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Abstract

A least-squares minimization technique for estimating principal components (empirical
orthogonal function expansion coefficients) from incomplete ocean profile data is developed,
and its use for interpolating or extrapolating these profiles is described.
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Estimation of EOF Expansion Coefficients from Incomplete Data

1. Introduction

Among the earliest published reports on the use of empirical orthogonal functions (EOFs)
in oceanography are included such articles as Moore (1974), Kundu, et al. (1975) and Davis
(1976). Since then, the use of EOFs has become increasingly common for such purposes
as describing and quantifying oceanic variability (e.g., Halliwell and Mooers, 1979), in
examining ocean dynamics (e.g., Kundu, et al., 1975), in providing compact characterization
of oceanographic data (e.g., Tolstoy, et al., 1991), and in examining interrelationships
between surface and subsurface parameters (e.g., Carnes, et al., 1990). In this note we
present a technique for using EOFs for interpolating or extrapolating missing data in ocean
profiles. This technique should prove particularly useful for extrapolating shallow ocean
data profiles -- say, from shallow CTD (conductivity-temperature-depth) casts or from
expendable probes -- to deeper depths.

The theory behind EOF computations is straightforward. (See, for example, Lagerloef and
Bernstein, 1988, for a particularly compact and lucid description.) As an aid to under-
standing our technique described in section 2, we present a summary of the EOF
computation procedures here.

Suppose we have N profiles with measurements at K discrete depths. Each profile may be
considered a vector f., with components fk,. A set of perturbation profiles f'. is formed by
subtracting the mean profile T from each of the observed profiles. From these profiles the
K x N matrix [F] is created, having columns which are the N perturbation profiles f'.. Next
the K x K covariance matrix [R] is calculated from the [F'] matrix according to

[R)] =(1N) [F] [F]T,

where [FIT is the transpose of [F'].

Then the eigenvalues Ak and eigenvectors ek are found for the matrix equation

[R] [E] = P[L [E].

[I is the matrix of eigenvalues
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and [E] is the matrix of eigenvectors

[E] = [e, e2 ... e..,eKj

where e. is a column vector representing the mth eigenmode. A maximum of K
eigenmodes may be calculated.

The original data may be expanded in terms of these new basis functions em according to
the relationship

[F] = [El [C] (1)

where the c. elements of [C] are known as the expansion coefficients, the modal
amplitudes, or the principal components. The coefficient matrix [C] is computed from

[C] = [E]T [F]. (2)

The trace of the matrix [R] is the total variance of the data set. Since Tr [R] = z x,, the
relative value of each xm is the fraction of the variance of the data represented by the
associated eigenvector. If the eigenvalues are ordered by size (that is, by fraction of the
variance explained by the corresponding eigenvector), it is usually found that only a limited
number of eigenmodes are necessary to account for a very large fraction of the variance, say
3 to 5 (e.g., Kundu, et al., 1975; Servain and Legler, 1986; Fukumori and Wunsch, 1991).
For many oceanographic applications it is satisfactory to retain only those first M
eigenmodes that account for, say, 90 or 95% of the variance and subsequent profiles (the
"synthetic profiles," as they were called in Carnes, et al., 1990) are constructed using only
M eigenvectors.

If a given profile f has data at each of the K depths, estimation of the principal components
is straightforward and is given by eq. (2) above. However, if the profile is incomplete, a
modified procedure must be used. In this note we present one such procedure based upon
least squares minimization.

2. TIeory

According to eq. (1) above, a "synthetic profile" p may be constructed from M pre-
determined eigenvectors em according to the equations

Pk = "k + 1:m ei c,

where k is the depth index, k = 1,..., K. If all depths are present, eq. (2) shows the
coefficients c, are calculated from the relationship
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Cm -- Ek emk P'k"

In practice, however, some of the K depth values may be missing: the profile may not start
close enough to the surface, or it may have terminated at too shallow a depth or there may
have been noise contamination within a certain depth range. If only an occasional value is
missing, it may be reconstructed by interpolation and the expansion coefficients may then
be computed from a complete data set. However, if interpolation is not satisfactory or
feasible, a least-squares minimization approach may be used in which we determine those
principle components cm which minimize the error e, the sum of the squares of the
differences between a perturbation profile

P'k = Pk - "k

and its "synthetic" reconstruction:

C = Ek (P'k - E.m c. ek.)2.

This involves solving the system of equations

ekl ekl e,.., ek e-c ' P'k e.,

ek2 eki C2 P'k ek
(3)

ekm ekl ........ ek ep CM p'k C~

The resulting set of coefficients {Cm} constitute the desired estimates of the true coefficients.

