
•J NAVAL POSTGRADUATE SCHOOL
ow Monterey, California

,., DTIC
STATES ELECTE

WS SEPI 8 19921.V C ,

THESIS

USER INTERFACE OF DFQL:
AN OBJECT-ORIENTED APPROACH

by

Li, Chang-Tsun

May 1992

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

"92-25421

92 t9 243

UNCLASSIFIED
SECURrY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

§ NAME OF PEOIFORMiG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer cience ept. (it applicable) Naval Postgraduate School

Naval Postgraduate School CS

6c. ADDRESS (C0ty, State, and ZIP Code) 7b. ADDRESS (City, State, andc ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

&a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

USER INTERFACE OF DFQL: AN OBJECTORIENTED APPROACH

12. PERSONAL AUTHOR(S)

Li, Chang-Tsun13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master's Thesis FROM TO _/ 2 June 1992 181

16. SUPPLEMENTARY NOTATIOI he views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP query language, dataflow programming, object-oriented programming.
human factors

19. ABSTRACT (Continue on reverse if necessary and identfy by block number)

In recent years, many graphical approaches have been proposed to lift the inconvenience of text-based query
language among end-users. The new query language called DFQL (DataFlow Query Language) is a fully
graphical interface to the relational model based on a dataflow paradigm. It only requires users to connect some
well-defined operators which have been given an equivalent one-to-one correspondent functionality (or
construct) in traditional query language (SQL in this case). All of the power of current query languages and
sufficient expressive power and functionality are retained. But some shortcomings of DFQL user interface still
exist.

This thesis is to introduce a more ease-to-use and ease-to-learn user interface, so the shortcomings we found
in DFQL user interface can be lifted and the productivity and power of the new version of DFQL can be
increased. We have adopted object-oriented programming approach in our implementation and the benefits of
using object-oriented programming in our development are also discussed.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURiTY CLASSIFICATION

g UNCLASSIFIED/UNLIMITED C] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
Va. NAME OF RESPONSIBLE INDIVIDUAL 22D TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

C. Thomas Wu (408) 655-5687 CS/XX
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited

USER INTERFACE OF DFQL:
AN OBJECT-ORIENTED APPROACH

by
Li, Chang-Tsun

Captain, Taiwan, R.O.C. Army
Chung Cheng Institute of Technology, Taiwan, R.O.C., 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1992

Author: Li, Chan-sun

Approved By:
C. ThomaA)Yl Thesis Advisor

David A. Erickson, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

In recent years, many graphical approaches have been proposed to lift the

inconvenience of text-based query language among end-users. The new query

language called DFQL (DataFlow Query Language) is a fully graphical interface to

the relational model based on a dataflow paradigm. It only requires users to connect

some well-defined operators which have been given an equivalent one-to-one

correspondent functionality (or construct) in traditional query language (SQL in this

case). All of the power of current query languages and sufficient expressive power

and functionality are retained. But some shortcomings of DFQL user interface still

exist.

This thesis is to introduce a more ease-to-use and ease-to-learn user interface,

so the shortcomings we found in DFQL user interface can be lifted and the

productivity and power of the new version of DFQL can be increased. We have

adopted object-oriented programming approach in our implementation and the

benefits of using object-oriented prograrmming in our development are also

discussed.

'T

lyrc qUA.1I1

.. _ .j

iii '•.; : "•I

TABLE OF CONTENTS

INTRODUCTION ... I

A. BACKGROUND .. I

B . O B JE C T IV E S ... 4

C . O V E R V IE W ... 5

II. PREVIOUS DFQL INTERFACE .. 6

A . C O N C E PT S ... 6

1. DFQL Operators .. 6

a. Primitive DFQL Operators .. 8

b. User-Defined Operators .. 8

2. T ext O bjects 12

3. DFQL Query Construction .. 12

B. SHORTCOMINGS OF THE PREVIOUS DFQL INTERFACE 14

1. Tedious Query Construction .. 15

2. Tedious Delete Operation .. 19

3. No Concurrent Query Constructions 19

4. Rigid User Operator Definition ... 19

5. Reference Information Exit Too Short 20

6. Restricted Way of Getting Help ... 20

III. NEW DFQL INTERFACE .. 21

iv

A. STARING THE PROGRAM ... 21

B. QUERY W INDOW AND ITS ITEM S ... 21

1. Buttons .. 21

2. Drawing area ... 25

3. Pop-up menus .. 30

C. OPERATOR DEFINITION W INDOW .. 31

D. M ENU ITEM S .. 33

1. Apple .. 33

2 . F ile 34

3 . E d it 35

4. UserOps .. 35

5. Options .. 38

6 . In fo 3 9

7. Special .. 40

8. W indow ... 40

E. HELP WINDOW 42

IV. PROGRAPH AND OBJECT-ORIENTED PROGRAMMING 45

A. LANGUAGE -- PROGRAPH .. 45

1. Visual Programming .. 45

2. Object-Oiiented Programm ing .. 47

3. Dataflow Programm ing ... 48

4. Application Building Toolkit ... 51

v

B. WHY OBJECT-ORIENTED PROGRAMMING 56

C. EVALUATION OF OBJECT-ORIENTED PROGRAMMING 56

1. Benefits of Responsibilities-Driven, Class, and Inheritance ... 57

2. Benefits of Polymorphism and Late Binding 62

V . C O N C LU SIO N ... 65

A. LESSON LEARNED ... 65

1. U ser Interface A spect .. 65

2. Object-Oriented Programming Aspect 65

B . SU M M A R Y ... 66

L IST O F R EFERE N C E S ... 68

APPENDIX SOURCE CODE .. 70

B IB L IO G R A PH Y .. 17 1

INITIAL DISTRIBUTION LIST .. 172

vi

LIST OF FIGURES

Figure 11.1 Operator Construction ... 7

Figure 11.2 Construction of DISPLAY and SDISPLAY 8

Figure 11.3 DFQL Basic Operators ... 9

Figure 11.4 Other DFQL Operator ... 10

Figure 11.5 A Sample Query .. 11

Figure 11.6 An User-Defined Operator ... 11

Figure 11.7 Text Object ... 12

Figure 11.8 A Sample Query .. 13

Figure 11.9 DB INTERFACE .. 14

Figure II.10 Prinmitives Menu ... 15

Figure 11. 11 Creation of an Operator. .. 16

Figure 11. 12 Edit Menu ... 17

Figure 11.13 A Selected Operator. .. 17

Figure 11.14 UserOps Menu .. 18

Figure 11.15 Dialog Box for User-Defined Operator Selection 18

Figure 111. 1 Query W indow 2

Figure 111.2 A Query and its Query Results W indow .. 23

Figure 111.3 Creating an Operator By Typing ... 27

Figure 111.4 Help W indow ... 29

Figure 111.5 Columns of an Relation at the Output of select 30

Figure 111.6 Operator Definition W indow. .. 32

F igure 111.7 F ile M enu ... 34

vii

Figure 111.8 Edit Menu ... 35

Figure 111.9 UserOps Menu .. 36

Figure 111. 10 Selection Box for User-Defined Operator Deletion 37

Figure 111.11 Selection Box for User-Defined Operator Viewing 37

Figure 111.12 User-Defined Operator W indow .. 38

Figure 111.13 Option... Menu .. 39

Figure 111.14 Info Menu ... 40

Figure Il.15 Selection Box for Table ... 41

Figure 111.16 Table Information .. 41

Figure 111.17 Special Menu .. 42

Figure 111. 18 W indow Menu .. 42

Figure 111.19 Cascaded W indows ... 43

Figure IV.1 Methods ... 46

Figure IV.2 Class Hierarchy and Class Components 49

Figure IV.3 Class Instructor and Student .. 50

Figure IV.4 Terminals, Roots, Arcs and Synchro .. 52

Figure IV.5 application Editor. ... 53

Figure IV.6 menu Editor ... 54

Figure IV.7 window Editor. .. 54

Figure IV.8 window item Editors for Button and Pop-Up Menu 55

Figure IV.9 Classes Hierarchy .. 58

Figure IV.10 Process of Message Passing .. 61

Figure IV. 11 Example of Polymorphis-m .. 62

•'iii

1. INTRODUCTION

A. BACKGROUND

In the past twenty years, relational database management systems have been

accepted extensively for database implementation. To interact with a database, users

of a database management system such as Ingres develop application programs by

embedding a data manipulation language(e.g., ESQL) in a regular programming

language(e.g., C). But those specialized text-based languages are somewhat

unfriendly to inexperienced end-users (Codd, 1988) (Codd, 1990, chpt.23). In recent

years, many graphical approaches have been introduced to lift the inconvenience

among end-users (Wu, 1991) (Wu, 1986) (Wong, 1982) (Zloof, 1977) (Miyao,

1986).

A new query language called DFQL (DataFlow Query Language) was proposed

in (Wu, 1991). DFQL is a fully graphical interface to the relational model based on

a dataflow paradigm. Instead requiring users to use traditional text-based query

language, DFQL only require users to connect some well-defined operators which

have been given an equivalent one-to-one correspondent functionality (or construct)

in traditional query language (SQL in this case). All of the power of current query

languages and sufficient expressive power and functionality are retained. With an

easy to use facilitý for extending the language, users are allowed to define their own

user-defined operators by encapsulating existing primitive operators and/or

user-defined operators previously defined by users. The user-defined operators

become part of DFQL but can also be deleted from DFQL if they are thought of to

be no good to exist.

As have been presented previously in other papers (Angelaccio, 1990 and

Sckut, 1991), the following goals are met in DFQL:

Employ a fully graphical environment as an user friendly interface
to the database.

Sufficient expressive power and functionality, including relational
completeness.

Ease-of-use in learning, remembering, writing and reading the
language's constructs.
Consistency, predictability, and naturalness (in both syntax and

function).

* Simplicity and conciseness of features.

* Clarity of definition, lack of ambiguity.

Ability to modify existing queries to form new queries
incrementally.

"• High probability that users will write en-or-free queries.

"* Operator extensibility--allow the user to create new operators in
terms of existing ones, analogous to defining a function in a
programming language.

Partial implementation of DFQL was done in (Clark, 1991). This thesis

improves some shoitcomings in Clark's implementation. For example, as you can

see in (Clark, 1991), a new operator always be created at the upper left comer of the

drawing area. There is no way to create an operator by directly typing at wherever

users like it to be. After being created, users are required to drag the operator to a

new location where it is supposed to be. Several tedious steps of operation are

required to simply delete an existing operator. Without creating an operator in the

drawing area first, no on-line help message about this operator can be get. After

2

users saved the help message of a new user-defined operator, the content of the help

message can not be changed. So, should the help message of an user-defined

operator need to changed, the only way to do is to delete the operator permanently

and then redefined it and type in the help message carefully without any more

mistake. No more than one DB INTEFACE window (an interface window in which

users construct queries) are allowed at the same time is also a severe limitation of

productivity to DQFL. If more than one DB INTERFACE window is allowed to

exist at the same time then the reference to other existing queries may be more

convenient during the construction of a new query. There are some more

shortcomings which we will discuss in later chapter can be improved. All of these

drawbacks increase users' overhead to construct a query and limit the productivity

of DFQL.

The main concern of our new development of DFQL as we will discuss in the

later chapters is to introduce a more ease-to-use and ease-to-learn user interface, so

the shortcomings we found in Clark's DFQL interface need to be lifted in order to

reduce the overhead of the construction of queries. We believe that some features

also need to be incorporated into the new DFQL so that the performance can be

improved and the productivity and power of the new version of DFQL can be

increased. For example, instead of rigidly creating a DFQL object at the upper left

comer of the drawing area of the query window, users should be allowed to create a

new DFQL object simply by clicking the mouse anywhere in the drawing area and

entering the text right on the screen. Multiple DB INTERFACE window (in fact,

as you will see that in our new DFQL, DB INTERFACE window is replaced with

3

Query Window) and modification of the on-line help messages of existing user-

defined operators are allowed.

Since the interest of this thesis is focused on the user interface, the method of

intermediate code generation and linkage to the existing backend database

management system (DBMS) is not covered. For those who are interested in this

issue can consult (Clark, 1991).

B. OBJECTIVES

. We started from the human factor aspects and utilized the techniques of object-

oriented programming. Since, as stated in last section, the main concern of our new

development of DFQL is to introduce a more ease-to-use and ease-to-learn user

interface the following interface principles (Wu, 1990) are to be met:

"* Interface Principle 1: Be able to provide more information when
asked.

"* Interface Principle 2: Be able to display multiple information at the
same time.

"* Interface Principle 3: Be able to recover from the unintended or
erroneous operation.

"* Interface Principle 4: Be able to perform the same operation in more
than one way.

"* Interface Principle 5: Be able to prevent severe problem from
happening.

"* Interface Principle 6: Be able to prevent modifications that are not
supposed to be made.

We'd also like to discuss some important features and benefits of object-

oriented programming such as reusability, message passing, responsibility driven,

4

inheritance, polymorphism, etc. we utilized in our implementation and present some

experiences and lessons we learned during the development of our new DFQL.

C. OVERVIEW

Chapter II describes the concepts of the previous DFQL user interface done

by Gard J. Clark, The concepts of our new DFQL is basically the same with those

introduced in this chapter. We also discuss the details of how shortcomings we found

in the previous DFQL interface can be improved.

Chapter III describes our new DFQL user interface and introduces some

important features which we have added to the new version of DFQL. The human

factors analysis of this new interface, and how the interface principles we mentioned

in last section are met is also covered in this chapter.

Chapter IV presents a brief introduction to the programming language we use -

- Prograph and describes why we have adopted the object-oriented approach and

evaluates the object-oriented design of our new DFQL user interface

implementation and the benefits of class, message passing and some other features

of object-oriented programming technique.

Chapter V describes some important lessons we have learned during the

development of the new DFQL interface. A sumnmary of this thesis is also given in

this chapter.

5

II. PREVIOUS DFQL INTERFACE

A. CONCEPTS

As its name says, DFQL is a DataFlow Query Language. Queries are defined

by the user connecting the desired objects graphically in the drawing area of a query

window. Upon completion of a graphically constructed query, the query can be

translated to the equivalent text-based SQL query by the DFQL interpreter and sent

off to the backend database management (DBMS) for execution. After execution,

the results will then be sent to the Query Results Window displaying on the

computer screen.

Two categories of objects are defined in DFQL interpreter: DFQL operators

and text objects. Data are flowing from one operator to another along the query.

Text objects are used as input data only, so there is no data flowing in to a text object.

Operator execution is controlled by the presence of the input data for that operator.

When all the data required become available the operator may execute or fire.

1. DFQL Operators

There are two categories of operators defined in DFQL interpreter:

primitive operators and user-defined operators. An user-defined operator is one

that has been constructed by the user from primitive operators and possibly other

previous created user-defined operators. So we can say that an user-defined operator

is a compact query with some essential input data unspecified.

