
C COMPUTER COMMAND AND CONTROL COMPANY

> 2300 CHESTNUT STREET, SUITE 230 • PHILADELPHIA, PA 19103
215-854-0555 FAX: 215-854-0665

II AD-A255 238

ELECTE

I SEP 2 11992_

A

I FINAL REPORT

SYSTEM ENGINEERING AUTOMATION (SEA)
FOR DISTRIBUTED SYSTEMS

I CONTRACT NO. N00014-91-C-0183
CDRL SEQUENCE NO. A002

AUGUST 1992I
Thi!, document has been approved
for pu~blic releaise and sale- its
distribution is unlimited. I

Prepared for:

Department of the Navy
Office of Naval Research

Code 1211
Arlington, VA 22217-5000I

92-O 92-2469692. /l ".,[,l~/l

Final Report for Contract No.: N00014-91-C--0183

TABLE OF CONTENTS

A bstract ... 1

1. Introduction .. 2

2. Requirements of the DESTINATION Interface Specification (DIS) 4

3. Components of the Interface SpeciIcation 8

3.1. O verview 8

3.2. Logical M odel 10

3.2.1. The Functional View ... 12
3.2.2. The Behavioral View 13

3.3. Implem entation M odel 15

3.3.1. Softw are Structure 15
3.3.2. Hardware Structure 17
3.3.3. M apping Structure 18

3.4. System Design Factors 20

3.5 Screens, Supporting Routines and File Formats 21

4. Future Directions and Conclusions 31

5. References .. 32

Appendices

A: Ada Specifications for Representing Logical Model A-I

B: C++ Specifications for Representing Logical Model B-I

C: Ada Specifications for Representing Implementation Model C-I

D: C++ Specifications for Representing Implementation Model D-I

E: Ada Specifications for Representing System Design Factors E-I

F: C++Specifications for Representing System Design Factors F-I

G: Routines Supporting DESTINATION Interface Specification G-I

H: DESTINATION Interface Specification File Formats H-I

Computer Command and Control Company

I Final Report for Contract No.: N00014-91-C-0183

* LIST OF FIGURES

I Figure 1: DESTINATION Context Diagram 3

I Figure 2: Design Capture Interface 6

Figure 3: DESTINATION Interface Specification 9

Figure 4: Nodes and Edges Used to Describe DIS Components 11

I Figure 5: Functional View Architecture 12

Figure 6: Behavioral View Architecture 14

I Figure 7: Software Structure Architecture 16

Figure 8: Hardware Structure Architecture 18

Figure 9: Mapping Structure Architecture 20

I Figure 10: Supporting Routines for Design Capture Interface 22

Figure 11: Extended Teamwork Main Menu Options for DESTINATION 25

Figure 12: Extended Teamwork Data Flow Diagram Menu Options for DESTINATION . 26

Figure 13: TAE+ Screen for System Design Factor Template 27

Figure 14: TAE+ Screen for Hardware Resource Description 28

Figure 15: TAE+ Screen for Timing Constraint 29

Figure 16: TAE+ Screen for Placement Constraint 30

NTIS C •, .I
D1 .- 1 A8

By.....
Statement A per telecon James Smith DistHibutLID'l .

ONR/code 1267
Arlington, VA 22217-5000 A!yJd"1 'i ' -

NWW 9/16/92 02"1

I7LC ' 8? 'ISD 3

Computer Command and Control Company

Final Report for Contract No.: N00014-91-C-0183

I FINAL REPORT

SYSTEM ENGINEERING AUTOMATION (SEA)I FOR DISTRIBUTED SYSTEMS

Abstract

This Final Report describes the work performed in the area of System Engineering Automation
(SEA) for Distributed Systems for Contract No. N00014-91-C-0183. The work focussed on
researching the exchange of information between design capture and design optimization
techniques as part of the DESTINATION project. Design Structuring and Allocation
Optimization (DESTINATION) is an ongoing research project at the Naval Surface Warfare
Center (NSWC) to provide a new methodology for design optimization and trade off analysis of
real-time systems. This project produced a version of the enhanced and extended
DESTINATION Interface Specification (DIS).

The need for DIS arises from the inherent adaptiveness of the DESTINATION system to a wide
range of source and target tools. DIS not only allows DESTINATION to coexist with various
systems, but also dictates standards for a comprehensive way of capturing design information.
The basic structure of DIS reflects a method of extracting/incorporating design information that
is otherwise not available across a collection of tools. DIS accommodates the identification of
additional design information, allowing for customization of the source and target tools. The
focus of the DIS research and development work is currently in the area of system logical
modelling and implementation modelling.

I

CoptrCmadanIoto opn

Final Report for Contract No.: N00014-91-C-0183

1. Introduction

One of the primary thrusts behind the Systems Design Synthesis project of the Naval Surface
Warfare Center's (NSWC) Engineering of Complex Systems (ECS) Technology Block Research
Program is to provide a new methodology for systems engineers in the area of Design
Optimization and Trade-Off Analysis. Systems engineers require such a new methodology to
cost effectively construct and maintain increasingly complex mission-critical, real-.ime
systems.

Application complexity has increased not only due to functional demands, but also because of
technological advances. The present and future combat systems must respond to an expanding
theater of commands, as well as the requirement to perform in an integrated manner.
Technologically, the advent of parallel computers and high speed networks opens many
opportunities to provide greater defense capabilities. These functional and technical factors
greatly increase the design space that the systems engineer must explore in search of a design

II that satisfies all requirements. The idea behind design optimization and trade-off analysis is to
provide the systems engineer with the necessary tools and techniques to systematically evaluate
and exploit the vast design space.

