tracking Target

Angular Frequency
Phase Angle
Bandwidth

0.10

0.02

of cycles per 100 seconds is also given.

Two bandwidths are used. The "low" bandwidth, 1.885 radians per second, contains
components 1 through 6 (i.e., n=6 in Equation 1) with "shelf* containing components 7
through 12. The "high" handwidth, 4.775 radians per second, contains components 1
through 8 (i.e., n=8 in Equation 1) with "shelf' containing 9 through 12. The sinusoids
making up the "shelf' have amplitude 14 db down from the amplitude of the lower

frequencies within the bandwidth.

Table 1. Tracking Target Pitch Frequencies and Phases

Component | Angular Frequency w | Cycles per Phase
Number (radians/sec) 100 sec { (radians)
100w /27

1 0.188 3 0
2 0.251 4 T

3 0.565 9 m/2
4 0.754 12 T

5 1.131 18 /2
6 1.885 30 m
7 2.890 46 9]
8 4.775 76 0
9 7.351 117 0
10 9.236 147 0
11 12.252 195 0
| 12 15.017 239 0




The primary tracking task is dispiayed to the pilot on the computer monitor as shown in
Figure 2.

A secondary loading ‘ask is introduced in order to force the pilot to reach his capacity in
performing the primary tracking task. The secondary task is an unstable tracking task
in roll based on the “critical’ task developed by Jex, McDonnell, and Phatak (1966). The
task requires the pilot to maintain "wings ievel" (¢=0), while performing the primary
tracking task. Both the primary tracking task and the secondary task follow the scheme
used by McDonnell (1968) and are shown in Figure 3. The roll loop develops an unstable
root related to the primary tracking task difficulty and to the pilot's time delay.

To assure that the tracking of the target remains the primary objective. each subject was
briefed as follows:

The primary task is to track the target as accurately as possible, keeping
the center of the target within the "diamond" symbol. It is not essential that
your "wings" are level. The secondary objective is to keep the "wings” as
level as possible.

While maintaining the tracking error below a criterion value, roll difficulty increases.
Conversely, when the tracking error exceeds the criterion value. the roll difficulty
decreases. The experiment is terminated if the display limits are exceeded.



Figure 3. Primary Tracking Task with Secondary Loading Task
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Seven different systems typifying different handling qualities are used:

SYSTEM ASSOCIATED HANDLING QUALITIES

K/s Rate Control: This system approximates heavily
damped automobile turn control at a fixed speed.

K/s{s+1) Rate Control with Lag.

K/s(s+2) Rate Control with Lag.

K/s(s+4) Rate Control with Lag.

K/[s? + 2(0.7)7.85 + 7.8%
(Poly1)

Oscillatory Response: System is lightly damped with
natural frequency less than the bandwidth of the
tracking target pitch.

K/[s? + 2(0.7)16s + 163
(Poly?)

Oscillatory Response: System is lightly damped with
natural frequency greater than the bandwidth of the
tracking target pitch.

K/s?

Acceleration Control: Acceleration is commanded by
control input. Rate change depends on duration of
control input.

These seven different systems are further modified via gain and screen vertical display
scale selection to model secondary variations in handling qualities. The combinations of

systems and gains used are listed in Table 2.

Table 2. System and Gain Configurations

SYSTEM CONTROLLED ELEMENT GAIN ADDITIONAL

LOW | NOMINAL HIGH GAINS
K/s 203 586 5.86 1.17, 8.38
K/s(s+1) 17.6 35.2 58.6 83.8
K/s(s+2) 17.6 32 58.6 8.38, 21.5
K/s(s+4) 17.6 35.2 58.6 83.8, 117
Poly1 21.5 35.2 83.8 17.6, 58.6
Poly2 . 35.2 83.8 215
K/s? 293 586 1.17 .




B. Procedure

The experiment was conducted at the U.S. Naval Test Pilot School, Naval Air Test Center,
Patuxent River, Maryland during August and September 1990.

A total of fifteen pilots participated in the experiment. Experimental subjects are graduates
of the Naval Test Pilot School. All except one are assigned to aviation duties at the Naval
Air Test Center. A questionnaire provided details regarding each person’s background.
This data is summarized in Appendix A.

Each pilot was briefed regarding the objectives of the experiment and the general
characteristics of each configuration. As noted above, during the initial briefing, and prior
to most runs, each subject was instructed and reminded that the primary task was to
minimize pitch tracking error (i.e., to keep the target within the “diamond" symbol). The
display was then selected and symbols defined. Each pilot positioned the hand controller
for convenient operation.

A training segment was provided at the start of each session, based on the K/s system
with gain .586 and "normal” vertical display scale. The pilot performed this "training” task
until he felt comfortable and confident; both one axis (pitch) and two axis (pitch and roll)
were demonstrated.

Following the training segment, each pilot executed a different sequence of runs where
a run is determined by the particular configuration of system, gain, vertical display scale
of the screen, and the bandwidth controliing the pitch of the tracking target. In addition,
runs were made either with or without the secondary loading task. The run sequence
was devised to expose each pilot to a range of configurations with the associated
variations in characteristics of handling qualities. The total number of runs flown by each
pilot ranged from 10 to 17; most flew 10 to 12. The exact sequence of runs executed by
each pilot is listed in Appendix B.

Following each run, using the scoring procedure followed by the Naval Test Pilot Schooal,
the pilot was asked to comment on and evaluate the handling qualities typified by the
system. That scoring procedure is based on the Cooper-Harper evaluation scheme and
is described in Appendix C. During the initial briefing period, this procedure was reviewed
and discussed with each pilot.

C. Experimental Measurements
Measurements of pilot response and pitch/roll state were sampled and recorded at

approximately fixed time intervals of 0.05 seconds for approximately 200 seconds. The
specific variables recorded are listed in Table 3. In addition, the system, gain, vertical

9




display scale, and bandwidth selected for the run were recorded. Following the run, pilot
comments and subjective scores were recorded in the header of the data record.

Table 3. Variables Sampled and Recorded During Each Run for Each Pilot

Channel Variable

1 8, Pitch, Tracking Target

8, Pitch Tracking Error, Primary Task

¢ Roll Error, Secondary Task

é§, Pitch Control input

§, Roll Control input

A, Secondary Task Parameter

N O oW

A, Secondary Task Parameter

The simulation software is designed to sample all variables at 0.05 second intervals.
Attempts were made to use a smaller sampling interval but this is the fastest rate at which
the IRIS 3000 hardware would respond consistently. Even at this time interval, the
sampling is interrupted at times for up to 1.00 second leaving "gaps"” in the sampled data.
Instead of increasing the sampling interval to eliminate this irreguiarity in the sampling, a
sampling rate of 0.05 second was used and the data subsequently interpolated to
compensate for the gaps. The data was interpolated using cubic spline interpolation on
each variable separately which slightly distorted the dynamic relationship between
variables; since the width of the gaps were not necessarily multiples of 0.05, the
interpolation essentially resampled the data instead of merely filing in the "gaps”. The
effect of this distortion was investigated and was found not to significantly affect
subsequent analyses.

D. Lead and Lag

Simulations of this type in which a pilot interacts with a computer-driven simulation often
result in a time differential between the pilot’'s stimulation (i.e., the current state of the
pitch and roll) and the pilot's reaction (i.e., the ingutted control to adjust the pitch and
roll). The term lag refers to a pilot's reaction being subsequent to the stimulation; the
term lead refers to a pilot’s reaction preceding the stimulation as might occur if the pilot
starts anticipating the direction of movement of the target being tracked.

10




Existence of either lead or lag was investigated by computing and plotting the
cross-correlation function between 8, and §, and between ¢ and §, for each run made
by each pilot. The cross-correlation function between 8, and §, revealed a fairly constant
lag of 0.40 seconds over both pilot and system configurations. At this lag, the statistical
correlation coefficient between 6, and §, is typically 0.85 for the "simpler” systems like K/s
and K/s(s+a) degrading to 0.55 for the most difficult system K/s?. No substantial
evidence of a lead was found in any system configuration or pilot although some isolated
system configurations and pilot combinations did show large correlations at negative lag
times. The cross-correlation function between ¢ and §, showed no evidence of either a
lead or lag.

In view of these findings, the inputted control measurements were shifted 0.40 seconds
(8 units of 0.05 seconds each) backward relative to the pitch/roll state sequence when
investigating relationships between pilot inputted control and the resulting state of pitch
and roll. Scatter plots of §, against 8,, with 8, lagged by 0.40 seconds are presented in
Figure 4 for selected experimental runs. The general nonlinearity of the scatter plots of
§, against lagged 6, suggests the need to model the control law as nonlinear.

11
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SECTION 1l
PILOT RESPONSE MEASUREMENTS

A. Overview

Each run measures pilot response to a system during a tracking task. Maintaining a
homogeneous level of difficulty for the task over the run yields a large data set of pilot
response measurements under similar handling qualities. In statistical terms, each run
provides a data set with a large number of replicate measurements. If the pilot is
determining and applying control inputs consistently, then statistical analysis of pilot
response measurements can be used to construct an estimated pilot control law. For this
project, the estimated control law is a mathematical formula for calculating a control input
for the pitch dimension in terms of the history of simulator states. The following
paragraphs describe how the pitch control input law is defined by a logistic function of
tracking error.

Then, based on the estimated control law, two classes of performance measures are
defined:

The process of statistical estimation yields fit and error measures associated
with the estimation; such measures include a regression mean square
(RMS), an error mean square (EMS), and an R-square’ (RSQ).

The mathematical formula for pitch control is used to provide pitch control
input in a closed loop tracking task simulation for the same system flown by
the pilot. Mean absolute tracking error (MEAN) is calculated over this
closed loop simulation run, and this quantity provides a measure of tracking
accuracy for the estimated control law.

The authors’ previous work (Baldwin and Gantz, 1983, 1984) indicated that RMS, EMS,
RSQ and MEAN may provide useful measures for the evaluation of pilot performance.
This section of the report describes how these measures are defined and calculated for
each experimental run in the project. Further, the specific approach to statistical modeling
of pilot control yields additional measures of potential value for the quantification of pilot
performance for use in evaluating handling qualities and understanding Cooper-Harper
ratings.

'The equation for the R-square value is given by
RSQ = 1 - (error sum of squares)/(total sum of squares).

14




B. Control Law Modeling

For each experimental run, the pilot's control inputs are assumed to represent an
“optimal" solution to the tracking task in the sense of optimal control theory. For each
run, a control law describing the relationship between measurements observable by the
pilot and the pilot's pitch control input is estimated statistically. The estimate of the pilot
control law provides a rule for optimally completing the tracking task. Statistical analysis
of the correlation between pilot pitch control inputs and observanle measurements shows
that 8,, the tracking error, is the only measurement correlated with pilot control inputs.
Regression analysis is used to estimate the relationship between tracking error and pilot
control inputs.

In the Linear-Quadratic-Gaussian optimal control problem, an optimal control law is linear.
The system designed for these experiments is not linear; however, as a first cut at
modeling, linear regression was used to relate the pilot's observed control inputs to
tracking error. Linear regression modeling did not properly fit the experimental data.
Examples of linear regression fits and the associated residual plots for a linear regression
fit are presented in Figure 5. The residuals in the figure have a pattern suggesting that
a better fit could be obtained by estimating a type of nonlinear saturated control law. An
example of a saturated control law is shown in Figure 6.

Figure 6. A Saturated Control Law

15
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It was judged that a logistic curve representation of a saturated control law is flexible
enough to fit the data. The logistic curve is a four parameter curve. The formula for the
logistic curve in terms of the four parameters, B,-B8,, is:

BZ
1+exp(-B,-B,9,)

Nonlinear regression analysis was used to estimate the parameters B,-B, that best fit the
logistic curve to test data. The nonlinear regression estimation was accomplished
through the PROC NLIN procedure of the SAS/STAT system (1985). This procedure was
run on each of the experimental data sets. Hence, estimated parameters for a logistic
shaped control law were calculated for each experimental run.

It was reported above that the highest statistical correlation between tracking error and
pilot control inputs was for tracking error lagged by 0.40 seconds. The nonlinear
regression fitting was performed between the pilot pitch control input (§,) as the
dependent variable and the lagged tracking error (lagged 6,) as the independent variable.
Additional measurement variables (for exampie, the derivative of tracking error) were
added as independent variables with no improvement of fit. Hence, lagged tracking error
remained the single independent variable in the analysis.

A sample PROC NLIN output is presented in Figure 7. The PROC NLIN procedure
iteratively fits a logistic curve to the data. Initial parameters for the curve are provided to
the procedure. A common set of parameter initializations worked well for many of the
experimental data runs. However, about twenty percent of the runs required customized
initial parameters to get a satisfactory curve fit to the data. Once the NLIN procedure has
judged that the parameters are providing an optimal fit to the data, regression statistics
are calculated for the fit. These regression statistics include the regression mean square
(RMS), the error mean square (EMS), and the R-square (RSQ) value as well as the
parameter estimates of B,-B, with associated errors and significance levels. Examples
of curve fits and residual plots for the logistic curve fitting are presented in Figure 8. The
nonlinear fit has removed the nonlinear pattern in the residual plots for a linear fit shown
previously in Figure 5.
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ITERATION

-5
-4
-3
-2
-1

NV ~NOWVISWN 20O

NOTE: CONVERGENCE CRITERION MET.