All operators in both categories except operators DISPLAY and

SDISPLAY (we will mention them later) have the same appearance. A sample

operator named select is shown in Figure 11.1 below. Each operator is made up of

three components: the body with the name of the operator, the input nodes and the

6

- input nodes

body with select
as its name

output node

Figure IM.1 Operator Construction

output node. They can have multiple input nodes but there is only one output node

for each operator.

The body of the operator is the rounded-rectangle with the input nodes and

output node attached to it. The input nodes and output node are represented by small

circles. The input nodes are where the data from other operator or text object flowing

into or fed into the operator.The output node is where the result of the execution of

this operator flowing out of the operator. The intermediate suit of a operator may

then be passed to other operator(s) by connecting the operator's output node to other

operator's input node(s). An output node can be connected to multiple input nodes

whereas an input node can only be connected to exactly one output node. The output

from each operator is always a relation.

The appearance of operators DISPLAY and SDISPLAY is shown in Figure

11.2. We are intended to make them different from other operators because as we will

7

Il ISPLRY)lIO IS~PLRVl

Figure 11.2 Construction of DISPLAY and SDISPLAY

see later that these two operators are not provided to execute query functions but to

allow user to print the contents of relations on the computer screen. They create no

results.

a. Primitive DFQL operators

There are fifteen DFQL primitive operators provided in DFQL

interpreter. Among them, there are six basic operators. These six primitive DFQL

operators and a corresponding translation into SQL are shown in Figure II.3. The

other primitive operators are shown in Figure 11.4.

b. User-Defined Operators

With user-defined operators, users can construct their own operators for

situations that are unique to their query needs and give those new defined operators

names that reflect the functions they perform. For example, instead of creating a

query as shown in Figure 1I.5, we can define an operator sel-project and construct

the query as shown in Figure 11.6, where operator sel-project is defined by

8

DFQL Operator SQL

relation condition SELECT DISTINCT *

w .FROM relation
WHERE conditionfselectl

relation attribute list SELECT DISTINCT *
FROM relation

relation 2
SELECT DISTINCT *

relation 1 join condition FROM relation I r I, relation2 r2
WHERE join condition

relation 1 relation 2
0 •.SELECT DISTINCT *

FROM relation
union] UNION

SELECT DISTINCT *
FROM relation2

relation I relation 2 SELECT DISTINCT *
FROM relation 1
MINUS
SELECT DISTINCT *
FROM relation2

grouping attributes SELECT DISTINCT grouping attributes
rel c atribute COUNT(*) count attribute

FROM relation
GROUP BY grouping attributes

Figure 11.3 DFQL Basic Operators

9

relation 2 grouping attributes

reainI join attribute list relation aggregate attribute

ea Join gou~og

grouping attribute grouping attributes

relation condition relation aggregate attribute

ro up AllsatisfyI

grouping attributes condition grouping attributes

relato number

[grou pNsa tis fyJ {groupmin

relation I relation 2

[intersect]
'U

sort attribute list

relation title i Srelation tit(lewý r,7-
LISPLRY SDISPLRYI

Figure 11.4 Other DFQL Operator

10

combining primitive DFQL operators select and project. We will discuss how to

define an user-defined operator.

student gpa) 3.5

Figure 11.5 A Sample Query

9pa > 3.5

student tnarne, SID

S e I- pro je ct

Figure 11.6 An User-Defined Operator

11

The most significant advantage gained from the utilization of user-

defined operators is that abstraction of complicated queries into a single user-

defined operator is allowed. This make it easier to understand and use operators

correctly. It also conserves space of the drawing area in the query window.

2. Text Objects

A special notation is used to provide textual input to the DFQL operators.

Text entered by the user shows up in the query window as an object with the text

attached to an output node as shown in Figure 11.7. The text object can be interpreted

A Text Object
U

Figure 11.7 Text Object

in two different ways. If the text is the name of a relation, the output at the root can

be thought of as an instance of that specific relation. If the text represents a

condition, a list attributes, or some other textual input to another DFQL operator,

then the text is passed on to that operator as a textual argument.

3. DFQL Query Construction

All DFQL queries exist as a dataflow program in which text objects and

operators are connected by dataflow paths. The data flow paths are represented as

the lines in the DFQL query that connect the input and output nodes of the DFQL

12

objects. Execution of the query can be visualized as flowing from the top of the

diagram to the bottom. When the input arguments to an operator are available, that

operator may execute, or fire, producing its output which will then flow on to the

other connected operators. Since text objects have no inputs, they may fire at any

time. Execution of the query continues until all input has been exhausted. The

general idea behind DFQL query construction have been presented in (Clark, 1991).

Instead of getting into all the details, we give an sample query as shown in Figure

11.8 below.

pay >= 50000

instructor dept = CS instructor Iid

{select [sel-pro'ect

IDs of Instructors in...

Figure 11.8 A Sample Query

13

This query uses the diff operator to return the IID of instructors in CS

department whose pay is lower than 50,000 dollars. In this query the user-defined

operator sel-project from Figure 11.6 is used.

B. SHORTCOMINGS OF THE PREVIOUS DFQL INTERFACE

The previous DFQL interface as shown in Figure 11.9 is made up of a DB

INTERFACE window and a menu with eight menu items. The DB INTERFACE

• File Edit Primitives UserOps Options... Info Special

1 1FigureI11.9 FACEINTERFACE

144

iiiID
(cnt

sele_ _ _ _ _ .

Figur 11.9DB INERFAC

14'"

window is the main interface from which users can construct their queries. The

description of these components can be find in (Clark, 1991). We just present some

shortcomings we found in it and discuss what we can do about them.

1. Tedious Query Construction

The most significant drawback in the Clark's DFQL interpreter is the way

to create an object in the DB INTERFACE window. Every time an object's button

(either DFQL operator or text object) on the left portion of the DB INTERFACE

window is clicked or an item (operator's name) from menu item Primitives of the

main menu (Figure 11.10) is selected, DFQL always creates it on the very upper left

"W File Edit MUserOps Options... Info Special
eqjoin
groupALLsatisfy
groupavg

groupmax
group min
groupNsatisfy
intersect

DISPLAY
SDISPLAY

Figure 11.10 Primitives Menu

comer of the drawing area in the DB INTERFACE window (Figure 11.11, an

operator named union is created in the DB INTERFACE). In order to put it on the

right place where the object is supposed to be, the user need to click the object and

15

11io 0B INTERFACE ,__ _

iF] RUN

Figure 11.11 Creation of an Operator

drag it. But if the checkable _enu item Select in the Edit menu (Figure 11.12) is

checked then all of sudden, when the user click the object in order to drag it, she(he)

will find that instead of dr-agging it, the object's color is converted,i.e., the object is

selected to be deleted or deselected. So the user need to uncheck, or turn off Select

and then drag the object. Figure 11. 13 shows a selected operator

Not being able to create a text object by directly typing on the drawing area

is another drawback. So we believe that allowing the user to locate the exact location

16

File Primitives UserOps Options... Info Special

Undo (all) NZ.............................

Cut X
Copy !C
Paste X11
Clear

,/Select
Delete

Figure 11.12 Edit Menu

Figure 11.13 A Selected Operator

for the next object by simply clicking anywhere in the drawing area and then typing

in the text or an existing operator's name directly will ease the user's duty.

To create an user-defined operator in the drawing area, an awkward process

requires the user to select the menu item Select from menu UserOps (Figure 11.14)

17

and selects the specific user-defined operator from a dialog box (Figure

II.15).Allowing the user-defined operators to be created the same way as primitive

operators are would be a better solution. We will see how this procedure can be eased

in our new implementation.

I File Edit Primitives 'a Options... Info Speciel
New
Delete
Select
View

Figure 11.14 UserOps Venu

USER DEFINED L.PERATORS

selprtj
usel
user-groupALLsatisfy
usrgas Selec

zeroin
Cancel

Figure 11.15 Dialog Box for User-Defined Operator Selection

18

2. Tedious Delete Operation

To delete an object from the drawing area of the DB INTERFACE

window, the user also need to check, or turn on Select first and tli,;n select the menu

item Delete from menu Edit. To make the delete operation easier, we will point out

another way to delete objects without to check Select first. That is to say that Select

is no longer needed in our new implementation of DFQL interpreter and can be

remove.

3. No Concurrent Query Constructions

No more than one DB INTEFACE window are allowed at the same time is

also a severe limitation of productivity to DQFL. If more than one DB

INTERFACE window is allowed to exist at the same time then the reference to

other existing queries may be more convenient during the construction of a new

query and users are also able to construct multiple queries in different windows at

the same time.

4. Rigid User Operator Definition

To create a new user-defined operator, previous DFQL disables the object

creation and deletion abilities. So the desired internal structure for the new user-

defined operator must be exist in the drawing area before getting into the operator

definition mode. This means that if the user want to define a new operator during the

process of query construction, he (she) needs to delete some operators unneeded in

the structure of the new operator. While in the operator definition mode, if the user

find that some operators need to be added to or deleted from the internal structure of

the new operator being constructed, he(she) need to give up all the efforts done

before and return to the query construction mode then add or delete some operators.

19

We believe that all the object creation and deletion abilities should be retained in

operator creation mode so the user does not need to go back and forth between query

construction and operator definition modes.

5. Reference Information Exit Too Short

After viewing the internal structure of an user-defined operator, the window

in which the internal structure of the user-defined operator is displayed need to be

closed before the user can proceed to do other stuff. The window and its contents are

not allow to stay available. This means that every time when the user need to view

the internal structure of an user-defined operator, the viewing procedure need to be

repeated. This is also a drawback needed to lifted.

6. Restricted Way of Getting Help

The previous DFQL provides help information describing each operator by

requiring the user to double-click on an operator existing in the drawing area. This

is the only way to get the information of an operator. So it is impossible for an user

to get the information of any operator before it is created in the drawing area. But it

is always the case that users need to consult the help messages of operators from

time to time, especially for user-defined operators. This need is more obvious when

the number of user-defined operators gets larger. So when users are not really sure

what the functionality of an operator they may want to use is, we can not expect

them to tolerate the inconvenience of creating an operator, double clicking it to get

the help message, finding out that it is not what exactly they want and then go

through the same procedures again to try other operators.We will added some more

features of on-line help to our new DFQL interface.

20

Ill. NEW DFQL INTERFACE

Like the previous DFQL, new DFQL is also implemented on an Apple

Macintosh. Basic operations of this implementation depend heavily on use of the

mouse and pull-down menus. In this section we present an detailed discussion on

how the user interacts with the DFQL interpreter to construct and execute queries.

A. STARTING THE PROGRAM

Upon start-up, the user is presented with the screen shown below as Figure 111. 1.

We do not use DB INTERFACE as the title of the main window, instead, we use

Query Window followed by an number indicating the sequential order. That is

because we allow multiple Query Windows to exist at the same time in our new

DFQL. So what we see upon start-up is a main window entitled Query Window 1

along with a pull-down menu.

B. QUERY WINDOW AND ITS ITEMS

A Query Window as shown in Figure 111.1 can be moved, resized, closed and

roomed by utilizing the basic functions of Apple Macintosh. We assume that readers

are all aware of those functions.

1. Buttons

The Run button executes the query which is currently constructed in the

drawing area. Run will first check that the query is correctly constructed. Then the

query will be sent off to the backend DBMS for processing. Query results returned

from the database will be displayed in a separate Query Result Window (Figure

111.2). We will mention Query Result Window later.

21

Query Window main menu

drawing area Q pop-up menus

SFile jEdit UserOps. Options... Info Special Window
____ Query Window 1 2I•-

Ir ___ Primativu

UsrOpr:

peF

buttons

Figure 111.1 Query Window

22

enroll testscore)= 95

ISelect! ENROLL tuple, with TE...

En Query Results -- E

ENROLL tuples with TESTSCORE >= 95

SID CID GRADE TESTSCORE

S1 CS05 A 98
S2 CS10 A 95

9 records selected.

Figure 111.2 A Query and its Query Results Window

23

The New button creates a new Query Window N, where N is the number

indicating that this is the Nth Query Window opened since the start-up of the DFQL

interpreter. When a new Query Window is opened, a query filename Untitled #N,

where N is the same number as that in the title of the Query Window. All Query

Windows retains all capabilities as the first one does. By creating new Query

Windows, the user is allow to construct queries in different Query Windows

concurrently. This feature make the DFQL more productive.

The Open button allows the user to retrieve a previously saved query file

from disk. When Open is clicked, a dialog box is presented from which the user can

select the stored query file for retrieval. Before a selected query file can be retrieved

onto a Query Window, DFQL will check if it has been opened in any Query Window

or if there is any query with the same file name exists in any Query Window. If this

situation is true, then DFQL will prompt a message telling the user that in which

Query Window the query file selected has been opened. This feature agrees with

Interface Principle 5: Be able to prevent severe problem from happening. If the

selected query file has not been opened, it is inunediately retrieved onto the Query

Window and the query (the content of the newly opened file) appears in the drawing

area. The previous filename assigned to the Query Window will be replaced by the

new one.

The Save button stores the current query onto disk with the name that is

currently assigned to the query. The Save as button allows the user to store the

current query with a new name. When Save as is clicked, a file naming dialog box

displayed. The user can enter the new file name for the current query to be saved. If

the entered file name matches an existing file in an)y Query Window, the user will be

24

prompt that a file with this name is currently opened in a specific Query Window and

the save operation is abandoned and the file naming dialog box appears again asking

the user to enter a new filename. On the other hand, if the entered filename matches

an existing file in the disk, the user will be asked whether or not he(she) really want

to replace the previous stored file. If not, the user can either abandon the saving

attempt or enter a new name. When an appropriate name has been given the query

will be saved to disk.

The Reset button clears the current query from the drawing area and from

the computer's memory. When the user has no desire to save the current query, Reset

can be used to set up a new query. This is also a shortcut to delete all objects in the

drawing area and give the user a blank drawing area to start constructing a new

query. After Reset. Untitled #N is assigned as the file name to the Query Window

N again. This feature which prevent the user from "destroying" an existing query file

by simply clicking the mouse on the Reset button is also based on Interface

Principle 5: Be able to prevent some severe problem from happening.

2. Dra-%ing area

The draA ing area is the portion of the Query Window that is bounded by

the horizontal and vertical scroll bars. This area starts out blank and is used to

graphically construct the DFQL query. As the query becomes larger so that portions

of drawing area are hidden from the user's view, the scroll bars may be used to bring

the hidden portions into view. There are two ways to create an object: First, the user

clicks the mouse anywhere he(she) wants the object to appear in the drawing area.

An "input box", the gray rectangle, with a flashing cursor at the center appears on

where the mouse is clicked waiting for the user to enter any text from the keyboard.