DESTINATION is the name given to the NSWC research effort that focuses on developing the
necessary tools and techniques to support such a methodology for design optimization and
trade-off analysis [HoNH]. The emphasis on this project is design structuring and resource
allocation tools and techniques. The design structuring involves making decisions regarding
decomposition/recomposition and fragmentation/defragmentation of hierarchical designs.
Resource allocation includes the mapping of logical design objects onto implementation
resources in a near-optimal manner.

The need for an interface specification to perform design optimization first arose on a
predecessor project to DESTINATION called EDA or Expert Design Advisor [HoHN]. The first
version of the interface specification, developed for EDA, was used to standardize the format of
inputs for the development of four resource allocation optimization algorithms-Gantt [Pearl,
Data-Oriented, Genetic [Davi9l] [Gold], and Simulated Annealling [KiGV]. Reuse of the same
data structures reduces the size of the development effort and increases the ability to adapt to
new algorithms. The need for the exchange of information between various front-end case tools
has initiated the development work on standards for the interface specification that would
enhance portability, adaptability, maintainability and extensibility for a wide range of
source/target tools.

To better understand the function and structure of the DESTINATION Interface Specification. it
is necessary to further explain the associated DESTINATION methodology. By reviewing the
context diagram in Figure 1, we can see the DESTINATION methodology's scope and
contribution within the systems life cycle.

Computer Command and Control Company

Final Report for Contract No.: N00014-91-C-0183

I
Exports Views I[)s Criteia, W Simulation/

DesignDESNATION Optimization Ceria Optimization
Capture Imrts Views Ex rts Results Tools and

Techniques

Characterization Trade-off optimization
& 'irective Analysis CCnteria and

Recomnmendatior Support Constraints

Engineer

Figure 1: DESTINATION Context Diagram.

The human systems engineer plays a critical role within the methodology. The systems
engineer's input is fundamental for selecting the subject of design optimization and evaluation,
applying analysis techniques and interpreting results. The methodology supports the systems
engineer by making characterizations and recommendations. The systems engineer may accept
or override these outputs.

A complete scenario of steps can be mapped into the context diagram to describe the
methodology.

1. The systems engineer gives a directive to select a design capture view for analysis.

2. DESTINATION interacts with the system's engineer to determine the following:

a. System characterization.

b. Formulation of design goals.

c. Application of design rules.

d. Recommendation for use of simulation/optimization tools and techniques.

3. The system's engineer directs DESTINATION to import the necessary data for the
selected simulation/optimization tools and techniques.

4. Results from simulation/optimization are exported to DESTINATION for evaluation.

5. When satisfied with the achievement of design goals, any modification to the design
capture views are imported to the Design Capture system to maintain consistency.
Although these steps are listed sequentially, it is expected that there will be a high
degree of iteration within and among these steps, particularly when performing trade-off
analysis.

Many approaches have been followed that specify what to capture, such as, structured analysis
and design [WaMe], object-oriented design [BOOC], and how to capture it. One of the most
robust approaches to be defined, which is consistent with earlier DESTINATION research

Computer Command and Control Company 3

Final Report for Contract No.: N00014-91-C-0183

efforts, was jointly developed by NAVSWC and Trident Systems Corporation ([Karel, [Hoan]).
This approach to forward design capture represents one set of information that may be
incorporated into the DESTINATION methodology for analysis. Though DESTINATION is not
restricted to any particular Design Capture approach, the NAVSWC/Trident approach is one of
the most robust and places the strongest demands on DESTINATION, so it is advantageous to
use from a research prospective. Furthermore, use of this approach insures integrated results
within the System Design Synthesis project of the ECS block program.

Basically, the forward design capture accepts design information according to three models: the
conceptual model, the logical model, and the implementation model. Each is described below.

The conceptual model captures the operational ideas of the system from the perspective of the
operational environment and information modelling. The environmental view establishes the
conditions and environment in which the system must operate including a description of the
system architecture's scope and boundaries, test plan, and operational scenarios. The conceptual
model allows the system engineering team and the customer to form a clear understanding of the
subject system.

The logical model includes a description of the functional and behavioral views of the system,
without regard for any particular implementation decisions. The emphasis within this design
capture model is on what the system should do as opposed to how it should do it. The
behavioral view provides an understanding of the system from a dynamic perspective.

The implementation model documents the hardware, software and human resources which
represent a particular embodiment of the system under design. The hardware architecture
describes the physical resources of the system including the components, interconnection
topology and protocol, and rationale for selection. The software architecture describes the
Computer Software Configuration Items (CSCIs) and the executable software tasks including the
messages passed between tasks. The human resource description includes the number of
personnel required to operate the system under various cconditions and the level of training and
experience for each operator.

There is no restriction on what design methodologies may be used within the development of
any of the three models.

Likewise, any number of simulation/optimization tools and techniques are available for use
within DESTINATION. Optimization algorithms that may be applicable for use include
computation/communication-oriented, genetic search and simulated annealing. Simulation
techniques that may be interwoven with the opti-nization algorithms include petri-net simulation
(e.g. SES/workbench, ADAS), queueing theory [CCCC], and general purpose simulation
languages (e.g. Simscript). Future advances in both optimization and simulation are to be
expected.

