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Abstract

Flexible manipulators can be characterized by a dynamic model with a large number of
vibration modes, and the use of the model in the model-based control schemes requires
reduction of model order. Balanced truncation is an effective method for model reduction of
asymptotically stable systems by transforming the states to a coordinate system in which the
controllability and observability Gramians are equal and diagonal, and eliminating the states
which contribute weakly to the input-output map. An elastic flexible manipulator, however,
is a marginally stable system and thus the balanced truncation method can not be directly
applied. In this report, we present a method of reducing the order of a marginally stable
system based on the fact that translation transformations in the frequency domain preserve
input-output properties of the system. We address the successful application of the method
to model reduction of flexible manipulators with infinite-dimensional or finite-dimensional
model. The method is also applicable for any other marginally stable model, such as elastic
space trusswork and multi-dimensional space vehicle structure.
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1 Introduction

Flexible manipulators have been increasingly interesting to many researches for light-weight,
energy-efficiency, and less harmfulness concerns. Modeling and controlling such manipula-
tors, however, is a challenge because conceptually the system must be characterized by a
distributed parameter systems (DPS) with infinite number of modes, while controlling DPS
requires a finite-dimensional model. A various approaches of methods can be employed to
reduce the order of a model with either an infinite-dimensional or a finite-dimensional struc-
ture. For example, model order can be reduced by retaining the first finite number of modes
and truncating the rest. In this case, the criterion for selecting appropriate number of modes
is not clearly known and truncation usually results in a model with higher or lower order
than that is needed. Another method frequently used is assuming the order of a model based
on lumping mass model such as Lagrangian approach. Again, this method also has difficulty
in selecting appropriate mode shapes to generate an accurate model with a minimal number
of modes.

The balanced truncation method [1] is based on the realization theory that for zero initial
condition, the input-output behavior of the model is completely specified by the mutually
controllable and observable subspace R'A. The procedure is to transform state space descrip-
tion of a stable system to balanced coordinates such that the input-to-state and state-to-
output couplings are weighted equally. This implies that observability and controllability
Gramians are equal and diagonal. The diagonal elements of the balanced Gramians are in
fact a set of closed-loop input-output invariants, or the Hankel singular values, which char-
acterize the contribution of each state to the input-output map of the system. The states
that are weakly controlled and weakly observed have "small" singular values and the states
that contribute weakly to input-output map can be deleted.

Model reduction by balancing techniques is applicable only for stable systems [l]-[5]. This
is because, for the balancing techniques, the computation of the controllability and observ-
ability Gramians requires that the system be asymptotically stable. Some researches [6]-[9]
have been directed to applying balancing method to flexible structure by assuming lightly
damped and widely separated modes. This assumption is normally not valid in practice.
For a flexible manipulator, as an elastic system, we have to face the fact that the system is
marginally stable. There are very few research articles discussing the model reduction of a
marginally stable or unstable system. In the paper [10], it has been shown that an unstable
non-minimal realization (A, B, C) can be transformed via a similarity transformation, into
a balanced one, if and only if the product of the controllability and observability Gramians
is similar to a real diagonal matrix A.

This report presents a method to reduce the model order of flexible manipulators using
balancing techniques. The approach is based on the fact that translation transformations
in the frequency domain preserve input-output properties of the system. In section 2, we
describe the modeling of two flexible manipulators with an infinite or finite dimensional
structure. In section 3, we present the theory of balancing model reduction technique for a
marginally stable system where the poles are on the imaginary axis. In section 4, we address
the application of the method to model reduction of flexible manipulators.
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Figure 1: The One Link Flexible manipulator

2 Modelling of Flexible Manipulators

In this section, we will discuss the modeling of flexible manipulators with infinite-dimensional
and finite-dimensional structures. These two models will be used to demonstrate the proce-
dure of model reduction in section 4.

2.1 Infinite-dimensional model

The infinite-dimensional model for a one-link flexible manipulator shown in Figure 1 can
be modeled [11] under the following assumptions : (1) motion is planar and payload and
joints are symmetric objects in XY plane. (2) rotary inertia and shear deformation effects
are neglected. (3) gravitation force is in the Z direction. (4) beam inertia and flexibility are
uniformly distributed over the link length.

Based on these assumptions, the dynamics of the position of any point along the link is
governed by the Bernoulli-Euler beam equation:

+pa 2y(Xt)
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where 0 < x < I and the equation has associated boundary conditions.