25

After the input box shown up, the user can select either an operator from the pop-up

menu Primitive or an user-defined operator from the other pop-up menu UsrOpr

by clicking on the up-side-down triangle. The input box will be replaced with the

selected operator or user-defined operator. The second way is also clicking in the

drawing area to create an input box first and then keep typing in text. Should there

be any typing mistake, the delete key on the keyboard can be used to delete the

mistyping characters. As the Return key is pressed, the text input ended and the

DFQL interpreter checks whether or not the entered text is in the name list of the

primitive operators or user-defined operators. If it is, then the operator whose name

is entered will appears in the drawing area and centered at where the mouse is

clicked. If the entered text is not in the name list of the primitive operators or user-

defined operators, a text object with the text entered will appear and is also centered

at where the mouse is clicked. There is an example shown in Figure 111.3. The

feature allowing operators to be created in more than one way supports the interface

Principle 4: Be able to perform the same operation in more than one ways.

The DFQL interpreter is case sensitive. If the entered text is Select instead

of select (the name of a primitive operator) and we do not have an user-defined

operator named Select, then it is created as a text object, not an operator. If no

characters are entered, after pressing the Return key, the "input box" will

disappears.

In order to construct a DFQL query, the query objects must connected with

the desired data flows. Data flows are the lines connecting output node of any given

object to the input node of another object (or objects). To draw these lines, the user

must click the mouse on either an output or input node. Once the mouse button has

26

L Zclick to create an input box

select type in text

[select) an operator created

Figure 111.3 Creating an Operator by Typing

been released, a rubber-band line will be drawn from that node to the current

position of the mouse. Clicking on the input node or output node of another object

will connect the dataflow line from the originating node to the newly indicated node

if the connection makes sense. The following attempted connections do not make

sense:

* From input to input

0 From output to output

* Between nodes of the same operator

* Making a cycle

27

Should any of these nonsense connections be detected, an error message is

presented stating that the attempted connection is not allowed. While the rubber-

band line is "on", clicking the mouse in an blank portion of the drawing area will

turn off the rubber-band line if the user has decided not to make a connection after

all. Since an input node may have only one input flow, if the user connects a dataflow

line to an input node that already had one, the previous dataflow line is deleted

automatically.

In order to move an object within the drawing area, the user clicks the

mouse on the object and drags it to the desired position while holding down the

mouse button. If the user clicks the object and release the mouse button immediately,

the object will be selected, i.e., its color will be converted. Selecting a DFQL object

existing in the draw;n- area has two effects. First, it allows the selected object to

deleted. Second'j, selecting a DQFL operator allows the user to retrieve

intermediate results from the query. When an operator is selected and the Run

button is clicked in the Query Window, The query will be executed up to and

including the selected operator. The result of this partial query will then be displayed

in the Query Result Window. To delete a selected object, the user can select the menu

item Delete from the menu Edit. The equivalent operation to delete a selected object

is simply pressing the Command and D keys on the keyboard simultaneously. The

user is also allowed to select several objects and then delete them all at one time.

However, an object selected can still be moved around in the drawing area. Simply

clicking the mouse on a selected object will deselects it.

Double-clicking either on an primitive operator or on an user-defined

operator will bring up a help window describing that operator. The Help Window is

28

shown in Figure 111.4. The left portion of the Help Window is a scrolling list of the

Help
J select

joiN Inputs :Relation; Condition
project
union Outputs . Relation
diff

SOL SELECT DISTINCT *
groupcnt FROMI Relation
eqJoln WIERE Condition

groupRLLsatisfy Description Selects tuples met the Condition
groupNsatisfy from Relation.
groupmax
groupmin
groupaug

Figure 111.4 Help Window

names of all operators. The highlighted name is the one we double-clicked on. The

message shown in the right portion of Help Window is the description of the

highlighted operator.

Double-clicking on a text object opens up an editor for that object's text

string. All of the Macintosh's normal text editing functions such as cutting, copying,

and pasting text from the Macintosh clipboard are supported in this editor. When the

OK button is clicked, the previous text for the object is replaced with the new string.

If the mouse is double-clicked on an output node, the columns of the

relation flowing out of that node are displayed.In this way, the user can determine

what attributes may be used by operators subsequent to that point in the query graph.

This assistance is very important in the construction of large queries in which the

attributes become hard to keep track of. Also, when user-defined operators are used,

29

it is important to be able to easily determine what the names of the attributes are that

the operator produces. There is an example shown in Figure 111.5.

studentgpa > 3.2

COLUMN NAMES:

SID, SNArIE, ADDR, PHONE, GPA

Figure 111.5 Columns of a Relation at the Output of select

3. Pop-up menus

There are two pop-up menus in the Query Window: Primitives and

UsrOpr. Primitives contains the names of all primitive operators while UsrOpr

30

contains the names of all the user-defined operators. When a new user-defined

operator is created, its name will be attached to the end of UsrOpr.

These two pop-up menus provide another way to create an operator. After

the user clicks the mouse on the drawing area to create an input box, instead of

entering text from the keyboard, the user can also click on the reversed triangle of

either pop-menus depending on what kind of operator he(she) want to create and

then selects the specific operator from the pop-up menu list. The input box will be

replaced with the selected operator.

C. OPERATOR DEFINITION WINDOW

When the menu item New in menu UserOps is selected, the Operator

Definition Window as shown in Figure 111.6 is displayed on the computer screen.

The Operator Definition Window is very similar to Query Window. The difference

between these two windows are that they have different set of buttons and there is

an "input bar" in the drawing area of the Operator Definition Window.

The drawing area plays exactly the same role as that in the Query Window does.

The input bar is used to define where the input data to the user-defined operator will

be sent internally. Clicking the mouse on the input bar will create additional input

nodes for the user-defined operator. If too many input nodes are created by mistake,

they can be remno ed by clicking the mouse on the Delete Input button. Each click

deletes one input nodes from the input bar. Once the desired number of input nodes

are created, they, must be connected to the desired operators in the drawing area. All

input nodes of the operators inside the user-defined operator must be connected.

Also, there may be only one unconnected output node in the user-defined operator.

This single node becomes the output node for the entire user-defined operator.

31

input bar

,! = Operator Definition Window _-

".-7 I Primatiue:

UsrOpr:

S.... , Cancel1

Delete Input

IClela i.

Figure 111.7 Operator Definition Window

When the Store button is clicked, DFQL interpreter first check the internal

structure of the user-defined operator to ensure that all necessary connections have

been made and query criteria have also been met. Then the user will be asked a name

for the new defined operator and a description that will be used as help message for

the operator. This feature agrees with Interface Principle 1: Be able to provide

more information when asked. The operator's name is checked for uniqueness

32

among all existing operators. If the uniqueness is ensured, the name of the new user-

defined operator will be added to the end of the scrolling lis of Help Window and

the UsrOpr pop-up menu list so the user can use it immediately. New DFQL allows

users to define user-defined operators successively as many as their want.

The Clear All button clears the drawing area and allows the user to reconstruct

the user-defined operator. The Cancel button cancels all the operations the user has

done since the start of the definition of a new operator.

D. MENU ITEMS

The items listed in the main menu (Figure 111.1) usually remain the same

throughout the whole session of the application no matter what window is currently

displayed. Any items that are not applicable at a given time are made unselectable

and are displayed at reduced intensity, communonly known as being "grayed out". We

also provide equivalent key-combinations for some menu items to speed up the

user's operations. This feature supports Interface Principle 4: Be able to perform

the same operation in more than one ways. The menu items are discussed below.

1. Apple

Apple is a standard Macintosh menu that has no relation to DFQL. It

provides access to Macintosh utilities called "Desk Accessary" and should be

accessible at all times (Apple, 1985, p. 1-54). The only DFQL specific item in this

menu is the "About...". When this item is selected, a brief information about DFQL

interface is displayed.

33

2. File

As shown in Figure 111.7, the New item executes exactly the some function

as the New button in the Query Window. It is very possible that the user may close

the only Query Window unintendedly. Without this New item, the user will not be

able to open any new Query Windows and need to quit DFQL unwillingly. This New

item is provided basing on Interface Principle 4: Be able to perform the same

operation in more than one ways and Interface Principle 3: Be able to recover

from the unintended or erroneous operation.

L w • Edit UserOps Option... Info Special Window
New XN

o , °..o.o.. ,

Page Setup...
Print... XP

°et..............s...........

Quit XQ

Figure 111.7 File Menu

The Page Setup... item L also a standard Macintosh File menu item which

allows the user to change printer parameters such as the size of paper, print quality

and orientation. The Print... item is provided to print out the information of the front

window of the DFQL.

The Quit item closes all opened windows and terminates the DFQL

interpreter execution. Before closing each Query Window, DFQL will check

whether or not the query in the drawing area of this Query Window has been

changed since last Save. If there are new changes since last Save, a dialog box pops

34

up asking the user if he want to save or not. The user should click either Discard or

Save in order to proceed. This precaution agrees with Interface Principle 5: Be

able to prevent severe problem from happening.

3. Edit

The Edit menu as shown in Figure 111.8 is also a standard Macintosh menu.

It provides the text editing functions of Cut, Copy, Paste, and Clear. They are

available whenever the user is editing text items.

File I UserOps Option... Info Special Window

Undo (all) XZ
....o..o.o.o.....................

Cut X
Copy XC
Paste X V
Clear

Delete XD

Figure 111.8 Edit Menu

The Delete item deletes the selected object(s). The Undo(all) item recovers

the deleted object(s) and put them back to the drawing area. This feature is based on

Interface Principle 3: Be able to recover from the unintended or erroneous

operation. Undo(all) is only active immediately following the deletion of object(s).

4. UserOps

The UserOps menu as shown in Figure 111.9 is designed for manipulating

user-defined operators. The New menu item is to open the Operator Definition

35

Window so that the user can define new user-defined operators. The Delete menu

item allows the user to delete existing user-defined operators from the DFQL

interpreter. When Delete is selected. the user is presented with a dialog box

containing a scrolling list of user-defined operators, as shown in Figure 111.10. When

the desired operator is selected, by either double-clicking on its entry or single-

clicking on its entry and then pressing the Select button next to the scrolling list.

Once an user-defined operator is deleted, it will disappear from both the scrolling

list of the Help Window and the UsrOpr pop-up menu list in Query Window and

Operator Definition Window. The View menu item allows the internal structure of

1 File Edit . j, Option... Info Special Window
[New1

Delete
View

Figure 111.9 UserOps Menu

an existing user-defined operator to be displayed. When this item is selected, the user

is provided a selection dialog box as shown in Figure III.11. After the user chose one

of the existing user-defined operators from the box, an User-Defined Operator

window shows up and displaying the internal structure of that selected user-defined

operator. An example of this display is shown in Figure 111.12. This display is

especially useful if the user-defined operator was provided by someone else. The

user is not allowed to modify the internal structure of user-defined operator. In this

36

DELETE OPERATOR

sel-project
sel-join

1(Select I

kd (Cancel _

Figure 111.10 Selection Box for User-Defined Operator Deletion

CHOOSE OPERATOR

sel-project
sel-join

Cancel

Figure 111.11 Selection Box for User-Defined Operator Viewing

37

11J___________ User-Defined Operator -- sel-project

select

[project]•"...

Figure 111.12 User-Defined Operator Window

way the integrity of the operator is preserved while still allowing some access to the

internal for the user's purpose.

5. Options...

This menu, as shown in Figure Ill.13, is imported from (Clark, 1991). We

did not introduce any new features to it. All of the items provided in Option... menu

are toggle items. When the item is active, or "turned on", a check mark is presented

next to the item. For example, in Figure 111.13 the Sound item is turned "on",

whereas the Display Last and Show SQL are "off'. When the Display Last is

turned on, the output of the last DFQL operator executed will be displayed in the

38

Query Rest,` - Window when the query is run. This is useful when incrementally

constructing queries because it causes the display of the results without having to

use a display operator. Show SQL causes the intermediate SQL code that is

generated from the DFQL query graph to be displayed in the Query Results Window

along with the results of the query. This display can be used to troubleshoot any

execution errors that are not directly apparent from the DFQL query graph. Also,

this option allows the DFQL interpreter to be used as a translator in which a DFQL

query is input and a DFQL query is output which could then be run on any SQL

database system. When selected, the Sound option causes certain easily

recognizable sounds to be played at different key points during processing of the

query.

w File Edit UserOps M Info Special Window
Display LastY

Show SQL NS
Sound

Figure 111.13 Option... Menu

6. Info

The Table item in the Info menu, as shown in Figure 111.14 allows the user

to retrieve information about what attributes exist for tables in any given relation in

39

the database. When Table is selected a selection dialog box (Figure 111.15) is

displayed from which the user can choose which table he is interested in. This action

will bring up a dialog box displaying the attributes of the selected table as shown in

Figure 111.16. The Help menu item opens the Help Window. We will cover all the

details about Help Window in a specific section later.

• File Edit UserOps Option... Special Window

H.elp KH

Figure 111.14 Info Menu

7. Special

This menu (Figure 111.17) is also the original work of (Clark, 1991). The

only item, ORACLE*Shell stars up a sepal-ate application to provide the user direct

access to the backend DBMS (in this case ORACLE). Since this separate application

is not our concern in this presentation, so we do not get into its details.

8. Window

There is only one menu item, Cascade Win (Figure 111.18) in Window

menu. As the user proceeds, there may be several windows opened on the computer

screen at the same time. Some of them may be overlaid by the others. When

Cascade Win is selected or its equivalent key combination, Command-W is

40

TABLE NAMES

BRS
COURSE
DEPT
DIALOG D°ec
DOG
El cancel

Figure 111.15 Selection Box for Table

TABLE: DEPT

COLUMN NAMES:
DEPTNO, DNAME, LOC

Figure 111.16 Table Information

41

. File Edit UserOps Option... Info ll • Window

Figure 111.17 Special Menu

pressed, all the windows will be relocated as the example shown in Figure 111.19 so

the banners of all windows can be seen. This feature allows the user to easily activate

a completely overlaid window.

" File Edit UserOps Option... Info Special

Cascade Win X@1

Figure 111.18 Window Menu

E. HELP WINDOW

There are two ways to open the Help Window as we described before: double-

clicking on an operator displaying in the drawing area and selecting menu item Help

from menu Info. Upon opening Help Window, if we want to view the descriptions

42

Query Window I
Query Window 2

Query Window 3
Query Window 4 2I1

I Prtmatlue: •]
UsrOpr: (E

cipn

FiJOS

Rese

Figure 111.19 Cascaded Windows

of any other specitic operator in the operator list, we can simply click that operator

in the scrolling list. the description of that selected operator will be provided on the

right. This feature agree with Interface Principle 1: Be able to provide more

information when asked, Interface Principle 2: be able to display multiple

information at the same time and Interface Principle 4: Be able to perform the

43

same operation in more than one ways. In fact in order to open the Help Window,

we do not even need to double click on any operator. We can simply select the menu

item Help from menu Info whenever we need to consult the help message. Once the

Help Window is opened, we can view the description of any existing operator.