2. Requirements of the DESTINATION Interface Specification (DIS)

As described in the previous section, the DESTINATION Interface Specification is the layer of
data structures and export/import routines that permit application information to flow in and out
of DESTINATION. From one perspective, DIS bridges the design capture facilities with
optimization decisions and from another perspective, DIS integrates the execution of simulation

Comi-puter Command and Control Company 4

Final Report for Contract No.: N00014-91-C-0183

models and optimization algorithms with design evaluation and recommendations. This iterative
path of capturing, modelling, evaluating and recommending becomes significantly more
streamlined by having a consistent and robust medium of exchange.

A number of requirements impacted the development of DIS. These requirements can also be
viewed as motivating factors for making the investment in DIS.

1. Tool Independence

It is desirable to have a methodology be independent of a particular toolset. There may
be financial and training constraints that oppose acquiring a toolset, particularly when
a comparable one may already be in place. In the context of design capture, for instance,
there are several Front-End Computer-Aided Software Engineering (FE-CASE) tools that
are operational within Department of Defense (DOD) programs, most notably, Cadre's
Teamwork and IDE's Software Through Pictures (StP). The interface to DESTINATION
should handle data from Teamwork just as easily as data from StP.

Certainly, as part of the access routines into the FE-CASE system's repository, there will be
some effort that is not reusable. The goal is to minimize this effort. Figure 2 shows how
this is done in the context of interfacing with Cadre's Teamwork.

Computer Command and Control Company 5

Final Report for Contract No.: N00014-91-C-0183

lrdezes DESM~AMlN

rDOI
Extract Interface

Rotie Routines

T Capability 1

Extracted Optimization Capability 2

Data (SW• Information

Figure 2: Design Capture Interface.

Two capabilities are shown in Figure 2. The first capability provides the systems engineer
with the capability to supplement the design capture process with information for design
optimization. There are three types of design optimization information (DOI) that have been
included as part of the design capture supplement: System Design Factors [HoNHI, data
required by optimization algorithms and hardware resource descriptions and characteristics.
The second capability extracts information stored directly in the Front-End CASE system's
repository representing the information contained within the CASE graphics (bubbles, flows.
connections, etc.) The two information sources, the Front-End CASE dependent data and the
Front-End CASE independent DOI, are then merged to create a DIS compatible file.

Computer Command and Control Company 6

Final Report for Contract No.: N00014-91-C-0183

A similar, though possibly more complicated, choice of tools to develop interfaces exists
within the Simulation System/Optimization Technique domain as in the FE-CASE area.

2. Implementation Independence
The DESTINATION toolset contains many interconnected subsystems, such as for design
characterization, design evaluation, and for making recommendations regarding design struc-
turing and resource allocation. Development of these subsystems can proceed more indepen-
dently by sharing the DIS among them.

Furthermore, developers of algorithms for resource allocation, scheduling, and design
structuring can utilize the DIS as a departure point for their innovation. DESTINATION
then provides a convenient proving ground for determining the situations where the
algorithm performs ibest. This makes for a win-win situation for DESTINATION and
algorithm developers: there will be an increased likelihood that their algorithms will be
transferred to practical use and likewise DESTINATION's library of algorithms on which it
bases its optimization recommendations will progressively expand. It is expected that the
algorithm developers will, in turn, uncover additional requirements for the DIS and through
feedback DIS will progressively improve.

3. Supports Incomplete Information
If optimization is to be performed on a bottom-up basis, there may be substantial informa-
tion that may not have been provided on a higher level. To proceed under these circum-
stances, default values can be associated with the DIS data structures and be supplied
as required by the optimization algorithms.

4. Gain Wide Acceptance
DIS must be designed so that it can be used widely, as described in Figure 1, by systems
engineers, algorithm developers, tool vendors and standards bodies.

5. Transportability
DIS should facilitate the transportability of design capture, design optimization and simula-
tion information from one computer environment to another.

6. Uniformity and Cohesiveness
The DIS model should be simple and uniform, while minimizing the amount of concepts,
types and classes of operations.

7. Implementability
Vendors of simulation systems, front-end CASE systems, and algorithm developers should
be able to utilize DIS with only a reasonable effort. The design of DIS should allow
for flexibility in implementation while maintaining consistent operational semantics.

8. Extensibility
As mentioned above, tool vendors, algorithm developers and systems engineers will uncover
additional requirements on DIS. DIS should not preclude any extensions to its scope
to satisfy evolving needs.

9. Performance
The DIS design must allow for efficient operation from both external access of design
capture and simulation systems as well as from internal DESTINATION procedures.

To satisfy these requirements, several basic design decisions for DIS were made.

Computer Command and Control Company 7

Final Report for Contract No.: N00014-91-C-0183

1. Represent the data structures for easy mapping onto a flat ASCII file. This accommodates
the requirements for acceptability, transportability, implementability, extensibility, and per-
formance.

2. Utilize Ada as the language for formally specifying DIS. There were several underlying
reasons for this:

a. Ada is a DOD standard.

b. Ada is widely available on many computing platforms.

c. Ada's package facilities and specification/body separation could be used to express
multiple layers of abstraction.

d. Ada was very successful in its use as a specification language for the Ada Semantic
Interface Specification (ASIS) definition [BISp]. ASIS is a vendor-independent,
non-proprietary bridge between Ada libraries and Ada tools.