3. Example

As an example of the application of this technique, consider the 28 temperature profiles
shown in Fig. la. Table 1 lists the measurement depths of the profiles. Fig. lb shows the
mean temperature profile. The data represent a set of CJ-D temperature profiles taken in
July during an experiment in the Sargasso Sea, but any other comparable data set would do
as well for describing our technique. Shown in Fig. 2 are the first five EOF modes (i.e., e1
through e.), which jointly explain 98% of the variance apparent in Fig. Ic. The first five
principal components for each perturbation profile in Fig. 1c as estimated from eq. (2) are
given in Fig. 3a, and the root-mean-square (RMS) difference between the true profiles and
the synthetic profiles generated with these five principal components and the five
eigenfunctions in Fig. 2 is given in Fig. 3b. Using the five eigenfunctions, the maximum
RMS deviation is about 0.25 OC near 50 nm, which is located somewhat below the base of
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the mixed layer at around 30 m. Otherwise the mean deviation is typically less than 0.15
oC.

First consider the impact on the coefficient values of having missing data near the surface.
We estimated the principal components for six separate cases with increasingly large
amounts of missing data, as described in Table 2. The resulting coefficients, normalized by
their true values computed from the complete profiles (Fig. 3a), are shown in Fig. 4, and
the RMS differences between the true profiles and their corresponding synthetic profiles
constructed from five modes are given in Fig. 5. Not surprisingly, as the range of the
missing data points becomes larger, in general the deviation of the estimated coefficients
from their true values becomes larger, as does the RMS difference across the depth range
of the missing data. However, the coefficients of certain modes are much less sensitive than
the coefficients of other modes.

The coefficients of the first mode are least sensitive to data deletion, but by the time the
first 100 m of data are removed (Case 5), the individual coefficients begin to deviate
noticeably from their true values. Mode 4 coefficients were the most sensitive, followed by
mode 5, then mode 3, and mode 2. This correlates well in a qualitative sense with the
location of extrema in the eigenfunctions of Fig. 2. However, even with the upper 100 (Case
5) to 150 (Case 6) m of data removed, the RMS deviation is less than 1.7 0C. Notice that
the RMS difference below the depth of the missing data actually is less than it is when using
the full profiles. This is because when complete profiles are used, a trade-off must occur
in the calculation of the principal components, where the various eigenfunctions must be fit
as well as possible over the full depth range. When the highly structured upper part of the
profile is missing, the remaining portion may be better fit with the eigenfunctions.

Next consider what occurs if increasing amounts of data are missing at the bottom of the
profiles. The six cases considered are described in Table 3, the normalized coefficients are
in Fig. 6, and the RMS differences are in Fig. 7. Because there is so much less structure
at the bottom of the profiles, the impact of missing data is less deleterious. In general, as
the amount of missing data becomes larger, the deviation of the estimated coefficients from
their true values also becomes larger. However, the deviations are much smaller in
comparison with the estimated coefficients constructed with near-surface data points
removed. RMS differences are also much smaller; less than 0.3 "C in Case 12 when 1400
m of data were removed from the bottom of each profile.

Again the coefficients of the first mode are by far the least sensitive to the deletion of data;
they do not vary significantly from their true values even when a large number of near-
bottom data points are missing from the profiles. Modes 2 and 5 are the most sensitive, but
their deviations from their respective true values are much less than when the surface values
are removed. Deviations in mode 3 increase quite slowly as the amount of missing data
increases.

The RMS difference increases as the profiles are progressively truncated. The most
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sensitive part of the profiles lies between about 600 to 1200 M, where mode 2 in particular
has considerable structure. Deletion of data below this depth range has only a modest
impact upon the resulting synthetic profiles. The RMS difference above the truncation
depths again tends to be somewhat less than the RMS difference computed using full depth
profiles.

Finally, we deleted increasingly larger amounts of data in the depth ranges centered around
300 m (a minimum in the variability seen in Fig. 1c) and around 600 m (a maximum in the
variability), as described in Tables 4 (Cases 13, 14, and 15) and 5 (Cases 16, 17, and 18).
The normalized coefficients and RMS differences are given in Figs. 8 and 9 and Figs. 10 and
11. Both of these sets of results show deletion of data increases the RMS differences
between the synthetic profiles and the data over that computed with complete data;
however, the increase in the RMS is only in the vicinity of the missing data and it is
remarkably small. Case 18 was computed with data between 500 - 700 m deleted, but the
RMS difference at 500 m increased less than 0.1 °C to about 0.2 a C.

4. Coefficient Estimation Software

To implement the theory described above, a FORTRAN subroutine ESTCOE was written
and is presented in Appendix A. ESTCOE requires the input of two data files; one
containing the profiles themselves and the other containing the mean profile and
eigenvectors associated with the area of interest. For each profile, the system of equations
given in eq. (3) is solved for the set of unknown estimated coefficients {cm). The synthetic
profile is then constructed using the estimated coefficients, the input eigenvectors, and the
mean profile.

The output coefficients are stored in a two-dimensional variable, Coef(MaxProffles, Maxz),
where the maximum number of profiles and maximum number of depths have been set (by
a parameter statement) as MaxProfiles = 100 and Maxz = 50, respectively. The output
synthetic profiles are also stored in a two-dimensional variable, pp(MaxProfiles, Maxz).

Other parameters are returned from ESTCOE. A full description of these parameters as
well as a more complete description of the algorithm, format of input files, output
parameters, an example driver program, and the FORTRAN code itself is found in
Appendix A.