It is possible for the user to find that the description of user-defined operators

in the Help Window need to be modified after the operator is defined. To modify the

descriptions, the user can double-click the specific operator whose description is to

be modified to open an editor and enter what description appropriate. Upon

completion of the modification, clicking the OK button will save the new

description of that operator. This feature supports Interface Principle 3: Be able to

recover from the unintended or erroneous operation. Since the primitive

operators are basic set of operators, DFQL does not allow their descriptions to be

modified. So double-clicking on the primitive operators cause nothing happened.

Interface Principle 6: Be able to prevent modifications that are not supposed to

be made is honored by this feature.

44

IV. PROGRAPH AND OBJECT-ORIENTED PROGRAMMING

A. LANGUAGE -- PROGRAPH

Since the previous DFQL interpreter was implemented in Prograph of version

2,02, to make things consistent and to import some of the previous code into our new

implementation, we decide to use Prograph as our programming tool. Another

reason to use Prograph is that, as stated in (TGSS, Tutorial, 1990, chapt. 1),

Prograph integrates four key trends emerging in computer science:

"* Visual programming.

"* Object-oriented programming.

"* Supporting dataflow specification of program execution.

"* Providing application building toolkit.

1. Visual Programming

Contrary to text-based programming, visual programming uses graphical

operations to accomplish the programming task. Figure IV. I shows the definition of

methods newPerson, setAttributes and introduce for class Person. In method

newPerson, the hexagon-shaped operation creates an instance of a specified class

object (in this case a Person). This newly created Person then flows into the

operation named setAttributes which is a method defined in class Person, After

attributes being set by the method setAttributes, the Person with his attributes set

flows into the operation named introduce, which is also a method defined in class

Person to have the new person self-introduced. Method setAttributes asks the user

to enter the person's name and where the person is from, then assigns those two

45

Person/newPerson

E Person/set~ttributes I=.Wll I 3-1J

Enter name.

i/,/set Attributask

/iAntroduce

=C= Person/introduceff~IllDEMO~

here from?l

from

Figure IV.I Methods

46

personal data from the user as the values of the new person's attributes, name and

where from?. The new person introduces himself in method introduce,

There are four ways of method reference in Prograph: The form of context-

determined method reference is "I/method". This reference indicates that the named

method can be found in the same class as the method containing (calling) this named

method. In method newPerson, Figure IV. 1, method setAttributes is referenced in

this form. The form of explicit-class method reference is "classname/method".

Method introduce is referenced in this form. The third form, Universal method

reference, is "method". The containing method looks for the method in the

Universal methods pool. The last form is data-determined method reference, "/

method". Prograph looks for the method in the class to which the object arriving at

the first input terminal of the method belong. This powerful method referencing

form supports polymorphism of object-oriented programming and late binding.

Different classes can each hay, a method of the same name with totally different

function. When a method is referenced in this form, Prograph does not know from

which class the specified method can be reference until the class object arrives on

the input terminal of the specified method at runtime. That is why we say that it

supports late-binding.

2. Object-Oriented Programming

Prograph provides a good foundation for object-oriented programing,

system classes. Each class has two components: attributes and methods.

Attributes identify instances of classes. By passing messages (calling methods) to

objects (instance of class), we can make them act accordingly. In prograph, objects

of same categories are group into classes, that is to say that a class is an abstract

47

description of a collection to similar objects. In object-oriented programming,

objects communicate by passing messages. The situation is similar in Prograph but

objects flow into operations to initiate some actions, rather than stationary objects

sending messages back and forth (TGSS, Tutorial, 1990, chapt. 4). Figure IV. 2

shows a class window displaying the classes hierarchy, the attributes and methods

window of class Person. In Figure IV. 1, we have shown one way to assign attribute

values and to pass message asking the person to introduce himself/herself. The line

between classes represent inheritances. For example, classes Student and

Instructor are both descendants of class Person They both inherit all the attributes

and behaviors (methods) of their ancestor Person. But they can have their own

additional attributes and methods (Figure IV. 3). In attribute window, Figure IV.3,

there is a downward arrow in each inherited attribute icon. Method overriding is also

allowed in Prograph. For example class Instructor has its own method introduce

whose functionalities can be total\l different from Person's.When an instance of

Instructor is "asked" to introduce himself, instead of referencing the method

introduce in class Person, the one in class Instructor is to be referenced. But since

class Student, has no its own method introduce, so when an instance of class

Student is "asked" to introduce herself, the inherited method introduce defined in

its parent class Person is to be referenced. Programmuners can also make their created

classes descendants of system classes so a great deal of effort can be saved.

3. Dataflow Programming

In Prograph, each operation can have zero or more input terminals and zero

or more output roots representing by small circles attaching to the top or bottom of

operations (Figure IV.4). Data flow along arcs connecting terminals and roots. When

48

;0 Classes ,J-

@ tem

Application Menu Menu Item Window Window Item

--- classes above this line are provided by system.-....

Person

Student Instructor

103E V Person-2- -=02 Person ME]1

Iew ;on
name

where from ? setAttributes

'0introduce

Figure IV.2 Class Hierarchy and Class Components

49

IOU V instructor MR OHi Instructor=

nae

introduce

where from?

7 teach
school teaching?

title grade

10-CA V Student EM0121
_____ _____ 1O = Student ME3

name
take exam

where from?

V do homework
school studying?

V7
graduate year got class

'g. ii .

Figure IV.3 Classes Instructor and Student

50

all required input data become available at an operation's terminals, the operation

can not execute or fire. Specific order of execution is not prescribed in Prograph

programs. This situation implies that concurrent execution of several operations is

likely to occur. To enforce the order of execution, synchros are provided as shown

in Figure IV4. In Figure IV.4, there is a direct arc connecting the root of operationil

and one terminal of operation2, so operation 2 must execute after the execution of

operation 1. Same situation between operation 1 and operation 3. But, since there

are no direct arc between operation 2 and operation 3, so they can execute

whenever their required input data are available. Execution order of operation I and

operation 2 is not prescribed without the synchro. With the synchro emerging in

Figure IV.4, the execution of operation 3 is enforced to wait until the execution of

operation 2 is done. In method setAttributes, Figure IV.l, we used a synchro to

ensure that a person's name was asked before where he/she is from is.

By combining the dataflow specification of program execution and some

powerful debug facilities, Prograph allows programmers to debug programs by

inspecting the data flowing in the programs from debug mode. With the inspection

of the dataflow, programers can see how programs work and why it does not work

the way as expected if there are some errors in the programs.

4. Application Building Toolkit

The application building toolkit in Prograph supports independent

specification and management of the interface through high-level tools and

facilities. For example, the application, menu, window, and several window item

editors are some powerful and easy to use tools provided in Prograph. application

editor (Figure IV.5) serves as a library of menus and windows. The menu editor

51

arc

terminal o•praiti~o~n I• cons.tan

synchro root

Figure IV.4 Terminals, Roots, Arcs and Synchro

(Figure IV.6), window editor (Figure IV.7), and window item editors (Figure IV.8)

are used to specify the "look and feel" of the menus and windows created and

organized using the application editor. So instead of developing the windows,

menus, and their items we need in the DFQL user-interface from scratch, we can just

specify some essential informations in each relevant editor and the application

builder will creates what we need according to the informations we specified. To

refine any portion of them, we just return to the relevant editor and respecify some

relevant informations. No recoding and recompilation needed.

Since there are some new features and facilities added to the 2,02 version,

so our program is implemented in Prograph of version 2.5 (e.g., the pop-up menu

52

Application

Name dbinterface

About Method I/About] [Apple Events

@ Windows

Classes List of Instances 0 Menus

QueryResults 0 Query Window (•--) rit04)(1 LiS1
QueryWindow Query Results
UsrOpr Help F.
Window User-Defined Opei

@ Library
0 Active List

S[0 K

> NOLL, Inrittin:e > < se ,•[l f0aul" < L Cancel

Figure IV.5 application Editor

we used in the Query Window is a new added facility to version 2.5). We do not

intend to get into the details of Prograph. The following references by The Gunakara

Sun Systems Limited (TGSS) are recommended for those who are interested in.

Prograph: Tutorial, second printing, 1990.

"* Prograph: Reference, second printing, 1990.

"* Prograph: 2.5 Updates, first printing, 1991.

53

Menu IEdit Edit
Undo (all) XZ

Dl Disable Menu

Item IDelete Cut XCopy XC

Methodj/deletd Paste XV
Clear

Key
Balloon . cop,

o Disable Item insert Before
l Check Ilnsert fterj1

) Styles Delete
0 Keys

0 Bold Instance

El Italic OK 71
El Underline OK
O Outline
El Shadow Cancel

Figure IV.6 menu Editor

QueryWindow

Window Title Query Window

Rctivate Method /actiuateOW

Close Method f/Close

Idle Method

Key Method I

@) Document 9 Close BoH
0 Dialog 9 Zoom BoH
0 Plain 0 Grow BoH
0 Plain w/Shadow 0l Modal Cancel
0 Movable Dialog

Figure IV.7 window Editor

54

Button

Button Name New)
Click Method QueryWindow/newQryWi4 J

0 ctiue OVisible
0 Move w/Window
0 Grow w/Window (Balloon...] Cancel

Pop-up Menu

Pop-up Name [Primative

Value List ("eqjoin" "groupAllsatisfy"
"groupNsatisfy' "groupaug"
"groupmaH" 'groupmin"

Click Method (/createobj

E] Fixed Size Z Title? Balloon .. j

El- Bold
Z Active D- Italic OK
S Visible C] Underline cc
0 Move w/Window [- Outline
Z Grow w/Window C]Shadow

Figure IV.8 window item Editors for Button and Pop-Up Menu

55

B. WHY OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is often referred to as a new programming

paradigm (Budd, 1991). In Clark's DFQL interpreter, object-oriented approach was

attempted. But after a careful examination of Clark's program, we found that some

major object-oriented programming features, such as responsibility driven,

information hiding, and modularity do not play their role. And the program is also

tightly interconnected by heavily using the explicit-class method reference.These

drawbacks restrict the reusability of his program, so in order to use some methods

in his program we spent some significant effort to modify and re-modularize his

original code. Because of this experience we decide to approach our new

development from object-oriented view so that our code may be more reusable,

portable, and maintainable.

During the examination and modification of Clark's program, we also found

many attractive features of OOP can be adopted to model our new DFQL interface.

In our view, DFQL interface consists of objects like Query Window, drawing area

(a canvas in which we draw our query) and operators, etc. These objects are

manipulated in response to events, such as the clicking or dragging on the body of a

DFQL object cause the object being selected or dragged. This awareness also

encouraged us to do experiment of object-oriented programming.

C. Evaluation Of Object-Oriented Programming

In this section, we are going to discuss some features of object-oriented

programming we applied to our new development of DFQL interface and some

benefits we have gotten through the whole design process.

56

1. Benefits of Responsibilities-Driven, Class, and Inheritance

To organize or discover classes, we need to take the responsibilities of each

potential class into consideration. Clear assignments of responsibilities increase the

degree of independence of classes thus increase the degree of information hiding

and reusability. When we make an object responsible for a specific action, we can

expect a certain behavior the object is to behave as we passing the request to it. The

higher the degree of behaviors of objects we can expect, the easier we can debug our

program when errors occur and the easier to expend our program by assigning more

appropriate responsibilities to appropriate classes without causing intensive

modification to the program has been existing or importing unexpected interferences

between new code and old code.

Figure IV.9 shows the classes hierarchy of our program. The white-colored

classes are system-provided while the black-colored classes are our created ones.

Each class representing one category of objects encapsulates informations and

functionalities within its attributes and methods. This classes hierarchy is organized

after the following analysis: Class Query Window represents the main window

(also named Query Window) with the responsibilities of detecting and handling the

mouse click events on its item such as button close box, etc., creating new Query

Windows, setting attributes of new created Query Windows, loading query files onto

Query Windows saving query files to disks and closing Query Windows, etc., Class

Query Object represents all query objects. Classes Text Object and Operator

represent text objects and operators respectively. Because they are both query

objects so we make them the descendants of class Query Object to inherit the

attributes and methods we defined in class Query Object. Since operators can also

57

___ __ ___ __ __C M_ _ ss _ _ _ _ _ _ _ _ _ _ _

Ujstem

Application Menu Menu Itemý-WindowYndvte

Text
QueryResults UsrOprVin QuerVVindow Cna

41 Edit Text
Query Object DFQLCanvas

InputBox .

Printer Text Object Opvrator Line

DFQLPrinter Primitive UserOpr Help

Figure IV.9 Classes Hierarchy

be grouped into primidtive operators and user-defined operators, so we make classes

Primitive and UserOpr the descendants of class Operator representing primitive

operators and user-defined operators respectively. Class Query Object and its

descendant classes are responsible for maintaining and creating query objects. Class

DFQLCanvas represen,ý3 the drawing area (the drawing area just like a canvas)

within which we "draw" our query. It is responsible for detecting and handling all

58

kind of mouse click events in the drawing area and acts accordingly, drawing

objects, dragging objects, and deleting objects. Class InputBox represents the

"input box" within which users type in the text for the later creation of query objects.

It is responsible for displaying the "inputbox" at where users click the mouse and

reading text that users type in from the keyboard. Classes QueryResults,

UsrOprWin, Printer and its descendant DFQLPrinter, Line, and Help are created

by following the similar analysis.

Assuming the user wants to create an operator by selecting one from either

pop-up menus Primitive or UsrOpr, then when the event of clicking mouse in a

pop-up menu and selecting one operator from the menu is detected by Query

Window, Query Window passes message requesting the creation of an operator

with the name specified to class DFQLCanvas. Upon receiving the request,

DFQLCanvas does some prelimilary actions and then passes the same request

received from Query Window to class Primitive, Primitive then check its

primitive operator list whether there is one with the same name passed in or not. If

there is one, Primitive returns the matched operator back to DFQLCanvas. If there

is none matched, the same message is delivered to class UserOpr to create an user-

defined operator. After the operator is returned, DFQLCanvas draws it in the

drawing area. The ellipses in Figure IV. 10 highlight the process of message passing.

We make each class an encapsulation of abstractions having two faces.

From the outside, a user of that abstract encapsulation s,- a collection of

methods which define the behavior of the encapsulation actions. On the

internal side, attributes (some people use the term t. iables, but for

consistency, we will use attributes through this thesis) ark to maintain the

59

internal state of the object. Tn the above example, by using responsibility-driven, we

do not allow classes to interfere or modify attribute values of other classes because

we view changing attribute values as the internal affair and all of them must be

maintained internally by the class instance itself under any circumstances. This

measure makes a program less error-prone and ease the maintenance of a program.

