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1.0 BACKGROUND

1.1 Introduction

In integrated Global Positioning System/Inertial Navigation
System (GPS/INS) navigation systems, position and velocity errors
are typically estimated with respect to some reference point within
the host vehicle. For example, this may be the point afforded by
the origin of the accelerometer triad or the center of mass of the
host vehicle. The conventional approach is to relate measurement
residuals to error states under the assumption that the antenna
phase center coincides with the reference point while compensating
for the effects of any lever arm.

In reality, the antenna phase center is usually at a point
different from the reference point. Measurement residuals
(observations) formed by differencing predicted and measured pseudo
range and delta range must incorporate corrections for the antenna-
phase-center lever arm. Knowing the placement of the GPS antenna
with respect to the host vehicle and the host-vehicle attitude with
respect to some convenient reference frame provides the required
information. But, as the conventional observation matrix is based
on coincidence of the antenna phase center and the reference point
(notwithstanding that in reality it may be offset), the pseudo-
range and delta-range measurement residuals are modeled to have
coupling only to position, velocity, user clock bias and drift
error states. In this conventional approach, potential coupling to
attitude errors or attitude rate errors is ignored.

In the conventional approach, the needed attitude for antenna-
lever-arm correction is generally provided by estimation of
attitude errors and propagation of the corrected attitude "total
state" (typically a direction cosine matrix or quaternion) to the
time(s) of measurement. Attitude-error estimation for such an
implementation depends entirely on correlation between the attitude
error and the velocity error. Specifically, contribution of the
attitude error to the velocity error is due to the product of the
attitude-error vector by the skew-symmetric matrix of specific
forces within the dynamics F matrix.

This approach has been successfully applied to many
applications such as terrestrial navigation. There are, however,
applications where the correlation between attitude error and
velocity error vanishes. For example, when an exoatmospheric host
vehicle is free-falling, the specific forces are zero for all
practical purposes. Then, although GPS may succeed in estimating
position and velocity errors fairly well, attitude estimation is
not possible. Moreover, the correction for the antenna lever arm
becomes flawed as attitude errors grow due to instrumentation
errors such as gyro bias and scale factor errors.



Typically, GPS-based attitude error estimation methods rely on
receiving carriers from multiple GPS satellites and processing the
single difference of their phases (Van Graas & Braasch, 1991-2;
Keirleber & Maki, 1991; Satz et al., 1991). A minimum of 3
noncollinear antennas are required in most methods. The
implementation of these methods, however, requires considerable
receiver hardware design features and/or special software
processing beyond the typical GPS/INS designs.

An alternative approach to attitude estimation is proposed in
this report. We seek to exploit the attitude information
inherently present in the pseudo-range and the delta-range
measurements obtained with a single offset GPS antenna mounted on
a platform undergoing attitude changes. The attitude information
is recovered with standard recursive estimation techniques such as
the Kalman Filter algorithms of the GPS/INS systems. The attitude
information is primarily recovered through processing delta-range
measurements. The pseudo-range measurement is less usef-'l because
of the generally high code loop noise. The implementation of this
approach does not require any special receiver hardware and only a
few minor changes to the standard GPS/INS Kalman Filter software.
Specifically, the required changes to the Kalman Filter software
are simply a few additional entries in the observation matrix H.

The proposed approach is ideally suited for applications where
the antenna is mounted on a spinning platform such as a spinning
vehicle in exoatmospheric, free-fall conditions. Since this
approach imposes a minor implementation cost, it readily allows use
of existing systems. For "good" performance, an integrated GPS/INS
system is required; the INS provides for propagation of the
attitude estimates in between GPS updates. In some specific
applications, however, GPS alone may suffice.

An overview of the contents of this report is as follows.
Sections 2, 3, and 4 contain independent mathematical developments
of this approach to attitude estimation. Section 2 provides a
general mathematical development of the observation matrix H, which
is applicable to any changing host vehicle attitude. The H matrix
is developed without reference to any of the other models that are
part of a GPS/INS Kalman Filter. Section 2 also provides a quick
comparison of this method to the more familiar "interferometric"
GPS-based attitude determination methods. Section 3 provides a
mathematical development of the observation matrix H, which is also
generally applicable to any changing host-vehicle attitude. This
development, however, is based on a state-space formulation and as
a consequence it employs and thereby relies on prior developments -
specifically, the state transition matrix and the plant-noise
model. Section 4 provides a simpler analysis of attitude
estimation but limited to a spinning body scenario. As a result it
facilitates gaining certain insights to and identifying
sensitivities in spinning body applications. Section 5 provides
simulation results for a spinning-body application by using,
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the more general formulation of Section 3. Section 6 provides a

summary and conclusions.

1.2 Notation

Vectors in specific coordinate frames will generally be of
lower case and always with a single underline. Coordinate free
forms will be denoted with an over-bar. Matrices will generally be
of upper case and always with a double underline. Scalars may be
uppei or lower case but without any underline. Normal superscript
designation of the reference frame will be suppressed when the
frame is the preferred frame. The subscript "n" will be appended
to terms for the nominal trajectory.

3



2.0 GENERAL DERIVATION OF THE OBSERVATION MATRIX H

2.1 Introduction

This section provides a general mathematical development of
the observation matrix H, which is applicable to any changing host-
vehicle attitude. The pseudo-range (PR) and delta-range (DR)
measurement residuals obtained from the corresponding measurements
and their prediction at the antenna phase center are related to
estimation quantities referred to the reference point. This is
done to capture potential attitude and attitude rate information
lost in the more typical process of computationally bringing the
antenna phase center to the reference point (but using lever-arm
corrections in formation of the residuals). If coupling to
attitude exists, then the attitude of a host vehicle undergoing
attitude changes as well its position and velocity can be estimated
even if the specific forces are zero.

The following analysis first derives H matrix row' vectors
corresponding to pseudo-range residuals for a single "offset" GPS
antenna and then proceeds to derive H matrix row vectors for delta
range residuals. GPS pseudo-range measurement performance is based
on the code tracking loop, while that for the delta range is based
on the corresponding time increments of the carrier loop. It is
recognized that for limitations in the antenna-letter-arm length,
the code loop noise will generally overwhelm the relation of
pseudo-range residuals to attituae error. The delta range
residuals, however, being based on the very-low-noise carrier
tracking may well afford estimation of attitude errors of the free
falling host vehicle (as well as provide estimation of attitude
rate error so that gyro errors may be observed). The derived H
matrix includes rows for both pseudo-range and delta-range
residuals for completeness and improvement that may accrue from
pseudo-range measurements over a period of time (reduction of the
effect of code loop noise through integration).

The more general H matrix derivations are simply extended to
multiple antennas but this is of little value to the problem of
interest as it would entail considerable hardware complication with
attendant cost. A brief investigation of higher order terms in the
temporal DR residuals process is included.

A rotating antenna by itself introduces (by virtue of its
rotation) carrier phase shifts beyond those associated with the DR
measurements including a fundamental phase change due to the
antenna rotation (t 360 degrees of phase shift per 360 degrees of
rotation in the antenna plane) and phase anomalies peculiar to the
antenna phase pattern. These phase shifts must be identified and
compensation made. It is assumed that the INS can measure the
antenna rotation with sufficient accuracy so that the unwanted
phase shifts as well as other antenna phase imperfections can be
compensated. The problems and issues associated with the

4



corresponding compensation of delta-range residuals and antenna

calibrations were not investigated here.

2.2 Pseudo-Rarge Measurement

The geometry of the problem is shown in figure 1. The reader
should be aware of the direction taken for the unit vector, which
is shown from the jth GPS satellite to the phase center of the
offset GPS antenna on the host vehicle. This may be of opposite
sense to some definitions used by others. This unit vector is also
well approximated by a unit vector from the jth satellite toward
the user as the length of the antenna lever arm ýs very small in
comparison to the range to the satellite. Likewise, in this
analysis, the sign of error states is such that when added to the
predicted (propagated) "nominal" total state, a new ertimation of
the total state is provided (which becomes the new nominal total
state in an extended Kalman filter). The pseuao range between the
antenna phase center and the jth satellite is given by

zj=(u + rA - r IJ + Bu ()

where ru,rA, and T. represent coordinate free vector form. As bias
in the satellite clock is not modeled, it is not included in (1).
In (2) we have coordinatized with respect to some conveiiient
reference frame Y4. Frame notations are such that

1, - Earth frame, generally Earth Centered Earth Fixed (ECEF)

4I - Inertial frame, generally Earth Centered Inertial (ECI)

X4 - Local level frame

4% - Body (host vehicle) frame.

As a random process, the pseudo range is given by

Sea T(ra + r' - r ) + B, + v-
- u -- A -s I

or

(2)
z e =e T (r +r ) +B +-- -u -A• -- si U FR3

when suppressing the superscript "a" for notational clarity. We
will frequently suppress the superscript "a" for our selected
convenient reference frame but maintain superscripts for other
specially designated frames.



,j-th OPS
Satellite

Figure 1. Problem geometry.
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r, is the random process vector providing the location of the GPS
antenna but as represented in 1,. r, will be rapidly changing due
to the changing attitude of the host vehicle. However, when
represented in the host vehicle frame (as r'A ), it will be constant
and related by

r (t) = Ca (t) rb (3)-- A=b -- A

It is to be noted that the direction cosine matrix Ca is
modeled as a random process but not rA, which is taken to be well
known and constant.