The transfer function for general Bernoulli-Euler beam equation can be found in [12] and
the complete dynamics can be described by

82Q(, t) +a 2 84Q('t) = f(z,t) (2)

& Q 2Q

Q ( 0,o) = Q o( t), - Q ( 1,o) = Q 9( t), ý ,o(1, t) = 94(t)

O<z_>l, t>0,O a>0

To solve the above problem, we may define a standardizing function:

w(x,t) = f(z,t) + Qo(x).'(t) + Q15(t) - a26'(x)g1(t) + a2 6(X)g2(t) - (3)
-a 2b( - X)g 3 (t) - a2 (l -_ x)g 4 (t)

and we convert the original problem into a zero initial and boundary condition problem for
which the Green's function is

G(z,•,t) =4 00 .(X)cP() Sin a.i2t (4)

where

(P ) = (sinh •nt - sin sn)(cosh /x + cO nX) -

-(cosh p. - cos pni)(sinh J&nX + sin AnX)

and the Pn are the non-negative roots of the equation cosh JlcOs p1 = 1.
The transfer function is given by:

W (X ,z , s ) = 4 ..i = p ( 1) s2 + 1 2 p , (5 )

which has infinite poles:
s 4jaA2, n -1 ,.

2.2 Finite-dimensional model

For a multi-degree of freedom flexible manipulator, Lagrangian dynamics is an appropriate
approach to model the system. As an example, the Self-Mobile Space Manipulator developed
in the Robotics Institute of Carnegie Mellon University [13][14] can be modeled as shown in
Figure 2. Two flexible links are connected by the flex joint and the end of the link holds the
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Figure 2- The Two Link Flexible Manipulator
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tip mass, while the other end of the link is connected to the flex and twist joints attached
to the base. Each compact joint contains a driving motor and a high reduction gearing, and
each flexible link is slender tubing to maximize its strength with minimum weight.

The following assumptions are made to simplify the model:(1) The middle joint and the
end-effector are lumped as a point mass and the moment of inertia of the motor in the joint
is considered for the high reduction gearing. (2) The mass and the moment of inertia of the
links are neglected, compared to the joints and tip mass, or the moment of inertia of the
motor. (3) Each link possesses high tensile and shear stiffness so that no tensile and share
distortion are assumed. Compliance in the bending and torsional directions of the link is
considered. (4) The deflections of the link is small with respect to the length of the link. (5)
The gravity effect is not taken into account for space applications.

The kinetic energy is a summation of the rotational kinetic energy of three revolute joints
and the translational kinetic energy of two point mass. The potential energy consists of
torsional strain energy and bending strain energy. Based on the kinetic energy and potential
energy, Lagrangian model is as follows.

3 1J 3
T ~ 4 iii =* 2 m(r.±yn *r, (6)

j=1 j=2

3E Kbj (3V2, 3tv, -O e 1+ 2 q2) (7)

d )T 8T OU

where

q -[ql ... q13 T

- [ 0102 
4

.z, 0 2ý O z2 0 3 03 y. V .Z0Z 0. .3 . 1T

f A [f...fA31IT

- , r2 0 ... ........ 0r 3 0 ... ....... 0

The joint angular position and link deformation in torsional and bending directions are

selected as a set of generalized displacements, and the joint torques and zero elements form
a set of generalized forces. By a standard procedure based on Lagrangian dynamics, the
explicit dynamics equation can be obtained.

M(q)l + K(q)q + C(qql) = f (9)
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where M is the inertia matrix, K is the stiffness matrix, and C is the centrifugal and Coriolis
torques.

The dynamic equation above is nonlinear due to the translational kinetic energy part in
Equation (7). To linearize the model with reasonable accuracy, we assume that the speed
of the robot is low so that centrifugal and Coriolis torques are negligible and the effect of
link deformation on the variation of the inertia matrix is small so that the inertia matrix is
a function of only joint angles. In this way the dynamic model can be linearized.

M4+Kq= f (10)

It is obvious that the poles of the model lie on the jw axis.