Also, the information hiding rule is observed by the careful responsibility

assignments. For example, DFQLCanvas issues requests of query object creation

to classes Primitive without knowing how they are created.

The clear division of classes helps us design a well structured and

modularized program. The hierarchical organization also helps us to remember the

whole structure of our program and the relationship between classes easier and

better. Since many methods are inherited by the descendant classes from their

ancestor classes, we do not need to replicate codes over and over again. This feature

shortens the development time and supports information hiding also. Figure IV.10

shows an example of inheritance. In Figure IV.10, when either class Primitive or

class UserOpr receives the message requesting the creation of an object from class

DFQLCanvas, since there is no method capable of creating objects defined in both

classes Primitive and UserOpr, the method create defined iM their parent class

Operator will be referenced as if it is defined in their own classes. This benefits is

more significant in the inheritances of our created classes from system provided

classes. Foi example, by making classes Query Window, QueryResults, and

UsrOprWin descen. its of system provided class Window, we can simply use

the methods (e, Activate, and Idle defined in class Window without

knowing how dtey. ,plemented.

60

luergWindow/create i:ImKEHEJ~i

((PO men > DFOLCanuas/create 1:2

W'indow>> ITopUme

vlue list nm

et-nth I in ut box1

DFQLC~anvas e-t

et fle haned~ CCC~cCCCCCCCCC CCCC~q .

This method is to handle the pop QYIttipgh
selection. An gdbobj will be crea
according to the pop tip menu iter

J geto bject 1:3---- etbj

W U dtpgbbls

text po-dispLegth instnum

Klý (0 g et o bje ct 2:3 __

text point dispLegtthnstnum

Figure IV.1O Process of Message Pas.-,1A,

61

2. Benefits Polymorphism and Late Binding

Polymorphism is an feature to send the same message to instances of

different classes. It enhances the readability of software and leads to an easier

extension of code. Figure IV. 11shows an example of Polymorphism. When we

IC ~ 0 Menu/Quit 1: 1___0li!I

vner

indows
F ALSE

/Close

activ? LCCC { kernel]

..

ID QueryjWindow/Close E 9 lE EE

((Query Window>,

I ave if filecaqd

01

I/Closom

Fi. IV.11 Example of Polymorphism

62

choose menu item Quit from menu File, method Quit defined in class Menu is

called. When this method executes, a list of windows opened flows from the right

output terminal of operation windows to method Close which is of the Data-

determined method reference form. As we mentioned in last section, all windows are

viewed as instances of different classes, so when the message Close is sent to them,

they will behave according to the Close method defined in their class or ancestor

class. Because all windows are subclasses of system class Window, so except

Query Window which need to save the query file before closed if the content of the

query file has been changed), all window will close by calling method Close defined

in class Window. The method Close defined in class Query Window as shown in

Figure IV. 11 overrides the method Close in the parent class Window by having the

same name and different behavior. It first save the query file which has been changed

if the user desired and then calls the method Close defined in class Window (the

upward arrow means method Close in the supper or parent class is to be called). In

this example, we see the same message Close sending to instances of different

classes causes them to behave differently. We also see that late binding utilized in

this example. The proper methods Close to be referenced is unknown until the

instances arrive (i.e., until run-tome). This makes the high-level software design

more flexible.

The overriding we saw in last example is just in form of polymorphism.

Another form is overloading which makes the flow of softw --- -cution easier to

be followed by users. Figure IV. 10 shows how the methods c Jined in classes

Query Window, DFQLCanvas, and Operator are refere- e overload the

63

method name create so the way an operator is created easier to be understood and

the code is also easier to be read.

64

V. CONCLUSION

A. LESSON LEARNED

some lessons we learned in our development of this new DFQL interface can be

stress in two aspects: user interface and object-oriented programming.

1. User Interface Aspect

As an application designer, we need to originate all the ideas from the users'

point of view. So human factors need to be taken into consideration. Our experience

is that some established principles like those we listed in Chapter I need to be

followed all the time. We also evaluate some human factors such as

"How long does it take a regular user to learn this new application.
We need to provide users a consistent, well-explained, and easy-to-
use, and easy-to learn tool so they will not get confused or frustrated
by the complexities of the tool.

"* What kind of errors may be made by users. Taking this factor into
consideration leads to a design of careless-proof or even fool-proof
application.

"* XVhcat degree do users maintain their knowledge about the
application after a period of time. To increase the degree, the
consistency must be enforced and on-line help messages must
always be available.

2. Object-Oriented Programming Aspect

The following is a list of lessons we learned from the object-oriented

programming aspect:

Each class is responsible for one task or .s ruitiveh' similar
tasks and allow attribute values to be modifi uintained only in
its own class. This reduces the degree of i nection between

65

classes and makes each class cohesive and modular so later
modification and extension is easier.

"Avoid writing long methods. Try dividing a task into several subtasks
which can be implemented as clearly defined methods. This also
makes later modification and extension easier and increases the
reusability.

"* Properly use polymorphism to make program easy-to-read. This
makes programs more symmetric and easier to be understood.

"* Avoid using explicit-class method reference. Explicit-class method
reference makes methods tightly interconnected so when a class
name is changed, we have to change all references in the whole
program. This is error prone and time consuming.

"* Properly use abstract superclass to support information hiding and
inheritance. We discussed many benefits of information hiding and
inheritance. Proper use of superclass allows the programer to
concentrates on the further development without paying attention to
the low-level details of the referenced methods.

B. SUMMARY

This thesis provides an improved user interface of DFQL originally introduced

by Card J. Clark and C. Thomas Wu in 1990. In this thesis, we eliminated the

shortcomings of user interface pointed out in their paper and added some new

features to it. Now, this new DFQL user interface allows users to create DFQL

objects simply by clicking the mouse and then entering the text right on the

computer screen. Some tedious operations in the previous version of DFQL such as

deleting an object, selecting an user-defined operator have been simplified in our

new implementation. We also make on-line help messages easy to get and allow

information di ' vindow such as Help window, Query Results window and

User-Defined Opera, r window to co-exist at the same time when users are

constructing their queries in Query Window. This makes more reference

66

information available at the same time. We also allow users to open Query

Windows as many as they want and define user-defined operators consecutively.

The content of help messages of user-defined operators entered by users can also be

modified easily.

In addition to the new features we added to the DFQL user interface, we also

did an object-oriented programming experiment on this new implementation. The

main techniques of object-oriented programming such as message passing, class,

responsibility-driven, inheritance, and polymorphism are used. The benefits of these

techniques are also evaluated.

67

LIST OF REFERENCES

Angelaccio, M., Catarci, T., and Santucci, G., QBD*: A graphical Query Language with
Recursion, IEEE Transactions on Software Engineering, v. 16, p. 1150-1163, October
1990.

Apple Computer, Inc., Inside Macintosh, v. 1, Addison-Wesley, 1985.

Budd, T., An Introduction to Object-Oriented Programming, Addison-Wesley, 1991.

Clark, G. J., and Wu, C. T., DFQL: Dataflow Query Language, Submitted for publication,
1991.

Codd, E. F., Fatal Flaws in SQL: Part I, Datamation, v. 34, pp. 45-48, 15 August 1988.

Codd, E. F., Fatal Flaws in SQL: Part II, Datamation, v. 34, pp. 71-74, 1 September 1988.

Codd, E. F., The Relational Model for Database Management: Version 2, Addison-
Wesley, 1990.

Miyao, J., and others, Design of a High Level Query Language for End Users, paper
presented at the 1986 IEEE Workshop on Language for Automation, National University
of Singapore, Kent Ridge, Singapore, 27-29 August 1986.

Sockut, G. H., et. al., GRAQULA: A Graphical Query Language for Entity-Relationship or
Relational Database, IBM Research Report RC16877 (#73833), 14 March 1991.

TGSS (The Gunakara Sun System Limited), PROGRAPH: Tutorial, second printing, 1990.

TGSS (The Gunakara Sun System Limited), PROGRAPH: Reference, second printing,
1990.

TGSS (The Gunakara Sun System Limi'ed), PROGRAPH: 2.5 Updates, first printing,
1991.

Wong, H. K. T., and Kuo 'IDE: Graphical User Interface for Database Exploration,
Proceeding of the Eightl- iational Conference on Very Large Database, pp. 22-32,
September 1982.

Wu, C. T., A new grapi er interface for accessing a database, Proceedings of
Computer Graphics, pp. 2(9, Tokyo, 1986.

68

Wu, C. T., Development of a Visual Database Interface: An Object-Oriented Approach,
Application of Object-Oriented Programming, Pinson, L. J. and Wiener R. S., Addison-
Wesley, 1990.

Wu, C. T., GLAD: Graphics LAnguage for Database, Proceeding of the I 1th International
Computer Software and Application Conference, Tokyo, Japan, October, 1987, 164-170.

Wu, C. T., Lecture Note for CS3320 Introduction to Database System, Naval Postgraduate
School, 1991.

Zloof, M. M., Query-By-Example: A data Base Language, IBM Systems Journal, v. 16, pp.
324-343, 1977.

69

APPENDIX

Only the source codes we developed are presented in this thesis. The original

codes of system provided classes are not printed.

70

MI~enu/Quit 1:1

owns

AFALSE

active

Of-enu/cascade win 1:1

window

(50 15)

re re t

Cascaae all wiroows.

OMenu/cascade win 1:1 relocate 1:1

(is Is)

ýAdldPt

oc at to

Que'-, Wl-c* WeC, %Ay 2:. 'N 6 ýg PY

OMenu/delete 1:1

.owflO DFOLCanvas

fron

find-Its

/doI~to

Ouery Window Woo. May 20. 1992 6 09 PM

MI~enu Item/dim 1:1

Takes as input a LIST
of menuitems to aim

If dT nia and the associated menu.

~Menu Item/highlight 1:1

Takes as inlput a LIST
A fication t men~iterns t

and the assoc~ated menu~.

Query W -dow Wed. Yay n,. 1992 6 3C PV

OflueryResults /showi~ueryle suits 1:2

<QuerYResuits/socueýýsut :

A p pl i c a t i o n I ~ v o s w n l c

iron

oQerjteutts/shawuertReShouets y2pesuis 2:2Ic :

Query Wr~~text a 1,19 1P

OUuerylResults /showQuergRe suits 1:2set querg temt 1:1

ýOtuery~esul query text

find-ito

to X£I:

bsoelectio

Ouefy Window Tue. May 19. 1992 11:01 PMw

to~ueryWindow/clear 1:1

C<C~mwmn ..,>> DFQLConves

fLnd-it*

Olluerg Wlindow/ clear 1:llocate inBarRect 1:1

7size
Upoint-to-Int 2

idi

-7
17

intego-dow/tos 1:

. IS

4-6

'IIC~ndwCls 1:1e

Ouiery Wrndow Wea, May 20. 1992 5.23 PM

MQue ryWiridw/ Close 1:1 saue if file changed 1:1

file chan ad ccc~ccc"c I

It the window to be closed is of type 'OueryWindow*
and the contents of the canvas in that window has Deen
changed(i~e.,file changed) prompt the user to save it before
closing the window.

if. Operator Definition Window

MQuerMjWindow/Close 1:1 saue if file changed 1:1 warning message 1:1

name
§1

52

o'Ion

§1. has been changed. Save it?

§2. The content in

011uerylbWindow/newOrylbWin 1:1

Cajrwido

Quer'y W~naow Wed. May 20. 1 N2 5 23 PMV

MQueryWindow/create 1:I

Th < m lod u metohnu>>heppupm n

c•yuary WtndowacitW :
value tie

me st-nt
OFOLCanvas

find-oit

/c reatea

This method is to hanlde the pop up menu
selection. An object will be created
accordng ID the pop up menu item selected.

• u uerrWindow/actiundo ateOW 1:1

•OrW <eywnndow>w

ua enu'

Its possible to activate a Query Window with
other types of window being tronilmost. so it'
necessary to update menu.

OQueryjWindow/actiuateOW 1:1 update menu 1:1

.ccQueryWtndow>~

owns

udate File CCCCC u atEr

0-.;eý, W-nr'vw Wed. Way 20. 1992 5 23 P%4

MUueryjWindow/actiu ate jW 1:ldraw 1:1

<<uerjjwindsow/autQ 11udt mn :udaeEi :

fid it*

find-man

Oue. W(d1 We2 3a 40 1g 6)2 P

MQueryWindow/actiuateQW 1:lupdate menu 1:lupdate File 1:1

find-men

Item lie

TRUE

CQueryWindow/actiuateQW 1:l update menu l:l update Edit 1:Iactiuat delete 1:1

(Delete)

fnd-its

10 TRUE

MOueryWindow/actiuateQW 1:tupdate menu 1:l update Edit t:ldeactiuate others 1:1

\ FALSE

i1. ('Undo (all)' 'Cur "Copy' "CAe" 'Paste*)

Query Wndow Wed. May 20, 1992 5 24 PM

Oauergiwindow/actiuatel)w 1:1ldraw 1:1ldraw input box if it exists 1:1

seelected hie
newo Conte.

tnputoE x drawGener, On

OUue rtWindow/ act iuatetIW 1:1 draw 1:1 draw Input box if it exists 1:ldrawGeneric~p 1:1

etGeneric~ect

ItG ray

smc-begln-drswinf

gsc-mnd-diswina

MQuergij~ndow/actituateQW 1:1 draw 1:1 draw input box if it exists 1:1 draw~eneric~p 1:1 getGenericflect 1:1

- 420 -10

Inset Re c

auueryWindow/actiuateOW 1:1 draw 1:1 draw input box if it exists 1:1 draw~eneric~p 1:1 do draw 1:1

A,0

aFrafmeRoundRec

1 0

FllIRoundRec

Query Window Wed, May 20. 1992 5 24 PM

OllueryWindow/set-attributes 1:1

~cOuwrMWkdow2.ý>)-uO~ Eveflt~ecord

ei eg ido/e-ttiue windo getwido loaton :

§ AI quto wn '1

tocatio .(NULLn

n ~ ~ ~ ~ ~ 1 a18)io O~ria

UnAtld at

11.r Query Window0.~9 524P

MOuergWindow/se t-at tributes I:1quergj win # + 1 1:1

4A licalion

us win

0,u. t'win ig Minogr to stringi

MOueryWindow/set-attributes 1:1 set popup menu of UsrOpr 1:1

Uaro r Us~rO~pr

Efind-ito)0 *roto

tvaluo lit

MUuerjWindow/se t-at tributes 1:1 new OFQLCanuas 1:1

'OFOLCanvas

DFOLCanvee

'4ý namne

)DFOLCan vas Lis

a It a ch

DFOLCanvastis

Create a now OFOLCanvas for oactr now OuoryWincow.