5. Concluding Remarks

We have described a least-squares minimization technique for estimating principal
components from incomplete ocean profile data. An important application of this technique
is to compute from these estimated principal components a synthetic profile that interpolates
or extrapolates the missing data values. This synthetic profile can then be used in place of
the original incomplete profile, or it can be merged with the original profile in some fashion
to fill in the missing data. In particular, the technique lends itself to the problem of
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extrapolating shallow ocean data profiles - say, from shallow CTD casts or from expendable
probes such as XBTs (expendable bathythermographs) or AXBTs (the air-launched XBT) -
- to a deeper preselected depth. A commonly used alternative is to use climatological
values below the maximum data depth, with some merging procedure to combine the two.
The technique presented here, however, makes use of the information contained in the
structure of the observed profile and the correlations between that upper level structure and
the deeper structure to produce what will, in many cases, be a better estimate of the deeper
structure than can be made with climatology alone.

To illustrate this, we computed the RMS difference between our 28 temperature profiles in
Fig. la and the appropriate GDEM (Teague, et al., 1990) and Levitus (Levitus, 1982)
climatological profiles (Fig. 12). We also simulated the use of T-7 XBTs by cutting our 28
profiles off below 700 m, estimating the principal components as described above, and
computing the synthetic profiles from these principal components (this is Case 10 of Fig. 7).
The RMS difference for Case 10 between the synthetic profiles and the data is also
reproduced on Fig. 12. The RMS difference for the synthetic profiles is substantially lower
than the RMS differences for either of the climatologies, particularly below 700 m. Hence,
merging the synthetic profiles with the 700 m deep measured profiles would give a better
depth-extended data set than using either climatology. These profiles happened to come
from the Sargasso Sea region, but we feel confident our results would hold elsewhere as
well.
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Table 1. Standard depths (m) used in the analysis.

0 10 20 30 50 75 100
125 150 200 250 300 400 500
600 700 800 900 1000 1100 1200

1300 1400 1500 1750 2000

Table 2. Depths at which data values were eliminated for Cases 1 - 6.

Case 1: 0m
Case 2: 0, 10, 20 m
Case 3: 0, 10, 20, 30 m
Case 4: 0, 10, 20, 30, 50 m
Case 5: 0, 10, 20, 30, 50, 75, 100 m
Case 6: 0, 10, 20, 30, 50, 75, 100, 125, 150 m

Table 3. Depths at which data values were eliminated for Cases 7 - 12.

Case 7: 2000, 1750 m
Case 8: 2000, 1750, 1500, 1400, 1300, 1200, 1100 m
Case 9: 2000, 1750, 1500, 1400, 1300, 1200, 1100, 1000, 900 m
Case 10: 2000, 1750, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800 m
Case 11: 2000, 1750, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800, 700 m
Case 12: 2000, 1750, 1500, 1400, 1300, 1200, 1100, 1000, 900, 800, 700, 600 m

Table 4. Depths at which data values were eliminated for Cases 13 - 15.

Case 13: 300 m
Case 14: 250, 300 m
Case 15: 200, 250, 300, 400 m

Table 5. Depths at which data values were eliminated for Cases 16 - 18.

Case 16: 600 m
Case 17: 500, 600 m
Case 18: 500, 600, 700 m
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28 Temperature Profiles Mean Profile Perturbation Profiles
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Figure 1. The 28 temperature profiles used in the analysis. a: overplot of all profiles; b: mean
profile; c: overplot of perturbation profiles.
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Figure 2. The first five eigenvectors computed from the data in Fig. 1. The number in
parentheses is the percent of the total variance that is described by that particular
eigenvector.
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First 5 principal components o
for 28 temperature profiles 200
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Figure 3. a: The expansion coefficient values versus mode number for coefficients
calculated using full depth profiles; b: the RMS temperature difference over all 28 profiles
between the real and the synthetic profiles computed with five modes.
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Figure 4. The normalized estimated coefficient amplitudes versus mode number for Cases
1 - 6 in which data in the upper portion of the profiles were deleted. Table 2 describes the
data deleted for each case.
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Figure 5. The RMS differences for Cases 1 - 6 between the real and the synthetic profiles
computed using the estimated coefficients given in Fig. 4. The dotted curve is the RMS
difference from Fig. 3b, shown for comparison. The shaded regions indicate the depth range
over which data was deleted.
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Figure 6. The normalized estimated coefficient amplitudes versus mode number for Cases
7 - 12 in which data in the lower portion of the profiles were deleted. Table 3 describes the
data deleted for each case.
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Figure 7. The RMS differences for Cases 7 - 12 between the real and the synthetic profiles
computed using the estimated coefficients given in Fig. 6. The dotted curve is the RMS
difference from Fig. 3b, shown for comparison. The shaded regions indicate the depth range
over which data was deleted.
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Figure 8. The normalized estimated coefficient amplitudes versus mode number for Cases
13 - 15 in which data around 300 m (a data variance minimum) were deleted. Table 4
describes the data deleted for each case.
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Case 13 Case 14 Case 15
0

200 .

