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SYMBOLS

R radius of matrix hole and reinforcement particle at high temperatures

a radius of matrix hole after cooling

r, radius of reinforcement particle after cooling

r, •final or effective radius of reinforcement particle under constraint of matrix

r radial distance

rd :radius of plastic zone

a :coefficient of thermal expansion (CTE)

Vrn CTE of matrix

% : CTE of reinforcement particle

Aa : rn, - ap (difference in CTE)

p :constraint factor

8 misfit factor

AT range of temperature fall

u radial displacement

Urn radial displacement in matrix

UP :radial displacement in reinforcement particle

v Poisson's ratio

Vr Poisson's ratio of matrix

VP : Poisson's ratio of reinforcement particle

E elastic modulus

Em elastic modulus of matrix

EP elastic modulus of reinforcement particle

Gm: shear modulus of matrix

Bm bulk modulus of matrix

v



NADC-91059-60

SYMBOLS (continued)

p Internal pressure

p, :critical internal pressure

0, radial stress

tangential stresses

(Cr)m :radial stress in matrix

(g)m, (0)m : tangential stresses in matrix

(a,)p :radial stress in reinforcement particle

(0)P,(00)P : tangential stresses in reinforcement particle

(o.)m : equivalent stress in matrix

(Oy)m yield stress of matrix

au :ultimate strength

C, :radial strain

to, to tangential strains

(Cr)m radial strain in matrix

(E)m, (C)m : tangential strains in matrix

(er)p radial strains in reinforcement particle

(eq), (to), : tangential strains in reinforcement particle

(Er)m* :radial elastic strain component in matrix

(E.)me :tangential elastic strain component in matrix

radial plastic strain component in matrix

(61)YnP :tangential plastic strain component in matrix

elastic strain per thermal cycle

(e)P plastic strain per thermal cycle

(C) total strain per thermal cycle [ = (e)" + (c)P

(Cf) true fracture strain In a monotonic tensile test
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SYMBOLS (continued)

M, z material constants

Nf number of thermal cycles at failure
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INTRODUCTION

Metal matrix composites (MMCs), because of their favorable elevated temperature properties, will

be used as structure materials in future aircraft. However, at elevated temperatures, these composites

lose some of their room temperature properties. Moreover, the loss becomes much worse and results

in material deterioration under thermal cycling.

Thermal fatigue has been reported to occur in various MMCs: tungsten fiber/copper (1,2), tungsten

fiber/supperalloys (3), boron fiber/aluminum (4-6), A110 3 (FP) fiber/aluminum (7), FP fiber/magnesium

(8), SiC fiber/titanium (9), SiC whisker/aluminum (10), and graphite fiber/aluminum (11) composites.

Thermal fatigue is caused by stresses and strains due to repeating constraints of free thermal expansion

and contraction. The constraints can be grouped into two categories: external and internal. The

external constraint is due to boundary forces applied to the surface of the component which is being

heated or cooled. The internal constraint is produced by the difference in coefficients of thermal

expansion (CTE) of the constituent phases in the component material: CTE mismatch, and/or non-

uniform temperature distribution in the component: thermal gradient. CTE mismatch-induced thermal

fatigue is a characteristic with MMCs, since this mismatch for most of MMCs is large.

The Coffin-Manson relationship for low cycle fatigue (12,13) is reported to be applicable for thermal

fatigue (13,14). Therefore, the thermal strains, elastic and plastic, generated by the CTE mismatch, are

essential in the analysis of thermal fatigue of MMCs. Thermal stress and strain have been analyzed

extensively for continuous fiber (15-31) and whisker reinforced (32, 33) MMCs. However, such analysis

has been very limited for particulate MMC (34, 35).

This report presents the analysis of thermal stresses and strains, caused by CTE mismatch between

the spherical reinforcement particle and the matrix In an MMC, and the estimation of the thermal fatigue

life. In the analysis, the following assumptions are used.

1
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1. The reinforcement particle is a sphere In an Infinite matrix of an MMC.

2. The matrix has elastic-perfectly plastic behavior.

3. The siress-strain behavior is Independent of strain rate and stress orientation.

4. The temperature in the MMC is uniform at all time. Therefore, there Is no thermal gradient In

the MMC.

STRESS AND STRAIN ANALYSIS

The thermal stresses and strains, induced by CTE mismatch, will be analyzed under purely elastic

conditions first and then under plastic conditions.

A. Thermoelastic Stresses and Strains

The following elastic model was used in the analysis of thermoelastic stresses and strains.

1. At high temperatures, the radii of the matrix hole and the relnfor;ement particle are Identical R,

(Figure 1).

