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FOREWORD

Systems Modeling explores three modeling and analysis
approaches that aid the development of naval systems: dynamic
performance modeling, rapid prototyping, and executable
specification. The use of these techniques in the development of
large, complex systems helps designers predict the behavior of
the system, assess the feasibility of the design, and seek the
optimal solution from the design space. Further research is
being directed toward improving the integration and advancement
of current modeling techniques to provide the systems designer
with an integrated, seamless transition between phases and
analyses in the system development process.

The work to date was performed in conjunction with the
Pseudo-Measurement Technology task and the Non-Invasive
Instrumentation Technology task, as part of the Systems
Evaluation and Assessment Project of the Engineering of Complex
Systems (ECS) Block. It also complements the research efforts of
the System Design Synthecsis and the Systems Reengineering
Projects of the ECS Block.

The authors would like to thank their sponsor, the Office of
Naval Technology, especially CDR Jane Van Fossen, USN (Ret.) and
Elizabeth Wald. The authors would also like to thank all of the
individuals who provided technical support to refine this report
and Adrien Meskin for her editorial support.

Approved by:
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¢

C.A. KALIVRETENOS, Deputy Head
Underwater Systems Department
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ABSTRACT

This report explores the evaluation and assessment
techniques that may be applied to the different phases of the
system life cycle--from requirements specification to
implementation and reengineering. At each stage of the system
life cycle, there are suitable techniques that may be applied to
predict the behavior of the system, some more appropriate than
others. Currently, however, there is no formal method for
applying this evaluation information to the forward or reverse
engineering process. Consequently, maximum use of the
information available to the system developers rarely occurs. 1In
addition, this report investigates the issues relevant to the
integration of evaluation methods to the system development
process.

iii/iv




NAVSWC TR 91-592

CONTENTS

Chapter

1l INTRODUCTION . . . ¢« ¢ ¢ ¢ ¢ ¢ o o o o &
BACKGROUND . . . . . . e e e e .
CURRENT SYSTEM DEVELOPMENT PRACTICE
APPROACH . . . . . ¢« ¢ ¢ & & o « .

2 FUNDAMENTALS OF MODELING . . . . . . . .
PURPOSE OF A MODEL . . . . . . . .

MODELING SHORTFALLS . . . . . . . .
COMPILEXITY LIMITATIONS . . .

BACK ANNOTATION LIMITATIONS .

HUMANWARE MODELING . . . . . .

OPERATIONAL ENVIRONMENT . . .

HIERARCHICAL MODELING . . . . . . .

W

DYNAMIC PERFORMANCE MODELING . . . . .
USES OF DYNAMIC PERFORMANCE MODELS
STEADY-STATE ANALYSIS . . . .
TRANSTENT ANALYSIS . . . . . .
DYNAMIC ANALYSIS . . . . .
TYPES OF DYNAMIC PERFORMANCE MODELS
ANALYTIC MODELS . . . . . . .
SIMULATION MODELS . . . . .

COMPARISON OF ANALYTIC MODELING AND

SIMULATION ANALYSIS . . . .
MODELING AND ANALYSIS TECHNIQUES .
QUEUING THEORY . . . . . . . .
GRAPH THEORETIC . . . . . . .
PETRI NET . . . . . e e v .
COMPUTER-BASED MODELS o« o e

4 EXECUTABLE SPECIFICATION . . . . . . . .

COMPONENTS OF EXECUTABLE SPECIFICATION

LOGICAL MODEL . . . . . . . .
RESOURCE MODEL . . . . . ., .
EXTERNAL/ENVIRONMENTAL MODEL .
IMPLEMENTATION MODEL . . . . .
RESOURCE MAPPING . . . . . . .« .«
ANALYSIS OF EXECUTABLE SPECIFICATION
COMPLETENESS . . . . . . . .« .
CORRECTNESS . . . . « .« .« «

5 PROTOTYPING . . . . . . e e e . e .
PROTOTYPING TECHNIQUES e e e e e e

:

HFTP'H
\
N e

DD N
UNSURR.
WWNDNN P

WWWWWWwWwW
1)1
WWWON PR P

WWWwLwww
|

1 [ I | | |
QUT U & bbb WW e Naotde e W

P A - B R - -
|

o,
U
-




NAVSWC TR 91-592

CONTENTS (Cont.)

Chapter

THROW-AWAY PROTOTYPING . . . . . . « . .
EVOLUTIONARY PROTOTYPING . . . . . . . .
INCREMENTAL PROTOTYPING . . . . . . . .

ANALYSIS OF PROTOTYPES .

PROTOTYPE DEVELOPMENT ENVIRONMENTS e e 4 e e

USER INTERFACE . . .
COMPONENT LIBRARY .

CONTROL AND OBSERVATION STRUCTURE e e .

EXAMPLES OF PROTOTYPE DEVELOPMENT ENVIRONMENTS

COMPUTER~-AIDED PROTOTYPING SYSTEM (CAPS)

INTEGRATED DESIGN AUTOMATION SYSTEM (IDAS)

PROGRAMMABLE NETWORK
(PNPS) . + . . . .

6 APPLYING SYSTEM MODELS . . . .
WORKLOAD . . . . . . . .

PROTOTYPING SYSTEM

. . . . . . . . . .

. . . . K] . - . -

. . . . - . . 3 . .

COMPONENT VERSUS SYSTEM LEVEL WORKLOAD

CHARACTERIZATION .

LIMITATIONS OF THE WORKLOAD

CHARACTERIZATION .

TEST VECTORS . . . . . .
ANALYSIS . . . . . . . .
DEADLOCK . . . . . .
STARVATION . . . . .
RESPONSE TIMES . . .
RESOURCE UTILIZATION
SENSITIVITY ANALYSIS
TRADE-OFF ANALYSIS .

ANALYSIS . . . . .

FAULT-TOLERANCE AND GRACEFUL DEGRADATION

ANALYSIS . . . . .

7 CONCLUSION . . .« « « ¢ o o =+ &
REFERENCES . . . . . . . . . .
BIBLIOGRAPHY . . . . . . . . .

DISTRIBUTION . . . . . . . . .

vi

e a . . ° . 2 - a °

“’:
%]
[0]

Lﬂ(ﬂU‘l(ﬂ(ﬂL{lU‘l(ﬂLﬂU’lU‘
AU bdWWLWWN

(54}
|
[e)]

1\0
[Sgen

o))
|
o)

a\c\c\mc:\cnmo\m
Bk b WWWNNDN




NAVSWC TR 91-592

ILLUSTRATIONS
Fiqure Page
1-1 CURRENT SPECIFICATION PRACTICE . ¢ ¢ o o o o o s o o o o 1=2
4-1 COMMON PERFORMANCE MODEL REPRESENTATIONS . . . . . . . . 4-2
7=1 SPECIFICATION GOAL . +« &« &« ¢ o o o o s o s o o o o o o o 1=2
TABLES
Table Page
5-1 SOFTWARE PROTOTYPING, FORMAL METHODS AND VDM . . . . . . 5-2

vii




NAVSWC TR 91-592

CHAPTER 1

INTRODUCTION

The current state of practice of systems engineering is a
fragmented process. The tools and techniques used to develop and
analyze systems in one phase of the life cycle generally do not
transition to the next phase; instead, as the design progresses
or different aspects need to be studied, a new set of tools and
techniques must be used. This process is inefficient, expensive,
and may allow the designer to miss potential problems or
alternative solutions. What is needed is a fully integrated
process that allows the seamless transition between phases and
analyses in the system development process.

