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ABSTRACT

Robotic manipulators will play a significant role in the maintenance and repair

of space stations and satellites, and other future space missions. Robot path plan-

ning and control for the above applications should be optimum, since any inefficiency

in the planning may considerably risk the success of the space mission. This paper

presents a global optimum path planning scheme for redundant space robotic ma-

nipulators to be used in such missions. In this formulation, a variational approach

is used to minimize the objective functional. Two optimum path planning problems

are considered: first, gi-en the end-effector trajectory, find the optimum trajectories

of the joints, and second, given the terminal conditions of the end-effector, find the

optimum trajectories for the end-effector and the joints. It is explicitly assumed that

the gravity is zero , and the robotic manipulator is mounted on a completely free-

flying base (spacecraft) and the attitude control (reaction wheels or thrust jets) is

off. Linear and angular momentum conditions for this system lead to a set of mixed

holonoinic and nonholonomic constraints. These equations are adjoined to the ob-

jective functional using a Lagrange multiplier technique. The formulation leads to a

system of Differential and Algebraic Equations (DAEs) and a set of terminal condi-

tions. A numerical scheme is presented for forward integration of the above system

of DAEs, and an iterative shooting method is used to satisfy the terminal conditions.

This approach is signifi-ant since most space robots that have been developed so far

are redundant. 'he kinematic redundancy of space robots offers efficient control and

provides the necessary dexterity for extra-vehicular activity or avoidance of potential

obstacles in space stations.
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1. Introduction

Space exploration is a new frontier in current science and engineering [1]. Benefits

from the space explorat'on are enormous, however, the stake is also very high. Space

missions are hazardous to astronauts [2] because of extremes of temperature and

glare, and possible high level of radiation. The extra-vehicular activity also consumes

considerable time and may need the dexterity and high load handling capacity that

astronauts can not prov de. Therefore, using robots in space is beneficial for extending

on-orbit time of space shuttle and increasing productivity of space mission.

The use of robotic manipulators in space applications introduces several new prob-

lems which do not arise in ground base robot applications. For example, the motion

of a space manipulator can cause the base (satellite or spacecraft) of the manipulator

to move and disturb the trajectory of the spacecraft [1-4]. This can severely affect the

spacecraft performance specially when the mass and the moment of inertia of the ma-

nipulator arms and the payloads are not negligible in comparison to the manipulator

base.

One solution to the above problem is to use reaction (thrust) jets to control the

attitude of the spacecraft (or the robot base) [5-6]. To meet this requirement, the

spacecraft must carry additional reaction Jet fuel. Since a spacecraft can carry only

a limited load, this ap-,roach may force removal of other facilities of considerable

importance for the suc-:ess of the mission. Thus it may alter (reduce) the goal of

the mission. Furthermore, exhaust from the reaction jets may interfere with proper

operation of the instruments on the board. For example, the exhaust may reduce

the vision distance of a camera if the camera must see along the reaction jets, and in

some extreme cases the Jeposition of the exhaust on the camera lenses may completely

block the vision of the camera.

Another solution to the above problem is to keep the reaction jets off and to

move the space manipulator arms in such a fashion that it accomplishes the desired

space tasks and yet maintains the stability and the overall trajectory of the space-

craft and/or the satellite. This approach will considerably reduce the reaction jet

1



fuel needed for attitude control and increase the life span of the spacecraft and the

manipulator.

It is clear that the second approach is far superior than the first. For this reason,

most investigators in this area have focussed their research interests on the second

approach [1-10]. Lindberg, Longman, and Zedd [1] address various issues related to

free-flying space manipulators and provide a comprehensive review of several papers

on the subject. Umetan. and Yoshida [7] present a Jacobian matrix formulation for the

study of kinematics and control of a free-flying space manipulator. Their formulation

includes both the linear and the angular momentum conservation conditions. It

should be noted that the pseudo Jacobian inverse solution of the velocity constraint

equations provides only local minimum of the generalized velocity norm which may

not be the global minimum.

Recently, Vafa and Dubowsky [2] have presented the concept of a Virtual Manipu-

lator (VM) for space robots and have shown that a space robot and the corresponding

virtual manipulator give identical kinematic response. They have also shown that if

the net linear momentim of the space robotic system is zero, then the location of

the virtual ground remains fixed. Thus, using the virtual manipulator concept, the

studies and results for ground based manipulators may be extended to space manip-

ulator systems. Papadcpoulos and Dubowsky [8] have used this concept to study the

singularity of space manipulators.

Longman, Lindberg, and Zedd [3] present a reaction wheel compensation method

for attitude control of the spacecraft (or the space manipulator base). Since the

reaction wheels use photo-voltaic energy, this method uses considerably less control

jet fuel than a reaction jet control method. Reaction wheels, however, do not control

the translational distur')ances of the spacecraft. Reference [9] provides the kinematics

and workspace analyses of a satellite-mounted robotic system.

References [1-9] largely discuss techniques that accomplish certain tasks without

disturbing the stability of the systems. Fernandes, Gurvits, and Li [10] present a

method for near optimum attitude control of space manipulator using internal mo-

tion. This formulation considers a two point boundary value problem but it does
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not consider the problem of the end-effector following a path. As a result, the holo-

nomic and nonholonomic momentum conservation constraints are homogeneous and

the solution for the velocity equations lie in the null space of the Jacobian matrix.

