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Abstract I Henry E. Kyburg, Jr.

There is a tension between normative and descriptive elements in

the theory of rational belief. This tension has been reflected in work

in psychology and decision theory, as well as in philosophy. Canons of

rationa.ity should be tailored to what is humanly feasible. But rationality

has normative content as well as descriptive content.

A number of issues related to both deductive and inductive logic can

be raised. Are there full beliefs -- statements that are just categorically

accepted? Should statements be accepted when they become overwhelmingly

probable? What is the structure imposed on these beliefs by rationality?

Are they consistent? Are they deductively closed? What parameters, if any,

does rational acceptance depend on? How can accepted statements come to

be rejected on new evidence?

Should degrees of belief satisfy the probability calculus? Does

conformity to the probability calculus exhaust the rational constraints

that can be imposed on partial beliefs? With the acquisition of new

evidence, should beliefs change in accord with Bayes' theorem? Are

decisions made in accord with the principle of maximizing expected utility?

Should they be?

A systematic set of answers to these questions is developed on the

basis of a probabilistic rule of acceptance and a conception of interval-

valued logical probability according to which probabilities are based on

known frequencies. This leads to limited deductive closure, a demand for

only limited consistency, and the rejection of Bayes' theorem as universally

applicable to changes of belief. It also becomes possible, given new evidence,

to reject previously accepted statements.
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1. Introduction.

The Greek philosophers conceived of man as a rational animal. This

rationality was a potentiality that might or might not be actualized under

certain circumstances. (The competence/performance distinction is hardly

new.) Later philosophers have sought both to articulate the canons of

rationality, and to apply them in an effort to understand both man and

his world. In the course of Western philosophy, it has become ever clearer

that the notion of rationality itself is problematic.

Hume divided the objects of knowledge into matters of fact and

relations of ideas. Canons of rationality concern relations of ideas.

In modern terms, these canons concern the logical relations among sentences

or propositions. Whitehead and Russell, in their monumental treatise on

mathematical logic, Principia Mathematica, (1959, 1910) attempted to

provide a complete characterization of these canons. No sooner had they

done so than objections arose. These objections fell into two groups:

First, it was objected that many of the inferences allegedly licensed by

the logical framework of the Principia were intuitively invalid; for example,

from the denial of "If Road-Runner wins the fifth race, Speedy will not win
miIht be alleged to follow

the third,' it/ both that Road-Runner wins the fifth and that Speedy

wins the third. The canonical use of " ", ",,", " A", etc. , does not

precisely reflect the use of the corresponding English connectives. Second,

it was objected that many intuitively valid inferences in ordinary language

could not be captured in the formalism of .rincipia Mathematica, and this has

led philosophical logicians to devise a plethora of modal, intensional, causal,

and deontic logics.

Hume also emphasized the gulf between "ought" and "is." This comes

to us as the injunction not to confuse the normative and descriptive.
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The constraints on our beliefs -- on the relations of our ideas -- imposed

by logic are intended to be a priori and normative, despite the fact that

in designing those constraints we are guided by intuition and ordinarj

usage. But if we are going to be guided by ordinary usage, it behooves us

to find out what that ordinary usage is -- clearly a task for empirical

investigation rather than for armchair speculation. In recent years a

number of psychologists (Johnson-Laird (1977), Henle (1962), Wason (1977))

have explored the inferential propensities of human subjects, and have

discovered a considerable gap between the canons of rationality as codified

in logic texts, and the ways in which ordinary people reason.

Does this show that people are not rational? Or that if they are

potentially rational, they too rarely actualize that potentiality? Or

that their performance falls short of their competance? Or does it show

that logicians have formulated canons that do not, after all, capture the

essence of human rationality?

Hume himself had few doubts about the nature of deductive relations.

But he emphasized, more sharply than any of his predecessors, the difficulty

of finding rational constraints for nondeductive argument. Scientific

inference, learning from experience, probable argument, all escape the net

of deductive rational constraints. John Maynard Keynes(1952, 1921) and

Rudolf Carnap (1950) were among those to propose that there was a logical

notion of probability that could be called on to provide rational constraints

for nondeductive argument and inference. Such a notion would also provide

a framework for decision theory. The program of finding

rational constraints on nondeductive inference in the calculus of probability

has not been a success. With regard to scientific inference, induction, and

probable argument, many philosophers now argue that the quest for rational
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constraints is misguided. Rather, we should look for historical, sociological,

and psychological accounts of why people accept the arguments they do, make

the inferences they do, believe the scientific theories and hypotheses they

believe.

Probability plays a large role in philosophical discussions of decision

making, choice, and belief, but the interpretation of probability most

commonly employed is subjective: probability just is degree of belief.

There is still a normative element: degrees of belief ought to satisfy

the probability calculus, But in point of fact, this constraint is a purely

deductive one. Combined with a behavioral interpretation of belief, it

says roughly that you shouldn't be prepared to make a set of bets such that

a wily opponent can be sure of taking from you what you value.

But again, if we suppose that probabilities reflect beliefs, and that

behavior is a way of getting at beliefs, it becomes an empirical question

whether people behave in the ways in which philosophers regard as rational.

Psychologists have examined choice behavior, decision making, and the

behavioral manifestations of degrees of belief (Edwards (1954), Tversky

and Kahneman (1974), Nisbett and Ross (1980)), and discovered that people

do not choose, decide, and believe as philosophical canons of rationality

suggest they ought.

Again we are faced with a problem. Are the canons of rationality

embodied in ordinary decision theory wrong? Or inappropriate for human

beings? Or are people mostly irrational? Is there some way of adjusting

the canons of rationality, or reinterpreting the actualities of behavior,

so that the gap is not so great between what is and what ought to be? Or

some way of modifying behavior to that same end?
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These questions, and those raised previously, suggest certain prior

questions. What is it that we want of a normative theory of rational

belief? What sort of framework of terms and ideas should such a theory be

placed in? What relation should we expect to find between a normative and

descriptive theory of inference and choice? In the sections that follow,

I shall try to provide an epistemological framework in which to seek answers

to both normative and descriptive questions about belief, inference, and

choice.

2. Methodology.

There are a number of possible sources of principles of rationality.

In traditional philosophy, the source has often been taken to be rational

intuition -- a faculty common to all men in virtue of their humanity, since

men are rational animals. Even if there is such a faculty (which seems

doubtful) the recent debates and disagreements concerning the nature and

extent of constraints on rational belief show that it does not provide a

univocal standard that can lead scholars to agreement.

L. J. Cohen (1981) suggests that the source of our standards of rationality

is intuition -- the untutored intuition of ordinary educated people --

subject to the constraint of consistency. We should make the minimum modifi-

cation in the deductive intuitions of the ordinary citizen to render those

intuitions consistent. (Since consistency is itself a notion of deductive

logic, the constraint seems either vacuous or question-begging.) This

suggests that we should begin with an empirical inquiry into people's logical

intuitions. But it is not clear that such an inquiry would be any more

relevant to the development of normative standards of (inductive or deductive)

logical cogency, than an inquiry into people's arithmetical intuitions would
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be to the development of standards of arithmetical validity.

Stich and Nisbett (1980) also point to intuition as the grounds of

justification in human reasoning, but suggests that it is the intuition

of "experts" to which we should turn. They admit that "it is to be expected

that there will be some disputes over justification that admit of no

rational resolution," [p. 202] since my expert may be your crackpot. But

this is precisely one of the things we would like a theory of rational

belief to provide: a standard for sorting expert sheep from crackpot goats.

Einhorn and Hogarth (1981) refer to "the inescapable role of intuitive

judgment in decision making." (p. 61) Brian Ellis (1979) argues that the

laws of belief are the laws of thought, though the laws of thought that

interest us are the laws of ideal thought -- so to speak, the laws of

frictionless thought, by analogy with the laws of frictionless billiard

balls. These laws are discoverable by introspection, which I take to be

roughly the same as intuition. But Ellis also argues that this is not true

of the dynamic laws of belief -- the laws of changes of belief.

On the psychological side, there is a wide spectrum of empirical

studies. Johnson-Laird (1977) contrasts the standard logical use of the

truth-functional connectives and quantifiers with the use of the (allegedly)

corresponding English constructions, and finds wide discrepancies. Kahneman

and Tversky (1973) claim to show that people are often not "rational" in

their assessments of probability. Slovic, Fishhoff, and Lichentenstein (1977)

claim that "people systematically violate the principles of rational decision

making." Mynatt, Doherty, and Tweeny (1977) have investigated "confirmation

bias" in the assessment of scientific evidence. Lyon and Slovic (1976)
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claim that people often fail to take account of base rates in making

probability assessments.

There are several difficulties that stand in the way of taking these

investigations to be immediately relevant to the investigation of canons

of rationality. First, there is the problem of translation: "If P then

g" in English may have a truth-functional meaning, but it is more likely

to mean one of (a) q is derivable from P, (b) _q is derivable from P together

with some other things I know, (c) P, together with other things I know,

makes it probable that q, (d) P, together with other things that I take

experts to know, would render _ very probable. Perhaps there are other

candidates as well. The point is that the standards of probabilistic and

deductive cogency that are considered are abstract and formal; the material

of an experimental investigation is necessarily concrete and framed in ordinary

rather than formal discourse.

Another difficulty, emphasized by Einhorn and Hogarth (1981) in their

brilliant review of psychological decision theory, is that the standards

of rationality themselves are in dispute, so that it is unclear, when the

intuitions of experimental subjects disagree with the intuitions of the

experimenter, whether it is the experimenter or the subject who ought to

reform his ideas of rationality.