This research effort explores three modeling and analysis
approaches that will aid in the development of naval systems:
dynamic performance modeling, rapid prototyping, and executable
specification.

BACKGROUND

Navy systems belong to the class of Mission Critical Complex
Real-time (MCCR) Systems. These systems share the following
characteristics: very large and complex; real-time; parallel and
distributed architectures; and high degree of information
overload. They also have very strict requirements: they must
exhibit an extremely long life cycle and must meet high
reliability, availability, fault-tolerant, stringent security,
survivability, and performance requirements. For satisfactory
performance, these characteristics must be considered throughout
the system life cycle--from the initial conceptual system design
to the system life cycle management. These characteristics,
which exist in all system resources (i.e., hardware, software, or
humanware), complicate the system development process.

Currently, the processes used for MCCR system design are
inadequate to guarantee satisfactory performance with respect to
these factors.

CURRENT SYSTEM DEVELOPMENT PRACTICE

Current systems are developed in a fragmented, ad hoc
manner. Present methods can be viewed as in Figure 1-1, in which
the techniques are splintered and disjointed. Knowledge gained

and tools and techniques used at one stage cannot be easily

1-1
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passed on to the next stage, nor can results and design
modifications be directly fed back to the previous stages.
Today's methods are limited by an inability to trace requirements
and thoroughly perform consistency checking. As a result of
these deficiencies, redundant modifications and inconsistent
models may pervade the development process. Additionally, the
disjointedness of current methods make early error detection
difficult. The later design errors are discovered, the more
costly they are to solve; thus, it is important to be able to use
modeling and analysis methods -=arly in the design process in
order to reduce system cost and improve performance.

] rorMAL MeTHODS
AD HOCLY DEFINED

mummmo

—

SYSTEM SPECIFICATION

FIGURcs 1-1. CURRENT SPECIFICATION PRACTICE

APPROACH

The development of an integrated, seamless path for system
design depends on the advancement of three critical modeling
techniques: dynamic performance modeling, executable
specification, and rapid prototyping. Dynamic performance models
may be classified as analytic or simulation. If the
relationships which compose the system are relatively simple, a
mathematical method (such as algebra, calculus, and probability
theory) may be used to obtain an exact solution on questions of
interest; models captured using such a method are called analytic

1-2
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models. Simulation uses the numerical logic models of a system
to examine its behavior over time and under different conditions
and scenarios. Simulation permits an arbitrary level of detail
and complexity in modeling, and allows the study of the effects
of simultaneous variations in several parameters. Executable
specification is a formal representation of the system which
captures the functional, behavioral, and implementational
aspects. Finally, rapid prototyping is a representation of the
system which bears closer resemblance to the final system than
either dynamic performance modeling or executable specification.
Rapid prototyping differs from the final implementation because
in at least one area it does not meet the requirements.
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CHAPTER 2

FUNDAMENTALS OF MODELING

Dynamic performance modeling, executable specification, and
rapid prototyping share a common approach to system problems.
Each technique must overcome the same shortfalls, and each uses a
hierarchical modeling approach to solve problems.

PURPOSE OF A MODEL

A model is an abstraction of a system which is developed to
allow analysis of certain aspects of the system. Models may
capture the function, behavior, structure, and/or implementation
of a system. Generally, a model is hierarchical: it begins as a
simple statement of a proposed solution, and this statement is
refined as more details are determined such as system
specifications, component functions, software, hardware, and
humanware. This model is then used to determine a solution, the
ability of the solution to meet its requirements, the feasibility
of such a solution, and the optimization of the solution.

Modeling, through trade-off analysis, allows quick searching
of the solution space (i.e., a boundary formed by the constraints
and requirements of the problem) and refinement of possible
solutions. Current techniques restrict the designer to a limited
solution starting space because of the need to provide cost
effective and timely solutions. As a result, if the optimal
solution is not in this limited space, it will never be reached.
One of the goals of this research is to allow the designer to
start with a very large initial solution space and to quickly
reduce the solution field. This goal stems from the high cost of
carrying each alternative solution further into the design
process.

MODELING SHORTFALLS

Just as there is no single paradigm for modeling Discrete
Event Dynamic Systems (DEDS), there is no single model that can
capture all aspects of the system. Models are used to capture
the part of the system that is of interest to the systems
engineer. However, even with this limited scope, there are
shortfalls with the models: the complexity of state dependent
models tend to increase at an exponential level, mapping a model

2~-1
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from one representation to another is extremely difficult, and
the human aspect of the system cannot be easily modeled.

Complexity Limitations

Currently, although modeling techniques are capable of
describing many systems, these techniques are usually constrained
by complexity. For example, in state space nnodels, the
complexity increases exponentially with the number of states.
Complexity 1limitations have kept modeling from being more widely
applied. If methods were available which allowed transformation
between modeling techniques, many of the complexity limitations
could be overcome by using the strengths of a particular
technique. This transformation between modeling techniques is
not trivial since it is generally a many-to-many mapping. This
many-to-many mapping makes traceability of the models and
verification of the mappincg extremely difficult.

Back Annotation Limitations

Systems engineering requires the ability to back annotate
changes. As the systems develop and age, changes are made that
will require updating the model. These changes require the
ability to update the entire model, from the point where the
change is made, back to the requirements specification. To be
effective, back annotation and traceability demand that all
development decisions and their rationale be formally documented.
Thus, revisions in the system can be accurately reflected in all
phases of the model.'

Humanware Modeling

Humanware modeling must be an integral part of the system
engineering process in order to comprehensively assess the
performance of a system, although it is not captured in most
current modeling techniques and methodologies. "Humanware"
implies the view of humans as resources which can be allocated
functions and analyzed in the same manner as software and
hardware. Humanware not only includes the response time and
information handling capability of the actual humans who will
interact with the system, but also the documentation, training,
and other factors needed for the humans to be able to perform
their functions. As an example, if the human was the bottleneck
of a process but had not been modeled into the system, resources
might be wasted trying to increase computational speed to no
avail.
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Operational Environment

Operational environment refers to the conditions under which
the system (or subsystem) will actually be used. During system
modeling the operational zanvironment must be duplicated to
exercise the model as closely as possible. The operational
environment could differ considerably from the expected
environment, the development environment, or the test
environment. For example, the operational performance of the
signal filter of a radar system for a high sea wave will be lower
than expected if that system was evaluated for a low sea wave.
The closer the model is to the operational environment, the
better the prediction of the system's behavior.