There are a number of alternative methods for specifying the interface. English was
dismissed as being two ambiguous. Use of formalisms like the Backus Naur Form (BNF)
and Extended Backus Naur Form (EBNF) has the advantage of concise accuracy allowing
little room for ambiguities and vagueness but does not allow high level representation. C
was not used because of its lack of abstraction facilities. C++ and Common Lisp Object
System (CLOS) are viable alternatives, particularly due to their strong object orientation and
inheritance facilities. Presently, they lack the standardization and DOD acceptance of Ada.
There are systems and associated languages that specialize in interface definition and
actually automatically generate some code necessary for declaring and accessing the
interface [NEST]. These facilities warrant further investigation, but are not DOD standards.

There are a number of potentially useful integration standards that are emerging, such as
PCIS, Case Integration Services (CIS), IRDS, CASE Document Interface Format (CDIF),
IEEE-P1175 and NGCR's PSSWG [StSh]. None of these efforts, however, are directly
working in the area of design optimization and lack representation of much needed
information. Through planned participation with these working groups and standards bodies
DIS should beneficially impact these efforts.

3. Components of the Interface Specification
3.1. Overview

The current version of DIS, 2.0, is divided into several packages at its top level. Each of these
packages is comprised of lower level packages. This basic structure, at present, is shown in
Figure 3.

I
Computer Command and Control Company

I
a
I
I
I

0 I
_____ U

NI

I- I
z

- - Iz -. __

- I
H

I
I-

H _ __ I
I

I-N I
0

0A- __________________________________ II-
C F
C

I
I

Final Report for Contract No.: N00014-91-C-0183

U The following sections describe the logical and implementation models, as well as system design
factor in greater detail with brief descriptions of the structural componeats and the Ada data type
declarations for some of the major components. In the last section, the Teamwork and TAE+
screens, the supporting Ada routines and the DIS formats will be described in steps. This is
where the emphasis of the current effort has been. Development of a technical report describing
the other packages is in progress.

3.2. Logical Model

The logical model describes the functional and behavioral views of the system. The emphasis
within this design capture model is on what the system should do as opposed to how it should do

*- it.

The logical model contains information representing functional decomposition of system and
interactions between the decomposed functions of the system through the functional view, and
the dynamic operations of the decomposed functions at a different time under different
situations and conditions through the behavioral view of the system.

I Representations are needed for the following information:

1. The flow graph to depict the candidate system in the static decomposition
configuration.

2. The control graph to depict the candidate system in the dynamic decom-
position configuration.

3. Design factors derived from requirements. Design factors describe the
non-functional aspects and the critical real-time information of the sys-
tem, such as fault-tolerance, reliability, accuracy, quality, security, dead-
lines and reconfiguration.

The logical representation of the system consists of one or more logical views, i.e., a list of the
logical views.

Ada type and C++ class declarations for the DESTINATION Interface Specification can be
found in Appendix A and B.

Each logical view consists of a functional view and a behavioral view. The functional view
contains a data flow diagram in which a flow object represents the decomposed functions of the
system and a flow edge represents the interactions between two decomposed functions of the
system.

The behavioral view contains a state transition diagram and a process activation table. The state
transition diagram describes all the existing states of the system and possible transitions between
states under different conditions. The process activation table describes under which condition
each process is activated.

To better explain the data structures represented within the logical model (and also later for the
implementation model), graphic figures have been provided. Figure 4 contains a legend of the
graphical notations. In Figures 5, 6, 7, and 8, there are three types of edges connecting the data
structures representing the logical model:

Computer Command and Control Company 10

Final Report for Contract No.: N00014-91-C-0183

1. An is linked to relation showing that the data structure is part of a
linked list. For each of these relations there are two pointers--one
for the next occurrence in the list and one for the previous occurrence
in the list. This double linked list structure allows for reduced program-
ming in traversing the list.

2. A parent/child relation to indicate that a structure decomposes into anoth-
er data structure. The decomposition implies that when a data structure
contains another data structure, the former data structure may be viewed
as the parent and the latter is viewed as the child.

I

Linked list data structure with next
and previous relations (shading im-
plies the is linked relation).

Parent/Child relation denoting
contains or is contained by.

Has relation

. . References relation

Figure 4: Nodes and Edges Used to Describe DIS Components.

3. A has relation to denote a logical pairing with other data structures.

4. A references relation when two structures share a common data element.

Computer Command and Control Company

Final Report for Contract No.: N00014-91-C-0183

3.2.1. The Functional View

The functional view describes the system structure that captures how functions in the system are
decomposed and how they interact with each other. Similar to the same design capture view
using Yourdon-DeMarco structured analysis method in [Hoan], this functional view represents
flow object and data flow between them in a graphical and hierarchical way as shown in
Figure 5. The graphical and hierarchical view helps the system engineers to analyze the
functional structure of the system.

I

I Functional
View

Parent/Child

Flow
Diagram _ _

I eChild

Parent/Child

Flow Has Flow
Object Edge

Is •as HasHa

II
System Flow
Design Edge
Factor Attributes

Figure 5: Functional View Architecture.

Computer Command and Control Company 12

Final Report for Contract No.: N00014-91-C-0183

Additionally, this view specifies the non-functional aspects of the system with System Design
Factor. Briefly, the System Design Factor (SDF) is one of the mechanisms that provides system
engineers with the capabilities to:

1. Specify various design goals and criteria

2. Quantify various aspects of the design

3. Perform trade-offs among different design goals through optimiza-
tions.[NgHo]

Defining such System Design Factors can overcome the inadequacies found in conventional
design capture views, in which the non-functional properties of the system are not supported.