Nevertheless, there are some clear cases -- among them some of those

investigated by Kahneman and Tversky -- in which the subject himself seems

likely to agree that he has made a "mistake." I have in mind particularly

the example (Tversky and Kahneman (1981), p. 454) in which a subject prefers

a sure gain of $240 to a 25% chance to gain $1000 and a 75% chance to gain

nothing, but also prefers a 75% chance to lose $1000 and a 25% chance to
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lose nothing, to the alternative of a sure loss of When the two

decisions are explicitly combined to yield a choice between a 25% chance

to win $240 and a 75% chance to lose $760, against a 25% chance to win

$250 and a 75% chance to lose $750, the second alternative is chosen by

100% of the subjects.

It seems, then, that some intuitions are pretty dependable and pretty

universal. Nevertheless, in pursuing the consequences of even very simple

intuitions, which constitute our starting point, we must be prepared to

reexamine them at any juncture.

There is another respect in which intuition provides a starting point.

In developing a theory, whether it is a normative one or a descriptive one,

we must choose a representation for the domain with which we are concerned:

the theory will concern certain objects, and certain relations among objects.

We intend the theory, whether it is normative or descriptive, to account for

or to influence a certain realm of experience. It may be that our choice

of objects and relations is a poor one; that no theory framed in those

terms can account for the realm of experience at issue, or that there is

no way of applying a normative theory framed in those terms. Under these

circumstances, the theory is not false, the standards not"incorrect" -- it

is rather the case that the theory is simply ill formed.

The method that I shall follow, then, is primarily philosophical.

I shall propose certain objects and certain relations as the ingredients

of a theory of rational belief. I shall, on the basis of elementary

intuitions, claim that certain of these relations actually hold of ideal

beliefs, and that the resulting theory provides a rough approximation to

actual human bodies of belief, and that, in addition, it can function
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normatively, as what Ellis calls a "regulative ideal." For a regulative

ideal, we require a theory that gives us a standard for the criticism

and improvement of our actual beliefs (the suggestion that we believe

only what is true does not give such a standard); but we also require a

theory that goes beyond what we -- or even the experts -- actually do. It

does no harm to have an ideal that can only be approached.

At the same time, empirical data are relevant. There is a wealth

of data purporting to show that normative inference theory and normative

decision theory are systematically and pervasively violated by actual

human inference and decision making. Certain of these studies will be

reviewed, and it will be suggested that in some cases and in some degree

the normative theory sketched here is not so often or so flagrantly

violated. This will be taken to show that a restructuring and modification

of the classical normative theory of rational belief may lead to ne•i

questions and new research in psychological theory, as well perhaps, as to

new approaches to the improvement of human performance.

There is another way in which empirical data can provide a "test" of

a normative theory. We do not expect our subjects to conform completely

to the normative theory. But when they fall short, we expect them to fall

short in understandable ways. We expect normal adults, to whom our

standards of rationality are applicable, to know the product of 4 and 7;

we do not expect them to know the product of 56934 and 45927. For much

the same reasons, we expect them to know the probability of a pair of

ones resulting from the throw of a pair of dice, but we don't expect them

to know the probability that two people in a group of 25 will have the same

birthday. Nor do we expect them to be altogether accurate in intuitive
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statistical inference.

the
Since our focus is/question of belief and what makes it rational,

we leave to one side all the very complex questions concerning utility

that are involved in general decision theory. We shall be concerned with

decisions only insofar as they throw light on actual beliefs.

Our procedure is thus intuitive: we shall seek principles of

rationality that are 4ntuitively valid in simple cases, and extend them

to take account also of more complicated cases. At the same time we will

look to empirical data to check our intuitions -- and also from another

slant: Are failures to conform to the canons of rationality understandable

in terms of natural human limitations?

3. The Terms and Scope of the Theory.

The objects of belief, those things to which an individual stands in

a certain relation when he has beliefs, have been variously taken to be

propositions, facts, states of affairs, sentences in mentalese, sentences

in the ordinary language of the individual. I shall take them to be

sentences in our language, but not our ordinary language. Rather, I shall

suppose that they are sentences in uii extensional first order logic, with

the standard sentential connectives and quantifiers. This generates a
someone

challenge of interpretation. If / says, or acts as if he believes, that

Rover is a dog, we can represent what he believes as tht sentence "dog(Rover),"

or "D(r)." But if someone says that John will get five dollars if he

cuts the lawn, it is only when the speaker is a (slightly perverse) logician

that we can sensibly represent his assertion as "C(j) F(J)."

The burden of interpretation is nontrivial, particularly if, as I

suspect, many conditionals are best interpreted metalinguistically, and not
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by any sentence of our object language at all. (The claim that if P

then q is then interpreted along the lines: if sentence P is added to my

body of knowledge (or to that of any sensible citizen), then the sentence

Q will also be a part of that body of knowledge.) But there are also

significant benefits conferred bythis move. We can characterize a

demonstrably sound notion of logical validity. We can give a syntactical

notion of proof from premises and of theoremhood. If you claim that A

follows from B, and I am skeptical, then if we can agree on translations

of A and B, T(A) and T(B), the issue can be resolved by a proof or a counter-

example. And if we can't agree on translations of A and B, that in itself

may help to show us where our differences lie.

not everything we believe can be represented in a standard first

order language. Certainly not everything that is believed can be repre-

sented in a first order language that we can understand: We can no more

adequately represent a dog's beliefs in our regimented first order language

than a treatise on painting can be translated into a language lacking

color words. Our language is too poverty-stricken when it comes to odor

words to do justice to the dog's beliefs. But there is still a wide range

of things believed that can be represented in the way suggested, and a

theory of rational belief, even if it were limited in scope to those things,

would be interesting and useful.

In sum: we take objects of belief to be sentences in an extensional

first order logic, with operations and identity, that includes the relation

'c' (is a member of), and axioms for set theory.

In that language we have formal notions of deductive consequence 've

write C is a deductive consequence of PI'''P-- as (II"'''P- C),



Kyburg page 1_

consistency (we write Consis(S) for "the set of sentences S is consistent),

and theoremhood (we write I- C for "C is a theorem"). Note that these are

purely syntactical notions; they rest on a syntactical notion of

provability, rather than on a semantical notion of entailment.

There is a fundamental ambiguity in the notion of belief. We speak

both of degrees of belief, and of belief simpliciter. When a coin is

tossed, I believe it will come to rest (rather than going into orbit or

disappearing), and I have a degree of belief of about a half that it will

come to rest with the heads uppermost. One might try to collapse these

notions: to construe full belief, or belief simpliciter, as belief of

the highest degree or belief of degree 1 (Jeffrey 1965 ). Alternatively,

we may construe belief simpliciter as acceptance into a set of statements

that constitutes a body of knowledge or a rational corpus (Levi 1980 ).

This is not the place to review the philosophical pros and cons of the

two approaches to full belief. Perhaps the most penetrating discussion is

in Levi (1980). I shall simply adopt the second approach.

Given that we adopt the second approach, there are a number of questions

we should expect a theory of rational belief to answer. What is the structure

of the set of statements constituting a rational corpus? How do statements

get into a rational corpus? A less frequently addressed, but equally

important question: How do statements get expunged from a rational corpus?

Is what is taken to belong to a rational corpus dependent on context, and

if so, in what way?

Degrees of belief are typically associated with probabilities. There

are a large number of interpretations of probability available, including

finite and limiting frequency interpretations (Russell (19h8), von Mises (1957),
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Reichenbach (1949)), various forms of propensity interpretations (Popper

(1957), Mellor (1971)), logical range interpretations (Carnap (1950),

Hintikka (1965)), subjectivist or personalist interpretations with varying

degrees of normative force (Savage (1954), de Finetti (1980), Jeffrey (1965))

as well as a number of nonstandard views represented by Cohen's "Baconian"

probability (Cohen (1977)), Popper's degree of corroboration (Popper (1959)),

and various notions of "degree of factual support" (Hempel and Oppenheim

(1945)), which do not satisfy the usual probability axioms.

I shall relate both degrees of belief and the grounds of acceptance

intco & rational corpus to my own interpretation of probability (Kyburg (1961),

C1974)). This interpretation is syntactical, and probability is construed

as a syntactical relation between a sentence and a set of sentences construed

as a rational corpus. Given a sentence P, and a set of sentences S, if

S meets certain minimal requirements, the probability of P relative to S

will be a closed subinterval fp,a] of the interval [0,1].

An example may help to clarify the definition that follows. Suppose

that P is the sentence "John will go to the movies tonight," and that S

is the set of sentences that represent my reasonable or justified beliefs

this afternoon. The probability, relative to my body of knowledge S, that

John will go to the movies tonight i5 the interval 1.6,.71 under these

circumstances: first, S represents a set of reasonable beliefs. Second, I

know that John is going to decide whether or not to go to the movies by

drawing a chip from an urn, and that he -vill go if and only if the chip he

draws is black. If we represent the proper description of that chip by c

and the set of black objects by I, the sentence "P -= b" is among the

sentences representing my reasonable beliefs. Third, I know that the chip

c is a member of the set of chips in the urn; representing this set by u,
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the sentence "c c u" also belongs to S. Fourth, what I know about the

set of chips u is that between 60% and 70% are black, and I don't know

anything more exact than that. The sentence expressing this fact will be

written "%(u,b) = [.6,.71"; we appose that "%(u,b) c [.6,.71" is a member of

S. Fifth, relative to what I know -- S -- the chip c must be a random member

of the set of chips u with respect to being black. This is taken to require,

not that I have some special knowledge about how c is selected, but that

there are no ingredients in S which would lead me to a conflicting probability

For example, if I knew that John wanted to go to the movies very badly

and that he was likely to peek at a chip before he "selected" it, I would

have grounds for denying that c, the chip selected byjohn was a random

member of u with respect to being black.