For purposes of the derivation of the H matrix for an extended
(or linearized) Kalman filter, we assume a continuous spatial as

well as temporal distribution of zj, r, and r., In the approach of
this section it is convenient to disregard pseudo-range and delta-
range measurement noise. The spatial differential which we will
take with respect to the nominal or predicted value (i.e. evaluated
along the nominal trajectory), corresponds to the pseudo range

measurement residual. That is, 6(') = (') - ('), where we note

6 p T _pT _T _P
(qn + 8R=-a

In particular,

zi = 6[eT(r rA -r_)] + 6Bu (4)
6 z, = (r +r -r. )T6e + eT 6(r +r -r ) + 6B.

J _ -nj -- 3n -u -A

As ft is of constant (unit) magnitude, 68e for small magnitudes must
be orthogonal to fj and, therefore, to r_, + _r. - r. to which e,
is parallel. Hence,

Sz, = e T 5r + eT 5r + 5B, (5)
-- 3n -- u -- ]n -- A

8Zj = e T 5r + eT (6Ca ) rbn + 6B1
in -u -n =b -An

as rbr,=r' is a constant (column) vector.
An -- A

7



In the case of 6C-' where the spatial variability is due to
that of 1b, =b C C- (CL5-I) . (6)

=b =i b=n ýbn =b

For small displacements of Y, from E, (the nominal body
frame), Cbn-I is skew-symmetric. We define

&Ibn = &Fbn =Cbn~i (7)
- n. b --- b

For notational convenience, 6 is used in this definition but this
does not allow for separation of 8 from 8T as this would presume
that T has meaning for large displacements of Y, from Xbn. 81' is
not defined. We then have

Sca =cCa &hn (8
=b =bnz

Therefore,
5zj=eT 8r + eT Ca Ybnrbnf + 6B•. (9)

3 n iu -]n h -An

But as

Ca 8 =bnrbn Ca 5TPbnCbnCa rbn = 8T r, (10)m=bn=ý -An N=bnm== =a ýbn'An am -AM

and since

8T r = -RR rAzn 0 -r Axn (i

I-r Ayn r An 0

we have

6zj=e T Sr -e. R Aý + 6BU (12))-n --u -- 3 n•n--A

R is the skew-symmetric matrix form of vector r and . is the
=An AT

vector form of skew-symmetric &P Note that S cannot be separated
from • in the context used.



The H matrix for pseudo-range measurements only but referred
to the GPS antenna phase center is given by'

8zi T -e R 1

8z, eT eT R 1 (13)
-2n -2n=An

ZR eki -nnA 1

If, instead of bringing the H matrix to the antenna phase
center, had we derived an H matrix based on the antenna phase
center coinciding with the reference point, that is R = 0 (but still
using measurement residuals based on antenna-lever-arm
corrections), the resultii.g H matrix would show no coupling between
the residuals and _ By eliminating this noncoupled term, we
have

8 ru 8Bu
8zi e T 1

1Z2 f2n (14)

eT 18zk -- W'

which is thb usual H matrix encountered when pseudo-range
measurements are presented to a Kalman filter implemented in ECEF.

The more general H matrix of (13) appears to have promise for
observability for attitude but would require a i1 ge offset
distance of the antenna phase center from the reference point of
estimated quantities to overcome the noise in the GPS receiver code
loops. Common sense dictates that, with a single antenna,
regardless of the number of GPS satellites for which pseudo-range
measurement are made at the same time, full det-rmination would not
be possible without prior information from other measurement times.
The H matrix will not be of full rank for a single antenna scheme.
In particular, three separate times of measurement with the offset
antenna occupying three different noncollinear positions are
required for full attitude observability, i.e., ensure full rank of
(13). If we constrain the attitude variability of the free-falling
host vehicle to spin about a known inertially stable axis, then

I Remember that suppression of superscripts for vectors

applies only to I,.

9



only two measurement times with noncoincident antenna positions
should be required for full observability. With multiple antennas
(not considered here), unique or overdetermination at a single

measurement time is certainly possible.

2.3 Delta-Range Measurements

W 1th respect to the pseudo-range measurement residuals, we
have a first order approximation to a spatial difference process
(which involves difference with respect to a nominal trajectory).
Proceeding onward to include delta-range measurements, we now seek
the spatial difference process of a temporal difference process.
We will maintain a first order approximation to the spatial
difference part in order to use a linear Kalman filter. The
temporal difference will be initially given a first order
approximation. Later, a second order approximation will be
examined to see what additional terms (preferably involving
existing error states) have coupling to the delta range
measurements.

Taking the time differential of the pseudo-range measurement
residual we have

d(8zj) = d(e T ~r ) - d(e T R 6) + d(8B,), (15)]n -u 3 n ==M

and on expanding,

d (6zj) = (de T )6r + eT d(6r
in -u -3n (16

-(deT )R 8 .• e T(dR ) §A - eT R d(_) + d( B()
-- An W = An -- n =An

By linearity we can exchange d(- ) and 6(. ) for all except ,
which, as previously noted, is not separable with any proper
meaning. For 8_ we must return to the defining relations. From
(7) and (8), on considering the temporal behavior we have

8Ca= Ca &bn, &Pbn = Cb_ I
=b ýbn ý =

A T••a = Ca (Cbn I) Cbn = CaCbn - IS- = Ibn =b . .. ýb=a a- (17 )
D(P) = (DCa) Cbn + Ca(DCbn) (DCa) Cb + ca (DCUm)

b -b ==

D(~P Q + Q = n -~ ! =a -Q =2
O ab 2 n , a = cab •a , b n --ab = ,' • ab

10



Q is the skew-symmetric matrix form of angular velocity of theýa b

host-vehicle frame with respect to the selected convenient
reference frame. The corresponding vector form is

(18)
d(5_) = 8&odt

which is the mathematical statement of the fact that the rate of
attitude error is equal to the angular velocity error.

It is to be noted here that 6 is separated from (o,,, as angular
velocity is a vector quantity without further qualification. The
relations of (18) are intuitively obvious but we have been careful
to preserve formality. Since our focus will be on resolution of
8(o, into gyro error states' it is noted that if we take I, to be
the actual frame and not "what we think it is" irrespective of our
selection for 1, then

8CO L, ( - CO b ((0 + (0, () + C
(19)

il , In 1 k,

From (16) and (19) we now have

6(dzj) = (de') 6r + e T (6v) dt

-(de n)R _ eT (dR (20), =A,- -) n "=A,

-eT R (&ob )dt + 6fudt

where we have used dr = tudt = vdt and dB, -- dt - f.dt

2 Resolution into gyro error states does not imply that these

error states will be observable.

3 v, is the velocity of the user relative to the center of
Earth as determined by a 1, fixed observer. v., is denoted here as
terrestrial velocity when 1,, = XZand v, is denoted as inertial
velocity when = 1,. For 1. = In, a local level frame, v., is much
less useful. We proceed, however, along this path and make
adjustments later for expression in terms of terrestrial velocity
regardless of the selection for I•.

11



Using the Theorem of Mean Value for integration and
taking 6r and 80 to be constant over the interval (tI-T, t) the
DR measurement residual is given by

8 = ( 6f"dZ (f e'- r + e"f 8v dt

-e: RT = +f 7_"ý

f L 0 7(fi dRn (21)

Jf~j t lbd + 8f~fdt

]-n=Anf T

where the other terms not included within the integration are
evaluated at some undetermined time within this time interval. On
performing this integration as far as we can yields

6(Az,) = Ae- 8r + e7 y6v dt-jn -u -1 lj _

-(AeT R + e -,, R (22)

-e T R t, ý, ddt + f-T f dt-- n=BAn ft _T -- xb

We arrive at a first order approximation to the temporal
difference part if we consider the navigation reference point, the
local clock, and attitude changes to be temporally "well behaved"
so that 8vu,&) b, and 6fu are regarded to constant over (t,-T, t).

Then

8 (Azi) = Ae T 6r + eT T6v
i -u -3r,

-(AeT R + e T AR ) (23)
I rýAn -In =An

-e T TR &o, + T6 f,
-n Ar1 -b

12



or, more specifically,

8(Az,(t, ) = Ae- (t 5) r (t,) + e (t) T v

-(Ae T  (t,) R (tr) + e T  (t) AR (t,) )•_ (t) (24)

-T(t d) T R, t )' t + T~fu,(t )

where ti- T < t,,tbtctdit' < t:.

Incorporating both pseudo-range and delta-range residuals, the
resulting H matrix is

6r 6v _9 8_ 8 sB., 6f.8

8zI eT 0T -e 1 0
-In - -_n=R _

8z e T 0T -eTR OT 1 0
-2n -

ezk T  0T -eT R 0T 1 0 (25)
-k---Rrmmr•

8(Az,) AeT eTT -(AeT R +e-TAR ) -e TTR 0 T
-In -In -Irm-A -In =zk' =A

8(Az2 ) AeT eTT -(Ae R +eTAR ) -eTTR 0 T
r. -- n2 r== 2 _n m-A =n

e(Azk) Ae T eTT -(Ae T R +e T AR ) -eTTR 0 T
k)L)n -- kin =An ýr.n z=Aj

If, instead of bringing the H matrix to the antenna phase center,

had we derived an H matrix based on the antenna phase center

coinciding with the reference point, that is R =0 (but still by

using measurement residuals based on antenna-lever-arm
corrections), the resulting H matrix would show no coupling between

the residuals 5 and 5i, By eliminating these noncoupled terms,

we have
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6ru 6v 6B 6f.

e T  0T 1 0
t'T -- in 0

6z e T  0 T  1 0

2 --2n -- ( 6

6(Azo) Ae T -e-T 0 T

6(Az 2) AeZ"-eT T 0 T

S(Azkk Ae' -eAT 0 T

which is the usual H matrix encountered when both pseudo-range and
delta-range measurements are presented to a Kalman filter
implemented in ECEF.