400

E 600

S 800

S 1000

1200

1400

1600 

.

1800

2000 I

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

RMS Difference (°C) RMS Difference (OC) RMS Difference (°C)

Figure 9. The RMS differences for Cases 13 - 15 between the real and the synthetic profiles
computed using the estimated coefficients given in Fig. 8. The dotted curve is the RMS
difference from Fig. 3b, shown for comparison. The shaded regions indicate the depth range
over which data was deleted.
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Figure 10. The normalized estimated coefficient amplitudes versus mode number for Cases
16 - 18 in which data around 600 m (a data variance maximum) were deleted. Table 5
describes the data deleted for each case.
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Case 16 Case 17 Case 18
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Figure 11. The RMS dbierences for Cases 16 - 18 between the real and the synthetic
profiles computed using the estimated coefficients given in Fig. 10. The dotted curve is the
RMS difference from Fig. 3b, shown for comparison. The shaded regions indicate the depth
range over which data was deleted.
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Figure 12. RMS differences between the data in Fig. la and GDEM climatology (dotted
line), Levitus climatology (dashed line) and synthetic profiles computed from data truncated
below 700 m to simulate T-7 XBTs (solid line). At all depths the synthetic profiles exhibit
a smaller RMS difference and hence provide a better estimate of the profiles below 700 m
than either of the climatologies.
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FORTRAN Subprogram
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FORTRAN Subroutine ESTCOE

I. Introduction

Subroutine ESTCOE estimates EOF coefficients for a set of input data profiles. It also
calculates synthetic profiles using the estimated coefficients.

11. Input

ESTCOE requires the unit numbers of 2 input files:inunitl: The mean profile & eigenvectors.
inunit2: The data profiles themselves.

The mean profile & eigenvectors must be arranged in the first input file as follows:

Depth values (of the mean profile) are stored in column 1, and the mean profile
values at their respective depths must be storeu, in colurnv 2. An "end of record" flag
is required at the end of the mean profile. This end of record flag is a pair of real
numbers, 9999.00 9999.00.

After the mean profile end r. record flag, the eigenvectors are stored sequentially.
For each eigenvector, the depth values should be stored in column 1, and the
eigenvecto, values at their respective depths irus. appear in column 2. An end of
record flag is required at the end of each ei,6envector "record."

NOTE: The uumber oi depths in the mean profile/eigenvector file has been set to
50 via a parameter statement: parameter(Maxz = 50). This is also the maximum
number of e','-envectors allowed in the mean profile/eigenvector file.

The a: a profiles must be arranged in the second input file as follows:

Depth values are stored in column 1, and the data values at their corresponding
depths are stored in column 2. Depth values should be sequential; that is, a
measurement taken at depth 10 m should be stored before a measurement taken at
20 m. An end of record flag is required at the end of each profile.

NOTE: The number of depths in any single profile has been set to 6000 via a
parameter statement: parameter(Maxpts = 6000).

III. Processing

First, the mean profile & eigenvector input file is read. The user is asked to decide how
many modes will be used to build the coefficients (and subsequent synthetic profiles).
NOTE: The maximum number of modes available is equal to the number of eigenvectors
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in this input file. Then, one at a time, the profiles are read, coefficients are calculated, and
synthetic profiles are constructed using the following approach:

a. When a profile is loaded, it is checked against the eigenvector depths for missing
data points (relative to the eigenvector depths). If a profile contains data at depths
that are not in the eigenvector fie, these "extra depths" are ignored in subsequent
coefficient estimation subroutines. If a profile contains "missing data" relative to the
eigenvector file, this is noted in a "flag" array.

b. For a single profile, the system of equations given in eq. (3) is solved using
standard Gauss-Jordan elimination routines1 .

c. The eigenvector matrix [ee 2 ... e,] is created using only the eigenvector depths
where input data values are present. To solve for the coefficient vector represented
by the set of values {cm}, the inverse of the eigenvector matrix is found. The
determinant of the resulting matrix is displayed. If the determinant is too small
(relative to a set tolerance of 1.OD-14), the user is warned that there may be large
errors in the resulting estimated coefficients. The user is encouraged to rerun the
program using a smaller number of modes with which to build the coefficients.

d. The right-hand side vector in eq. (3) is created using the input profile data, the
mean profile, and the eigenvectors. The entire system of equations is then solved.

e. The synthetic profile is built using the estimated coefficients. The coefficients and
the synthetic profile are stored, and the program "loops" through again using the next
profile's data.

IV. Output

Output from ESTCOE consists of the variables listed below. Parameter values are set for
the maximum number of depths allowed in the mean profile/eigenvector input file (Maxz
= 50) and the maximum number of input profiles (MaxProfiles = 100).

Num.probes: Number of profiles in the input data file
e_ndep: Number of depths in each eigenvector (as well as the mean

profile)
Num eigen: Number of eigenvectors (or modes) used in calculating the

estimated coefficients
e depth: Array of eigenvector depths; e depth(MaxDepths)

'Press, William H. et al. (1986). Numerical Recipes -- The Art of Scientific Computing.