This may not be true i. the end-effector must follow certain trajectory. For further

discussions, readers may wish to examine references [1-10] and the references therein.

In this paper, we present a global optimum path planning scheme for a redundant

space robotic manipulator flying-freely in a zero gravity space with reaction jets oil.

Global here implies that the formulation accounts for minimization of the functional

for the entire path and rot for the local point. The extra degrees of freedom of the re-

dundant manipulator elarge the workspace of the manipulator. Furthermore, these

extra degrees of freedom may be used to optimize certain functionals and avoid sin-

gularities. The formulation accounts for the holonomic and nonholonomic constraint

conditions arising from the momentum conservation conditions. We consider the fol-

lowing two optimum path planning problems: first, given the end-effector trajectory,

find the optimum trajectories of the joints, and second, given the terminal conditions

of the end-effector, find the optimum trajectories for the end-effector and the joints.

The formulation leads lo a set of differential and algebraic equations. A numerical

scheme to solve these set of equations is also presented.

The outline of the daper is as follows: In section two, we develop the momen-

tum conservation and the kinematic conditions for the system. This leads to a set

of holonomic and nonholonomic constraints. In this section, we also make some re-

marks on local optimization and show that in this formulation the second problem

may be considered as . subset of the first formulation. In section three, we use a

variational approach tc optimize an objective functional subjected to the momen-

tum and the kinematic constraints developed in section 2. Boundary conditions are

discussed in section foLr. In section five, we present a brief outline of the iterative

shooting method. Secti.in six presents a numerical scheme to integrate the system of

differential and algebraic equations. In section seven, we consider a numerical exam-

ple to show the feasibi ity of the formulation. Conclusions are presented in section

six. Finally, in the Appendix we demonstrate the various matrices that appear in the
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formulation using a twc dimensional example.

2. Momentum Conservation and Kinematic Conditions

In the mathematical formulation for global optimum path planning for space

robotic manipulators to follow, we consider the following two problems:

1. Given the trajectory of the end effector, find the trajectories of the joints that

minimize a given objective functional, and

2. Given the terminal conditions of the end effector, find the trajectories of the

end effector and the joints that minimize a given objective functional.

We assume that the gravity is zero in space and the thrust jets are off. Thus, there is

no external force or torque acting on the system and the system is freely floating in

the space. This implies that the linear and angular momentum of the system must

be conserved.

To develop momentum conservation and other kinematic conditions, consider a

typical space robotic manipulator consisting of n, arms, one base, and n,, inertia

wheels (Figure 1). As shown in Figure 1, the manipulator base is numbered 0, the

predecessor arms are numbered as 1, 2, -.. , n, in increasing order and the inertia

wheels are numbered g:eater than n,. The joint between arm i and its predecessor

arm or the base is called joint i. It is assumed that each joint has only one relative

Degree Of Freedom (DOF). Thus, the degrees of freedom, nd, of a spatial and planner

space manipulator are, respectively, (6 + n, + n,) and (3 + n, + n.). Formulations

for a system having jo.nts with relative degrees of freedom more than one may be

obtained in a similar fashion.

For simplicity in the discussion to follow, the manipulator base, the manipulator

arms, and the reaction wheels are also called bodies. Thus body 0 represents the

base, bodies 1 to n, represent the arms, and bodies (n + 1) to (n, + n,) represent

the inertia wheels. As shown in Figure 1, let ri be the position vector of center of
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mass of body i with respect to (w.r.t.) an inertial frame, then the expressions for the

linear and the angular momentum (p and L) of the system may be written as [11]

E miai = p(1)
i=0

E [Iwi + ri x mii] = L (2)
i=0

where mi and wi, are, respectively, the mass and the angular velocity of body z, Ii is

the moment of inertia of body i about its center of mass, and the period on a variable

(.) denotes the total derivative of the variable (.) with respect to time t.

In many applications, it is more convenient to include the mass and the moment

of inertia of the inertia wheels to that of the manipulator base. Furthermore, for

simplicity in the discussion to follow, it is assumed that the linear and the angular

momentum of the system are zero, i.e. (p = L = 0). This is not the limitation of

the formulation. Formulations for p and L not equal to zero may be developed on a

similar line. However, ,n this case the formulation will be more involved. Following

the above discussion, equations (1) and (2) may be written as

Via

Zmij + mo oi = 0 (3)

E[Iiw, + r, x m 'i] + [Iwo + r'0 x mio] + Z [I wJb] = 0 (4)
i=1 j=na+l

where m' and 1' are, respectively, mass and moment of inertia of the manipulator

base including the inertia properties of the inertia wheels, r' is the new center of mass

of the manipulator base, and wj-6 , (j n, + 1,..., n0 + no,) are the angular velocity

of the reaction wheels with respect to the manipulator base.