As indicated earlier, when Ea = In we generally want the
terrestrial velocity of the user rather than the velocity as
perceived by an observer fixed to In. Tn coordinate free form and
considering only temporal variation, we define the terrestrial
velocity as

De ru = v" (27)

By the theorem of Coriolis,

Dr< = Dau + pea x ru
(28)

-D. -r. ea x r

or, in matrix form

Dr =Ca(Dre) -e r-U = -U zJ -- U (29)
v =v - r
-u EA•u

Since we take 1, to be the actual frame (X, does not have a
nominal counterpart in this analysis), we have

6v =5v - 2 5r (30)
14 -u

14



Using terrestrial velocity v, (23) becomes

8(Az,) = (Ae T -e T TO )8r + e- T6v
-- jri -jn =e -u -j n - (31)

-(AeT R +e T AR )_-eTTR 80cR + T~f.(
Sn An - An - 7 r - C

To a first order AeT-eT' - = (C'Aee)I which is the temporal change
n - -ea )e --

i4n the satellite unit vector as perceived by an Earth fixed
observer and expressed in 1,

We then have as defining the observation matrix H,

8r 8v B, 8f,,

Tz e TTeT R T 1 0

SZ --e T  0 -eTR 0 T 1 0

eZk T  
0T -e

T R 0T 1 0 (32)

_L• _ -_ek_ J0 32

(Az,) (CaAee)T eT T -(AeTR +e T AR ) -eTTR 1 T

C(AZ2 ) (:Ae ) T e T T -(Ae T R +eT AR) -eTTR 0 T

(Azk) (CaAee)T e T T -(Ae TR +eTAR ) -e T TR 0 T

8 A , e -kn -kn -krom-i -- kn ýA -kn =An

If we model Sob to consist only of gyro bias 8__)B and scale

factor4 8c),K

l•)ib -- Ca 8( CWb + Cawb80•b (33)S-mbn -B -:bn- -Y

" Thus far we have structured the error state elements to be
partitioned into 3d vectors and we will continue to do so here for
convenience. One may want to model only the x component of scale
factor or only certain g-sensitive terms or the like.
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where we note the urideri in:n- 6(o 8w:d 6w' o be single vector

quantities and not 6(-) and d :

W = (34)

Using terrestrial velocity, we then have for the delta range

part

5(Az ) = (Ae -e TA i- ÷ e T6v

-(Ae-R ÷e AF )_ (35)

- e TR C' 8Wo -e& TR C'WI6w(o -T6f

The H matrix of expanded column dimensionality would then be

constructed with these additional terms.

2.4 Higher Order Terms

Up to this point, we have used only a first order

approximation to the temporal difference process A(- ) . A first

order approximation is, of course, used for the spatial difference

process 5(- ), to obtain a linear form for the Kalman filter. While

we retain the first order approximation to the spatial difference
process, we here briefly investigate whether other coupling terms
may arise from a higher order approximation to the temporal
difference part.
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Repeating (22)-,

6(Az ) = AeT 6r + eTK 5vdt
in u JUl3 Jn -

-(Ae TR + e T AR8 (22)
_ Jn An n An-

eT R f' 16•oidt + f" 86ftdt3 n=An ft,-T I -T

In taking 8v_1, k-0&, and 6f, to be constant over (t;-T, ti) to
arrive at (23) is tantamount to approximating each of these
functions of time by the first term of a Taylor series expansion
about t,. We now look at additional terms.

Considering only temporal variation, a Taylor series expansion
of 8V, about t, and by interchanging 8 and time differentiation
yields

8v (t) = 8v (t.) + j ((t-ti) + h.o.t, (36)

Relating to coordinate free form,

Da r =-D D a ().e = v (37)

a A D r , v = Deru,

a is the inertial acceleration and v , as previously noted,

is the terrestrial velocity.

• It will be more convenient to initially use v,, in this
development rather than terrestrial velocity v and then make the
adjustments. We seek to arrive at an acceleration error state that
may be related to existing accelerometer error state elements of
the state vector.
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We then have

6(Dv ) =r -2 -M r(-U iaml- u =ia - • =Ce -, (38)
=a - 2[/ 6v - (L - M Q )8r

M1i - ý a 13c1 -

By using (30), (36), and (38) we have

8v (t) = 6v(ti) - K 6r (ti)

+(t-ti) [5a(tj) -20 2Sv(ti) -(fY -2M- 2 )5r_(t,) I,
=ia __i a - u

and
8V (t) + (t-t i ) (f -20a )]8_ tj)

Uv ([R-ea jzia =iaýeaJ -

+ [1- 2 (t -t.)Q 1~v (t ) (40)

+ (t-t 1 )Sa(t 2 )

We then have the second order approximation for the integral

8v dt = -QT-(L -20 Q ) 2r (ti)
J -7 -u 2 -ia ýiaea - (41)

+Q T)&TT2

+(IT + i T2)8V(tai) -- T-8a(t,).

In coordinate free form,

- 2-a = Djrý = f + G

or, in matrix form, the corresponding errors are

5a = 5f + 5G ,

where fb is the specific force vector which is measured by the
accelerometers and G is the gravitation vector. As 6G is not
modeled here, we delete this term. If we take k(0,b and 8fu to be
constant over (ti-T, t, ), from (22) and (41) we have
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+er (IT÷Q T-)8v

-(Ae T R + eA(42)

-e7 R T&t

-eT T f

+T~f.

Though not pursued further here, 5fb is expressible in terms
ot accelerometer error states such as bias, scale factor,
misalignments, etc.

A similar approach could be taken with regard to 5u,, not
making the assumption that it is constant over (ti-T,t 1 ) . However,
an angular acceleration error state would result that is not
modeled. Moreover, if it were modeled, an issue arises on the time
propagation of the corresponding total state because we do not
generally incorporate corresponding sensors that would aid its
propagation in a high dynamic environment.

2.5 Comparison To Standard Attitude Measurement Teýchniques

Although a comparison to an exhaustive list of other GPS-based
attitude determination methods is beyond the scope of this report,
a quick comparison of the method described in this report to
"2nterferometric" attitude determination methods (Van Graas &
Braasch, 1991-1992) may be useful at this point. We can construct
a configuration which affords a convenient general comparison
between the technique presented here and the more familiar attitude
measurement techniques. For purposes of comparison we take any two
noncoincident GPS antennas of the "standard" interferometric methcod
and the set of their phase differences for each of four GPS
satellites to comprise a spatial GPS Interferometer. A set of
delta-range measurements taken over the same time interval Lor four
GPS satellites using a single antenna in effect provides a temporal
version of a GPS Interferometer as defined above. While more
restrictive than need be due to use of recursive estimation
techniques that preserve information by propagating it forward, the
typical implementation of a conventional five channel GPS receiver
having pseudo-range and delta-range measurements would, in fact,
conform to such a configuration.

A brief comparison between the technique described in this
report (denoted as "Delta-Range-Based method") and standard GPS
interferometric methods is provided in table 1.
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Table 1. Comparison of standard interferometric GPS-based attitude
measurement techniques to delta-range-based method.

Standard (Multiple Antennas) DR-Based (Single Antenna)

Requires multiple antennas and Requires only a single antenna
a special GPS receiver design. and a standard GPS receiver
No requirement on host-vehicle having pseudo-range and delta-
motion relative to GPS range measurement capability.
satellite constellation. Requires changing attitude of

host vehicle relative to GPS
satellite constellation.
Integrated GPS/INS generally
needed for good performance.

Any two noncoincident antennas Each set of DR measurements
receiving carriers of four for four GPS satellites using
GPS satellites and the single a single antenna on ho-t
difference of their phases vehicle undergoing attitude
constitute a spatial GPS changes may be viewed as
Interferometer. const>.ict:ng temporally a GPS

Interferometer having as
antennas the start and stop
ai-cenna locations. The
accumulated phases of the DR
measurement set are equivalent
to the set of differences of
received phases at the start
and stop antenna locations.

A minimunm - cvo nonpar !lel A minimum of two nonparallel
GPS Interferc -ers (a minimum equivalent GPS Interferometers
of three non- linear (two DR measurement sets)
antennas) is r.2quired for required for attitude
attitude letermination at any determination with INS
-ime. propagation of information

over the DR time period.
Attitude is determined for end
of period and is propagated
forward by INS.

The satellite phase errors are Removal of satellite phase
removed by the single spatial errors is inherent to each DR
difference in phase between measurement.
the two antennas of the GPS
Interferomezer.
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Standard (Multiple Antennas) F DR-Based (Single Antenna)

Ambiguity resolution for No ambiguities in each DR
integer cycles must be measurement provided no loss
accomplished for the single of carrier lock or cycle slip
phase differences. Use of in GPS receiver channel
redundancy, search procedures, associated with GPS satellite.
triple differences, etc., are
required.

May require calibration and Fundamental phase change due
compensation for antenna to attitude changes in single
induced error due to phase antenna must be compensated
pattern differences between for. Antenna must also be
the two antennas constituting calibrated for phase pattern
the GPS Interferometer. anomalies.