Figure 7. PROC NLIN Output

DEPENDENT VARIABLE: U1

61

-3.86068
-4.246748

-3.86068

-3.86068

-3.86068

-3.86068
-3.573701
-3.499812
-2.637192
-2.060521
-2.185615
-2.189552
-2.212332
-1.890682
-1.650716
.754383
-1.704392
-1.711858
.549999
-1.434775
-1.442596
.443881
.445298
.356649

-1.282128
-0.6128807
-0.5813528
-0.5758633
-0.5708183
-0.6295553
-0.6302112
-0.6293308
-0.6295204
-0.6037107
-0.6128344
-0.6133932
-0.6133788

-0.613574
-0.6138838
-0.6138812

. ’ .
- d b b b ek —h —a b b

Data from Pilot=9 Run=2

Lag 8

(.40 Seconds)

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

b b b ch o b ok h d s ek b 2 b S NN NIIWNWHNWWNWWWWS S & &SN~y 0O

82

829203000
.829203000
.712123300
.829203000
.829203000
.829203000
.089688125
.903180290
808340559
661694107
. 768312950
777993529
.837120629
. 105909872
.56831122¢4
.817137836
697794433
. 716059926
.359717456
. 109279984
. 127450301
. 130416058
. 133696481
.943058410
. 782973231
.393119670
.325169527
.313125879
.302049197
.428249130
4294621478
427416609
.429513389
.384128041
.403148003
404200962
.404091989
.604415245
4046099735
404093139
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METHOO: DUD
83 84

-0.25768 1.119963000

-0.25768 1.119963000

-0.25768 1.119963000
-0.283448 1.119963000

-0.25768 1.231959300

-0.25768 1. 119963000
-0.2413057 1.211122397
-0.2375287 1.236200553
-0.1972555 1.604880490
-0.1737488 1.93520558.
-0.1796189 1.892703196
-0.1798368 1.892508917
-0.1811999 1.890984211
-0.1715656 2.164377374
-0.1659069 2.6413992186
-0.1718359 2.413980018
-0.1690426 2.416868671
-0.1695447 2.618573246
-0.1674213 2.631936140
-0.1670841 2.825893934
-0.1676435 2.832921703
-0.1677149 2.833247555
-0.1677962 2.833631860
-0.1690755 3.007431052
-0.1703638  3.171524626
-0.2245733 7.709795065
-0.2247343 7.761325747
-0.2246048 7.737304925
-0.2244792 7.733130747
-D.2195546  6.769830941
-0.2196963  6.835025113
-0.2196276  6.857264828
-0.2249049  6.908113084
-0.2603244 7.016222138
-0.2607275 7.051195904
-0.2596544 7.043094326
-0.2595751 7.043841536
-0.2593332 7.061202298
-0.2579187  7.0462014718
-0.2579178 7.042048885

RESIDUAL SS

68.145056352365
622.559524769012
523.601524124247

85.772137354046

76.450579455773

68.145056352365

68.060153772589

68.034855791150

66.477651380366

66.130343765427

65.000106994184

64 997714943013

64 .854285262640

64 .2272924446172

64 .395460216124

64 .240918232505

64.041072455446

64.0371864 16494

63.735202315165

63.540263654103

63.526494395540

63.525964329067

63.525697947657

63.373547647801

63.248496566157

62.471279781326

61.697460419705

61.650631882659

61.639785971308

61.530250211234

61.500343355426

61.500041°67061

61.467060283092

61.405525825519

61.345332078636

61.345134383675

61.345132740936

61.345125717978

61.345109154069

61.345109153317




Figure 7. PROC NLIN Output (Continued)

Data from Pilot=9 Runs2
Lag 8 (.40 Seconds)

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE U1

SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 4 196.53281623 49.13320406
RESIDUAL 3370 61.34510915 0.01820330

UNCORRECTED TOTAL 3374  257.87792538

(CORRECTED TOTAL) 3373  257.861370&7

PARAMETER ESTIMATE ASYMPTOTIC 95 X
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
81 -0.613881217 0.03355479751 -0.6796722210 -0.5480902139
B2 1.404093139 0.07997592510 1.2672840753 1.5609022023
83 -0.257917811 0.04864437181 -0.3532949932 -0.1625406285
:13 7.0642048885 0.48774515392 6.0857253320 7.9983724374

ASYMPTQOTIC CORRELATION MATRIX OF THE PARAMETERS

CORR 81 82 B3 84
B1 1.0000 -0.9032 -0.1681 0.9160
82 -0.9032 1.0000 -0.2659 -0.9826
83 -0.1681 -0.2659 1.0000 0.1945
B4 0.9160 -0.9826 0.1945 1.0000

NOTE: ALL ASYMPTOTIC STATISTICS ARE APPROXIMATE. REFERENCE: RALSTON AND JENNRICH, TECHNOMETRICS, FEBRUARY 1978,
P 7-14.
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C. Primary Measures of Pilot Performance

Two primary categories of error measures were derived from estimating a control law for
each experimental run. The definitions of these error measures are consistent with
measures defined in the authors’ earlier work (Baldwin and Gantz, 1983, 1984). The error
measures are intended to provide objective information for evaluating system handling
qualities and understanding Cooper-Harper ratings by condensing the measurements of
pilot response to the system. The first category of error measures describes how well the
pilot maintains a desired control law, and the second category of error measures
describes how well the desired control law performs.

The diagrams in Figures 9 and 10 describe interpretatively how these two categories of
error measures are calculated. The dotted box in Figure 9 represents the system defined
earlier in Figure 3. The input signal, 8, is differenced with the output signal, 6, to get the
tracking error, 6,. 6, is fed back into the system definition to play a role in modulation
of the stability parameter for the roll component. Further, 8, is observed by the pilot for
determination of the pitch control input, §,, and also lagged and inputted to the estimated
control law for calculation of the ideal control input, §;. The squared difference of §, and
§, is added to the sum of squared errors to calculate the mean square error for the
nonlinear regression estimate. Actual calculation of the nonlinear regression mean square
error is done through the SAS PROC NLIN procedure as described above. The error
mean square (EMS) of the control law estimation is in the first category of performance
measures referred to earlier in this paragraph; it tells how well the ideal control law is
being implemented. Returning to the diagram, the output, 8, of the pilot controlled svstem
is differenced with the input signal, 8., to accumulate the mean absolute tracking error of
the pilot controlled system. The mean absolute tracking error (MEAN_RUN) is in the
second category of performance error referred to earlier in this paragraph; it tells how well
the pilot control inputs perform.

An additional second category measure which concerns how well the ideal control law
performs is described in the diagram in Figure 10. Basically, this diagram has the ideal
control law playing the role of the pilot. Graphically presented examples of how well the
estimated control law tracks the input signal are found in Figure 11. The absolute
(vertical) tracking error in these examples is averaged over the 180 second closed loop
simulated run to get a simulated mean absolute tracking error (MEAN) for the estimated
control law. The simulated mean absolute tracking error is a measure of performance for
the ideal control law. This simulated mean absolute tracking error calculated by flying the
estimated control law provides an error measure for the control law which is decoupled
from the error measures resulting from the statistical estimation of the control law. The
authors’ earlier work (Baldwin and Gantz, 1983, 1984) indicated that the statistical error
measures (EMS, RMS, and RSQ) together with the simulated mean absolute tracking
error (MEAN) could provide a basis for evaluation of handling qualities.
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Figure 9. Calculation of Performance Measures Describing Errors in Maintaining
a Desired Control Law

The Dotted Box Represents the System Defined in Figure 3.
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Figure 10. Calculation of the Periormance Measure Describing How Accurately the
Desired Control Law Performs the Primary Tracking Task
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Figure 11. Tracking of the Input Signal by the Estimated Control Law
The Input Signal is Represented by a Solid Line
The Output Signal is Represented by a Dashed Line

SYSTEN=X/s(s+4) GAINzS58.6 PILOT=5 RUN=4

SYSTEM=K/s GAI¥W=0.293 PILOT=1 RUN=S

Time 1n Second

Time in Seconds

0. 0
a. .
0 0.
o] 0
I 0 T Q
n 0. g 0.
P 0. 8 0.
t 0. t 0.
s 0. [ 0.
0. 0.
0 o]
u 0. M 0.
t 0. L 0
5 -0. 8 -0
t -0. L ~-0.
‘s -0. 'i' -0.
x -0. -0.
i - i -
¥ -0 $ -0
s -0. s -0.
-0. -0.
-0. -0.
-0. -0.
-0. -0.
-0. -0.
-0. T T T T T T Y T T T T -0. Y T Y T T T T T T v T
A N N O O N O | PO G G S S S S R S S
g 0 g ¢ 0 0 0 90 o6 0 1 ¢ 0 0 0 0 @ 8 0 0 0o ¢
g £ 2 3 ¢ S5 &6 272 8B 9 O 6 ¢+ 2 3 &« S 6 7 8 9 O
Time in Seconds Time 1n Seconds
SYSTEM=Polyi GAIN=17.6 PILOT=4 RUN=11 SYSTEN=Poly2 GAIN=3E.2 PILOT=13 RUN=6
Q.23 1 0.23
0.21 1 0.21 1
0 19 o 0 19 4
o 17 A 0 17
I 0 15 4 I 0 15 4
n 0.13 7 n 0.13 9
B 0.11 4 P 0.11 1
L 0.09 7 t 0.09
. 0.07 1 + 0.07 4
0.05%5 1 0.05 1
Q 0
u 0.03 1 u 0.03
0.01 0.01
? -0.01 % -0.011
t  -0.03 1 ' -0.031
{ -0.05 1 i -0.05 1
q -0. 07 1 g ~0.07 1
n -0.09 1 n -0.09 7
¥ -0.111 i -0.121
s -0.13 1 s -0.13 1
-0.15 1 -0.15 1
-0.17 1 -0.17 1
«0.19 1 -0 19 4
-0. 21 1 -0.21 1
-0.23 4 -0.23 4
-0'25." L] T T L) T Al A T LS 1 -O'ZS‘V T T T T T T T T T
§ 5 5 5 5 005 5 5 5 i 5 5 8 5 § 6 3 8 0 i
1 g g L3 g 6 ? 8 9 0 0 i I ¢ g 6 7 8 9 0
s

30




D. Secondary Measures of Pilot Performance

In addition to the performance measures defined in the preceding paragraphs, other
objective measures were also calculated for each experimental run.

The secondary loop of the tracking task requires control of the roll axis. The roll control
loop (see Figure 3) contains an instability parameter A, which is a function of the pitch
tracking error, 8,. 4, is modulated in order to keep an approximately steady level of
difficulty for the tracking task during the run. Some examples of the variability of 4, during
a run are presented in Figure 12.

It was assumed that periods during which pitch tracking error, 8,, was small required
somewhat lessened pilot attention. During these periods, the value of A increases which
makes roll control more difficult. This suggests that higher values of A, would measure
the overall level of difficulty. Two summary measures of A, were calculated for each run:
the maximum value attained (A.,,,) and the mean (4 ,,,,). While pilot comments indicated
that actuation of the roll loop made control more difficult and generally less acceptable,
these measures were found to have no analytical power for system handling quality
evaluation.

The shape of the logistic curve is determined by the four parameters B,-B,. To better
interpret the estimated control laws, the parameters B,-B, are rescaled into new
parameters P,-P,. Each of the parameters P,-P, relates to a specific geometric property
of the curve. P, is the control value given by the logistic curve for zero tracking error; P,
is the tracking error at the center of the logistic curve; P, is the slope of the central linear
portion of the logistic curve; P, is the tracking error interval over which the logistic control
law is linear. These physical characteristics of the parameters P,-P, are presented in
Figure 13. For illustration of the variety of shapes taken on by logistic curves, four
different logistic curves and their associated parameters are presented in Figure 14.
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Figure 12. Examples of the Variability of Instability Parameter A,
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Figure 13. Physical Characteristics of P,, P,, P, and P,

Pl =-02 P2=.03 P3=5 P4 =14
107
] Linecr Part
c 0.5 7
7 Stepe is P3
: .
L \\_\l /
L — f Center of Curve
a - A ,
a0 0,P1)
0 ﬁ /
[5%
t
P
u
t
“O.S—'
1 P4
] L=ngth of the Linear Part
-1.0 -

T T T
-0.5 0.0 0.5

Tracking Error

33




Figure 14. Logistic Curves for Various Values of P,, P,, P, and P,
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E. Scaling Associated with Screen Vertical Display Scale and Bandwidth of 6,

Both the screen vertical dispiay scale and the bandwidth of 8, affect the magnitude of the
pitch tracking target. Thus, the pilot must vary the scale of his pitch input to keep up with
the displayed tracking target driven by 6. That is, the scale of §, and 6, are aiso
affected.

In the next section, the values of the primary and secondary performance measures are
compared over all the runs grouped according to system. When the runs differ on screen
vertical display scale and/or bandwidth of 8., this comparison is adversely affected by this
scale change in 6., §,, and 8,. To compensate for this scaling, scaled values of the
"affected” performance measures are used for comparison. The "affected" measures are
RMS, EMS, MEAN, MEAN RUN, P,, P,, and P, which are divided by a scale factor
depending upon the screen vertical display scale and the bandwidth seiected for the run.

The scale factor is simply a product of the scaling associated with the screen vertical
display scale and that associated with the bandwidth. The scaling associated with the
screen vertical display is straightforward since 6, is multiplied by 0.90 for "normal" screen
vertical display and 1.56 for "wide". To define the scaling associated with bandwidth, the
root mean square of 8, over 100 seconds is used. (8, is periodic over 100 seconds.)
For "low" bandwidth, it is . 176635 while for "high" bandwidth, it is .20199. Thus, the scale
factors used are:

Bandwidth of 8,

Low High
Screen Normal 0.90 x .176635 0.90 x .20199
Vertical .
Display Scale Wide 1.56 x .176635 1.56 x .20199
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F. Summary ot Pilot Performance Measures

In summary, the performance measures analyzed are as follows:

Primary Measures

Error measures of the statistical estimation of the pilot control law (RMS,
EMS and RSQ).