2. Upon cooling, the matrix hole tries to contract to a, and the reinforcement particle, with a lower

CTE, tries to contract only to ro, (Figure 1).

3. The final or effective radius of the reinforcement particle under the constraint of the matrix is r,,

(Figure 1).

2
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The radii and their relationship can be denoted by the following equations.

a = R(1 - aAT) (1

ro R(1 -aPAT) = a(1 +s) (2)

r,= a(- + fs) (3)

where

a, CTE of matrix

a : CTE of reinforcement particle

6 misfit factor

p3 constraint factor

AT range of temperature fall

From Equations (1) and (2), the misfit factor 6 can be described as a function of difference in CTEs,

range of temperature fall AT, and CTE of matrix am, Equation (4).

6 -, a/[ (1/AT )-m] (4)

Throughout this analysis, spherical coordinates are used The origin is located at the center of the

spherical reinforcement particle. Because of symmetry, the tangential displacement as well as the shear

stress and strain are all zero, and the radial displacement u is a function of radial distance r. There are

three non-zero stress components, a radial stress a, and two tangential stresses a. and ao. These

stresses must satisfy the equilibrium condition In the radial direction, Equation (5).

3
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dordr + (21r) • (a,-a.) - 0 (5)

Furthermore,

- and e.- e- (6)

In a cooled body, the total strain Is made up of two components In each of the radial and tangential

directions, Equations (7) and (8). One component Is a uniform contraction proportional to the range

of temperature fall. Since this contraction is equal in all directions, only normal strains and no shear

strains are found. Thus, the normal contraction in any direction Is - ,AT. The other component

comprises the strains required to maintain the continuity of the body. These strains are related to the

stresses by means of Hooke's law of isothermal elasticity.

C, - (lI/E) - (or - 2vas ) -AT (7)

•es- (lIE) -[I- VO + (1 -vas) ]- aAT (8)

Furthermore, the radial and tangential strain components are defined as

er - dujdr. es - u/r (9)

where

r : radial distance

a,, ~, • radial stress aid strain

oa, a, is, to : tangential stresses and strains

u radial displacement

4
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v Poisson's ratio

E elastic modulus

• : CTE

From Equation (5) and Equations (7) - (9), the equilibrium equation can be expressed with radial

displacement u and distance r.

d2uldr 2 + (2/r) - (duldr) - 2ulr 2 
- 0 (10)

The general solution of Equation (10) is:

u - Clr + C2 r2 (11)

The boundary condition for the matrix is

(ur)r - r,,-r1 - a - aa. (Un), - 0 (12)

where u, is the radial displacement in the matrix.

Then,

C1 -0, C2 - a 3p8 (1_pa) (13)
(u,), > , - a 3p8 (1 + Pa6) I r(

The boundary condition for the spherical reinforcement particle Is

(Up)r.r, - r1 - r. - a(P - 1)6, (up)r-o- 0

5
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where up is the radial displacement in the spherical reinforcement particle.

Then,

C1 - (, - 1)8 1(1 + p8), C2 - 0 (14)
(Up)r,.r, - (0 - 1)8r / (1 + P8)

Substituting this value of up into Equation (9) gives the elastic strains within the reinforcement particle.

(e,) p - (e.) p - (0 - 1)5 8I (11 + P¢6) (15)

From Equations (6) - (8) and Equation (15), the elastic stress components within the reinforcement

particle are determined to be

(O.)P - (aY) - (04)P (16)
[ /E (1 - 2v ) ] - [ (P - 1)8 / (1 + pa) + 1PAT6

This equation indicates that the spherical reinforcement particle is in a state of hydrostatic stress, which

is larger with larger elastic modulus, CTE, and temperature range. Consequently, the reinforcement

particle is in an elastic state and it is not plastically deformed.

Substituting the displacement value in the matrix, Equation (13), into Equation (9) furnishes the

elastic strain components in the matrix as follows.

(er)m - - 2 (es)m - - 208(1 + 08) • (air)3  (17)

- - A.(r, I r)3

6
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where

S- 2P6(1 + Ab)

The feature of elastic strain component variation with radial distance in the matrix Is shown In a plot of

elastic strain component, normalized with 1, vs. radial distance r, Figure 2. The magnitude of each

elastic strain component Is largest at the reinforcement particle/matrix Interface. r - r, and decreases

with increasing distance from the Interface.