Double difference (difference Use of single antenna and
between two independent single standard DR measurement
differences) required to obviate the need for double
remove receiver timing errors, differences.
electrical path bias errors,
etc.

Direct solution of attitude Recursive estimation (using
performed. Kalman Filter) of attitude

errors relative to nominal
trajectory established by INS
and its corrections (resets)
is performed.
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3.0 STATE-SPACE FORMULATION

3.1 Introduction

In developing a measurement model, the method presented in
section 2 has taken a direct approach. The strength of such an
approach is that it has remained independent of any other analysis
and, thereby, has been exploratory in seeking coupling between
pseudo-range and delta-range measurement residuals and the error
states. The results for the pseudo-range residuals need no further
elaboration and are useful as derived. With regard to delta-range
residuals, however, a weakness is that it has not been establishcd
where certain terms in (22) need to be evaluated to be equivalent
to (21). For example, when the time interval T over which the
temporal difference is taken is small such that the change in R is. A

small, the problem is minimal and any reasonable choice of
evaluation time will provide useful results. For greater
efficiency in coupling to the attitude errors, however, we wish to
maximize AR . The choice of where to best evaluate R in the•AA

interval (ti-T,ti) is uncertain.

In this section, we utilize a presumed existing dynamic model
to develop the temporal differences required for the delta-range
relations through backward transition matrices. The strength of
this approach is that there is no uncertainty as to where to
evaluate the terms in the resulting relations. The weakness,
however, is that it depends on a previously developed dynamics
model and is subject to any inadequacies in this model. In
particular, uncertainty in the backward time propagation
contributes to uncertainty in the measurement model.

3.2 Reference Frames

The previous approach required careful identification and
manipulation of representation in various reference frames. The
state-space formulation requires only minimal consideration. The
only assumption made with regard to reference frames for the error
state vector corresponding to the previously developed dynamics
matrix is that position errors and attitude errors are represented
in the same selected preferred reference frame. In this
development, position vectors and the skew-symmetric matrix
corresponding to the antenna-lever-arm position vector will also be
represented in this preferred reference frame. Otherwise, the
error state vector can mix and match reference frames, the only
requirement being consistency with the previously developed
dynamics model.
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3.3 State Equations

The system model will be taken to be nonlinear but with
additive noise (Maybeck, 1979; Anderson & Moore, 1979) . In
particular, the total state dynamic model is taken to be continuous
and given by'

ýc(t) = f [x(t) ,t] + G (t) w(t), (43)

where w(t) is a zero-mean white Gaussian noise process. For the
purpose of either a linearized or extended Kalman filter, we assume
a nominal trajectory of similar form

x (t) = f[x n(t),t]. (44)

The spatial difference process

5x(t) = x (t) - X, (t) (45)

has the first order approximation
8x (t) = F [t; x, (t)I6x (t) + G(t) w(t), (46a)

where

F[t;x (t) I a t)I (t) (46b)
= --n " dx -= "

In the case of an extended Kalman filter coupling a GPS
receiver with an IMU, the nominal trajectory is updated (reset)
following measurement update to the new total state estimate so
that the error state, now reset to zero, need not be propagated.
As indicated in the previous development, propagation of the total
state is largely accomplished through use of IMU data.

The discrete time measurements are taken to be a nonlinear
function of the state with an additive white noise sequence.

z(t,) = h[x(t) ,t ] + v(tj). (47)

Associated with the nominal trajectory is the sequence of nominal
measurements

n (ti) = h[xn (t 1 ),t]. (48)

SIt is noted that (43) implies definition of "attitude total
states." Attitude total states are not usually defined. The
formalism in (43) , however, conveniently leads to the definition of
attitude error states.
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The spatial difference process

ýz(t 1 ) =_z(ti)-z_ (ti) =h[x(ti) ,t] -_h[x t) ,t-]+v, t) (49)

has the first order approximation
6z(ti) = H[t+;x (t)]x(t ) ÷ v(ti), (50)

where

ah[x(t,) t]
Hj~tj1;x (t 1 )] -a - . ('

= ~dx -

If we express

h' [5x(t) ,x(t,)ti] = h[x(ti)t] - hfx (ti) ,tj, (51)

where we treat 8x as an independent variable, then

!Hjti; Xn(ti] = ah'[8x,x,t I] 8.=C • (52)-- d~x -S=

Further discussion and proof is given in Appendix A.

For this problem we can express

h h(xt,)=hhti) and h = h (x, ,t1) (53)
[hixxt,]t' )=

hm(xth) hm' (6x,x,T,)

so that the jth row of H[ti;x (ti)] is given by

S hj(x, t;) ahi' (6x,x,t,)

x IxtjX" (ti= d(jx) 1Sx= • (54)

3.4 Approach

The approach is to develop a spatial difference of the
temporal difference process over the time interval (t-T, t,) for
the jth delta range (i.e., the delta range for the jth satellite).
The delta-range residuals are determined in terms of the geometry
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in figure 1. We then use a previously developed linearized
dynamics model to express error state terms having time arguments
of t,-T by the product of the backward transition matrix
(appropriately premultiplied by other matrices to isolate the
required terms) and the error state vector having the time
argument t,. We then have a "row" of the measurement model
utilizing the argument 5x. We then apply the results of Appendix
A and (54) to obtain the corresponding row of the H matrix in the
perturbation model of (50).

3.5 Delta Range

From figure 1 we have the vector from the jth satellite to the
antenna phase center at any time t and represented in some
preferred frame la as

r (t) = r (t) + r (t) - r (t). (55)

The rf range Rj(t) from the antenna phase center to the jth
satellite (or that from the jth satellite to the phase center as we
take range to be a positive value) must account for the range
equivalent user clock offset

RI (t) = hr (t)I + Bu (t) . (56)

We also have nominal rf range corresponding to the nominal
trajectory

mjn (t t) + Bur(t) (57)

For the rf range and nominal rf range at time t-T, we would have
the same forms as (56) and (57) but with arguments t-T.

The measured delta range as a discrete time process (at t.)
and corrupted by measurement noise is7

ZDR (ti) = Ri(t) - R (t 1 -T) + V (t )

7 Although (58) has the appearance of the difference of two
ranges, it must be remembered that the measurement is not obtained
as the difference of two pseudo-range measurements but rather as a
receiver measure of the accumulated carrier phase (integrated
Doppler shift) from t,-T to t,. In this regard, v:.F(t,) is the
discrete measurement noise process involving the effective carrier
tracking loop noise over the same interval.
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The nominal delta range corresponding to the nominal trajectory is
S(n(t,) = R~ (t) - Rn (t -T) (59)

The delta-range measurement residual discrete process is then

BZDR3 (t z DR (t ) - z Fpjn (ti) (60)
= R (t R) - R j )(ti) - [R I(t -T) - Rn (t 1 T) ] + V,, (t )

As for any time t

jn (t)= IIr Un(t) +r A(t) -r C(t) + Bu,(t) (61)

and as spatial difference processes using 6(")=()-(-)n' are

8r (t) = r (t)-r (t)

ýrA (t) = r (t)-_r (t) (62)
6BI(t) = BU(t)-BnC(t),

we have

Rjn(t) = hr (t) -(r (t) + r (t) - 8r (t) - r (t)I + B,(t) - B (t)(63)

- Ir (t) - 6r (t) - 6r (t)h1 + B,(t) -6B'(t)

Hence the delta range measurement residual discrete process for the
jth satellite is

8ZDR] (t,) =r 3 (t ) L )r (t, ) -8r, (t ) -5rA (t,) 11 +5B,, (t 1)

-lr (t, -T) ll lr (t, -T)-8r, (t, -T) -6r A(t, -T) 11 + Bu(t ,-T)}

(64)
+ V (t 1 )

Taking the preferred reference frame XE, to be a perfectly
known frame and the host vehicle body frame Y,, to be uncertain (X.
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has no nominal counterpart but E does, designated here as 1',)
we have

r (t) C" (t)r' (65)

Even though E, is uncertain, r' the location of the antenna phase
A

center in the host vehicle frame, is taken to be known perfectly.

We then have

8r (t) = r (t)- r (t)-- Ca(t)rb - Ca (t)_rt n (66
-A -An i- -A -qr. -An(

We also note that rb" corresponding to the nominal trajectory ismAn

also perfectly known and, in fact, is equal to r" The antennar -- A

phase center for the nominal host frame has the same relative
location as the actual antenna phase center for the actual host
frame. Then in the process of defining the skew-symmetric matrix
of attitude error (the difference between 4 and 4.),

r c t )-_Ca (t) r -= Ca (t cbn (t) -I r-n

A ----b ==b •cn---'

•bn(t) A 6qkn (t) a Cbn(t) - I
Sbn(67)

CraCt) =Ca(t) &rn(t)Cbn(t)Ca (t)rbr(t)
ý-rA (t) =ba -==bn -An

= I(t) r (t) = &P(t)r (t)

Using the skew-symmetric form R (t) for vector r (t), we have
from (11)

6ra~t = -R (t).__ (t),
0A -rA,,, (t) r A.n (t)

R = rA.n (t) 0 -r" (t) (8
OAAn

A -r Ay r,(t) rAxn(t) 0
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We then have for the discrete time measurement residual process

6Z )R3 (t,) hr (ti)ll - r (t.)-6r (t)+ R (t )__(t )I + 6B (t )

-{lr. (tI-T) 11 -l.L_ (t, -T)-6r (t, -T) +R ,(t.-T) A(t -') ll+6B (t -T )}

+ VoRJ(t). (69)

