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In this paper we discuss the role of the general invariance concept in object recognition,
and review the classical and recent literature on projective invariance. Invariants help
solve major problems of object recognition. For instance, different images of the same
object often differ from each other, because of the different viewpoint from which they
were taken. To match the two images, common methods thus need to find the correct
viewpoint, a difficult problem that can involve search in a large parameter space of all
possible points of view and/or finding point correspondences. Geometric invariants are
shape descriptors, computed from the geometry of the shape, that remain unchanged under
geometric transformations such as changing the viewpoint. Thus they can be matched
without search. Deformations of objects are another important class of changes for which
invariance is useful.
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1. Introduction

Object recognition is a major goal of computer vision, but many obstacles remain on the
road towards effective recognition systems. In this paper we discuss ways of overcoming
many of the difficulties by using invariants of shapes.

A typical problem is that an object can be seen from different points of view, resulting
in different images which we would like to recognize as portraying the same object. In a
typical recognition task we have one image stored in a database, and we need to compare it
with an image of an unknown object observed from an unknown point of view. This difficult
task can be greatly facilitated by using suitable invariants. These are shape descriptors
computed from the image which are independent of the viewpoint, i.e. they are the same
regardless of which point of view the image was taken from.

It can be argued that object recognition is the search for invariants. Given an image of
an object, we want to extract one unique invariant: a name or a similar ultimate descriptor.
Given another image of the same object, differing from the first by, e.g., viewpoint, we want
to extract the same unique descriptor. To do that, we have to eliminate in some way the
effect of the transformations that gave rise to the differences between the images.

There are several methods of eliminating transformations between images. The sim-
plest is by performing every possible transformation of one image and see if any of its
transformed versions matches the other image. For instance, in template matching [Bal-
lard and Brown 19821, it is assumed that a template and an image differ only by translation,
and the template is moved pixel by pixel over the image until a match is found. However,
when more complicated transformations are involved, such as rotation, projection, etc.
this search space becomes overwhelmingly large.

To reduce the search space, "invariant features" can be used [Lowe 19851. These are
features in the image that stay invariant under some transformation and can be matched
directly between the two images. For example, an edge remains an edge, so edges can be
used for matching. The problem here is that the kinds of features usually used do not
have much distinctiveness. Any edge in one image can match any edge in the other. This
leads to the correspondence problem, which can easily lead to a combinatorial explosion.
Invariant constraints [Grimson 1987] can also be used but they still leave a large space to
search in.

Other methods aimed at viewpoint invariance have their own drawbacks. Fourier
descriptors are not fully invariant and suffer from occlusion problems. Hashing methods
such as the Hough transform break down when a large number of parameters is involved.

The correspondence problem can be solved by using more distinctive invariant de-
scriptors, i.e. descriptors that are invariant only to the transformation we are interested
in and not to others. For instance, a shape descriptor of a fish should be distinct from r
a descriptor of a frog, i.e. it should not be invariant to a transformation that maps the / _
shape of the fish into that of the frog. Edges, of course, are invariant to this since they "
can appear in both shapes; they are "too" invariant, i.e. they are invariant to too wide a SA
set of transformations. Thus, we must try to find features that are invariant only to the . .
transformations that we want to eliminate and to no others, so they are distinctive enough
to match without ambiguity.
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Change in the point of view is only one kind of geometric transformation that images
can undergo. For instance, we would like to identify an object as a "fish" even if the
particular example of a fish we are looking at is somewhat thinner or fatter than some

standard fish. In this case we need invariants to deformations, i.e. quantities that will not
change under a not-too-great deformation of the object. It is again important not to seek
invariance to transformations that are too general, because then the descriptors will blur
the distinction between different objects.

A fundamental question immediately arises: what transformations do we want to
eliminate? When do we decide that two images come from the same object, even though
they are different? Viewpoint change is one example; other transformations will probably
depend on the types of objects in question.

Another consideration in choosing the kind of invariance we need is that the larger

the set of transformations, the harder it is to extract meaningful distinctive quantities that
are invariant to it. (For example: distance, a Euclidean invariant, is not preserved under
projection, a larger group.) Yet the need for invariants is much more acute, because the
larger set of transformations has more unknown parameters and requires a search in a much
bigger space. This consideration thus leads to the same conclusion as the distinctiveness

argument: we have to find optimal invariants, i.e. ones that will stay invariant under the
set of transformations that we want to eliminate, but not under a larger set.

A paradigm for object recognition can thus include the following:
1) Identify the transformations that an image can undergo and still describe the same

object, i.e. the transformations that we want to eliminate for particular classes of objects.
2) Find descriptors that are inval*. nt to these transformations but not to others.
3) Use these descriptors for indexing of shapes and matching.
In the next section we discuss point (1) above, and in the rest of the paper we carry

out points (2), (3) for projective and related transformations. For other transformations
these points have yet to be investigated.

2. Which invariants?

Here we only deal with purely geometric invariants, i.e. ones that can be calculated from
the shape alone. Other surface properties such as shading, reflectance, color, etc. can

also be considered as invariants, subject to the same considerations as above, but are not
treated here.

The most obvious invariants useful in vision are the Euclidean ones. A simple example
is the length of a rod, which is invariant under rotation. In a simple world consisting of

rods that lie in a plane, and with images that can only rotate, one can identify a particular
rod by measuring its length on the image and comparing it to a database of rod lengths.

The rod's orientation is irrelevant and can be ignored. As another example, when a 2-D
curve is rotated'or translated in the plane, its curvature at each point does not change.
Thus curvature is an invariant of the Euclidean transformations. It is common to plot

the curvature of such a curve as a function of its arc-length (which is invariant up to a

starting point) to obtain a 2-D Euclidean invariant representation of the curve. Curvatures
of surfaces have also been used when they can be measured, e.g. from range data.
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The formation of images in general involves a larger set of transformations (contain-
ing the Euclidean group). A projective transformation, for example, more general than
Euclidean, and involves non-parallel projection onto a plane. The number of free param-
eters in this case is eight, so finding the correct point of view can involve a search in an
8-dimensional space! Clearly projective invariants, namely quantities that are unchanged
under this transformation, are of crucial importance.

When enlarging the transformation set, the problem arises that the invariants of the
smaller set do not remain invariant. The length of a rod is no longer invariant under
projective transformation. Similarly, an oblique view of a circular disc yields an ellipse,
and obviously neither arc-length nor curvature is preserved under such projections.

To find invariants of larger sets, one has to extract more information from the image.
While finding length requires two points, a similar projective invariant needs four, so we
need to extract more data from the image to obtain reliable results. This is more than offset
by the enormous saving of eliminating the search. However, it does lead us to conclude
that we should not enlarge the transformation group beyond what is absolutely necessary.
The distinctiveness argument mentioned before leads to the same conclusion.

Projective transformations (projectivities) are the smallest group that includes all
possible viewpoint-related changes in images, and therefore we concentrate on them. Apart
from the invariants issue, using projective geometry can unify and simplify the treatment
of perspective and orthographic projections, which are often treated separately.

The most readily useful projectivities are the ones operating on a 2-D plane. One view
is sufficient to reconstruct a planar shape (except for the projectivity). Therefore invariants
by themselves are sufficient as means for indexing and recognizing planar shapes. They
are also applicable to 3-D objects, since many objects contain planar shapes, such as
facets, symmetry planes, etc., which are generally projected onto the image as planes. In
addition, small areas of a 3-D surface can be approximated as planar. Thus, 2-D projective
transformations and their invariants can be used for recognition of many 3-D objects.

Smaller subsets of the projective transformations are often quite useful. When the
object is distant from the camera, one can assume that the projection rays are nearly
parallel, which defines the affine transformations. If we can find one feature point that
can be regarded as unchanged in the projection, we have a perspective transformation.
Euclidean motions are a common subset of both the affine and perspective transformations.

In 3-D, one rarely needs to consider a full projection. A surface in 3-D can be trans-
lated, rotated or perhaps scaled, but not projected. However, 3-D projective invariants
of curves and surfaces do exist and they are summarized in [Weiss 19881. The Euclidean
and affine 3-D invariants have the same role of indexing of 3-D shapes as the projective
invariants have in 2-D.

The case of projecting a 3-D object into a 2-D image is of a different nature. In this
case, true invariants cannot be found because the depth information is missing and cannot
be recovered by purely geometrical methods. Additional, "model-based" knowledge is
needed to reconstruct the missing information, and this is beyond the capacity of invariants
alone. However, invariants can be useful here too. We will see some projection examples.
Deformation invariants can also be useful here. When trying to identify a pair of stereo
images as belonging to the same object, we can regard small parts of the object as nearly
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planar, with the deviation from planarity giving rise to a small deformation in the image.
Thus a combination of projective and deformation invariants can be of use in problems of
reconstructing shapes from stereo, motion or other geometric information.

As mentioned before, invariants of deformations are valuable in their own right. The
same problem immediately arises: what kind of deformation? Obviously too general invari-
ance will defeat the goal of distinctiveness. One possibility is to restrict ourselves to small,
or quasi-linear deformations. This is a very promising topic for current investigation.