The definition of probability is roughly the following: The probability

of the sentence P, relative to the set of sentences S, is the closed

interval [p,aJ,Prob(P,S) = [p,g], just in case there are terms x,y,z such

that: 1

(1) S is a rational corpus. This requires that S satisfy certain syntactical

constraints that will be discussed shortly.

(2) "P =- x E z" is a sentence in S.

C3) "x e X" is a sentence of S.

Ch) "%(y,z) P 1p,2," is a sentence of S.

This last is a sentence saying that the proportion of Z's that are z's

lies in the interval [pj]. It may also be interpreted in terms of relative

frequency, or limiting frequency, or, most generally, measure. Levi, whose

interpretation of probability is quite close to mine, requires that it be

a statement of chance (Levi (1980), p. 251); if we so interpret it, we must

construe it nonextensionally.
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(5) x is a random member of y with respect to z, relative to the set of

sentences S.

This last condition is also to be spelled out syntactically. It is

equivalent to the assertion that, relative to S, y is an appropriate

reference class for the question of whether x belongs to z. To give a

flavor of the syntactical constraints embodied in condition (5), we may

note that if "x E y'", "y'C f", and "%(yj,z) c (r,s]" belong to S,

where [rs] is different from [p,j], then we will want to say that condition

(5) is not satisfied. That is, we will deny (5) if S includes the knowledge

that x is a member of some subset of y in which the relative frequency

of z's differs from that represented by (4).

We may illustrate this special case by reference to the previous example.

Suppose my body of knowledge or rational beliefs, S, is expanded by the

addition of sentences representing the knowledge that there are two kinds

of chips in the urn, round ones and square ones; that in deciding whether or

not to go to the movies John always chooses (deliberately) a round chip;

and that between 15% and 20% of the round chips are black. As before, c

is the chip that 4hn will choose, b is the set of black objects, u the

set of chips in the urn. But now we must consider the partition of u

into two subsets: ru consisting of ro•und chips and su consisting of square

chips. We have

c E 1r..

ni C u

%Cru,b) c [.15,.201

all in S, and therefore we will de.nv that c is a random member of u

with respect to b, relative to the expanded S. But we will now be able to

claim that c is a random member of ru with respect to b, and therefore
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that the probability that John will go to the movies is the interval

(.15,.201.

It is also necessary to impose constraints on the terms that can occupy

the places of y and z in the definition. All of these matters are somewhat

difficult, but they do not bear directly on the issues at hand. What I am

supposing, and claim to have shown elsewhere, is that it is possible to

give rules that pick out a reference class for a sentence P, given a set

of sentences S representing a rational corpus.

The notion of probability that I have sketched has the following

properties:

(P-l) If S is a rational corpus, and P and _ are known in S to have the

same truth value (i.e., if "P a c S), then Prob(P,S) = Prob(Q,S_).

In the modified example, since we still know in S that John will go to the

movies if and only if he draws a black chip, we have:

Prob("John will go to the movies",S) =

ProbC"John will draw a black chip",S) = [.15,.20].

(P-2) If S is a rational corpus and P e S, then Prob(P,S) = [1,1] and

Prob(-PS) = [0,0].

In the modified example, since "ruz u" is in S, Prob("ru C u",S) = [1,1].

Sincetic is round" is in S, Prob("c is not round",S) = [0,0].

(P-3) Every probability is based on a relative frequency known in S (or

measure, or chance, or limiting frequency).

In the initial version of the example, the probability that John will go to

the movies is based on the knowledge that %(u,b) c [.6,.7]; in the modified

example it is based on the knowledge that %(ru,b) E [.15,.20].
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(P-4) If S consists of a set of true sentences of the form IV(_,1.) E

and a sentence "X E Y," the definition of probability is

equivalent to a frequency definition correspondingly restricted in

scope.

Suppose that "all we know" about c is that it is a chip in the urn, but we

know of the set u of chips in the urn that there are four kinds, k1 , k2 '

k3, k, and that the relative frequency of each kind is 1/8, 1/h, 1/16,

9/16 = 1 - 1/8 - 1/4 - 1/16. The probability that c belongs to any kind

(or any Boolean combination of kinds) is the corresponding frequency.

(P-5) If S is a rational corpus and T a finite set of sentences, there

exists a function B (a belief function) such that B satisfies the -

axioms of the conventional probability calculus, and for every

sentence P in T, B(P) £ Prob(P,S)

Suppose that t = !t ,t t I and Prob(t S) = [PiP23, Prob(t_,S) =
-- 1'- 12 --

pand 3 ,S) = Then there exists an additive real-valued

function B such that B(tl) c [pj 1 , and B(t 3 ) E [,

(P-6) If S is a rational corpus, and P is derivable from R, then the

lower probability of P is at least as great as the lower probability

of Q.

In the initial example, the probability that John will go out somewhere

tonight is an interval whose lower bound is at least .6.

(P-7) The principle of epistemic conditionalization -- that if P is added

to 3 to yield a new rational corpus S', then the probability of a

relative to S' should be the ratio of the probability of "P and a"

to the probability of P (where "ratio" is suitably understood) does

not generally hold.
2
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(P-8) If the probability of P relative to S is [ the probability of

-P relative to S is [1-q,l-p].

In our original example, the probability that John will go to the movies

is 1.6,.7]. The probability that he will not go to the movies is [.3,.h] =

f1-.7,1-.6].

The particular framework that I discuss here is not the only one of its

kind. There are other, similar, ways of approaching these problems --

for example, Levi (1980) develops a view of rationality that is epistemic

in character, and depends even more on the notion of commitment, but which

is distinguished from the present account both by the importance of chance

in his treatment of epistemic probability, and by a more thorough pragmatic

orientation. On Levi's view the principle of epistemic or confirmational

conditionalization does hold.

4. The Principles of Full Belief or Acceptance.

What is it to accept a sentence, or to award full belief to it? We

might construe belief in this sense as occurrent belief: one is fully

believing or accepting S only if one is thinking of it, and thinking of it

in a certain way. But this would not lead us to a very interesting normative

theory. We might construe belief dispositionally: X believes the sentence

S if X is inclined to assent to it, if asked, or if X has a (non-

probabilistic) disposition to act as if it were true. But again this seems

not strong enough to give rise to an interesting normative account of

rational belief.3 I think of myself as accepting the axioms of set theory,

for example, but there are many theorems of arithmetic that I am too

ignorant to assent to. On the other hand, if I were offered a proof of

such a theorem, I would not only be inclined to assent to it following
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the proof, but feel that I had been committed to the acceptance of that

theorem all along. When I accept the axioms of set theory, I am committing

myself to accepting their consequences. Of course, if those axioms have

untoward consequences -- for example, if they should prove to be inconsistent -

I will not then regard myself as committed to believing all the sentences of

the language. Rather, were I to become aware that the axioms of set theory

commit me to everything, I would no longer accept those axioms, but would

rather seek out some fixed up set of axioms.

I shall construe full belief or acceptance as commitment. To accept

P is to be committed to P, and also to its deductive consequences. But we

may still ask how far this committment takes us: does it commit us to the

consequences of the whole set of sentences we accept? Levi (1980) argues

that it does. I would argue against this, not on grounds of human

finitude or logical limitation -- that would speak against being committed

to all the theorems of set theory -- but on the grounds that it does not

seem plausible to demand that the set of empirical sentences we accept be

deductively closed. Here are four examples:

(1) I can believe of each statement that I accept in a certain context

that it is true (or else I wouldn't accept it) and also reasonably believe

(some)
that/one of them is false -- I can believe the negation of the conjunction

of those statements.4 The situation can be represented as

k(pl)

_((PI A p'2 A .. A Rn))
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(2) The lottery problem is well known. If reasonable acceptance is to be

grounded in probability alone, then one should believe of any specified

ticket in a fair million ticket lottery that it will not win the grand prize.

But the conjunction of a million such statements contradicts the assertion

that the lottery is fair. Our epistemic state is highly symmetrical with

respect to the tickets; the evidence that any given ticket will lose is

overwhelming; the evidence that not all the tickets will lose is even more

overwhelming. To accept some but not all the statements of the form

"ticket i will not win" is grotesquely arbitrary. To reject them all, on

the grounds of the very symmetry that leads to the problem is to give up

too much; the same grounds would undermine the arguments used to justify

"the rejection of the null hypothesis" in statistics. Each possible sample,

in such an argument, is assumed to be "equally probable," and the null

hypothesis is rejected exactly on the grounds that if the hypothesis were

true, we would have to suppose that we had drawn the winning ticket, which

is too improbable to be believed.

(3) In statistical inference, if we allow ourselves to speak of the

probability of statistical hypotheses at all, there are cases in which many

hypotheses have the same high probability, but in which their conjunction

is inconsistent. For example, consider the inference from a sample of a

normal population of unknown mean to a value for that mean. Given the

sample mean, the probability that the unknown mean lies in any interval is

given by a "fiducial" distribution, integrated over that interval. For

any number 1 - c less than 1, there are an infinite number of intervals such

that the fiducial probability is 1 - e that the unknown mean belongs to that
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interval. But the intersection of these intervals is very small. We can

also have a fiducial probability of 1 - e that the mean does not belong

to this intersection.

(4) In measurement theory we often suppose ourselves to be making a large

number of direct comparisons of objects. Consider a set of n statements of

the form "A. is the same length as A.+" (The first board for our book-

shelves is the same length as the second; the second is the same length as

the third; ... ) Clearly each of these statements may be acceptable when

the statement "A is longer than A " is also acceptable. (The first board
-0 -n+1-

is definitely longer than the last.) There are no grounds for choosing among

them. But to reject them all is to give up on measurement. One might say

that we should reject them all; that the lesson to be learned is that we

cannot judge "equality of length" directly. But approximate equality of

length won't give us measurement theory (for example, it isn't transitive).

