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1.0 BACKGROUND
1.1 Introduction

In integrated Global Positioning System/Inertial Navigation
System (GPS/INS) navigation systems, position and velocity errors
are typically estimated with respect to some reference point within
the host vehicle. For example, this may be the point afforded by
the origin of the accelerometer triad or the center of mass of the
host vehicle. The conventional approach is to relate measurement
residuals to error states under the assumption that the antenna
phase center coincides with the reference point while compensating
for the effects of any lever arm.

In reality, the antenna phase center is usually at a point
different from the reference point. Measurement residuals
(observations) formed by differencing predicted and measured pseudo
range and delta range must incorporate corrections for the antenna-
phase-center lever arm. Knowing the placement of the GPS antenna
with respect to the host vehicle and the host-vehicle attitude with
respect to some convenient reference frame provides the required
information. EBut, as the conventional observation matrix is based
on coincidence of the antenna phase center and the reference point
(notwithstanding that in reality it may be offset), the pseudo-
range and delta-range measurement residuals are modeled to have
coupling only to position, velocity, user clock bias and drift
error states. In this conventional approach, potential coupling to
attitude errors or attitude rate errors is ignored.

In the conventional approach, the needed attitude for antenna-
lever-arm correction 1is generally provided by estimation of
attitude errors and propagation of the corrected attitude "total
state" (typically a direction cosine matrix or quaternion) to the
time(s) of measurement. Attitude-error estimation for such an
implementation depends entirely on correlation between the attitude
error and the velocity error. Specifically, contribution of the
attitude error to the velocity error is due to the product of the
attitude-error vector by the skew-symmetric matrix of specific
forces within the dynamics F matrix.

This approach has been successfully applied to many
applications such as terrestrial navigation. There are, however,
applications where the correlation between attitude error and
velocity error vanishes. For example, when an exocatmospheric host
vehicle is free-falling, the specific forces are zero for all
practical purposes. Then, although GPS may succeed in estimating
position and velocity errors fairly well, attitude estimation is
not possible. Moreover, the correction for the antenna lever arm
becomes flawed as attitude errors grow due to 1nstrumentation
errors such as gyro bias and scale factor errors.




Typlcally, GPS-based attitude error estimation methods rely on
receiving carriers from multiple GPS satellites and processing the
single difference of their phases (Van Graas & Braasch, 1991-2;
Keirleber & Maki, 1991; Satz et al., 1991). A minimum of 3
noncollinear antennas are required in most methods. The
implementation of these methods, however, requires considerable
receiver hardware design features and/or special software
processing beyond the typical GPS/INS designs.

An alternative approach to attitude estimation is proposed in
this report. We seek to exploit the attitude information
inherently present in the pseudo-range and the delta-range
measurements obtained with a single offset GPS antenna mounted on
a platform undergoing attitude changes. The attitude information
is recovered with standard recursive estimation techniques such as
the Kalman Filter algorithms of the GPS/INS systems. The attitude
information is primarily recovered through processing delta-range
measurements. The pseudo-range measurement is less usef]l because
of the generally high code loop noise. The implementation of this
approach does not require any special receiver hardware and only a
few minor changes to the standard GPS/INS Kalman Filter software.
Specifically, the required changes to the Kalman Filter software
are simply a few additional entries in the observation matrix H.

The proposed approach is ideally suited for applications where
the antenna is mounted on a spinning platform such as a spinning
vehicle 1in exoatmospheric, free-fall conditions. Since this
approach imposes a minor implementation cost, it readily allows use
of existing systems. For "good" performance, an integrated GPS/INS
system 1is required; the INS provides for propagation of the
attitude estimates in between GPS updates. In some specific
applications, however, GPS alone may suffice.

An overview of the contents of this report is as follows.
Sections 2, 3, and 4 contain independent mathematical developments
of this approach to attitude estimation. Section 2 provides a
general mathematical development of the observation matrix H, which
is applicable to any changing host vehicle attitude. The H matrix
is developed without reference to any of the other models that are
part of a GPS/INS Kalman Filter. Section 2 also provides a quick
comparison of this method to the more familiar "interferometric"
GPS-based attitude determination methods. Section 3 provides a
mathematical development of the observation matrix H, which is also
generally applicable to any changing host-vehicle attitude. This
development, however, is based on a state-space formulation and as
a consequence it employs and thereby relies on prior developments -
specifically, the state transition matrix and the plant-noise
model. Section 4 provides a simpler analysis of attitude
estimation but limited to a spinning body scenario. As a result it
facilitates gaining certain insights to and identifying
sensitivities 1n spinning body applications. Section 5 provides
simulation results for a spinning-body application by using,
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the more general formulation of Section 3. Section 6 provides a
summary and conclusions.

1.2 Notation

Vectors in specific coordinate frames will generally be of
lower case and always with a single underline. Coordinate free
forms will be denoted with an over-bar. Matrices will generally be
of upper case and always with a double underline. Scalars may be
uppe: or lower case but without any underline. Normal superscript
designation of the reference frame will be suppressed when the
frame i1s the preferred frame. The subscript "n" will be appended
to terms for the nominal trajectory.




2.0 GENERAL DERIVATION OF THE OBSERVATION MATRIX H
2.1 Introduction

This section provides a general mathematical development of
the observation matrix H, which is applicable to any changing host-
vehicle attitude. The pseudo-range (PR) and delta-range (DR)
measurement residuals obtained from the corresponding measurements
and their prediction at the antenna phase center are related to
estimation quantities referred to the reference point. This 1s
done to capture potential attitude and attitude rate information
lost in the more typical process of computationallv bringing the
antenna phase center to the reference point (but using lever-arm
corrections in formation of the residuals). If coupling to
attitude exists, then the attitude of a host vehicle undergoing
attitude changes as well its position and velocity can be estimated
even if the specific forces are zero.

The following analysis first derives H matrix row vectors
corresponding to pseudo-range residuals for a single "oftset" GPS
antenna and then proceeds to derive H matrix row vectors for delta
range residuals. GPS pseudo-range measurement performance is based
on the code tracking loop, while that for the delta range is based
on the corresponding time increments of the carrier loop. It is
recognized that for limitations in the antenna-lever-arm length,
the code loop noise will generally overwhelm the reiation of
pseudo-range residuals to attituae error. The delta range
residuals, however, being based on the very-low-noise carrier
tracking may well afford estimation of attitude errors of the free
falling host vehicle (as well as provide estimation of attitude
rate error so that gyro errors may be observed). The derived H
matrix includes rows for both pseudo-range and delta-range
residuals for completeness and improvement that may accrue from
pseudo-range measurements over a period of time (reduction of the
effect of code loop noise through integration).

The more general H matrix derivations are simply extended to
multiple antennas but this is of little value to the problem of
interest as it would entail considerable hardware complication with
attendant cost. A brief investigation of higher order terms in the
temporal DR residuals process is included.

A rotating antenna by itself introduces (by virtue of 1its
rotation) carrier phase shifts beyond those associated with the DR
measurements including a fundamental phase change due to the
antenna rotation (+ 360 degrees of phase shift per 360 degrees of
rotation in the antenna plane) and phase anomalies peculiar to the
antenna phase pattern. These phase shifts must be identified and
compensation made. It 1s assumed that the INS can measure the
antenna rotation with sufficient accuracy so that the unwanted
phase shifts as well as other antenna phase imperfections can be
compensated. The problems and 1issues associated with the
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corresponding compensation of delta-range residuals and antenna
calibrations were not investigated here.

2.2 Pseudo-Rarge Measurement

The geometry of the problem 1is shown in figure 1. The reader
should be aware of the direction taken for the unit vector, which
is shown from the jth GPS satellite to the phase center of the
offset GPS antenna on the host vehicle. This may be of opposite
sense to some definitions used by others. This unit vector 1s also
well approximated by a unit vector from the jth satellite toward
the user as the length of the antenna lever arm s very small in
comparison to the range to the satellite. Likewise, 1in this
analysis, the sign of error states is such that when added to the
predicted (propagated) "nominal" total state, a new ertimation of
the total state is provided (which becomes the new nominal total
state in an extended Kalman filter). The pseuao range between the
antenna phase center and the jth satellite is given by

-T,)- & +B,, (1)

3 u

z.=(r, +T

J A

where r ,r,, and r,, represent coordinate free vector form. As bias
in the satellite clock is not modeled, it 1is not included in (1).
In (2) we have coordinatized with respect to some conveanient
reference frame X,. Frame notations are such that

2, - Earth frame, generally Earth Centered Earth Fixed (ECEF)
2, - Inertial frame, generally Earth Centered Inertial (ECI)
2., - Local level frame
X, - Body (host vehicle) frame.
As a random process, the pseudo range is given by
z, = e’ (ra + r* - r*) + B + v__.
—_j —_n —_—nA -_—1 U T3
or
. (2)
Z; = &, (r, +x, - £sj) + B, o+ Vi
when suppressing the superscript "a" for notational clarity. We

will frequently suppress the superscript "a" for our selected
convenient reference frame but maintain superscripts for other
specially designated frames.