3. History of Geometric Invariants

From a purely abstract point of view, it can be argued [Klein 1926] that geometry is
in essence the study of invariants. In Klein's view, abstract ("synthetic") objects such as
"points" or "lines", which do not necessarily have a real world interpretation, are invariant
objects, and geometry deals with abstract operations on these objects. This is the Klein
"Erlangen program" of 1872.

Here we are interested in invariants that are more analytic. The first one was discov-
ered by Lagrange (1773] who showed that the the discriminant of a quadratic polynomial is
invariant under translation along the x axis. (However, it is claimed that this invariant was
discovered in India much earlier [Bhaskaracharya 1150].) Geometrically, the vanishing of
the discriminant indicates that the two roots of the polynomial coincide, a translationally
invariant property.

In the last half of the 19th century, there developed an extensive study of invari-

ants. Two main tracks evolved: algebraic and differential invariants. The algebraic track
is concerned with invariants of algebraic forms, namely homogeneous polynomials. The
field was advanced in England by Salmon, Elliot, Cayley, Sylvester, Grace and Young.
A systematic "symbolic" method was developed in Germany by Aronhold, Clebsch and
Gordan. Of central interest was the question of whether a complete system of fundamental
invariants exists for a given set of algebraic forms, from which any other invariant can be
derived. The question was finally answered in the affirmative by [Hilbert 1890, 1893] in a
famous set of theorems that ended the search for polynomial invariants, and has become
the foundation of algebraic geometry.

On the other track, progress was made in finding invariants of general parametrized
curves and surfaces (rather than algebraic forms). These differential invariants are local
to points on a shape and can be used for arbitrary shapes. They were studied b'V Halphen

[1880], Wilczynski [1906, 1907, 1908] and Fubini [1927]. Lane [1942] describe some of this
work.

A more modern, abstract approach was taken by [Weyl 1939], Cartan, Mumford [1965]

and Nagata [1963], who developed theories of invariants of general Lie group transforma-
tions. The mathematical field is still active [Abhyankar 1990].

In compute vision, only very restricted kinds of invariants were used until recently.
The curvature, a Euclidean invariant, is common. An algebraic projective invariant, the

cross ratio of four points on a line, was used by several ai'thors: Duda and Hart [1973];

Chang et al. [19871. Tensor invariants for camera calibration were studied by Kanatani
[1986].
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Projective invariants for curves and surfaces were first introduced in vision by Weiss
[19881. This paper reviewed some of the classical literature on algebraic and differential
invariants, which had previously been ignored, and pointed out their importance to object
recognition. Since then many researchers have developed various aspects of the subject,
and some of this work is summarized here.

4. Overview of Geometric Invariants

Basic Definitions

We describe here some general characteristics of invariants of a general transformation. The
geometric shape itself is a fixed entity in space, but its analytic representation necessitates
choosing some coordinates and parameters, and it is their transformation which raises the
invariance issue. There are two main ways of representing shapes: the implicit and the
explicit representations. In the implicit approach, the shape is represented as a relation
between coordinates Xi

f(ak, i) = 0

with ak being coefficients characterizing the shape, such as line or conic coefficients-
namely, they are mainly global descriptors. This is mostly associated with algebraic, global
invariants. In the explicit approach the coordinates of the shape points are functions of
some local curve parameter t (or surface parameters ti)

= X (t)

The shape descriptors here are the derivatives a'xi/at ' , so this is mostly associated with
differential, local invariants. There are also mixed, or hybrid approaches. An invariant is
a function derived from either the global or local descriptors whose value does not change
under a transformation of the coordinates xi and parameters ti, or changes in a limited
way defined below.

We define a relative invariant I of weight w an a function of the shape descriptors
that transforms as

I = J-WI (1)

with the tilde indicating a quantity in the new system. J is the Jacobian of the appropriate
transformation. There are in general different weights for different transformations: the
coordinate transformation T, and the parameter change dt/dt. A similar change can
result from multiplication of xi homogeneously by some factor A. This is of importance in
projective homogeneous coordinates. In this case the invariant can change as

i AI (2)

with d being the degree of the invariant.
An invariant of weights and degrees zero is absolute.
The Jacobians and A can very from one point to another, i.e. they depend on xi, t,

but they do not depend on the descriptors of the shape itself, i.e. ai or x!/at'.
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General Properties
Among the general properties that one is interested in are the questions of uniqueness and
completeness of sets of invariants. For differential invariants a fundamental theorem can
be stated [Guggenheimer, p. 1441:

Theorem 1. All differential invariants of a (transitive) transformation group in the plane
are functions of the two lowest order invariants and their derivatives.

This is part of the completeness property, which states that the original curve can be
reconstructed from the two independent invariants that exist at each point, except for the
relevant transformation.

This leads to the possibility of creating invariant "signatures" of curves. For example,
in the Euclidean case, all invariants can be derived from the curvature and the arc-length
at each point, c(s). Thus, we can use the signature, or the plot of the curvature vs. the
arc-length, to identify the curve up to a Euclidean transformation. Similar plots can be
drawn in the affine case (Section 9). In the projective case one does not have a natural
arc-length but there are still two independent invariants 1,, 12 at each curve point. Thus
one can plot I, against 12 in an invariant plane obtaining an invariant signature curve.

The method is illustrated in Figs. 1-3. Fig. 1 shows a shape to be recognized. Fig. 2
is a projection of this shape. At each point of the shape of Fig. 1 we have calculated two
invariants, I1, 12, and plotted an invariant curve with coordinates 11,12 (Fig. 3). Here the
invariants are the affine arc-length and curvature. Repeating the process for the projected
curve in Fig. 2, we obtain another invariant curve which is superimposed on the first one
in Fig. 3. Since the match is close we are able to conclude that Figs. 1 and 2 differ only
by a projection. No search is needed!

Similar completeness properties were proved for algebraic invariants of homogeneous
polynomials, or algebraic forms. These shapes include points, lines, conics and higher
order shapes. Hilbert's fundamental theorem (Section 9) in its various versions ensures
the existence of a finite base of invariants from which all other invariants can be derived,
for any finite set of algebraic forms.

An interesting general question is how much information has to be obtained from the
given shape in order to calculate invariants. To find invariants, the parameters of the
transf3rmation between the object and the image, which are unknown, have to be elim-
inated. For example, for a rod under Euclidean transformations, the angle at which a
rod lies (the rotation parameter) and its position (the translation parameters) are of no
interest and we only want the rod's length. Thus, from the coordinates of the two end
points (four measured quantities) we have to eliminate three by calculating the length, the
only invariant. In general, we need to extract more quantities from the image than the
number of transformation parameters, so that we can later eliminate the transformation
parameters mathematically and be left with invariants. For the general planar projectiv-
ity, for example, the number of measured quantities has to exceed eight, the number of
projection parameters. In differential methods, the information extracted from the image
is in the form of derivatives, while in the algebraic methods it consists of global shape
parameters. The curve's arbitrary parametrization, however, complicates matters since it
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has to be eliminated also. We will return to the parameter issue and propose a differential
method that does not depend on a parameter.

This counting argument is only a guide, since it changes when a shape has an internal
symmetry or degeneracy. For example, if instead of a rod we had a ring, than the rotation
angle does not play a role. The ring has three parameters, the center and the radius, of
which only the two center coordinates have to be eliminated, while the radius is a Euclidean
invariant. In the planar projective case, four collinear points (eight parameters) have one
invariant, the cross ratio. This is because the configuration is symmetric with respect to
one of the projectivity's parameters, namely the tilt whose axis is the line. We will later
encounter other such degeneracies.

A rigorous treatment of the amount of information needed can be obtained from
the Lie prolongation method, in which the ordinary space in "prolonged" to include all
the information needed for invariants [Guggenheimer 1963, Olver 1986, Weyl 19391. For
Euclidean distance, for instance, this space made up of pairs of points rather than the
original space of single points. For differential invariants the space is prolonged to include
derivatives. In principle one can derive the invariants from studying transformations in this
space. In practice, the differential theory leads to systems of partial differential equations
so other, more specific methods are easier to use.

For vision purposes, one can compare the usefulness of algebraic versus differential
invariants.

As we saw, the amount of information needed to be extracted from the image depends
on the generality of the transformation, not on the method of computing the invariants.
If we need high derivatives in the differential method, we also need a rather large number
of coefficients for fitting an algebraic curve. Thus, the decision as to which method to use
will be based on other considerations, such as suitability for use with complex shapes, and
ability to cope with practical problem such as occlusion, noise of various kinds, etc.

Algebraic invariants are rather easy to implement, but they face serious problems.
First, they are global descriptors. Since an entire shape has to be fitted, the problem of
occlusion arises. This is a well known problem for any global method, such as moments
or Fourier transforms. Second, the traditional ones are restricted to a limited repertoire
of curves, mostly polynomials, such as a system of two conics. This problem has been
attacked by the idea of invariant fit, in which simple shapes such as conics are fitted to
more general curves invariantly. We will later describe such methods.