How do sentences become accepted? One answer is: when they are

probable enough. Suppose that a sentence P is so highly probable as to be

practically certain, relative to a set of sentences S construed as a

rational corpus. Do we want to regard P therefore as a member of S? It

is awkward to do so, for then P is not probable or practically certain,

relative to S, but (by P-2) certain, relative to S. Furthermore, we

must face the problem of saying what degree of probability is required

for acceptance in S. One way of approaching these problems is to

distinguish two levels of rational corpora. Let S be the evidential--e

corpus, and S be the corpus of practical certainties. We then adopt the

following principle of rational acceptance:

Principle I: A sentence P is acceptable in the corpus of practical

certainties indexed by the real number p, if and only if there is

an evidential corpus S, indexed by a number e larger than p, such

that the minimum probability of P relative to S is greater than p.S--e
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In virtue of P-6, this principle yields just the structure we have been

talking about.

For example, in the affairs of ordinary life, we might take e = 0.999

and P = 0.99. We can take it as evidence that a given coin is fair: that

is, we can include a statement in our corpus of evidential certainties

S that the distribution of heads in tosses of this coin is approximately--.999

binomially distributed with a parameter close to a half -- say .500 ± .010.

Relative to S999" then, the probability of heads on a single toss is

[.h90,.510]. But if we consider a sequence of seven tosses, the maximum

probability of getting all heads is less than .01; the minimum probability

of not getting seven heads in seven tosses is at least 0.99; and therefore

we may regard it as practically certain that we will not get seven heads in

the next seven tosses. "The next seven tosses will not all result in heads,"

will appear in S.99' our corpus of practical certainties.

How about S , the evidential corpus? If what is in S is at issue,

we construe the level of S as practical certainty, and require that there

be a proto-evidential corpus, S ' relative to which each ingredient of S--e --e

have a high enough probability. In other words, we would simply apply the

same principle at a higher level.

In the previous example we may ask for the grounds on which we can

accept in S the assertion that the distribution of heads is binomial.999

with a parameter of .500 ± .010. To answer we would take 1 = .999 and

e = .999 Lsay). We include in S our knowledge of the dynamics of coin-.999

tossing and our knowledge of the design of coins and the procedures for

minting them. The probability that for this coin the distribution of heads

is approximately binomial with parameter .500 + .01 is at least .999

relative to S. 999"



Kyburs page 22

The value of p, the level of probability required for acceptance into

S , concerns us both as a parameter in the normative theory of rational

belief and as a parameter in the corresponding descriptive theory.

Dretske (1982), among others, has argued that "there seems to be :o non-

arbitrary place to put a threshhold" (p. 8). There are two answers to

this claim.

It seems inevitable that what will strike us as an appropriate level

of p for one context will be inappropriate in another. For the normative

theory, therefore, we need a way of classifying contexts. My suggestion

is this: that we consider relatively global contexts, and characterize

them in terms of the maximum or minimum odds at which our chancey decisions

in those contexts might pay off. Thus in "ordinary life" we do not

ordinarily consider gambles involving odds of greater than 20:1. This

would suggest p = 0.95 as a suitable acceptance level. There are special

contexts that we all face on occasion when this does not seem appropriate:

when buying insurance for example. In that case we are contemplating a

gamble in which the odds may be 100:1 or 1000:1 or greater. An appropriate

level of practical certainty might then be .99 or .999. In scientific

inquiry or in public policy, the stakes may be similarly extreme, and the

level of acceptance may be similarly stringent.

At the other extreme, some conservative academic epistemologists seem

to feel that we can avoid (or should) avoid chancey decisions. Since the

maximum payoff you can offer is the reciprocal of the maximum payoff you can

receive, this suggests that the range of odds contemplated in the epistemic

context is close to 1:1; and this would lead to a value of p very close to

(Just over) 1/2. ("You can reasonably believe P if it is more probable than,

not. "
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This is a relatively new quiestion, and so far as I know relatively

little thought has been devoted to it. But, as far as the normative theory

is concerned, it certainly seems premature to claim that there is no non-

arbitrary threshold.

With respect to the descriptive theory, we may be better off. The

parameter p is an adjustable one whose value can be chosen to make tle

most sense of the data we have. Some indication that this might be a

useful way to approach the data of behavioral decision theory will be given

in a subsequent section.

There are a number of consequences oi Principle I that are worth

remarking.

Cl) If a sentence P has u minimum probability greater than p relative to

S (or less than l-p), it is not rational to bet against it (on it)

at any odds in the range characterizing p •ctical certainty. It is

a oractical c:-tainty, a datrm. Lut as the above discussion of the

vt. ie of p suggests, if one is actually offer-d enormous odds, that

in itself may suffice to change the context to one in which a different

Clarger) value of D is appropriate. In an ordinary context, I simply

accept the statement that about half the tosses of this coin will land

heads. But if the relative pay-off were great enough, I would consider

a bet on the question of whether or not this coin is btissed --

i.e., on the truth of a statement that in another context I accepted

as a datum.

C2) Approximate statistical statement of the form "%(A,D) [p,ql' can

be rendered probable enough for acceptance by observational evidence

in S.5 In its crudest form this inference makes use of (1) the set-

theoretical statistical truth that whatever be the proportion of A's
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that are B's the proportion of large subsets of A that have a frequency

of B's close to that among A's in general is very large; (2) the sample

of A's that we have observed is a random member of the set of those

large subsets relative to what we know; and (3) the proportion in

the sample, known to have 100% B's, differs by 6 from the proportion

among A's in general if and only if the general proportion lies in

the interval r ± 6. Thus, (1) whatever be the proportion D of black

balls among draws with replacement from urn u, the proportion of sets

of 10,000 draws that have a relative frequency of black balls differing

by less than .02 from p is at least .98; this sample of 10,000 has

40% black balls; this sample is a random member of the set of samples

of 10,000; therefore the probability is f.98,1.0] that p £ [.40-.02,o0+.C2] =

1.38,.421. Note, however, that precise statistical statements of the

form "%(A,B) c [p,p]" and in particular statements of the form

"%(A,B) £ [l,1]" corresponding to "All A's are B's") cannot in general

be rendered highly probable by observational evidence.

(3) Statements that are characteristic of the language L -- i.e., statements

that are tautologies in that language -- automatically receive

probability 1 and are automatically accepted in S . Furthermore,

given any such statement T, and any statement P probable enough to be

accepted in S4 their conjunction will be probable enough to be

accepted in S, and therefore (by P-6) so will any deductive consequence

of their conjunction.

(h) From (2) and (3) it follows that any universal generalizations --

"All A's are B's", for example -- that are in S are to be construed

as tautologies of the language L, or else are to be construed as

apuroximate statistical generalizations: "Almost all A's are B's".
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(It is an a priori constraint on our language that all bears are mammals;

it is an arbitrary rule of post office procedure that all sealed

letters must have 6d stamps; but it is only "approximately true" that

all people who go to three drugstores in a row have failed to find

what they wanted in the first two. It is more accurate to say that

it is true that almost all people... ) As will become clear later,

this is an important distinction, since "All A's are B's entails its

contrapositive, "All non-B's are non-A's", while the approximate

statement, "Almost all A's are B's" does not entail "Almost all

non-B's are non-A's."

(5) It is possible to argue that since much of scientific theorizing is

concerned with the establishment of truly universal generalizations

it is better to look on it in terms of the choice between languages

characterized by different meaning postulates or tautologies, than as

a matter of testing or attempting to falsify universal generalizations.

If this is so, it may explain some of the difficulties surrounding

attempts to explore or inculcate a Popperian approach to scientific

inference.

(6) A deductive argument will show that the corpus S is committed to the

statement P only when the conjunction of the premises of the deduction

is in S . We require ' A1 A**' P ' E S R andfPj, P }h P,and

not merely {Pl,... ,Pa--P.

A classic difficulty in the theory of knowledge has stemmed from the

urge to regard observation (or perception) as an incorrigible foundation

of knowledge, and at the same time to recognize that observation --
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particularly in science, and particularly in the form of measurement -- must

be regarded as fallible. It is clear that we must admit the results of

observation into our evidential corpus if we are to learn from experience

at all. Yet it is also clear that however confident we may be of an

observation, there is a possibility (which often cannot simply be "ignored")

that it is in error.

The framework already proposed suggests a resolution of this difficulty.

In learning a language, whether ordinary language at the age of two, or

the specialized language of livestock Judging at the age of thirty-two,

one is learning to make observational Judgments (among other things).

One also learns that one's Judgments are fallible: one never achieves

perfection. Errors may be pointed out by one's teachers, or they may

become obvious through conflicts with other things - including generali-

zations characteristic of the language - one knows. In either event,

one can learn from one's mistakes: one can learn (in a metalinguistic

rational corpus) that observational Judgments of kind K are wrong some

small portion of the time: say about e.

Consider a sentence P reflecting an observational Judgment of type K.

If P is, relative to what one knows about it, a random member of K, the

probability that it is mistaken is about e. If 1 - s is less than p, P

may be accepted as practically certain -- as a member of S . Note that P

may be a random member of K at one time, and cease to be a random member

of K when new information relevant to the chance that P is mistaken

becomes available.

In fact, since,by P-8, P(S,K) = [p~a] if and ordy if P (-S,K) =

[1-_,1-p], it is perfectly possible to have
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P_(S,K) [p,] S is practically certain relative to K

P(AýS, K U K') = [ 1-q',l-p'] :-I S is practically certain relative

to an expansion of K by K'.