Figure 1.

Problem geometry.

j-th GPS
Satsllite




r, 1s the random process vector providing the location of the GPS
antenna but as represented in X,. r, will be rapidly changing due
to the changing attitude of the host vehicle. However, when
represented in the host vehicle frame (as r°, ), it will be constant
and related by

r () =ci(e)xh . (3)

It is to ke noted that the direction cosine matrix gijs

modeled as a random process but not rf,, which is taken to be well
known and constant.

For purposes of the derivation of the H matrix for an extended
(or linearized) Kalman filter, we assume a continuous spatial as
well as temporal distribution of z;, r,, and x,. In the approach of
this section it 1s convenient to disregard pseudo-range and delta-
range measurement noise. The spatial differential which we will
take with respect to the nominal or predicted value {i.e. evaluated
along the nominal trajectory), corresponds to the pseudo range

measurement residual. That is, 8(-) = () - (*), where we note

d(p'q) =p"g-p’qg =(p +8p)"(g +8g) ~p’g
~(dp) g +p’dg = g"dp + prég .

In particular,
0z, = 8(el(r +x,-r )1 + 3B, (4)
0z, =(r +r ~-r )@e +e"8(r +r -r ) + dB .
—An —s -] =—Jn —u =—A =5} u

3 ——un jn

As e; is of constant (unit) magnitude, 8¢, for small magnitudes must
be orthogonal to e; and, therefore, to xr, + r, - r.. to which g,
is parallel. Hence,

5
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- T T a bn
SZJ« - gjn8£u * —e-jn(sgb) £A.n * SB“

0z. = e dr + eT 8r + OB (5)
—_in ey —in =—A u

as r"=r” is a constant (column) vector.




In the case of BC‘ where the spatial wvariability is due to
that of X,

8C1—Cd -C2 =Ca (Ckn_I) . (6)
=h =pn ==pn =p
For small displacements of X, from X, (the nominal body

frame), g?ui is skew-symmetric. We define

Spr =P =c-1 . (7)

b =p =

For notational convenience, & is used in this definition but this
does not allow for separation of & from 8¥ as this would presume

that ¥ has meaning for large displacements of 2 from X_. & is
not defined. We then have

6 = g B . (8)
Therefore,
82j=§§n5£_ + el Caﬁ‘f‘b"_l:;’; + OB, - (9)
But as
ca SWm“r“‘- c2 dWrnehhea it = o¥ r . (10)
==y === = mEmE ==, =pnm == — AN
and since
0 “Lazn Tagn
=6=i’£ =-RM§Q' gA - rA:n 0 _rAxr‘ ' (ll)
-rAyn rAxn O
we have
- T _aT
6z =¢7 8r -e R 8¢ + 8B, - (12)

R is the skew-symmetric matrix form of vector r and 8¢ is the

vector form of skew-symmetric 8¥ . Note that & cannot be separated
from 8¢ in the context used.




The H matrix for pseudo-range measurements only but referred
to the GPS antenna phase center 1s given by

dr, 3¢ 3B,
621 elT -eT R 1
—lT _ln=An
dz,| er -eT R 1 (13)
—2n —2n=pn
T _aT
SZR_ & gknim 1 |

If, instead of bringing the H matrix to the antenna phase
center, had we derived an H matrix based on the antenna phase
center coinciding with the reference point, that is R = 0O (but still

using measurement residuals based on antenna-lever-arm
corrections), the resultirg H matrix would show no coupling between
the residuals and 99 . By eliminating this noncoupled term, we
have
or OB,
_ -
8zl e’I‘ l T
—1n
82. | e, 1 (14)
T
82}: L g'm 1 i

which 1s tbe wusual H matrix encountered when pseudo-range
measurements are presented to a Kalman filter implemented in ECEF.

The more general H matrix of (13) appears to have promise for
observability for attitude but would require a 1l: ge offset
distance of the antenna phase center from the reference point of
estimated quantities to overcome the noise in the GPS receiver code
loops. Common sense dictates that, with a single antenna,
regardless of the number of GPS satellites for which pseudo-range
measurement are made at the same time, full det~rmination would not
be possible without prior information from other measurement times.
The H matrix will not be of full rank for a single antenna scheme.
In particular, three separate times of measurement with the offset
antenna occupying three different noncollinear positions are
required for full attitude observability, i.e., ensure full rank of
(13). If we constrain the attitude variability of the free-falling
host vehicle to spin about a known inertially stable axis, then

! Remember that suppression of superscripts for vectors

applies only to X,.




only two measurement times with noncoincident antenna positions
should be required for full observability. With multiple antennas
(not considered here), unique or overdetermination at a single
measurement time is certainly possible.

2.3 Delta-Range Measurements

With respect to the pseudo-range measurement residuals, we
have a first order approximation to a spatial difference process
(which involves difference with respect to a nominal trajectory).
Proceeding onward to include delta-range measurements, we now seek
the spatial difference process of a temporal difference process.
We will maintain a first order approximation to the spatial

difference part in order to use a linear Kalman filter. The
temporal difference will be 1initially given a first order
approximation. Later, a second order approximation will be
examined to see what additional terms (preferably involving
existing error states) have coupling to the delta range
measurements.

Taking the time differential of the pseudo-range measurement
residual we have

d(dz;) =d(e]dr )~ d(e] R 8¢) +d(dB,), (15)

and on expanding,

d(6z,) = deT 8r + er 8r ) 16
deT R ;q eT )gq-g_;ngmd(gg) + d(dB,) (16)
By linearity we can exchange d(-) and d(-) for all except 00

which, as previously noted, 1is not separable with any proper
meaning. For 8¢ we must return to the defining relations. From
(7) and (8), on considering the temporal behavior we have

8g:=c38=}'bn, Jpr =g -1

Hafb=co(cr-nIgr =0 -1 (17)
D(JY) = (Dg:)_c_bn + C(DC) = (DCe) CF + C° (DCH™)
DBY) =@ +Q O -Q -9 -Q =30

=== =ab =Hn, a =ab =3, bn =ab ==a, bn =ap *
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Q 1is the skew-symmetric matrix form of angular velocity of the

AL
host-vehicle frame with respect to the selected convenient
reference frame. The corresponding vector form 1is

D(8¢9) =@, -0 = dw

—a,bn —_—l

a(8¢) = dw_dt ,

which is the mathematical statement of the fact that the rate of
attitude error is equal to the angular velocity error.

It is to be noted here that § is separated from w,, as angular
velocity 1s a vector quantity without further qualification. The
relations of (18) are intuitively obvious but we have been careful
to preserve formality. Since our focus will be on resolution of
0w,, into gyro error states it is noted that if we take X, to be
the actual frame and not "what we think it 1s" irrespective of our
selection for X,, then

Sgab = Qab— (—l-)d,bn = (an + Qn‘) - (-(211 * 91,11!’:)
(19)
8—“-)ab = Qm - g—)x,bn = 8(_1)‘.1\ °
From (16) and (19) we now have
8(dzj) = (de” )dxr + e (dv )dt
—3n —u -—in —u
- T AT
(def)R 8¢ - e (dR )8¢ (20)
-e"R (6w )dt + Of dt,
—n==spn =——ib

or 0B
where we have used dr = ?_E“.dt = v dt and dB, = ?_t’idt - f dt

‘ Resolution into gyro error states does not imply that these
error states will be observable.

° v, is the velocity of the user relative to the center of
Earth as determined by a X, fixed observer. v, 1s denoted here as
terrestrial velocity when X, = X ,,and v, is denoted as inertial
velocity when X, = £,. For X, = £, a local level frame, v, is much
less useful. We proceed, however, along this path and make
adjustments later for expression in terms of terrestrial velocity
regardless of the selection for Z,.
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Using the Theorem of Mean Value for integration and
taking ﬁguandlég to be constant over the interval (t -T,t.), the
DR measurement residual is given by

[ 8taz) =3[ " az, = U‘ deT )sr +en [ by ar
¢, -T - t,-T t, -7 —inj =—u —inr -7 ——u
_ t, T _ T ti 21
[ oeifeute - <o [ om) e a
T G T,

-eTR dw dt +f o6f dt ,

—in=pn Jp g —lb v-r
where the other terms not 1ncluded within the integration are

evaluated at some undetermined time within this time interval. On
performing this integration as far as we can yields

6(Az;) = Ae’ dr + g?nft' dv dt
t,-T =

-(Ael.E,, * &5, AR, )80 (22)

Ll tl
—e" R S dt +f 8f_dt .
—in==anJy v TP t,-T

We arrive at a first order approximation to the temporal
difference part if we consider the navigation reference point, the

local clock, and attitude changes to be temporally "well behaved®
so that &

v .80 , and 8f, are regarded to constant over (t,-T, t,)
Then
d(Az;) = Ae? 6r + e’ Tdv
- T T
(AeTR + el AR ) 8¢ (23)
-’ TR dw + TOf,

-3n =ar =1

12




or, more specifically,
d(Az,(t,)) = Ag’ (£) 8z (t) + e (t)) Ty

u i -_in v -_—

-(Ael ()R (ty) +gT(pJA§M(tJ)§g(p) (24)

n

-e” (t,) TR, (t,) Sgib(t,_) + TOf, (t,),

—In

where t - T <t ,t ., t_,t,,t,<t,.