Figure 5 shows the architecture of the functional view. The data types for this view is in
Appendix A and B. As shown in the figure and the code, each functional view contains its own
flow diagram. This flow diagram is represented by flow objects and flow edges between these
objects. A flow objecZ represents a decomposed function of the system and contains the flow
object information as follows:

1. The hierarchical, sibling and nesting relations between flow objects.

2. The nested flow object list including their flow edges.

3. The flow object description, characterization and design factors.

A flow edge represents the relation between decomposed functions of the system or the flow
objects in the flow diagram. Attributes of a flow edge contain the following information:

1. The hierarchical (sibling) relations between objects.

2. The direction of the flow under the predefined conditions.

3. Design factor information, such as frequency, duration, unit, accuracy,
etc.

3.2.2. The Behavioral View.

The behavioral view describes the dynamic behavior of the system under control. This view
captures the operations of the system at different times under different situations and conditions.
Similar to the functional view of the system, the behavioral view rp)resents the states of the
system and their transitions as well as the process activations in a graphical and hierarchical
way, such that the system engineers can analyze the behavioral construction of the system.
Additionally, the view captures the non-functional and critical real-time information of the
system, such as deadline and reconfiguration. Defining some design factors in this view
overcomes some problems stated for the same design capture view in [Hoan], in which this
non-functional and critical real-time information is not specified.

Figure 6 shows the architecture of the behavioral view of the system. The data type for this view
may be found in Appendix A (Ada) and B (C++). Each behavioral view is represented by the
list of the state transition diagram and the process activation table. Each state transition
diagram is a directed graph, in which nodes represent the states of the system and edges
represent state transitions under the different conditions. The process activation shows the
dynamic behavior of the system at different times under different situations and conditions. Note

Computer Command and Control Company 13

I Final Report for Contract No.: N00014-91-C-0183

the distinction between functions and processes in this logical model, such that the function

implies the static computation task of the system and the process implies the dynamic operation

of the computational task.

L Behavioral

Parent/Child

e w
P ar e n t/C h ild

~P

State Process
Transition Activation
Diagram Table

Has lParent/Child

Has Process Has
State Pair ID

Has

Transition ActivationTable

Figure 6: Behavioral View Architecture.

I

I
Computer Command and Control Company 14

Final Report tor Contract No.: N00014--91-C-0183

3.3. Implementation Model

The implementation model contains data representations for building the system and for making
and analyzing decisions for resource allocation and design structuring. Representations are
needed for the following information:

1. A task graph to depict the candidate software configurations.

2. A resource graph to depict the candidate hardware configurations.

3. Constraints derived from requirements. Constraints are presently divided
into two categories: placement constraints and timing constraints. These
constraints impact the effectiveness of optimization. Each one of these
types of constraints contain several sub-types of constraints that will
be described further below.

The implementation model of a real-time system consists of one or more implementation views
(i.e., a list of implementation views). Each implementation view consists of a software structure
diagram, a hardware structure diagram and a list of mappings of software components to
hardware resources. The type declaration for this information in the DIS is contained with the
DISimplementation view-type declarations in Appendices C and D.

The term structure diagram is used to reference a collection of directed graphs, drawn with
respect to a selected methodology, that captures information about a set of components and their
relations along with any hierarchical decomposition. For example, a tree of data flow diagrams
may be considered as one type of structure diagram.

The list of mappings is provided, since for the same software and hardware structure diagrams,
we may apply different allocation tools and techniques to determine possible mappings. Each of
the components of the implementation view are further described below.

3.3.1. Software Structure

Figure 7 represents the software structure architecture. The data types for the software structure
is shown in Appendix C (in Ada) and Appendix D (in C++). Each software structure diagram is
represented by a list of modules and a list of edges between modules. A module represents a
collection of nodes and edges within a structure diagram (as explained above). A module could
be considered as a level of decomposition.

Software modules can be nested and each module includes its own task graph. Task graphs
cannot be nested since the node of a task graph cannot be a module. However, nested relations
between tasks can be captured using nested modules. Our view is that the task represents a
separately executable computational entity.

Computer Command and Control Company 15

Final Report for Contract No.: N00014-91-C-0183

IDI ,

DIS_ 4 Parent/ChildiW Strucure-F
diagram

Parent/Child
DIS hasDIS_DIS_ has sw module-

Do swmodule-type dgyeSedgetp

Parent/Child

etp

Parent/Child

Pare nt/Child

DIS_taskIedge
DIS_tasknode

'm7 I has

has

DIS data_ DISjresource_
attribute type

Figure 7: Software Structure Architecture.

A software module contains the following information:

1. The hierarchical, sibling and nesting relations between modules.

2. The identity of task graphs that belong to the module. In addition,
there are two special kinds of edges (called entry-superedge and exitsu-
per-edge). They are used to identify the entry and exit points of the
task graph at the module level.

Computer Command and Control Company 16

Final Report for Contract No.: N00014-91-C-0183

A task graph is a directed graph: each node denotes a schedulable computational entity and an
edge represents a precedence relation between two nodes. For each task node in the
DIS_tasknode structure, there is a taskinputlist to identify input data and taskoutputjlist to
identify output data generated by the task. In addition, taskpredecessor_list identifies tasks that

execute before the task and tasksuccessorlist identifies tasks that execute after the task. There
is an andor flag associated with the above four task lists that specifies whether all input (or
output) data are needed (or generated) by the task. This information is required by some
optimization algorithms. Each task may include timing information such as ready time, deadline
and duration. In addition, it identifies resources it needs. For resource needs,
DISresourcetype identifies the resource a task needs and the amount it needs. For each task
edge, task edgedata identifies the data associated with the edge along with the duration of
availability of the data. In addition, fromjtasknode and totaskjnode specifies the source and
destination of the edge.