Differential invariants are local so the occlusion problem is less likely to be trouble-
some. Furthermore, they can be derived for any kind of curves, rather than just polyno-
mials. The drawback of the method is extracting the local descriptors, such as derivatives.

It is possible to combine the advantages of the two approaches, hopefully without
combining the disadvantages. We will describe a method of fitting an implicit polynomial
in a window around a point of an arbitrary curve, and find the polynomial's invariants. In
this way we use an algebraic, implicit method-locally.

Another issue of importance in vision is the amount of correspondence one needs to
establish between elements of the observe image and the stored one. If the image is one
general curve, then its invariants enable us to perform matching without any correspon-
dence, because we can obtain an invariant signature curve that is identical for all possible
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views of the curve. However, this requires obtaining a large amount of data at each curve
point, such as high derivatives, which reduces robustness. For pure algebraic forms such as
conics, one needs correspondence between the various forms, but this is easier to achieve
than simple point correspondence. A middle way is offered by "hybrid" shapes, combina-
tions of curves with identifiable features such as points or lines. For instance, a silhouette
of an airplane can have both curved and straight contours. We can use the information
in the feature points or lines to reduce the order of the curve derivatives. However, the
correspondence between the features has to be established.

5. Projective Geometry

From this point we specialize to projectivities. We summarize here some basic elements of

projective geometry.
A projective transformation (projectivity) can be defined analytically in 1-D as

ax + b- ax+b(3)

cx + d

with a, b, c, d being arbitrary parameters. Only three of these are meaningful because an
arbitrary factor can multiply both the numerator and denominator. If the projectivity has
a (real) invariant point, then it can be represented geometrically as a perspectivity, Fig. 4.
(The intersection of the two points is an invariant point.) Otherwise, the projectivity can
be decomposed into a perspectivity plus translation. Unlike projectivities, perspectivities
are not a group unless the fixed point is always the same. If one invariant point is at
infinity, we have the affine sub-group, with c = 0. Geometrically it corresponds to a
perspectivity between two parallel lines, or alternatively, a perspectivity with parallel rays
(i.e. with the center of projection at infinity), plus translation.

In the plane, eq. (3) can be generalized in a straightforward way. It is convenient to
write it in matrix form:

(1) = T (2) (4)XT- :131 +I YT32 +- T33 T 4

where T is a non-singular 3 X 3 constant matrix, with eight significant parameters. A
projectivity with an invariant line whose points are also invariant can be represented as
a perspectivity. The affine sab-group has an invariant line at infinity, so it preserves
parallelism in the plane (as parallel lines "meet" at infinity). A general projectivity involves
combinations of perspectivities and affinities.

The matrix elements can be identified as

/ affl aff2  trans,
T= ( aff3  aff4  transy

proj1  proj2 1

The elements marked affi represent rotation, scaling in the x and y directions and shear.

Together with the translation elements trans,, transy they make up the affine group. The
proj , proj2 elements represent tilt and slant, which are non-linear transformations.
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In an affinity the proj, elements above vanish so the transformation is linear:

( ) =( aff1  ff2  x ) + (trans.'
k aff 3  aff 4  Y transM)

The terms defined above should be distinguished from similar, commonly used terms
such as perspective projection, or perspective camera. The latters refer to a projection
from a 3-D object to a 2-D image, while the trad" .3nal terms refer to transformations
from n-D to n-D.

Homogeneous Coordinates

The form of the transformation (4) is inconvenient because the denominator leads to infini-
ties and because of the non-linearity. One can deal with the problem by using homogeneous
coordinates. The Cartesian coordinates of a point (x, y) are replaced by a triplet

x - (XlX 2,3)

so that
X1 X2

X=-, y --
X3 33

Of course this definition is not unique, as the xi can be multiplied by any common factor
and still correspond to the same (x, y). Thus, one can express the homogeneous coordinates
with the help of an arbitrary factor A,

(XI, X2 , X3) = X(X, Y, 1)

The points with x3 = 0 have no corresponding Cartesian points since the division leads to
infinity. However, they are perfectly valid points of the projective space so the Euclidean
infinity is now treated on an equal footing with other points. The point (0,0,0) is excluded
from the space.

The general projective transformation can now be written as

i= \Tx (5)

i.e. it has the appearance of a simple linear transformation. However, when going back to
AZ3Cartesian coordinates, one has to divide the new vector R by AX = i3 = 1-ziT 3 i-xZT 3 2 '

so the non-linearity reappears.
Lines are the projective duals of points, and homogeneous coordinates make it possible

to express the dbality algebraically. The line with coefficients a,, a2, a3 can be expressed
as the dot product

a -x = ax = a1 x1 + a 2 X 2 + a 3 X3 = 0

Here x is a column vector and a is a row vector. It is easy to see that a is contragredient
to x, i.e. it transforms with T-':

fi = ,oT -9



because this ensures that the new coefficients satisfy the line equation U = 0 in the new
system (describing the same line). Again, an arbitrary factor Aa, whic0 depends on the
line, can multiply a without affecting its equation or the geometrical interpretation.

In homogeneous coordinates, ordinary 2-D polynomials become homogeneous polyno-
mials, or algebraic forms. Much of projective geometry involves these forms. The line is
an algebraic form of the first order. The conic is an algebraic form of the second order,
and it is convenient to represent it with a symmetric conic matrix A so that

xtAx = 0

Again an arbitrary factor AA can multiply A.
Upon transformation, to preserve the above equality iin the new coordinate system

(since the geometrical curve is preserved), A transforms as

Ai = (T-i)tAT- l (6)

The dual of A is the line conic A-', representing the tangents to A. It transforms to
TA-T.

For the affine transformation, wc have T31 , T32 = 0 so the denominator in (4) vanishes
and thus we can set A. = 1 for the points. It is still convenient to use the triplets
-: = (x, y, i.). This form is preserved by the affin transformation Tx. However, we still
need to use a multiplying factor A. for the lines a because their transformation aT-' will
not preserve any normalization of a. Th, duality is in fact broken here. Similarly, the
coefficients of higher order forms are also multiplied by A.

6. Overview of Projective Invariants

In this section we highlight some of the main methods of obtaining invariants and categorize
them according to the domain on which they are applicable and the basic principle behind
the method (Table 1). Some of the methods have applicability beyond projectivities, but
we concentrate here on projective and affine invariants. The Lie prolongation method was
already mentioned as a general method for obtaining general results, but we are interested
here in methods that prodace the invariants themselves.

The first categorization is according to the domain, or classes of objects for which
the method is most useful. We distinguish here three types: 1) Local vicinities, namely
points on curves (or surfaces) and their immediate vicinity. The descriptors here can be
derivatives or other local quantities. 2) Whole curves or surfaces. Most methods here
deal with algebraic forms such as lines and conics. Some methods are applicable to more
general shapes. The descriptors here are in the form of coefficients, moments or other
global quantitieS. 3) Hybrid shapes, that can include combinations of the previous two
types.

The second criterion is the main principle on which the method is based. This can be,
for instance, determinant properties or canonical frames. The principles can involve mainly
differential operations, mainly algebraic, or both. A differential method is obviously better
suited to local vicinities and an algebraic to global shapes, but there is some overlap. The
canonical method, for instance, can use an implicit representation locally.
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Accordingly, one can organize the current methods in a table as follows.
Table 1

method type local hybrid global

Wilczynski dif p
Cartan dif a

Canonical dif, alg ap ap a,p
Prolongation alg,dif a ap a,p
Determinants alg,dif a ap a,p

Symbolic aig a,p
Moments alg a

The first column in the table indicates whether a method is purely ifferential (dif), purely
algebraic (alg) or a hybrid. The next column indicates whether the method can be applied
for projective invariants (p), affile invariants (a), or both. Similarly for the other columns,
indicating invariants of hybrid shapes and of global shapes. We will briefly highlight each
method and mention some recent applications in computer vision. In subsequent sections
the two most general methods, namely the determinants and the canonical methods, will
be described in more detail. Other methods will only be touched on

Wilczynski's method [1906] was the first to obtain closed form formulas for projective
invariants of curves and surfaces. It was described in computer vision by this author
[Weiss 1988]. While interesting mathematically it has proven difficult to implement in
vision ([Brown 1991]) because of the high order of derivatives involved. (Section 7.)

Cartan's "moving frame" method [Guggenheimer 1963, Weiss 1992a] is an explicit
method applicable to general transformations. However is hard to apply to transformations
(such as projectivities) which do not admit a natural arc-length parameter. It is easily
worked out for unimodular affine transformations, for which an affine length and affine
curvature are obtained.

The canonical method [Weiss 1992a,b] is a general method that can be used locally or
globally, implicitly or explicitly. It consiF ts of defining a canonical, or standard coordinate
system using the properties of the shape itself. Since this canonical system is independent
of the original one, it is invariant and all quantities defined in it are invariant. Here we
briefly describe the application of the canonical method to local and hyl rid shapes in an
implicit approach (Section 8).