Incorporating both pseudo-range and delta-range residuals, the
resulting H matrix 1is

8r, dv, 8¢ S, 8B,  Bf,
8z, [ e 0T —eT QF 1 0 ]
—1n -— —Iln==pn b
oz, e’ 0T -e"R 07 1 0
2n - —ln==pn -_
8z ' ' ' ' (25)
| e o e, L
8 (Az,) AeT eTT -(Ae’R +eTAR ) -eT TR 0 T
—1In —in —lrs==a, ==In ==pn =ln ==pn
8(Az,)| AeT e'T -(Ae’R +e’AR ) -e'TR 0 T
2n —in —lre=mpn 2N SR —ln &==|pAn
3(Az,)| d&.. &,T -~(Ae R +efAR ) - TR O T

If, instead of bringing the H matrix to the antenna phase center,
had we derived an H matrix based on the antenna phase center

coinciding with the reference point, that is gmig (but still by

using measurement residuals based on antenna-lever-arm
corrections), the resulting H matrix would show no coupling between
the residuals 8¢ and dw,6 . By eliminating these noncoupled terms,
we have

13




821 [ e’ 07 1 0 )
S5z, e’ 0- 1 0

2 -_—tn

dz, [ eT 0T 1 0 (26)
d(Az))

>

]
RSS!
| |
) )
3 =
H 3
o [am]

5 (Azz) A§2n —Z.:n

8(Az,)| e, -&,T 0 T [

which is the usual H matrix encountered when both pseudo-range and
delta-range measurements are presented to a Kalman filter
implemented in ECEF.

As indicated earlier, when X, = X we generally want the
terrestrial velocity of the user rather than the velocity as
perceived by an observer fixed to X.,. In coordinate free form and
considering only temporal variation, we define the terrestrial
velocity as

DY, =V- (27)
By the theorem of Coriolis,
De?u = Da}.U + —ea X -I_-U
_ _ _ (28)
= Deru - ea X ru !
or, 1in matrix form
Dr =C3(Dr®) -Q ¢
=u = —u = —u (29)
v =v-QQr
-—u o =T s B

Since we take X, to be the actual frame (X, does not have a
nominal counterpart in this analysis), we have

dv =8y -Q 8r | (30)
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Using terrestrial velocity v, (23) becomes

S(Az,) = (AeT -e" TQ )Ydr + eT Tdv
2 —_—in =N mRea —_ -—in _ (31)
- (A§?w5~ ‘+§nA§A )—8& B g:‘rn Tim‘ 691‘:‘ M TSfU *

To a first order Agj—ejﬂfl =(C3Ae;)f which is the temporal change
n =—in =mey =

in the satellite unit vector as perceived by an Earth fixed
observer and expressed in ZX,.

We then have as defining the observation matrix H,

dr, dv S dw . OB, Of,
O R TR or 1 0 ]
Bz, et 0~ -e" R 07 1 0
<N bt —"BA —
dz, e’ or e R o 1 0 (32}
8(Az,)|(CAef )T ] T -(Ae’R +e"AR ) -e’TR 1 T
= “ln ==1ln “=lre=pn, =—l1n ==pp —in =pn
5 (Az2 ) (‘g:A‘?‘;ﬂ) T g‘;rnT - (Ag;’rrém +§§nA§An) -gznTiA, O T
a e T T - T T -aT
5(az,)(Eh8)T 8, T ~(Ae R +&AR ) e[ TR 0 T |

If we model dw  to consist only of gyro bias 8w and scale
factor® dw

P a b a b b
dw = C} dup + C Wlwy (33)

* Thus far we have structured the error state elements to be
partitioned into 3d vectors and we will continue to do so here for
convenience. One may want to model only the x component of scale
factor or only certain g-sensitive terms or the like.

15




where we note the underlin:ng =@ dw and dw to ke single vector

quantities and not 8(:) and e

wb= (34)

e

—ibz

Using terrestrial velocity, we then have for the delta range
part

0(Az ) = (Ae’ -e° TQ 18r  + 2’ Tdv
-(Ag' R +e’ AR 180 (35)
-e" TR C*dw -e"TR C*W oW + TOf .
_—r e, .y —_— = am —— ‘

The H matrix of expanded column dimensiocnality would then be
constructed with these additional terms.

2.4 Higher Order Terms

Up to this point, we have uzed only a first order
approximation to the temporal difference process A(*). A first
order approximation is, of course, used for the spatial difference
process 8(- ), to obtain a linear form for the Kalman filter. While

we retain the first order approximation to the spatial difference
process, we here briefly investigate whether other coupling terms
may arise from a higher order approximation to the temporal
difference part.
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Repeating (22)°7,

d(Az;) = Ae! 6r + €T fl' ov dt
—jn =u L

—jn==an -3jn ==An

~[Ae” R+ e" AR )80 (22)
( )

t\ [l
-eT R ow dt + f
—ib ¢

—in==anJ¢ -1

of dt .
T

:

In taking O&v,, d8w,, and 8f, to be constant over (t,-T, t;) to
arrive at (23) 1s tantamount to approximating each of these
functions of time by the first term of a Taylor series expansion
about t,. We now look at additional terms.

Considering only temporal variation, a Taylor series expansiocn

of 8V, about t;, and by interchanging & and time differentiation
yvields

0

Relating to coordinate free form,

2 — 2 - =
Dv ¢—D.r, = Dir, - ® x(w,xr,) - 20, ,xD,r,
Daru = Deru - mdex ru = VU (37)
a a DT , vV = DI,

a is the inertial acceleration and vV , as previously noted,

is the terrestrial velocity.

4
=

It will be more convenient to 1initially use v, 1in this
development rather than terrestrial velocity v and then make the
adjustments. We seek to arrive at an acceleration error state that
may be related to existing accelerometer error state elements of
the state vector.
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We then have

o (Dv ) =8(a -QQr -2Q (v -Qr ))
—u - == g U =i — =ea—y (38)
=02 - 22 8y - (@& -2 1 )or,
By using (30), (36), and (38) we have
dv (t) =dvi(t,) -Q dr (t,)

3 e o , (39)

+(t-t;) [ba(t,)-2Q dv(t,)-( -2Q Q )dr (t,)],

and
v (t) = - [g_z +(t-t) (@ 'Zgi&a)]aﬁu(ti)

(10)

+ [;-2 (t-t,)Q ]Sz(ti)
+(t_ti) Sg(tl) .

We then have the second order approximation for the integral
[ svac - —[Q T-(QF -2Q Q ) T“]Sr‘ (t.)

-7 T4 ==ea =i B a™Tea T —u
T2
2

(41)
+(IT +¥_3T2)8X(ti) da(t)).

In coordinate free form,

3=DF =f +G

u

or, in matrix form, the corresponding errors are
da = 8f + 8G,

where f° is the specific force vector which is measured by the
accelerometers and G is the gravitation vector. As O8G i3 not
modeled here, we delete this term. If we take 08w, and df, tu be
constant over (t;,-T, t;, ), from (22) and (41]) we have
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8(Az) ) = {AeT -eT [ T-( -2Q Q ) T'}}Sr_

_in =|in==., =.ia =1 a—ae T
+e;, (LT+Q T dy
-{AeTR + EZ‘I.AR:‘. )0 (42)

—)r=p; =y

Though not pursued further here, 90f° is expressible in terms
of accelerometer error states such as bias, scale factor,
misalignments, etc.

A similar approach could be taken with regard to 8w,, not
making the assumption that it is constant over (t,-T,t;). However,
an angular acceleration error state would result that 1is not
mcdeled. Moreover, if it were modeled, an issue arises on the time
propagation of the corresponding total state because we do not
generally incorporate corresponding sensors that would aid its
propagation in a high dynamic environment.

2.5 Comparison To Standard Attitude Measurement Techniques

Although a comparison to an exhaustive list of other GPS-based
attitude determination methods is beyond the scope of this report,
a quick comparison of the method described in this report to
"interferometric" attitude determination methods (Van Graas &
Braasch, 1991-1992) may be useful at this point. We can construct
a configuration which affords a convenient general comparison
between the technique presented here and the more familiar attitude
measurement techniques. For purposes of comparison we take any two
noncoincident GPS antennas of the "standard" interferometric methcA
and the set of their phase differences for each of four GPS
satellites to comprise a spatial GPS Interferometer. A set of
delta-range measurements taken over the same time interval ior four
GPS satellites using a single antenna in effect provides a temporal
version of a GPS Interferometer as defined above. While more
restrictive than need be due to use of recursive estimation
techniques that preserve information by propagating it forward, the
typical implementation of a conventional five channel GPS receiver
having pseudo-range and delta-range measuvrements would, in fact,
conform to such a configuration.

A brief comparison between the technique described in this

report (denoted as "Delta-Range-Based method"! and standard GPS
interferometric methods is provided in table 1.
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Table 1.