Equation (4) shows that the attitude of the manipulator base may be controlled

in a relatively simple manner by controlling a set of three orthogonally placed inertia

wheels. Controlling the attitude of the base without using inertia wheels, however, is

more difficult.
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For a general system one can write a close form solution for the time integral of

equation (3) but not of equation (4). Thus, equations (3) and (4) provide a set of

holonomic (Eq. 3) and nonholonomic (Eq. 4) conditions. The system must maintain

these momentum conse.vation conditions which cause disturbances in the system.

The formulation to follcw will show that by prorer momentum management one can

perform the desired task and still satisfy the equations.

Integrating equatioi. (3) with respect to time, we obtain

na

miri + rno = mrG (5)

where n is the total mass :nd rG is the center of mass of the system. Since the

time integral of equaticn (3) must be a constant, it follows from equation (5) that

rc should also be a constant, i.e. center of mass of the system must remain fixed

in space. Equation (5) provides the linear momentum conservation conditions in the

configuration space.

Using Figure 1, the position vector of the end-effector is given as

na-I
r+ 1lo + 1 i + 1p = rp(t) (6)

where 1, is the position vector of joint 1 w.r.t. the center of mass of the manipulator

base, 1i is the position vector of joint i + 1 w.r.t. joint i, IP is the position vector of the

end-effector w.r.t. joini, no, and rp(t) is the position vector of the end-effector from

the origin of the inertia, frame. The orientation of the end-effector may be w~itten in

a similar manner.

Equations presente(' so far are in the vector form and theiefore their components
r 1 T

may be written in any coordinate system. Let q = q1, "", qnd I be a vec-

tor of generalized coordinates defining the configuration of the system. Selection of

generalied coordinates is not the major issue in this paper. However, it is worth

mentioning that these coordinates must be chosen very carefully; otherwise, it may

lead to mathematical singularity, the resulting code may be computationally ineffi-

cient, and in some casei it may fail to give the desired solution. In literature, one of
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the favorite cboices for these coordinates has been to use a set of translational and

rotational coordinates of the manipulator base, relative rotation (or translation) of an

arm with respect to its predecessor body, and orientation of the inertia wheels with

respect to the base. Base rotational coordinates may be represented by Euler angles,

Euler like angles, a set of three appropriate parameters, or the Euler parameters. If

the Euler parameters are used, then one must impose an additional Euler parameter

normalization condition.

In terms of q, equations (5) and (6) may be given, respectively, as

01(q) = 0 (7)

03 (q,t) = 0 (8)

In equation (8), time t appears explicitly because of the presence of rp(t) in equation

(6). Note that if Lhe system is not at a mathematical singular point, then the linear

and angular velocity terms are linearly related to the time derivate of q. Based on

this fact, equations (3) and (4) and the time derivative of equation (8) may be written

as

JI(q)l = 0 (9)

J 2(q)4 = 0 (10)

J3(q, t)4 = 3 (11)

where J 3(q,t) = (0€ 3)/(oq) and X3 = -(603)/(t). Matrices J,(q), J 2(q), and

J 3 (q, t) are called the Jacobian matrices associated with linear momentum (Eq. 3),

angular momentum (E. 4), and end-effector kinematic conditions (Eq. 6), :,-spec-

tively. Equations (9) tc (11) may be written in a combined form as

J(q,t)q = X (12)
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where

JI(q)

J(q, t) = J2(q) (13)

J3(q, t)

is the combined Jacobian matrix of the system of dimension mj x nd, and

xL= 0 (14)
X3

For a redundant systeri, matrix J is in general a rectaiagular with nd > mj. The

difference (nd - mj), provides the degree of redundancy at the velocity level. Using

the pseudoinverse of the Jacobian matrix, the general solution of equation (12) may

be written as [12]

q=J#X± + (I- J#J)u (15)

where J# is the pseudoinverse of the Jacobian matrix and u is an arbitrary unknown

vector. The first part of this equation is the particular solution of equation (12). This

is also the least square solution of the same equation. The second part of equation

(15) is the complementary solution or the solution of the homogeneous equations [12].

From equations (12' and (15), the following two observations may be made: first,

by setting u = 0 in ecuation (15) one obtains only a local minimum for q which

may or may not give L global minimum [13]. Furthermore, if 11 X 11 is zero, as is

the case in problem two, then equation (15) would lead to a trivial and undesirable

solution. Second, if X $ 0, as may be the case in the first problem, then the solution

of equation (12) will not lie in the null space of the Jacobian matrix and the second

part of equation (15) only will be insufficient to define the solution of equation (12).

The present formulatio i directly works with equation (12) and therefore, it accounts

for both the particular and the homogeneous solutions. Note that by eliminating

9



equation (11) from equation (13), one obtains a set of constraints for problem 2. For

this reason, the second problem may be considered as a subset of the first problem.

In the next section, we derive the necessary conditions for global optimum path

planning for a space robotic manipulator using a variational approach [11].