HIERARCHICAL MODELING

Hierarchical modeling is the breakdown of a system model
from the higher level system Jdescription to the lower level
component. description. It is a technique that is employed in the
design of complex systems to maintain the complexity at a
manageable level. System design, using a hierarchical process,
begins with a high-level description of the total system and
works down to a progressively more detailed description of
individual system modules. By gradually refining the details of
the system, complexity on each level of hierarchy of system
design is maintained at a manageable scale. 1Initially, these
descriptions of the system are independent of the implementation
technology, because in the early stages of design, not tying the
system under development to a specific implementation provides
the freedom to choose from a larger solution field. At the
earliest stages of the design process, the designe: has not even
determined which system functions should be implemented in
hardware and which in software. Therefore, early system
descriptions are more behavioral than structural; i.e. they
emphasize the system's function (what it should do) and
performance (how fast and how well it should do it) rather than
focusing on structural and interconnection details (how it should
do it).

The hierarchical breakdown from system to component level
allows the prediction of behavior of the system, and
identification and resolution of potential bottlenecks. If the
system-level representation and analysis were to be skipped,
system level performance information might be missed. A system's
performance evaluation requires more than the aggregation of the
performance of the individual components. Alternately, component
level detail< provide a means to perform a detailed analysis of
critical components that are isolated, and to seek alternative
component choices for design trade-offs.

Part of the purpose of the hierarchical decomposition of a
model is to define the boundary between the system and its
environment and the boundaries among the components of the
system. The boundaries must provide high cohesion and low

2-3
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coupling with the components. Cohesion refers to the level of
association among component elements of a module; and coupling
refers to the measure of the strength of interconnection among
the modules. High cohesion and low coupling make system

designing easier by reducing the interconnection between
components.
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CHAPTER 3

DYNAMIC PERFORMANCE MODELING

Dynamic performance modeling is used to model dynamic
systems, those which either change in time or whose response
changes in time; i.e., MCCR systems. The category of dynamic
systems can be further divided into Continuous Variable Dynamic
Systems (CVDS) and Discrete Event Dynamic Systems (DEDS). CVDS
generally occur in nature and are well modeled using ordinary and
partial differential equations. An example of CVDS is the
behavior of the earth's orbit of the sun. The earth's behavior
is a continuous motion described by Newton's law of gravity. 1In
comparison, DEDS are generally man-made or are systems in which a
human has intervened and as such, have very complex, event driven
logic. An example of DEDS is the detection of a missile. A
missile goes abruptly from undetected to detected without a
gradual progression. In DEDS, the system changes only at
discrete instants, takes value from a discrete set, and lasts a
distinct period of time. Thus, a state and a state holding time
can be used to characterize a DEDS systemn.

The difficulty in using DEDS is the complex nature of the
systems and the lack of a common paradigm. Because most DEDS are
man-made or man-intervened, they have extremely complex logic.
This makes modeling very difficult. Additionally, although there
have been numerous models proposed for their abstractions, a
single paradigm is lacking for the modeling and analysis of DEDS.
This is especially true for systems that have hard, real-time
requirements and distributed and parallel architecture
implementations.

USES OF DYNAMIC PERFORMANCE MODELS

Dynamic Performance Analysis is used to determine three
basic responses of the system: steady-state, transient, and
dynamic. Techniques for analyzing concurrent DEDS differ in
their treatment of the parameter time.

Steady-State Analysis

Steady~-state analysis is intended to determine the time
average behavior of the systems with the average input from its
environment. It is useful for analyzing the average stability of

3-1
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the system. As an example, steady-state analysis is used to
determine the average number of the customers in a simple queue.
However, the complexity involved in determining the accurate
steady~state behavior of a system makes it difficult to obtain a
closed form solution. To obtain this solution, many independent
assumptions have to be made for a large network. These
assumptions often limit the accuracy and usefulness of the
solutions. To date, most models fall into the steady-state
class. The problem with analyzing steady-state models is that
the DEDS will either be over~designed and/or may not meet short
but stressful scenarios. Thus, for the requirements of a hard
real-time system, little value is gained from steady-state
analysis.

Transient Anajlvsis

Transient analysis uses the average inputs from an
environment to model the system'’s behavior as a function of time.
Because of the difficulty in obtaining a closed form solution
even with many independent assumptions, simulation is most often
used for transient analysis.

Dynamic Analysis

Dynamic analysis involves varying both system and
environment parameters with respect to time. Thus, dynamic
analysis is needed to model mission critical systems that may
have capabilities changing over time (such as degraded modes of
operation) and an environment changing over time (such as a
transition from peace time scenario to hostile en~agement).
There is a shortage of techniques or tools for haadling the
dynamic behavior of such systems.

Solutions to the transient/dynamic situation must take a
dual approach. This approach analyzes the system using
operational environmental parameters and internal system
structure. In the environmental approach, scenarios are
developed and tested which are expected to stress the system; the
scenarios are developed independent of the system construction.
Alternatively, the system can be analyzed using the critical path
approach. This type of analysis uses knowledge of the system
structure to determine the test cases. Results depend largely on
the success of the developer to find "proper" test cases.
Unfortunately, it is very difficult to determine if a system has
been fully tested; thus, unexpected performances could result. A
combination of these approaches would allow the systems analyst
to better understand the system; however, there is a substantial
effect on analysis results and the prototype's performance due to
the order and method with which these two approaches are applied.
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TYPES OF DYNAMIC PERFORMANCE MODELS

Dynamic Performance models can be divided into two
categories: analytic and simulation.

Analvtic Models

Analytic models of computer systems are sets of mathematical
equations whose independent variables (inputs) produce a single
set of dependent variables (outputs). Analytic models give
extremely fast, reasonably accurate, and acceptably detailed
solutions to many problems.

Analytic modeling is most useful during the operational
phase of a computer system's life cycle for testing the effect of
relatively small changes to various components of the equipment
configuration. It is also useful for estimating when bottlenecks
will occur and which parts of the configuration will be the
likely causes of these bottlenecks. Examples of applications for
analytic modeling are complexity, difference equations, state
space, queuing network, computer-based, min-max algebraic, and
perturbation analysis models.

Although analytic techniques have existed for a long time,
they have had limited use because it was believed that computer
systems were too complex to be handled by such a simple approach.
0ddly enough, this approach has proven most valuable in analyzing
on-line, transaction-oriented systems which are most difficult to
examine by using simulation or other analysis methods. Many
simplifications are necessary to apply analytic models, but for
the most part, these do not severely restrict the modeler nor do
they limit the usefulness of the results.