The determinant method (Section 9) is based mainly on the transformation properties
of determinants. If a matrix A is transformed by T to AT, then its determinant JAI is
transformed to JIA with J being the Jacobian of the transformation, ITI. Tensor dot
products and traces are added in some cases to obtain complete sets of invariants. (How-
ever, much of tensor theory is not applicable because of the lack of a metric.) Invariants
of a wide variety of shapes can be obtained by this simple method. Notable exception are
projective invariants of curves and probably those of high order forms. For global forms
such as point sets, lines and conics the method easily leads to cross ratios, to invariants
of conics [Weiss 19881, etc. These invariants have been adapted, using invariant fitting,
to industrial shapes [Forsyth et al. 1991]. For hybrid shapes, invariants were obtained by
[Van Gool et al. 1991] and by [Brill et al. 1992]. They investigated general curves with
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known feature points. Although the method is basically algebraic, local affine invariants
involving derivatives are easily obtained.

The symbolic method is the classical means by which invariants of algebraic forms
were investigated. Developed by Gordan, Hilbert and others [Grace and Young 1903]
it led to general theorems as well as methods of obtaining invariants for homogeneous
polynomial curves of any order. At its heart it is also based on determinants, but it deals
with abstract "symbols" from which the form can be built, rather than directly with the
form themselves. (Section 9). For forms of order higher than two, the symbolic method is
very cumbersome to implement in practice, reflecting its origin in determinants.

In the method of moments, the familiar Euclidean moments are generalized to the
arfine case [Taubin and Cooper 1992] and to perspectivities [Park and Hall 19871. To
find moments, one integrates over a closed shape C(x) with homogeneous polynomials.
In first order we have the vector Mi ] - f x (x), in second order we have the matrix
M [2] -= f x (x)xt, and similarly for higher order tensors in n-D. Under a linear (affine)

transformation T, the moments transform in a tensor-like way, e.g. MTI12] - TM[2] Tt. One
can then find tensor invariants such as dot products, traces, eigenvalues and determinants.

This list of possibilities is not exhaustive. Invariants of areas (with unknown con-
tours) have been studied by [Nielsen and Sparr 1990]. Affine invariant Fourier descriptors
were treated in [Arbter et al. 1990]. Quasi-invariants, that change more slowly than the
transformation, were proposed in [Binford 1981]. Euclidean curvatures have been used by
many authors, e.g. [Besl and Jain 1985], [Cyganski and Orr 1985], [Stevenson and Delp
1989]. Other related papers are listed in the references.

The methods are not unrelated. The global determinantal invariants can easily be
derived from the "symbolic" determinants. The canonical method is more like a computa-
tional algorithm than closed form formulas, and its relationship to the symbolic method is
perhaps analogous to the relationship between methods of solving a set of linear equations.
In that case we can eliminate the unknowns either by using the determinant formulas, or
by Gauss elimination. The latter method brings us to a "canonical", diagonalized system
and it is much more practical for higher orders. The Schwartz derivative, a 1-D invariant
(Section 7), is the infinitesimal limit of the cross ratio of a line. Other relations are not
yet clear.

New Geometry Challenges

The methods described above are rather invariant to the passage of time, many dating
back to the 19th century. The problems of vision pose new challenges that can stimulate
new developments in geometry, which in turn will benefit vision. We try here to identify
such geometry challenges that are related to invariance. The value of these geometrical
aspects is likely to endure beyond the specifics of the immediate applications.

In trying to find an adequate geometrical model for vision, projective geometry is
only a partial answer. To improve the model, further assumptions need to be added to it,
which are perhaps more context-specific. The general challenge is then to identify useful

assumptions and develop the appropriate geometry based on them.
One issue is extracting the shapes (Section 10). The methods described above assume

that the shapes are already given in some ideal form. In practice, of course, we are given
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a collection of pixels that have to be turned into curves or other shapes. In doing so some
assumptions must be made that are beyond projective geometry, for instance that a curve
minimizes some distances.

One important problem here is invariant fitting. It is desirable that the fitting as-
sumption be invariant. This is a source of difficulties but also a source of new possibilities.
With invariant fitting, the global methods in Table 1 can be freed of their restriction to
specific forms such as conics, by fitting conics invariantly to more general curves. This has
been done in the affine case by Bookstein [1979], Forsyth et al. [1990, 1991] and Kapur
and Mundy [19921. In the projective case, a method based on invariant segmentation into
conics is due to Carlsson [1992]. Another route is opened by the canonical method, because
the fitting can be done in the canonical frame [Weiss 1992b]. The method of moments does
not require an invariant fit. However, high order moments are known to be sensitive to
noise and occlusion.

For a local method an invariant fit is less important, but the problem arises of finding
high order derivatives or fitting high order curves. Accurate derivatives were obtained in
[Weiss 1991] for this purpose.

Another important problem is the connection between 2-D images and 3-D objects
(Section 11). It has long been known that in general the projection from a 3-D shape to a
single 2-D image does not have invariants (e.g. [Burnes et al. 1990]). There is simply not
enough information in a 2-D image to reconstruct the missing depth information by purely
geometrical methods. The invariants discussed above are 2-D to 2-D (or n-D to n-D).
However, given some additional, external information, invariants can be useful here too.
In [Zisserman and Mundy 1992], invariant descriptors of surfaces of revolution are derived
from contours detected in a single image. Hopcroft et al. 11992] recover the length of three
3-D vectors using an invariant orthogonality relation. Reconstruction of 3-D invariants
from multiple views, given the correspondence, is done in [Koenderink and Van Doorn
1991], [Brill et al. 1992] and [Barrett et al. 1992]. Qualitative invariants are discussed in
[Weinshall 1990]. The subject is very promising but is only just beginning.

Other problems in which invariants have found use can only be mentioned here. Cam-
era calibration, in which the invariance is to the camera parameters in addition to the
geometry of the shape, was treated by [Kanatani 1990], [Mohr 1992] and others. Invari-
ants in space-time for motion were treated in [Faugeras and Papadopoulo 1992]. Hashing
methods using affine coordinates were developed by Lamdan et al. [1988]. Meer and Weiss
[1992] studied statistical methods for point set invariants.

7. Pure Differential (Explicit) Methods

This section describes explicit differential methods. Being local, they do not suffer from
the occlusion problem and can be used for an arbitrary shape. However, the parameter of
the curve needs to be eliminated which reduces the robustness of the invariants. Cartan's
moving frame method belongs here, but we will derive its results (local affine invariants)
more simply by using the determinant method, Section 9.
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A 1-D Projective Invariant
We first mention a well-known one-dimensional differential invariant, namely the Schwar-
zian derivative [Springer 1964]. Consider a particle moving along a straight line, with its
position at a time t measured by a (non-homogeneous) coordinate r(t) . The Schwarzian
derivative S(r) is defined as

(r r'Ct) 2 - l ( 't)
and it is invariant under projective transformations of the line, given by eq. (3) as can be

checked directly. Furthermore, the differential equation

S(r) = g(t)

(where g(t) is given) determines the relation r(t) up to 1-D projectivity. 'The Schwarzian
derivative is not invariant to change of the parameter t, except by a 1-D projectivity (3). It
is interesting that this invariant can be obtained as an infinitesimal limit of the well-known
1-D cross ratio.

Wilczynski's Method
As described previously, a projectivity can be written in homogeneous coordinates as

R = X(x)Tx

with X(x) being an arbitrary factor, which can be different at each point x. To find
invariants, one can proceed in stages. First find invariants to the linear part T of the
transformation, and from those derive invariants to A (and also to change in parameter).

Given a plane curve x(t), invariants to T can be obtained by solving the linear algebraic
system of equations

X11 + 3plx" + 3p2X' + px = 0

for the three unknowns P1, P2, P2, at each point t. It is easy to show, by multiplying the
equation through by T, that these solutions pi are invariant to T. (In fact, pi are expressible
as determinants.) However, they are not invariant to change in the arbitrary factor A(x(t))
nor to change in the curve parameter t. We can obtain functions of these pi which are
invariant to the additional transformation needed. We have the "semi-invariants"

_ 2 _ PP P2 - P - (7)

P3 = P3 - 3pip2 + 2p3 - p'

These remain unchanged under multiplication of the coordinates by a factor A(x), but not
under change of the parameter t.

The full invariants are 3p03 = P3 - 32
2

0 8 = 6E30'3' - 7(E)) 2 - 27P 202

Under change of the parameter t, they transform as = (di/dt)-we%, where i(t) is the
new parameter along the curve, and w is the weight. The subscript corresponds to the
weight w.
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Theorem 2. The invariants 03, 0 8 determine all other invariants. Furthermore, they
determine a plane curve except for a projective transformation.

These two invariants still contain the unknown weight factor, which varies from point
to point. To eliminate it we can use the invariant e 12 = 3e 3e'8 - 8ee 8 . We can now
define the two absolute invariants [Weiss 1988]

8 012

These can be plotted aganst each other in an invariant plane with coordinates IIJ1.
We can thus obtain an invariant signature curve identifying the original curve up to a
projectivity.