3. Global Optimization Formulation

A global optimization problem may be stated as follows:

Minimize If = f(q,t,t)dt (16)

subjected to the conditions in equation (12). Here If is the objective functional, to

and t1 are the initial and the final times, and f is some given function. Terminal

times to and tf may be fixed or free. Some of the choices for function f considered in

the past are:

First f(q,q,t) = qq, (17)

Second f(q, 4, t) = 14TA(q, t)4 (18)

and

Third f(q,l,t) = 1. (19)

f = (1/ 2 ) 4 T 4 represents minimization of half of the Euclidean velocity norm or the

unit-mass-kinetic energy, f = (1/2) 4 TA4 represents minimization of the weighted

Euclidean velocity norm or the kinetic energy if A is the mass matrix, and f = 1

represents minimization of time. In many space applications, f may also represent

10



objectives of obstacle avoidance, singularity avoidance, or minimization of the base

reaction force.

Here we consider that to and t1 are fixed and function f is given by equation (18).

Using the calculus of variations, the variation of equation (16) at the optimum point

may be written as

Ffa af] F f1
bI = (' )-dr-)q 6q(t)dt+ bq(tf) - j q(t)=0 (20)

where Sq(t) is the virttal displacement of q(t). Note that the coefficient of bq(t) in

equation (20) in the present form can not be set equal to zero. This is because all

components of q are nct independent. For virtual displacement, 6q(t) equation (12)

leads to

J(q,t)6q = 0 (21)

Multiplying equation (21) with AT, where A is the vector of Lagrange multipliers, and

integrating the result with respect to time from to to tf, we obtain

ff ATj(q, t)bqdt = 0. (22)t.'.

Combining equations (20) and (22) we have

7)- ATJ(q, t)] bq()dt + [)- ) Sq(tj - [a2{)] bq(to) (23)
(23)

Using equation (23) and following the discussion presented in [11], we obtain the

following Euler-Lagrange differential equation

--)T _d(L)T -J(qt)TA =0 (24)
4q dt a4

and the following terminal conditions

ll



Laf b] Eq(tb) = 0 tb = to or tf. (25)

Solution of equation (24) which satisfies equations (7), (8), and (12) along with a

set of boundary conditions which are consistent with equation (25) yield the desired

global optimum joint trajectory. Note that some of the concepts presented here are

similar to the approach )resented by Kazerounian and Wang [13]. Their formulation,

however, does not account for the nonholonomic constraints.

The above formulation is general and applicable to a large class of function f. In

particular, for f given by equation (18), equations (24) and (25) reduce to

1T

A(qt)4 + A(%, t)4 - - 4 + J(q, t)T A = 0, (26)

and

4T(tb)A(q(to),t)Sq(tb) = 0 tb = to or t1  (27)

where it is assumed that A is a symmetric matrix. If not, then equation (18) can be

modified such that the resulting matrix A is symmetric. A special case is when A

is the identity matrix. rhis is equivalent to considering equation (17) for f. In this

case, equations (26) and (27) reduce to

4 + J(q, t)T A = 0, (28)

and

4 7 (tb)6q(tb) = 0 tb = to or tf (29)

Equation (26) (or equation (28)) is a set of nd second order differential equations.

This set is equivalent tc 2 nd first order differential equations. Alternatively, one can

use Pontryagin's maximum principle, which maximizes a certain Hamiltonian func-

tion, to obtain a similar set of 2 nd first order equations. The calculus of variations

used here results in simpler equations which are suitable for physical interpretations

12



as well as numerical and symbolic manipulations [131.

4. Boundary Conditions

Equation (26) provides the necessary conditions for functional If in equation (16)

to be optimum. Kazerounian and Wang [13] present four different sets of boundary

conditions for a similar optimization problem. Although, the results of reference [13]

are applicable in this formulation also, they must be used with proper understanding.

For the sake of complet ness, we include the results of reference [13] and outline the

essential differences.

In order to obtain a proper set of boundary conditions, we return to equation

(27) (Take equation (29) if A = I). Note that the generalized coordinates are not all

independent. This implies that the virtual displacements are aL,,o not all independent,

i.e. all components of &4(tb), tb = to or tf,in equation (27) (or (29)) cannot be varied

freely and they must saisfy equation (21) at the end points. Discussion of reference

[131 cannot be applied here in a straight forward manner because of the presence of

nonholonomic constraints.

The necessary natu:al conditions may be evaluated as follows: First, evaluate

equation (21) for t = to, second, multiply the result with ytT, where pi is the vector of

Lagrange multipliers of dimension mj x 1, third, subtract the result from equation

(27) for t b = to, and fin-lly repeat the procedure for t = tf. This leads to

[4T(tb)A(q(tb), t) - .,tT(tb)J(q(tb), tb)] q(tb) = 0 tb = to or t1 (30)

Some remarks on p wi I be made in the next section. In the discussion to follow,

consider that no generalized coordinate is specified at the end points. In this case the

coefficient of bq(tb), (tb = to, tf) in equation (30), can be set equal to zero for a proper

vector 1 and a proper set of independent virtual displacement (see reference [11]).

Therefore, for this vect )r y and the independent virtual displacements, equation (30)

after some algebra, leads to

13



4(tb) = A-'(q(tb), tb)JT(q(tb), tb)PL(tb) t6 = to or lf (31)

Equation (12) should be satisfied at time tb also. This implies

J(q(tb), tb)q(tb) = JX(tb) (32)

From equations (31) and (32), we obtain

P(tb) = [JA -JT] -'(tb) (33)

Substituting the value of ps back in equation (31), we obtain the generalized velocity

vector at time tb as

4(tb) = A -JT[JA- JT] -X(tb) tb = to or tf (34)

Equation (34) is referred to as the "natural" boundary conditions. Taking A =

(1/2)1 in equation (34) we get the same set of natural boundary conditions as that

of reference [13].