Mean absolute tracking error (actual run, MEAN_RUN; and simulated run,
MEAN).
Secondary Measures
Secondary task (roll) stability parameter (.., and A ...)-
Control Law Geometric Characteristics (P,-P,).
In the following paragraphs, these performance measures (some appropriately scaled)

will be analyzed and related to both handling qualities and the subjective Cooper-Harper
rating.
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SECTION IV
RELATIONSHIP BETWEEN PERFORMANCE MEASURES AND SYSTEMS

A. Overview

The previous section describes the definition and calculation of derived variables that
condense the measured experimental data on pilot response into measures of pilot
performance that are potentially useful for the evaluation of handling qualities. This
section presents an analysis of these performance measures focusing on the ability of the
performance measures to effectively differentiate the seven systems used in the
experiments. The way that the performance measures differentiate between systems is
a basis for explaining the real differences between system handling qualities from a pilot
control standpoint. Presented first, for each of the performance measures, is a one-
dimensional view of that measure’s ability to differentiate the systems. This presentation
is supported through graphics which utilize box plots. Then follows a statistical analysis
of the ability of the measures jointly to differentiate the systems. Statistically, the general
term for such an analysis is discrimination analysis. Several statistical techniques for
discrimination analysis will be utilized in the data analysis to show different aspects of the
relationship between the performance measures and handling qualities. The performance
measures will be ranked by their relative importance in the discrimination analysis. The
specific role of each performance measure in the finer levels of differentiating systems is
discussed. The conclusion is that the performance measures are effective analysis
variables for the differentiation among systems and thus for evaluating handling qualities.

B. General Characteristics of the Data

Seven different input/output transfer functions are used to define the systems flown in the
experiments. These systems are defined earlier in this report. For each analysis
performance measure and system, the values for that measure are summarized by a box
plot. A box plotis a statistical graphic which is used in much of the analysis in this report.
This graphic presents a quick visual summary of percentile statistics for data. A box
covers the interquartile range of data (from the 25th through the 75th percentiles) and
whiskers extend out to the minimum data value on the left and the maximum data value
on the right; "M" marks the location of the median (50th percentile) of the set of data and
"A" the arithmetic average of the data. Figure 15 demonstrates the association between
this summary and a set of data.
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Figure 15. Box Plot Example for a Set of Data

The graphics presented in Figures 16 through 26 summarize the variation in the
performance measures across these seven systems using box plots. In the graphic
summary for a particular performance measure, the box plots are arrayed in the order of
increasing median values to visually display how that performance measure
"discriminates” between the seven systems.

B.1. Primary Performance Measures

Figures 16 through 20 present the variation across systems of the primary performance
measures. These figures indicate that each of the performance measures provide a
partial discrimination between systems.

Figure 16 summarizes the way that the regression mean square (RMS) differentiates
between systems. RMS is a measure of the variability in the pitch control input which is
prescribed by the estimated controi law. If the estimated control law is flat, then RMS will
be low; whereas a steep estimated control law or a control law with significant curvature
will have a large RMS. RMS basically separates the systems into three groups:
K/s(s+1) and Poly1 have the lowest RMS values.
K/s(s+4) and K/s(s +2) have intermediate RMS values.

K/s, K/s? and Poly2 have the highest RMS values.
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Figure 16. Regression Mean Square (Scaled)
Box Plot Summary by Systems
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Figure 17 presents the way that the error mean square (EMS) differentiates between
systems. EMS is a measure of the variability of the actual run data around the estimated
control law curve. It is a measure of how well the pilot was able to maintain his ideal
control law; that is, it is a measure of the difference between predicted and actual pilot
inputs. EMS separates the systems into five groups:

K/s(s+ 1) has the lowest EMS values.

K/s(s+4), K/s(s+2) and Poly1 have similar higher EMS values.
K/s has EMS values slightly higher typically than the previous group.

Poly2 has EMS values much higher than the previous group.

K/s? has the highest EMS values.

39

MEDIAN
514.24
590.09
664 .53
841.65
2,578.52
3,489.62

4,786.16




SYSTEM
K/s(s*1)
K/s(s+4)
K/s(s+2)
Polyt
K/s
Poly

K/s’

Figure 17. Error Mean Square (Scaled)
Box Plot Summary by System
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Figure 18 presents the way that the R-square value (RSQ) differentiates between systems.
RSQ is the ratio of the regression sum of squares and the total sum of squares for the
data and thus can take on values only between 0 and 1. The regression sum of squares
is four times RMS, since the regression mode has four degrees of freedom. To calculate
the total sum of squares for the data, for each data point take the squared deviation
between the actual pilot input and the run average pilot input, and sum these squared
deviations over all data points in the run. RSQ is a measure of how much of the total
sum of squares comes from the regression sum of squares. Therefore, RSQ is a
measure of how well the estimated control law "fits" the data with RSQ =1 being a perfect
fit. RSQ hierarchically separates the systems into five groups:

Poly2 and K/s? have the lowest RSQ values.

Poly1 has slightly higher RSQ values.

K/s(s+4) has significantly higher RSQ.

K/s(s+2) and K/s(s+ 1) RSQ values are somewhat higher.

K/s has somewhat higher RSQ values.
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Figure 18. R-Square
Box Plot Summary by Systems
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Figure 19 presents the way that the mean absolute tracking error from the actual run
(MEAN_RUN) differentiates between systems. MEAN_RUN clearly separates K/s? as
having much higher tracking errors than the other six systems. The remaining Ssix
systems all have low and similar tracking error patterns.

Figure 19. Mean Absolute Tracking Error From Data
Box Plot Summary by Systems
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Figure 20 presents the way the mean absolute tracking error from the simulation run
(MEAN) (using the estimated control law to calculate pilot input in a closed loop)
differentiates between systems. MEAN cleanly separates the systems into three groups:

K/s, K/s(s+1), K/s(s+2) and K/s(s+4) have the lowest MEAN values.
Poly1 and Poly2 have higher MEAN values
K/s? has very high MEAN values.

There is a slight ordering of the systems in the first group, but the systems are not
separated. Note that there is better discrimination between systems by MEAN than there
is by MEAN_RUN, the mean absolute tracking error from the data run. Partial explanation
for the poorer discrimination power in MEAN RUN comes from the fact that as an error
measure MEAN_RUN includes errors associated with pilot lag whereas MEAN does not.

Figure 20. Mean Absolute Tracking Error From Simulation
Box Plot Summary by Systems
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B.2. Secondary Performance Measures

Figures 21 through 26 present the variation across systems of the secondary
performance measures.

Figure 21 presents the way that the maximum value of A, (4,,,) recorded during the run
differentiates between systems for runs involving the secondary loading task. A is the
instability parameter for the roll control in the tracking task. The roll component of the
tracking task is in the system to maintain a constant level of difficulty for the overall
tracking task. The pattern of the box plots in Figure 21 seems to indicate that the less
complex systems have somewhat higher A __ values; this probably reflects a higher
tolerance by the pilot for instability in the roll component of the less complex systems.
The exception is with K/s®. 1, is modulated by the difference between the current
tracking error and an accumulated average tracking error. The exceptionally large
tracking errors experienced in the K/s? runs prevent meaningful comparison of A values
in K/s? runs to A, values in the runs using the other systems.

Figure 21. Maximum of A
Box Plot Summary by Systems

NUMBER

R S P | 25

yore-- ) M___A R RnEE LR i 10

joooeennees SN S— S : 13

R ' M__A R 3

ommmeeas ' M A__jeeemmmnmcnemnans ! 27

et A AL

R e R R LR LT R E e ' A 15
D L R R P L $ecenencan L D R 4-ceccccnn $eeraccaan omemeneen *
0 1 2

43

MEC [ AN

2.89




Figure 22 presents the way that the average value of 4, A ., recorded during the run
differentiates between systems for runs involving the 'secondary loading task. The
information in A,,, is virtually identical to the information in 4,,,, presented in Figure 21

above.
Figure 22. Mean of A,
Box Plot Summary by Systems
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Figures 23 through 26 present the way that the geometric parameters P,-P, of the
estimated pilot control law differentiate between systems. These parameters are defined
above in Section Ill.D on Secondary Measures of Pilot Performance.

Figure 23 presents the way that parameter P, differentiates between systems. P, is the
input control value glven by the estimated control law for zero tracking error. For all of
the systems, except K/s?, this control value is typically negative.

Figure 23. Control Law Parameter P,
Box Plot Summary by Systems
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Figure 24 presents the way that parameter P, differentiates between systems. P, is the
tracking error at the center of the estimated control law curve. P, is typically negative for
two of the systems and positive for the other five systems. P, separates the systems into
two groups:

K/s? and K/s(s + 1) have typically negative values of P,,.
K/s, Poly2, K/s(s+4), Poly1 and K/s(s +2) have typically positive values of
P,.

Figure 24. Control Law Parameter P,
Box Plot Summary by Systems
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Figure 25 presents the way that parameter P, differentiates between systems. P, is the
slope of the central linear portion of the estimated control law curve. Larger P, values will
lead to larger variability in the input control values given by the estimated control law
curve; this in turn will lead to large regression mean square (RMS) values for the control
law model. Large curvature, as well, can lead to large RMS values. Note that the
differentiation between systems by RMS as presented in Figure 16 is almost identical with
the differentiation by P, presented in Figure 25. The only real difference is with the K/s?
system. ltis, in fact, the high curvature, rather than the linear slope, in the K/s? estimated
control laws which causes this system to have high RMS values. P, separates the
systems into three groups:

Poly1, K/s{s+1) and K/s? have the lowest P, values.
K/s(s+4) and K/s(s +2) have intermediate P, values.

K/s and Poly2 have the highest P, values.
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Figure 25. Control Law Parameter P,
Box Plot Summary by Systems

Figure 26 presents the way that parameter P, differentiates between systems. P, is the
tracking error interval over which the estimated control law curve is linear. The smaller
P, is, the quicker the "saturation” of the estimated control law curve sets it. Saturation
means that the control law input becomes less, in absolute value, than it would if the
linear part of the curve were extended. Simply put, saturation means an easing off of
control inputs for larger tracking errors. Figure 26 presents a hierarchy of the systems
by parameter P, with no adjacent systems in the hierarchy differing by very much with

respect to P,.

Figure 26. Control Law Parameter P,
Box Plot Summary by Systems
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C. Joint Analysis of Performance Measures using Discrimination Anaiysis

Now that the performance measures have been introduced and discussed singly for their
ability to differentiate systems, the following analysis considers the ability of the measures
jointly to provide information about the systems. The statistical tools that are utilized are
called discrimination analysis; several different algorithms for discrimination analysis are
considered. The performance measures are ranked by their relative importance in the
discrimination analysis and the specific role of each performance measure in the finer
levels of differentiating systems is discussed. The conclusion of the analysis is that the
performance measures are effective analysis variables for the differentiation among
systems and thus among handling qualities.

C.1. Discrimination Algorithms

A general discrimination problem concerns the classification of individuals into groups
using classification variables. The classification variables can bte qualitative as well as
quantitative although many discrimination algorithms are based on a Gaussian
distributional assumption for the classification variables within each group which restricts
the classification variables to being quantitative. Classification rules based on the
classification variables are estimated by minimizing some error measure associated with
"misclassifying” individuals. These classification rules can then be used tc:

Characterize the groups according to how they differ on values of the
classification variables.

Determine the classification variables with the "greatest" discrimination
power to differentiate among groups.

In this study, the groups are the different experimental systems and the classification
variables are the performance measures defined previously. The classification rules help
to determine how a pilot’s selected control law and accuracy vary depending upon which
system is being flown. This information is used to characterize a system and thus
evaluate handling qualities via the reaction of a pilot to it.

Three discrimination algorit~ms are applied to the data. Two of the algorithms are
available in SAS (1985) (Prccezures CANDISC and STEPDISC); the third is a classification
tree algorithm implementec . a special-purpose software (CART). Appendix D contains
a brief description of these igorithms. Each of these algorithms is founded upon a
probabilistic model which s 2ssumed to underlie the mechanism generating the data.
Some algorithms are known :2 perform well even when their associated model is violated.
Each of these techniques is applied to our data in order to compare and contrast the
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information which they provide concerning the relationship between performance
measures and handiing qualities.

C.2. Application of Statistical Discrimination Algorithms - STEPDISC and CANDISC

The CANDISC procedure is used to provide a linear ranking of the systems in the spirit
of a loss function index as investigated by McDonnell (1968) and Baldwin and Gantz
(1983, 1984). CANDISC is based on finding linear combinations of performance
measures which are most correlated with systems. Thus, CANDISC provides some
information about a linear ordering of the systems based on values of a linear function
of performance measures.

Since CANDISC does not explicitly rank variables by importance, an initial investigation
of which performance measures to use in the linear combinations is done using
STEPDISC, another SAS Procedure.

STEPDISC ranks variables according to the statistical partial correlation for predicting the
value of a variable from a model for group classification; the model controls for the effects
of the other variables already in the model. The variable set

MEAN RUN, MEAN, P,-P,, EMS, RMS, and RSQ

was used in the application of STEPDISC. STEPDISC using the STEPWISE option with
significance level 0.15 for a variable to enter the model and to stay produced the following
ranking:

MEAN = RSQ = MEAN_RUN = EMS =P, = P, = P, = RMS

P, is not selected under these enter and stay levels. (See Appendix D.) Table 4 shows
the squared partial correlations themselves as well as the squared correlations. The
squared correlation is an indication of the performance measure’s isolated ability to
discriminate between systems, whereas the squared partial correlation is an indication of
the additional discrimination in the model when the performance measure is added.
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Table 4. Discrimination Power of Performance Measures
Measured by Squared Correlation and Squared Partial Correlation with Systems

Performance Measure Sq. Partial Correlation Squared Correlation
MEAN 826 826
RSQ 433 498
MEAN_ RUN 394 677
EMS 333 527
P, 124 255
P, 102 195
P, 075 071
RMS .060 321
P, .058 .106

Table 4 suggests that MEAN, RSQ, MEAN RUN, and EMS are the "main" performance
measures useful in discriminating systems. The high correlation of MEAN with system
indicates that systems vary significantly as to how well the pilot can perform the given
task using the handling qualities embodied in the system. The table also points out the
relationship of MEAN and RSQ to the other variables in terms of discriminating power;
once MEAN and RSQ are in the model, the squared correlation between system and
other performance measures is greatly reduced as seen by comparing the squared partial
correlation to the squared correlation. This means that much of the information about

handling qualities contained in the other performance measures is duplicated in MEAN
and RSQ.