We define 3 x n matrices K and K and row vector (1 x n matrix)
k' such that we can relatpe to "he full error state vector at

B
measurement time t,

8r (t ) K 6x(t')

8K(t ; = x(t,) (70)
B, (t,)= k6x(t)

At measurement time t,-T, we obtain the corresponding quantities
but using the backward transition matrix

8r (t-T) =K[4)(t,-T,t,)8x(t,) + w (t -T)J

5_ (tI-T) ="K [4)(tj-T,tj)5x(t,) + w,, (t.-T)] (71)

6Bu(t,-T) =+k:[c(t 1 -Tt 1 )&x(t ) + w. (t,-T)]

where w (t-T) is the driven response at t,-T due to the presence of
the white noise in (43) during the backward interval from t, to
t,-T. wt-T), by virtue of the white noise in the continuous
model, is a white noise sequence. It is here that uncertainty in
the dynamics model is introduced in the measurement model.
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The discrete delta-range measurement residual process is now

8z DPj(t j) hr (t, II-r (t,) - [KR(t,) K]5x(t~

{r• (t,-T) Ii r(t, -T) - [-•t, t-T) K (t,-T) ,t 6x (t,] + t _ -T)JI}

+VDR, (ti) (72)

Except for the noise introduced by uncertainty in the dynamics
model in the form of wr(t 1 -T), this is in the form given in
Appendix A

kZDRj(ti) = h ' [8x(t:) ,x(t) ,t ] + V (73)

This form is obtained by boosting VDR(tl) by an appropriate amount
and removing wt -T). In reality, this is accomplished by an
increase of the corresponding term in the measurement noise
covariance matrix.

From Appendix A we have

ah ,' 8x , x , t '
6z---AR2 t - & (5 x ) ( 8x(t,) + v,, 3 (t,) + h.o.t., (74)

ah, I (8x, x, t' )
where d (bx) -h 'i [t xi (t)] is the jth row of the

observation matrix.

It is to be noted that w,,(t,-T) has the argument t,-T. The
measurement noise covariance matrix, which needs to be modified,
however, has the argument t,. This added noise contribution does
not correspond to any physical noise process in the GPS receiver
but reflects additional uncertainty in the adequacy of the
resulting measurement model introduced by using the assumed
dynamics model in the development of the measurement model.
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Noting that r (t,1) 11 and _r(t, -T)h1 are not functions of 5x and

taking WD(t,-T)=O (by accounting for this additional uncertainty in
measurement noise covariance matrix),

11 t (t )-[K -R (t,)K ]6x11
hT,, [t ;x (t i] ='P A " 2 0x
-2 d(bx) - -

+jr Lr(t 1 -T) - K - R (ti-T)KK 4])(ti -T, ti) 8xII
) (O x ) I (75

akT [I - 4)(t i-T, t( d 75)
+ B Ox n

a (ox) -

By using the results of Appendix B, and since for

6x=O,x-x and r =r.

rT (t ) [K - R (t 1 )K
hT" [ta;x_(t )=] = -ýF O

""Ir n (t I ) II
rT~ (t -T) [K- R (t -T)K ]•(t -T,tL) 76)

lrt -T)II
+kT [I -((t -T,t,) ]

rT (t)_
As, - - e (t)

T-hT"[tj;x (ti)] =eT (t,) [K -R (t;)K
-n n =p =An a

- eT (ta-T) [K - R (t,-T)K (D(t -T,ti) (77)

+ k T [I - 4(t -T, tI)
-B = xn a

If we approximate the backward transition matrix by the first
order form

T(t,-T,t,) = I - F[ t;x (t) ]T, (78)
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then

h T" [t i;x (ti)] e (t ) [K - R (t )Kj- n =P =An I

-e Tjn(ti- T) [KL- R (ti- T)K I [I - F[t ;Xn(t.)]T_(79)
+kF[t t;x (ti) ]T.

The 3xn matrices K and K and the row vector kT that extract
the position error, attitude error and user clock error from the
full error state vector necessarily depend on how the full error
state vector is constructed but are readily derived.

Rearranging (79), we have for the row corresponding to the
delta-range measurement residual for the jth satellite

hTii [ti;x (ti) ] =[eT (ti) -eT (ti- T) ]K
-jI -in -3n =-[eTn( t- i)R n(ti)-eT_ (ti- T)R (ti- T)]K

--jn =Mx ---J A+e T_ (t 1- T)K F[t.;x (ti)- IT (80)

-eT (ti- T)R (ti- T)K F[t.;x (ti) IT

+k T F[t.;x (t,) T.

The best way to compare this method to the first method is to
see how the error state vector is coupled to a delta-range
measurement residual, by using Xa = ECEF as an example, we briefly
examine the effect of each of the five terms of (80) for the
product h",T[t;;x (ti)]x(ti). We then compare with that which would
be obtain using a row of (25) that corresponds to a delta range
measurement residual. To obtain some of the terms in (80), of
course, we must have a dynamics matrix.

For the first term of (80) we have

[e-T (t i)-e T (t - T)]KI X(t)_ = [eT (ti)-e T  (t- T)]r (t')
- 1 nn 1 __ -- -n 1 -i]n 11(81)

Ae T (ti)6r (t,).

The result is identical to that for the corresponding term in (25)
In this case there is no problem as to which time to evaluate any
part.
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For the second term of (80) the result is the same as for the
corresponding term in (25) except here the time of evaluation is
quite clear.

= T (t2)R (t)-e (t)-t (- T)R (t,- T) K x(t, )
An 2i - n O iAn

-t re(tj) R(tj) -er TCt- T) R (t- T)Tbt

= - { T[e (t )-eT (tt- T); (t,) +eT (tj-T)[Zw(tj)-R(t 2 -T)l}._(t•)

= [Ae i (t RA (t 2 ) + eT (t - T)AR (tt ) J10 (t ).L --1 n =An n• (82)

The third term of (80) requires the dynamics matrix. The
needed terms in F[ti;x (ti)] are simply understood in that the time
derivative of position errors is equal to the velocity errors for
the frame under consideration. Again, we have the same results as
the corresponding term in (25) except here the time of evaluation
is given.

e T (t - T)K F[t ;x (t )1TSx(t.) = e T (t -- T)T6v (t.) (83)

The fourth term of (80) results in coupling to gyro related
errors that may be included in 8x. If all of these errors were
lumped into a single angular velocity error of the body frame
relative to an inertial frame, it should be evident that the
results for (80) and (25) would be the same except again for the
time of evaluation being explicitly known here. In this case,

eT (ti- T)R (ti- T)KF[tj;2x (tj)]T-4eT (ti- T)R (ti- T)T&Oi (84)
-n =An -

The last term of (80) yields results identical to those in
(25), the part of the dynamics matrix required here being quite
simple in that the rate of change of user clock offset is equal to
the user clock drift.

TF [t i;x (t) ) T~x(t ) = T6f u (85)

We have then compared the results of the second method to that
of the first (for a delta range measurement residual) when a first
order model is considered. Each case resulted in five terms (when
we lump all gyro errors into a single angular velocity error) and
the five terms have been shown to be equal except that the time of
evaluation is quite clear for the second method. This overcomes
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the major weakness in the first anproach. The second method, as
previously noted, increases uncertainty in the measurement model
for any inadequacies in the dynamics model used. F--h methods may
be extended beyond a first order model.

The mathematical development for the second method has been
somewhat more concise than that for the initial method. We have
been able to keep track of time arguments, making a clear
distirction between the continuous argument "t" cnd discrete
measurement times "t". In addition, those quantities evaluated
"on the nominal trajectory" have been identified and tracked
throughout this development.
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4.0 SIMPLIFIED ANALYSIS OF THE DELTA-RANGE MEASUREMENT FOR A

SPINNING BODY

4.1 Introduction

This section provides a mathematical analysis of attitude
estimation addressing specifically a spinning body scenario. As a
result it facilitates gaining certain insights to and identifying
sensitivities in spinning body applications. The analysis is
limited to the case of an initial (constant) attitude error in a
rotating but not translating vehicle. The results reveal the
sensitivity to spin rate, DR integration time, lever arm length,
and orientation of the satellite. The results also include an
upper bound of the accuracy with which attitude errors can be
estimated.

4.2 Analysis Of Delta-Range Measurements

Neglecting the effects of clock bias, atmospheric delays, and
noise, the doppler shift of the incoming GPS signal is,
approximately,

2i1f c d
W" (t) = - 11 r (t)jl, (86)

c JE t

where f,, is the GPS signal carrier frequency, E, is the Line of
Sight (LOS) vector (see figure 1), c is the speed of light, and the
double lines denote magnitude of a vector quantity.

The delta-range measurement is physically obtained by sensing
and integrating the doppler shift in (86) over an interval of time
T.

tL

ZDR (ti) 2 C f wD- -)dr (87)
27rfR~ f~RF t,-T

Using (86) and the fundamental theorem of calculus in (87) we
obtain

- c f 27 f d 1d rE(C)11d(8z " "R ( t ) 7 7 - CF - f - - ( 8 8 )
" " t-T

= lI~ j~till - l j (t i-T) l

Without loss of generality we can assume an inertial frame XYZ
as shown in figure 2. For simplicity we assume no motion other
than a constant spin o about the Y-axis. Suppose the antenna is
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initially located on the X-axis. Then, the lever-arm vector _r. is
represented in the XYZ frame by

A (t ) = 0 J (89)
-- L sin ((otI)

where L is the magnitude (length) of r,. The Line of Sight (LOS)
range vector from the j-th satellite to the antenna at time t: is
given by (see Figure 1)

r. (t) = r. (ti) + rA(tl). (90)

In practice, T is sufficiently small so that in the interval
(ti, t 1 -T) the vector rj can be considered a constant, i.e., we can
neglect the effect of satellite motion.