Simulation Models

In contrast to analytic modeling, simulation modeling can be
used for both simple systems and for complex systems which cannot
be represented in closed form solutions. It tends to be more
detailed than analytic. Simulation models mimic the system and
its environment. They provide a large amount of flexibility
because they may be executed using either real data collected
from similar systems or from simulated data.

Comparison of Analytic Modeling and Simulation Analysis

Analytic modeling is most useful for the rapid development
of a model and the quick assessment of alternative solutions.
However, since analytic modeling lacks the ability to model
detailed information, further analysis must be performed using

3-3
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simulation. Not only does simulation allow the inclusion of more
details, but it also allows the use of elaborate scenarios as
input. One of the major disadvantages of simulation is the
extensive need for high speed and large memory computers. With
both analytic and especially simulation models, it is very
difficult to feed results and modifications back to the original
system specifications.

A conparison of the two modeling techniques follows:

Analytic Techniques

* provide responsive evaluation of trade-offs

* provide inexpensive model execution

* allow application of performance optimization
techniques

* allow thorough sensitivity analyses

* are limited in their level of detail by the ability of

mathematical equations to accurately reflect the
behavior of complex systems.

Simulation Techniques

* allow the incorporation of low-level system details

* have the potential for highly accurate performance
predictions

* allow the detection of system logical design defects

* often are prohibitive in their time and cost for
development

MODELING AND ANALYSIS TECHNIQUES

There is no single paradigm for the modeling of dynamic
systems. The following is a classification of the dynamic models
that abstract the system. Classification varies among different
authors; therefore, the following classifications are not the
only true taxonomy.

Oueuing_ Theory

In queuing models, a queuing network of nodes is created to
represent a client-server relationship. Within the network,
nodes take the place of servers, and tokens take the place of
clients. Nodes and tokens are given attributes to determine
which tokens may be served by which nodes. Probability
distributions are used to determine the rate at which tokens are
introduced to the network and how quickly they are served by the
nodes. Links and queues are established with specific lengths
and types to hold waiting tokens. If simulation techniques are
used, the network is time-stepped, and the states of the network
are recorded for calculating the results. As the link capacities

3-4
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are reached, token flow delays are increased. This simulation is
used to examine average queue lengths and delays, to determine
the stability of the system, and to determine routing algorithms
for reducing congestion. If analytic techniques are used, the
probability functions are evaluated to find the solution.

One of the most important measures of a data network is the
average delay required to deliver a packet from origin to
destination. Furthermore, delay considerations strongly
influence the choice and performance of network algorithms, such
as routing and flow control.

Queuing theory is the primary methodological framework for
analyzing network delay: i.e., the average delay required to
deliver a packet from origin to destination. This delay strongly
influences the choice and performance of network algorithms, such
as routing and flow control. The use of queuing theory often
requires simplifying assumptions since, unfortunately, more
realistic assumptions make meaningful analysis extremely
difficult. For this reason, it is sometimes impossible to obtain
accurate quantitative delay predictions on the basis of queuing
models. Nevertheless, these models often provide a basis for
adequate delay approximations, as well as valuable results and
worthwhile insights.

Graph Theoretic

The graph theoretic approach represents the system as a
graph model, similar to a discrete event simulation. However,
the inherent graph is examined using analytic approaches to
determine the performance given different environment scenario
attributes. The graph is typically collapsed into an equational
representation in this approach. Though the collapsing of the
graph is a complex and time consuming task, it needs to be done
only once for each graph and is easily automated. Once in
collapsed form, the system model can be analyzed quickly with
different scenarios. This approach has been used for determining
software bottlenecks and analyzing parallelization.

Petri Net

A Petri net is a graphical and mathematical modeling
technique applicable to many systems. As a graphical tool, a
Petri net can be used as a visual-communication aid similar to
flow charts, block diagrams, and networks. In addition, tokens
are used in these nets to simulate the dynamic and concurrent
activities of the systems. As a mathematical tool, it is
possible to set up state equations, algebraic equations, and
other mathematical models governing the behavior of systems.
Finite state machines or their state diagrams can be equivalently
represented by a subclass of Petri nets.

3-5
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The behavior of many systems can be described in terms of
system states and their changes. In order to simulate the dynamic
behavior of a system, a state or marking in a Petri net is
changed according to the transition (firing) rule. There is no
strict limit on the number tokens that are allowed on the nets;
therefore, parallel activities or concurrency can be easily
expressed in terms of Petri nets. One of the advantages of a
Petri net is that it can be used to represent not only the flow
of control but also the flow of data. Many abstraction
techniques lack this ability. Dynamic performance models tend to
emphasize control information and provide little opportunity to
represent data flow and data transformation. Petri net
simulation uses tokens to represent data. Tokens reside in
places and pass from place to place via transitions, where they
are processed. In a strict Petri net simulation, transitions
occur independent of time. 1In common practice, Petri nets are
generally enhanced by elements which introduce randomness, time
dependency, and attributes to tokens and transitions. Design
errors such as deadlocks and race conditions can be discovered
through the use of Petri nets.

Petri nets is a promising technique for describing and
studying information processing systems that are characterized as
being concurrent, asynchronous, distributed, parallel, non-
deterministic, and/or stochastic.

The major weakness of the Petri net is the complexity
problem; i.e., Petri net based models tend to become too large
for analysis even for a modest size system.

Communication protocols are another area in which Petri nets
can be used to represent and specify essential features of a
system. The liveliness and safeness properties of a Petri net
are often used as correctness criteria in communication
protocols.

One of the disadvantages of the original net was that it
lacked too many control structures, such as not being able to
represent timing information and stochastic properties in the
nets. The following attributed Petri nets are some of the
responses from the Petri net community invented to remedy the
disadvantages.

Time Petri Net. The concept of time is not explicitly given
in the original definition of Petri nets. However, for
performance evaluation and scheduling problems of dynamic
systems, it is (at present) necessary and useful to introduce
time delays associated with transformation and/or places in their
net models. For example, transition t;, can be disabled until the
tokens for all the input process are in place for d4,, but not
more than d,, where d0 and d, are some constants.
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DETERMINISTIC TIMED PETRI NET. If the time delay associated
with the transformation is deterministic, such models are called
deterministic timed Petri nets.

STOCHASTIC TIMED PETRI NET. If the time delay associated
with the transformation is stochastic, such models are called
stochastic timed Petri nets. This is useful for modeling
transaction systems, which are normally modeled with queuing
networks. A few researchers are focusing on the possibility of
transforming the Petri net model to a queuing network model to
use the advantages of both models.

Stochastic Petri Net. A stochastic Petri net is a Petri net
in which each transition is associated with an exponentially
distributed random variable that expresses the delay from the
enabling to the firing of the transition. In a case where
several transitions are enabled, the transition that has the
shortest delay will fire first.