Comparison of standard interferometric GPS-based attitude

measurement techniques to delta-range-based method.

Standard (Multiple Antennas)

Requires multiple antennas and
a specilal GPS receiver design.
No requirement on host-vehicle
motion relative to GPS
satellite constellation.

DR-Based (Single Antenna)

Requires only a single antenna
and a standard GPS receiver
having pseudo-range and delta-
range measurement capability.
Requires changing attitude of
host wvehicle relative to GPS
satellite constellation.
Integrated GPS/INS generally
needed for good performance.

Any two noncoincident antennas
recelving carriers of four
GPS satellites and the single
difference of their phases
constitute a spatial GPS
Interferometer.

Each set of DR measurements
for four GPS satellites using
a single antenna on ho<t
vehicle undergoing attitude
changes may be viewed as
const: uctng temporally a GPS
Interfercmeter having as
an-ennas the start and stop
ai.cenna locations. The
accumulated phases of the DR
nieasurement set are equivalent
to the set of differences of
received phases at the start
and stop antenna locations.

A minimum ~€ CwO nonpar- !lel
GPS Interferc ._ers (a minimum
of *hree non.. linear
antennas) 1s rcquired for
attitude Jetermination at any
ime.

A minimum of two nonparallel
equivalent GPS Interferometers
(two DR measurement sets)
required for attitude
determination with INS
propagation of information
over the DR time period.
Attitude is determined for end
of period and is propagated
forward by INS.

The satellite phase errors are
removed by the single spatial
difference in phase between
the two antennas of the GPS
Interferometer.

Removal of satellite phase
errors 1s inherent to each DR
measurement.




Standard (Multiple Antennas)

iguity resolution for
integer cycles must be
accomplished for the single

phase differences. Use of
redundancy, search procedures,
triple differences, etc., are
required.

DR-Based (Single Antenna)

Amb No ambiguities in each DR

measurement provided no loss
of carrier lock or cycle slip
in GPS receiver channel
associated with GPS satellite.

May require calibration and
compensation for antenna
induced error due to phase
pattern differences between
the two antennas constituting
the GPS Interferometer.

Fundamental phase change due
to attitude changes in single
antenna must be compensated
for. Antenna must also be
calibrated for phase pattern
anomalies.

Double difference (difference
between two independent single
differences) required to
remove receiver timing errors,
electrical path bias errors,
etc.

Use of single antenna and
standard DR measurement
obviate the need for double
differences.

Direct sclution of attitude
performed.

Recursive estimation (using
Kalman Filter) of attitude
errors relative to nominal
trajectory established by INS
and its corrections (resets)
is performed.
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3.0 STATE-SPACE FORMULATION
3.1 Introduction

In developing a measurement model, the method presented in
section 2 has taken a direct approach. The strength of such an
approach is that it has remained independent of any other analysis
and, thereby, has been exploratory 1in seeking coupling between
pseudo-range and delta-range measurement residuals and the error
states. The results for the pseudo-range residuals need no further
elaboration and are useful as derived. With regard to delta-range
residuals, however, a weakness is that it has not been establishcd
where certain terms in (22) need to be evaluated to be eguivalent
to (21). For example, when the time interval T over which the
temporal difference is taken is small such that the change in iﬁ is
small, the problem is minimal and any reasonable choice of
evaluation time will provide useful results. For greater
efficiency in coupling to the attitude errors, however, we wish to
maximize AR . The choice of where to best evaluate R, in the

. =a . .
interval (t;-T,t;) 1s uncertain.

In this section, we utilize a presumed existing dynamic model
to develop the temporal differences required for the delta-range
relations through backward transition matrices. The strength of
this approcach is that there is no uncertainty as to where to
evaluate the terms in the resulting relations. The weakness,
however, 1is that it depends on a previously developed dynamics
model and is subject to any inadequacies in this model. In
particular, uncertainty in the Dbackward time propagation
contributes to uncertainty in the measurement model.

3.2 Reference Frames

The previous approach required careful identification and
manipulation of representation in various reference frames. The
state-space formulation reqguires only minimal consideration. The
only assumption made with regard to reference frames for the error
state vector corresponding to the previously developed dynamics
matrix is that position errors and attitude errors are represented
in the same selected preferred reference frame. In this
development, position vectors and the skew-symmetric matrix
corresponding to the antenna-lever-arm position vector will also be
represented 1in this preferred reference frame. Otherwise, the
error state vector can mix and match reference frames, the only
requirement being consistency with the previously developed
dynamics model.
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3.3 State Eguations

The system model will be taken to be nonlinear but with
additive noise (Maybeck, 1979; Anderson & Moore, 1979). In
particular, the total state dynamic model is taken to be continuous
and given by*®

%(£) = £{x(t), ] + Gt )w(t) (43)

where w(t) 1s a zero-mean white Gaussian noise process. For the
purpose of either a linearized or extended Kalman filter, we assume
a nominal trajectory of similar form

x (t) = £f[x (), t]. (44)

—r) — ey

The spatial difference process
dx(t) = x(t) - x (t) (45)

-—T

has the first order approximation

dx(t) = Eltix (£)18x(t)+ G(t)w(t), (46a)

where

f(x,
g[t;ﬁn(t)]a—a—_%z(;{_t)—l_xfﬁn(t).

(46Db)

In the case of an extended Kalman filter coupling a GPS
receiver with an IMU, the nominal trajectory is updated (reset)
following measurement update to the new total state estimate so
that the error state, now reset to zero, need not be propagated.
As indicated in the previous development, propagation of the total
state 1s largely accomplished through use of IMU data.

The discrete time measurements are taken to be a nonlinear
function of the state with an additive white noise sequence.

z(t)) =hix(t),t ] +v(t)). (47)

1

Assoclated with the nominal trajectory is the sequence of nominal
measurements

z (t,) =hix (t,),t,]. (48)

—_—T1

° It is noted that (43) implies definition of "attitude total
states." Attitude total states are not usually defined. The
formalism in (43), however, conveniently leads to the definition of
attitude error states.
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The spatial difference process
8z (t,) =z(t)-z (t,) =hilx(t,),t] -hix (t,),t;]+v(t) (49)

n

has the first order approximation

dz (t,) = H[t;x (£)138x(t,) + v(t,), (50)
where
Hit,;x (t.)]a hix(e,).t ]]
i, i az X=x (t )
If we express
hr(dx(t,),x(t)t,] =hi{x(t)t,] - hix (t).t ], (51)

where we treat 8x as an independent variable, then

i[t:x (t] = — — '5:<=O' (52)

Further discussion and proof is given in Appendix A.

For this problem we can express

h,(x,t)) h ' (0x,x,t,
hix t)= [2EE) |ang ne (e, x,t,) = [P (ORE LD (53)
n,(x.t,) h,’ (8%, x,T,)
so that the jth row of H[t,;x (t,)] is given by
: dh,(x,t,) oh.’ (8x,x,t,)
Tre. s )] = — = L = ‘ >4
hJ [tllﬁnﬁ:l)] ——ax__'xtx() ﬂbﬁ) |8£=L,. ( )

3.4 Approach

The approach 1is to develop a spatial difference of the
temporal difference process over the time interval (t.-T, t,) for
the jth delta range (i.e., the delta range for the jth satellite).
The delta-range residuals are determined in terms of the geometry
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in figure 1. We then use a previously developed linearized
dynamics model to express error state terms having time arguments
of t,-T by the product of the backward transition matrix
(appropriately premultiplied by other matrices to 1solate the
required terms) and the error state vector having the time
argument t,. We then have a "row" of the measurement model
utilizing the argument 8x. We then apply the results of Appendix
A and (54) to obtain the corresponding row of the H matrix in the
perturbation model of (50).

3.5 Delta Range

From figure 1 we have the vector from the jth satellite to the
antenna phase center at any time t and represented in some
preferred frame X, as

r (t) =1 (t) + r_(t)-g;:(t)- (55)

The rf range R;(t) from the antenna phase center to the jth
satellite (or that from the jth satellite to the phase center as we
take range to be a positive value) must account for the range
equivalent user clock offset

R (t)=||£j(t)||+Bu(t). (56)

J
We also have nominal rf range corresponding to the nominal
trajectory
Ry, (€)= I, (£)]+ B, (t). (57)

For the rf range and nominal rf range at time t-T, we would have
the same forms as (56) and (57) but with arguments t-T.

The measured delta range as a discrete time process (at t)
and corrupted by measurement noise is’

ZDR](ti) = Rj(tx) - Rj(ti_T) + Vr.ﬁ::(t;) : (58)

7

Although (58) has the appearance of the difference of two
ranges, it must be remembered that the measurement is not obtained
as the difference of two pseudo-~range measurements but rather as a
receiver measure of the accumulated carrier phase (integrated
Doppler shift) from t -T to t,. In this regard, v...(t.) 1is the
discrete measurement noise process involving the effective carrier
tracking loop noise over the same interval.
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The nominal delta range corresponding to the nominal trajectory 1s
ZDF.j,r.(tz) =R t) - R;r:(tz-T) ° (59)

Jn(

The delta-range measurement residual discrete process 1s then

8z, (L)) Zpey (B1) = Zpogyn (E)) (60)

=R (t,) - R, (£,) ~[Ry(t,=T) = R (t,-T)] + vy (t,).