The declarations for the task node data structure and the task edge data structure are shown in
DIStasknode and DIStaskedge parts of Appendix C.

3.3.2. Hardware Structure

A hardware structure diagram defines a hardware configuration. A hardware configuration is
viewed as consisting of hardware nodes, connected by hardware links. Each node is recursively
viewed as consisting of internal nodes that are connected by internal links. The architecture of
the hardware structure diagram is shown in Figure 8.

Computer Command and Control Company 17

Final Report for Contract No.: N00014-91-C-0183

DIS_hw_
structure_
diagram

Parent/Child

Parent/Child DIShw DIShhwa
_ _ DasS-hw_

group node-type group-link type

P a r e n t/C h il l P n h

Parent/Chil -Parent/Child

DIS hw has DIS hw
node_type ----- C> linl_.type

Parent/Child h Ik

type

Figure 8: Hardware Structure Architecture.

3.3.J. Mapping Structure

A mapping assignment consists of mapping constraints and task assignments. Figure 9
represents the mapping structure architecture. There are two types of mapping constraints:
timing constraints and placement constraints. Each mapping constraint includes a preference
value that specifies the importance of meeting the mapping constraint; the magnitude of the
value reflects its importance.

The data structure representing the mapping constraints is shown in the DIS mappin_ constraint
in Appendix C (in Ada) and Appendix D (in C++). There are tour kinds of timing constraints
that may be defined for a set of tasks:

Computer Command and Control Company 18

Final Report for Contract No.: N00014-91-C-0183

I1. completewithin t means that the set of tasks should complete within
t time units of each other.

2. startwithin t means that the set of tasks should start within t time unitsp of each other.

3. complete..path-within t means that the sequence of the set of tasks should
complete within t time units from the beginning of the sequence.

4. complete start.within t for two tasks, A and B, means that B should
start within t after the completion of A.

There are three kinds of placement constraints, each placement constraint is defined on a set of
tasks:

1. place-together means that the set of tasks should be assigned to the
same hardware component.

2. place-separate means that the set of tasks should be assigned to different
hardware component.

3. place_at means that the set of tasks should be assigned at a particular
hardware component.

A task assignment is the result of running an allocation algorithm on a set of software and
hardware nodes with a set of timing and placement constraints.

I

I
I

IComputer Command and Control Company 19

Final Report for Contract No.: N00014-91-C-0183

DIS_ ~~Parent/ChildDShws

IF DIS-hw-sw-
mappinC_ J>pairjypeview_type

"DI IDas iIS -hw_
node nodejtype

References

References 'Reference

Parent/Child DISswid_ lIStjyp

list...type littpI

, References -- - - ReferencesVV

DIS-time_ DIS-placement
constraint-type constraint-type

tarent/Child

arent/Chil
_ DIS-mapping-i.)rn/hl

constraint-type4

Figure 9: Mapping Structure Architecture.

3.4. System Design Factors

To meet requirement and desired measure of effectiveness in designing a real-time, large and

complex system, the system engineers and analysts must be able to specify design goals and

criteria, quantify various nonfunctional aspects of the design, and perform trade-offs among

different design goals with optimizations.

Computer Command and Control Company 20

Final Report for Contract No.: N00014-91-C-0183

One of the mechanisms that provide the system engineers with these capabilities is the System
Design Factor [NgHol. This System Design Factor (SDF) describes non-functional aspects of
the system, such as performance, dependability, security and real-time responsiveness that all
system engineers and analysts should consider to produce the effective system. With the SDF,
system engineers and analysts can specify the properties, attributes and characteristics of the
system to satisfy all requirements.

In DIS, SDF's can be specified for the logical or implementation model.

In the logical model, SDFs are defined for each flow object and edge in the functional view, and
each state transition table and process activation table in the behavioral view. In the implemen-
tation model, SDFs are defined for each component of both software and hardware architec-
tures.

The data types for a SDF is illustrated in Appendices E (in Ada) and Appendix F (in C++).

3.5 Screens, Supporting Routines and File Formats

In this section, the DIS supporting routines and file formats are described. Figure 10 shows the
detailed Design Capture Interface for DIS from Figure 2. DIS provides the system engineers
with the following two capabilities:

1. The capability to supplement the design capture process with information
for design optimization. There are three types of design optimization
information:

(a) System Design Factor.

(b) Data required by optimization algorithms, such as for timing and
placement constraints.

(c) Hardware resource descriptions and characteristics.

2. The capability to extract information stored directly in the Front-End
CASE system's repository representing the information contained within
the CASE graphics (bubbles, flows, connects, etc.).

This section describes how a prototype set of desired capabilities was developed for this project.
As shown in Figure 10, the above two capabilities are accomplished by extending features of
Teamwork by TAE+ routines and Ada action routines. TAE+ is a tool for developing graphical
user interfaces. Additional Ada programs are added to perform the actions requested by the user.
Cadre's Teamwork was used as a representative CASE tool, however, DIS is not restricted to use
of Teamwork. By using the Teamwork Integrated Programming Support Environment (IPSE)
and TAE+-generated Ada routines for the graphical interface, the main menu and the data flow
diagram entry menus can be extended as shown in Figures 11 and 12.

The Import/Export entries in the DeStinAtiOn of the main menu provides the system engineers
with the ability to extract data from Teamwork. (Note that the import capability has not been
developed yet.) This is done as follows:

Computer Command and Control Company 21

Final Report for Contract No.: N00014-91-C-0183

DO InefcRuie

lanokExtracte (HW)ne.