From Equations (7), (8) and (17), elastic stress components In the matrix are found to be

(a,)m - - [2EP38(1P8) / (1 v.) I • (a/r) + (EmamAT) /(1 - 2Vm) (18)
- - 2Gm,.(rlr)3 + 3BinAT

(0)m " [ E.P8(1 + P8)1(1 + v.,) I • (air) + (Er,,,AT) 1(1 - 2vr) (19)
- GmA(rt/r)s + 3 Bm,.mAT

where

Gm: shear modulus of matrix

B, bulk modulus of matrix

The features of the elastic stress component variation with radio Jistance In the matrix is shown In a

plot of [ (a,),, - 3B a,. AT ] /Gn. vs. r and [ (e). - 3B., i, AT I/G,. vs. r. Figure 3. The magnitude

of each elastic stress component Is also largest at the reinforcement particle/matrix Interface, r - r, and

decreases with Increasing distance from the Interface.

7
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B. Plastic Deformation

As was pointed out, the spherical reinforcement particle remains in an elastic state and the stresses

are greatest in the matrix adjacent to the reinforcement particle. For the analysis of plastic deformation,

the following model Is taken.

1. A thick hollow sphere is deformed, elastically and plastically, under uniformly distributed internal

pressure, Figure 4.

2. The internal pressure is produced by a misfitting spherical reinforcement particle.

The internal pressure p Is Identified as the radial stress component at the reinforcement particle/matrix

interface, r = r,. Thus from Equation (18),

P " ( - [ { 2EmP8(1-pa) }I(1 - yi) v (air1 )3 - (Emr.aAT) I (1 -2v) (20)
- - 2 GmX + 3 Bins mAT

According to the von Mises yield criterion (36), plastic deformation occurs if an equivalent stress

(Oo)m, defined by the following formula, reaches the yield stress of the matrix (ay),

(o - (11 ) [ { (y,), - (Oe)m, )2 + (((y), (U#),, )2 + (21)
{ ( % ) ,,, - (O ,.)2, 1 V !2

Since

().- (O%)m. (Oo)m - (Oe)m - (a)i (22)

8
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From Equation (19) with r = r1, Equation (20), and the above equation, plastic deformation starts at the

reinforcement particle/matrix interface, if the following condition is satisfied.

(oa)m - - (3/2) [p, - (Em.amAT)/(1-2vm)] " (ay)m (23)

where p, is the critical internal pressure for plastic deformation (or yielding) of the matrix.

From Equation (23),

p0 - - [ (2 / 3 )(ay)m - (Ema AmT) / (1 -2vi) . (24)

This equation indicates that:

1. The critical internal pressure for plastic deformation is less than 2/3 of the yield strength of a

given matrix material.

2. Its magnitude decreases linearly with increasing range of temperature fall and decreasing yield

strength.

3. Its magnitude is reduced further for any other matrix material with larger elastic modulus and

CTE.

With increasing internal pressure beyond the critical value p, a plastic zone is formed in the

immediate vicinity of the reinforcement particle/matrix interface and extended to a certain radius r, This

radius rd separates the inner plastic zone from the outer elastic zone. The equilibrium equation for the

plastic zone is obtained by substituting the yield condition

9
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(ao).m - " (o)m -a,))

into Equation (5). The equilibrium equation is

d(a,)mldr - 2(oy)mlr - 0 (25)

Integrating Equation (25),

(or)m - 2 (Oy)m • In r + C (26)

Using the boundary condition (G,)m = - p at r = r1, the constant C becomes

C -P - 2(ay)m - In r, (27)

From Equations (25) - (27), the stress components in the plastic zone, (r, :5 r 5 rQ), are

(or)m - 2 (ay)m in(r/r 1) - p (28)

(0)m . " (cry). - [ 2 •In(r/rj) + 1 ] - p (29)

The stress components in the elastic zone, (rd .s r), can he found by substituting pc for p and rd for r,

in Equations (28) and (29) as follows.

('r)m - (y)m [ (2/3) + 2 - In(r/rd) ] (EmLcmAT)I(1 - 2Vm) (30)

10
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(Ge)m - (Oy)m [(3/5) + 2 In(r/rd) I - (EmamAT)/(1 -2vm) (31)

At the boundary, which separates the plastic and elastic zones, the radial stress components are

identical, i.e., Equation (28) = Equation (30) at r = rd. From this relationship, the plastic zone radius

rd is determined as

rd - r1 -exp[ (516) + { 1/( 2 (Oy).) I {p - (EmamAT)/(1 -2v.) 1} (32)

By substituting (or)m of Equation (30) and (a,)m of Equation (31) into the equations of stress-strain

relation, Equations (7) and (8), the radial and tangential strain components, (Cr)m and (E)m, in the

elastic zone of the matrix is found as

(er)m - (ay) M/Em) [(2/3) (1-5vm) + (1-2Vm) .. In(rrd)2 ] (33)
- 2a mAT

(ee)m - (aY) M/Em) " [ (113) (5-7vm) + (1 -2Vm) In(r/rd)2 J (34)

- 2a mAT

In the plastic zone, the stress-strain relations are described as

(er)m - du/dr - (1/EM) [ (am2vm(.)m ]-) mAT*(er)mP (35)

(es)m - u/r - (11/Em) • [Vm( r)m+(1 0-Vm) "(ae)m ]-amAT+(ee)mnP (36)

11
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where (e,)mP and (.),mP are plastic strain components in radial and tangential directions, respectively.