New York (NY): Cambridge University Press, pp. 35-37.
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Coef: 2-D array that stores the estimated coefficients;
Coef(MaxProfiles, Maxz)

pp: 2-D array that stores the synthetic profiles; pp(MaxProfiles,
Maxz)
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V. Example of input files and driver program

(1) Input file 1: Mean temperature profile and eigenvectors

0.00 28.38 (depth 0 m, mean profile value at 0 m)
10.00 28.33

1750.00 4.03
2000.00 3.66 (depth 2000 mi, mean profile value at 2000 m)
9999.00 9999.00 (end of record)
0.00 -0.01 (depth 0 m, eigenvector 1)
10.00 0.04

1750.00 0.10
2000.00 0.04 (depth 2000 m, eigenvector 1)
9999.00 9999.00 (end of record)

0.00 0.06 (depth 0 m, eigenvector N)
10.00 0.04

1750.00 -0.19
2000.00 0.00 (depth 2000 m, eigenvector N)
9999.00 9999.00 (end of record)

(2) Input file 2: Temperature profiles

0.00 28.60 (depth 0 m, temperature value at 0 m, profile 1)
2.00 28.60
4.00 28.58
5.00 28.57
8.00 28.40
10.00 28.24

1750.00 3.96
9999.00 9999.00 (end of record)

0.00 28.29 (depth 0 m, temperature value at 0 m, profile N)
5.00 28.28
10.00 28.27

1700.00 3.81
9999.00 9999.00 (end of record)
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(3) Example of a driver program that calls the subroutine ESTCOE.

$1arge
program driver

c Purpose: To test the subroutine ESTCOE

c Compiler: Microsoft FORTRAN v 4.01
c To compile: fl -c driver.for
c To link: link driver + ESTCOE;
c To run: driver

c Parameter values set: Maximum number of depths in any input file is set at Maxz = 50
c Maximum number of input profiles is set at MaxProfiles = 100

parameter(Maxz = 50, MaxProfiles = 100)
double precision Coef(MaxProfiles, Maxz), pp(MaxProfiles, Maxz)
integer inunl, inun2, outunl, outun2
integer Num eigen, Num_probes, e_n dep, mode, probe
real edepth(Maxz)

c Set unit numbers for input/output files
inunl = 10
inun2 = 11
outunl = 12
outun2 = 13

c Give input filenames
open(inunl, file = 'evec.dat')
open(inun2, file = 'profles.dat')

c Give the output filenames
open(outunl, file = 'coeff.dat')
open(outun2, file = 'synthet.dat')

c Call the estimate coefficient subroutine
call est coef(inunl, inun2, Num_probes, e_n_dep, Numeigen,
* e-depth, Coef, pp)

c Write the coefficients to output filel
4 format(Ix, i4, 1x, f10.4)

do 10 probe = 1, Num.probes
do 20 mode = 1, Numeigen

write(outunl, 4) mode, Coef(probe, mode)
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20 continue
10 continue

c Write the synthetic profiles to output file2
5 format(lx, flO.2, Ix, flO.4)

do 30 probe = 1, Num.probes
do 40 k = 1, e_n_dep

write(outun2, 5) edepth(k), pp(probe, k)
40 continue
30 continue

c Close all open files
close(inunl)
close(inun2)
close(outunl)
close(outun2)

c End of program
stop
end
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$large
C ****S****************************************************.**************

subroutine ESTCOE(inunl, inun2, Num_probes, e_n_dep,
* Numeigen, edepth, Coef, pp)