After STEPDISC provided this breakdown of the importance of the potential classification
variables, CANDISC was run on five different subsets of the performance measures:

Set A: MEAN, RSQ, EMS, MEAN_RUN, RMS, P,-P,
Set B: MEAN, RSQ, EMS, MEAN_RUN, RMS

Set C: MEAN, RSQ, EMS, MEAN_RUN

Set D: MEAN, EMS

Set E: MEAN, RSQ

Different subsets of performance measures are considered to further determine the
relative importance of different variables in providing information about handling qualities.
in particular, the reason for considering Sets D & E, each with two performance
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measures, is to generate a linear combination on similar variables to those suggested in
McDonnell (1968) and Baldwin and Gantz (1983, 1984). Baldwin and Gantz considered
a loss function based upon a linear combination of the pilot error in maintaining his
desired control law (EMS) and the error of the pilot's control as summarized in mean
absolute error of 8, (MEAN or MEAN_RUN).

Due to the variety of the systems used, it is potentially important to consider the pilot error
in maintaining his desired control law in a standardized form in terms of RSQ since

RSQ = 1 - (error sum of squares)/(total sum of squares).

RSQ is a measure of the correlation between the pilot's “ideal" control law and his
measured output and is thus also a measure of how well the pilot maintained his ideal
control law.

The results of the CANDISC runs are summarized in Table 5. The first part of the table
presents the coefficients for each performance measure in the linear combination of
performance measures which is used to linearly order systems. The linear combination
of performance measures which linearly orders systems is called the canonical variable.
The coefficients defining the linear combination of performance measures are called
canonical coefficients. The second part of the table presents the total statistical
correlation between each performance measure and the canonical variable. The total
correlation tells how the performance measure is related to the canonical variable.
Correlations close to one or negative one are strong correlations.




Table 5. Summary of Canonical Discrimination Analysis
Various Sets of Performance Measures

Canonical Coefficients

MEAN RSQ MEAN RUN EMS P, P, P, RMS P,
Set A 1.75 -17 1.35 43 -14 | 33 | -22 06 | -11
Set B 1.83 -.09 1.24 .45 -04
Set C 1.83 -1 1.24 42
Set D 2.24 .21
Set E 2.28 -23

Total Correlation Between Performance Measures and Canonical Variables

The correlations between performance measures and the canonical variable show that
the canonical variable is dominated by MEAN. The next most correlated variable is
MEAN_RUN. However, as seen in Table 4, MEAN_RUN loses much of its discrimination
power once MEAN is in the model. Thus, the high correlation with MEAN_RUN is due

MEAN RSQ MEAN_RUN EMS P, P, P, RMS P,
Set A .95 -.40 .85 .61 -22 .43 -22 .27 .30
SetB .96 -.40 .86 .62 .28
Set C .96 -.40 .86 62
Set D 99 .64
SetE .99 -43
SetA | SetB | SetC | SetD | SetE
Sq. Canonical Corr. 914 .901 .901 828 .829
(CANRSQ)
CANRSQ/(1-CANRSQ) 10.620 9.080 9.070 4820 | 4.850

CANRSQ is the squared multiple correlation between the system

groups and the canonical variable.

CANRSQ/(1-CANRSQ) can be interpreted as the ratio of between
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mostly to the high correlation between MEAN and MEAN RUN. Comparing
CANRSQ/(1-CANRSQ) over different variable sets shows that little is lost by eliminating
P,-P, (Set B) and RMS (Set C). However, the abiiity to differentiate between systems is
dlmmlshed by further removing MEAN _RUN, EMS, or RSQ (Sets D and E). This indicates
that the majority of the information about handling qualities contained in the performance
measures is contained in MEAN, RSQ, MEAN RUN, and EMS.

One of the options of CANDISC is a pairwise test of the difference between systems
based on the Mahalanobis distance between systems. (The Mahalanobis distance
between systems is the Euclidean distance between the within-system means of the
performance measures weighted by the within-system covariances.) Table 6 shows the
systems which are not significantly cifferent at a significance level of 0.10 which reveals
trat different performance measures are important in discriminating between different
systems. For example, P,-P, and RMS have little discriminating power in the presence
of the other variables in Set C. EMS is important in discriminating between Poly1 and
Poly2 as seen by comparing Set E to Set C while RSQ is important in discriminating K/s
from K/s(s+a), a=1,2,4, runs as seen by comparing Set D to Set C.

Table 6. Significantly Different Systems Based on Mahalanobis Distance
Using Various Performance Measure Sets.
Underlined Systems Are Not Significantly Different at a
0.10 Significance Level.

Set A K/s(s+1) K/s(s+2) K/s(s+4) K/s Polyl Poly2 K/s?
Set B K/s(s+1) K/s(s+2) K/s(s+4) K/s Polyl Poly2 K/s?
Set C K/s(s+1) K/s(s+2) K/s(s+4) K/s Polyl Poly2 K/s?
Set D K/s(s+1) K/s(s+2) K/s(s+4) K/s Polyl Poly2 K/s?
Set E K/s(s+1) K/s(s+2) K/s(s+4) K/s Polyl Poly2 K/s?

Table 6 also shows that with the performance measures MEAN, RSQ, MEAN_RUN, and
EMS, one can effectively differentiate between all of the systems except for those of the
form K/s(s+a), a=1,2,4. T-Us, the performance measures can be used to group like
systems, (i.e., like handiinc ualities) up to a degree; some minor differences between
systems cannot be detecte- oy the techniques used so far.
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It is important to note that besides grouping the systems, the resuits of CANDISC can
also be used to linearly rank the systems much like a Cooper-Harper rating. The medians
of the canonical variable within each system provides this linear ordering »f the systems.
Table 7 shows the system medians for the cananical variables from the different
performance measure sets. Based on the linear ordering supplied by the canonical
variable, regardless of the variable set used, the linear . ..mbination can separate the
simpler systems K/s, K/s(s+a), the polynomial systems, .’r"} K/s2 ranking them in this
order from best to worst. The different variable subsets, hcwever, have varied success
in separating within the systems K/s and K/s(s+a), a=1,2,4.

Table 7. System Medians for the Canonical Variables
Numbers in Parentheses Are the Ranking of the Systems Based on
Increasing Values of the Medians. The Last Column Shows the
Median Cooper-Harper Rating within System.

Set A SetB Set C Set D Set E Cooper-Harper

Rating

K/s(s+1) -1.44(3) | -1.48(1) | -1.49(1) -.89(1) -.82(3) 5.00

K/s(s+2) -1.39(4) | -1.47(2) | -1.48(2) -.85(2) -.86(2) 4.25

K/s(s+4) || -1.52(1) | -1.37(3)| -1.37(3)| -81(4)| -.78(4) 4.00

K/s -1.47(2) | -1.33(4) | -1.28(4)| -84(3)| -1.02(1) 5.00

Poly1 -.59(5) -.69(5) -.69(5) -.58(5) -.26(5) 6.00

Poly2 -.00(6) .01(6) .04(6) -.22(6) -.19(6) 6.00

K/s? | 937(7) | 8.44(7) | 845(7)| 6.07(7) | 6.04(7) 9.00

Note the canonical variable clearly distinguishes between Poly1 and Poly2 for which the
Cooper-Harper rating is the same. On the other hand, the Cooper-Harper rating suggests
that the K/s(s+a) and K/s systems can be ordered as K/s(s+4), K/s(s+2), with
K/s(s+1) and K/s comparable. This is an example of the complementary information
which can be obtained via combining the objective and subjective measures of pilot
performance.
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C.3. Application ot Statistical Discrimination Algorithms - CART

The third statistical discrimination algorithm applied to the test data is CART (Classification
and Regression Trees). CART is used to classify the experimental runs into the seven
systems based on the performance measures defined above. Details about CART can
be found in Appendix D.

CART has two advantages when compared to STEPDISC and CANDISC. First, CART
automatically” allows for heterogeneity with regards to different performance measures
being important in discriminating between different subsets of systems. For the other two
algorithms, multiple runs of statistical analysis have to be performed with different subsets
of performance measures and systems to "discover” which variables are important in
discriminating between which systems. Second, the tree-like structure of the resuiting
CART discrimination rule makes the CART models easy to interpret. Additionally, similar
to STEPDISC, CART provides a rank ordering of the importance of variables in
discriminating systems, a feature which is useful in variable selection.

One "defect’ of CART is that it does not provide a linear ranking of the systems in the
spirit of the CANDISC analysis earlier in this section. CART only provides information
about which variables are important for discriminating between systems in a many-variable
environment. The following table summarizes the performance measures presented to
CART and CART's assessment of the relative value of each performance measure for
discriminating between the systems.

Performance Relative Importance
Measure for Discriminating

Between Systems
. MEAN 100
EMS 75
MEAN RUN 74
RMS 72
P, 69
COOPER-HARPER 63
RSQ 61
P, 56
P, 49
_1 49
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Note that the ordering of performance measures by CART is similar to that produced by
STEPDISC (Section IV.C.2) in that MEAN, MEAN RUN, and EMS are near the top of the
list and the parameters associated with the control law, P,-P,, are nearer the bottom. The
relative placement of RSQ and RMS, however, are different; STEPDISC places RMS at the
bottom while CART ranks it higher in importance while the opposite is true for RSQ. Such
discrepancies are expected because of the high correlation between some performance
measures and the differences in the ranking criteria inherent in CART and STEPDISC.

On the basis of the combined information about variable importance from CART,
STEPDISC, and CANDISC, CART was used to build and test a model for classification of
the pilot runs based on three performance measures: MEAN, EMS, and RSQ.
MEAN_RUN was dropped because of its high correlation with MEAN and because
subsequent graphical interpretation of the output of CART is more easily discernible in
three dimensions. RSQ was used in preference to RMS due to the very low importance
found for RMS by CANDISC while CART shows comparable discrimination value for the
two, albeit a preference for RMS. Several other groups of performance measures were
considered but were found to produce similar results with less clarity of interpretation.

The resulting classification tree model is presented in Figure 27. This tree has seven
terminal nodes; each terminal node is identified with one of the seven systems
representing different handling qualities. These terminal nodes are defined through six
splitting rules. Each splitting rule specifies a splitting variable and a splitting value. The
splitting variables and values are referenced at the intermediate nodes in Figure 27. Pilot
runs entering a splitting node are split to the left branch if their splitting variable value is
less than or equal to the splitting value; otherwise, the run is split to the right branch.

Figure 27. Classification Tree Diagram
Tree with Seven Terminal Nodes
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CART's options are set for determination of a cross-validated tree with ten-fold cross-
validation. The cross-validation option causes CART to build and test classification tree
models with various subsets of the data. Cross-validation is used to determine a
misclassification rate for the final classification tree model. The selection of CART options
also determines how many terminal classification nodes will be in the tree model.

Figure 28 presents the information available in CART output for each splitting rule.
Splitting is done to reduce a cost parameter associated with misclassifying systems. The
splitting variable at a node is selected to minimize the cost of misclassification for the
resulting tree. Basically then, the split at each node attempts to separate systems. The
output lists which variables are competitors for use as splitting variables at that node,
together with the "improvement” that such a choice would bring to the tree. (See
Appendix D.) In particular, a surrogate splitting variable strongly associated with the
selected splitting variable is typically identified. This is a performance measure
accomplishing a split of runs close to that provided by the actual splitting variable. The
strength of association between the surrogate variable and the splitting variable is
indicated.

Figure 28. Splitting Rule information from CART Output

* Node 1 was split on variable MEAN
* x A case goes left if variable MEAN .le. 5.80e-01
* * Improvement = 1.3e-01
* 1 *>
* * Node Cases Class Cost
LI 1 168 1 0.86
* 2 111 2 0.75
* = 4 57 3 0.67
" *
111 57 Class Number Of Cases Within Node Prob.
* * Top Left Right Top Left Right
* * K/s(s+l) 17 17 0] 0.14 0.25 O.
* * K/s(8+2) 18 18 0] 0.14 0.25 O
* * * ox K/8(s8+4) 32 32 ¢] 0.14 0.25 O.
* * * * K/s 47 44 3 0.14 0.24 0.02
* 2 * 4 * Polyl 27 0 27 0.14 O. 0.33
* * * * Polyz 11 0 11 0.14 O. 0.33
* o® * * K/s 16 0 16 0.14 0. 0.33
* *
Surrogate Split Assoc. Improve.
1 RSQ r 4.43e-01 0.62 6.8e-02
Competitor Sp. = Improve.
1 EMS 9.0%e+00 8.7e-02
2 RSQ 4.98e-01 7.1e-02




The diagrams in Figures 29a through 28h show geometrically how the classification tree
in Figure 27 defines regions of values of the three performance measures associated with
the seven different systems. Note that all three performance measures are nonnegative.
Also, RSQis logically bounded above by one. MEAN and EMS actually take values larger
than the limits on the axes in these figures; however, this only occurs for runs with the
systems Poly2 and K/s?. Thus, some runs with systems Poly2 and K/s? are out of the
range of these plots and are thus not pictured in Figures 29g and 29h.

The first diagram, Figure 29a, shows how the seven CART classes partition the three-
dimensional space formed by MEAN, EMS, and RSQ. The way that the performance
measures separate systems into CART terminal nodes reiterates the system discrimination
results reported earlier from the application of CANDISC. Specifically,

MEAN separates the system into three groups:
1) K/s(s+1), K/s(s +2), K/s(s+4) and K/s
2) Poly1 and Poly2
3) K/s?

Within the first group, high RSQ values characterize K/s, and higher EMS
values distinguish K/s(s+2) and K/s(s +4) from K/s(s+1).

MEAN is used again to discriminate between K/s(s+2) and K/s(s +4).
EMS distinguishes between the Poly1 and Poly2.

The diagrams in Figures 29b through 29h present the correctly classified runs from each
system in the associated CART terminal node. These diagrams help to visualize the way
that these performance measures characterize the systems and discriminate between the
systems. The geometric details of the discrimination of systems through CART are quite
straightforward and hence are more easily understood and interpreted than the
discrimination via canonical variables in CANDISC. The ability to visualize CART's
classification is an advantage as is CART's automatic allowance for heterogeneity with
regards to the selection of variables to discriminate between different subsets of systems.