Colored Petri Net. 1In colored Petri nets, each token has an
attribute that distinguishes that "colored" token from another
different "colored" token. Added attributes provide more
capabilities to the Petri net models. One may use the attributes
for a variety of reasons: to set up a priority scheme according
to the colors, to have separate gqueue lengths for each color, to
dictate how many and which kind of colored tokens will be removed
from and added to the places, or any of the many other possible
uses.

Computer-Based Mcdels

Computer-based models are algebraically-based models which
aim to capture the description of the trajectories of DEDS.
These trajectories are described in terms of a small set of
algebraic operations of state and events in very much the same
way CVDS are succinctly described by differential and algebraic
operations on functions of state and inputs.

Communicating Sequential Processes (CSP). CSP is one of

several processes algebra developed for reasoning about
concurrency, communication and distributed systems. Process is
used as a mathematical abstraction of the interactions between a
system and environment. The system is assembled with the
processes; in the system, the components interact with each other
and with their external environment. A CSP communicates with its
environment through named communication channels. The behavior
of the process is recorded as a trace of actions in which it
engages. Therefore, a trace is an observation of process
execution. CSP notation allows the description of processes
using a variety of process constructors. This approach provides
a secure mathematical foundation for avoidance of errors such as
divergence, deadlock and nondeterminism.

3-7
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CHAPTER 4

EXECUTABLE SPECIFICATION

Executable specification, in its most fundamental
definition, captures the functional and behavioral descriptions
of the system. Like most terminologies, it has been used
indiscriminately to describe anything from simple simulation to
prototyping. Executable specification, if robust and inclusive
of all views of the system, will serve as the design
specification and single representation of the system. If other
views or representations are needed, they can be generated from
this "global" representation. With only one representation of
the system serving both system modeling and design specification,
all modifications made during system modeling would automatically
be reflected back in the design specification.

In the streamlined process, executable specification
replaces several descriptions of the system (requirements
specification, design specification and implementation
specification); therefore, it must serve many roles:

* Tt must serve as a specification of the functional
requirements for the system.

* It must be vaiidated: it must answer questions such as,
"Is it internally consistent?" "Is it consistent with its
nonfunctional requirements?" "Does the behavior of the
specification agree with scenarios?"

* It must lead to an implementation that meets the
systems's resource and performance requirements.

Executable specification should combine both data
manipulation and control in a formal representation, since
analytic modeling techniques emphasize control but not data, and
data flow diagrams emphasize data but not control. Executable
specification should provide a capability to formalize all
functional properties of a system.

In its purest form, executable specification should allow
any other representation to be generated from the original
representation; however, this is currently not possible. It is
generally believed that no specification will ever be able to
play all these roles for all systems, largely due to the fact
that there is no one-to-one mapping among models captured using
different techniques. A global representation of a system, as
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shown in Figure 4-~1, is useful, because it would allow designers
to extract the specific modeling representation which they need.
Executable specification is amenable to top-down design
methodology, where the functional specification is the primary
source of guidance in design processes.

R

QUEUING NETWORK

MARKOV CHAIN STATE TRANSITION DIAGRAM

FIGURE 4-1. COMMON PERFORMANCE MODEL REPRESENTATIONS

An executable specification may be used for the evaluation
of functional and behavioral correctness and consistency.
Executable specification is being considered as a promising
approach to rapid prototyping software.

In this approach, physical resources are modeled using
resource models. The mapping between the logical model and the
resource model allocates the functions to the physical resources.
There are two levels of agenda in this mapping. On one level,
mapping is performed to obtain a reasonably acceptable
implementation of the system. On the second level, mapping is
performed to obtain an optimal implementation of the system. The
criteria used in determining the optimality is given by the
metrics obtained from Reference 2. The priority level of each
criteria will depend on each system under development and the
customer.
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There are many companies claiming that their product
performs executable specification, but in the context described
above, PAISLey, Statemate and Structured Analysis with Real-Time
Extension actually represent prototypical executable
specifications.

COMPONENTS OF EXECUTABLE SPECIFICATION

If executable specification provides a "global" model
capable of representing information for all views and all models,
it is necessary to determine which views and models constitute an
adequate representation of the system. The following models and
views have been chosen as adequate to represent Navy MCCR
systems.?3

Logical Model

The logical model consists of two parts: the functional
view, a model which focuses on defining system interaction, and
the behavioral view, a model which describes required system
behavior. Both views are implementation-independent. However,
both must account for the implementation technology used in the
environment, which is not a part of the system at this level.

The functional view provides a conceptual approach by
identifying a hierarchy of activities, complete with the details
of the data items and control signals. However, the functional
view does not specify dynamics: it does not state when activities
will be activated, whether or not they will terminate on their
own, nor whether they can be carried out in parallel or must be
executed sequentially. The functional view only specifies that
data can flow but not whether and when it will flow. The
functional view decomposes the system into activities and
possible flows of information, but it says little about how these
activities and their associated inputs and outputs are controlled
during the continued behavior of the systemn.

The behavioral view is responsible for specifying control
and timing. This is achieved by allowing a control activity to
be present on each level of the activity hierarchy. Each control
activity controls its own particular level. It is these
controllers that are responsible for specifying how, when, and
why things happen as the system reacts over time. The techniques
and symbology for the behavioral representation of the system
vary from control graphs to decision tables to flow charts. The
behavioral view must have a means of representing timing
relationships along with control information.
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Resource Model

The resource model is broken down into two levels: global
resource model and internal resource model. The global resource
model consists of both the internal and the external resource
models. An internal resource model contains all of the hardware
and software modules, and hardware architectures that are
candidates for the mapping of the functions of the logical model.

External /Environmental Model

Once the system is defined, everything outside of that
system is considered external. Because the external world
(environment in which the system will operate) interacts with the
system, and thus, affects system performance, the designer must
be able to capture those aspects of the external world which
impact the system.

External conditions which affect the systems are called
scenarios. A system's performance under the worst case scenario
provides more information about the system's ability to operate
in the real world than that of under best case scenario.
Therefore, worst case scenarios must be determined and used in
the assessment of system performance.

Inplementation Model

The implementation model is the mapping of the logical model
to the resource model. It includes resource descriptions and a
mapping which relates the functions, data flows and control from
the logical model directly to the resources. The task of
implementing a real-time system can be long and complex.
Although optimal allocation of resources must be considered,*
this project currently only emphasizes viability.