Even observational statements may come to be accepted and then come to be

rejected in the light of new information on the model suggested. For

example, one may accept on the basis of observation that there is a cat

on the porch, and then, on closer investigation, which results in the addition

of new evidential statements to one's rational corpus, be led to reject

that statement and to accept the statement that it is not a cat (but, say,

a mongoose) on the porch. That does not mean that one was not justified

in first accepting that it was a cat. A more common example is to accept

on the basis of measurement that the melting point of compound X is

k ± d degrees, and then, on the basis of more, and more careful, measurements,

to reject that first measurement as yielding an "outlier".

The principle that justifies this is essentially just a metalinguistic

version of principle I. It is phrased in terms of error, and it refers to

the evidential corpus S rather than S for convenience. Recall that both

e and p are numbers adjustable to fit the context.

A sentence P is acceptable in the corpus of evidential certainties

indexed by the real number e on the basis of observation if and

only if the probability that P is mistaken, relative to the meta-

evidential corpus --e, is less than 1 - e.

The meta-evidential corpus MS embodies our knowledge about the frequency of

mistakes among statements of various classes based on observation.

Thus Principle I provides for the acceptance of fallible observation

statements. Technical object-language metalanguage complications arise in

the general application of Principle I to both observational and directly

statistical uncertainties. These complications have been discussed in some
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detail in (Kyburg, 1983b); they have only a marginal bearing on the issues

with which we are concerned here, and will not be further discussed.

Given the syntactical notions of provability and probability, then,

and given a formal language L in which the beliefs of an individual can

be expressed, we take Principle I to say all there is to say about full

belief.

5. The Principles of Partial Belief.

The subjective interpretation of probability generally supposes that

a degree of belief can be represented by a real number in the interval

[0,1]. Various coercive procedures -- e.g., forced bets --

have been suggested as a way of determining the degrees of belief of

experimental subjects. At the same time, some writers (Savage (1966),

Jeffrey (1974), Good (1962)) have suggested that beliefs be characterized

on more than one dimension: one might feel "less secure" about one's

degree of belief of .3149725 that the next president will be a Republican,

than about one's degree of belief of .3149725 that of the next 75 flips

of this coin, between 39 and 35 will result in heads.

It has also been suggested (Smith (1961), Dempster (1968), Kyburg (1961),

Good (1962), Shafer (1976), Levi (1974)) that one way to capture this

dimension is through the use of intervals to represent degrees of belief.

Smith (1961) suggests that a first approach to a behavioral counterpart

of an interval of belief would be given by the least odds at which a

person would be willing to bet on P, and the least odds at which he would

be willing to bet against P. In general one might suppose that these

odds are not reciprocals, and that they would define an interval. This

approach is rather crude, and is excessively sensitive to the person's
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interest in or distaste for gambling. A more accurate way of measuring

intervals of belief would be of considerable interest.

Even without a way of getting at interval beliefs directly, however,

we can apply the present theory. if, relative to an agent's body of

practical certainties, the probability of the statement P is the interval

[.,a], then it is clearly irrational of him to be willing to pay more than

Sdollars for a ticket that yields a dollar if P is true and nothing

otherwise. Similarly, it would be irrational of him to sell a ticket

for less than p dollars that obligated him to pay a dollar if P is true.

Thus we can use many of the standard ways of getting at alleged real

number degrees of belief to apply the present theory. We can put the

matter more generally by saying that a person's behavior with respect

to a sentence P should be compatible with his having a (hypothetical)

degree of belief in P that falls within the interval representing the

probability of P.

We state this as Principle II:

Princirle II: If S is X's corpus of piactical certainties in a certain

context, then X's degree of belief in a sentence P, whether it is

construed as an interval of the form [j,.], or as a non-degenerate

interval, should be included in Prob(P_,S) = (,_

To borrow from an earlier example, if relative to my body of evidential

certainties, the probability that John will go to the movies tonight

is [.6,.7], then my "degree of belief" that John will go to the movies

tonight should be some number -- e.g., 0.62 -- in that interval, if we

construe degrees of belief as measured by real numbers, or should be some

subinterval of [.6,.7] -- e.g., [.63,.651 -- if we take "degrees of belief"

to be better represented by intervals.
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Finally, we need a principle connecting degrees of belief and utilities

with actions. We adopt the princinle of maximizing expected utility as

our third principle of rationality. We assume that X has a real-valued

utility function defined over statements. (This is a questionable supposition

but one we shall not question here.) The outcomes of decisions or choices

can be described as the coming true of certain propositions. Of course

it is the utility of the total world outcome that concerns the actor,

but in common with most writers, I shall assume that in artificially

simplified situations we can often work with the marginal utilities

associated with sentences describing partial outcomes: winning a dollar

if the coin lands heads, and losing a dollar if the coin lands tails. This

simplification is defensible on the view that we are considering, since

even though it is possible that I should lose my entire fortune between now

and the tossing, so that my last dollar would be very valuable, and even

though it is possible that my competitor should welsh on his bet, it

is under ordinary circumstances practically certain that neither of these

possibilities will be realized.

Since probabilities are intervals, even if we assume that utilities

are real valued, expected utilities must also be construed as intervals:

The expected utility of P's being true is the interval comprised by the

utility of P's being true, multiplied by the lower probability of P, and

the utility of P's being true multiplied by the upper probability of P.

If, relative to my corpus of practical certainties, the probability of P

is [j,r1, and my utility for P is V, the expected utility of P is [V,Vrr].

Of course one cannot simply "maximize" an interval, so the principle

of maximizing expected utility cannot be phrased in the usual way. But
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one thing does seem clear, and that is that it is irrational to choose

an action whose maximum expected utility is less than the minimum

expected utility of some other action. This limits our choices, but in

general need not pick out a unique one as "rational It might be that

some further constraint could be imposed (for example: choose the action

whose minimum expected utility is a maximum) but this seems to come into

competition with contrary constraints (for example, choose the action

whose maximum expected utility is a maximum). It thus seems sensible,

at this point, to limit ourselves to the following principle of rational

action:

Principle III: In a situation in which X's corpus of practical certainties

is S, X ought rationally to reject any choice ihere is

a C whose minimum expected utility exceeeds the maximum expected

utility of C2.

For example, suppose that choice 1 yields A with probability [.l,.2]

and not-A with probability [.8,.9] and that the utility of A is 10,

and of not-A is -1. The expected utility of C is [1,2] + f -. 8,-.9] -

-l-

1.2,1.11. Similarly, suppose that C has an expected utility of [1.5,2.3]
-:-2

and that C has an expected utility of [0.8,5.0]. The rule then requires
-t-3

rejection of C1, but does not legislate between C and C
=-2 -3
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6. Deductive Performance.

There are a number of studies that purport to show that people are

deficient in their deductive performance or comT Aence or both. Of

course, few people are brilliant logicians, and even brilliant logicians

cannot be faulted for not living up to all of their deductive commitments.

Nobody is aware of all the theorems of set theory, though many people are

committed to them. The studies of deductive performance therefore ordinarily

concern the failure of subjects to make relatively simple deductive

inferences. One quite robust deficiency in this regard, apparent in both

simple and complex tasks, has been called "confirmation bias" -- the

tendency of people to look for or take account of evidence confirming a

hypothesis rather than evidence falsifying a hypothesis.

One group of experiments in which subjects were to formulate hypotheses.

test them, modify them, and so on, under circumstances designed to

simulate those in which real scientists work was reported by Mynatt et al.,

(1977) and (1978). In both series of experiments, the investigators dis-

covered a "confirmational bias." The subjects were tempted (1977, p.89)

to formulate a hypothesis that was incorrect to account for the initial

data with which they were presented. They were subsequently given a choice

between pairs of experimental setups, some of which could falsify that

hypothesis, others of which could provide disconfirming evidence for it,

or suggest alternative hypotheses, and others of which could only provide

confirming data. Many of the subjects chose to examine evidence that

could only provide confirming evidence for their initial hypothesis, even

when they had received instructions to the effect that it was the job of

the scientist to "disconfirm theories and hypotheses." "Subjects who
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started with triangle hypotheses, regardless of [whether they were told

to confirm or to disconfirm hypotheses] chose at a much higher than chance

rate screens [presenting evidence] which could only confirm such hypotheses."

(p. 93) On the other hand, "subjects could use falsifying data when they

got it." (p. 94)

This suggests that the subjects were not (for the task at hand)

deficient in deductive prowess, but deficient in strategic awareness when

it came to testing universal generalizations. The second, more complex,

series of experiments confirmed the results of the first, "even though

the instructional manipulations were much more extensive than in the

earlier study." (1978. ). 4o4) On the other hand, in this more complex

task subjects did nr -- most always abandon disconfirmed hypotheses.

The authors do nr.t .uggest deductive incompetence as the reason, but

write: "the more complex environment may have made generation of new

hypotheeds, and hence, abandonment of disconfirming hypotheses, more

difficult." In the second series, the subjects were explicitly told that

the phenomena obeyed a uniform set of deterministic laws, but presumably

that information was also implicit in the instructions to the first set of

subjects.

It is quite clear that the authors began (and perhaps ended) with

the conviction that some form of Popperian (Popper, 1959) approach to

hypothesis testing was appropriate (Mynatt et al. (1977), p. 85), Mynatt

et al. (1978), p. 396). By the end of the second series, apparet~ly some

doubts had been raised (Mynatt et al. (1978), p. 405). But even then, they

have not abandoned the phrase "confirmation bias," even though they suggest

that the "confirmation bias may not be completely counterproductive" (Z. 405).

On the view sketched earlier, the confirmation "bias" is generally
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perfectly appropriate. In the "natural ecology" (Einhorn and Hogarth (1981))

few universal generalizations present themselves as live possibilities;

indeed, on the view suggested, universal generalizations can be maintained

only by being made features of the scientific language. The basic inductions

which can serve as a guide in life are statistical. It is obviously

utterly irrelevant to look at non-B's for evidence concerning "%(A,B) c

This is so however close p may be to 1. One does not look among non-B's for

evidence either supporting or controverting the statement "Almost all A's

are B's." Only A's are relevant.