The model can be decoupled into two independent parts, tangential model and radial model.
The tangential model represents the motion associated with joint 1 driving the tip mass in
the circular direction, while the radial model describes the motion associated with joints
2 and 3 driving the tip mass in the plane perpendicular to the circular direction. It must
be noted that the mass and stiffness matrices for both models are functions of the mixed
joint angles. In this way, we can obtain two linearized models in the tangertial and radial
directions

M,'tq + AC', = (11)

j, + 7n12cos 2 02 + . mLcos 92 + 1. 1.

mt cos 02 + I.,m + 1 1

l=1 1

0 0 0

A1  A1

- 01 [ !v -Y -L(v.3 +13sinBO3 ,2 +t 3cos03,)1]•

• 4- 0 01T
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K K
COS 02 + cos( 2 + 03 ) k2~

91~&s~~ E/ q'E.

M,4," = +, (2)

j 2 + •"{ 2 +• 2+ 1 + 2t cos 03 Me + I + cos 03 1 + t COS 03 1 +" COS 03

ml + I + cos 03  m +1 cos 03  cos 03

1 +1 cOS 0 3  cosO8 1033 1

1 + I COS 03  cOS0 3  1 1

0 0 0 0

0 12kL(Uc+3) o _ s8..

A2  A2

0 0 0 0

0 1 SO 0 12k..2
LA2  A2

= g ] fIT

[o~~ ~ )V3+~~

= F2 0 73 0]I

KF0 K: o]T

A2 =- 4ke2 + 3
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3 Model Reduction for a Marginally Stable System

From the discussion above, it has been known that the model of flexible manipulator is
marginally stable, i.e., the poles of the system lie on imaginary axis. In this section, we
present a method of model reduction for such a system.

Consider the linear time invariant system

i(t) = Ax(t) + Bu(t)

Y(t) = CX(t) (13)

where x(t) E R' is the state vector, u(t) E R' is the input or the control vector, y(t) E RP?
is the output vector, and A, B, C are matrices of appropriate sizes.

The transfer function of the system (1) is given by

H(s) = C(sI - A)- 1 B (14)

Definition 1: The symbol (A, B, C) represents a state space realization of the transfer
function of the system.

Definition 2: The realization (A, B, C) is said to be minimal if it is completely controllable
and observable.

Definition 3: (A, B, C) is said to be asymptotically stable if Re ( A I A I) < 0.

Definition 4: Let (A, B, C) be a minimal and asymptotically stable realization. (A, B, C)
is said to be balanced if A, B and C satisfy the matrix Lyapunov equations with equal and
diagonal controllability and observability Gramians, that is

AW, + WAT = -BBT (15)
ATW. + W0 A = -CTC, (16)

where W, = W. = E = diag[o oa2 -.- a,] and Hankel singular values a, _> a2 > > ...a> 0

The matrix E can be partitioned into two submatrices E1 and E2 in the following way

where E, = diag[or, O2 ... ak] and E2 = diag[uk+l •k+2 ... On]

Further partition A, B, C corresponding to the partition of E

A Al A12 B B= C = [CI C2,1 (18)
[A 21 A22  ' B 2 ]' C

8



Then the kth order reduced order model is (All, B1 , C1).

Definition 5: A minimal realization (A, B, C) is said to be a J form realization if A is a
Jordan matrix J and (J, B, C) has following structure:

J = diag[Ji J2 ... Jaj, B = [Bi1 B 2 ... ],

C =-[Cil C,2 ...- Ci] (19)

with

Jij= diag[JSi, Ji.. J"'' iJ, Bij = (Bij, Bj2 ... Bjj,. 1,

C -j = [Ci•, Cj 2 ... Ci,,7 ]

and

Ai 1 0 ... 0 0
0 Ai 1 0 ... 0
0 0 ". ". ". 0Jiik = ! :".)

A~,i 10

: .'. 0 Ai 1
0 0 ...... 0 Ai.

41 = Jij 2 = -"= Jiri, Jijk E Cijxaij

Bijk = [bijkj bi11 ... bijk.,j, Bijk E Cm•""

Cijk = [[kCijk 2 ... Cijk 1,I], Cijk E Cmxa'i.

If (A, B, C) is a minimal realization, there exists a non-singular matrix T such that

J = T-1 AT, B = T-lB, C = CT (20)

H(s) = C(sI - J)-1 B (21)

In the rest of this section, we present an approach to model reduction of marginally stable
system using balancing technique. We at first state the following theorems.

Theorem 1: The controllability and observability of a minimal realization J-form (J, B, C)
depends only on the structures of J, B and C.

The proof of Theorem 1 can be obtained directly from the definitions of the controllability
and observability.