RESOURCE MAPPING

Resource mapping of the activities and controls in the
logical model to a physical model is crucial to system
performance. Until this phase, all the constraints assumed were
based on the designers' experience and estimates. Now through
designer ingenuity, specifications must be met in spite of actual
physical constraints imposed by technology. Finding the optimal
resource allocation/mapping is a very complex issue; however, for
this task, the objective of the resource mapping is to obtain a
viable solution. As long as the constraints of the requirements
are met, the mapping is considered as a candidate implementation
model.
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ANALYSIS OF EXECUTABLE SPECIFICATION

The analysis of executable specification will be immensely
more complicated because of the information that it contains.
Executable specification contains so much information because it
has to serve as a single global representation of the system and
serve many roles for many people. This complexity requires a
better method to check that the information is consistent from
one stage to another and the specifications are done correctly
and completely.

Completeness

Completeness is a loosely defined term that describes the
state of the behavioral specification of the system. It is very
difficult to declare a system functionally complete, in the sense
that a specification captures all the functionality and the
behavior of the system. However, it is not too difficult to
check that the specification given contains all the information
required for a specific methodology.

Correctness

Functional correctness checking is the process of
determining that the logical model of system function, data, and
control is free from functional conflicts and shortfalls. An
example of functional conflict on a communications model would be
a conflict with routing messages across links; and a functional
shortfall would be the inability to process multiple destinations
for a single link.

Executable specifications should support functional
correctness checking with symbolic simulation. They should
verify that subsystems transition to the appropriate states when
presented with various stimulus events and that transitions cause
the appropriate changes in the activation and deactivation of
processes.
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CHAPTER 5

PROTOTYPING

Prototypes are classified as models because they are
abstractions of the system. Prototypes vary from containing only
some functionality of the final configuraticn to being the
production configuration in all aspects, except that they have
not been fully tested. The assessment of the system up to this
point has been performed with the m<:iel mimicking the system and
providing a certain level of cenfidence that all the requirements
have been met. However, there is a need to verify concepts and
design configurations using the actual components. 1In essence,
simulations mimic and prect- .ypes do. Prototypes are also used to
validate assumptions akout the system and to test critical
components, funct.ons, pet formance and system feasibility. The
measurements perforaed with the prototypes can be used to
calibrate the model and validate that the ..yuirements
specification have been met.

«nn all case~. the usefulness of prototyping decreases with
the i; ecase in tne time reqiired to develop it. Even though the
davel._ uwent cycle of large systems is lcny, the incorrect use or
develog aent of prototypes increases the time required. Rapid
prototyping is a term used to define a method of prototyping that
provides a means for a short development time. Since complex
systems require prototyping be performed quickly, the remainder
of this section will address techniques applicable to rapid
prototyping.

By adding features of implementation, prototyping comes
closer to reality than simulation. Software and hardware designs
in the prototype can be used directly in the real nectwork. If
the prototype has an adequate monitoring and control system, data
from experiments performed on the prototype can help tune design
parameters and identify bottlenecks in the real network. The
collected data and information must be abstracted to back
annotate the system.

PROTOTYPING TECHNIQUES

Techniques of prototyping vary. As Table 5-1 shows, many of
these techniques cross into other modeling domains (e.q.,
performance models and executable specification).?®
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TABLE 5-1. SOFTWARE PROTOTYPING, FORMAL METHODS AND VDM
TECHNIQUES DOMAIN ADVANTAGE DISADVANTAGE
EXECUTABLE FUNCTIONALITY | CONCISE AND NOT ALL SPECS
SPECS PRODUCTIVE ARE EXECUTABLE

INITIALLY
REUSABLE GENERAL VERY EXPENSIVE
MODULES PRODUCTIVE
NO GENERAL
SIMULATION GENERAL EARLY SUPPORT TOOLS
APPLICATION
OFTEN CRYPTIC
VERY HIGH LANGUAGE PRODUCTIVE
LEVEL DEPENDENT
LANGUAGE
(VHLL)
VERY
AHLL VERY VERY APPLICATION
RESTRICTED PRODUCTIVE DEPENDENT
TEXTUAL
STATE INTERACTION GRAPHICAL NOTATION OFTEN
TRANSITION CRYPTIC
DIAGRAM (STD)
INCOHERENT
TOOL-SETS TOOL VERY
DEPENDENT PRODUCTIVE
INFLEXIBLE
FORMAL CERTAIN CONCISE
GRAMMARS INTERACTIONS OFTEN
INFLEXIBLE
FUNCTIONAL PL | FUNCTIONALITY | CONCISE

There are three basic categories of rapid prototyping:

throw-away, incremental, and evolutionary.

Typically, prototypes

service many different purposes in the development cycle;
therefore, seldom will a prototype only belong to one category.

Throw-Away Prototyping

Throw-away prototypes help define initial specifications.
These prototypes are used in the design phase as tools for
exploring and evaluating the appropriateness and feasibility of

alternative designs.

During the testing of a developing systen,

a prototype can be used as a comparator that evaluates the

correctness of the test results.

5-2
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Throw-away prototypes are usually quick mock-ups and are
typically not used in later generaticas of the model. The need
for rapid development is greatest for throw-away prototyping.
Since the prototype is to be used for a limited period, quality
factors such as efficiency, structure, maintainability, full
error handling, and documentation are typically of little
relevance.

Evolutionary Prototyping

Evolutionary prototypes, in contrast to throw-away
prototypes, evolve for use in later generations of models. This
prototyping is needed because systems, once installed, evolve
steadily, thus, invalidating some of their original requirements.
The purpose of the evolutionary approach is to rapidly introduce
a system and to allow changes that become evident from using the
system.

Evolutionary prototyping is the most powerful way of coping
with change. This approach requires a system to be designed in
such a manner that the introduction of change does not lead to
severe problens.

Incremental Prototyping

In incremental prototyping, the system is built one section
at a time. A complete system is designed, and then modules are
implemented and added sequentially. Incremental prototyping has
often been used synonymously with evolutionary prototyping;
however, there is a significant difference between the two.
Incremental prototyping is based on one overall design;
evolutionary prototyping evolves the design continuously. As
with evolutionary prototyping, the system grows gradually, but in
a considerably less dynamic way. Incremental prototyping
provides less scope for adaption than evolutionary prototyping,
but it has the advantage of being easier to control and manage.

ANALYSIS OF PROTOTYPES

Assessment of prototypes depends on the implementation
method. Prototypes may be realized and developed through several
different methods: emulation of the hardware on an existing
architecture, implementation of a physical system, and simulation
of a system. Once the prototype has been developed, the behavior
of the prototyped system must be measured and evaluated. This
task requires measurement techniques and control and observation
systems.

Prototyping provides an opportunity to measure the system
under its operating condition. There are three techniques for
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measuring a system: noninvasive, minimally invasive, and
invasive.® Noninvasive instrumentation techniques measure the
system without interfering with the regular operation of the
system. Minimally-invasive instrumentation techniques require at
most 5 percent of the operating overhead for maintaining and
supporting instrumentation and data collection. Invasive
instrumentation techniques require more than 5 percent of the
operating overhead of the instrumentation. Therefore, the data
collected from invasive instrumentation would not necessarily
correspond to actual data generated under normal operating
conditions. The ability to use these different techniques
depends on the development method for the prototype.