At a more sophisticated level of science -- note that this did not

become a significant part of empirical knowledge until the last few

hundred years -- one does encounter genuine universal generalizations.

But even then, as Kuhn (1962) and Feyerabend (1970) have pointed out, such

generalizations are, particularly early on, maintained in the face of

falsifying evidence. That is, they are maintained "come what may"; the

characteristic, as Quine (1961) has suggested of linguistic conventions.

Every student knows, of course, that there are universal generalizations

in real science. Most students are told (alas) that they are empirical

and falsifiable. But every student has also experienced the apparent

falsification of an accepted universal law -- if only Archimedes' law in

a physics laboratory -- only to be told that the reason for the apparent

falsification is that he has "not done the experiment correctly" or "not

interpreted the results correctly."

The students who were the subjects of the experiments of Mynatt et al.

were therefore in a bind: they are torn between the natural rational attempt

to confirm a hypothesis of the form "Almost all A's are B's," and the

knowledge that there is a universal relation to be found, while at the
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same time they know that universal relations in general survive apparent

disconfirming instances. It is no wonder that they reported being frustrated

(Mynatt et al.(1978), p. 4W4). Mynatt et al. also report ((1978), p. 405)

that "the three subjects who quickly abandoned disconfirmed hypotheses

did not rapidly progress."

If clever students are given a list of alternative hypotheses, one

of which is known to be true, one would conjecture that with relative

efficiency they would proceed to falsify hypotheses until there was but

one left. If they are given the information that there is a useful pattern

for prediction to be discovered, one would conjecture that they would

(correctly, rationally) seek to confirm a statistical hypothesis of the

form "Almost all A's are B's" or "Almost none of the A's are B's" by

examining the A's. If they are told that there exists a universal

hypothesis, but need to make up their own list, one would conjecture that

they would oscillate between the two approaches: looking for useful clues

to support a hypothesis of the form "Almost all A's are B's," and supporting

it by looking for more A's; considering a finite and nonexhaustive list of
items in the list

hypotheses of the form "All A's are B's" and perhaps rejecting{ in the

face of falsifying evidence, or perhaps modifying them. One would expect

just such a confused picture as that revealed by the protocols of the

experiments cited.

Closely related to the data just reviewed are the data provided by

Wason (1960) and Johnson-Laird and Wason (1977). In these simpler experi-

ments the subjects are presented with four cards showing A, D, 4, and 7.

They are presented with the statement: If a card has a vowel on one side,
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it has an even number on the other side. Their task is to determine which

cards must be turned over in order to know whether the statement is true or

false. The subjects do not do well; many say that the cards marked

A and h should be turned over; some just mention card A. Few give the

correct answer, which is A and 7.

Again, we seem to have encountered "confirmation bias." There is no

doubt in this simple case that subjects are answering incorrectly. But

there are several factors that can be called on to account for their

mistakes. First, to account for the answer "A only," the previous

suggestion may apply: In the "natural ecology" the generalizations with

which people mainly deal, and the ones which they habitually confirm,

are essentially statistical: "Almost all X's are Y's." For testing these

generalizations, only observations of X's are appropriate. The natural

tendency to treat a generalization, "If something is an X then it is a _,

as representing "Almost all X's are Y's," and to test it by looking only

at X's, carries over to the artificial task in which the natural tendency

is incorrect.

Second, it is not uncommon in ordinary English to use the conditional,

"If something is X then it is Y" to express what is more accurately

expressed by a biconditional. This comes about, I conjecture, because

under many circumstances it is already known -- already an item in the

corpus of practical certainties of both speaker and listener -- that Y's

are X's. "If the bay is too wet, it will mold," will ordinarily (and

correctly) be understood as having the same meaning as: The hay will mold

if and only if it is too wet. Combined -with the first tendency, this would

lead subjects to examine both A and h.
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It is interesting to contrast the results of this experiment with

the results of a "formally" similar experiment (Johnson-Laird et al.,

1972) cited by Johnson-Laird and Wason (1977). "The subjects were

instructed to imagine that they were postal workers engaged in sorting

letters on a conveying belt; their task was to determine whether the

following rule had been violated: 'If a letter is sealed, then it has

a 5d stamp on it."' The material consisted of the back of a sealed

envelope, the back of an unsealed envelope, the front of an envelope with

a 5d stamp, and the front of an envelope with a 4d stamp. Almost all the

subjects correctly chose to examine both the sealed envelope with the unseen

face, and the envelope with the 4d stamp.

Cohen (1981, p. 324) suggests that the difference is due to "familiarity

and concreteness in the letter sorting task." There may be elements of

this, but a more salient distinction, in the framework being suggested

here, is that the rule in the Postal example, is a genuine, stipulative,

a priori, rule: All sealed letters shall have, must have 5d stamps. It

is not the rule that is being tested, but the conformity of the letters

to the rule. It would be interesting to test the performance of subjects

on a similarly concrete and familiar task where the "rule" is not a

stipulative one, but a descriptive generalization such as: If a letter

has a 5d stamp, it has the return address on the back.

Some of the earliest work on the relation between logic and thinking

was done by Mary Henle (1962). She presents evidence "that even

where the thinking process results in error, it can often be shown that

it does not violate the rules of the syllogism. Many errors were found

to be accounted for not in terms of a breakdown of the deductive process
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itself, but rather in terms of changes in the material from which the
(p. 377)

reasoning proceeds."( The material used in her studies was deliberately

chosen to be informal, and her subjects were (as far as possible)

"logically naive." Under these circumstances it would be difficult

indeed to ensure that the reasoning processes of the subjects did not use

material from their own bodies of knowledge.

In ordinary argument, this dependence on a body of practical

certainties is even more pronounced. Johnson-Laird (1977) offers the

example (from Abelson and Reich, 1969): "He went to three drugstores,

therefore the first two drugstores didn't have what he wanted." In such

cases it is clear that the argument is not deductive: nobody's corpus of

practical certainties excludes the possibility of the premise being true

and the conclusion false. The argument is of the statistical "almost

always" form. It is also clear that the persuasiveness of the argument,

its probabilistic soundness, depends on two things that can be represented

in the framework suggested. First, enough knowledge in the rational corpus

(of both arguer and listener) to warrant the inclusion of the statistical

statement: "Almost always when a person goes to three drugstores, it is

because the first two didn't have what he wanted." (This is noted by

Johnson-Laird.) And second (not remarked on by Johnson-Laird), knowledge

of the drugstore visiting person which allows him to be a random member

of the set of people who visit three drugstores with respect to having a

particular reason for doing so. Consider the difference, for example, if

the totally ambiguous "he" in the argument is replaced by "Tom" -- the

argument still goes through -- and if it is replaced by the definite

description, "the oldest comparison shopper employed by Rite-Aid" -- the

argument fails.
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7. Probabilistic Inference.

Some of the most recent and popular york on human inference making

concerns the alleged deficiencies in the ability of people to perform

probabilistic inference correctly. In itself, this is not surprising;

statistical argument is more complex than deductive argument by its very

nature. Indeed, its principles have yet to be formulated in a way that

conforms to the intuitions of professional statisticians. (This raises

a difficulty for the suggestion of Stitch and Nisbet (1980) that one should

turn to "experts" for criteria of justification. In statistical inference

there are large groups of acknowledged experts upholding contrary criteria

of justification.)

One well known example (Kahneman and Tversky (1973)) concerns the

"neglect of base rates." In this experiment subjects are told that in a

certain town 85% of the cabs are blue, and 15% of the cabs are green.

A witness to an accident identifies a cab as green, and it is given that

under the circumstances he can make correct identifications of color

80% of the time. The subjects were then asked for the probability that the

cab involved in the accident was blue.

The median estimated probability was 0.2. The authors claim that this

shows a serious error, since the contingency table employing the general

relative frequency of blue and green cabs looks like this:

seen as blue seen as green

truly blue .68 .17 .85

truly green .03 .12 .15

, I M
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Ttr conditional probability that a cab is blue, given that the witness says

it is green, is thus .17/(.17 + .12) = .59.

Cohen (1981) claims that this is no error at all -- that the subjects

are right and the investigators wrong. "The fact that cab colours

actually vary according to an 85/15 ratio is strictly irrelevant to this

estimate because it neither raises nor lowers the probability of a specific

cab-colour identification being correct on the condition that it is an

identification by the witness. A probability that holds uniformly for each

of a class of events because it is based on causal properties, such as the

physiology of vision, cannot be altered by facts, such as chance distributions

that have no causal efficacy in the individual events" (p. 328-329).

Cohen's argument seems wrong. Suppose the story were changed; suppose

that it is given as a pure problem in inference. Suppose the cab in

question were not singled out by having been in an accident, but was

selected by some stochastically random procedure from among the cabs in

the town. Otherwise the story is the same. Regardless of the "causal basis"

of the witness's identification of the color of the cab, it is clear that the

contingency table would give the correct probability that the cab is blue: .59.

An experiment like this was described by Lyon and Slovic (1976):

The numbers are kept the same, but the population is a population of light-

bulbs, of which 15% are defective, and the "witness" is a scanning device

which is 80% accurate. The lightbulb in question was explicitly said to be

chosen at random. Again, it was discovered in this experiment, as well as

in a large variety of similar experiments, that the subjects tended to ignore

the base rate, or to give it insufficient weight.