c

c Purpose: To find EOF coefficients for input profiles which
c have missing depth values and to create synthetic
c profiles.
c
c Input: inunh: Unit number of input profiles
c inun2: Unit number of Mean profile & Eigenvectors
c
c Output: Numprobes: Number of profiles in the input data
c file
c e_n_dep: Number of depths in each eigenvector (as
c well as the mean profile)
c Numeigen: Number of eigenvectors (or modes) used
c in calculating the estimated
c coefficients
c edepth: Array of eigenvector depths;
c edepth(Maxz)
c Coef: 2-D array which stores the estimated
c coefficients; Coef(MaxProfiles, Maxz)
c pp: 2-D array which stores the synthetic
c profiles; pp(MaxProfiles, Maxz)
C
c Limitations: Maximum number of input profiles is set at
c MaxProfiles = 100. Maximum number of depths in any
c single input profile is set at Maxpts = 6000.
c Maximum number of depths in the mean/eigenvector file
c is set at Maxz = 50. Matrix Singularity criteria set
c at det tol = L.OD-14.
c
c Precision: Double Precision
c Compiler: Microsoft FORTRAN v 4.01
c To compile: fl -c ESTCOE.for
c To link: link driver + ESTCOE;
c
c Code uses routines from NUMERICAL RECIPIES
c ROUTINES: L U Decomposition (LUDCMP)
c Back Substitution (LUBKSB)
c NOTE: Modifications were made to the original code for these two
c subroutines; real variables were changed to double precision;
c unnecessary output variables were deleted from calling and
c subroutine declaration statements.
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C
c Program written by: Eileen P. Kennelly
c Neptune Sciences, Inc
c Slidell, LA 70458
c Variables:
c A: "A" matrix in A *x =B; Used in LUDCMP
c B: "B" vector in A *x =B; x = (inv)A * B; The
c ,efficients for a particular profile are temporarily
c stored in this vector; Used in LUBKSB
c Coef: 2-D array which stores calculated coefficients;
c Coef(MaxProfiles, Maxz)
c determin: Determinant of the LUDCMP matrix; checks for
c singularity
c det tol: Tolerance check of the determinant of the LUDCMP
c output matrix; set at parameter (dettol = 1.0D-14)
c E: Eigenvectors are stored in this 2-D matrix;
c E(Maxz, Maxz)
c eof: End of input file flag
c ejdepth: Array of eigenvector depths; edepth(Maxz)
c en dep: Number of depths in each eigenvector
c f: Shallow water data (input profiles) is stored here
c one profile at a time; a I-D array, f(Maxpts)
c fbar: Mean profile associated with the eigenvectors; a l-D
c array fbar(Maxz)
c flag: Logical array; Set to TRUE if there exists an
c eigenvector value at a profile depth
c f.depth: Array of profile depths; fdepth(Maxpts)
c f.n.dep: Number of depths in a particular profile
c fprime: At depth z, f' = Profile value - Mean;
c f'(z) = f(z) - fbar(z); a ID array f.prime(Maxpts)
c indx: Array used by LUDCMP and LUBKSB
c inunl: Unit number of input Mean profile and eigenvectors
c inun2: Unit number of input profiles
c MaxProfiles: Maximum number of input profiles;
c parameter (MaxProfiles = 100)
c Maxz: Maximum number of depths in either input file;
c parameter (Maxz = 50)
c N: Number of eigenvectors in the eigenvector file
c Numeigen: Number of eigenvectors which are actually used in the
c construction of estimated coefficients
c Num~probes: Number of profiles in input file
c p: 1-D array which stores a single synthetic profile;
c p(Maxz)
c pp: 2-D array which stores all synthetic profiles;
c pp(MaxProfiles, Max)
c probe: Profile counter
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double precision dettol
parameter (Maxz = 50, MaxProfiles = 100, Maxpts = 6000)
parameter (dettol = L.OD-14)
double precision A(Maxz, Maxz), B(Maxz), f(Maxpts), determin
double precision E(Maxz, Maxz), fbar(Maxz), f.prime(Maxpts)
double precision p(Maxz), Coef(MaxProfiles, Maxz)
double precision pp(MaxProfiles, Maxz)
integer inunl, inun2, indx(Maxz)
integer Num.eigen, probe, endep, f.n_dep, N, Num_probes
logical eof, flag(Maxz)
real e.depth(Maxz), f_depth(Maxpts)

c Get the Eigenvectors and the Mean vector from first input file
call EigMea(inunl, N, E, en_dep, edepth, fbar)
call LdEig(N, Num-eigen)

do 10 probe = 1, MaxProfiles

c Let user know something is happening...
write(*,*) 'Calculating coefficients for profile ', probe

c Load an input profile, f
call Ld Pro(inun2, f, fLdepth, fn-dep, eof)
if (eof) goto 89

c Find missing depths and set the flag array to indicate this
call Miss(f depth, fndep, e depth, endep, flag)

c Load the matrix A (in A * x = B) with the Eigenvectors
call AMatx(endep, E, Numeigen, flag, A)

c Call the Numerical Recipe LUDCMP to find the inverse of the A
c matrix in A * x =B

call LUDCMP(Num eigen, A, indx)

c Look at the determinant of the inverse A matrix. Check it for
c singularity

call Det(Numeigen, A, determin)
if (dabs(determin) .It. det tol) then

call Messageo
endif

c Calculate f.prime; f'(z) = f(z) - tbar(z)
cal Ld fpr(f, f.depth, fn.dep, e.depth, e..n..dep,
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* fbar, f prime)

c Load vector B (in A * x = B) with f * E
call LA_B(E, edepth, e.n_dep, fdepth, fn dep,

* f prime, Numieigen, B)

c Solve for x: A*x-=B
c (resulting coefficients stored in variable B)

call LUBKSB(A, Num eigen, indx, B)

c Create the synthetic profile,
call Syn(B, E, fbar, e_ndep, Numeigen, p)

c Store coefficients in a 2-D array
call MkCoe(probe, Num eigen, B, Coef)

c Store synthetic profile in a 2-D array

call MkSyn(probe, e-n-dep, p, pp)

10 continue

89 Numprobes = probe- 1
return
end

c
subroutine EigMea(lun, N, E, en_dep, e_depth, fbar)

c Purpose: To load the Mean vector, and the Eigenvectors

parameter (Maxz = 50)
double precision E(Maxz, Maxz), fbar(Maxz)
integer lun, N, endep
real ej.epth(Maxz)

c Load the Mean vector, fbar
c End of mean profile flag set at 9999.00

do 10 k = 1, Maxz
readoun, *) ejdepth(k), fbar(k)
if (e depth(k) .gt. 9000. .and. tbar(k) .gt. 9000.) goto 20