We are now in a position to obtain the proper boundary conditions. Traditionally,

equation (30) is used to obtain the following four sets of boundary conditions:

Set 1. Generalized coordinates are free at both ends: In this case the optimum

trajectory must satisfy the natural boundary conditions given by equation (34)

at both end points.

Set 2. Generalized cocidinates are given at t = to but not at t = tf: In this case

bq(to) = 0 and therefore equation (30) for tb = to is automatically satisfied and

the optimum trajectory must meet the natural conditions at t = tf only.

Set 3. Generalized coordinates are given at t = tf but not at t = to: This set is

identical to set 2. except that the roles of to and tI have interchanged. In this

case bq(tf) = 0 and equation (30) for tb = t1 is automatically fulfilled and the

optimum trajectory needs to agree with the natural conditions at t = to only.

14



Set 4. Generalized coordinates are specified at both ends: In this bq(to) = 6q(tf) = 0

and equation (30) is automatically satisfied for both t b = to and t6 = t1 .

Sets 1, 2, and 4 correspond, respectively, to cases 1, 2, and 4, of reference [13]. In

the above four sets, it is assumed that at each end either all (independent) generalized

coordinates are prescribed or all of them (independent generalized coordinates) are

free. This might not be the case. In reality, part of the (independent) generalized

coordinates may be prescribed and part of them may be free. Therefore, there are

many more possible combination sets which will also satisfy the optimality criteria.

More specifically, if a holonomic system has nd degrees of freedom, then there are 221d

possible number of sets which will satisfy the optimality criteria. For a nonholonomic

system, as is the case here, this number depends on the number of holonomic and

nonholonomic constraints in a complex way.

At this stage, it is worth emphasizing the following point: If a system has n

generalized coordinates, then the possible number of sets of independent coordinates

is 'C,,,, where C is a combination symbol. These sets correspond to only one set

in the optimality criteria discussed above because, for a given set of independent

coordinates, the other coordinates are all fixed. Therefore, a given set of independent

coordinates can be uniquely mapped to another set of independent coordinates.

Among all possible sets, set 1 stated above gives the minimum value for the object

function, because this set imposes no restriction on the system. In practice, it is also

possible to have a set of boundary conditions which do not satisfy the optimality

criteria. One such set is when the independent generalized coordinates and velocities

are specified at time t = to. This corresponds to case 3 of reference [13]. This

set results in an initial value problem. Since, in this case, the natural boundary

conditions at t = tf are ignored, the resulting path is a "weak" minimum. A strategy

for obtaining strong minimum for this case is given in [13].

Note that the equations satisfying the optimality criteria lead to split boundary

conditions, i.e. two point boundary value problems. A close form solution of these

equations is generally not possible. Furthermore, these equations can not be solved

in a straight forward manner. A common approach to this problem is as follows: 1)
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estimate the initial conditions, 2) numerically integrate the differential and algebraic

equations, 3) use the numerical results at t = t1 to update the initial conditions, and

4) repeat the steps 2 and 3 until the terminal conditions are satisfied or the number

of iteration exceeds a prespecified value. A numerical scheme to integrate the differ-

ential and algebraic equations appearing in this formulation is given next.

5. Numerical Integration of Differential and Algebraic Equations

Global optimum path planning formulation presented above leads to a system of

Differential and Algebraic Equations (DAEs). Although, the formulation leads to

a two point boundary value problem, in this section we begin with some assumed

initial conditions, i.e. we take some suitable values for q(to), and 4(to). A method

to improve the initial conditions so that the resulting solution satisfies the boundary

conditions at both ends is given in the next section. The objective of this section is

to present a numerical scheme to advance the solution of the DAEs from a time grid

point ti to the next time grid point ti+,. For a systematic development and ease of

reference, the DAEs are rewritten below:

Differential Equation (Eq. (26)):

A(q, t)4+ J(q, t)TA = F(q, 4, t) (35)

Holonomic Constraints:

=~,t 1() 0 (36)

Non-holonomic Constraints along with the time derivative of equation (36):

J(q,t)q= X (37)

Vector F(q, 4, t) in equation (35) is given as

1 r O(A4)1 iT.
F(q,q,t) = a q q - A(q,t)4 (38)
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Note that the Lagrange multipliers A's are unknown. These multipliers may be elim-

inated from equation (35) as follows: First, differentiate equation (37) with respect

to time. This leads to

J(q, t)4 = X - J(q, t)4 (39)

Second, substitute the ,alue of 4 from equation (35) into equation (39), and solve for

A. This gives

A = [JA-' jT] -_' (JA-'F - k + j4l) (40)

Finally, substitute the expression for A back into equation (35). After some algebra.,

this leads to

4 = A-'F - A-'J [JA-JT] - (JA-'F - X + J q) (41)

Before we proceed further, note that A (equation (40)) at t = to (or tf) is different

from p(to) (or Jt(tf)). In reality, A and p are entirely two different vectors and they

should be treated so.