As for any time t

R, (t) = mgm(t)+£M(t)-£m(t)ﬂ+ B, (t) (61)
and as spatial difference processes using &(-)=(-)-(-),, are
dr (t) =xr (t)-r, (c
ér, (t) = r (t)-r, (t) (62)
OB, (t) = B (t)-B, (t),
we have
(63)
R (t) =z (£) -8r (r) +xr (t) -8r, (t) - ()]~ B (t) - OB, (t)

€) - 8z (t) - 8z, (t)]+ B,(t) - 8B, (t).

"
I~

Hence the delta range measurement residual discrete process for the
jth satellite is

6ZDR] (t1)=“£3 (tl) " -“.E.J(tl) —SEU(t) —S.I;A(tx) " +88u(t:)
-tz (e -l -0z, (£,-T) -8z (t,-T) -8z, (t,-T) | +8B, (¢t -T)}
(64)
+ Vg, (B

Taking the preferred reference frame X, to be a perfectly
known frame and the host vehicle body frame X, to be uncertain (X,

26




has no nominal counterpart but X, does, designated here as X,.)
we have

r (t) = C*(t)r! | (65)

Even though X, is uncertain, Eﬁ , the location of the antenna phase
center in the host vehicle frame, 1s taken to be known perfectly.

We then have

dr (t)=x (t)-x (t)=C(t)x} -

A -——ATri

(t)xre | (66)

C a
—p = —An

We also note that gg:corresponding to the nominal trajectory 1is

also perfectly known and, in fact, 1s equal to r; - The antenna
phase center for the nominal host frame has the same relative
location as the actual antenna phase center for the actual host
frame. Then in the process of defining the skew-symmetric matrix
of attitude error (the difference between ¥, and %,,),

(67)
dr, (t) =g ()P (£)C™(£)C* (t)xir(t)
=bn == =a n —An
=3 (t)x2 (r) = (o), (v)

Using the skew-symmetric form gk(t) for vector r (t), we have
from (11)

dr (t) = - R (£)d0(r),
0 -r,. (t) r, (t)
Asn . (68)
R = Fpn () 0 ~r,,. (t)
_r}\yr (t) rAxn (t) O
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We then have for the discrete time measurement residual process

R (£)06(t )| + &B (t)

=hn

8z, (t) = Iz ()l -0 (£)-8x (t )+

DR 1

—{llgj (6, ~T)f ~f (£,~T) -8z (t,-T) +R (£ -T)8¢(t -r)| +SB.J.<tA—T)}

|

+ Vg (E) . (69)

We define 3 x n matrices Em and K and row vector (1 x n matrix)
k! such that we can relate to the full error state vector at
measurement time t,.

dr (t,)= K dx(t

gp—
39(t,) =K Bx(c,) (70)
8B, (t,) = kI8x(t,)

At measurement time t,-T, we obtain the corresponding quantities
but using the backward transition matrix

dr (t,-T) =K [(b(t}—T,cl)Sx(cl) + wr(tl—T)}
U = — —T1
80 (t, -T) E‘[d)(ti—T,ti)Sﬁ(tl) +w (tl—T)] (71)

—
OB, (t -T) ﬁg[tb(tl-T,tl)ng_(tl) +ﬂr‘(t1-T)]'

where w,(t,-T) is the driven response at t,-T due to the presence of
the white noise in (43) during the backward interval from t, to
t,-T. w,(t -T), by virtue of the white noise in the continuous
mocdel, is a white noise sequence. It is here that uncertainty in
the dynamics model is introduced in the measurement model.
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The discrete delta-range measurement residual process 1s now

8z, (E) = lx () -II;J(tI)—[gb-R (t,)K]Sx(t_)u

r R (LK,
_{llf_](ti—T)N‘"£J(tl‘T)-[§p—R (tl-T)é’]Fl)(t)-T),t__)Sé(tl)ﬂ_ﬂ_:(t:_T)]"}
*-)5;{[i'ld’(ti'T'tl)]ﬁz(ti) +w (t.—T)}

i) (72)

Except for the noise introduced by uncertainty in the dynamics
model in the form of w,(t,-T), this is in the form given in
Appendix A

(73)

This form is obtained by boosting v, (t,) by an appropriace amount
and removing w;{(t.-T). In reality, this 1s accomplished by an
increase of the corresponding term in the measurement noise
covariance matrix.”

From Appendix A we have

oh,’ {dx,x,t,

)
TTo%) | geee O (L) + v (t) +hoo.t., (74)

where

dh.’ (dx,x,t ) . _ .
— =~ =" =hT™(t,x (t)] ,is the jth row of the
Idx) = S

observation matrix.

S

It 1s to be noted that w.(t,-T) has the argument t,-T. The
measurement noilse covariance matrix, which needs to be modified,
however, has the argument t,. This added noise contribution does
not correspond to any physical noise process in the GPS receiver
but reflects additional uncertainty in the adequacy of the
resulting measurement model introduced by using the assumed
dynamics model in the development of the measurement model.
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Noting that Mgﬁ(t))ﬂ and ng(tl—T)u are not functions of 8x and

taking w,(t,~-T)=0 (by accounting for this additional uncertainty in
measurement noise covariance matrix),

o dlr (t)-[K -R (t)K 13|
= [tllhn(tl] - d(bﬁ) ‘8£=V_>
dlr (£, -T)-K ~-R (t,-T)K )d(t,-T,t,) x|
+ -] =p ==xan =y = —_— | )
I (0%) el
OkTIL - B(t,-T,t,)]8x (75)
+ =B =™nxn = -
J(0x) Sx=l
By using the results of Appendix B, and since for
dx=0,x=x_and r=r,
r’ (t)[K-R (t)K]
hTu[tl;X (t\)] = — 7 =p ==An =
= - hr, (e ]
T - - - -
_ggn(ti TW[E;‘ ﬁm(ti qw;;)gyti T,t.) (76)
“Ejnﬁi_T)"
+kI(I -P(t,-T,t)]
=5 =|mnxn b ¢
r’ (t) .
As, = e’ (t)
|£%(t)| -
h™{t;x (t;)] =eT (t,)[K-R (t,)K]
3 n —in =, =]aqn =4
-e"(t, -T)[K -R (t,-T)K ]P(t,-T,t,) (77)
-—]Jn =y =An 4 0 =
+kII -®(t,-T,t)].
=5 = xn =

If we approximate the backward transition matrix by the first
order form

®(t -T,t) =1 -FElt;x (£)]T, (78)

i
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then

h™ [t,;x (£)] = &7 (t, )[K - R (£)K]

-3 N —3n =y
—e,T(tl-T)[K-R (t,-T)KIJ[I -F[t,;x (£)]]T (79)
=in w==r -=p =4 == =
+kIF(t,ix (£,)]T.

The 3xn matrices K and K and the row vector kT that extract

the position error, attltude error and user clock error from the
full error state vector necessarily depend on how the full error
state vector is constructed but are readily derived.

Rearranging (79), we have for the row corresponding to the
delta-range measurement residual for the jth satellite

hivleix (e)] =[ef (t,)-el (£;- T)]K
n =p
-[.e_;rn(t1)im(t1)—g§n(t1_ T)i‘;\n(tl— T) ]g‘
e (t,- TIK Elt,ix (£,)]T (80)
== -n
—e7 (t,- TIR, (t,- TIRE[t;ix (£,)]T
+_].(.;=[ti;§n(tj)]T-

The best way to compare this method to the first method is to
see how the error state vector 1is coupled to a delta-range
measurement residual, by using X, = ECEF as an example, we briefly
examine the effect of each of the five terms of (80) for the

product h"T[t X ;) 1dx(t,). We then compare with that which would
be obtain u51ng a row of (25) that corresponds to a delta range
measurement residual. To obtain some of the terms in (80), of

course, we must have a dynamics matrix.

For the first term of (80) we have

T _aT - T -aT -
(el (t)) e (t, T)]gpﬁﬁ(ti) (el (t;)-e] (t;- T)]dL (t)) (81)
Ae” (t,)dr (t,)

The result is identical to that for the corresponding term in (25).
In this case there is no problem as to which time to evaluate any
part.
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For the second term of (80) the result is the same as for the
corresponding term in (25) except here the time of evaluation 1is
quite clear.