From the incompressibility condition for plastic strains, (,),mP + 2 ('*)mP = 0, and Equations (35) and

(36), the following differential equation is derived.

du/dr + 2ulr - (1/Bin) [ 2 (ay)m - In(r/r,) + ( 2 (oy)m - 3 p )/3 1-3a mT (37)

where Bm = E=/3(1 - 2v,) is the bulk modulus of the matrix. Its general solution is

u - 2 (a y)m " r - ln(.,ir)13Bm- pr/3Bm- am " r • AT+C/r 2  (38)

The constant C is calculated from the displacement at the plastic-elastic zone boundary u, given by

Equation (34), for r = r, as follows:

C - (o Y), m rd 3l,/E. (39)

From Equations (38) and (39), the displacement in the plastic zone (r, _5 r s rd) u can be written as

U - 2 (Oy)m • r • ln(r/r 1)/36m - pr/3Bm + { (ay)m..v /Em , (rd3 /r2 ) (40)
- am -r .AT

Knowing the displacement u, the strain components in the plastic zone (r, - r s rd) can be determined

as follows.

(c r) m-du/dr - { 2 (ay) mr3Bm } • ln(r/r 1) + 1 -p13Bm (41)

-
2 (ay)m vm/Em} (rd/r) 3 

- amAT

(e) m-ulr - { 2 (a y) mI 3 Bm , (In(r/rl) - p/3Bm (42)

- { (ay)mvr/Em ) - (rdlr) 3 
- amAT

12
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Employing the stress-strain relations, given by Equations (35) and (36), the yield condition (Oy)m =

- ()m, and the incompressibility condition (Er)mp =-2(ej)mp, the plastic strain components are

determined as

(er)mP - - 2 (ee)mP - { 2 (ay) m/E, 1 1 - vm { 1 + (rdlr) 3 ) ] (43)

The elastic strain components, (e,)m* and (ie),, are obtained by subtracting the plastic strain

components, Equation (43), from the total strains, Equations (41) and (42).

(er)m' - (er)m - (er)mP
- (lI3Bm) .{ 2 (ay)n in(r/r,) - p I - 2(Oy)mvr/Em (44)

-a mAT

(ee)m - (e%). - (P)mp
- (1/3B.) •{ 2 (Oy)m • ln(r/rl) - p I - { (Oy)mIEm) (1 - vm) (45)

- U mAT

THERMAL FATIGUE LIFE

On the basis of Manson's (13) and Garmong's (14) reports on the applicability of the low cycle

fatigue damage model to the thermal fatigue, the Coffin-Manson relationship (12, 13) can be utilized for

the estimation of thermal fatigue life.

(e)P - M.Nfz (46)

where

(e)D : plastic strain per thermal cycle

M, z: material constants

13
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N, : number of thermal cycles at failure.

With total strain, Manson's simplified equation (37) may be employed.

(e) - 3.5 - (ou/E) - (Nf)-0"1 - (ef) 0 "6  • (Nr)- 0° 6  (47)

where

(e) : total strain per thermal cycle = (c)" + (e)P

ou :ultimate strength

(•) : true fracture strain in a monotonic tensile test

14
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CONCLUSIONS

1. In a MMC with a spherical reinforcement particle, the CTE mismatch-induced thermoelastic stresses

and strains are largest at the reinforcement particle/matrix interface, and they decrease with distance

from the interface.

2. The spherical reinforcement particle is in a state of hydrostatic stress, which is larger with larger

elastic modulus, CTE, and temperature range.

3. Plastic deformation starts in the matrix adjacent to the reinforcement particle. Consequently, the

interface is a potential site for crack initiation under thermal cycling.

4. The critical internal pressure for plastic deformation is less than 2/3 of the yield stress of a given

matrix material, and it decreases with increasing range of temperature fall.

5. With the analytically determined strain, the thermal fatigue life can be estimated by employing the

Coffin-Manson relationship.

15
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