The right hand side of equation (41) contains no unknown terms. Therefore, given

q(ti), 4(ti), and ti, equation (41) may be used to compute 4(t,). Another approach

to compute 4(ti) is as follows: Equations (35) and (39) may be written in combined

form as

[A j T ] [lF] (42)

In this equation, the square matrix and the right hand vector can be computed

numerically. Vectors & and A then can be solved using a numerical scheme such

as the Gaussian elimination technique. Thus, vector 4 may be obtained using either

equation (41) or equation (42). Equation (42) has two major advantages over equation

(41). First, equation (42) preserves the sparsity of the matrices and therefore a

sparse matrix code may be used to store the matrix elements and solve the resulting
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equations, and second, f the eigenvalues of J vary widely then equation (41) results

in ill condition matrices which cause numerical instability. For the same Jacobian

matrix, equation (42) leads to a relatively well behaved problem.

Let the solution for vector 4 be written symbolically as

4= g(q, 4, t) (43)

The vector function g is never computed explicitly but only numerically. Equation

(43) may be reduced to a set of first order equations as

gq, [ ] t)gu1)(y ) (44)

U

Equation (44) may now be integrated using a direct integration scheme. This scheme

may lead to numerical problems because the components of q are not all independent

due to the presence of nonlinear holonomic and nonholonomic constraints. These

constraints nonlinearly transform the small numerical integration errors which act

as feedback to the system causing large constraint violation and numerical instabil-

ity. Furthermore, since the dimension of q may be much larger than the number of

independent coordinates, these schemes require integration of a much larger set of

differential quations.

The DAEs in this formulation are similar to those in multi-body dynamics. In

recent years, several methods have appeared in the area of multibody dynamics to

solve such DAEs. Some of these methods attempt to satisfy the constraints explicitly

and some implicitly, and some take a hybrid approach. A brief review of these methods

appear in reference [141. From theory of differential geometry, it is clear that the

solution of these DAEs lies on the manifolds defined by these constraints. It is possible

to define coordinate systems on these manifolds and reduce the number of differential

equations to its minimt rn (see reference [14] and the references therein). In this case,

the resulting generalizea coordinates are no longer the original set but the combination

of original coordinates with time varying coefficients. In this paper we shall , esent

the numerical to solve the DAEs in terms of a set of coordinates which is a subset of
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the original set of generalized coordinates.

In order to discuss the numerical scheme to follow, let qji(tj) and ql 1 2 (ti) be the

vectors of independent generalized coordinates and velocities at any time ti. These

two vectors completely define the state of the system, because they may be used to

solve the dependent generalized coordinates and velocities. Note that the dimensions

of these two vectors are not the same because of the presence of nonholonomic con-

straints. Once these vectors have been identified, the numerical scheme to solve the

DAEs may be given as follows:

Numerical Algorithm:

Step 1. Use qia(t,) and equation (36) to solve the unknown dependent coordinate.

This requires solu ion of a set of nonlinear equations. Newton-Raphson method

and its variants may be used for this purpose.

Step 2. Use 41 2(t i ), equation (37) and the vector q(t) obtained in step 1 to solve

for the dependent velocities. This requires solution of a set of linear equations.

Any of the many schemes such as Gaussian elimination, etc. may be used for

this purpose.

Step 3. Solve for l(ti) using either equation (41) or (42) and identify vector 412(ti)

from this vector.

Step 4. Use vectors 4 1 2(ti) and 41 2(ti) in an integration subroutine to obtain vectors

4 1 2 (ti+ 1 ) and qi1 (ti+1 ).

Step 5. Repeat steps ' to 4 until final time has reached.

Steps 1 and 2 insure that the kinematic conditions are satisfied. Also note that

the number of equations that needs to be integrated is much less than the number of

differential equations in (44). In this approach, however, one must solve additional

linear and nonlinear equations.
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6. Iterative Shooting Method

A numerical method to solve the DAEs was presented in the previous section.

As shown above, the problem addressed here leads to a two-point boundary value

problem. The assumed initial guess in the previous section generally does not satisfy

the boundary conditions. The guess may be improved using a shooting method. The

basic idea of the shooting method is as follows: First, start with an initial guess and

find the response at the final time, second, use some numerical scheme to estimate

the initial guess, and third, repeat the first and the second steps until the boundary

conditions are satisfied or the iteration limit is reached.

In this section we consider the Secant method to improve the initial guess. This

is a well established technique and the detailed numerical algorithm for this may

be obtained in many of the standard numerical analysis literature. Here, we briefly

outline the method. Let the two-point-boundary value problem be as follows: Find

the response of the system

y = /(y,r, t) (45)

which satisfies the following boundary conditions: y(to) = yo and y(tf) = yf. In this

method two initial guesses for jr(to) are considered. The Secant method for improving

the initial guess for jr(to) = 5'o is given as follows:

(yk-l(tf) - yf)(rk-l(t°) - Yk-2(t°))
y k- (tf) - yk- 2(tf)

where k is the iteration number. This scheme generates a sequence of Yrk(to) such

that

lim yk(tf) = Yf

Thus, the initial guess that satisfies the two-point-boundary conditions may be

obtained.
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7. Numerical Results

In order to demonstrate the feasibility of the formulation, we consider a two-

dimensional space manipulator consisting of a base (body 0) and three arms (bodies 1,

2, and 3) as shown in Figure 2. The link lengths are L, = L2 = 7.0m, and L 3 = 4.0m.