COwry Wr'dow Woo. May 2C. 1992 5 24 PM

•gueryWindow/set-attributes 1:1 query win 1 1:l integer to string 1:3

•QueryWindow/set-attributes 1:1lquery win # 1 I :linteger to string 2:3

OQueryWindow/set-attributes 1:1 query win # 1 1:linteger to string 3:3

OK

Query Wndow We<. May 20. 1992 5 24 PM

MQueryWindow/Key 1:2

<WWindow2 Event Record

),selected It.O J~rtun essevil

TRUE

NULL

7Irendkeyboar

User should proe -return' to finish typing.
So keep reading inputs from keyboard until"return' is pressed.

MU ueryWindow/Key 2:2

g

<Widm Event

DFOLConvas NULLf--

~text;
find-its-i;

When *return* is pressed, create an gdoobi
according to the text the user typed in.

MtueryWindow/Kei 1:2return pressed? 1:2

EventRecord

OQueryWIndow/Key 1:2return pressed? 2:2

EventRecord

FALSE

Query Winoow WedI, May 20, 1992 5 24 PM

MQueryjWindow/reset 1:1

<<Qusy~inow>>input box

Ijgeitifil DFQLCanvas id-t

find-its finitInputbo

reset canvas

Esc-end-ddawwa

Clardrwig anasinQur Wndw.emtygdoblit

51.(0 3000 2000

Clardawngcnva nQuery Window, reemty gdbobjset cn :

rest eer .asindo/ee : estcna :

Query Window Wed, May 20. 1992 5,24 PM

Ollueryliindow/~reset 1:11reset file 1:1

name

13

MI~uergWindow/reset 1:1 reset canvas 1:1 reset newOptenter 1:1

size

point-to--mtO

pouer

indo /saue t 1t

Frstbaku te?~ Iposbe ad he sv

40e iaado res b eareOlV

Overyi Winow edsVa 2. ¶g2S 2ng

00ueryWindow/saueilt 2:2

filoname vols

lIfthe backup operation failed, then don't
Save the new the because it could write
over out previous data without having that
data backed up.

The error messages for Jailed backup are
al contained in live mkbaclrup local method.

~OueryWindow/sauteit 1 :2mkbackup 1:2

GOIFrInf It the tile did not previously

exss!. don! make a bacxup and

3V terminate witi success.

-.bak. load Load1 the old dlatla from
the original filename if

'Join 0 x this ooesrvt work goto next

Sasvo it for any reason (other than above) the
backup coulan't be made terminate this
local method with failure.

Query Wind3ow Wed. May 20. 1992 524 PM~

MOuerqWindow/saueit 1 :Zmkbackup 2:2

we couldn't lawO the dfata from the old
data tile. Generate the error message

/
and

then
t

erm,nate with

tapt,.re.

oQey idwsui I n2oau :

ti~ename Vol

Save the data
OFOLCanves into the nprjt wienanir.

find-It.o

dbob His

Query Window Weo. May 20, 1992 5:24 PM

Ot~ueryWindow/saueit 1:Zdosaue 2:2

011 there was an error on saving
the data generate the appropriate

1), rror message.

21206 0

St p Ier

I1. Your data wilt not be saved?
§2. *Error in attempting to write to

OQueryjWindow/saueit I :2mkbackup 1 :2cklength 1:2

,.egth
3 1

The new filename with~ *.bak' concatenated to
it is of a valid length (-~31) so continue.

~OueryWindow/sauleit 1:2mkbackup 1:2cklength 2:2

F~lename with *bak'
concatenated to it was too
tong so generate error

Paem ex message and ta, hi

21206 0

Query W-ndow Wed. May 20. 1992 5*24 PM

OQueryWindow/saveit 1:Zmkbackup 1:2cklength 2:2

Yow file Wil not be savedl

Is too IOng1"
BSory. Bacdwp Igo name:

OQueryWindow/saueit 1:Zmkbackup 1:2cksaue 1:2

Saving the backup tile was successftl.

OQueryWindow/saueit 1:Zmkbackup 1:2cksaue 2:2

(1 3) There was an error on trying to save

"the backup tile so generate an error

from-ascl message and fa! tnhs loca) metnod.

§§2

'join

PPare ToatJ

21206 • 0

RstopAlerJ

§1. Your data will not be saved!
§2. Backup file could not be made.

OQueryWindow/loadit 1:2

filename volume

<<Oue•yWirdow>>

p rocessloa

If tIhe file has not been opened

load the data from the
specified file. Processload
updates the gdbobjiist and window
or reports on any errors that

were generated by the load.

Ouery W r"o Wea. May 2-. 1992 5 24 OV

=QueryWindow/loadit 2:2

filename volume

The 11 ie *5

|a

1 S erywindow

from-ascl

OK

fan ewe rO

fi. hasbow opened in

0QueryWindow/Ioadit 1:Zopened? 1:1

owno
file

It no error was generateo• then

toad thle returnel calar into tie
arectist ara then upCate the

into cav , window wit . h the ne.w oata.

Query Window Wed, May 20. ¶92 :24 PM

7

0QueryWindow/ioadit 1:2processload 2:3

Couonl open lMe
ti error.

21206 Par mTex 0

it. "Sofy. I could not open the fOle:

OQueryWindow/Ioadit 1:2processload 3:3

"FIle: 1•

File was of tihe wrong type
error.

21206 ParamTex 0

$topAlar

i1. le of the wrong typeal

OQuervUlindow/Ioadit 2:2getwindow 1:1

O W WaApplicati0n.--2 P

wur Wdoow• a 2.•2 4P

MQueryl~indow/loadit 1:2processsload 1:31oad into canuas 1:1

<Oueryftndowýý filename data

dbdo load

o~ler~inowloait1:Quoerg slnow/au 1:1 nocnas 1:1 dola :

filet

the pu-filedfalo

Ituery indo Oteer Mayw" 2c. ccg "U 2LL

MGuerIIWindow/saue as 1:1 used in other wimdfows? 1:3

c<QueryWindo>

x:X User did not change the
original file flame.

OQueryWindow/saue as 1:1 used in other wimdows? 2:3

FALSE

MOuer!JWindow/saue as 1:1 used in other wimdows? 3:3

window flame

*l.~L/ has -asr opne i

nur owWd M~? ~ 4P

~Ouargijllndaw/saue as 1:1 used in other wimdows? 2:3opened in other windows? 1:1

A ilefile

window

fileInt

00uey~idowsau as1:1usedgin othoer 1:1w?3:fn ino :

Ald-ntervrfyn h uesinein

<<Ciufy~inow>ý(I1 there have been any changes to

do with the current query. puts up the
get-tile dialog to allow the ujser to

OtYfiii pick or enter a te to load, then
if it was a vat,.. tile load gdto~lIiSt
trom it.

file volume

Illoadl NULL C
lic lu

Query Wir~ow Wed. May 20, 1992 5 25 PM

MQueryWindow/readtext 1:1

1024

read i~n
Reads ONE line from a file.
Trims trailing DlanKs and

Sadlds a carriage retiurn.

*Ioni th Outputs a string.

% last char,

rotA from-aescI

j n

QOueryWindow/readtext 1:1 lastchar 1:1

MQueryWindow/openloop 1:1

'open To be called repetnively

to open a file. Will loop
untl the file is opened.
DANGEROUS to use if the
ftile requested may not
become available. This will
then loop forever.

jefr W niow Wed, May 2C. 1992 5 25 0M

OQueryWindow/saue 1:1

e 3

I/savaI

Query Window Wed. May 20, 1992 5 25 PM

MinputBox/readkeyboard 1:1

<Window Item> Event

%ead keyboard and enlarge the Input
box according to the length of the text.

olnputBOH/readkeyboard 1:1 resize input bum 1:1

Mlnput~oN/readkeyboard 1:1lresize input box 1:1 get string width 1:1

1 2 'StringWidt core

"
I

C CI ,

OlnputBox/readkeyjboard 1:1 resize input baN 1:1Iset new location 1:1

canto

Mints-to- oilfg

Add Pt

tocatlo

Q~ary W~ndow Tue. May 19. 1992 0.12 PM

OlnputBox/readkeyboard 1:lresize input box 1:1 set new size I:1

oInputBox/init inputbox 1:1

FALSE

active?

(0 0)

Make the input box unselected

,text

Query Window Tue. May 19. 1992 8:12 PM

ODIFULtanuas/updategdbtemt 1:1

~~DFQL~<DFanu Cas/patedbex 01:leras l b :

~DFQL~ nuasuDat eIgdbt ewt 1: e t & e t xtC center1:

dbob uis

'get-nt /da a

dbo li teri

:S & ~tro-arc

OOQ~ nusudt.dt~ Youras may edit 1es:1geo

<< ery WinvoaSd ay2.I>>6 4P

OBFQLCanuas/updategdbtemt 1:1 new gdntemt 1:1

Iz

ODFOLCanuas/updategdbtemt 1:1 get newtemt C, center 1:1 center-of-mainrect 1:1

OBUFLCanuas/updategdbtemt 1:tget newtemt re center 1:lcenter-of-mainrect I:Iueriz 1:1

2

Idi

UQury Wftnacw W"~, May 20. 1992 6 34 PM

~OFQLCanuas/create 1:2

IX

erase input box

CCC(CC CC C

inputino

)-new~p~etl nd-Itoi

init ~ ~ us tiet inputtor bt_--ox gb~,t

OOFL FaUasCeate I:2erase 2:ut2 x :

Our i nd Wed Ma 20 1Z9 6=:;P

MI3FQLCanuas/create 1:2set file changed? 1:1

MOF OLC anuas/ create 1:2getobject 1:3

Y V 0 w
text pon Instnum

C P imiiv .t point iflstflum

it

ODlFQLCanuas/create 1 :2getobject 2:3

text point dispLoegtrinstnum

Mt3FQLCanuas/ create I :Zgetobject 3:3

text point disp egth instfum

Query Wrioow Wed. May 20, 1992 6.34 PM

MDFQLCanuas/create 1 :2add-to-gdlbobflist 1:1

canvas

dbo bills

1154Zh

MDFULCa nuas/ create 1:2init inputbox 1:1

input box
owns

find -t

P/nit inputbo

ODFULCanuas/ create 1:2erase input box 1:lget6enericflect 1:1

'points-to-rece

-20 -

ODFULCanuas/dodrawaII 1:1

'Ijocarawit1 u!bar

Draws all objects in in~ canvas.

Ou"r Windcw Wed. May 20. 1992 6.34 PM4

0DFOLCanuas/dodrawaII 1:1 Iocedrawinputbar 1:2

aOUaQanuas/dodrawall 1:1 Iocidrawinputbar 2:2

0DFULCanuas/getcanuas 1:1

A pplicat ion

DFOLCanvas
Iron

Rel~jrns 'he canvas from

find-it* Query Window.

NULLS

ODFULCanuas/rubberb 1:1

to Coi-daw nnc l~et wt ines . ssCn uu

/ /d r a w land e r a 2 r t i a. n i l i la ao s C i

F-cenddrw, Fuery Windw methd. Mays 20, 12926.34 P

ODFULCanuas/rubberb 1:lwaittllldone 1:1

w etnewmouse

/ldr aw I I n TRUE

ODFQLCanuas/rubberb 1:1 waittilldone 1:1 getnewmause 1:1

ODF QLC anuas /erase line 1:1

PalIc- -palCopy-

~ý2Ibedtrm-tin~d

Erases a line from point I to point2
by changing the oen mode. Changes
pe Dack to patCopy when done.

MflFQLtanuas/drawline 1:1

Draws a line fromt start point
to end point.

Oiu" W "30cw Wed, May 20, M~9 6 34 PM

0DFOLCanuas/bedrawfine 1:1

,cDFQLCanvasý3
V ga-be In-drewin

Jipoint-te.int point-to-Int

JJJ

MoveL o CCC~ an~

Same @3 drawline but includes
se-iinddra n te bginand end drawing

00lFOLCanuas/drawrticonnects 1:1

<-cDFMQrivs>> gdoobllist Object

"rootl so

root rec

'aoc-begin-dr~ewin 'ot

sc-ond-drawin c CCC ~rawru -e

f ~Draws all connecing lines from the
root of arn input object.

0DFOLCanuas/drawrtcannects 1:ldrawrtline 1:1

cenblitr poinstn cerm nter oin

Iur Wi do Wedt ach 20.etach-

alOLQ~anuas/drawrtconnects 1:1 drawrtline I I get terminallist 1:1

gdbobjlist

li nd-Instanc

MDFQLCanuas/drawinputbar 1:1

f'sc -begin A r &win'

I raw II

Esc-tnd-drawinf

Draws in& inlputl bar tor the uejsr-detied
operators screens.

ODFULtanuas/drawinputbar 1:1 draw it 1:1

~I~Z•R~ -- MeCC FiliRoundRec

Query Windlow Wed. May 20. 1902 6:35 PM

DffOFCanuas/drawinnodes 1:1

-<<DFQ.Canvas>>

2In~erRec InlarLis

tg~t~O~flIIon th

P .1
Idl

u dat facts

Sdo :I

Draws nodes on the input bar.
Used from user-defined operators.

ODFQLCanuas/drawinnodes 1:1updaterects 1:1

top spacing

i5

Ilnt 'i°-lo re--e'/

ODFQLCanuas/eraseinputbar 1:1

V '•:.l.•In alB rRecl

Usc-end-drewin (cccc EraseRect

Erases the input bar from the canvas. Used at
the termination of user defined ops screens.

Query Window Wed. May 20. 1992 6.35 PM

*DFQLCanuas/doerase 1:1

PatBic :-OI.CarvvM>ý ob'ect

a rc Bic

Erase th obec based on the

-Pt3p-object number (the POSrrON of
the object in the list) NOT based

Pn deon the instance numbeir.

eOrcOr

OUQflLanuas/doerase 1:lerasestuff 1:1

irele f etede

,mainec ,..~c'FALSE ~

Inselected 1I0

LinvertRound~loc]

Query Window Wed. May 20. 1992 6:35 PM

10OFULCanuas/drawtconnects 1:1

-vDFL~ wa>;t Ps

Text Object ~

scbeIn&rwin 0"" drawtline

so-ed-drwin Draws all conecting knee from
In a ct terminal of an input object

=UFQLanuas/drawatconnects 1:1 drawthine 1:2

~~DF~t.Ca nua/rwcomng ects 1:1 dnrawn e :

Thsmeans thrno sn lin

cete erain.