Tables 8 and 9 present how well this seven-node tree discriminates between the seven
systems. Table 8 displays how the 168 pilot runs are classified by the CART tree. Each
cell in Table 8 is associated with a "True System" and a "Predicted System". The cell
contains the number of runs ‘-om the "True System" classified as the "Predicted System".
There is also a fractional £-=akdown showing how the runs in each "True System" are
distributed by the classifica: on tree into the "Predicted Systems"; hence these fractions
sum to one vertically in the table. Table 9, the cross-validation table, presents CART's
estimated classification/misciassification probabilities for the seven-node tree; these
probabilities are estimated by CART using cross-validation techniques which are
described in Appendix D.
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Figure 29. Geometric View of CART Terminal Node Classes
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Figure 29. (Continued) Geometric View of CART Terminal Node Classes
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Table 8. Classification Matrix for Pilot Runs
Number of Runs (Fraction of Runs)

True System

F’éigicet:‘d rmsn) K/s(s+2) | K/s(s+4) K/s Poly1 Poly2 K/s?
K/s(s+1) “ 10 (.59) | 1 (.06) 6 (.19) 3 (.06) 0 (.00) 0 (.00) | 0 (.00)
K/s(s+2) 1 (.06) 0 (.00) 3 (.06) 0 (.00) 0 (.00) | 0 (.00)
K/s(s+4) 4 (.23) 9 (.50) 10 (.21) 0 (.00) 0 (.00) | 0 (.00)
K/s 2 (.12) 1 (.06) 0 (.00) 0 (.00) 0 (.00) | 0 (.00)
Poly1 0 (.00) 0 (.00) 0 (.00) 3 (.06) 3(27) | 0(00)
Poly2 0 (.00) 0 (.00) 0 (.00) 0 (.00) 0 (.00) 0 (.00)
K/s? 0 (.00) 0 (.00) 0 (.00) 0 (.00) 1(.04) 0 (.00) m
Table 9. Cross-Validation Classification Matrix for Pilot Runs
Estimated Probability of Classification/Misclassification
True System
Pg:gizt;d K/s(s+1) | K/s(s+2) | K/s(s+4) K/s Poly1 Poly2 K/s?
K/s(s+1) I .35 ’ .06 25 06 0 0 0
K/s(s+2) 12 22 1 0 .09 0
K/s(s+4) 4 44 E 7 0 0 0
K/s 12 1 0 0 0 0
Poly1 0 0 0 .06 18 0
Poly2 0 0 0 0 0 0
K/s? 0 0 0 0 .04 0 I:1——

Both tables show that systems (and thus handling qualities) can be characterized and
evaluated on the basis of these three performance measures. Specifically, the Poly1,
Poly2, and K/s® systems are easily separated from the K/s and K/s(s +a), a=1,2,4, runs.
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These measures have some problems telling Poly2 from Poly1 runs but still almost 75%
of the Poly2 runs are correctly classified. At least half of the K/s and K/s(s +4) runs are
correctly classified although there is some tendency for classifying K/s as K/s(s+4) and
K/s(s+4) as K/s(s+1) and K/s(s+2). Generally, the K/s(s+a), a=1,2,4, runs are not
that well separated showing the limitations of the performance measures for separating
these systems.

Up to this paint, the discrimination analysis of systems has ignored the potential effect of
other sources of variation among runs besides systems. As noted in Section II.B, the
individual pilot runs differ not only in the system used but also in four additional design
parameters. These parameters are gain, vertical display scale of the screen, the
bandwidth controlling the pitch of the tracking target, and the presence of the secondary
loading task. These design parameters are described in detail in Section ILLA. Gain is a
multiplier in the system transfer function and thus models secondary variations in handling
qualities. Each system was run at multiple levels of gain. The screen vertical display
scale determines the dimensions of the tail-chase scene presented to the pilot. Two
vertical display scales were used: "normal" and wide". The bandwidth parameter
determines how many of the input signal sinusoids would be high amplitude sinusoids
and thus changes the tracking task performed. Two bandwidths were used: "low" and
"high". Finally, each system was run with the secondary task off and with the secondary
task on. This, like bandwidth, changes the tracking task performed.

To investigate whether these design parameters explain some of the mixing of systems
across terminal nodes leading to misclassification, Tables 10 through 16 break down the
pilot runs for each system according to the CART terminal node assigned to the run and
also according to the settings of the four design parameters. In these tables, both the
number of the terminal node (as numbered in Figure 27) and the system identified with
the terminal node are listed. Unfortunately, the small number of runs in these tables at
any specific configuration of the four design parameters preclude definitive conclusions
being reached about the association between these four design parameters and
misclassification. However, the pattern of misclassified runs suggests that higher gains
and the presence of the secondary task may lead to misclassification of one system as
another in some cases, as detailed below.
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Table 10. Breakdown of Pilot Runs
by CART Terminal Node and Design Parameter *
for SYSTEM=K/s(s+ 1)

Total System Gain Bandwidth Screen Secondary Task

Classi-
fications 17.60 35.20 58.60 83.80 Low High Normal Wide of f on

Terminal Node

1: K/s(s+1) 10 8 1 1 7 3 8 2 1 9
2: K/s(s+2) 1 1 1 1 1
3: K/s(s+b) 4 1 3 2 2 4 4
4: K/s 2 2 2 2 2

Table 10 does not indicate any pattern of misclassification of system K/s(s+ 1) related to
the design parameters.

Table 11. Breakdown of Pilot Runs
by CART Terminal Node and Design Parameters
for SYSTEM=K/s(s+2)

Total System Gain Bandwidth Screen Secondary Task
Classi-
fications 8.38 17.60 21.50 35.20 58.60 Low High Normal Wide off on
Terminal Node

1: K/s(s+1) 1 1 1 1 1
2: K/s(s+2) 7 1 2 4 7 6 1 3 4
3: K/s(s+4) 9 1 1 1 5 1 8 1 9 1 8
4: K/s 1 1 1 1 1

Eight of the nine system K/s(s+2) runs misclassified as system K/s(s+4) in Table 11
have the secondary task on. Also, the one run at the highest gain value (58.60) is
associated with this misclassification. .

Table 12. Breakdown of Piiot Runs
by CART Terminal Node and Design Parameters
for SYSTEM=K/s(s+4)

Total ~estem Gain Bandwidth Screen Secondary Task
f?é::?;;s 17.60 3% . 58.60 83.80 117 Low High Normal Wide off on
Terminal Node
1: K/s(s+1) 6 3 1 2 5 1 3 3 6
3: K/s(s+b) 26 2 12 12 23 3 25 1 7 19
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Table 12 indicates that secondary task on and high gain may lead to the misclassification
of system K/s(s+4) as K/s(s+1).

Table 13. Breakdown of Pilot Runs
by CART Terminal Node and Design Parameters
for SYSTEM=K/s

Total System Gain Bandwidth Screen Secondary Task
Classi-
fications 0.29 0.59 1.17 5.86 8.38 Low High Normal Wide off on
Terminal Node

1: K/s(s+1) 3 3 3 3 2 1
2: K/s(s+2) 3 3 3 3 1 2
3: K/s(s+6) 10 1 8 1 10 9 1 1 9
4: K/s 28 4 23 1 26 2 28 16 12
5: Poly1 3 1 2 2 1 2 1 3

Table 13 indicates that secondary task on and high gain values can lead to the
misclassification of system K/s runs as K/s(s+a), a=1,2,4, systems.

Table 14. Breakdown of Pilot Runs
by CART Terminal Node and Design Parameters
for SYSTEM =Poly1

Total System Gain B8andwidth Screen Secondary Task
Classi-
fications 17.60 21.50 35.20 58.60 83.80 Low High Normal Wide off on
Terminal Node
S: Polyl 26 7 7 8 1 3 21 S 20 6 ) 20

7: k/s’ 1 1 1 1 1

Since only one run is misclassified, no pattern of misclassification can be determined from
Table 14.
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Table 15. Breakdown of Pilot Runs
by CART Terminal Node and Design Parameters
for SYSTEM=Poly2

Tota! System Gain Bandwidth Screen Secondary Task
f?é::?;;s 35.20 83.80 215 Low High Normal Wide of f on
Terminal Node
5: Polyl 3 1 1 1 3 2 1 3
6: Poly2 8 8 7 1 8 1 7

Table 15 indicates that secondary task on and high gain values can lead to
misclassification of system Poly2 as system Poly1.

Table 16. Breakdown of Pilot Runs
by CART Terminal Node and Design Parameters
for SYSTEM=K/s?

Total System Gain Bandwidth Screen Secondary Task
Classi-
fications 0.29 0.59 1.17 Low High Normal Wide Off on
Terminal Node
7: K/§° 16 4 " 1 12 4 13 3 1 15

All pilot runs using K/s? are correctly classified as shown in Table 16.

D. Evaluation of Handling Qualities through the Analysis of Performance Measures

Each flight simulation system used in this experiment represents a category of handling
qualities. The preceding analysis in Section IV.C explores the ability of the performance
measures to discriminate these systems. In other words, that analysis concentrates on
demonstrating that there is a relationship between objective performance measures and
systems which allows systems to be classified according to the values taken on by
performance measures in associated pilot runs. This section tries to demonstrate that
through this relationship, the performance measures provide meaningful insight for the
evaluation of handling qualities. Accordingly, it focuses on the type of information that the
performance measures provide.

First, consider the statistical error measures EMS and RSQ and mean absolute tracking
error measure MEAN. Recall that these are the measures singled out by CANDISC and
used subsequently in the CART analysis. The physical/qualitative meanings of the three
performance measures are:
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EMS measures the variation of run data around the estimated control law; that is,
it tells how closely the pilot was able to maintain his ideal control law.

RSQ measures how much control information is in the estimated control law; that
is it tells how well the estimated control law describes actual pilot control input.

MEAN measures the accuracy of the estimated control law for performing the
tracking task.

These performance measures are objective in that they are analytically derived from
objectively measured pilot response. They express the consistency with which the pilot
"flies" as well as how accurately the tracking task is performed.

Note that EMS =0 is equivalent to RSQ=1. That is, the estimated control law exactly fits
the measured pilot response when and only when the residual errors are all zero. If the
estimated control law performs the pitch tracking task with zero error in the closed loop
simulation run, then MEAN will be zero. From an analysis viewpoint then, the desirable
values for these perforn o reasures are EMS=0, RSQ=1, and MEAN=0. In that
case, the pilot would have perfectly defined and perfectly "flown" a control law that
executed the tracking task without error.

In this context, each of the systems can be evaluated and compared relative to how pilot
runs using that system deviate from this desired state. For example, referring to Figure
29a:

The runs using system K/s have the highest RSQ values while maintaining low
MEAN values. Thus, the system K/s runs show the most clearly defined control
laws and perform the tracking task well.

The system K/s(s+a), a=1,2,4, runs demonstrate lower RSQ values than the
system K/s runs and thus have less well-defined control laws than for K/s runs;
but, they perform the tracking task as well as is demonstrated by having similar
values of MEAN. Within the K/s(s+a) systems for varying "a", the system
K/s(s+2) runs have lower tracking error (smaller MEAN values) than K/s(s+4),
and control inputs in system K/s(s+ 1) runs show the least variation around the
estimated control laws since they have smaller EMS values.

Both Poly system runs show higher tracking error (larger MEAN values) than either
K/s or K/s(s+a), a=1,2,4, runs. Also, the control inputs in system Poly1 runs
show smaller variation around the estimated control laws (smaller EMS values)
than Poly2 runs.

The K/s? runs demonstrate the worst handling qualities of all seven systems
considered as shown by having the worst values for EMS, RSQ, and MEAN.
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As discussed in Section |II.B, an important intermediate analysis product in the calculation
of the error measures and tracking errors is the estimation of the pilot's control law. The
statistical process of estimating the control law yields the error measures EMS and RSQ,
and the estimated control law used as an autopilot yields the task accuracy measure
MEAN. Below, the estimated control law itself is investigated as to its role in the
evaluatior of handling qualities. Specifically, the four secondary performance measures
P,-P, introduced in Section IIl.D which characterize the geometric shape of the control law
will be considered.

The estimated controi laws for the correctly classified experimental runs at each node of
the CART classification tree defined in Figure 27 are plotted in Figure 30. Each sub-figure
presents overlaid plots of the estimated control laws for the different runs made using the
indicated system. Here, as in some analysis to follow, only the correctly classified runs
according to the CART classification tree are used to eliminate some of the aberrant runs
which are not characteristic of other runs using the same system. As noted before, some
runs differ due to variations in the design parameters (gain, screen scale, bandwidth, and
secondary task) while other runs differ due to pilot differences. Removing these aberrant
runs through the use of the CART analysis helps to clarify the utility of performance
measures for evaluating handling qualities by reducing the variation in the performance
measures not due to system differences.

Several differences in the overall shapes of the controls laws can be seen in Figure 30.
For example, the inputted control is zero for zero tracking error except for the K/s? runs
where the inputted control is positive. P, is the performance measure characterizing the
inputted control for zero tracking error so this difference in K/s? runs can also be seen
in Figure 23. In Fugure 23, the median P, values are slightly negative for all runs except
those using K/s? for which the median is much larger and positive. Ideally, the mputted
control for zero tracking error should be zero. This tendency for being positive for K/s?
runs may be related to some anticipation by the pilot or to some undesirable bias due to
overcompensation when using this system.

Another difference in the control laws is their symmetry which appears visually in Figure
30 as the crossing point of the overlaid control laws. Symmetry is characterized by the
performance measure P,. Recall that P, is the tracking error at the center of the
estimated control law curve and thus measures any difference in how the pilot performs
when inputting positive and negative controls. In particular, it measures asymmetry with
respect to zero tracking error of the range over which the control law is linear and any
asymmetry in the tendency to saturate the control law. As further seen in Figure 24, both
K/s(s+1) and K/s? system runs have a tendency to negative values of P, while the other
systems have more positive values. Thus, for K/s(s+1) and K/s? runs, the pilot tends
to saturate his inputted control more for positive inputs than negative and his control law
is more linear for negative inputted controls than for positive. The opposite tendency
holds for the runs from the other systems.