—[e_T (t )R (t,)-eT (t,~ TIR (t, - T)]Ka (t))
—in =pn ~jn =an -y =
= —[e,T (t )R (t))-eT (t,- )R (t,- T)[8¢(t))
—in =an —3n ==an 1
= - {_e_jn(t ) -5 (t,- TR () +e] (t, T)[R (t;)-R M(tx-T)]}QQ(tl)
= - [AeT (Lt )R (t,) + eT t.-T) AR (t,)
[aer, ¢ J,. ( ) ( v 8o () 82)
The third term of (80) requires the dynamics matrix. The
needed terms in g}ti;zm(ti)] are simply understood in that the time

derivative of position errors is equal to the velocity errors for
the frame under consideration. Again, we have the same results as
the corresponding term in (25) except here the time of evaluation
1s given.

el (t,- T)K Elt;ix (t;)1T8x(t;) =g (t;- T)T8y (t;). (83)

_—

“ii

The fourth term of (80) results in coupling to gyro related
errors that may be includea in 8x. If all of these errors were
lumped into a single angular velocity error of the body frame
relative to an inertial frame, it should be evident that the
results for (80) and (25) would be the same except again for the
time of evaluation being explicitly known here. In this case,

el (t;= T)R (t;- TVRE[t;x (£)]1T—>el (£~ TIR (t;- T) T6Q,, (84)
—3in ==An == -n

The last term of (80) yields results identical to those in
{(25), the part of the dynamics matrix required here being quite
simple in that the rate of change of user clock offset is equal to
the user clock drift.

KIE[t,;x (t,)]1T8x(t,) = TSE,. (85)

We have then compared the results of the second method to that
of the first (for a delta range measurement residual) when a first
order model is considered. Each case resulted in five terms (when
we lump all gyro errors into a single angular velocity error) and
the five terms have been shown to be equal except that the time of
evaluation 1is quite clear for the second method. This overcomes

32




the major weakness in the first anproach. The second method, as
previously noted, 1ncreases uncertainty in the measurement model
for any inadequacies in the dynamics model used. FE._h methods may
be extended beyond a first order model.

The mathematical development for the second method has been
somewhat more concise than that for the initial method. We have
been able to keep track of time arguments, making a clear
distir«tion between the continuous argument "t" and discrete
measurement times "t,". In addition, those quantities evaluated
"on the nominal trajectory" have been identifis<d and tracked
throughout this development.
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4.0 SIMPLIFIED ANALYSIS OF THE DELTA-RANGE MEASUREMENT FOR A
SPINNING BODY

4.1 Introduction

This section provides a mathematical analysis of attitude
estimation addressing specifically a spinning body scenario. As a
result it facilitates gaining certain insights to and identifying
sensitivities in spinning body applications. The analysis 1is
limited to the case of an initial (constant) attitude error in a
rotating but not translating vehicle. The results reveal the
sensitivity to spin rate, DR integration time, lever arm length,
and orientation of the satellite. The results also include an
upper bound of the accuracy with which attitude errors can be
estimated.

4.2 Analysis Of Delta-Range Measurements

Neglecting the effects of clock bias, atmospheric delays, and
noise, the doppler shift of the incoming GPS signal 1is,
approximately,

2rnf.,. 4
T ¢ dt

Wiop, (€) Iz (el (86)

where f;; 1is the GPS signal carrier frequency, r; is the Line of
Sight (LOS) vector (see figure 1), ¢ is the speed of light, and the

double lines denote magnitude of a vector quantity.

The delta-range measurement is physically obtained by sensing
and integrating the doppler shift in (86) over an interval of time
T.

ty

Zog, (£1) = 5=o— [ e, (v)d1 . (87)
ty-T

2nfar

Using (86) and the fundamental theorem of calculus in (87) we
obtain

t:l
c f 2nf. 4
2L, J. C dat

Zp (E)) Iz (v)lldr

(88)

Tx el -z (e,-T) ).

Without loss of generality we can assume an inertial frame XYZ
as shown in figure 2. For simplicity we assume no motion other
thar a constant spin ® about the Y-axis. Suppose the antenna 1s
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initially located on the X-axis. Then, the lever-arm vector xr, is
represented in the XYZ frame by

L cos(wt )
r (t,) = 0 ' (89)
L sin(mt;)

where L 1s the magnitude (length) of xr,. The Line of Sight (LOS)
range vector from the j-th satellite to the antenna at time t, is
given by (see Figure 1)

r (e =x (g +x (). (90)

In practice, T is sufficiently small so that in the interval
(ty, t;-T) the vector r. can be considered a constant, i.e., we can
neglect the effect of satellite motion.

For the purpose of this analysis, let us consider the LOS
vector as a function of the continuous time variable t as opposed
to the discrete time t;. Then

Iz cerl = [lrg,+Leoswt)® + (r.,-0) (91)
+ (rqz+Lsinmt)ﬂ1“.
Then
da [(r.,+Lcosmt) (-Lwsinwt) + (r_.+Lsinmt) (Locosmt) ]
le (e)l = 2 2 .
ae izl (92)

Typically, the lever arm-length L 1is small compared to
distance between the vehicle and a GPS satellite. Then

|r] >> |L coswt] (93)

>> |L sinwt] . (94)

| r

csz

Since L is assumed to be small, by taking
Tz, (e =zl (95)

—_—cj
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for any time t and neglecting terms in L, (92) reduces to

d
dat

-r_,Lwsinmt + r. Locoswt

Lw [-e_  sinwt + e  coswt],

L}

Iz (el

where e, and e, , are the X and Z components of a unit vector e., in

<

the direction of r ;. Then from (86)

2mf,,

w Lo [-e,sinmt + e _.coswt]. (97)

porj (€)

From (97), we conclude that the doppler shift is sinusoidal in
time. The doppler shift zero crossings occur whenever

tan (wt) =.§25 , (98)

cix

i.e., whenever the antenna crosses the projection of r., onto the
X~-Z plane (indicated as line aa’ in figure 2).

From (87) and (97) we obtain

Zoes (£) = 2L sin(_w;) [—ecjxsin((ot—%rr_) . ecjzcos(cot—%z)], (99)

(99) can also be written in terms of the inner product between
the vectors e.; and u where

—_—

.~ -

-sin(wt-
{100)

The vector u is orthogonal to the vector denoting the antenna
location at the midpoint of the delta-range integration; i.e., u is
orthogonal to

Therefore, for a constant rotation rate W, u is parallel to
the vector Ar,, which denotes the difference in antenna location at
the start and end of the delta-range integration.
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Lcos((nt—_(%?)1 o,
T
t- = 0
r(t-=) e
Lsin{mwt-
‘51n( TT)J
Ar,(t) =z (t) - xr (£-T). (102)
Thus (99) can be rewritten as
Zor; (£) = 2L sin (&) cos(ale, Az, (c)]), (103)
where afe.;, Ar,(t)] is the angle between the unit vector e, and
Ar,. As indicated, this angle is a function of e, and Ar,(t).
The following observations can now be made:
1) From (99), the delta-range measurement 1s sinusoidal in

time. The delta-range measurement zero crossings occur whenever

) = ZJ , (104)

cix

tan(w{t -

i.e., whenever the angle swept by the antenna lever arm during the
integration time T is symmetrically distributed about the line aa“‘.
This condition is illustrated in figure 3a.

2) Setting the time derivative of (99) equal to zero we
conclude that the peak values of the delta-range measurement occur
whenever

Tyy = - Sox (105)

tan(w(t—z. =

cjz

1.e., whenever the angle swept by the antenna lever arm during the
integration time T is symmetrically distributed about the line bb’
which is orthogonal to the projection of r., on the X-Z plane. This
condition 1is illustrated in figure 3b.
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a '

a) Zero DR measurement and peak attitude error
observability

b) Peak DR measurement and zero attitude error
observability

Figure 3. Illustration of conditions for zero and peak delta-range
measurement and attitude error observability.
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3) From (103) we conclude that the maximum peak value of the
delta-range measurement 1is 2L, This value 1s obtained when the
vectors e., and Ar, are parallel and the antenna rotates 180 degrees
starting and ending on the line aa’. On the other hand, the delta-
range measurement 1s zero if the vectors e, and Ar, are orthogonal.

4.3 Analysis Of Attitude Error Observability

In this paragraph we investigate the observability afforded to
attitude errors by the delta-range measurement. Attitude errors
are directly observable whenever the corresponding entries in the
observation matrix H are non zero - i.e., the entries in column 08¢
of (32). For "good" observability, these entries should be as
large as possible so that the contribution of attitude errors to
the DR residual is significant.

We now return to a discrete time formulation. From (32}, the
attitude error 8¢ is related to the delta-range residual for the j-
th satellite via

H = —-(Ae" R + e AR ). (106)

—18¢ —jn==an —in ==an

For our choice of reference frame and short periods of time
the change in the unit vector g,, is small so, we can assume that
Ae,, is approximately zero. Then (106) reduces to

m

H_ , = -e” AR (107)

—ide —in ==mpp *

The contribution of the attitude error 06¢ to the DR
measurement residual is obtained by multiplying both sides of (106)

by 8¢.