0DFO LCanuas/drawticbjct 1:2dati :

9
Thi menstheeCas nolin

sc-be In-drsw:inc Text Oblect XI

-JJJ =
.15JJ)

draw dblext

Kee-end-drawin

Query Window Wed. May 20. 1992 6:3S PM

0DfULCanuas/drawobij 2:2

9--operator inpu~t

c~~indawnPjr ,ra-a_~& use,71

sc.; draw7dra .nra

Draw$ gdbopr object trom each~

of the component parts.

ODFaLCanvaS/drawobj 1 :2draw gdbtext 1:1

' J asiz I --Io r e - r aoma
rect-o-I

~DF~tnus/rawbj2:drw Pimtie c Uerpr1:

UnC CCC. slC /iIn

aur ~~w Wd Ma --ing 635P

UDFQLCanuas/drawobj 2:2draw Primatiue D~ Useropr 1:1 draw body C, root 1:2

7 1 0
0 name;

Frs*oundR*.c §

"CCC"CC,.,CC,(in)

rootro icc

F ram*.0v a

gI. (DISPLAY SOISPLAY)

ODFQLCanuas/drawobj 2:2draw Primatiue D User~pr 1:1 draw body D root 2:2

~E:am*c
draw DISPLAY or SOISPLAY

ODFIIL~aruai/inuert 1:1

Inverts the color of an object it
lectd .thre object is selected.

2 Uses an inset first so that the
!5R F corners at tre oolec! reman rto

.J inso.nec enhance the appearance.

1 0

-n veil Ro undA cc

ODFIJLCanuas/delete 1.1

%dbob

Iis

,-19 Executed in response to the

<dbob 2 ii Delete menu item. Goes through
9 Qbobilist anid deletes all selected

objects. After deletions redraws
the canvas and then turns att the

ro,//d odraft select option.

Ouery W~nlow Wed. May 20. 1992 6 35 PM

ODFflLCanuas /delete 1:1 celetem 1:2

ý<DFaLCav-

sooco

0DFO CIOa/eee1: eee :

~DF~taua/dee0 1: c eee 1CCC :2dro 1:1E

.1j.I, i

dolorh

Ougr Wrdow Wed Ma 20 1 FA6LSEP

MDFQLCanuas/ delete 1:1deletem 1 :2daterms 1:1

Copy bti On the oig terinai tht.y t iscnece

51.b (Primitive UC rcpr)

~DFO~anus/dIet 1:1 dletm1:dtrs11rue :

teh. O

~UFOL tnuasdmt (In)te :doem 1lmzeo :

~flF~tauasde~te :1 dletm I:Zdters 1: firoolis 1:

Quey rtinWe. ay 0.192 3.P

MUFOLCanuas/delete 1:1 deletem 1 :Zdoterms 1:1fixraotlist 1:1 ckroats 1:2

ODFULCanuas /delete 1:1 deletem 1 :2doterms 1:11fixrootlist 1:1ckraats 2:2

ODFOLCanuas/init line 1:1

~~Fa.canvs>>
lines (0 0)

NULL

start

en -NULL

mi$ FALSE

, rom root

d ra*LineO

OBF(ILCanuas/centerrect 1:1

Calculates the cenier point
rect-to-int (horiz) of input rectangle.

Query
W~ .dow

Woo.
a y2.'

99
5P

MDFQLCanuas/myci~ck 1:1

window canvas point an e

Flasif input box exist] /hndii i

The contents of thie window 13 Chianged Wrien ClicKed.
Upon clicking. it there is a input box exists create
a gdooobi according to the text in thle input box before
handling the click.

MDFt1LCanuas/myJclick 1:l set file changed? 1:1

T RUE

tile changed

MOFQLCanuas/myjclick 1:1 create if input box exist 1:1

MDFtiLCanuas/handle click 1:5

canvs o event rec

m aincItck? X

index aur Objet

O Handls clicks on thre tOY0

dFomainclick/ gdbobl objects.

Query Window Wed. May 20. 1992 6.35 PM

ODFQLCanuas/handle click 2:5

S• • • event ret:
canvas• point ••/ -

Click on a terminal (input node).

•lDFQLCanuas/handle click 3:5

p in

•vent
rec

HIandles click it on a
Foot (OLiput nooe)

ODFULCanuas/handle click 4:5

anva5 po~n entrec

Handle click on the
input bar. (From add user
operator state.)

ODFQLCanuas/handle click 5:5

canvas point event rec

ýnewfl ete jcc'ZCc~~ w n ~

fi-oae inpuloox

It drawLineOn Is true then just terminate this method Esie.
if a generic operator exists, create a gdbobj accoro,ng to
the text in the input box. Then create another generic operator

Query W~ndow Weo, May 20. 1992 6.36 PM

MDFULCanuas/handle click 1 :5mainclick? 1:1

dbob 1 If click was NOT on the BODY

of an otiect. FAiL this case.

'Udbound

inldex gabool

*OF OLC anu as/ handle click 1 :Sdomainclick 1:4

<ýDFCL re tac bQc

This case is to drag the gdbobj.

MDFOLCanuas/handle click 1:5domainclick 2:4

Casect o selectead~ ;c

dbobbobiUdate nolete'5,ivet

color ot Oclect.

Oluery Wirý3ow Wed, May 20. 1992 6 36 PM

MDFQLCanuas/handle click 1 :5domainclick 3:4

Canvas point i'd roc

dbob ii.

igt-hitI

Nil t Pe

Isho elC, Text Object

mDFOLtanuas/ handle click I :5domainclick 4:4

canva pontev rec

F/updbtegdt

OBFULCanuas/handle click 2:5termclick? 1:1

dbob' is

FAIL case unless click
was on a lermn'r.al
(input nooe).

Ouery W r:)ow Woo, May 20. 1 W2 6 36 Phi

~OFULC anuas/ handle click 2:Sdotermclick 1:2

canvas (nium terms)

wall until mouseu uw oriais

lies dbobj Cnstnum connected to)

)drawLlneO ~ 9,3

FALSE X

center point
/ emcveline/

set lines

/rubber

it oT7 CliCX On root then diawLineOn - FALSET

Staut with drawLinOn ott. Turn it on Remove any pam tromi terminal.
Delete any line tromi term. initialize to hooki up a new line.

ODFULCanuas/handle click 2:5dotermclick 2:2

Iin* dboblis (inStnum terms)

st art

;I/bedrawlin

K/nif tin ((C ~ a cre.s

Uplate term-r~alst and redrawines.

MDFl3LCanuas /handle click 3:5rootclick? 1:1

roolrel Ppooint

dbob lis

find-bound

Y0inst nu-

Oue-Y W-Jow Wed, May 20. 1992 6 36 PMv

MOFQLCanuas/ handle click 3:5dorootclick 1:3

If oufe likedinat- roo displa xnomai

Cakeint ine nsnr

t i01cc 0o" ermot al he FrALSnE n FAS

If sr Wo likdindaowt Wd.sp May 20.f1rma 636on.

ODFULCanuas/ handle click 3:5darootclick 3:3

~DFQL~n canvasll lc 4:Sinputbrlcm :

frooins

nil arle

Ptni linR.c

FALSE eZ
OOF~~~~ur rOCna hnl lck45nubrlc :

FALSEqC

Query Wrndow WK~, May 2Zý. 1992 6.36 PM

MDFULCanuas/handle click 4:5d oinpu tbarc lick 1:1
poinlt event rec

in~lines

V/draw~inosO

lF QLtan uas /handle click 5:5locate inpton 1:1

D F OLCanuas /handle click 1 :5domainclick 1 :odr 1:1

canvas ponin

new fact old redt

Query W~nlow Wel. May 20, 1992 6 36 OM

*DFULCanuas/handle click 1:5damainclick 1:qmoue to new location 1:1

obje~t rct

etSo! w lcat~or'

Osetry no o. a 0 99 6

MOFOLCanu as /handle click 1:Sdomainclick 1:4moue to new location 1:1 set new location 1:1lgetotfset 1:1

ODFOLCanuas/handle click 1:5domainclick 1:41moue to new location 1:1 set new location 1:1lset new location 1:1

T/zottr*

OBFULCanuas /handle click 1:5domainclick 1:4redraWobj 1:1 find gdbobj- within region 1:2

main ro c

S oct R.ct

Query W~ndow Woo, May 2C, I A2 6 36 PM

MDFULCanU2s/handle click 1:5domainclick 1:4redrawobj 1:1 find gdbobjs within region 2:2

MDFOLCanuas/handle click 1 :5domainclick I :4redrawobj 1:1 redraw 1:1

asn~ is Tfin terna

ODFaLCanuas/handle click 2:Stermclick? 1:1 doonlyops 1:2

PI

Quey ~dw We.Ma 2, D2 3 P

ODFOLCanuas/handle click 2:5termclick? 1:Idoonlyops 1:2checkterms 1:2

d .1ch-Z

PtInR~ct

.1FALSE 'I

.07MM-7M

0DFULCanuas/handle click 2:5termclick? 1:1 daonl~jops I :Zcheck terms 2:2

oarwLanuas/handle click Z:5dotermclick I:Zwati until mouseUp 1:1

TRUE Z

MOFOLtanuas /handle click 2:5dotermclick 1:2update terminallist 1:1

<ýDPOLCanvw-,

O~~~~erysnu Wti~ W d ay rro) 637P

~ODFLCanuas/handle click 2:Sdotermclick 1 :Zset lines 1:1

linesinumt rret~o

drawrawaI

furomins O. a 0.'26.7P

ODFULCanuas/ handle click 2:5datermclick 1:2if not click on root then drawLineOn - FRLSE 1:2

3*ndpN

z
unpac

tClick onl rooo x

X FALSE

drawLineO

ODFOL Can uas /handle click 2:5dotermclick 2:2update terminallist 1:1

cancas gdb~otjlist (instniam term#

QuryWidoeWd.Ma 2. am 637P

=OF ULCanuas/ handle click 2:5dotermclick 2:2add to rootlist 1:1

lin s d ob'is (fltfltum form#) to connecd roof to

Insnstnum

find-in Stan C

moDFQLCanuas /handle click 2:5dotermclick 1:2update terminallist 1:1 se bectD terminallist 1:1

0

'pack

set-ni

Query Wirrlow Wed, May 20. 1992 6 37 PM

ODF QLCanuas /handle click 2:Sdotermclick I :2remoueline 1:1 update rootlist 1:1

IY
(irrstn.m terrne)

rootils

rmvtmrOOlhsl

,rootilie

ODFOLCanuas/handle click 2:5dotermclick 1:2remoueline 1:Ieraseline 1:1

r/lic oten I. C
Center point

7I raaaIn

ODFULCanUas/handle click 2:5dotermclick 1 :2remoueline 1:1 update rootlist 1:1 irmul'mrootlist 1:1

root list
(instnumn term#)

(in)

detchI

ODFOLCanuas/ handle click 2:5dotermclick 1:2it not click an root then drawLineOn -FALSE l:2click on root? 1:1

rootnect

dbob lie

'find-boundf

a0

Query Windiow Weo. May 20. 1992 6 37 PM

ODIFOLCanuas /handle click 2:Sdotermclick 2:Zupdate terminallist 1:1 remolueline 1:1

cava gd ijnstnum

root list (Insiflurt er,

cetrpin t

sdetach-n

Ouery W,ndow Woo. May 20. 1992 6 37 PM

*DFOLCanu as/ handle click 2:5dotermclick 2:Zupdate terminallist 1:1lupdate termiriallist 1:1 update it 1:1

canvas insinum

lines

ftomine 'get-nt

.instu -UPac'

OOFOLCanuas /handle click 3:Sdorootclick I :3makeinto 1:3

Oury ro~ b, I aj G. o 6 2 0%

flFOLCanuas /handle click 3:Sdorootclick I :3makeinfa 2:3

)gdbobý lis _dbops/c hoc kgrapin

(Ccc cc

se~seteeShidnlt really need a cop here
since we rothAt~e the ba[every execuiiton;
however the keeps adbobgista from~ EVER
being Corrupted (otherwise it wouldO be

e'dbob Imakeao corrujpt alltr one execution and before thle
- ~next)

ad ob

capr

.dbopstdoaltop

MDFOLCanuas/handle click 3:Sdarootclick 1:3makeinfo 3:3

0

Alert should say that terminals
ind roots are not connected
correctly. User shou~ld chieck
his query graph.

MDFULCanuas/ handle click 3:5dorootClick 1:3dispinfo 1:3

mmryz;~w e.E Ma 20 9267P

~OBFLCanuas/ handle click 3:5doroatclick 1:3dispinfa 1:3

X~UMN NAMSE&

MDFlQLCanvas/ handle click 3:5dorootclick I :3dispinfo 2:3

gi.~~~Tx Objecntetalelit

MOF LC anuas//han dle click 3:5dorootclick 2 :3waispuntil 3os :1

TRUES

(1ryW3)a e.My2.?g .7P

ODFULCanu as /handle click 3:5dorootclick 2:3set lines 1:1

TRUE

draw~l-neO

center point

~OFQLC anu as/ handle click 3:5dorootclick Z:3if not click on terminal then drawLineOn - FRLSE 1:2

*n dp

ptI

ýFALSE :ccccccc w

CdrawLln*O

ODFULCanuas/handle click 3:5dorootclick 2:3if not click on terminal then drawLineOn - FALSE 2:2

FALSE

Ouery W-dow Wed. May 20. 1992 6,37 PM

MDFQLCanu as/ handle click 3:Sdorootclick 3:3update terminallist D' rootlist 1:1

point -~instumabeKI1s "

Xny~os

Inetnum

Efind-Instanu
ins in ur

I;up ale terminallist of start o

MDFQLtanuas/handle click 3:5dorocitclick 3:3doline 1:1

Center point

I I b draw in

selectedd

'5 got-nl

Ci~ery W,.,)ow Wed. May 20. iQ92 6 37 PY

MOFOLtanuas/handle click 3:Sdorautcllck 1:3dispinfo 1:3formatit 1:1

form&

'Ion1 th

4

3

middi

to -as ci

mesaces

fro-sci

ODFOLCanuas /handle click 3:5dorootclick 1:3dispint'u 1:3formatit 1:lrepspaces 1:2

322

CEDF LCanuas /handle click 3:5darootclick 1:3dispinfo 1:3formatit 1:lrepspaces 2:2

Query Window Wed. May 20. 1992 6 37 PM

OlFULCanuas/ handle click 3:5daoratciick 2:3if not click on terminal then drawLineOn -FALSE 1:2ciick an terminal? 1:1

,dbo bilisg

d onori

'detach- C(cr NULLe

unpac

o FAIL cas. 'jnless click
was on a terminal
(input noce).