Nevertheless, there is a difference between the experimental results for

the two problems, as reported by Lyon and Slovic. In a version of the cab
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problem in which the probability of green was asked for, the median estimate

was .80. In the corresponding lightbulb problem, the median estimate was

also .80. But the interquartile range was different in the two problems:

in the cab problem it was reported as .80-.80. In the lightbulb problem it

was .25 - .80, where the correct answer is .4l. This difference is revealing:

it suggests that a significant number of the subjects in the lightbulb

problem did attempt to take account of the base rate, while practically

none of the subjects in the taxicab problem did so.

One possible explanation of this would lie in the fact that no information

about the relative frequency with which blue and green cabs are involved in

accidents is given in the problem. It would be interesting to see if the

results were more like those of the lightbulb problem if it were stated that

15% of the cabs involved in accidents were green and 85% were blue. It

would also be interesting to ask the subjects in the original taxicab problem

to estimate the proportion of accidents involving cabs that involve blue

cabs. Would it be the canonical 85%? Or would subjects say "there isn't

enough information"? Or would subjects (improperly) infer from the one case

they "know" about that blue cabs are less likely to be involved in accidents

than green cabs?

It is worth observing that there is a reconstruction of the cab problem

which strongly supports the intuitions of the subjects who ignore base rates.

Suppose the corpus of practical certainties of the subject contains the following

statistical knowledge

(1) %(Cabs,blue) = .85

(2) %(Cabs identified as green,blue) = .20

(3) %(Cabs in accidents identified as green,blue) £ (0,1]

(4) %(This particular cab in an accident identified as green,blue) C [0,11
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These statistical statements mention increasingly specific potential referencE'.

sets. The relevant proportions in Cl) and C.2) differ, so the holder off this

corpus should base his probability on (.2) rather than on (1); (3) and (.4)

concern more specific reference sets yet, but they provide no new information,

According to the rules for choosing reference classes (Kybu~rE, 1974), (2)

provides the appropriate basis for the probability that the particular

cab in question is blue.

It is also worth noting that this kind of reconstruction is not per-.

missible in the lightbulb example. Corresponding to (3) we would have:

W3) %(selected lightbulbs testing defective,non-defective) (0,11

Given the conditions of the problem, that the lightbulbs are selected at

random, it follows from statements corresponding to (1) and (2) that

(3") %(selected lightbulbs testing defective,non-defective) = .59

The argument leading to (3") is arithmetically nontrivial for most people.

It is thus not surprising that the subjects didn't get the right answer. But

I would conjecture that it would be quite easy, with pencil and paper, to

convince the subjects that .59 was the right answer. On the other hand,

it is not so easy to convince all subjects that .59 is the right answer in the

cab problem; L. J. Cohen, for example, who has access to unlimited supplies

of paper and pencils, is still unconvinced (1979, 1980, 1981).

There is still the fact to be explained that the median answer in the

lightbulb problem is 0.80; many subjects must have answered the lightbulb

problem exactly on the lines of the cab problem. A hy-pothetical explanation

of this might run as follows: In assessing probabilities in ordinary life,

one can ordinarily use a frequency in a reference set. People have relatively
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little experience in combining probabilities in accordance with Bayes'

Theorem. For example, it seems more natural in giving the probability of

a one on a toss of a die, given that it is an odd number, to calculate

that a third of the odd numbered tosses yield a one, than to divide a

sixth (ones) by a half (odd numbers). Perhaps this is something that

could be got at by a cleverly designed experiment.

Given a choice of conflicting frequencies in two possible reference

sets, therefore, it is usually the case that one of those frequencies

will be suitable and the other unsuitable as a basis for a probability.

In the lightbulb problem the correct reference set is not one of the

options given: the subject must devise the correct reference set, and
relative

compute its relevant/frequency, on his own. The difficulty that subjects

have with the lightbulb problem, therefore, seems to stem from what might

be ca2'.ed the natural ecology of multiple choice questions. Given the

matrix of relative frequencies as part of the data in the lightbulb

problem, how would subjects do?

There are several other biasses in intuitive probabilistic inference

that have been subjected to experimental assessment. Three such biasses

are discussed in a weil known paper by Tversky and Kahneman (197h). The

representativeness heuristic leads to bias in the assessment of

the probability that an A is a B: If A and B are very

much alike, the probability of a (particular) A being a B is assessed as

higher than it should be; if A and B are very dissimilar, the assessed

probability is excessively low. The representativeness heuristic leads

to the neglect of prior probabilities. In one particular experiment

described in Tversky and Kahneman (1974) and reported in Kahneman and
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Zversky (1973), the subjects were told the appropriate base rates, but

neglected them: " subjects evaluated the likelihood that a particular

description belonged to an engineer rather than to a lawyer by the degree

to which this description was representative of the two stereotypes with

little or no regard for the prior probabilities of the categories" (Johnson-

Laird and Wason (1977), p. 328).

It seems clear that in this case the subjects are flatly wrong. It

is curious that when a description was given that could fit either of the

categories equally well, the subjects still ignored the base rates, taking

the probabilities to be .5 and .5. A possible explanation of this is that

the subjects acted as if the base rate among the individuals selected to

be categorized was 50%. It is not hard to imagine subjectz beguiling

themselves as follows: The individual selected is either a lawyer or an

engineer; that's one of each, so the base rate among those selected is .50,

and the only relevant evidence I have to decide between the two alternatives

consists of the description.

Even more blatant violations of normative statistical theory are to

be found when representativeness is applied to frequencies, either in

estimating the frequency in a sample from a known population or in

estimating the population from which a sample of known frequency has been

drawn (Tversky and Kahneman, 197h). Here again, the subjects are simply

in error; but a possible explanation is at hand. Statistical generalizations

of the forms "almost all A's are B's, and "Almost no A's are B's" are the

sorts of generalizations most people usually find most useful in

their dealings with the real approximate world. But the representativeness

heuristic does not work badly with respect to generalizations of this sort.
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The authors offer other conjectures as to why people fail generally

to learn from experience statistical facts concerning regression, or

the relation between sample size and variability. No doubt many factors

are at work. But it should not be concluded -- as one might conclude if the

competence of ordinary people were taken as a standard of rational

belief -- that because few people take account of regression to the mean

in making predictions statistical theory does not provide a norm of

rationality.

On the other hand, there are many instances of intuitive probabilistic

inference in which it is not clear how to apply statistical theory. In

another paper (Kahneman and Tversky 1979), the same authors offer some

suggestions for improving prediction. They emphasize the importance of

considering "distributional" information, as opposed to relying too heavily on

the information embodied in the unique case under consideration. "The

analyst should therefore make every effort to frame the forecasting

problem so as to facilitate the utilization of all the distributional

information that is available to the expert" (typescript, p. 5). Since

the authors accept a subjectivistic interpretation of probability, they

accept that individuals may assign probabilities to particular cases that

are not based on any form of statistical knowledge. Their emphasis on

distributional knowledge, from our point of view, reflects a logical truism:

There can be no (rational) probabilities without underlying frequencies.

Of course, there are all kinds of distributional information. The

unique case under consideration can be seen to fall in a great many classes

about which we have statistical information. Thus it is crucial for

practical guidance, as well as for the characterization of rationality,
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to be able to sort out that distributional information. In the author's

simple case of a publisher attempting to predict the sales

of a book, they suggest first that "the selection of a reference

class is straightforward," (p. 8) and, later, that "For example,

the reference class for the prediction of the sales of a book could consist

of other books by the same author, or books on the same topic, or of books

of the same general type ... the most inclusive class may allow for the

best estimate of the distribution of outcomes, but it may be too hetero-

geneous to permit a meaningful comparison to the book at hand ... the class

of books on the same topic could be the most appropriate" (p. 9).

The authors give no normative criteria for the choice of a reference class,

but it is clear that this is a problem that is on their minds. On the view

of probability and rationality being developed here, it is clearly crucial.

It is a matter that receives considerable formal attention in the full

development of epistemological probability, but it would take us too far

afield to consider it in detail here. As Einhorn and Hogarth (1981, p. 65)

point out, "There is no generally accepted normative way of defining the

appropriate population."

8. Decision Under Uncertainty.

In their review of behavioral decision theory, Einhorn and Hogarth

(1981) draw attention to a number of apparent conflicts between the ordinary

normative theory (subjective expected utility theory) and the behavior

of real agents. They point out that even nonregressive estimates may

turn out to be more profitable than regressive ones in an environment that

is nonstationary. "[T]he optimal prediction is conditional on which

hypothesis you [the experimenter] hold." All of the oddities of intuitive
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probabilistic inference are reflected in the differences between the

recommendations of normative choice theory and the description of the

ways in which people choose. But there are other differences as well.

For example, the choice problem may be stated in two apparently equivalent
it may

ways, and/lead to different choices under each statement. Figure/ground

relations, learning, attention, etc., all play a role, in addition to the

role played by utility and probability, in the explanation of human choice.

As the •authors say (p. 75), " the descriptive adequacy of E(U) [expected

utility theory] has been challenged repeatedly.

Furthermore, the normative adequacy of E(U) has itself begun to be

challenged, for example, by prospect theory. A particularly telling

challenge on an intuitive level is provided by Lopes (1981). She discusses

the traditional St. Petersburg paradox, and a piece of anecdotal evidence

reported by Samuelson (1963).

The St. Petersburg paradox goes like this: A fair coin is tossed

until heads first appears -- say on the nth toss. The player then

receives a prize of 2- dollars -- or, to avoid questions of the utility of

money, 2-' utiles. What is the fair price for the player to pay for the

privilege of playing the game once? The answer -- the expected value of

the game -- turns out to be infinite. Most people would pay relatively

little. Is this irrational?

Lopes turns the problem around: If someone offers to run the game

for a number of players, only charging k dollars, is he necessarily

irrational? Using dollar units, a number of Monte Carlo simulations6

were run in which 100 businesses, starting with a capital of $10,000,

sell opportunities to play the Petersberg game at prices of $25, $50,
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and $100. After a million customers, the prospects of the businesses

selling chances for $100 are not bad: only 10% of them had gone broke,

and the mean and median outcomes were 56 and 79 million dollars respectively.