Since these inva-iants contain the eighth derivative they are not very practical. The
semi-invariant P 2 above contains the fourth derivative only. The other, P 3 , contains the
fifth but it can be replaced by

which again contain only the fourth derivatives.
We can clearly see the burden that the curve parameter imposes on the method. The

semi-invariants P 2 , P* are invariant to the projectivity and contain only fourth derivatives.
It is the requirement of invariance to the change of parameter t that pushes the number of
derivatives needed to eight. Thus, if we can get rid of the parameter, we will need fewer
local quantities and the robustness of the invariance will increase.

8. The Canonical Method

The canonical method can be used in a variety of situation, for local, global or hybrid
shapes of various combinations, either in explicit or implicit ways [Weiss 1992a, 1992b].
For forms of order higher than two it is much more computationally efficient that the
determinant based symbolic method. This is in analogy to the Gauss elimination method
that yields a diagonal matrix in the eigenvectors frame. However, the problem here is non-
linear and there is no "automatic" algorithm. Each situation has to be handled separately.

The basic idea is to transform the given coordinate system to a "canonical", or stan-
dard system, which is determined by the shape itself. Sin, this canonical system is inde-
pendent of the original system, it is invariant. All quantities defined in it are thus invariant.
The concept can be illustrated by examples of simpler transformations. If a 1-D function
z(t) is subject to scale transformation in x, we can obtain scale invariance by transforming
to a new coordinate ± in which the derivative at the origin is fixed, say _'(0) = 1. We
achieve this by a simple normalization t = x/z'(0). This also fixes other scale-dependent
quantities such as the second derivative 2"(0), so they are now scale invariant.

An important 2-D example is the Euclidean invariants. To find an invariant at a given
point on a curve, we change the z, y axes so that the new x-axis is tangent to the curve at
that point. We thus have 9' = 0, while the second derivative 9" at this point is now the
curvature. It is invariant since we will obtain this canonical system regardless of which
system we started with. We see that by determining some of the properties of the system,
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the others are also determined and become invariant. We generalize this process to the
projective case.

Here we use the canonical method implicitly, to avoid the parameter of the explicit
differential method. To do that we fit an implicit, algebraic curve in a vicinity of a point
xo at which we want to find invariants. The coefficients ai of this curve f(ai,x) become
local descriptors at xo. The task now is to find the invariants of f. In the examples below,
the canonical method is probably the most, if not the only suitable one.

In finding invariants, the parameter is undesirable for the following reason. The
essence of finding invariants is the elimination of unknowns from the system, such as the
unknown quantities describing the point of view. The parameter is also in general unknown
since it can be chosen in an arbitrary way. It has to be eliminated so that the invariants
will not depend on it. The more unknowns we have to eliminate, the more information we
have to extract from the image, which translates in the explicit method to higher, and less
reliable, derivatives. We have seen in Wilczynski's method that the need for invariance to
the parameter pushes the order of derivatives from four to eight. On the other hand, the
parameter is not in fact part of the geometry of the curve itself. The relation between x, y
is sufficient to completely characterize the curve.

We can see the practical implication of the parameter problem in fitting a curve to
the data. To obtain an eighth derivative, one has to fit eighth order polynomials to the
data, for both x(t) and y(t). In the parameterless method we only need to fit one cubic.
Lower powers are much less sensitive to noise.

The Osculating Curve

The invariants of the implicit curve are found with the help of an osculating curve at our
point x0. We have already used the tangent to find Euclidean invariants. An osculating
curve is a generalization of the tangent. A tangent is a line having at least two points in
common with the curve in an infinitesimal neighborhood, i.e. two "points of contact". This
can be expressed as a condition on the first derivative. Similarly, a higher order osculating
curve has more (independent) points of contact, and the condition on the derivatives can
be written as dk

-t-(f*(x, y)- f(x,y)) =-0, k= O...n (8)

with f* being the osculating curve, f the given curve, and n the order of the osculation.
Since the derivatives vanish, this condition is invariant to the parameter t. Since it has a
geometric interpretation with points of contact, the condition is also projectively invariant.

In the calculation we will not need either the parameter or the above derivatives.
The "data quantities" needed here are the coefficients of the given curve f, which can be
obtained by fitting f to the data points. We need no more of them than in the algebraic
method. Thus the robustness is increased relative to the explicit differential method. In
principle, a cubic will do, having nine coefficients plus the point's position. In practice,
however, we have found that a wide window is necessary for robustness to noise, and this
requires a higher order curve such as a quartic

f(x, y) = ao + aix +... + a 4y 4  (9)
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(Not all its coefficients need be independent.) Fitting was done with the SVD method.
To find invariants at a point x 0 of a given implicit curve f, we proceed in steps:

i) find a simpler curve f* that osculates it at that point. The coefficients of this osculating
curve are independent of any parametrization. ii) Eliminate the factors in the projectivity
by moving to a canonical coordinate system in which the osculating curve has a simple,
predetermined form.

The osculating curve f* is chosen as the simplest one that enables us to perform the
factor elimination. Three factors are eliminated by moving the origin to the given point
xo and rotating so that the x-axis is tangent to the given curve f there. The projectivity
has another five factors to be eliminated.

Local Canonical Invariants

Three of the eight projectivity parameters are eliminated by moving the origin to x0 and
rotating so that the x-axis is tangent to the curve there. Now we need a five-parameter
osculating curve f* that passes through the origin. A suitable choice is the "nodal cubic"
[Halphen 1880, Weiss 1992b]

f* = COX 3 + cly 3 + c 2 Xy 2 + C3X2Y + CO 2 + Xy = 0 (10)

This curve intersects itself at the origin so it has two tangents there, one lying along the
x-axis. The other tangent is called the "projective normal" [Lane 19421. This f* osculates
the fitted f with a seventh order contact (Fig. 5a).

Our goal is now to transform the coordinates so that this nodal cubic take on the
simple coefficient-free form

X 3 + y 3 + xy= (II)

known as a folium of Descartes, Fig. 5b.
We obtain it, in a nutshell, as follows. We already have the x axis of the canonical

system. The canonical y axis is now chosen as the other tangent of the nodal cubic,
the projective normal. We skew the whole shape so that this projective normal becomes
perpendicular to the x axis. This will eliminate the term with c4 in the nodal cubic. Next,
the coefficients co, c1 are eliminated by scaling in the x and y directions. We obtain

2 +93 +Cd2XY~ + e3Xy~+Xyq= 0

The coefficients in this system, E2 and E3, are local affine invariants because we have
reached an affine canonical system. We have used all possible affine transformations (trans-
lations, rotation, skewing, scalings) to eliminate all the possible affine transformation fac-
tors and arrive at the above form of the cubic so the remaining coefficients are uniquely
defined regardleds of which system we started with.

A projective canonical system is obtained by eliminating the last two coefficients
using tilt and slant. We transform the original curve f to this new system and obtain new
coefficients di for it. Since this system is projective invariant, these di are invariants. We
can choose some suitable combination of them as invariants I1, 12.

In summary, the implicit method gets rid of the parameter while the canonical method
makes it practical to find invariants of the resulting cubic (and other forms).
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Hybrid Shape Canonical Invariants

Some of the projectivity factors can be eliminated by using known feature points or feature
lines, each of which can eliminate two factors. The remaining are eliminated as before with
the help of an osculating curve, and the conic with three parameters will suffice in all cases:

c(z, y) = Cox 2 + cly 2 + C2 + y = 0 (12)

Since we need a lower order of contact of this osculating curve than we needed before (cor-
responding to lower derivatives), the robustness increases. However, the correspondence
of the feature lines/points has to be established. We have studied [Weiss 1992b] all con-
figurations of a curve plus one or two points or lines. We only describe here the simplest
situations.

Given a feature point x1 , we draw a line joining it with with the curve point xo, yo
(Fig. 6a). This is obviously a projectively invariant operation. We use this line as our new
y axis. As before we skew the system so that this line becomes perpendicular to x. We
thus obtain an orthogonal system. We also scale the y axis so that the distance of the
feature point form the origin is unity.

To obtain the osculating conic to our fitted curve f we need only a fourth order
contact, rather than a sixth as before. For an affine canonical system, we only need to
scale in the x direction by eliminating one coefficient of the conic, co. The remaining two
are affine invariants. For a projective canonical system, we use tilt and slant to eliminate
the remaining conic coefficients and obtain a unit parabola x 2 + y = 0, Fig. 6b. The
invariants are again coefficients di of the transfcrmed curve f.

Given a feature line, we can convert to the previous situation by finding its polar point
with respect to the osculating conic, an invariant operation (Fig. 7).

9. The Method of Determinants

This is perhaps the simplest and most widely used method and can handle most com-
mon cases. However, it cannot yield the pure differential projective invariants, or high
order forms in an obvious way. For hybrid forms it uses explicit derivatives with a curve
parameter t. We derive here a variety of invariants in 2-D.

This method takes advantage of the transformation properties of determinants under
linear transformation. Many geometrical entities can be cast in the form of determinants.
In 1-D, the distance between points X 1, X2 is

1 1 2 = 1 - 2 =

X2 1

while the area of a 2-D triangle can be written as

1 Xl Yi 1
S 1 2 3  X2 Y2 1 (13)

X3 3 1

18



In homogeneous coordinates, the triplets are multiplied by arbitrary factors, i.e. xi =
AM(xi,y,1), so the determinants are multiplied by AIA 2 in 2-D and A1 A2A3 in 3-D. In
these coordinates, the projective transformation is linear (eq. (5)), so it only multiplies
the determinants by ITI and Ai:

Ii1,i2,isI = AiA2A3JTIlx,x 2,x3

Thus, a determinant of points/lines in homogeneous coordinates is a relative projective
invariant of weight -1 in T and degree 1 in each Ai.