H;,00 = -e] AR 80 (108)
-e"AR 80 & -]+ {[T,(t,) - T,(t -T)]x8¢) (109)

or
g?:‘AgA,.QQH -ey - {[AT,(T)]x 30 ). (110)

From (110), we conclude that the contribution of the attitude
error 8¢ to the delta-range residual is maximum when the vectors
€., Ar,, and 8¢ are mutually orthogonal. The contribution is zero

1f any two are in the same plane.
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From figure 2 we conclude that the skew-symmetric matrix R,

is
0 -Lsinwt 0
R =lrLsin(:utl 0 -Lcoswt | . (111)
- l_ 0 Lcoswt | 0 |
Then
0 -L(sinwt, -sinw(t,-T)) 0
AR = |-sym 0 ~L(coswt,-cosw(t -T)) fllZ)
" 0 -sym 0

where "sym" denotes an entry equal to the symmetric entry in the
matrix. Using trigonometric identities (112) reduces to

0 -2Lsin_w;.cosw(tx-%‘.) 0 3

= . (113)
Aﬁm " [~sym 0 2Lsin%r_sin0)(tl-.§)
Y -sym 0 .J

Since we have assumed that L is small compared to r,, ., is
approximately equal to g;. Finally, assuming we are only interested
in the y-component of the attitude error, we obtain from (107),

wT T T

h - vl =

see, = 2L sin(—) [e.,cosw(t -) + e sinw(t --)]. (114)

cix

From (114) we conclude that hg,, is zero if any of the following
three conditions occur:

L=0, (115)
=Nt (N=0,1,2,...), (116)
emxcos(uxw—f%z) + eﬂ:sin(mti—f%g) =0. (117)

41




Obviously, the condition in (115%) can occur if and only 1if the
lever arm is zero. The condition in (116) can occur if there is no
rotation or if the rotation rate is such that a multiple of 360
degrees 1is swept during the delta-range integration time T.

The condition in (117) can occur 1if
e =e..=0 (118)

or

y = -2 (119)

The condition in (118) occurs if the satellite is directly
above (or below) the vehicle; i.e., if the vector r. in figure 2
has only a Y component. The condition in (119) occurs if the angle
swept by the antenna lever arm during the delta-range integration
interval is symmetrically distributed about the line bb’ in the X-Z
plane - see Figure 3.

We can express (114) in terms of the inner product between g,
and the antenna location vector at the midpoint of the delta-range
integration, x,(t;-T/2).

hs = 2 sin(_(%r.r.) (&7 (tr-g”

—c] ==A

(120)

2 L sin(%r_)cos(ﬁ[gcj,_{f‘(tl-g) 1)y

where Ble.;, r,(t;-T/2)] is the angle between the unit vector e.. and
the antenna location vector xr,(t,-T/2).

From (120) we conclude that hy,, 1s sinusoidal and has a
maximum peak value of 2L. This value 1s obtained when the vectors
e.; and r,(t;-T/2) are parallel and the antenna rotates 180 degrees
starting and ending on line bb’. hy,, 1is zero if the vectors ge.,
and r,(t,-T/2) are orthogonal. It follows that maximum attitude
error observability is obtained when the DR measurement 1s at a

Zero crossing.
4.4 Attitude Estimation Error Bound
Suppose an Information Kalman Filter is used to estimate a

constant attitude error 8¢, using DR measurements. The variance of
the estimation error at t, is (Anderson & Moore, 1979)
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. . . "L N (TL)0
(O-epy (£)) 70 = (O (£ )+ 3 20 1, (121)
’ ’ = Ol

where o0, denotes the sigma value of the observation noise.

Numerical values for hg,, (t,) are required in order to evaluate
the sum in (121) Assuming that t, is sufficiently large, we can
assume that the sum can be evaluated using an average (and
therefore constant) value in place of hy, (t,); 1.e.,

£, h; ok A . :
) 00, (507 L (eny [BVI (s (122)
1=0 OBR GBR
Assuming that toc a sufficient approximation
Peak (h.;, )
Avg (hjs ) = — o (123)
(121) reduces to
5 . . Peak (h 5, )*
(O%esy (Ei) ) 71 = (075 (£5)) 7 + (k+1) o
’ ’ 407
R Peak (h.s, ) -
= (OPgpy (L))t e % (124)
’ 40:x
> Peak(hﬁ”)z.
4GéR

Using (120) in (124) and taking the square root of both sides
we obtain

0.550, ( tk) <

(125)

for t,>>0.

43




The following conclusions can be drawn:

1) The uncertainty in estimating attitude errors G, Wwith an
offset antenna 1s proportional to the delta-range measurement
noise, i.e., O,. (O, 1s inversely proportional to the SNR at the

input of the carrier tracking loop).

2) G5y 1S 1inversely proportional to the length of the
antenna lever arm L.

3) G5 15 minimized if the angle swept during the delta-
range integration is 180 degrees.

4) Oc5¢ 15 minimized if the satellite is in the plane defined
by the rotating antenna and the angle swept during the delta-range
integration is symmetrically distributed about the vector r_,.

We note that (125) is only a bound. As a result, 1t is not
very useful in determining the uncertainty in the attitude
estimates exactly. It 1is, however, useful in evaluating the
sensitivity of the uncertainty to L and ®WT. To 1illustrate this,
let Yy be a factor such that strict equality is achieved in (125)
for some L,, ®,, and T,; 1i.e.,

6., (t,;L,,0,T) = Y Ou
ede,  riPorWosto .1, (126)
LOS1n(_7r_) cosP.
Then, for different L, @, and T we have
o, T
sin(—2°%)
Oegp, (LyiL @, T) = 2 ———(;T—z Ocse, (Cyi Lo @, Tg) . (127)
sin
(TT)

For example, increasing the lever arm from L = 5 inches to 20
inches, reduces the steady state attitude error bound by a factor
of 4. On the other hand, with @, = ® = 450 deg/sec, increasing the
DR integration time from T = 0.78 sec to T = 1.0 sec, reduces the
steady state attitude error bound by a factor of 9.
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5.0 SIMULATION RESULTS
5.1 Introduction

This section provides covariance simulation analysis for a
spinning body by using the more general results of section 3. The
simulation scenario consists of a vehicle falling freely in an
exoatmospheric trajectory. The results illustrate the ability of
estimating attitude and attitude rate errors with an offset
antenna. The sensitivity to the lever arm length and the spin rate
were also investigated. To an approximation, the scenario here
resembles the conditions assumed in the analysis of section 4.
Consequently, the insights gained in section 4 carry over to the
more realistic conditions of this section.

5.2 Scenario Description

We consider a vehicle spinning about its Y, (body frame) axis
at a constant roll rate of o deg/sec. The vehicle is assumed to be
equipped with a tightly integrated GPS/Inertial navigator mounted
along the Y, axis and near the vehicle’'s center of gravity. The
GPS antenna 1is mounted on the perimeter of the vehicle at a
distance L from the Y, axis. The antenna therefore rotates at the
vehicle spin rate . The vehicle moves along an exoatmospheric
trajectory. The vehicle’s altitude profile versus time is shown in
figure 4.

Assuming a Y, gyro scale factor error of 50 ppm, a spin rate
of 450 deg/sec, and a scenario duration of 1,400 sec, an attitude
error about the Y, axis of 31.5 degrees 1is expected. The main
objective of the simulations is to demonstrate the ability to
estimate this attitude error by using the approach discussed in
this report.

5.3 Simulation Program Description

The simulations were performed with Galaxy’s Covariance
Analysis Package (CAP) which is shown in figure 5. CAP includes a

trajectory generator program (TRAGEN), a covariance analysis
program (GGPSIM), a sensitivity analysis program (SENSIS), and
various data reduction and plotting software packages. A short

description of these programs 1is 1included in the following
paragraphs.
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Figure 4. Altitude vs. time.
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Figure 5. Covariance analysis package (CAP) block diagram.
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5.3.1 Trajectory Generator (TRAGEN) Description

TRAGEN is a 6 Degree of Freedom (DOF), free falling body
trajectory generator.

5.3.2 Covariance Simulator (GGPSIM) Description

GGPSIM 1s a covariance simulation program of & tightly
integrated GPS/Inertial navigatoir. A top level block diagram 1is
shown in figure 6.

GGPSIM contains a “"truth" and a "filter" covariance model.
The truth model represents all ervors that would affect the
navigator. The truth model consists of the 80 errors listed in
table 2. Collectively, these errors comprise the true error state
of the navigator. The "filter" model consists of a subset of the

errors 1in the true error state. These errors comprise the
navigator’s Kalman Filter state vector, i.e., they represent the
system’s perception of the errors in the real world. The errors

that are typically included in the filter state vector are the ones
that can be unambiguously estimated {i.e., ai~ fully observable)
through GPS measurements. The maximum number of such states 1in
GGPSIM is 56 and are listed in table 2. In practice, the number of
errors included in the filter state vector is further limited due
to processing constraints. GGPSIM allows the user to arbitrarily
select the states in the filter. This feature allows analysis of
any conceivable GGP Kalman Filter configuration

GGPSIM is initialized with the covariance of the 80-element

true error state and the covariance of the filter state. These
covariances constitute the true ana GGP Kalman Filter ‘"error
budget". The truth and filter covariances are propagated forward
in time according to the vehicle’s trajectory until a set of GPS
measurements is obtained. GGPSIM simulates a maximum of 10 GPS
channels, supplying the filter with 9 pairs of pseudorange and
delta-range measurements. (It 1s assumed that one channel 1s used
for simultaneous ionospheric delay measurements, and to aid 1in
acquisition.) Therefore, for the 10-channel receiver, only nine
channels provide pseudorange and delta range measurements). The 10

satellites are selected according to first come first cerved from
all in view. GGPSIM also allows simulation with a 5 channel GFS
receiver (4 pairs of pseudorange and delta range measurements). In
this case the satellites are selected according to GDOP. The
measurements are computed from a 24 GPS Satellite Constellation
model which is integrated with GGPSIM.