Not bad for a business with only. a $10,000 start-up cost. The only problem

is finding enough customers. It is not correct to say (as Lopes does,

P. 378) that if it is a good business for the businessman, it cannot be

a good one for the customers -- most successful businesses survive because

toth the businessman and the -'ustomer increase their utilities in the

exchange -- but it does seem unlikely that the Petersberg business can

compete successfully with the State Lottery.

Within the framework at hand, the analysis of the game is quite

straightforward. Suppose the index of practical certainty is .001. In

the evidential corpus it is assumed known that the coin is fair; it is

thus practically certain that the game will last no more than ten tosses,

and its practical expected value will be $10.00. The entrepreneurs will

have a hard time selling chances for $100.00.

How does this differ from the State Lottery? One should be practically

certain that one is not going to win the lottery; is one therefore irrational

in buying a ticket? As is well known, there are circumstances in which it

is not irrational. They depend on the relation between utility and money,

and the fact that money is not of monotonically increasing utility. A

dollar isn't worth much -- what can you do with a dollar? -- but having

a fortune would be very nice. In buying a lottery ticket, your practical

expected value should be 0 -- you should be practically certain that you

won't win. On the other hand, the marginal disutility of parting with a

single dollar can also be 0, so in terms of practical expected utility the
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exchange is fair for you. If you count into the practical expected utility

the opportunity to daydream about winning, the exchange is better than fair.

Another situation discussed by Lopes comes from Samuelson (1963).

Samuelson tells of offering to bet some colleagues $100 to $200 that a

specified side of a coin would not appear on its first toss. None of

the colleagues took him up. One person argued as follows (quoted from

Lopes, p. 382):

I won't bet because I would feel the $100 loss more than the $200

gain. But I'll take you on if you promise to let me make 100

such bets ... One toss is not enough to make it reasonably sure

that the law of averages will turn out in my favor. But in a

hundred tosses of a coin, the law of large numbers will make it a

darn good bet. I am, so to speak, virtually sure to come out

ahead in such a sequence...

Samuelson finds this response irrational. Lopes sides with the

colleague. The colleague feels, correctly, that he can be practically

certain that in a series of a hundred gambles, he will come out ahead.

It is true that he may not; he may lose $10,000. But the probability of

this is very small -- lower than the probability that on his next air

trip he will be killed. A practical man does not take such possibilities

as real. (Then why buy air insurance? The explanation is roughly the same

as that for buying a lottery ticket. You'll hardly miss a couple of

dollars, and although your practical expectation is 0 or slightly negative

in dollars, you obtain the added utility of peace of mind.)

Lester Dubins and L. J. Savage (1965) provide a subjectivistic account

of a structurally similar situation. Suppose you have $1000 and absolutely
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have to have $10,000 by the next day. You are in a casino, and gambling

is your only hope. How should you do it? The answer is clearly that

you should atake the whole $1000 on a single 10:; `_Dt. ine more you

divide your stake, the more probable it is that the house odds will get you.

An attempt to make sense not only of the c<hi-_z that people

actually make when faced with uncertainty but of relatively clear and

compelling intuitions concerning such choices, is prospect theory (Tversky

and Kahneman 1981 ). It is not clear to me exactly how well it accords

with the views presented here, but there are clearly certain similarities.

In this theory decision weights correspond to "subjective probabilities,"

but they are different in a number of respects. They do not sum to 1

(subcertainty), just as the relevant probabilities in the St. Petersberg

problem do not sum to 1. "The function is not well behaved near the

endpoints" (p. 45h). On the present account, probabilities greater than

p, the level of practical certainty, are treated as 1, and probabilities

less than l-p are treated as 0. The asymmetry between large and small

probabilities in prospect theory is not reflected here. But it may be

that this apparent asymmetry is more fruitfully taken account of in the

valuation function, about which I have nothing to say here.

9. Conclusion:

These reflections suggest a three-fold connection between the philo-

sophical normative investigation of rationality, and the empirical psycho-

logical study of belief.

The first connection is that empirical studies may suggest certain

facts relevant to the development of normative constraints. The normative

constraints must be appropriate to the kinds of beings we are. This is



Kyburg page 51

not to say that we must automatically embody them, or even that we must

be able to achieve them (a counsel of perfection), but that we must be

capable of approaching them, of learning to do better. At the same time,

most empirical studies take for granted certain normative constraints. (In

studying degrees of belief, we assume that people's bodies of knowledge are

consistent, for example.) These presupposed constraints may or may not be

appropriate; if they are inappropriate, they may vitiate the results of

the psychological investigation.

The second connection is that philosophical investigations into

rationality may provide a useful framework within which psychological

investigation can be conducted. For example, a structure which allows for

some kind of probabilistic acceptance may prove useful for exploring the

oddities of choice under uncertainty when that uncertainty i. reflected

by chances close to 0 or close to 1.

The third and most obvious connection is provided by the fact that

whatever we wish to conclude about the rationality with which people draw

conclusions or apportion their beliefs, we want our own conclusions to be

rational, to be well supported by the evidence. Even an argument to the

effect that (other) people's beliefs do not conform to sound inductive

canons ought itself to be based on sound inductive principles.

To sum up: I take a theory of rational belief to be a normative theory.

I take its object to be the improvement of our understanding. While such

a theory cannot be made up out of whole cloth -- it must be appropriate to

the beings whose understanding we are trying to improve -- neither should

it merely reflect what people actually do. Intuition and introspection and

empirical investigation may reveal general principles in simple and concrete
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cases. Analysis and argument may reveal connections among these principles,

or defects in them as applied to more complicated cases, or limitations

in their scope.

What I have tried to do here is to illustrate this process by showing

the way in which my approach to probability and inductive acceptance throws

light on several things:

(a) The deductive structure of the set of rationally accepted statements

(assuming there is one), thus providing a connection between deductive

cogency and rational belief that is lacking (or only implicit) in logic

itself.

(b) The addition and deletion of statements to and from a body of accepted

statements; this is a matter that involves probability, but it is one that

pure Bayesian conditionalization can throw no light on.

(c) Degrees of belief in statements that are not accepted. I suggest

that the constraints are more extensive than Bayesians often suppose

(requiring conformity to statistical knowledge), but less precise (being

represented by intervals, rather than real numbers).

(d) A distinction between conditional degrees of belief (reflected in

betting ratios on conditional bets) and degrees of belief conditional

on the acceptance of new data.

These matters constitute a single tangled web -- there is no way in

which we ,ian approach them piecemeal. And since the web is so tangled,

we have an explanation both of the inconclusiveness of psychological

experiments designed to explore rationality of belief, and of the frustration

that has led some philosophers to despair of finding a 'broad reflective

equilibrium" of rationality (Cohen 1981 ). But though I think it is clear
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that the problem of characterizing rationality is a difficult one -- far

more difficult than many have realized -- it does not seem insuperable.

The very difficulties we uncover contribute to our understanding. And the

fact that we progress at all, the fact that we listen to each other's

arguments, and recognize an obligation to deal with them, suggests that

our goal can be approached.
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FOOITNOTES

1. Some remarks on notation may be helpful. I use capital letters

P, _Q, R_, etc., to stand for declarative sentences in the object language:

"Fido is in the manger," "There is a black dog in the manger," "All

the dogs on the farm are in the manger," "All crows are black," "Between

50% and 70% of the successful conceptions yield brown offspring." The

capital letter S I reserve for the set of sentences that constitutes the

background knowledge, or the body of reasonably accepted beliefs, or

the rational corpus, of the agent. Lower case letters 3, D z, etc.,

are metalinguistic variables, representing terms of the object language:

These may be names of individuals ("Fido"), sets ("the set of crows"),

sets of sets ("the set of subsets of the set of crows"), etc. Relative

logical type, which is all we need be concerned with, is given by context.

For example, "x = y" and "x a Z" tell you that x and y are of the same

logical type; "x e Z" tells you that whatever type x may be, Y is of

the type of sets that have as members objects of type x. This flexibility

is essential if we want to handle both the probability that the next counter

is black, and the probability that the set of counters we have examined

is representative of the proportion of black counters in the bag. The lower

case letters, p, c, r, etc., are used both as metalinguistic variables

taking as values real number designators in some canonical form (binary,

decimal) and also the real numbers between 0 and 1 so designated. Thus

may represent the expression "[.6,.7]" in the object language, and

may also represent, in our metalanguage, the closed interval of real numbers

(.6, .7].
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2. It follows from the principle of epistemic conditionalization that

if S is relevant to T, then T is relevant to S_ where S is relevant to T

Just in case the degree of belief in TA given S_ •(T), is different

from the unconditional belief in T, B(T). Suppose that S is the statement

that in the long run about 60% of the tosses of this coin land heads,

and T is the statement that the next toss of this coin lands heads. Take

the degree of belief in T! relative to our ordinary knowledge of coins,

to be 0.5. S is relevant to T:

BS(T) = 0.6 = (s AT) (T)

But it is surely stretching this to say that T is relevant to S. That a

coin has been tossed and landed heads shouldn't change the probability of

the statistical statement:

( =

3. Or too strong, if there are no non-probabilistic dispositions to act.

4. I believe so many things to be true that I am almost certain that

at least one of them must be false.

5. This has been argued at length in Kyburg (1961), Kyburg (1974), and

a number of papers, many of which are collected in Kyburg (19 8 3a).

6. Monte Carlo simulations involve programing a computer to undertake

a vast number of trials embodying computer-selected random numbers to

determine the outcomes of the trials. The computer simulation thus

can reflect the long run outcome of a stochastic process.
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