Theorem 2: For minimal marginally stable realization H(s), there exist translation trans-
formations in frequency domain, s' = a + a, such that the poles of H(s + a) lie strictly on the

9



left half s-plane and the controllability and observability of H(s + a) are identical to those

of H(s).

Proof: If H(s) is a minimal realization, we have

H(s) = C(sI- J)-'B

and

H(t) = L-1 [H(s)]

Let A,= be the largest eigenvalue of the matrix J. For the marginally stable system
Re(A,..) = 0. we can choose

a ='e

where e > 0.
Let H(t) = H(t)e-- t , then the Laplace transform of H(t) can be determine- by

H(s) = H(s + a) = C[(s + a)I - J] 1-B = C(sI - j)-'B

Thus
Re(A IJ I)< 0

Since rank(J) = rank(J), (J, B, C) is a minimal realization and J and j have same structure.
From Theorem 1, (J, B, C) and (J, B, C) have the same controllable and observable subspace.

In the balanced realization, the ith Hankel singular value characterizes how controllable
and observable the ith state is. Therefore the model can be reduced by neglecting the
states corresponding to "small" Hankel singular values. This implies that the criterion for
balanced model reduction depends only on the input-output information of the system. Thus
it is possible to obtain a reduced order model by balancing method for an asymptotically
stable system if the input-output map of the system can be determined. More specifically,
we transform the marginally stable system into the asymptotically stable system by the
translation transformation in the frequency domain and balance the resulting stable system.
This procedure leads to the following algorithm.

Algorithm

1. Transform H(s) into fl(s) = H(s + a) so that A(s) has no poles on the right half
s-plane nor on the jw axis.

2. Find a minimal state space realization (A, B, C) of H/(s).

3. Compute the balanced realization (Ab, Bb, Cb) from (A, B, C). That is

Ab = T-'AT, Bb = T-1 B, Cb = CT,

where T is the transformation matrix which makes the controllability and observability
Gramians equal and diagonal.

T can be obtained using any of methods presented in [1]-[5].

10



4. Determine the reduced order model (A., B,, C,) from (Ab, Bb, Cb). Recall that for the
balanced realization, W = = = E = diag[oa, a2 ... a,] and Hankel singular values
01I _Ž a2 > 3! > ... 0. If »k > k+1, then E can be partitioned as

4E, 0]
I•= 0 E2

where El = diag[al a2 ... ak] and E2 = diag[ok+l ak+2 ... an].

(Ab, Bb, Cb) can be partitioned accordingly

A 6 = [ Abl, Ab12 ] Bb=[ Bb] Cb = [Cb, C]Ab= Abe, Ab22 Bb2

to yield the reduced order model

Ar=Abý,, BrBh, CrCb,.

5. Obtain A,.(s) from (Ar, B, C,) as

.r(s) C,(sI - Ar)-IB,.

6. The reduced order model of the original system is given by

H,(s) = f(s - a).

Some remarks may be in order:

1. The translation transformation, s' = s + a, is a conformal transformation which pre-
serves congruence and involves neither rotation nor stretching. Therefore the translation
transformation in the frequency domain does not affect the input-output description of the
model.

2. The algorithm can be interpreted in the time domain as follows

H(t) = H(t)• e' "e = A(t" eat (22)
H,C(t) = Hr(t). e--'. eat f=,(t), ea, (23)

where H(t) and fl(t) are the impulse responses of the full order model and the modified
full order model, H,(t) and H,(t) are the impulse responses of the reduced order model and
the modified reduced order model, respectively. Equation (23) suggests that the impulse
response of an unstable system H(t) can be factored into a stable impulse f1(t) multiplied
by eat, while Equation (24) implies that H,(t) is equal to Ar,(t) multiplied by eat. Therefore,
if

SA1(t)
then

H,(t sH(t).



3. Some model reduction methods, such as Routh approximation, may be applicable to the
unstable model reduction, but they may result in a stable reduced order model and make
implementation of model-based control scheme difficult. For the proposed method, the poles
which lie on the imaginary axis will be the dominant poles of the modified system and thus
balancing will keep properties of these poles.

4. The method can be applied equally well to both SISO and MIMO systems. In MIMO
case, H(s) is a transfer function matrix.

12



4 Model Reduction of Flexible manipulators

As discussed in section 2, the flexible manipulator can be modeled as either infinite-dimensional
model or finite-dimensional system. In either case, it is generally needed to reduce the order
of the model so that any model-based control scheme can be implemented in practice. In
this section, we discuss the application of the method proposed in the previous section to
the two models developed in section 2.