Figure 30. Estimated Control Laws for Correctly Classified Runs
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Figure 30. (Continued) Estimated Control Laws for Correctly Classified Runs
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The most pronounced difference in the control laws shown in Figure 30 is the amount of
curvature. The control laws for systems K/s(s+ 1), Poly1, and K/s?, are “flatter” than the
control laws for the other systems; in addition, the control laws for systems K/s(s+ 1) and
K/s? are more linear. This difference in curvature can more clearly be seen in Figure 31
showing overlays of the median control laws for the different systems.

The performance measure characterizing the linearity of the control law is P,, the tracking
error interval over which the estimated control law curve is linear. As noted in Figure 26,
K/s? and K/s(s+1) have the largest value of this parameter; the median values for the
remaining systems are very similar. Of course, the more linear a control law is, the less
the pilot saturates his inputted control. Thus, for these two systems, the pilots did not
have as much tendency to ease off of control inputs for larger tracking errors as for the
remaining systems.

The performance measure characterizing control rate, i.e., the slope of the "middle" part
of the control law, is P,. The hierarchical arrangement of system by control rates
observed in Figures 30 and 31 can be seen again using the box piots in Figure 32
summarizing the parameter P, for the correctly classified pilot runs. The presentation in
this figure is similar to the presentation in Figure 25 which summarizes all 168
experimental runs. However, by using only the correctly-classified runs, Figure 32
provides a better discrimination of systems than Figure 25, thus demonstrating the utility
of removing aberrant runs as discussed earlier.

Figure 32. Control Law Parameter P,
Box Plot Summary by System and CART Terminal Node
Correctly Classified Pilot Runs Only
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Figure 31. Median Control Laws for Each System (Excluding K/s?)
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@ a smaller control rate. Figure 32 indicates low control rates for systems K/s(s+ 1), Poly1
and K/sz, moderate control rates for systems K/s(s+2) and K/s(s+4), a higher rate for
system K/s, and a still higher rate for system Poly2. Thus, K/s(s+1), Poly1, and K/s?
are the most responsive systems followed by K/s(s +2) and K/s(s +4) with K/s and Poly2
being the least responsive systems investigated.
@
Figure 33 augments the summary in Figure 32 by adding box plots for four groups of
runs misclassified by CART. These four groups are:
9 K/s(s+2) runs misclassified as K/s(s+4)
) 6 K/s(s+4) runs misclassified as K/s(s+1)
10 K/s runs misclassified as K/s(s +4)
3 Poly2 runs misclassified as Poly1
These four groups represent the largest groups of misclassified runs for each system.
® Groups from K/s(s+1), Poly1, and K/s? are not included due to the small number of
misclassifications for these systems.
Figure 33. Control Law Parameter P,
° Box Plot Summary by System and CART Terminal Node
Misclassified Groups Indicated by **’
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The control rate is related to handling qualities in that the control rate is largely
determined by the responsiveness of a system with a more responsive system showing
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All misclassifications result in lower values of P,, that is, in lower control rates. As noted
in Section IV.C.3, all of the misclassifications included in Figure 33 are associated with the
following design parameter settings: secondary task on and high gain values. It is
reasonable that a higher gain and/or a demanding secondary task would reduce the
pilot's control rate.

The auxiliary information from parameter P, related to the misclassifications can be
integrated with the information from the CART classification analysis to further qualify the
handling qualities embodied in the systems. Four of the systems have primary runs
associated with that system’s CART terminal node and miscl/assified runs associated with
another system's CART terminal node. It was just noted that P,is smaller for the
misclassified runs than for the primary runs.

The K/s misclassified runs are in CART terminal node 3 which has lower
RSQ values than the primary K/s runs in terminal node 4. The misclassified
K/s runs then are differentiated by less pilot consistency as well as by lower
pilot control rates.

The K/s(s+2) misclassified runs are in CART terminal node 3 which has
higher MEAN values then the primary K/s(s+2) runs in terminal node 2.
The misclassified K/s(s+ 2) runs then are differentiated by less accuracy in
task performance as well as by lower pilot control rates.

The K/s(s+4) misclassified runs are in CART terminal node 1 which has
lower EMS values than the primary K/s(s +4) runs in terminal node 3. The
misclassified K/s(s+4) runs then are differentiated by a closer pilot
adherence to the estimated control law as well as by lower pilot control
rates.

The Poly2 misclassified runs are in CART terminal node 5 which has lower
EMS values than the primary Poly2 runs in terminal node 6. The
misclassified Poly2 runs then are differentiated by a closer pilot adherence
to the estimated control law as well as by lower pilot control rates.

These observations seem to imply that the K/s and K/s(s+2) primary runs exhibit
preferable handling qualities to the misclassified runs. But with the K/s(s +4) and Poly2
systems, the misclassified runs exhibit preferable handling qualities. These evaluations
are based on the interpretations of the CART terminal nodes in terms of levels of MEAN,
EMS, and RSQ. Since the main difference in handling qualities reflected in the
misclassified runs is higher gain, there is some indication that a higher gain may be
preferable for the systems K/s(s+4) and Poly2. Since the misclassified runs are also
associated with the secondary task on, this preference for higher gain may also be only
associated with the more complicated tracking task.
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SECTION V
RELATIONSHIP BETWEEN
COOPER-HARPER RATING AND PERFORMANCE MEASURES

A. Subjective Pilot Opinion - Cooper-Harper Rating

The analyses discussed so far concerning evaluation of handling qualities do not address
pilot opinion of handling qualities as embodied in the Cooper-Harper rating described in
Appendix C. All of the analyses have been based solely on performance measures
derived from directly measured pilot response. Figure 34 summarizes the Cooper-Harper
ratings for the seven experimental systems.

Figure 34. Cooper-Harper Rating
Box Plot Summary by Systems
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The box plots in Figure 34 indicate an ordering of the systems by the Cooper-Harper
rating aithough there is significant overlap in the ranges of Cooper-Harper ratings for most
systems. The lowest Cooper-Harper ratings are for systems K/s(s+4) and K/s(s+2)
which are separated from those for the "worst" systems Poly1 and K/s®. The Cooper-
Harper ratings for the remaining systems K/s, K/s(s+ 1), and Poly2 somewhat overlap the
best and worst systems. Thus, unlike using the performance measures, there is no clear-
cut division of systems by Cooper-Harper ratings aione. However, an advantage of
Cooper-Harper is that it does provide a preference ordering of the systems.
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B. Correlation Between Cooper-Harper Rating and Performance Measures
Table 17 lists the correlations between Cooper-Harper rating and the performance
measures.

Table 17. Correlation Between
Cooper-Harper Rating and Performance Measures

Performance Measure Correlation
MEAN RUN 694
MEAN .555
RSQ -.392
P, -.337
P, 318
EMS .268
P, 177
P, -.066
RMS .058

As seen by the correlations, there is a fairly strong relationship between
MEAN_RUN/MEAN and the Cooper-Harper rating. Also, note that the correlation with
P, and P, exceeds that with EMS and RMS suggesting that the Cooper-Harper rating is
related to the shape of the control law more so than to some of the error measures,
contrary to the relationship between system and performance measures.

To further investigate the relationship between Cooper-Harper and performance
measures, the discrimination algorithms STEPDISC and CANDISC were used with
Cooper-Harper rating as the grouping variable. To eliminate many small groups, the
Cooper-Harper rating was rounded to the nearest integer to produce nine groups ranging
from 2 to 10.

STEPDISC using the STEPWISE option with significance level 0.15 for a variable to enter
the model and to stay produced the following ranking:

MEAN_RUN =P, = P, = MEAN = RSQ = P, = EMS
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P, and RMS are not selected under these enter and stay levels. P, loses much of its
dnscnmmatnng power because of a strong correlation with MEAN RUN Table 18 shows
the squared partial correlations as well as the squared correlations. Recall that the
squared correlation is an indication of the performance measure’s isolated ability to
discriminate between Cooper-Harper ratings, whereas the squared partial correlation is
a measure of the additional discrimination between Cooper-Harper ratings when the
performance measure is added.

Table 18. Niscrimination Power of Performance Measures
Measured by Squared Correlation and Squared Partial Correiation
with Cooper-Harper Rating (Rounded)

Performance Measure Sq. Partial Correlation Squared Correlation
MEAN_ RUN 627 .627
P, 210 310
P, 184 175
MEAN 176 493
RSQ 129 217
P, 105 158
EMS 102 223
RMS 082 .080
P, 049 140

Table 18 suggests that MEAN RUN, MEAN, P,, and P, are the "main” performance
measures associated with the Cooper-Harper rating. Unhke with systems, the Cooper-
Harper rating is more related to perceived pilot error as embodied in MEAN RUN as
opposed to MEAN and is more related to the parameters governing the control law such
as P, and P, than with error measures such as EMS, RSQ, and RMS.

CANDISC was also applied to the (rounded) Cooper-Harper rating. As expected from the
analysis above, the first canonical variable is mostly related to MEAN RUN
(correlation =.918) with the next most related variables being MEAN (correlation = 785)
and P, (correlation=.548). The total squared correlation between the Cooper-Harper
rating and the canonical variable is .857 indicating the Cooper-Harper rating can be
predicted with a high degree of accuracy using the associated values of the performance
measures. The total squared correlation is comparable to that between system and
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performance measures as given in Table 5.

The pairwise tests of differences between Cooper-Harper ratings show that the lower
values of Cooper-Harper are not well separated. Specifically, the values of the Cooper-
Harper ratings fall roughly into three sets:

Set1: 2,3, 4
Set2:. 5,6,7
Set3: 8,9, 10

with the first two sets overlapping more so than the latter two. The linear ranking based
on the first canonical variable also points out this grouping. Table 19 gives the median
values of the canonical variable with each group.

Table 19. Medians of the Canonical Variable
per Cooper-Harper Group

Cooper-Harper Rating Median
(Rounded) Canonical Variable
2 -1.055
3 -0.923
4 -0.878
S -0.679
6 -0.478
7 0.054
8 1.413
9 3.942
| 10 6.529

Note that the medians of the canonical variables are increasing with Cooper-Harper rating
so that not only can performance measures be used to predict the Cooper-Harper rating
but the relative value of the canonical variabie is also a measure of preference of systems.
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C. Evaluation of Handling Qualities

Cooper-Harper ratings are related to pilot response as shown in the previous section
which studied the correlation between Cooper-Harper ratings and the performance
measures summarizing pilot response. The following discussion exemplifies how this
relationship can enhance the Cooper-Harper subjective evaluation of handling qualities
through integration with the performance measures of pilot response.

Figure 35 is a refinement of Figure 34, it summarizes the Cooper-Harper ratings for the
eleven groups of runs treated in Figure 33. These eleven groupings consist of the seven
primary system groups defined by the seven CART analysis terminal nodes in Figure 27
and four more misclassified system groups.

Figure 35. Cooper-Harper Rating
Box Plot Summary by System and CART Terminal Node
Misclassified Groups Indicated by ‘*’

Compared to the pattern in Figure 34, the primary system groups from the best systems,
K/s(s+2) and K/s(s+4), are more cleanly separated from those of the worst systems,
Poly1 and K/s?. Primary system groups for the remaining systems, K/s, Poly2, and
K/s(s+ 1), still lay in the midrange Cooper-Harper ratings somewhat overlapping the best
and worsi systems. This is another example of how relationships between variables is
clarified via removal of aberrant runs using the CART classification tree in Figure 27.
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Figure 33 shows how pilot control rates differ across the seven primary system groups.
Comparing this figure to Figure 35, the two best Cooper-Harper rated systems, K/s(s +2)
and K/s(s +4), have control rates in the midrange (9 to 10). The next best Cooper-Harper
rated systems, K/s and Poly2, have significantly higher pilot control rates, 17 and 22,
respectively. The worst Cooper-Harper rated systems, K/s(s+ 1), Poly1, and K/s? have
low control rates, in the 5 to 6 range. Thus, there appears to be a middle range of
control rates associated with preferred systems (handling qualities). Systems resuiting
in smaller or higher control rates are not preferred as measured by the Cooper-Harper
rating with larger control rates being less detrimental than those with smaller rates.
Linking control rates to responsiveness of the system, the resulting conclusion about
handling qualities is that a highly responsive system is less preferable than a sluggish one
with a moderate amount of responsiveness being preferable over either extreme.

This link between control rate and Cooper-Harper rating is further exemplified through
comparing the misclassified with the primary system groups. From Figure 35, primary
system groups for K/s(s+2), K/s(s+4), K/s, and Poly2 have median Cooper-Harper
rating of 4. The misclassified system groups for each of these systems have significantly
higher Cooper-Harper ratings. Earlier analyses showed that these miscl/assified system
groups are all associated with lower control rates than the corresponding primary system
groups. So, once again lower control rates are associated with deterioration of pilot
opinion of the system.
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SECTION VI
CONCLUSIONS

This research project is a demonstration of principles develped in earlier methodological
work of Baldwin and Gantz (1983, 1984). A group of systems representing a variety of
handling qualities are flown by test pilots. Objective dynamic information and
measurements of pilot response are collected for the experimental runs and pilot opinion
is recorded. By modeling pilot control via statistical estimation and joining this with an
evaluation of the model’'s tracking performance, the systems, and by implication the
handling qualities, are characterized by objective performance measures of pilot response.
Additionally, the objective performance measures of pilot response are related to
subjective measures of pilot opinion (such as Cooper-Harper ratings), and in fact are
shown to be predictive of pilot opinion.

Procedures followed in this research are generalizable to other experimental flight
simulations and flight test environments. Elements of the statistical modeling are specific
to the experimental environment; however, as long as a mathematical representation of
flight dynamics is available and a homogeneous flight task is defined, the modeling should
be feasible.