Initially, the inertia properties considered are mo= 100kg., m1 = m2 = 7.0kg.,

M3 = 4.0kg., 10 = 1.0(kg - M 2
), 1, = 12 = 28.583(kg - M 2

), and -.3 = 5.333(kg - m2 ).

The tip of the vector is required to move along a circular trajectory defi.-' as

x [xp(t) ] C rcos(a) (47)

where (x,, y,) is the center of the circle, r its radius, and a a specified time dependent

parameter. The center is considered z t x, = 1.0m and Y, = 6.0m, and the radius

r = 3.Om. a(t) consiaered is

27r 27't
a(t) - - sin(--) (48)

The objective is to fin'd au optima' trajecfory for a set of specified initial generalized

c3rdinates. Also, the initial and the final velocities should be zero. Furthermore,

. robot babe is allowed to translate, but not to rotate. The initial conditions, which

.re consistent with the constraints, are xo = -1.0213, yo = -0.7124, 01 = 0.93478,

02 = 0.0064397, and 03 = 0.262, and all initial velocities are zero.

The numerical results of the system are given below. Figure 3 shows the dis-

placements Ax 0 and AJ 0 as a function of time. From tiA6 figure, it is clear that the

motion of the arms con;iderably deflects the center of mass of the base. The changes

in the orientations of the arms as a function of time are shown in Figure 4. Figure

5 shows configurations of the space manipulator at various times. Numerical results

for this response were also studied using an animation program. It is observed that

the end-effector traces a perfect circle and the response of the system is smooth and

continuous.

In a further investigation, the mass and the inertia of each arm were increased,
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first by three times and second by six times. Corresponding changes in time response

for Ax0 , Ayo, A01, A0 2, and A0 3 are shown in Figures 6 to 10. It can be seen that

the variation in the response of the base increases with increase in inertia. This is in

agreement with the intution.

8. Conclusions:

An optimum path planning formulation for a free floating space robotic manipula-

tor based on a variational approach has been presented. The formulation shows that

the moment conservation conditions result in a system of holonomic and nonholo-

nomic constraints. A rmethod to incorporate these constraints has also been given.

This leads to a system :f differential and algebraic equations, and two-point bound-

ary conditions if the initial conditions are not specified. A numerical algorithm to

solve the resulting DAEs has been proposed. Also, a numerical scheme to solve the

two point boundary value problem has been outlined. The formulation has been used

to obtain the response of a two-dimensional redundant space robot. The numeri-

cal results show that the motion of the arms can considerably affect the response

of the base. The apprcach is of significance in many space applications since most

current space robots are redundant. This redundancy provides the necessary dexter-

ity required for extra-vehicular activity or avoidance of potential obstacles in space

stations.
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APPENDIX

Equations (7) to (11) are the main equations in the derivation for global optimum

path planning for a redundant space robotic manipulator. Once these equations are

known, the other equations may be obtained using the formulation presented in this

paper. In this section we demonstrate these equations for a two dimensional space

manipulator system.

In order to accomplish the above stated objective, consider a two dimensional

space manipulator consisting of one base (body 0) and three arms (bodies 1, 2, and

3) as shown in figure 2. The configuration of this system is defined using two sets

of frames, namely an inertial frame and four body frames. The origin of each body

frame is rigidly attached to the center of mass of the respective body. For simplicity,

it is assumed that the total linear and angular momentums of the system are zero

and the origin of the inertial frame coincides with the center of mass of the overall

system. For this system, the vector of generalized coordinates q taken here is

q 01 02 03 xO YO 00 (Al)

where 9, is the orientatCn of the x-axis of body frame i with respect to the x-axis of

the inertial frame, and (xo, yo) is the location of center of mass with respect to the

inertial frame. Let m, and Ii be the mass and moment of inertia of body i and m be

the total mass of the system; i.e.

m = mO + m + m 2 + m 3  (,42)

The linear and angular momentum conservation conditions for this system lead to

E miii =0 (3)
i=0

3

Z-(IO + m,r x r,) = 0 (,44)
i=O

where r, is the position vector of center of mass of body i, and the period on

denoted total time derivate of (*). Vectors r, (i = 0, 1,2, 3) may be written in terms
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of q directly from figure 2. Substituting the expression for r, in equations (A3) and

(A4), we obtain equations (8) and (9). For this case, the components of matrices J1

and J 2 are as follows:

[Jll -- -( - m2 + iM3 ) * L, * sin(01) (A5)
2

[jl]12 = -(-2 + M 3 ) * L2 * sin(02 ) (A6)

[jl13 = m3
[1113 -- * L 3 * sin(93) (A7)

2

[1114= m (AS)

[J1 1 5  0 (,49)