Regardless of the instrumentation technique used, the data
collected must be restructured for the user's understanding and
for back annotation to the design and requirements specification.
Users must be given data in a format which is easy to understand,
so they can observe and control the behavior of the prototype and
extract the required information from the observations. As with
any modeling and evaluation technique, the information from
measurement and analysis of the prototype is used to validate,
modify, and optimize the system.

PROTOTYPE DEVELOPMENT ENVIRONMENTS

Two key requirements of a prototype development environment
are that they provide both a means to maintain the complexity of
prototyping to a manageable level and a means to prototype
rapidly. Maintaining a manageable level of complexity in the
prototype gives the developers the capability to make the changes
and observe the ramifications of the changes. An environment
must be amenable to rapid prototype development because of the
short duration of time allotted to prototyping. Three important
components of a rapid prototype development environment include a
user interface, a component library, and a control and
observation structure.

User Interface

A user friendly interface is important in prototyping
because it minimizes problems associated with the complexity of
prototyping and analysis and measurement of data. In addition,
it reduces the effort and memorization required for the reuse of
designed components in the library; thus, it allows easy
modification of prototypes.

Component Library

Development using reusable components requires an extensive
component library. The hardware and software modules stored in
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the library have to be either supplied by the manufacturer or
hand coded into the library by the system designer. The advent
of the hardware description languages, VHDL and Verilog, has
made reusable component prototyping a viable technique for
developing a system.

Control and Observation Structure

The control and observation system manages the hardware
modules, controls the evaluation session, and monitors the
behavior of the prototyping environment. It allows the user to
specify the system and evaluate the design.

Once the prototype is implemented, the control and
observation structure allows prototype developers to observe the
behavior of the system, and the ramifications of the changes to
the system.

EXAMPLES OF PROTOTYPE DEVELOPMENT ENVIRONMENTS

Prototype development environments for software have existed
for a long time. Only recently have environments addressed
systems prototyping. The following are three examples of
prototype development environments. The Computer-Aided
Prototyping System (CAPS) is based on a reusable component
software prototyping environment. The Integrated Design
Automation System (IDAS) takes software as the requirements
specification and provides an architecture that meets the
requirements. Finally, the Programmable Network Prototyping
System (PNPS) provides a quick and easy method of specifying
network protocols and emulating the architecture in an existing
architecture.

Computer-Aided Prototyping System (CAPS)

CAPS is a software prototyping tool being developed by Dr.
Lugi of the Naval Postgraduate School. CAPS uses an integrated
approach to prototyping that combines a computational model
tailored for real-time systems, a high-level prototyping language
(PSDL), a systematic design method for rapid prototype
construction, and an automated prototyping environment that lets
designers effectively use a base of reusable software components.

The computational model prevents hidden interactions among
system components and encourages designs with good module
independence. The language supports the model and combines it
with a powerful set of data control abstractions to make it easy
to describe systems at a high level. The automated environment




NAVSWC TR 91-592

relies on a software-base-management system for retrieving and
adapting reusable components that are written in Ada.’

Inteqrated Design Automation System (IDAS)

IDAS, a tool set developed by JRS Research Laboratories, is
geared toward embedded computer applications which demand high
performance. The quality of computers designed for these
applications is measured by the execution speed of the problem
set on the machine. Design inadequacies are measured by the
difference between actual performance and optimum performance.
IDAS automatically derives relevant information about hardware
and software designs while mapping Ada programs onto machines
described in VHDL. It synthesizes machines described in VHDL
from specifications expressed as Ada programs, retargets
microcode compiler tools from a VHDL machine description, and
guides users in rapidly evaluating numerous design alternatives
and comparing the alternative approaches objectively and
quantitatively.?

Programmable Network Prototyping System (PNPS)

PNPS uses a collection of reusable hardware modules to
implement generic communications functions such as transmission,
reception, signal propagation, and pattern matching. The modules
are interconnected and configured to emulate a variety of
communication networks whose behavior can be monitored under
different workloads. The user specifies a network as a set of
interacting components using available software tools. These
tools are accessible within the prototyping environment that
includes a control system for configuring the hardware modules
and interconnecting them according to the component
specifications. As with any other reusable prototyping systenm,
the previously used components are stored in a component
library.?
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CHAPTER 6

APPLYING SYSTEM MODELS

Models are abstracted to obtain information about a system.
The information is obtained by applying a workload and test
vectors to the system. The response of the model to these inputs
provides useful information about the system's performance, and
its functional and nonfunctional capabilities.

WORKLOAD

The workload consists of the processing requests made to a
computer system. An increased workload which occurs under
stressful operating conditions, such as a hostile attack on a
Navy ship, degrades system performance through increased demands
on system resources. Because of workload effect, the performance
of a system must be determined in the context of the demand on
the system. Thus, the designer must be able to characterize
workloads as close as possible to the real workload under all
scenarios and conditions in order to fully assess the performance
of the systen.

Generally, the workloads of non-MCCR computer systems have
certain scatistical properties that do not change over long
periods of time. These workloads are characterized by the
distribution of demands made on the individual system's
resources. For example, the workloads on analytical models are
usually Monte Carlo type, in which the workload is characterized
by a stochastic representation. This allows a clos2d form
solution to be obtained. This type of characterization is useful
for MCCR systems for steady-state analysis but not for transient
and dynamic analysis.

For transient and dynamic analysis, trace-driven types of
workload characterizations based on actual workloads or simulated
workloads are needed. Simulation models use both statistical-
and trace-driven workload characterizations.

Component Versus System lLevel Workload Characterization
Performance comparison between different system

configurations should be calculated for the same workload because
of the dependence between performance and workload. However, at
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the component level, performance can be evaluated in either a
stand alone or a system environment.

To evaluate the performance of a particular component or
system configuration, the designer must provide data concerning
the performance of those modules. The evaluation output will
show the overall performance and the bottlenecks that limit the
performance. The designer can identify the modules most
affecting system performance and optimize these modules during
the design phase, while using a more conservative design for the
remaining modules.

Limitations Of The Workload Characterization

Due to contentions between processors for shared resources,
the systems' performance for a given workload and the increased
performance gained from adding extra resources (processors,
busses) are hard to quantify.

Another current limitation of the workload charcterization
is the effect of static and dynamic reallocation techniques.
This is a difficult problem in modeling. A task may not run on
the same resources every time it is executed, or even during
execution. If it is known a priori that a task will be shifted
from one set of resources to another due to present system state,
then static reallocation takes place. If, on the other hand,
resource allocation is determined at every moment according to
some algorithm which takes into account such system parameters as
task load, and it is impossible to know exactly which resources
will be used by any given task, then dynamic reallocation
results. Current commercial simulation tools do not address
either type of reallocation.