The logical follow-up to this research project is its application in a real test situation.
Procedures described in this paper are applicable to comparative evaluation of systems
based on performance measures of actual pilot response to the systems. Objective
evaluation of systems based on pilot response will let designers know how pilot response
differs among systems and also the basis of pilot preference in terms of objective
performance measures of pilot response.
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APPENDIX A
PILOT FLIGHT EXPERIENCE QUESTIONNAIRE

Each pilot participating in the experiment completed a personal flight experience
questionnaire:

Flight Experience Questionnaire

1. Military flight rating
2. Total flight hours as pilot or copilot
3. Flight hours by aircraft class:
Fighter/Attack (VF/VA)
Patrol/Transport (VP/VC)
Helicopter (Helo)
Light Aircraft (Light)
. Instrument Flight (Actual Hours)
. Simulator Training Hours
. Familiarity and Use of Rating Scales
Cooper-Harper (C-H)
Other
7. Use of Rating Scales in Flight System Evaluation
Fixed Base Simulators
Moving Base Simulators
Aircraft (Class)

O, b

The military flight rating for all pilots is Naval Aviator. The following table is compiled from
the completed questionnaires:
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Table A-1. Experience Summary

Flight Hours Rating Scales
Pilot | Total by Aircraft Class In§t. Sinju!.

Hours \\/Z\/ \\//Fé/ Helo | Light E':fuhrts Lfg:'s”g Type | Use
1 2000 | 1800 0 0f 200 100 450 C-H VA
2 2100 | 2000 20 20| 100 250 0 C-H VF
VA

3 2050 10 10| 1800 | 100 300 80 C-H Helo
4 2900 10 | 2700 50( 150 500 100 C-H vC

5 5500 0 O 5400 100 800 300 C-H Helo
6 1400 | 1400 0 0 25 50 250 C-H VA
7 2500 | 2300 10 10| 150 300 200 C-H VA

8 2300 20 30| 2100 | 130 350 100 C-H Helo
9 2200 | 2000 20 15 40 200 50 C-H VF

10 3000 O] 900 ] 1800 | 300 1000 100 C-H Helo
11 4000 | 3000 | 600 0] 400 550 200 C-H VA
VP
12 1610 | 1300 10 20| 200 300 S0 C-H VF
VA

13 1400 | 1100 0 50 50 200 150 Other | Other
14 3000 | 400 | 1800 800 300 Unk C-H VA
| 15 1900 150 | 1600 100 800 300 C-H VP
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APPENDIX B
RUN SEQUENCES EXECUTED BY PILOTS

The number of runs flown by each pilot was subject to time available, and hence varied
from pilot to pilot. The number of runs flown by each pilot ranged from 10 to 17. Each
run is determined by a particular configuration of system, gain, screen vertical display
scale, secondary loading task, and bandwidth of the pitch tracking target. The first two
runs for each pilot were used as training runs. These were always based on the K/s
system with gain .586, normal screen vertical display scale, and low bandwidth, run both
with and without the secondary loading task. The remaining runs "flown" by each pilot
are listed below. The configuration variables for a run take on the following values:

System - K/s
K/s(s+1)
K/s(s+2)
K/s(s+4)
K/[s? + 2(0.7)(7.8)s + 7.89 (Poly1)
K/[s? + 2(0.7)(16)s + 167 (Poly2)
K/s?
Gain - See Table 2
Lambda (Secondary Loading Task) - On or Off
Bandwidth (of Pitch Tracking Target) - Low or High
Screen (Vertical Display Scale) - Normal or Wide
C-H (Cooper-Harper Rating) - Pilot’'s Subjective Rating (See Appendix C)

Time - Run Duration in Seconds

Notes on Data:

1. The data for Pilot 8 were collected in two sessions; the data for all other pilots were
collected in a single session.

2. The Cooper-Harper rating for Run 4, Pilot 11 failed to be recorded and is marked as
missing. Some pilots chose to give non-integer values for the Cooper-Harper rating.

3. Theruns marked "Failed Run" were terminated abnormally either due to problems with
the IRIS 3000 computer or due to the pilot losing control of the tracking task. The
large number of failed runs for Pilot 10 is due to a computer hardware problem.
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Pilot #1
‘

Run  System Gain Lambda Band Screen C-H Time
1 K/s .586 Oft Low Normal 25 113
2  K/s .586 On Low Normal 5.0 163
3 K/s(s+4) 58.6 Off Low Normal 3.0 135
4 K/s(s+4) 58.6 On Low Normal 45 204
5 K/s 293 Oft Low Normal 45 134
6 K/s .293 On Low Normal 6.0 194
7 Poiy1 215 oft Low Normal 5.0 197
8  Poiyt 215 On Low Normal 6.0 204
9 K/s(s+2) 35.2 Off Low Normal 40 154

10 Failed Run
1 K/s 5.86 Off Low Normal 3.0 200
12 Failed Run

Pilot #2

Run  System Gain Lambda Band Screen C-H Time
1 K/s .586 Off Low Normal 40 118
2 K/s .586 On Low Normal 5.0 87
3 Failed Run
4 K/s(s+4) 117 On Low Normal 7.0 131
5 K/s(s+4) 83.8 On Low Normal 5.0 123
6  Polyt 35.2 oft Low Normal 7.0 124
7  Polyt 35.2 On Low Normal 7.0 115
8 K/s? 586 oft Low Normal 8.0 117
9 K/s® 293 On Low Normal 8.0 108

10 K/s(s+1) 35.2 Off Low Normal 4.0 85
1" K/s(s+1) 35.2 On Low Normal 40 112
12 K/s 5.86 Off Low Normal 5.0 13
13  K/s 5.86 On Low Normal 6.0 137
14  Poly1 83.8 Off Low Normal 7.0 19
15  Poly1 838 On Low Normal 7.0 134
16 K/s(s+1) 35.2 CH Low Normal 40 102
17 K/s(s+1) 35.2 On Low Normal 4.0 134
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Pilot #3

Run  System Gain Lambda Band Screen C-H Time

1 K/s 586 Oft Low Normal 40 94
2  K/s .586 On Low Normal 55 151
3  K/s(s+4) 58.6 Off Low Normal 3.0 147
4 K/s(s+4) 58.6 On Low Normal 43 170
5 K/s(s+2) 215 Off Low Normal 28 102
6 K/s(s+2) 17.6 On Low Normal 4.0 133
7  Poly2 35.2 On Low Normal 8.0 164
8 Polyt 35.2 On Low Normal 85 132
9 Poiy1 176 On Low Normal 50 123
10 K/s(s+2) 8.38 On Low Normal 7.0 152
11 Poly2 215 On Low Normal 8.5 174
12 Poly2 35.2 On Low Normal 8.0 177

Pilot #4 7

Run  System Gain Lambda Band Screen C-H Time “

1 K/s 586 Off Low Normal 40 160 ’
2 K/s .586 On Low Normel 40 152
3 K/s(s+4) 58.6 Off Low Normal 35 263
4 K/s(s+4) 58.6 On Low Normal 35 216
5 K/s 8.38 On Low Normal 8.0 107
6 Poiy1 35.2 Off Low Normal 7.0 197
7 Poly1 83.8 On Low Normal 8.0 88
8 K/s(s+1) 83.8 On Low Normal 7.0 134

9 Failed Run

10 K/s? 293 On Low Normal 10.0 169
1 Poly1 17.6 Off Low Normal 6.0 162
12 Poly1 17.6 On Low Wide 7.0 217
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Pilot #5
Lﬂ System Gain Lambda  Band Screen C-H Time
1 K/s .586 Oft Low Normal 3.0 145
2 K/s 586 On Low Normal 5.0 157
3 K/s(s+4) 58.6 Off Low Normal 2.0 237
4 K/s(s+4) 58.6 On Low Normal 25 226
5 K/s .586 On High Normal 40 175
6 K/§° 586 On Low Wide 8.5 141
7 K/s .586 On High Wide 5.0 164
8 Poly1 215 Off Low Normal 3.0 168
9 Failed Run
10 Poly1 215 On Low Normal 40 190
1 K/s(s+4) 586 On High Normal 3.0 157
12 K/s(s+4) 58.6 On High Wide 5.0 181
13 K/s(s+4) 117 On Low Wide 5.0 165
14 K/§? 586 On High Normal 9.0 131
Pilot #6
Run  System Gain Lambda Band Screen C-H Time
1 K/s 586 Off Low Normal 3.0 136
2 K/s 586 On Low Normal 40 190
3 K/s(s+4) 58.6 On Low Normal 40 232
4 K/s(s+4) 58.6 On Low Wide 45 161
5 Poly1 215 On Low Wide 5.0 160
6  K/s? 586 On High Wide 8.0 149
7 K/é 586 On Low Normal 7.0 221
8 Poly1 215 On High Wide 7.0 183
9 Poly1 215 On High Normal 5.0 166
10 K/s(s+4) 586 On High Normal 3.0 156
Sk
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Pilot #7
B Run  System Gain Lambda  Band Screen C-H Time
1 K/s 586 Off Low Normal 3.0 131
2 K/s 586 On Low Normal 4.0 162
3 K/s 293 Off Low Normal 3.0 141
4 K/s 293 On Low Normal 45 154
5 Poly2 35.2 Oft Low Normal 3.0 220
6 Poly2 35.2 On Low Normal 5.0 201
7 K/s(s+2) 35.2 Oft Low Normal 3.0 199
8 K/s(s+2) 35.2 On Low Normal 5.0 208
9 K/s(s+2) 215 On Low Normal 45 233
10  K/s(s+2) 215 Off Low Normal 25 146
Pilot #8
Run  System Gain Lambda Band Screen C-H Time
1 K/s .586 oft Low Normal 3.0 209
2 K/s 586 On Low Normal 5.0 188
3 K/s(s+1) 35.2 Off Low Normal 3.0 185
4 K/s(s+1) 35.2 On Low Normal 4.0 274
5 K/s 586 Off Low Normal 5.0 118
6 K/s .586 On Low Normal 6.0 186
7 K/s(s+4) 35.2 On Low Normal 5.0 194
8 K/s(s+4) 176 On Low Normal 6.0 190
9 K/s(s+4) 58.6 On Low Normal 40 185
10 K/s? 586 On Low Normal 100 212
11 K/s? 117 On Low Normal 8.0 164
12 K/s? 293 On Low Normal 9.0 189
13 K/s 117 On Low Normal 40 240
14  Poly1 176 On Low Normal 5.0 206
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Pilot #9

Run Syslem Gain Lambda Band Screen C-H Time
1 K/s .586 Off Low Normal 4.0 153
2 K/s .586 On Low Normal 5.0 219
3 K/s(s+4) 35.2 Off Low Normal 3.0 210
4 K/s(s +4) 35.2 On Low Normal 40 204
5 Poly2 35.2 On Low Normal 3.0 188
6  K/st 586 On Low Normal 8.0 191
7 K/s(s+4) 17.6 On Low Normal 3.0 193
8 K/s 293 On Low Normal 45 192
9 Poly1 352 On Low Normal 3.0 178

10 Poly2 35.2 On Low Normal 3.0 175
1 Poiy1 176 On Low Normal 4.0 195
Pilot #10

Run  System Gain Lambda Band Screen C-H Time
1 K/s 586 Oft Low Normal 40 207
2 K/s - .586 On Low Normal 6.0 234
3 Failed Run
4  Poly2 83.8 On Low Wide 6.0 208
5 Failed Run
6 K/s .586 On High Normal 5.0 202
7 Poly1 35.2 On High Normal 6.0 212
8 Failed Run
9 Poly1 35.2 On Low Normal 5.0 190
10  Failed Run
1" K/s(s+4) 352 On Low Wide 5.0 188
12 K/s? 586 On High Normal 9.0 186
13 K/s(s+2) 35.2 On Low Wide 5.0 172
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Pilot #11

e
Run  System Gain Lambda Band Screen C-H Time
1 K/s .586 Oft Low Normal 3.0 174
2 K/s 586 On Low Normal 6.0 245
3 K/s(s+4) 35.2 On Low Normal 25 224
4 Poly1 17.6 On High Wide Missing 282
5 K/s(s+1) 35.2 On High Normal 7.0 180
6 K/s(s+1) 35.2 On Low Normal 3.0 228
7 K/s(s+2) 35.2 On Low Normal 20 186
8  K/s(s+1) 35.2 On High Wide 7.0 246
9 K/s(s+2) 35.2 On High Normal 7.0 195
10 Poiy1 58.6 On Low Normal 8.0 288
Pilot #12
Run  System Gain Lambda Band Screen C-H Time
1 K/s 586 Off Low Normal 50 142
2 K/s .586 On Low Normal 6.0 170
3 K/s(s+4) 35.2 On Low Normal 5.0 154
4 K/s(s+4) 35.2 Off Low Normal 40 101
5  K/st 293 On Low Normal 10.0 75
6 K/s .293 On Low Normal 6.0 160
7 K/s(s+2) 58.6 On Low Normal 5.0 182
8 K/s(s+1) 58.6 On Low Normal 8.0 193
9 K/s(s+2) 35.2 On Low Normal 45 156

10 Failed Run
1" K/s(s+2) 35.2 Oft Low Normal 45 164
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Pilot #13

— —
Run Systﬂem Gain Lambda Band Screen C-H Time
1 K/s .586 Off Low Normal 3.0 197
2 K/s 586 On Low Normal 5.0 199
3 K/s(s+4) 35.2 Oft Low Normal 3.0 175
4 K/s(s+4) 35.2 On Low Normal 4.0 174
5 Poly2 35.2 On Low Normal 7.0 189
6 K/§t 586 On Low Normal 9.0 177
7 K/s(s+1) 17.6 On Low Normal 3.0 183
8 K/s(s+4) 58.6 On Low Normal 4.0 187
9 K/s(s+2) 17.6 On Low Normal 40 193
10 K/s(s+1) 35.2 On Low Normal 5.0 174

1 Failed Run
12 Poly1 35.2 On Low Normal 6.0 182
Pilot #14
Run  System Gain Lambda Band Screen C-H Time
1 K/s 586 Off Low Normai 40 172
2 K/s .586 On Low Normal 6.0 198
3 K/s(s+4) 352 On Low Normal 4.0 196
4 K/t 586 On High Wide 9.0 160
5 K/s(s+1) 35.2 On High Normal 50 185
6 K/s 586 On Low Wide 5.0 186
7 Poly1 35.2 On Low Wide 7.0 183
8 K/s(s+2) 35.2 On Low Normal 4.0 128
9 Poly2 35.2 On High Normal 6.0 193
10  Poly2 35.2 On Low Normal 3.0 198
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Run  System

Pilot #15

Gain Lambda  Band Screen C-H Time
K/s 586 Off Low Normal 5.0 168
K/s 586 On Low Normal 7.0 180
K/s(s+4) 35.2 On Low Normal 6.0 173
Poly1 17.6 On High Wide 7.0 190
K/s(s+1) 35.2 On Low Normai 50 200
K/s(s+1) 35.2 On High Normal 6.0 189
K/s(s+2) 35.2 On Low Normal 4.0 208
K/s(s+1) 35.2 On High Wide 8.0 241
K/s(s+2) 35.2 On High Wide 6.0 252
K/s(s+4) 352 On High Normal 4.0 219
K/s® 586 On Low Normal 10.0 157
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APPENDIX C
SUBJECTIVE EVALUATION PROCEDURE USING COOPER-HARPER RATING

Each pilot was briefed on the objectives and nature of the experiment including the
characteristics of each of the systems planned for the session. The Cooper-Harper rating
scale was reviewed, and a set of questions relating to the evaluation were discussed. Al
pilots except one had been trained in the use of the Cooper-Harper rating scale and had
used it in various aircraft projects.