10 continue
20 endep = k- I

c Load the eigenvectors, E(eigenmode, depth)
c End of each eigenvector flag set at 9999.00
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do 30j = 1, Maxz
do40k = 1, Maxz

read(lun, *, end = 50) edepth(k), E(j, k)
if (edepth(k) .gt. 9000. .and. E(j, k) .gt. 9000.) goto 31

40 continue
31 continue
30 continue

c Note that there are (j - 1) eigenvectors available
50 N = j - 1

return
end

subroutine LdEig(N, num-eigen)

c Purpose: The user decides how many modes will be used to build
c the coefficients (and eventually the synthetic profiles).

parameter (Maxz = 50)
integer N, num_,;g,.n

10 format(lx, A, 13, lx, A, A)
20 write(*, 10) 'There are', N, 'eigenvalues in the',

* 'input eigenvector file. You can use'
write(*, 10) 'a maximum of', N, 'eigenvalues in the',

* 'construction of the synthetic profile.'
write(*,*) 'How many do you want to use?
read(*,*) numeigen

return
end

subroutine Ld Prolun, f, f.depth, fndep, eof)

c Purpose: To load a single profile

parameter (Maxz = 50, Maxpts = 6000)
double precision f(Maxpts), vals(2, Maxpts)
integer lun, fn_dep
logical eof
real fLdepth(Maxpts)

c Load a profile, f
c End of profile flag set at 9999.00
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do 10 k = 1, Maxpts
read (lun,*, end = 40) vals(1, k), vals(2, k)
if (vals(1, k) .gt. 9000. .and.

vals(2, k) .gt. 9000.) goto 20
fdepth(k) = vals(1, k)
f(k) = vals(2, k)

10 continue

20 f.n.dep = k- I
goto 30

40 eof = .true.
30 continue

return
end

c
subroutine Miss(fLdepth, fn_dep, e_depth, e n_dep, flag)

c Purpose: To find the missing points in a profile

parameter (Maxz = 50, Maxpts = 6000)
integer endep, fn.dep
logical flag(Maxz)
real e.depth(Maxz), fdepth(Maxpts)

do 10 k = 1, endep
flag(k) = .false.
do 20 nn = 1, f n_dep

if (f.depth(nn) .eq. eCdepth(k)) then
flag(k) = .true.
goto 10

endif
20 continue
10 continue

return
end

C
subroutine AMatx(e_n.dep, E, Numeigen, flag, A)

c Purpose: To load the "A" Matrix in A * x = B

parameter (Maxz = 50)
double precision E(Maxz, Maxz), A(Maxz, Maxz)
integer e._n_dep, Num-eigen
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logical flag(Maxz)
real sum

c Create the A matrix using only the eigenvectors needed.
do 10 i = 1, Numeigen

do 20 j = 1, Num eigen
sum = 0.0
do 30 k = 1, e_n_dep

if (flag(k)) then
sum = sum + E(i, k) * E(j, k)

endif
30 continue

A(i, j) = sum
20 continue
10 continue

return
end

C *

subroutine Det(N, A, prod)

c Purpose: Check the determinant of the (inv)A matrix for
c possible singularity

parameter (Maxz = 50)
double precision A(Maxz, Maxz), prod
integer N

prod = 1.0
do 10i = 1, N

prod = prod * A(i, i)
10 continue

4 format(IX, A, IX, E8.2)
write(*,4) 'Determinant of the Eigenvector LUDCMP matrix =',

• prod

return
end

C **********************************************************************

subroutine Ld fpr(f, fLdepth, f_n_dep, edepth, e_n_dep,
* fbar, f prime)

c Purpose: At each depth z, calculate f'(z) = f(z) - fbar(z)

parameter (Maxz = 50, Maxpts = 6000)
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double precision fbar(Maxz), f prime(Maxpts), f(Maxpts)
integer f_n_dep, en_dep
real eCdepth(Maxz), fdepth(Maxpts)

do 10 k = 1, e_n_dep
do 20 nn = 1, f_n_dep

If (fLdepth(nn) .eq. edepth(k)) then
f prime(nn) = f(nn) - fbar(k)

endif
20 continue
10 continue

return
end

C **********************************************************************

subroutine LdB(E, e_depth, e-n dep, f_depth, f_n_dep,
* f.prime, Num.eigen, B)

c Purpose: Load the vector "B" in A * x = B

parameter (Maxz = 50, Maxpts = 6000)
double precision B(Maxz), f.prime(Maxpts), E(Maxz, Maxz), sum
integer Num_eigen, f_n_dep, endep
real e.depth(Maxz), fdepth(Maxpts)