TEST VECTORS

One of the key elements of the system design process is the
development of test vectors (scenarios). These test vectors
provide specific inputs to the system that can be used to verify
the systems' ability to perform its intended function within the
required time constraint. Each stage of the system design
process, therefore, consists not only of behavioral descriptions
but also of the necessary validation test vectors.

ANALYSIS

Analyses of the models provide a means to assess the
"goodness" of the design and allow the designer to seek
alternative design choices. Analyses provide data based on the
criteria provided by metrics. Alternative design choices are
derived from this information and the requirements specification.

6-2
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Types of analysis include deadlock, starvation, response times,
resource utilization, sensitivity, trade-off, fault tolerance,
and graceful degradation.

Deadlock

Deadlock is a situation which occurs in resource allocation
systems, distributed systems, and communication networks. These
systems have two or more processes which are in a simultaneous
wait state, each waiting for one of the others to release a
resource before proceeding. The same situation may occur in a
database system where locking of data is used as a concurrency
control mechanisn.

A classic example of deadlock is a case of five scientists
sitting at a round table waiting for dinner. On the left-hand
side of each scientist is a fork; therefore, there are five
scientists and five forks. 1In order for a scientist to commence
eating, that scientist must have two forks; one in the left-hand
and one in the right hand. However, when everyone tries to grab
a fork, each scientist can grab only one fork, and no one eats.

There are three methods for dealing with the deadlock
problem: prevention, avoidance, and detection combined with
recovery. Prevention and avoidance methods ensure that the
system will never enter a deadlock state. However, these
techniques are not very mature and have not been shown to work
for complex systems. Even if these techniques were to become
effective for complex systems, they would not prevent existing
systems from having deadlocks.

Starvation

Starvation is a situation in which messages have been sent
that cannot be accepted by the destination module because it is
in a nonterminating atomic transaction. A system is starvation
free if there are no nonterminating atomic transactions.

An atomic transaction can fail to terminate because it contains
an infinite number of events, it enters deadlock, or because the
response to some event has an infinite delay. The first two
cases are properties of a specification whose absence can be
checked. The last case can arise only for implementations that do
not conform to their specifications, because every response must
be produced in a finite time by a correct implementation.

Response Times
In real time systems, the response times of a system are
critical to the conformance of the system to its requirement

specifications and to the survivability of the system. The
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response time specification defines the limits on the response
time allowed between events occurring at the system input
terminals and the resulting events exiting at the system output
terminal. Typically, the system is embedded in a vehicle or in a
larger system, so size, processing capacity, and memory capacity
are limited. Achieving these critical timing requirements under
these constraints becomes very difficult and is a major challenge
for the designer.

Resource Utilization Analysis

Resource utilization analysis provides the basis for the
allocation of resources for the optimal performance of the
system. For example, it is better to assign, in most non-time
critical cases, a faster processor to handle a heavier load than
to assign a slower processor to the task. This allocation
ensures that more processing will be performed in a given time.
In more complex systems, these allocation strategies become very
difficult because of the interdependencies of the functions and
data, and the increased number of processors and alternative
allocation strategies.

Sensitivity Analysis

The sensitivity of the model indicates the variation of the
outputs to changes in inputs and model parameters. Sensitivity
analysis, which measures the sensitivity of the model, provides
useful information about how much a model parameter or input can
change before a critical response results. This analysis allows
one to limit the number of parameters which must be analyzed. (It
is impossible for a designer to analyze all the parameters,
inputs, and scenarios of a system; therefore, the designer has to
determine which parameters and scenarios are important to the
development of the system.) For example, if the system can
withstand a wide range of temperatures before the performance or
reliability changes, then temperature analysis is not as useful
as analysis of another parameter, which, with the slightest
change, greatly affects the output.

Trade-0Off Analysis

Trade-off analysis allows designers to see the result of
exchanging the requirements of one constraint for another. For
example, by reducing the redundant copies of data in the memory,
the reliability of the system can be traded off with the
performance. Thus, reliability of a system will be degraded at
the expense of the gain in the performance. This analysis works
at every level of design, starting from the requirements
specification to the implementation. It may be as simple as
comparing two design choices or as complicated as looking at a
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large solution space within the constraints and trying to search
for optimal solutions.

Fault-Tolerance and Graceful Deqradation Analysis

For Navy systems, fault tolerance and graceful degradation
of the system is as critical as timing requirements. Fault-
tolerance analysis predicts the system's ability to tolerate and
avoid faults. Thus, this analysis measures the performance of
the fault-tolerance and avoidance strategies that are employed in
the development cycle of systems.!® Degradation analysis
predicts the system's ability to degrade gracefully and recover
from failure. For example, the system's ability to perform
functions and operate within requirements specifications with 70
percent processors in operation and the other 30 percent in
failure depends heavily on the system's ability to reallocate
functions from failed processors to active processors. 1In most
of the system model development environments, the fault tolerance
issue is not addressed until the implementation model building
stage.

Current use o>f the reliability and availability modeling
techniques and touis are used to assess the system's availability
and reliability as a stand alone capability. These techniques
and tools necd to be an integral part of the design methodology.
Fault-tolerance and graceful degradation strategies need to be
applied As early in the development cycle as possible, and the
modeling and analysis techniques need to provide feedback
information to calibrate parameters, and perform trade-off
analyses.
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CHAPTER 7

CONCLUSION

Most of the problems in modeling and analysis technology
exist, not because of a lack of tools or methodology, but because
of a lack of integration and a failure to address system leveil
issues. There are many tools that address some system problems
or some phases of system development. Although these tools alone
are not enough to develop all systems, when integrated, they
could provide many capabilities for system development.
Currently, this integration has been lacking, including the
consistent usage of terms such as modeling, executable
specification, and prototyping.

Through the improvement of current methods, more
alternatives could be rapidly explored leading to better
solutions. As increased emphasis is placed on reducing system
development costs and improving system performance, an
integrated, seamless path will be required as shown in
Figure 7-1. Instead of separate tools and techniques for each
stage of development or aspect of design, there would be an
integrated route between phases. This route would allow
interaction among all phases including allowing information to be
passed forward and to be fed back to previous stages. Thus,
modifications made later on in the design cycle could be fed back
to permit the designer to assess their impact on the entire
system. Additionally, future design techniques and tools must
include requirements traceability and consistency checking.
Dynamic performance evaluation models, executable specification,
and rapid prototyping combined will integrate the fragmented
methodologies, techniques, and tools that have been used in the
system life cycle and reduce the costly development cycle.
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(EXECUTABLE SFECIRCATION) \  INTEQRATED SPECIFICATION

IMPLEMENTATION
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FIGURE 7-1. SPECIFICATION GOAL
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