Da rta R ln I-d-tm lt-up

Destinationztio

I In Extracace
DaSpecification

I Figure 10: Suppo Mrtge Routines for Dein atueIneFa

1. When these entr~ies-are eeted an thfie mdlnm fte eie of

Computer Command and Control Company

Final Report for Contract No.: N00014-91-C-0183

tion, the Teamwork Extract Routines, as shown in Figure 10 are called-
namely, DIS-twk-mapper and DIStwk_spec.

2. When the Teamwork Extract Routines are called, tthey extract informa-
tions stored in the Teamwork repository, transform them into DIS struc-
tures and store the results internally. The Teamwork Extract Routines
call the DIS Merge Routines within DISwriteout files.

3. Finally, when the DIS Merge Routines for DISwriteoutfiles, is called,
it gets the internal DIS structure of the given Model configuration, tra-
verses through its hierarchical structure in DIS, classifies each respective
information for the predefined component of the DIS record structure
and writes these records into their respective files.

The list of the files produced by this DISwriteoutfile routine is as follows:

1. DIS-sw-structurefile for DIS sw structure-diagram
2. DIS-sw-moduleflu for DIS sw module
3. DIS-sw moduleedge-file for DIS sw moduleedge
4. DIS_sw_task_fil for DIS swtask
5. DIS sw taskedge for DIS sw-taskedge
6. DIS-swdataattributefile for DIS sw data-attribute.
7. DIS-hwstructurefile for DIS hw structure.diagram
8. DIShw_.groupnodefile for DIShwgroupnode
9. DIShw grouplinkfile for DIShwgrouplink
10. DIS hw-nodefile for DIS hw node
11. DIS hwlinkfile for DIShw node

As shown in Figure 12, the SDF/TimingConstraint/PlacementConstraint/ Resource DeStinA-
tiOn options in the DFD menu provides the system engineers with the first capability described
above. This is accomplished as follows:

1. When any of the entries in the DFD pulldown menu titled DeStinAtiOn
is selected and any component of the diagram is selected (for example,
a task node of software structure configuration), the Design Optimization
Information Interface Routines are called as in Figure 10-namely,
DIS sdfjtemplate-support for SDF entry, DISresource support for Re-
source entry, DIStiming..constraintsupport for Timing Constraint Entry,
and DIS-placement support -constraint for Placement Constraint. As the
names imply, the DISsdf-template-support routine is to supplement Sys-
tem Design Capture with System Design Factor information, DISre-
source-support routine with hardware resource descriptions and characteris-
tics, and DIS.timin gconstraint_support and
DIS-placementconstraint-support routines with data required by optimiza-
tion algorithms.

2. When one of the DOI Interface Routines is called, it displays its respec-
tive screens as shown in Figures 13, 14, 15 and 16 so that the system
engineers can supplement its respective information. After all informa-
tion is entered, the respective routine extracts the information from the

Computer Command and Control Company 23

Final Report for Contract No.: N00014-91-C-0183

1 screen, represents it in the DIS structure, and calls the respective support-
ing Ada action routine as a part of the DIS Merger Routines as shown
in Figure 10-namely DIS_sdf actions, DISresource actions, DIS_tim-
ingsconstraintactions and DIS.placement_constraint_actions.

3. Finally, as part of the functionality of the Merge Routines, the internal
DIS structure is converted into the respective DIS file structure and
written out.

The list of the files produced by each routine is as follows:

1. DIS_sdffile for DISsdf
2. DISresourcefile for DISresource
3. DIStiming-constraintfile for DIS-timing-constraint
4. DIS-placement-constraintfile for DIS.placementconstraint

The Teamwork Extract Routines, DOI Inteiface Routines, and Merge Roudres for DIS are listed
in Appendix G. Due to their size, only the specifications of these routines z.% provided. In Appendix
H, the DIS file formats are shown.

I
1

I
I
I
I
I
I

Computer Command and Control Company 24

Final Report for Contract No.: N00014-91-C-0183

Figure 11: Extended Teamwork Main Menu Options for DESTINATION.

Computer Command and Control Company 25

Final Report for Contract No.: N00014.-91-C-0183

Indexces Objects Files Printer Administration Stop DeStinAUtOn teamzck

-- ci~mdtl* ________________=

3h 1; -;

~l.ompter Command andConrorCopann2

Final Report for Contract No.: N00014-91-C-0l$3

Tramokin 14.0.1 Is bean

"Mmas Ob=U Rscl V Printe ftn.auirsuo Stoo O.bLaMo-bv lo

1Cr bie Pw Uatl Systam Design Factors

-~~~~~S SytaOsin a-2~

SysTem Design Factor

Same ~Z Y2 I R&ARC______

Quacu~~ona Coosisaoion

Fornmiia vlecannstenirv Value

:5 Quanti ficatio n Type_____ P

.) Rtziiree TwE

I>t'CIo PrmdeA

_ _ _ _ _ _. O :::_ _ _

I Figure 13: TAE+ Screen for System Design Factor Template.

Computer Command and Control Company 27

Final Report for Contract No.: N00014-91-C-0183

Teamwork 4.03.1 (1 bean

Indexes Objects Files Printer Administration Stop DeStinAtiOn teaffuuork*

___________________~EMdtV _____________

File<>U' WhleMD MewIPStU

File WtFigure7 14:Da TAEnnocreen fori SiuardaeRsue O Description.