For the purpose of this analysis, let us consider the LOS
vector as a function of the continuous time variable t as opposed
to the discrete time ti. Then

IIrj(t)tl = [(rcj,+Lcos(ot) + (rjy-0) 2  (91)
+ (rjz+Lsincot) 2 ]1 '9

Then

d 1[ (rjx+Lcosot) (-Lksincot) + (r~j,+Lsin(ot) (Locosot) ]fi[lrj (t) II CJ

(92)

Typically, the lever arm-length L is small compared to
distance between the vehicle and a GPS satellite. Then

Ircjxi >> IL cosrotl (93)

IrcjzI >> IL sinwtl (94)

Since L is assumed to be small, by taking

flr. (t)II - lrIIJl (95)
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for any time t and neglecting terms in L-, (92) reduces to

d (t) -r-_xLcOsincot + r._L~tcosC0t
r, r7I_ (96)

LWO [-e_,sinwot + e-,-cos~ot]

where ejx and ecj, are the X and Z components of a unit vector e.. in
the direction of r-3. Then from (86) j

W +o(t) 2 it2ffR LW [-e sjxSincot + e,,-cos•0t]. (97)
WDOPJ/ cCJ i

From (97), we conclude that the doppler shift is sinusoidal in
time. The doppler shift zero crossings occur whenever

e,,:
tan ((Ot) = e_ , (98)ecjx

i.e., whenever the antenna crosses the projection of r-, onto the

X-Z plane (indicated as line aa' in figure 2).

From (87) and (97) we obtain

ZRJ(t) = 2L sin() [-ejxsin(wt- () + e jcos(Wt- (0T] (99)

(99) can also be written in terms of the inner product between
the vectors e.j and u where

-sin (cot -__T)

u o0 (100)
00

Cos (t-t -(OT

The vector u is orthogonal to the vector denoting the antenna
location at the midpoint of the delta-range integration; i.e., u is
orthogonal to

Therefore, for a constant rotation rate (0, u is parallel to
the vector Ar_, which denotes the difference in antenna location at
the start and end of the delta-range integration.
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Lcos(O•t-)

T (101)7)

Lsin((t- )

Ar A(t) =-r (t) - r A(t-T) (102)

Thus (99) can be rewritten as

zDR)(t) = 2L sin( • s) COS(x[e ,Ar (t)]) , (103)

where f[e_,j, Ar_(t)] is the angle between the unit vector ej and

Ar. As indicated, this angle is a function of e and Ar_(t)

The following observations can now be made:

1) From (99), the delta-range measurement is sinusoidal in
time. The delta-range measurement zero crossings occur whenever

tan( (t- (104)
Sejx

i.e., whenever the angle swept by the antenna lever arm during the
integration time T is symmetrically distributed about the line aa'.
This condition is illustrated in figure 3a.

2) Setting the time derivative of (99) equal to zero we
conclude that the peak values of the delta-range measurement occur
whenever

T _e.j
tan(W(t- T ) = ,j , (105)

7 ejz

i.e., whenever the angle swept by the antenna lever arm during the
integration time T is symmetrically distributed about the line bb'
which is orthogonal to the projection of rL, on the X-Z plane. This
condition is illustrated in figure 3b.
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Figure 3. Illustration of conditions for zero and peak delta-range
measurement and attitude error observability.
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3) From (103) we conclude that the maximum peak value of the
delta-range measurement is 2L. This value is obtained when the
vectors e- and Ar. are parallel and the antenna rotates 180 degrees
starting and ending on the line aa' On the other hand, the delta-
range measurement is zero if the vectors e, and Ar. are orthogonal.

4.3 Analysis Of Attitude Error Observability

In this paragraph we investigate the observability afforded to
attitude errors by the delta-range measurement. Attitude errors
are directly observable whenever the corresponding entries in the
observation matrix H are non zero - i.e., the entries in column 80
of (32). For "good" observability, these entries should be as
large as possible so that the contribution of attitude errors to
the DR residual is significant.

We now return to a discrete time formulation. From (32), the
attitude error 8_ is related to the delta-range residual for the j-
th satellite via

H = -(AeT R + e T AR ). (106)
j-An• -- n -An

For our choice of reference frame and short periods of time
the change in the unit vector en is small so, we can assume that
Aejn is approximately zero. Then (106) reduces to

Hj , -e 7AR (107)

The contribution of the attitude error j to the DR
measurement residual is obtained by multiplying both sides of (106)
by 8.

=-e 
T AR~ (108)

_- T {[TA(ti) - rA(t,-T) ]x68 ) (109)

or

e7 AR[AFT,(T) ] x6 (110)

From (110), we conclude that the contribution of the attitude
error 80 to the delta-range residual is maximum when the vectors

i, ALA, and 8 are mutually orthogonal. The contribution is zero
if any two are in the same plane.
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From figure 2 we conclude that the skew-symmetric matrix RA.
is

[0 -Lsinwt, 0 1
L -- sinc0ta 0 -Lcosolt j (111)

[ 0 Lcos(t, n
1 v -J

Then

[_0 -L (sino)t, -sino( (t I-T)) 0 112)

AR = -sym 0 -L(cosot,-cosO(t -T

0 -sym 0

where "sym" denotes an entry equal to the symmetric entry in the
matrix. Using trigonometric identities (112) reduces to

0 -2Lsin cosc (t-_ 0

AR = 0T T) (113)
=An -sym 0 2Lsin7 sinco (t, -

0 -sym 0

Since we have assumed that L is small compared to r,, e-, is
approximately equal to e). Finally, assuming we are only interested
in the y-component of the attitude error, we obtain from (107),

h3 , ='T 2L sin(.T) [ecosw(t,- T) + ec,,sino)(t,- T] (114)

From (114) we conclude that hj8,., is zero if any of the following
three conditions occur:

L = 0, (115)

OT - NM (N = 0,1,2,...), (116)
T • •

ecosxCO t(•t--T) + e,_sin(o)t_,- ) =0 . (117)
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Obviously, the condition in (115) can occur if and only if the
lever arm is zero. The condition in (116) can occur if there is no
rotation or if the rotation rate is such that a multiple of 360
degrees is swept during the delta-range integration time T.

The condition in (117) can occur if

e , = e, = 0 (118)

or

tan(t t _e. (119)

The condition in (118) occurs if the satellite is directly
above (or below) the vehicle; i.e., if the vector r. in figure 2
has only a Y component. The condition in (119) occurs if the angle
swept by the antenna lever arm during the delta-range integration
interval is symmetrically distributed about the line bb' in the X-Z
plane - see Figure 3.

We can express (114) in terms of the inner product between e-
and the antenna location vector at the midpoint of the delta-range
integration, r[(tA-T/2) .

COTTh 364 = 2 sin ( _(O ) [ e( [eT r (t])]-- C3--A 7- (120)

2Lsin(----COT SMcj,

where P[ej, rL(ti-T/2)] is the angle between the unit vector e_ and
the antenna location vector r_(ti-T/2).

From (120) we conclude that hj8,Y is sinusoidal and has a
maximum peak value of 2L. This value is obtained when the vectors
e_, and r_(t 1 -T/2) are parallel and the antenna rotates 180 degrees
starting and ending on line bb'. hjs5y is zero if the vectors e_.
and rA(t 1 -T/2) are orthogonal. It follows that maximum attitude
error observability is obtained when the DR measurement is at a
zero crossing.

4.4 Attitude Estimation Error Bound

Suposean In...m... on Kalman Filter is used to estimate a
constant attitude error 84, using DR measurements. The variance of
the estimation error at tk is (Anderson & Moore, 1979)
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( ( T - € 8 ( t ) K=( -• • t - ( 1 2 1 )

where C;,, denotes the sigma value of the observation noise.

Numerical values for h',sY(t,) are required in order to evaluate
the sum in (121) . Assuming that tk is sufficiently large, we can
assume that the sum can be evaluated using an average (and
therefore constant) value in place of hj6+y(t,); i.e.,

k h ), (t) [Avg(his*) (2hj yt_ .. " (k+l) hj )(122)

Assuming that to a sufficient approximation

Avg(hj8*) Peak (hi,,) (123)

(121) reduces to
Peak (hv8,)

(0 2 CS,(tk) ) 1 (a - 80 (to) )- +. (k.1) Pa h,,

Peak(h 
4) r

(y2 C8#' ( tk) + 4 cy___(124)
DaER

Peak(h- )2

Using (120) in (124) and taking the square root of both sides
we obtain

(•cs•(k) < DR
G C 8 ,( - D ( 1 2 5 )L sin( T) cos(

for t»>>O.
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The following conclusions can be drawn:

1) The uncertainty in estimating attitude errors Y,8 with an
offset antenna is proportional to the delta-range measurement
noise, i.e., a•. (01, is inversely proportional to the SNR at the
input of the carrier tracking loop).

2) aUS is inversely proportional to the length of the
antenna lever arm L.

3) s€, is minimized if the angle swept during the delta-
range integration is 180 degrees.

4) aY, is minimized if the satellite is in the plane defined
by the rotating antenna and the angle swept during the delta-range
integration is symmetrically distributed about the vector r_.