The tracking task was described as follows:
The primary task is to track the target as accurately as possible, keeping
the center of the target within the "diamond" symbol. It is not essential that

your “wings" are level. The secondary objective is to keep the "wings" as
level as possible.

Each pilot was asked to evaluate the system flown in terms of the following elements:

Response Characteristics - System time constants, overshoot or undershoot,
and lag.

Ease and Precision of Control - System damping, stick (controller)
acceptability, target motion.

Demands on Pilot - Complexity and difficulty of tracking tasks.
Effect of secondary task on primary task.

Effect of System "Deficiencies” on Performance - Overshoot, control response,
secondary "roli* control.

Each pilot was asked to also provide an overall rating based on the Cooper-Harper rating
scale adapted to this experiment:

92




Table C-1. Adapted Cooper-Harper Rating Scale

System Pilot Compensation Cooper-Harper
Characteristics For Performance of Task Rating
Excellent Not a Factor 1
Good Not a Factor 2
Fair Minimal 3
Minor Defects Moderate 4
Defects Objectionable Considerable 5
Very Objectionable Extensive 6
Major Performance Problem Barely Perform Task 7
Major Control Problem Difficult to Control 8
Major Deficiency Barely Controllable 9
Major Deficiency Uncontrollable 10
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APPENDIX D
STATISTICAL DISCRIMINATION ALGORITHMS

D-1. SAS Procedure STEPDISC

STEPDISC, Stepwise Discrimination, performs stepwise classification variable selection
useful as a precursor to estimating good discrimination rules for a grouping variable. The
procedure measures the classification power of a variable via the significance level of an
F-test for equality of group means from an Analysis of Covariance where the classification
variables already chosen are used as covariates and the current classification variable
under consideration is used as the dependent variable.

At each stage, the variable with the most significant F-test for equality of group means is
added to the list of variables in the model; then, each selected variable is tested for
removal in light of the most recently added variable. The algorithm continues until no
classification variables can be added and none removed based on user-defined
significance levels for entry and removal (or alternatively, based on user-defined levels for
the squared partial correlation coefficient for predicting the classification variable under
consideration from the grouping variable controlling for the effects of the already selected
variables).

The significance level of the F-test is based on assuming a multivariate Gaussian
distribution for the classification variables within each group with a common covariance
matrix for each group. The SAS procedure can also be used to do strictly forward
selection or backward selection.

D-2. SAS Procedure CANDISC

CANDISC, Canonical Discrimination Analysis, is related to Principal Components and
Canonical Correlations. Given a grouping variable and some quantitative classification
variables, CANDISC derives linear combinations of the quantitative classification variables
which are highly correlated with the group variable. These linear combinations summarize
the between-class variation in much the same way that Principal Components Analysis
summarizes total variation; in fact, Canonical Discrimination Analysis is equivalent to
performing Principal Component Analysis on the class means of standardized variables.
Canonical Discrimination Analysis is also equivalent to Canonical Correlation Analysis
between the quantitative classification variables and a set of dummy variables encoding
the group variable.




The linear combination with the highest possible mulitiple correlation with the grouping
variable is called the first canonical variable; the coefficients in the linear combination are
called the canonical coefficients or weights; the multiple correlation is called the canonical
correlation. The second canonical variable is obtained by finding the linear combination
uncorrelated with the first canonical variable that has the highest possible multiple
correlation with the grouping variable and so on for the third, fourth, etc. The maximum
number of canonical variables is the number of classification variables or the number of
groups minus one, whichever is smaller.

The inference in this procedure is based on assuming a multivariate Gaussian distribution
for the quantitative classification variables within each group with a common covariance
matrix for each group.

D-3. CART (Classification and Regression Trees)

CART computes a discrimination rule which can be represented in a binary hierarchical
tree structure. The rule consists of a sequence of binary questions (yes/no) based on
the value of a single classification variable. Each of these questions results in splitting the
observations into two subsets each of which are split into two smaller subsets and so on.
Since the questions are binary, these repeated splits into subsets can be represented in
a tree structure where each subset becomes a node of the tree. Each node is then
associated with a single variable and has two descendant nodes; the value of this variable
for a given observation determines whether that observation is further classified into the
left or right descendant node. Each binary question is chosen to maximize the
homogeneity of the observations in each descendent node in terms of group
membership. The "bottom" nodes of the tree, called terminal nodes, are each assigned
a group. Then, this tree structure can serve as a discrimination rule as follows. At each
node of the tree, an observation goes either to the right or the left descendant node
depending upon the value of the variable associated with the parent node. The
observation continues down the tree by checking the value of the appropriate
classification variable at each node. Eventually, the observation lands in a terminal node
and is classified into the group associated with the terminal node.

The construction of such a classification tree involves three elements:
1. How to select each binary question to produce each split.
2. How to decide whether a node is terminal or not.
3. How to assign a group to each terminal node.
The selection of the binary questions is based upon an impurity function |. This function

is defined over all vectors (p,,p,.....p,), where J is the number of groups, p; 2 0 for each
b and X, p; = 1. It takes on its maximum value at (1/J,1/J,...,1/J) and its minimum at
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points (1,0....,0), (0,1....,0), . . ., (0,0....,1). Also, itis a symmetric function of (p,,p,,....p,).
In terms of the impurity function, an impurity index can be defined for each node:

Impurity Index of Node t = I(t) = I(p(1]t),p(2|1),....p(J | 1))

where p(j|t) is the proportion of group j observations in node t. Thus, the impurity index
is a function of the proportion of each group in a node. The properties of the impurity
function make the impurity index of a node largest when all groups are equally mixed in
a node and smallest when the subset contains a single group. If a binary question sends
a proportion pg of the data to the right node t; and a proportion p_ to the left node t,,
then the decrease in impurity becomes a measure of the goodness of a spilit:

Goodness of Split = I(t) - pgl(ty) - p_I(t)-

At each node, CART searches through all classification variables one by one choosing
that split which maximizes the goodness of split over all possible splits. For a quantitative
variable with N distinct values, there are at most N distinct splits generated by x < ¢
where C takes values halfway between consecutive distinct values of the classification
variable x. For a qualitative variable with L distinct values, there are 2“' possible splits
corresponding to the number of distinct subsets. Having found the best split for each
variable, it compares the best splits to find the best split over all. Studies have shown that
within a wide range of splitting criteria, the properties of the final tree is insensitive to the
choice of impurity function.

The type of splits can be generalized in several ways. With quantitative variables, one can
consider linear combinations of the classification variables — whether or not they are
smaller or greater than a given value. With qualitative variables, one can consider splits
based on Boolean logic statements about the simultaneous occurrence of two or mo-e
variables in certain subsets.

The decision of whether or not a node is terminal is based on estimates of the
misclassification rate of the tree. The misclassification rate can be viewed as the
probability that a "new" observation "run" down the tree is classified into the wrong group.
There are several ways to estimate this misclassification rate based on the observed data.

One estimator is called the resubstitution estimate. Here, you estimate the
misclassification rate using the same data used to construct the tree. The percentage of
misclassified observations in your original set is the estimate of the misclassification rate.
The problem with using this estimator is that all discrimination algorithms, either directly
or indirectly, construct ther discrimination rules via minimizing this measure of
misclassification. Thus, the resubstitution estimate is biased downward as an estimate
of the misclassification rate over the population.




Another estimator is called the test sample estimate. Here, before constructing your tree,
you randomly divide your data into two parts — one part is used to construct the tree and
the other is used to estimate the misclassification rate by the percentage of misclassified
observations. The first set is called the learning sample and the second called the test
sample. The problem with this estimator is that it reduces your effective sample size,
which is no problem with large data sets but can be a problem with smaller ones. The
final estimator is called the V-fold cross-validation estimate. Here, the data set is
randomly divided into V subsets of about the same size. For each subset, a tree is grown
using all observations not in the subset and then the percentage of misclassified
observations in the subset is computed. The average misclassification rate over all
subsets is then the cross-validation estimate.

CART uses either the test sample estimate or the cross-validation estimate to determine
when a node is terminal or equivalently to select the right size tree. First, CART grows
a large tree — larger than the data actually warrants as far as information content. CART
continues to compute splits until all terminal nodes contain less than a user-specified
number of observations or until all observations in the terminal nodes are from the same
group. Then, CART selectively recombines nodes upward in this large original tree to
create a nested sequence of trees with smaller and smaller number of terminal nodes.
CART then estimates the misclassification rate of each tree in the sequence using either
a test sample or V-fold cross-validation estimate. The final tree selected (and thus the
terminal nodes selected) is the tree in the sequence with the smallest estimated
misclassification rate. (The resubstitution estimate cannot be used because it decreases
as the number of nodes increases.)

Given the set of terminal nodes, a group assignment rule assigns a group to every
terminal node. One rule that can be used is to assign the group with the largest
membership in the node. This rule minimizes the misclassification rate within the node.
One can also assign a cost or loss to misclassifying a group j observation as a group i
observation. Then, one can choose the group for each terminal node that minimizes the
expected misclassification cost.

The tree structured approach to discrimination analysis as implemented in CART has
several advantages over other techniques:

1. It can handle any type of classification variable — either qualitative or
quantitative.

2. The final discrimination rule has a simple form — a sequence of yes/no

questions. Itis easy to understand and to use in determining the predictive
structure of the data.
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3. It takes advantage of conditional information in handling nonhomogeneous
relationships. This allows for finding different rules to differentiate between
different subsets of groups.

4. It automatically does stepwise variable selection.

5. It automatically provides a "good" estimate of misclassification rate.

6. It is invariant under ali monotone transformations of the individual
classification variables.

7. It is extremely robust against outliers and misclassified observations. It is
not based on any distributional assumptions for the classification variables
within each group.

For further details on CART, see Breiman, Friedman, Olshen, and Stone (1984).

98




SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

[T. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMSER
Final Report

8. TITLE (and Subtitle) - 5. TYPE OF REPO™T & PERIOD COVERED
Evaluation and Estimation of Handling Qualities via 15 July 1989-28 February 1991 .
Statistical Modeling of Pilot Response Data S. PEAFORMING ORG. REPORT NUMBER

7. AUTHOR(2) . CONTRACT OR GRANT NUMBER(s)
Donald T. Gantz NO0O14-89-J-3146

Lawrence C. Baldwin

Linda J. Davis , E——
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::ggR.AaO‘RLKt’JEINTT.N'URMOIJEE;' TASK

Center for Camputational Statistics, George Mason University

Fairfax, VA 22030 -

-—

11. CONTROLLING OFFICE NAME AND ADDRESS 1 REPORT
Office of Naval Research .’Novmber, 3t
800 N. Quincy Street 13, NUMBER OF PAGES
Arlington, VA 22217-5000 105 . -
14. MONITORING AGENCY NAME & ADDRESS(!! dilferent from Controlling Ollice) 18. SECURITY CLASS, (of thie report)
Naval Test Pilot School Unclassified
Naval Air Test Center _
Patuxent River, Maryland T3a. DECL ASSIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Repori)

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, |l dillerent lrom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contizue on reverse aide |l necessary and identily by block number)

Cooper-Harper, Flight Display Evaluation, Flight Simulation, Flight Test, Handling Qualities,
Pilot Modeling, Pilot Performance, Pilot Response

20. ABSTRACT (Continue on reveree side 1l necessary and Identify by block number)

This report describes a research project which measured pilot response to seven control systems
sinulating different handling qualities, quantitatively evaluated and compared the systems based on
these measurements, and campared the quantitative system evaluation based on measured pilot performancg’
with a qualitative evaluation using the Cooper-Harper techniaue. r

Pilot performance is determined through analysis of objective dynamic measurements of pilot responsq
typical of flight test enviromments. In short, the methodology specifies a general approach for con-
densing the typically huge mound of measured test data accumulated during flight simulation experiments
into meaningful quantities for system evaluation. The kev element in the methodalogy is statistical

DD %S5’y 1473 eoimion oF 1 nov es s oBsoLETE
S/N 0102-014+ 6601 |

D g
SECURITY CLASSIFICATION OF THIS PAGE ("hen Dets Entered)




20. {continued) modeling of a law for pilot control. Statistical modeling of pilot control
provides an assessment of pilot performance in terms of standard statistical estimation
parameters. The methodology requires that this control model be used to campute control
input in a closed loop tracking task; the accuracy of the control model in perfaming this
task is an important measure of pilot performance relevant to system evaluation. In
addition, these paramenters computed from the dynamic measurements i pilot performance
are shown to enhance understanding of the aspects of the handling qualities underlying
subjective rating techniques such as Cooper-Harper.