ODFOLCanval/handte click 3:50orootclick 2:3il not click on terminal then drawLineOn =FALSE 1:2cliCk on terminai? 11doonryops 1:2

pt

CtY

Tex Obect VrOO Woo M3 0 2268

*OFOI.Caiwmdhulade ilc 3:5 1doeootClick 2:3,t not click on wrminal then arawLineOn =FALSE 1;2clicK an twminal? 1:1d0ontyops 1:2ch*Cklerms 1:2

detach-

.1 FALSE

0

OIDFOLcanvas/handle click 3:Sdaroctclick 2:30t not chick on lermnal Men OfawL~noOn : ALSE 1.2c.IcK an termnaP 1.1cdoonlyops I.2Checktrma 2:2

OOF OLCanuas /handle click 3:5dorootcliCk 3:3update terminallist D~ rootlist 1:1 update terminallist of start op 1:1

Ou"or Wmaow Woo. May 2C, 1992 6 38 PM

*DUFLCanuas/handle click 3:5dorootctick 3:3update terminallist 0 roatlist 1:1 update rootlist of destination op 1:1

rootlis

attach-

roomsIi

ODFQLCanvas/harrdis Ciock 3:50orooClvck 3:3upaate terminaltist & roollisl IlIupcate term~naii'st of start op 1:1findterrr 1:1

Pt oblopr

_term nallis

C..

position (rect n)

MCDFOLCanvas/hartdlo OChk 3:500oroohclick 3.3upaate herminathst & rootlist t:tupdate herminaialst ot start op 1:11indtarm 1:lchleckph 1:1

PI

detach-

P~ntRect

TRUE ~

Ouery W~n~w Area, May 20, t292 6 38 PMA

*DF QLCanuas/ handle click 5:5locate inputbox 1:l locate it 1:1

~flFO~anus/hanle cIck55oaeipto :danput box1:

fi-nd-ditws (CCC 6C dod)w

selected Its text

MOD OLCanuas /handle click 5:5locate inputbox 1:1 draw input box :doda 1:1

mscbeindrwi F Ret

Frem-o-ec

Query Window Woo, May 20. 1992 6 38 PM

oauery Object/calcrects 1:1

pint

USteringWidti

8+110

Based on thee length of the
Got flSiftSet KGet rootrectj operator name determines

the ooords of the main tact
and root rect (output node).

OIiuerg Object/calcrects 1:1 Get mainrect 1:1

-22

ponts-to-ro / c tdil
- 10

Ins et Re

JOQuery Object/tcaicrects 1:1 Get roatrect 1:1

(12 0)

AddPt

Upaint s -to rrea

OQuery Object/mktirmlst 1:1

length arity

-a GivenMe arity and thelength

SO I dl of the operator's body rectangle
determines where to draw the

0 terminals (input nodes).

%makethereCts.

Query Window Tue. May 19, 1992 9 06 PM

MQuery Object/mktrmlst 1:1maketherects 1:1

s a arity

-12

RDFOLcarivas/sletcerivaiM MInts-to-poln
14--ft 0 le

New0pCenteg

AddPt

E/pOints-10-rec

- 3

lns@tR*c

0

ack

rzzz, -Z, 5 ý Wz. vz.,- V, m ý s Wz-

Ouery Window Tue, may 19. 1992 9 06 PM

=Text Object/setterms 1:1

Included to correspond to
method of same name in Operator

to allow date d~etermined

* MTemt object/create 1:1

text dig egth Instnum

% point

farina

pr efl

LUGItOjc/rae1gt-display-strng 1:

eppi~ont x
d i st i r s

oTemt Object/create 1:1 get-display-strng 2:2

Query window Tije, May 19, 191)2 9 07 PM

CMOperator/setterms 1:1

Used to move terminals
.1011 wth the main (body)
riect when the operator to

IMOPerator/setterfns 1:1moueterm 1:1

dh dv

detach-

'OfesetRec

attach-

0Operator/set-attributes 1:1

object i nteger(lastinst)

0 a poen endnu

i'Ic ic rect

Query Window Tue, May 19, 1992 8.34 PM

MOperator/ create 1:1

UOpraercrat 1:1, gett instace1:

o ,,.ator

o namne

'find-instanc

0' do *ndnu

:de ondnu

C~operator/create 1 :1 get instance 2:2

Useorpir lex

Query Window Tue. May '9. 1992 8 34 PM

oUser~pr/actiueuiew 1:1

d i r.

OUseropr/actiueuiew 1:1 update menu 1:1

owns

tind-men FALSE

:..pdaenaFlle

MUser~pr/activeuiew 1:1Lpdate menu 1:1 update File 1:1

File

find-men 1

lm le FALSE tind-its TRUE

"5.(P 'lPalp Setup...")

MUseropr/uiewop 1:1

A lictionUses select dialog to display
A iaton select usroprl available user operators.

Takes 'he one that Was saleC~ed
*~ari displays I in the View

curren NLLL User Operator -- window,
Concatenates the name 0f the

! U user operator being displayed
I'OPate ineftl t lUsr~pr w-ndowl to me window namie s0 it gets

dispiayed in the titie Dar.

COeiy Wriclow Wed0. May 2C.. 1992 5 57 PIM

OUser~pr/uiewop 1:1lselect usropr 1:1

UserOpi

)o eratorLI*s

.0namne.§

fitin dstaen

UsFALSE

_ee

MUsert~pr/uiewop IA gtupdater windo 1:1

-~e~rue o 1:. get Usrfpn windowa1:1

e ut r Wndowo IFd -7 0 9g 7P

oUser~pr/uiewop 1:1 update menu 1:1 update File 1:1

Appliactive

Iron

Iocatio "~C~C.(C N L

MUser~pr/uiewop 1:1lget UsrOpr window 1:1 preuious win loc 2:2

~~User~pr/uiew(5 1:gtUr5)wnow1le wno :

OUser~pr/uiewop 1:1 get Usr~pr window 1:1 get window 2:2

'Wýn 4am

Query Windlow Wed, May 20. 1992 5.57 PM

MUserOpr/delete input 1:1

u at opeator lis in e wno

gi. OaETnCPERATO

Quey indw edMa 20 192 .S P

MUserOpr/delop 1:1 update usroprList 1:1

MlInd -in eta nc

Edstach-Otg

OUserOpr/delop 1:1 update operators list in Help window 1:1

u ate eps

MUser~pr/delon 1:1 update UsrOpr pop-up menu 1:1

IUserOpr/delop 1:mupdate operators list in Help window I:lupdate HelpList 1:1

Query Wrnlow WeO. May 20. 1 N2 5 57 PM

*User~pr/delop 1:1 update operators list In Help window 1:1 update operators list 1:1

A liApplic ami e

cuu rro

findwindow

(i)

dotaeh-ndo

M User~pr/delop 1:1 update Usrflpr pop-up menu 1:1 idalsQer Windp w 1:1

Applicatidon ~.My2.1~ .7P

inUserOpr/delop 1:1 update UsrOpr pop-up menu 1:1 find all Query Window 1:1 find QueryWindows 1:2

If 0

QueryWindow xf

MUser~pr/delop 1:1 update UsrOpr pop-up menu 1:1 find all Query Window 1:1 find QueryWindows 2:2

MUseropr/newusrop 1:1

Sets ur Query Window screen
/resotto accept definition ot a new

Ilocaie inSa~c user demeid operator.
6 Set~piiems turns oil alt

setuplemsbuttons and men.~ setecnons
"C ~NOT associated with use, op)

MUseropr/newusrop 1:1 get window D canuas 1:1

Ouer Windo

DFOLCanvas
set attributes

tfind- Ite

Query Wridcow Wed, May 2C. 1992 5 57 PM

MUseropr/newusrap 1:1 set some attriuutes 1:1

TRUE

~L 16 us rOprom

MUseropr/newusrop 1:1 setupitems 1:1

<<Quo Wincdow>ý

doactivate items
TRUE

lactivate itemsA modal?

OUseropr/newusrop t:1update menu 1:1

Application

lin.men

Query Win'dow Wed, May 20. 1992 5,57 PM

=User~pr/newusroD 1:llocate inBarRect 1:1

Size 2

-oint-to-int

Idl
1 7

.a 7

Ints-to-rec

-160 -

InsetRec

InBarRec

OUserapr/newusrop 1:t get window D canuas 1:1 set attributes 1:1

na get wrcow oca=7or

locatio TRUE

active?

§1. Operator Definition Window

OUser~pr/newusrop 1:l get window D canuas 1:I set attributes 1:1 get window location 1:2

Application

Iron

iocatior (cccccc NULL

l1e 1S)

Ouserapr/newusrop 1:1 get window D canuas 1:1 set attributes 1:1 get window location 2:2

OQuey Window Wed. May 20. 1992 S.57 PM

MUseropr/newusrop 1:lsetupitems 1:ldeactiuate items 1:1

f in d4-t

11. (Run Now Open *Save me Save Reset)

OtUseropr/newusrap 1:1 setupitems 1:1 actiuate items 1:1

.<QueryWinoow~.

OUseropir/storeup 1:2

ý<Qur) xow>>First checks the user op lot correct
ffdbop/chocconnections. Thern gets the name

for the operator (getopnarne) and the
etc-nmo: relp message tor it (getnetptext) from

the user. Then adas it in correct
deir, mnoe alphabetical oroler (determined by

Othe- ex! ,),-)Vgelcpname -- when it also checks for
3E A ý:attempted use of already used names)

tcreate new suropri to the persistent list of att user defined
operators.

Query Window Wed, May 20. 1992 S:58 PM4

OUserOpr/storeop 2:2

EStopAlsr•

Alert should say that terminals
and roots are not connected
correctly. User should check
hi query graph.

OUserOpr/storeop 1:2getopname 1:2

'!-ooforname X)

u oat.- op.rtr list in nep aG

*i. Enter the desired name for this operator:

MUser~pr/storeop 1:2getopname 2:2

Ou"r Window Wed. May 20. 1992 5 58 PM

MUseropr/storeop 1:2create new suropir 1:1

sr <coueyino beOC&ivseaho rrpt

In -totS at ec h

(Us.~ ~ ~ ~~~~(o opinrin oaanoie.

O elcoWnso e.M~2,t9 8P

*MUsetOpr/storeop 1 :Zupdate UsrOpr pop-up menu 1:1

)Operator name ~ urWno

Opeatr ae nam

IOfrd l uery Windo WeT Ma 0.1Q2358P

MUscropr/storeop I:Zgetopname l:2update operators list in help window 1:1

A lcation

He[I

curren

0 *ortor*

Rindwin dog

Cfilnd-it*

value lis

attach-

value lie

OUser~pr/storeop 1 :2getopname 1 :2lookforname 1:1 samename? 1:2

OUser~pr/stareop I :2getopname 1 :2lookforname 1:1 samename? 2:2

i t. Plea" enter a different name.
J2. Is already in usel

OUserOpr/ store op 1:2create new suropr l:lgetrootinst 1:1

Sa cavas rootlist

gdbob tis

find-Instancl

>,instnfu

Query Windiow Woo. May 20. 19g2 5 58 P%4

MUsergpr/storeop 1:Zcreate new suropr 1:lgetcons 1:1

a plcanvas

glndindtni owe

*~~OUserfl pr/storeop 1 :Zupdate Usrfl pr pop-up menu 1: 1 find all Quer y Window 1:1fn urjidw :

Aur Wipo Wo.Ma 2. 9i SSnP

OUserOpr/storuop 1 :2update Usrflpr pop-up menu 1:1 find all Query Window 1:1 find QuergWindows 2:2

OUser~pr/oprdraw 1:1

Bascalyth sme as gbop d srawecpt tms

.Usror/prra i:ldra inutarr:

C.7

Vc-nddrawrtinnc

MUser~pr/oprdraw 1:1 draw input bar 1Irw 1:1

in SarR cc

10 10

C'FraofundR~ Ccc CFilIRoundRecj

06iery W~nlw Wed, May 20. !%Q 25 58 P'M

W~elp/show help 1:1

GONGSes

message nm

ItOponHelpWinow

MHelp/show help 1:1 GetMessage 1:1

AHl/so help instpanlpcenow1:

NOsLas o[name,

Getndeinsanlow

SMoe setselc s

OHelp/show help 1:1 O penelWindw :!GelepWindow 1:1

messWadgWe.Mae0.192526P

OHelp/show help 1:1 OpenHelpWindow 1:1 SetText 1:1

Offelp/show help 1:l0penHelpWindow):I Set select list 1:1

0 orators

value lie

(in)

'pack

MXelp/help click 1:1

value lie

el-nt

I na ise ci,,c

OHelp/help click 1:l handle click 1:3

e w0Tex6
CCCC

is-doubis.V
Get Window

OQury Wnaow Wee. May 20. 1992 5.26 PM

WHelp/help click 1:lhandle click 2:3

(I n)

0 Cth oHeIPGS

GetWindow

ShowTaxt

11. ("alect join dl union project groupcnt eqjoin groupAIlsatisty groupNsattsfy groupavg groupmax groupmin intersect DISPLAY SOISPLAY)

OHelp/help click 1:lhandle click 3:3

§2

loi 01"OK

answer

51. can not be changed!
J2. The description of

OHelp/help click 1:1 handle click 1:3GetText 1:1

H. I

name

rWoind, nst.nc 5

Massa

Query Window Wed. May 20. 1992 5:26 PM

CHelp/help click l:lhandle click 1:3GetWindow 1:1

I
A Ila Con

find-wind A

MHelp/help click 1:1 handle click 1 :3SetText 1:1

text

OHelp/help click 1:1 handle click 2:3ChangeuelpMessage 1:1

*Il Lis

name

\7-

Utnd-In at ancQ

51

askc

51 You may edIt the teat btlow.(Uss option-return to start new lines.)

Quer W,ncow We<w. May 20. 1992 5 2E PM

WHelp/help click 1:I handle click 2:3GetWindow 1:1

A Ilcation

crren Hot

find-windo

WHelp/help click 1:lhandle click 2:3ShowTemt 1:1

find-it.

0 ax t'

OHelp/RctiuateHelp 1:1

g g p

Appliciltion

C•€urIr en lHelp

/ find-windo 0 oprmlors

'•°'oojtext-

O r lnd-io W a . • 2

Query W,naJow Wedl, May 20. 1992 5 26 PM

BIBLIOGRAPHY

Shneidernan Ben, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison-Wesley, 1987.

Kim, W., and Lochovsky, F. H., Object-Oriented Concepts, and Applications, Addison-
Wesley, 1989.

Wu, C. T., OOP + Visual Dataflow Diagram = Prograph, Journal of Object-Oriented
Programming, pp. 71-75, June 1991.

Meyer, B., Object-Oriented Software Construction, Prentice Hall, 1988.

171

INITIAL DISTRIBUTION LIST

Dudley Knox Library 2
Code 52
Naval Postgraduate School 0 p
Monterey, CA 93943

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor C. Thomas Wu 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Li, Chang-Tsun 3
Weapon System Department
Chung Cheng Institute of Technology
Tashi, Taoyuan, Taiwan, R.O.C. 33509

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

172