We note that (125) is only a bound. As a result, it is not
very useful in determining the uncertainty in the attitude
estimates exactly. It is, however, useful in evaluating the
sensitivity of the uncertainty to L and COT. To illustrate this,
let y be a factor such that strict equality is achieved in (125)
for some L0 , w0 , and T0 ; i.e.,

GYC*(tk;L0 '•°0 'T0 ) (

L. sin( OT) cosp. (126)

Then, for different L, CO, and T we have

COT0
L 0  s i n ( ( _ )

GE, (tkL,i , (tkL, ,,T). (127)•s(tkL''T)= L- sin(-(OT

For example, increasing the lever arm from L = 5 inches to 20
inches, reduces the steady state attitude error bound by a factor
of 4. On the other hand, with (0b = Co = 450 deg/sec, increasing the
DR integration time from T = 0.78 sec to T = 1.0 sec, reduces the
steady state attitude error bound by a factor of 9.
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5.0 SIMULATION RESULTS

5.1 Introduction

This section provides covariance simulation analysis for a
spinning body by using the more general results of section 3. The
simulation scenario consists of a vehicle falling freely in an
exoatmospheric trajectory. The results illustrate the ability of
estimating attitude and attitude rate errors with an offset
antenna. The sensitivity to the lever arm length and the spin rate
were also investigated. To an approximation, the scenario here
resembles the conditions assumed in the analysis of section 4.
Consequently, the insights gained in section 4 carry over to the
more realistic conditions of this section.

5.2 Scenario Description

We consider a vehicle spinning about its Yb (body frame) axis
at a constant roll rate of w deg/sec. The vehicle is assumed to be
equipped with a tightly integrated GPS/Inertial navigator mounted
along the Yb axis and near the vehicle's center of gravity. The
GPS antenna is mounted on the perimeter of the vehicle at a
distance L from the Yb axis. The antenna therefore rotates at the
vehicle spin rate o. The vehicle moves along an exoatmospheric
trajectory. The vehicle's altitude profile versus time is shown in
figure 4.

Assuming a Yb gyro scale factor error of 50 ppm, a spin rate
of 450 deg/sec, and a scenario duration of 1,400 sec, an attitude
error about the Yb axis of 31.5 degrees is expected. The main
objective of the simulations is to demonstrate the ability to
estimate this attitude error by using the approach discussed in
this report.

5.3 Simulation Program Description

The simulations were performed with Galaxy's Covariance
Analysis Package (CAP) which is shown in figure 5. CAP includes a
trajectory generator program (TRAGEN), a covariance analysis
program (GGPSIM), a sensitivity analysis program (SENSIS), and
various data reduction and plotting software packages. A short
description of these programs is included in the following
paragraphs.
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Figure 5. Covariance analysis package (CAP) block diagram.
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5.3.1 Trajectory Generator (TRAGEN) Description

TRAGEN is a 6 Degree of Freedom (DOF), free falling body
trajectory generator.

5.3.2 Covariance Simulator (GGPSIM) Description

GGPSIM is a covariance simulation program of a tightly
integrated GPS/Inertial navigatoi. A top level block diagram is
shown in figure 6.

GGPSIM contains a "truth" and a "filter" covariance model.
The truth model represents all errors that would affect the
navigator. The truth model consists of the 80 errors listed in
table 2. Collectively, these errors comprise the true error state
of the navigator. The "filter" model consists of a subset of the
errors in the true error state. These errors comprise the
navigator's Kalman Filter state vector, i.e., they represent the
system's perception of the errors in the real world. The errors
that are typically included in the filter state vector are the ones
that can be unambiguously estimated (i.e., ai- fully observable)
through GPS measurements. The maximum number of such states in
GGPSIM is 56 and are listed in table 2. In practice, :he number of
errors included in the filter state vector is further limited due
to processing constraints. GGPSIM allows the user to arbitrarily
select the states in the filter. This feature allows analysis of
any conceivable GGP Kalmn Filter configuration

GGPSIM is initialized with the covariance of the 80-element
true error state and the covariance of the filter state. These
covariances constitute the true ane GGP Kalman Filter "error
budget". The truth and filter covariances are propagated forward
in time according to the vehicle's trajectory until a set of GPS
measurements is obtained. GGPSIM simulates a maximum of 10 GPS
channels, supplying the filter with 9 pairs of pseudorange and
delta-range measurements. (It is assumed that one channel is used
for simultaneous ionospheric delay measurements, and to aid in
acquisition.) Therefore, for the 10-channel receiver, only nine
channels provide pseudorange and delta range measurements) . The 10
satellites are selected according to first come first served from
all in view. GGPSIM also allows simulation vwith a 5 channel GPS
receiver (4 pairs of pseudorange and delta range measurements). In
this case the satellites are selected according to GDOP. The
measurements are computed from a 24 GPS Satellite Constellation
model which is integrated with GGPSIM.

The measurements are processed with a Kalman Filter which
updates the filter covariance at 1 Hz with Carlson's algorithm
(Anderson & Moore, 1979; Pitman, 1962) . The computed Kalman ý'ilter
gains a~e used in configuring (through augmentation) the gain for
the truth model.
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Table 2. GGPSIM true and filter error states.

STATE DESCRIPTION TRUTH FILTER(*)MODEL

Position Errors 3 3

Velocity Errors 3 3

_MW Attitude Errors 3 3

Gravity Deflections and Anomalies 3 3

Gyro Drift Rates 3 3

Gyro Input Axis G-Sensitivities 3 3

Gyro Spin Axis G-Sensitivities 3 3

Gyro Output-Axis G' Sensitivities 3 3

Gyro Scale Factor Errors 6 6

yro Input Axes isalignments6 6
Accelerometer Biases 3 3

Accelerometer Scale Factor Errors 3 3

Accelerometer Input Axes Misalignments 6 6

Altitude Sensor Error 1 1

Clock Errors:
Phase Error 1 1
Frequency Error 1 1
Aging Error 1 1
Random Frequency Error 1 1
Acceleration Sensitivities 3 3

Satellite Ephemeris and Clock Residual Ranging 24 0
Errors

TOTAL NUMBER OF STATES 80 56

(*) Maximum Number of States
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The truth model's covariance is updated with the Joseph form. The
covariances are then propagated forward in time using trajectory
data until the next set of GPS measurements is obtained.

Two GGPSIM features are worth noting. First, the filter gains
are computed using only the filter covariance elements. This
feature enables GGPSIM to simulate realizable Kalman Filters.
Second, GGPSIM automatically adjusts the filter input noise process
covariance (typically denoted by Q) to account for the true error
states that were not included in the filter state. This feature
enables GGPSIM to simulate fine-tuned filters.

5.3.3 Sensitivity Analysis Program (SENSIS)

SENSIS is a simulation data post processing program that
identifies the sensitivity and correlation of navigation errors
(e.g., position errors, velocity errors, etc.) to inertial system
errors (e.g., initial errors, alignment errors, biases, noise
processes, etc.). In this analysis, SENSIS was used to identify
correlations of attitude and attitude rate errors to other
navigation errors.

5.4 Simulation Conditions And Assumptions

This paragraph describes the conditions, parameter values, and
assumptions used in the simulations. The error budget for the GPS
and the inertial errors is shown in table 3. These values are
typical of advanced GPS receiver designs and navigation grade
inertial components.

"A short description and rationale for these conditions is
given in the following paragraphs.

5.4.1 IMU Error Budget

"A strapdown IMU with Fiber Optic Gyros (FOG) was assumed.
Since FOGs exhibit very little g or g2 sensitivity, these errors
were assumed to be zero. Gyro and accelerometer biases and scale
factors were chosen according to the requirements for the Phase 1
GPS Guidance Package (GGP). These values imply an inertial system
of roughly 0.58 nmi/hr. The remaining IMU errors were assigned
values that are typical of this class of inertial navigation
system.

It is noted that the values assumed for the inertial
components are not typical of inertial systems intended for space
applications; for example, space applications generally require
gyro scale factor errors of a few ppm (Pitman, 1962) as opposed to
50 ppm assumed here. The 50 ppm value was intentionally assumed
here in order to illustrate the concept.
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5.4.2 GPS Error Budget

A 10-channel GPS receiver was assumed to establish an upper
bound of performance capability. It was assumed that 9 channels
tracked satellites (all in view) supplying the fil r with 9 pairs
of pseudorange and delta range measurements. The I' channel was
assumed to be providing ionospheric measurements.

The GPS receiver accuracies were chosen according to SS-US-200
(1979) and SS-GPS-300B (1980) and are similar to those of the GPS

UE 3A receiver. These values were chosen as a worst case in
accordance with the minimum requirements specified in the GGP
System Specification.

The clock frequency accuracy was derived from SS-US-200
(1979). The remaining clock errors were assigned values which are
typical of oscillators used in current GPS applications.

The following assumptions were made: a mask angle of 5ý above
the horizon; 3-db noise figure; omni directional antenna; antenna
shadowing was neglected as a simplifying assumption; satellite
ephemeris and clock residual errors expected of the Block II
constellation were used.

As previously noted, the rotating antenna introduces a
systematic phase shift to the received GPS signal. It is assumed
that this phase shift is properly compensated for by the tightly
integrated navigator. This is a reasonable assumption since the
gyros are able to sense the rotation to within 50 ppm. The
residual phase error is assumed to be is negligible as far as the
GPS pseudo-range and delta-range measurements are concerned.