The above properties are used to find invariants of various algebraic forms. The main
trick is to find ratios of various determinants in which all the factors Ai as well as ITI cancel
out, so the relative invariants become absolute. The duality of points and lines makes it
possible to interchange their roles in all the formulas below. In [Bruckstein et at. 19911
many determinant invariants are given a geometrical meaning.

To complete the sets of invariants, dot (scalar) products and traces of tensors are
useful in appropriate cases. Thus the term "dets and dots" is sometimes used. (Note that
determinants are defined on square matrices, not general tensors.)

Global Projective Invariants of Forms

Here we will obtain invariants for first and second order forms, i.e. points or lines and
conics, as well as combinations of such forms. In general, the configuration of forms must
have a total of more than eight coefficients to eliminate the eight projective transformation
factors. However, in some cases we will have an internal symmetry that reduces the number
of coefficients needed.

Four collinear points (Fig. 4). The cross ratio of Euclidean distances is equal to the
cross ratio of determinants in homogeneous coordinates, because all Ai cancel out:

112134 (A1A2112) (A3A4134) _ Ixx,x 211x 3 ,x4 J (14)
113124 (A 1 A 3 11 3 ) (A 2 A 4 12 4 ) IXI,X 3iix 2 ,x 4 1

and under the transformation T this will be unchanged because ITI will also cancel out.
Five points: The configuration has ten coefficients, thus can yield two independent

invariants. By the same cancellation process as before, we can prove the invariance of
the cross ratios of either areas Si3 k of triangles or the corresponding determinants in
homogeneous coordinates. We have

= S423 S1 25  S143 S125I1 - , 1I -
S124.52Z' S124 S153

The same method yields cross ratios in n-dimensional spaces.
Two points, two lines: The line coefficients a are contragredient to x, i.e. they trans-

form with T-I (Section 5). Thus dot products such as a - x are invariant to T. However
we still have to cancel the factors Ax, Aa so that we have to use ratios again:

a 1 Xl a 2 x 2

a 2x 1 a 1 x 2
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Although there are only eight coefficients, we have an invariant because there are only
seven unknowns to eliminate. This is because we have one degree of freedom of symmetry:
the line joining the two points intersects the two lines, thus creating four collinear points.
These points have a cross ratio, unaffected by rotation around this line.

Four points, one line: We have ten parameters, and assuming that the points xi are
not collinear and not on the line a, we have three invariants

aXI S 2 3 4  ax 1 S234 aX 1 S234

aX 2 S134 ax3 S 1 2 4  ax 4 S123

One conic: The conic an be expressed (Section 5) as the quadratic form x t Ax = 0
with the symmetric matrix A. It transforms as (T- 1 )t AT- 1 (eq. (6)). The matrix can
obviously by multiplied by the arbitrary factor AA without affecting the form. Thus the
discriminant JAI is a relative invariant of weight 2 and degree 3:

AIl = [T-AAIAl

The degree results from the fact that multiplying all the matrix elements Ai, by AA results
in multiplication of JAI by A. To eliminate the factor A we can normalize the coefficient
matrix A by the relative invariant JAI1/3 and define a new matrix

A = I A (15)
JAII/ 3

Two conics: The configuration has ten coefficients yielding two independent invariants
[Springer 1964, Weiss 1988, Forsyth et al. 1990]. The last authors applied them to real
images (Figs. 8, 9). The joint invariants of the conics A, B can be obtained from the
solutions of the invariant equation

IA + = 0
The three solutions ai are the eigenvalues of the matrix A b- 1 . These eigenvalues have a
product of 1 due to the normalization (15). Two independent invariants are thus the sums

>i ai and E 1/ai.
These invariants can be written as the traces of Af/-B and its inverse:

1AB = trace(Ah - 1) IAB = trace(BA - ') (16)

As a direct tensor-like proof of invariance, IAB is transformed by (6) to

i.e. the transformation matrices cancel out. In tensor terminology, A is a covariant tensor
and f- 1 is a contravariant one, so the contraction Ei Aj(b-') O' is a scalar.

A nice geometric interpretation of these invariants is given in (Mundy et al. 1992al.

For any point, one can find a polar line w.r.t. a given conic (Fig. 7). Given two conics, it
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is possible to find a polar point and a corresponding polar line that are shared by both
conics (Fig. 10). The polar line coordinates in this case are an eigenvector of AB-'; B-'
transforms the line to its polar point and A transforms the point back to the line. The
cross ratio of the contact points on this line is a joint invariant.

A conic and two points: There are nine independent parameters so only one absolute
invariant exists: (aJA-1at2) 2

The dual expression uses A - '. The unnormalized matrix A is used here because AA is
eliminated from the numerator and the denominator.

Global Affine Invariants of Forms

The affine transformation has only six parameters to be eliminated. From Section 5 it can
be written as

= Tx, with T3 1 = T32 = 0

Thus, unlike the projective case, we can set A. = 1 for points and it does not need to be
eliminated. Lines and conics still have Aa, AA.

The line at infinity, a' = (0,0, A), remains invariant under this transformation:

a00 = a0OAT-1

Thus this line can be added to the configuration at hand to form invariants in addition to
the projective ones. It can be shown [Turnbull 1928] that all the affine invariants can be
obtained from projective invariants of the given shapes plus this line. Thus the projective
methods are useful here too.

Three points with six coefficients yield one relative invariant, the area of the triangle
formed by the points:

S12 3 = fx,x ,x31 (17)

transforming as I = ITII. As A, = 1, the degree is 0. In fact, the area of any shape is a
relative affine invariant, and the ratio of any two areas is an absolute invariant.

Three collinear points yield one absolute invariant, the ratio of lengths 112/123, which
eliminates ITI. In the Euclidean case, we have ITI = 1 so it does not need to be eliminated.
Thus any distance 112 between two points is a Euclidean invariant.

Four points are interesting because they show the possibility of affine coordinates. We
can choose three points xi as a basis, and any other one x can be expressed as a linear
combination of the basis vectors (with x, as an origin):

x - X1 = a(x 2 -x,) +3(x3 - xI) (18)

This is a linear equation system for a, 0. They are invariant as the equation remains
invariant to a 2-D transformation. The solution can be written as ratios of determinants
which are easily shown to be equal to (13) (by subtracting the first row in (13) from the
others). Thus, the affine coordinates are ratios of areas, Spij/S123.
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One conic has one affine relative invariant (in addition to the discriminant JAI), re-
sulting from the invariance of the infinite line a'

IA = ak'-a' = A 11 A 22 - A12  (19)

It is relative because of the factor A in a'. It is related to the conic area (it vanishes for
a parabola).

A conic and a point. With seven coefficients, it has one absolute invariant, the alge-
braic distance

d = xtAx (20)

(Again we normalize A = A/JA1I /3, eq. (15).)
Two conics with ten coefficients yield four absolute invariants. Two of them are

identical to the projective invariants derived earlier, eq. (16). Two more relative invariants
are IA, IB, eq (19). A joint invariant analogous to these is

Allf 2 2 + A 22B 11 - 2A 12B12  (21)

The last three relative invariants can form two absolute invariants.

Hybrid Shape Invariants

The determinant method can be used to find invariants of a curve combined with known
reference (feature) points. Instead of determinants consisting of three points, we can use
determinants of points and curve derivatives. The description here combines the results of
[Van Gool et al. 1991, 1992] and [Brill et al. 1992].

Examples of relative invariants are

Ix, x',x"1, Ix, x',x1I, lx,xi,x2 1 (22)

with x = x(t) being a curve point and xi being reference points, either on the curve or
not. The prime denotes differentiation w.r.t. t. They all have a weight -1 in T. Under
multiplication by A the first one transforms as

A A' A"
= Ix,x',x"l 0 A 2A' = Ix, x',x"A 3

00 A

i.e. it is of degree 3. Similarly, the other invariants are multiplied by AA , AAIA 2, etc.
Under change of parameter t the first invariant transforms as (with differentiation

w.r.t. t denoted by a subscript)

1 0 0
Ix, x',x"l = Ix,xi,x~il 0 ' i" = x,xi,xil(p) 3

0 0 (?)2
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so it is of weight 3 in '. The others are of weight 1, etc. In short, the degree in the
Ais is equal to the number of the corresponding xs, and the weight in t' is the number of
differentiations.

Thus, to obtain absolute invariants, we have to find ratios of the relative ones in which
all these factors cancel out. For that to happen, the total number of differentiations in
the numerator and denominator has to be equal, and similarly for the number of times a
particular point x or xi appears.