CompuCter NCommnd 50randCnro opay

Final Report for Contract No.: N00014-91-C-0183

1:D Teamwork 4.0.1 @ bean

indexes Objects Files Printer Administration Stop DeStinAtiOn teamwork*

_____ _____ _____ ____ mdtl'_ _ _ _ _ _ _ _ _ _ _ _

File Whbole DFD VAew Draw Annotate Frnni Simulate OOA DeStinAtiOn

APPLICATION FUJNCTION 5OFTWARE

TIMING CONSTRAINT

[CONSTRAIINT KIUND ITME TYPE

0Start Within

0Complete SParth Within ;TIME UNIT AMOUNT

TASK LIST [PEEEC AU

_ ~GEL

Figure 15: TAIE. Screen for Timing Constraint.

Computer Command and Control Company 29

Final Report for Contract No.: N00014-91-C-.0183

Teamwork~ 4.0.1 @L bean

Indexes Objects Files Printer Administration Stop DeStinAtiOn teamwork'e

____________________ j~Emdtl ______________ 1

File WhaleOFD 'iew Draw A~nnotate Prnnl Simulate OOA DeStinAtiOn

';APPLICATIO14 PJNCTION '$OFTWAAf

PLACEMENT CONSTRAINT

[PA IE,-TT KIN

flI-~f~f PREPERENqCE VALUE 1 -------

2 HARDWARE ID'

-- d -S AC KAG C

1ML'd$ AS LIST

IwK C4EL HL

Figure 16: TAE+ Screen for Placement Constraint.

Computer Command and Control Company 30

Final Report for Contract No.: N00014-91-C-0183

4. Future Directions and Conclusions

The development of DIS is in the first year of an on going effort. There are several tasks that are
planned for future development. These are elaborated below.

1. Library of Services
In addition to setting up standards for data structures, DIS should also
provide operations such as load/unload, add, delete, update and queries.

2. Importing Results To Design Capture
Provide feedback functions to incorporate the results of the optimization
back into the design without modifying the structural components.

3. Exporting Results From Simulation/Optimization Systems
Interface specifications components can represent results from simulation/
optimization systems. This should not only enhance the process, but
also provide a standard data representation for developing extract func-
tions for the target systems.

4. Alternative Representation Languages
Use of high level object-oriented languages to represent DIS has the
advantage of inheritance, allowing a higher degree of reusability.

Additionally, now that several it .ons of DIS have been produced and, as it becomes more
robust, participation in various sLandards organizations will begin. Involvement in the CASE
Document Interchange Format Working Group is expected to begin by third quarter of 1992.

Computer Command and Control Company 31

Final Report for Contract No.: N00014-91-C-0183

5. References

[B1Sp] Bladen, J.B., D. Spenhoff, "Ada Semantic Interface Specification (ASIS)",
Proceedings of Tri-Ada '91, pp. 6-15, October 1991.

[BOOC] Booch, G., "Object Oriented Design with Applications", The Benjamin
Cummings Publishing Company, Redwood City, CA, 1991.

[CCCC] Computer Command and Control Company. "Software Engineering Environment
for Parallel/Distributed Systems", Final Report, Contract #N6092189-C0127,
October, 1990.

[Davi] Davis, L. Ed., Handbook of Genetic Algorithms, Van Nostrand Reinhold. 1991.

[Gold] Goldberg, D.E., Genetic Al2orithms in Search Optimization and Machine
Learnine, Addison Wesley, 1989.

[Hoan] Hoang, N.D., "The Essential Views Of Systems Development", Proc, 1st Systems
Design Synthesis Technology Workshop, September, 1991.

[HoHN] Howell, S., Hwang. P., Nguyen, C., "Expert Design Advisor", Proc. 5th Jerusalem
Conference On Information Technology, IEEE Computer Society Press, Los
Alamitos, CA, October 1990, pp. 743-756.

[HoNH] Howell, S., C. Nguyen and P. Hwang, "Design Structuring and Allocation
Optimization", Proc, Hawaii International Real-Time Systems Conference,
January 1992

[Kare] Karengelen, N., "Multi-Domain Real-Time System Design, Capture and
Analysis", Proc. 1st System Design Synthesis Technology Workshop, September
1991.

[KiGV] Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, "Optimization by Simulated
Annealing", Science, May 13, 1983, Volume 220, No. 4598.

[MoMW] Molini, J.J., S.K. Miason and P.RH. Watson, "Real-Time System Scenarios",
Proc. l1th Real-Time Systems Symposium, IEEE Computer Society Press, Los
Alamitos, CA, December 1990, pp. 214-225.

[NEST] Nestor, J. R., Newcomer, J. M., Giannini, P. and Stone, D. L., "IDL: The
Language and Its Implementation", Prentice Hall, 1990.

[NgHo] Nugyen, Cuong M. and Steve L. Howell, System Design Factors, 1992 Complex
Systems Engineering Synthesis and Assessment Technology Workshop Report,
NSWC, Silver Spring, MD, pp. 147-154.

[Pear] Pearl, J., Heuristics: Intelligent Search Strategies For Computer Problem Solving,
Addison-Wesley Publishing Company, Inc., Reading, MA, 1984.

[StSh] Staples, G., D. Shavon, "Earthquake Insurance: One Integration Approach".
Software Magazine, pp 41-44, February 1992.

Computer Command and Control Company 32

Final Report for Contract No.: N00014-91-C-0183

[WaMe] Ward, P., and S. Mellor, Structured Design, Yourdon Press, Englewood Cliffs,

NJ, 1972, 2nd ed.

Computer Command and Control Company 33