do 10 i - 1, Numeigen
sum = 0.0
do 20 k = 1, e_n_dep

do 30 nn = 1, f_n.dep
if (fLdepth(nn) .eq. edepth(k)) then

sum = sum + fjprime(nn) * E(i, k)
endif

30 continue
20 continue

B(i) = sum
10 continue

return
end

c S ******************************************* *********i**

subroutine Syn(C, E, fbar, endep, Num eigen, p)

c Purpose: At each depth z, calculate the synthetic profile, p
c p(z) = Mean(z) + sum (Coefficient * Evec)
c Note: This is for a single profile
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parameter (Maxz = 50)
double precision C(Maxz), fbar(Maxz), E(Maxz, Maxz), p(Maxz), sum
integer Num_eigen, e_n_dep

c Synthetic(z) = Mean(z) + sum (Coeff * Eigenvector)
do 20 k = 1, en.dep

sum = 0.0
do 10 j = 1, Num-eigen

sum = sum + C(j) * E(j, k)
10 continue

p(k) = fbar(k) + sum
20 continue

return
end

C

subroutine MkCoe(probe, Numeigen, B, Coef)

c Purpose: To store the calculated coefficients in a 2-D matrix

parameter (Maxz = 50, MaxProfiles = 100)
double precision B(Maxz), Coef(MaxProfiles, Maxz)
integer probe, Numeigen

do 10 k = 1, num-eigen
Coef(probe, k) = B(k)

10 continue

return
end

subroutine Mk Syn(probe, ejndep, p, pp)

c Purpose: To store the calculated synthetic profiles in a 2-D matrix

parameter (Maxz = 50, MaxProfiles = 100)
double precision p(Maxz), pp(MaxProfiles, Maxz)
integer probe, endep

do 10 k = 1, en.dep
pp(probe, k) = p(k)

10 continue

return
end
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subroutine LUDCMP(N, A, indx)

c Purpose: To solve a Matrix A into L U Decompostion form
c ... from NUMERICAL RECIPES

parameter (Maxz = 50)
parameter (nmax = 100, TINY = 1.0E-20)
double precision A(Maxz, Maxz), VV(nmax), aamax, sum, dum
integer N, indx(Maxz), D, imax

do 26 i = 1, N
indx(i) = 0

26 continue

D=I
do 12 i=l,N

aamax =0.
do 11 j=I,N

if (dabs(A(i, j)) .gt. aamax) aamax = dabs(A(i, j))
11 continue

if (aamax .eq. 0.) pause 'Singular matrix.'
VV(i) = 1. / aamax

12 continue
do 19j = 1, N

if(j .gt. 1) then
do 14i = 1, j- 1

sum = A(i, j)
if (i .gt. 1) then

do 13 k = 1, i - 1
sum = sum - A(i, k) * A(k, j)

13 continue
A(i, j) = sum

endif
14 continue

endif
aamax = 0.
do 16i = j,N

sum = A(i, j)
if (j .gt. 1) then

do 15k= 1,j-1
sum = sum - A(i, k) * A(k, j)

15 continue
A(i, j) = sum

endif
dum = VV(i) * dabs(sum)
if (dum .ge. aamax) then
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imax = i
aamax = dum

endif
16 continue

if (j .ne. imax) then
do 17k = 1, N

dum = A(imax, k)
A(imax, k) = A(j, k)
A(j, k) = dum

17 continue
D=-D
W(imax) = W(j)

endif
indx(j) = imax
if j .ne. N) then

if (A(j, j) .eq. 0.) A(j, j) = TINY
dum = 1. / AO, j)
do 18 i =j + 1, N

A(i, j) = A(i, j) * dum
18 continue

endif
19 continue

if (A(N, N) .eq. 0.) A(N, N) = TINY

return
end

C 8

subroutine LUBKSB(A, N, indx, B)

c Purpose: To solve the system A * x = B for x by back substitution
c ... from NUMERICAL RECIPES

parameter (Maxz = 50)
double precision A(Maxz, Maxz), B(Maxz), sum
integer indx(Maxz), 11, N

ii=0
do 12 i = 1, N

11 = indx(i)
sum i B(l)
B(nl) = B(i)
if (ii .ne. 0) then

do l1j = ii, i - I
sum = sum - A(i, j) * B(j)

11 continue
elseif (sum .ne. 0.) then
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11=i

endif
3(i) = sum

12 continue
do 14 i = N, 1, -1

sum = B(i)
if (i .It. N) then

do 13j = i + 1, N
sum = sum - A(i, j) * B(j)

13 continue
endif
B(i) = sum / A(i, i)

14 continue

return
end

C 8

subroutine MessageO

c Purpose: To flash a warning message if the determinant of the
c LUDCMP matrix is too small

write(*,*) ' '
write(*,*) 'WARNING. In trying to calculate coefficients, it',• 'was found that the'

write(*,*) 'eigenvector matrix was singular; the coefficients',
• 'may be erroneous.'
write(*,*) 'It is suggested that you re-run this program and',

• 'choose a smaller number'

write(*,*) 'of eigenvalues to construct the coefficients.'
write(*,*) 'Processing continues...'
write(*,*)

return
end
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