It is useful to eliminate the ITI and the degrees first and obtain relative invariants of
weight 1 in P". Given such an invariant, we can use it to define an invariant arc-length:

r = abs(1)dt

where 11 is any invariant of weight 1 in P, i.e. it transforms to IPdt/dt. We have

p1 = X'Xl'X211(Ix' x" / I = x,',x~ jxl xl'2'x3j
1 Ix ,x ',x lx , x ', x 2 1 ' = _ x ,x1,211x , x ,x3_

The first invariant above needs two reference points and second derivative, while the Fccond
invariant needs only first derivatives but three reference points. Their ratio is an absolute
invariant. To find more invariants we have to allow more than one point to be on the
curve. For example, with two curve points Xa, Xb we have an absolute invariant

I ---lxib:x'l (Ixa,x'.,x '
'a IXb,.XbI k______ 1/3

Other expressions can be found in [Brill et al. 1992].
These invariants can be interpreted in non-homogeneous coordinates. Fixing the third

coordinate of x to 1, tae third coordinate of x' becomes 0. By simple manipulations on
determinants, the expressions (22) become 2x2 determinants in Cartesian coordinates:

jx',x", Ix- xl,x', Ix- xl,x- x2 1

and the two relative invariants take the form of [Van Gool et al. 1991]:

I Jx', x"IIx- x1, x - x 2 1

1 Ix - x, x'jx - x2 , x'j

12= I f- X1, X'fJX1 X2, X'iI1IX -x- X,, X - X211X - X1, x'i

Like the cross ratios, these expressions can be expressed in metrical terms. If t is the
arc-length, then Ix',x"I above is nothing but the Euclidean curvature ic. The absolute
invariant Iab takes the form

ab =dab( Ka) 1/3

ab-dba (Kb)

where dab is the distance of point a from the tangent at point b.
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Local Affine Invariants

Here we obtain pure local invariants by using the determinants of the derivative vectors
x(') at a curve point only. From the transformation rules of the last subsection, the 2-D
determinant jx', x"I is a relative invariant of weight 3. The degree is 0 since A, = 1 in the
affine case. It can thus be used to define the affine arc-length [Guggenheimer 1963]

r= [x', x"(/1 3dt

It is absolute with respect to t' but relative with respect to T. We will now use it as
an invariant parameter for all our differentiation, denoting derivatives by x,. Higher
order invariants can now be obtained either by differentiation or directly as determinants
[Bruckstein et al. 1991]. We obtain the affine curvature:

Icaf= xr.x,

Fig. 3 shows the affine arc-length and curvature of the curves in Figs. 1, 2. The weight
in ITI can be eliminated using higher order invariants.

The affine curvature is constant for conics and only conics. The conic area (a relative3/2
invariant) is 7rva

Local Euclidean Invariants

In this case ITI = 1 so the corresponding weight is 0 and the expression jx',x"] now has
weight only with respect to the parameter change t'. We have a new relative invariant, the
length of the vector x', which is preserved because T is orthonormal. We can thus obtain
an absolute invariant, the Euclidean curvature

P Ix',x"I zY"I -XIyI

(xtX1)3/2 - ((X') 2 + (yt) 2 ) 3 / 2

Choosing the parameter as the arc-length

7- = J(x'tx)1/2dt

the denominator in the curvature becomes 1.
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The Symbolic Method

The symbolic method extends the determinants approach to any set of homogeneous poly-
nomials, or algebraic forms of degree n

f(xix 2 ,X3) = aikz 1 2Xk = 0 (23)
i+y+k=n

They are of interest because they preserve their form under projectivities. A general
method for deriving such invariants is the "symbolic" method [Grace and Young 1903,
Turnbull 1928]. In this method the algebraic form f is factored formally into a power of
one linear form:

f(x1,X2,x 3 ) = (a1xI + a2z 2 + a3x3)"

Of course, the factorization cannot be done if ai are numLers, since f contains many
more coefficients than three. However, it can be done with the ai being abstract entities
("symbols") satisfying certain rules of multiplication.

The "fundamental" theorem for form invariants can now be stated in terms of these
symbols as

Theorem 3. Every invariant of a set of algebraic forms can be expressed by determinants
and dot products of the symbols. All invariants can be derived from a finite number of
basic ones.

The method can be applied straightforwardly to curves of any degree. However, its
complexity escalates sharply with higher degree. For the cubic, the two invariants S, T
take up nearly two printed pages in [Salmon 18791. Thus, while the symbolic method is
useful for deriving general theorems, other methods are more practical.

10. Shape Extraction

To apply invariants we need to extract curves from the data, usually a noisy set of pixels.
The problems arising from this are common in vision, e.g. stability and robustness. Here
we concentrate on the invariant aspects of the problem.

To obtain useful shape descriptors from the raw data one has to make some assump-
tions about the shape and/or the noise. The shape undergoes a projective transformation
but the noise does not, and this can influence our fitting strategy.

In obtaining global invariants, one fits a form such as a conic to a general shape. The
noise is assumed small and the main deviation from the fit is due to the geometry of the
shape. Thus here the fit has to be invariant. In local methods the main deviation from
the fit is due to noise so invariant fit is less important. The problem here is to increase
reliability.
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Invariant Fitting

Much of the work in this area has been concerned with fitting conics to general closed
curves. The method of [Bookstein 1979] and [Forsyth et al. 1990, 1991] uses minimization
of the algebraic distance. This distance of a point xi from a conic A, namely di = xt.Ax i ,
has been shown (eq. (20)) to be an affine invariant. It is not necessarily positive P'nd one
wants to minimize the average square distance of n points

1Ed? =- 1Z(Axi)2n d n

t i

As before A is normalized so that JAI = 1. Without normalizat;or, the expression could
be multiplied by an arbitrary factor AA and would not be invariant. (Besi-les, the obvious
minimum would be 0.) The goal is now to find a conic - that minimizes this distance
subject to the constraint JAIj = 1. Since all normalized cnics have an invariant algebraic
distance from the data, the minimal distance and conic are also invariant.

The method was used for images contain inr. -ollections of industrial objects in [Forsyth
et al. 1990, 1991]. Conics were fitted to several objects in the image (Fig. 9). To solve
this non-linear constrained minimization, they used Lagrange multipliers in an iterative
method. The joint invariants (16) of pairs of conics were computed and indexed. Repeating
the process from a different. viewpoint, the same invariants appeared and could be used
to identify the objects by looking at tht index tables. Now search was needed for the
identification.

The r m-line2," -ptimizat' - does not pose a problem if the objects are conic or close
to it, but for gei a shapes it can become more complicated. The optimization problem
was studied analy, zally for simple objects by [Kapur and Mundy 1992]. It was shown that
in most ca,;es studied the best fitted conic was unique, but for certain "dumbbell" shapes
t. -re were two or three conics that fitted equally well (Fig. 11).

Another approach to conic descriptors is due to Carlsson [1992]. Given a closed shape,
we cai -ttempt to inscribe inside it an ellipse having five contact (tangency) points with
the curve. In general, this may not be possible (we can always fit a conic to five tangents
but it may not be contained in the shape.) We can settle for a one-parameter family of
inscribed conics having only four contact points. The parameter can be chosen invariantly.
This can be shown as follows. Fig. 12a shows a quadrilateral in which an ellipse is inscribed.
The sides ai have to satisfy the equation of the line conic ajA-lai = 0. This happens if
the conic matrix has the form

A- ' = qx(al x a 2)(a 3 x a4)t + q2 (al x a3)(a 2 x a 4 )t

This is a family with the parameter ql/q2. (It can be symmetrized by A + (A-')t.)
Since the cross product in homogeneous coordinates is the intersection point xij of the
sides ai, aj the conic can be written as

A-' = qx1 2 x34 + q2Xj 3 X 2 4
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The expression is invariant since T and A factor out under transformation. Therefore qi/q2
is invariant. In Fig. 12b a 36-side polygon was segmented. All possible quadrilaterals with
inscribed ellipses were examined, and for each of them the family member with qlq2 = 1
was selected. Three of the four resulting ellipses are seen as meaningful.

The canonical method described earlier offers a way of obtaining a local invariant fit.
We want the distance to be minimal in the canonical system (previously the minimization
was done in the given system). This will make the fit invariant. We proceed iteratively as
follows. Starting with a non-invariant least squares fit, we obtain a curve and a canonical
system corresponding to it. We thus make some progress towards the final canonical sys-
tem. We transform all data points to our new system, repeat the fitting and canonization,
and continue until convergence. This method has yet to be tested.

Local Curve Extraction

The local methods do not rely on invariant fit but they face the problem of high order
derivatives or fitting of high order implicit curves. It is of interest to examine here what
kinds of assumptions are used in the different methods.

Both the implicit and parametrized method need at least nine points to obtain two
projective curve invariants. The difference shows up when fitting is done to a larger number
of points. In the implicit method, the assumption is that a distance roughly perpendicular
to the shape is minimal. In the explicit method, the minimized functions are x(t),y(t),
measuring distances parallel to the x, y axes. These distances are very inaccurate when the
curves are close to parallel to the axes, and- can introduce substantial errors. We also have
to obtain two fitted functions x(t), y(t) rather than one. Thus an implicit fit seems more
natural. It eliminates the parameter before it enters the invariant expressions and adds to
an accumulation of errors. In addition, the explicit method assumes the existence of some
ordering among the data points so that a parameter can be assigned to them, which is not
always the case.