Example 1: Infinite-dimensional model

We list five modes of the infinite-dimensional model based on the parameters suggested in
[111] in Table 1.

Table 1: Poles and zeros of the flexible manipulator

Pair Poles Zeros
1 0.00 ±11.18
2 ±15.42j ±60.45
3 ±49.97j ±149.27
4 ±104.25j ±277.58
5 4±178.27j ±445.35

This is a tenth order model and is difficult to be implemented in real-time control. Using
our method, we can reduce the model order and the resultant second order model is

*2 + 1.6013 x 10's - 7.6801 x 10i
, 2 + 3.3671 x 10-3S - 3.3552 x 10-4

The step responses of the tenth order model and the corresponding second order model are
compared in Figure 3. It has been shown that the second order model is nearly identical to
the tenth order model.

Example 2: Finite-dimensional model

The second example of flexible manipulators is the radial direction model developed in section
2 which has two inputs and four outputs and is manipulator configuration dependent. At 02

- e3 = 60 degree, the transfer function is given by

NUM 1 = 82(2.6823e + 01.4 + 3.7052e + 03s2 + 9.1806e + 03)

NUM12 = 82(1.7131e + 03.2 - 1.3589e + 04)

NUM21 = s4(-2.6823e + 01.2 - 3.5937e + 03)

NUM2 = -1.9382e + 03s4

NUM31 = a 2(1.7131e + 0382 - 1.3589e + 04)

NUM32 = S2(7.4510e + 018 + 7.6274e + 03S2 + 3.0999e + 04)

NUM41 = s'(-2.6823e + 0182 - 5.4970e + 03)

13
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NUM42 = ,'(-7.4510e + 01S2 - 9.1002e + 03)

DEN = s'(S4 + 2.3010e + 0232 + 1.1032e + 04)
where NUMj3/DEN represents the transfer function from the torque Ti to the angle 8j. This
is a 8th order MIMO system and using our method the reduced to 7th order is as follows.

NRII = 3.4686e - 0106 + 2.6394e + O1W5 + 7.6040e + 01s4 + 3.6210e + 03s' + 3.3186e + 03s2 +
7.0192e + 03. - 9.9127e + 02

NR 12 = 1.6638e - 01,6 - 3.4956e - 01s + 3.8582e + 01s4 + 1.6517e + 03s' + 1.6239e + 03S2 -

1.4633e + 04. + 2.0666e + 03)

NR 21 = s2 (-4.6450e - 04s' - 2.6773e + 0183 + 3.731332 - 3.5851D + 03s + 5.0513e + 02)

NR 22 = S2 (-2.2280e - 04s' + 2,4323e - 02S3 - 6.9621e - 02s2 - 1.9340e + 03. + 2.7257e + 02)

NR 31 = 1.6667e - 016 - 2.5671e - 01,5 + 3.8477e + 01.' + 1.6660e + 03S3 + 1.6091e + 0382 -

1.4628e + 04s2.0660e + 03)

NR 32 = 7.9945e - 02,6 + 7.4317e + O1si + 7.9596s' + 7.5946e + 0383 - 1.7942e + 02S2 +
3.0496e + 04s - 4.3073e + 03)

NR41 = s 2 (-4.1424e - 04S4 - 2.6699e + OI13 + 3.642682 - 5.4776e + 03s + 7.7092e + 02)

NR42 = 62 (-1.9869e - 04S4 - 7.4450e + 01S3 + 1.0504e + 01.2 - 9.0908e + 03s + 1.2826e + 03)

DENR = s2(.5 -1.4289e-01.'+2.3010e+02. 3 -3.2765e+01, 2+ 1.1032e+04s- 1.5582e+03)
where NRj/DENR represents the transfer function of the reduced order model from the
torque r- to the angle 9i. The step responses of the original model and the reduced order
model are compared in Figure 4.

15
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5 Summaries

We presented a simple, efficient method for model reduction of flexible manipulators based on
the fact that the translation transformation in s-plane preserves input-output property of the
system. By translation transformation in frequency domain, we can change the stability of
the system without lose of its input-output property. The original balancing method requires
that the model be asymptotically stable while this method is applicable to a marginally stable
system. We employed the proposed method to reduce the order of flexible manipulator
models such that model-based scheme can be implemented. The method has been examined
by two examples, an infinite-dimensional model and a finite-dimensional model.
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