[Jl]lc = (m - io) * (- * sin(Oo) -,q * cos(Oo)) (.410)

[J11= (- + m 2 + in 3 ) * L, * cos(01) (All)
2

[J1]22 = (-7 + M 3 ) * L 2 * cos(0 2 ) (A12)

in 3

[J1 ]23 = - * L,* coS(0 3 ) (A13)

[J1]21 =0 (A14)

[J 125 = m (A15)

[J1 ]2 6 = (m - mo) ( * cos(Oo) - 77 * sin(Oo)) (A16)
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[J2111 = I + (M-I+ 2 +M3)L(xOcos(0)yosin( 1)±+cos(Oj -00)±rqsin(01 -9o))

+(Ml + M2 +~~~~ m3 )L 2 + a2+ m3 )LlL 2COS(9i - 02) + M3 LLCS0 3 A7
4 2 2 1~

[J2112 = 12 + (-! + m3 )L2(XOCOS(0 2) ± yosi'n(02) + COS(0 2 - Oo) + rlsin(92 - 0,)2

01) + (M 2 + M 3 LL (
(M2-+ M3)LlL2COS(02 +9)±--M3 )L2± L2O2 -93) A8

[J113 = 13 + 1113 L3((XOCOS(03) + yosi'n(0
3) + COS(03 - Oo) + 77sin(03 - 00)

22

[J2114 = -myo - (rn, - mo)( si'n(9o) + 77cos(Oo)) - (- + mn2 + mn3 )Llsi'n(Ol)
2

M2  M
2( + M 3 )L 2sin(02 ) - 2-L 3 sin(03 ) (.420)

[J2115 = mxo + (m - mo)( cos(Oo) - r7si'n(Oo)) 4 (Tl+ M2 + m 3)Licos(Oi)
2

±(M +M 3 )L2COS(0 2) -- M3L3COS( 3) (A21)
9 2

PJ2116 = Jo+(M_~M)((±r,12)+((M~rno)Xo±(!LI +m 2±m 3 )Llcos(01)±( M2 ))Ls()
2 9

+-ML 3 CO-( 3 )) COS(OO) - ?sin(90 )) + ((in - mo)yo + (-1 + M 2 + m 3)Lisin(0j)+2 2
(M2  M3
(- + M 3 )L 2 sin(92 ) + 2 L3M0))jMOo cos(Oo))(A2

Equations (A20) and (A21) follow from linear momentum conservation conditions.

Integrating equation (M) and using the fact that the center of mass of the system

lies at (0,0), we obtain equation (7) as
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01(q) 01 (q -- (A23)
012(q) 0

where functions 0 11(q) and 012(q) are given as

01(q)= mxo + (m - mo)( cos(Oo) - qsin(Oo)) + + m 2 + m 3)Licos(01)+m2 2

(- + M3 )L2cos(02 ) + ML 3coS(03 ) = 0 (A24)
2 2

,1 2(q) = myo + (m - mo)(sin(Oo) + 71cos(Oo)) + (- + m 2 + rn3 )L s n(oh)+
2

m 2  m-3  (Asn(O))
(- + m 3)L 2sin(02) + 3 S(0 3) =0 (25)

Equations (A24) and (A25) lead to [J2114 = [J2114 = 0. Let X 3 = xP(t) yP(t) be

the specified trajectory of the end effector. Then the trajectory constraint (equations

(8)) is given as

0~3(q, t)- [3 ~(q, ) 3 3(A26)
where functions 0 3 1 (q, -) and 4,32(q, t) are given by the following equations:

031(q, t) = xo+ *cos(Oo)-7*sin(Oo)+Ll*cos(O1)+L 2*cos(O2)+L3*cos(O3)-xp(t) = 0

(A27)

032(q, t) =yo + sin(Oo) + 7 * cos(Oo) + L, * sin(O1) + L2 * sin(02) + L3 *sin(O) - Yp(t)

(A28)

In this study, the trajectory is a circle specified as

3 = [, ] + rcos(a(t)) Yc + rsin(a(t)) (A29)
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where (x,, yc) and r are, respectively, the coordinate of the center and the radius of

the circle, and a(t) is a specified time dependent parameter. In this study, a(t) is

considered as

2r 27rt
a(t) sn(-=- ) (30)9

Time derivative of equations (A27) and (A28) gives equation (11). The components

of the Jacobian matrix J 3 are as follows:

[J311 = -L, * sin(01 ) (A31)

[J3112 = -L2 * sin(92 ) (.432)

[J3113 = -L 3 * sin(03) (A33)

[J3114 = 1 (434)

[J3115 = 0 (A35)

[J3116 = - * sin(Oo) - 77 * cos(Oo) (A36)

[J3 1]21 = L, * cos(0) (A37)

[J3 1]22 = L 2 * cos(02 ) (A3S)

[J3123 = L3 * COS(03) (A39)

[J3124 = 0 (A40)
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[32== 1 (A4 1)

[J13126 = *cos(Oo) - sin(9OL) (A42)

and the vector X 3 is given as

2r 2irt F rsin(a) 1A3
i3 =9 Cs( [ rcos(cr)J

Thus, equations (7) to (9) are known for the system.
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