5.4.3 Kalman Filter Configuration

An "optimal" Kalman Filter configuration was used. The state
vector included all filter states listed in table 2 except for gyro
g and g2 sensitivities (a total of 47 states). This configuration
was used in order to identify which and to what extent the various
error states can be estimated. In reality, reduced order filters
will be used. In these realistic configurations, states that can
not be estimated to a significant degree are removed from the state
vector. This analysis, however, was not done here.

5.5 Simulation Results

Results were first obtained for three sets of lever arm length
L, spin rate c, and delta-range measurement integration time T.
These results are discussed as Cases 1, 2, and 3 below. Additional
results were then obtained to reveal the sensitivity of attitude
errors to antenna-lever-arm length and spin rate.
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5.5.1 Case 1: L = 0.0 inches, 0 = 450 deg/sec, T = 0.78 sec

This case was considered in order to establish a baseline.
Physically, this case would result if the antenna were mounted on
the Yb axis - figure 1. As per the discussion in section 2,
attitude error estimation with a zero lever arm is not possible.

Figure 7 shows the resulting Position Errors vs Time and
figure 8 shows the resulting Velocity Errors vs Time. The results
indicate good estimation of position and velocity errors due to the
processing of GPS measurements. The residual position errors are
due to satellite biases. The residual velocity errors are small
(0.01 m/s) due to smooth dynamics, good satellite observability,
and lack of jamming. The "bumps" in the velocity error profiles
are due to satellite switching.

In typical terrestrial navigation applications, good position
and velocity-error estimation would imply good attitude error
estimation since attitude errors are coupled to velocity errors via
the specific forces (Schuler Loop). In this case, however, the
vehicle is under free-fall conditions and the specific forces are
zero. Consequently, the attitude errors are decoupled from
position and velocity errors and without a lever arm there is no
mechanism for attitude estimation.

Due to the scale factor error, the attitude error about the Yb
axis is expected to grow. Indeed, the attitude error profiles in
figure 9 (Geographic Coordinates) and figure 10 (RSS Attitude
Error) show a roughly linear growth. The attitude error is shown
to grow to approximately 30 degrees as predicted earlier.

In addition, none of the instrumentation errors affecting
attitude (e.g., gyro scale factor errors, gyro bias, etc.) can be
estimated. For example, figure 11 shows all gyro scale factors
errors remain constant throughout the trajectory.

In essence, under the conditions of this case, GPS succeeds in
estimating the translational errors (position and velocity) as if
the vehicle were a point mass. There is no mechanism to estimate
attitude errors either as direct observables or through coupling to
other directly observable errors.
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Figure 8. Case 1: velocity errors vs. time.
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5.5.2 Case 2: L = 7.0 inches, o = 450 deg/sec, T = 0.78 sec

In this case, a lever arm of L = 7 inches as shown in figure
1 is assumed. Again, good position and velocity error performance
is obtained (figures 12 and 13). In addition, however, attitude
errors are estimated. Figures 14 and 15 illustrate the attitude
error profiles in Geographic Coordinates and RSS value,
respectively.

The results show that attitude error has been estimated to
within 2 degrees - roughly, an order of magnitude improvement over
Case 1. The RSS attitude error profile in figure 15 consists of a
period of transient performance followed by a nearly flat behavior.
This is due to the estimation of the instrumentation errors.
Figure 16 shows that the Yb axis gyro scale factor error is
estimated to within TBD ppm. The other scale factor errors are not
estimated since there is no rotation about those axes.

Note that the position and velocity error profiles here are
identical to those in Case 1. This illustrates that position and
velocity errors are fully decoupled from attitude errors under free
fall conditions. Consequently, although here attitude errors were
reduced through estimation, the position and velocity errors were
not reduced any further.
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5.5.3 Case 3: L = 7.0 inches, W = 450 deg/sec, T = 1.00 sec

In this case the delta-range integration time is increased to
1 sec. As per the discussion in Section 4, the increase in delta-
range integration time results in a more favorable product WT
(angle swept during the DR integration time). Again, the position
and velocity error profiles were idefitical to the ones obtained in
the previous cases (figures 17 and 18).

The attitude error profiles are shown in figures 19 and 20 in
Geographic Coordinates and RSS value, respectively. Figure 20 shows
that the attitude error is now estimated to within 0.2 degrees,
roughly two orders of magnitude improvement over Case 1 and an
order Qf magnitude improvement over Case 2. Figure 21 shows that
the scale factor error is now estimated to within 0.2 ppm.

5.5.4 Sensitivity Results

Additional simulations were performed using the lever arm
length L and the spin rate w as simulation parameters. Figure 22
shows the RSS attitude error at the end of the simulation vs the
lever arm length. Figure 23 shows the RSS attitude error at the end
of the simulation vs the spin rate. These results agree with the
predictions in Section 4, i.e., the attitude error is inversely
proportional to the lever-arm length and shows a cosecant
dependence on the spin rate.
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Figure 17. Case 3: position errors vs. time.
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Figure 18. Case 3: velocity errors vs. time.
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Figure 21. Case 3: gyro scale factor errors vs. time.

ATTITUDE ERROR (deg)
100 -

ILI
101~* -V

I T

0.00 0.10 0.20 0.30 0.40 0.50 0.80 0.70 0.8O

LEVER ARM L (i)

Figure 22. Final RSS attitude sensitivity to antenna lever arm

(T = 0.78 sec, w = 450 deg/sec.
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6.0 SUMMARY

A method was presented which permits estimation of attitude
and attitude rate errors with an offset GPS antenna mounted on a
platform undergoing attitude changes. The method exploits the
attitude information inherently present in the pseudo range and the
delta range measurements. The attitude information is primarily
recovered through processing the delta range measurement with
standard recursive estimation techniques such as the Kalman Filter
algorithms of GPS/INS systems. A brief comparison to GPS
interferometric techniques for attitude estimation was included.

Certain design considerations and performance sensitivities
were identified and verified with covariance simulations.
Specifically, attitude estimation performance is sensitive to the
angle WT angle swept during the DR integration, the length of the
antenna lever arm, and satellite directions.

The method is ideally suited to spinning vehicles in
exoatmospheric trajectories. In these applications recovery of
attitude errors with conventional GPS/INS algorithms is not
possible due to the decoupling between velocity and attitude
errors. Certain benefits may be possible in terrestrial
applications where rotary motion of the antenna platform is
inherent, e.g., a helicopter with a GPS antenna mounted on the
blade of the rotary wing.

In general, an integrated GPS/INS system is required for
"good" performance. In that case, the implementation impact is
minimum - a few terms in the observation matrix of the GPS/INS
Kalman filter. A stand alone GPS receiver may suffice in certain
applications such as benign or well known nominal angular dynamics.
In that case, the implementation impact also includes constructing
an attitude solution in near real time.

Although use of multiple offset antennas (and their associated
receivers) has not been given specific treatment, the corresponding
general observation matrix is simply obtained by incorporating a
similar set of rows for each offset antenna/receiver combination.
This may be accomplished whether the observation matrix is based on
the use of pseudo-range or delta-range residuals or both.
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APPENDIX A

Given the error state vector, the nonlinear equation for the
measurement process and its counterpart for the nominal trajectory

5x (t) X x(t) - x",(t)

z(t ) = h[x(t),t, ]+ v(t,) (Al)
z(t h h[x (t,),t t .

The measurement residual is then

6z(t,)= z(tJ)-z (t 1 )= h[x(t t, ]-h[x (t j) ,t] v(t) (A2)

If we expand h[x(t,}, t,] about x_(t,) using Taylor's Theorem

[2 t ), tjI= x ), tjI+ 8h (X-,. , t[) (ti) -Xn (t i) ] (A3)txI

+ 0o 2 [2L(t i) --x (t j)] .

We then have

h' [6x(t) ,x(t,) ,t] A h[x(),tj]- h[x (t.),t.]
Dh(x,t) (A4)

- x=x __ _

.x I_ X 86x + 0o (8x)

and, therefore, by treating 8x as an independent variable

dh ' (8x,x, t ) _ h (x ,t . . + E(8x) (A5)

d (6x) x ---

Evaluating at 8x : 0
ah' (8x,X, t 1) ah - 2 i t• 1) H [t ; ,(t,)] (A6)

d (Ox) I6 d x X_ _

If h[x(t,), tI has the more restrictive form

h x (t,) 0 tj1
) h[ t) ,ttI (A7)

Alx t, ,tI

A-1



and, similarly,

h' [6x(t ),x(ti) t1 ] hI [6x(t.) ,x(t,) (A8)

h , 8x (t ,),x (t ,t ,]

then we may deal only with a representative "row" for the above.
In this event we have

8z 3(t j) = h3 [8x (tj),x (t j), x, (tj)] + vi (ti)
h"" [t .;x (ti) I =_ -h 2hj-x't = h(' (x,x (A9)

i dx d(bx) t

where

- thr" [t(;x n 7 t)]] (h 0)

and

5z (ti) = ah" (8x_,_xý, ti x, td+ ,(j+h .t
d(bx)

A-2



APPENDIX B

In this appendix, we show that

aIIV+Kull VTK

We note that F u land functions as a post

operator.

aily + Kull
=-[(V + Ku) T (v + Ku)WCru - -- C-P-U----

)T -1 )

= -[(V + Ku) T (V +-K -2 (V + Ku) TK (B2)

(V + Ku)TK

liv + K-ul

Therefore,

ally + Kul VT K (
du n~ = -(B3)

B-I

B-1
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