The problem of high order derivatives of the explicit method was analyzed in [Weiss
1991] and it was shown that for a polynomial curve it is possible to obtain accurate
derivatives if the window size is wide enough and the filter is of high order. Instead of the
Gaussian g(x) we used order I filters of the form

I

F1 = (H(x)i)g(x)
0

with Hi being Hermite polynomials which are orthogonal with respect to the Gaussian
weight function. Finite, discrete versions are described in [Meer and Weiss 1992a].
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11. 3-D Shapes

3-D shapes can undergo Euclidean motions, and it is useful to represent these objects
using 3-D Euclidean invariants. This simplifies indexing and recognition. It is possible
that affine transformations are also useful; if a 3-D object is projected on a screen, and
the screen is viewed obliquely, one gets the impression that the object is distorted affinely.
Mathematically, affine transformations are easier to handle than Euclidean because of their
linearity, even though they are more than one needs.

The main problem here is how to recover the 3-D invariants from 2-D views. It is
well known [Burns et al. 1990] that this cannot be done without some external, or "model-
based", assumption, namely prior information about the shape of the object. This is easy
to see if we have a 1-D view of a 2-D point set. Each point in the image can have any
depth, i.e. it can be located anywhere on the line that passes through the image point and
the projection center (Fig. 13). Looked at from a different viewpoint, the points can thus
be projected to arbitrary locations in the second image.

However, given some information about the model, we can recover some of its char-
acteristics using invariants, as the examples below show. Given the full model, the pose
can be recovered from one view.

Recognition from One View

Single view recognition is perhaps the holy grail of vision and the original motivation for
invariants. We describes examples in which some invariant prior knowledge is combined
with information from the image, to obtain invariant indexing functions for recognition.

Zisserman et al. [1992] have derived 3-D invariants for surfaces of revolution (and their
3-D projective equivalents) from studying 2-D contour invariants. In particular, tangents of
several kinds, such as bi-tangents (touching the contour in two points), are useful because
tangency is invariant. These tangents can easily be detected on the image (Fig. 14).

In perspective projection of a 3-D object onto the image, the plane that passes through

the projection center touches the surface of revolution at two points. (The three points
determine the plane.) The line that passes through these two contact points is a bi-tangent
to the surface. This bi-tangent intersects the axis of symmetry, because of the symmetry of
the situation. The bi-tangent of the object projects into the image as the bi-tangent of the
contour. The contour is not symmetric in the image, but we can find features indicating
symmetry. Fig. 14 shows that one can match bi-tangents in the image corresponding to
symmetric bi-tangents in the object. Their intersection point in the image is a projection
of the corresponding intersection in 3-D. Since the 3-D intersections lie on the symmetry
axis, their 2-D projections lie on the image projection of this axis.

Since we have a projection of collinear points, their cross ratio is invariant. We can
measure it on the image and use it for indexing of the 3-D object. The two lamp shades
of Fig. 14 were clearly distinguished by this method. The method will work for objects
that are projectively equivalent (in 3-D) to a surface of revolution, such as objects with an
elliptical cross section.
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In another example, [Hopcroft et al. 19921 have used a model consisting of three
orthogonal vectors of arbitrary length in 3-D. These vectors Xi = (Xi, Y.Zi) satisfy the
orthogonality conditions

X Xj = 0, i,j = 1,2,3

These relations are unaffected by the vectors' lengths or by 3-D Euclidean motions. Under
orthographic projection, with the measured image coordinates xi, yj, we have Xi = xi, Y =
yi. We want to find the missing depths Zi. From the above orthogonality relations we
have

Z1Zj = -(x zj + yy)

from which Zi can be found, e.g. (Z 1 Z 2 ) (Z 1Z 3)/(Z 2 Z 3 ).

Reconstruction from Multiple Views

Multiple views are of help in object reconstruction provided we have the correspondence.
The correspondence cannot be inferred from projective geometry, and again we need model
based knowledge. Thus, for the purpose of obtaining projective invariants we assume that
the correspondence is given. In principle, reconstruction can be handled without invariants
by simple triangulation. However, we are not really interested in the 3-D coordinates of the
object's points but in its 3-D invariants. We will see that these can be recovered directly
from the images. This has been done for point sets by Koenderink and Van Doorn [1991],
Barrett et al. [1992] and others, and for curves by Brill et al. [1992].

For point sets, we can choose a basis of four points Xi and use them to define 3-D
affine coordinates of any other point X (see eq. (18)):

X - X, = Z ai(Xi - Xl) (24)
ii$1

with X being 3-D 'world" vectors. Obviously the three coordinates ai are preserved under
a linear transformation in 3-D so they are 3-D invariants.

It turns out that the 3-D invariants ai can be recovered directly from two 2-D images
obtained by an "affine camera" [Mundy and Zisserman 1992], i.e. a transformation with a
linear 3x2 matrix T*:

x=T*X+t

with x being the 2-D image coordinates. Applying this transformation to (24) eliminates
the translation t and yields

x -X 1 "-- ai(xi - xI)

We thus have two equations for the three unknowns ai. A second view adds two more
equations, so the three invariants can be recovered.

For 3-D curves, one can consider the configuration in which the two images are in the
same plane, and set apart from each other only by a horizontal distance. In viewing the
3-D point (X, Y, Z) we obtain the same y in both images, and x1, x, in the left and right
images respectively. With both cameras using perspective projection, the projection can
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be represented by a transformation of quadruples of coordinates which is linear except for
a factor 1/(x1 - x,) [Brill et a!. 19921:

(X,Y,z, 1)t 1-_ 1 (x,,x,,y, WZI -r

with T* being a 4x4 matrix. Thus the transformation is similar to a 3-D projectivity, being
an analog of eq. (5), and again the non-linear factor can be replaced by an arbitrary A.
Thus, many invariants of the above transformation can be obtained by methods described
earlier for the projective space.

Since the above transformation contains the camera parameters, its invariants are
invariant to the camera calibration. Thus the difficult calibration task becomes unneces-
sary. It has been shown that seven corresponding points are sufficient to obtain invariants
to camera calibration. The invariants are also unchanged under 3-D projective or affine
transformation, so again we have recovered 3-D invariants directly from the 2-D images.

12. Conclusion

We have seen that invariance is a very powerful tool for object recognition. It overcomes
some major outstanding problems such as the need to find the correct point of view or
other distortion factors. We have surveyed many of the mathematical methods involved.
We have seen that the geometrical aspect of object recognition can be solved in 2-D by
invariants alone. The problem of recovering a 3-D object from a 2-D image cannot be solved
by geometry alone-we also need information about the object; but here too invariants
are of significant help when combined with model-based knowledge. Future work will be
done along several lines: 1) Developing a better fusion between invariants and model-based
knowledge, for 3-D reconstruction. 2) Using robust estimation methods for more reliable
extraction of the invariants 3) Developing invariants for more general transformations such
as deformations. Research in these areas is just beginning and major discoveries may still
be ahead of us.
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Fig. 4: Perspectivity. Cross ratio of four points is preserved.
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Fig. 5: (a) Osculating nodal cubic. (b) Osculating folium (leaf) of Descartes
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Fig. 6: (a) Osculating conic. (b) Canonical conic and point
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Fig. 7: A point and a line which are polar to each other with respect to a conic
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Fig. 8: Images of a computer tape, with two fitted conics in overlay. The data for the conics in

these images was obtained by acquiring the image edges using a local implementation of Canny's
edge finder, linking edges, and then choosing corresponding curves by hand. In these images, the

conics have been drawn three pixels thick to make them visible. These conics were used to obtain

the joint scalar invariants [Forsyth et al. 1990].

Fig. 9: The joint scalar invariants of a pair of conics can be used to find instances of models in

scenes, when the objects involved have plane curves which lie on their surfaces. Here we show

an instance of a gasket found in a cluttered scene by fitting conics to all of the curves using

projectively invariant fitting techniques, and marking those pairs of conics with the correct joint

scalar invariants. The data for the conics in this image was obtained by acquiring the image

edges using a local implementation of Canny's edge finder and then linking these edges. Note that

the system has ignored the wide range of distracting curves, because they do not have the right

joint scalar invariants. The outside curve for this gasket is clearly not a conic, so that this result

demonstrates projectively invariant fitting [Forsyth et al. 1990].
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Fig. 10: The geometric configuration in which a polar line (and point) are ;"genvectors of AB'1
[Mundy et al. 19921.

Fig. 11: Dumb-bell and the two conics which are the best fit IKapur and Mundy 19921.
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Fig. 12: (a) Four-sided polygon formed by the tangents of the contact points [Carlsson 1992].

Fig. 12: (b) Inscribed ellipses with ratio ql/q2 1 [Carlsson 19921.
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Fig. 13: Two projections from 2-D to I-D.

Fig. 14: This figure shows two views each of two different lamp-stands. Bitangents, computed by
hand from the outlines, are overlaid (Zisserman et al. 19921.
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