The measurements are processed with a Kalman Filter which
updates the filter covariance at 1 Hz with Carlson’s algorithm
(Anderson & Mooie, 1979; Pitman, 1962). The computed Kalman t'ilter
gains aie used in configuring (through augmentation) thz2 gain for
the truth model.
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Table 2. GGPSIM true and filter error states.

STATE DESCRIPTION TRUTH | FILTER(*)
MODEL _
Position Errors 3 3
Velocity Errors 3 3
. IMU Attitude Errors 3 3
Gravity Deflections and Anomalies 3 3
| Gyro Drift Rates 3 3
" Gyro Input Axis G-Sensitivities 3 3
"_Gyro Spin Axis G-Sensitivities 3 3
“_Gyro Output-Axis G? Sensitivities 3 3
Gyro Scale Factor Errors 6 6
Gyro Input Axes Misalignments 6 6
Accelerometer Biases 3 3
Accelerometer Scale Factor Errors 3 3
'LAccelerometer Input Axes Misalignments 6 6
n Altitude Sensor Error 1 1
Clock Errors:
Phase Error 1 1
Frequency Error 1 1
Aging Error 1 1
Random Frequency Error 1 1
Acceleration Sensitivities 3 3
Satellite Ephemeris and Clock Residual Ranging 24 0
Errors
" TOTAL NUMBER OF STATES 80 56

™ Maximum Number of States




The truth model’s covariance is updated with the Joseph form. The
covariances are then propagated forward in time using trajectory
data until the next set of GPS measurements 1s obtained.

Two GGPSIM features are worth noting. First, the filter gains
are computed using only the filter covariance elements. This
feature enables GGPSIM to simulate realizable Kalman Filters.
Second, GGPSIM automatically adjusts the filter input noise process
covariance (typically denoted by Q) to account for the true error
states that were not included in the [ilter state. This feature
enables GGPSIM to simulate fine-tuned filters.

5.3.3 Sensitivity Analysis Program (SENSIS)

SENSIS is a simulation data post processing program that
identifies the sensitivity and correlation of navigation errors

(e.g., position errors, velocity errors, etc.) to inertial system
errors {(e.g., 1initial errors, alignment errors, biases, noise
processes, etc.). In this analysis, SENSIS was used to identify

correlations of attitude and attitude rate errors to other
navigation errors.

5.4 Simulation Conditions And Assumptions

This paragraph describes the conditions, parameter values, and
assumptions used in the simulations. The error budget for the GPS
and the inertial errors is shown in table 3. These values are
typical of advanced GPS receiver designs and navigation grade
inertial components.

A short description and rationale for these conditions is
given in the following paragraphs.

5.4.1 IMU Error Budget

A strapdown IMU with Fiber Optic Gyros (FOG) was assumed.
Since FOGs exhibit very little g or g° sensitivity, these errors
were assumed to be zero. Gyro and accelerometer biases and scale
factors were chosen according to the requirements for the Phase 1
GPS Guidance Package (GGP). These values imply an inertial system
of roughly 0.58 nmi/hr. The remaining IMU errors were assigned
values that are typical of this class of inertial navigation
system.

It 1s noted that the values assumed for the 1inertial
components are not typical of inertial systems intended for space
applications; for example, space applications generally require
gyro scale factor errors of a few ppm (Pitman, 1962) as opposed to
50 ppm assumed here. The 50 ppm value was intentionally assumed
here in order to illustrate the concept.
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5.4.2 GPS Error Budget

A 10-channel GPS receiver was assumed to establish an upper

bound of performance capability. It was assumed that 9 channels
tracked satellites (all in view) supplying the fil ~ with 9 pairs
of pseudorange and delta range measurements. The (- channel was

assumed to be providing ionospheric measurements.

The GPS receiver accuracies were chosen according to SS-US-200
(1979) and SS-GPS-300B (1980) and are similar to those of the GPS
UE 3A receiver. These values were chosen as a worst case 1in
accordance with the minimum requirements specified in the GGP
System Specification.

The clock frequency accuracy was derived from S8S-US-200
(1979). The remaining clock errors were assigned values which are
typical of oscillators used in current GPS applications.

The following assumptions were made: a mask angle of 5% above
the horizon; 3-db noise figure; omni directional antenna; antenna
shadowing was neglected as a simplifying assumption; satellite
ephemeris and clock residual errors expected of the Block II
constellation were used.

As previously noted, the rotating antenna introduces a
systematic phase shift to the received GPS signal. It is assumed
that this phase shift is properly compensated for by the tightly
integrated navigator. This is a reasonable assumption since the
gyros are able to sense the rotation to within 50 ppm. The
residual phase error is assumed to be is negligible as far as the
GPS pseudo-range and delta-range measurements are concerned.

5.4.3 Kalman Filter Configuration

An "optimal" Kalman Filter configuration was used. The state
vector included all filter states listed in table 2 except for gyro
g and g° sensitivities (a total of 47 states). This configuration
was used 1in order to identify which and to what extent the various
error states can be estimated. In reality, reduced order filters
will be used. 1In these realistic configurations, states that can
not be estimated to a significant degree are removed from the state
vector. This analysis, however, was not done here.

5.5 Simulation Results

Results were first obtained for three sets of lever arm length
L, spin rate ®, and delta-range measurement integration time T.
These results are discussed as Cases 1, 2, and 3 below. Aadditional
results were then obtained to reveal the sensitivity of attitude
errors to antenna-lever-arm length and spin rate.
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5.5.1 Case 1: L = 0.0 inches, w = 450 deg/sec, T = 0.78 sec

This case was considered in order to establish a baseline.
Physically, this case would result if the antenna were mounted on
the Y, axis - figure 1. As per the discussion 1in section 2,
attitude error estimation with a zero lever arm is not possible.

Figure 7 shows the resulting Position Errors vs Time and
figure 8 shows the resulting Velocity Errors vs Time. The results
indicate good estimation of position and velocity errors due to the
processing of GPS measurements. The residual position errors are
due to satellite biases. The residual velocity errors are small
(0.01 m/s) due to smooth dynamics, good satellite observability,
and lack of jamming. The "bumps" in the velocity error profiles
are due to satellite switching.

In typical terrestrial navigation applications, good position
and velocity-error estimation would imply good attitude error
estimation since attitude errors are coupled to velocity errors via

the specific forces (Schuler Loop). In this case, however, the
vehicle is under free-fall conditions and the specific forces are
zZero. Consequently, the attitude errors are decoupled from

position and velocity errors and without a lever arm there is no
mechanism for attitude estimation.

Due to the scale factor error, the attitude error about the Y,
axis is expected to grow. Indeed, the attitude error profiles in
figure 9 (Geographic Coordinates) and figure 10 (RSS Attitude
Error) show a roughly linear growth. The attitude error is shown
to grow to approximately 30 degrees as predicted earlier.

In addition, none of the instrumentation errors affecting
attitude (e.g., gyro scale factor errors, gyro bias, etc.) can be
estimated. For example, figure 11 shows all gyro scale factors
errors remain constant throughout the trajectory.

In essence, under the conditions of this case, GPS succeeds in
estimating the translational errors (position and velocity) as 1if
the vehicle were a point mass. There is no mechanism to estimate
attitude errors either as direct observables or through coupling to
other directly observable errors.

55




.01

001

—- NORTH POSITION ERROR
— EAST POSITION ERROR
M — VERTICAL POSITION ERROR

)
%

° 106 160 300 400 K00 000 YO0 MDD @00 1000 1100

TIME (sec)

1200 1300 1400

Figure 7. Case 1: position errors vs. time.

== EAST VELOCITY ERROR
— NORTH VELOCITY ERROR
M/S ~— VERTICAL VELOCITY ERROR

-
A

/

/ {

— !

3/
_‘
. ﬁ
_+

@ 100 208 280 40s 500 600 Tea 88 W8 1e0e
TIME (sec)

e 12 1M U

Figure 8. Case 1: velocity errors vs. time.

56




== EASTTILT

— NORTH TILT

100 DEG -~ AZIMUTH ERROR

IR

/

1

L llllllll 1 llllll_ll

IIllll

g

.“’ L] %o 200 300 400 S0 80O 700 800 600 1000 1100 1200 1300 WM
TIME (sec)
Figure 9. Case 1: attitude errors vs. time.

10 DEG -— RSS ERROR
10

1

]

01

001

L] 100 800 330 403 §30 00 200 200 8O0 1000 1100 1200 3360 wOe

TIME (sec)

Figure 10. Case 1: RSS attitude errors vs. time.

57




PPM -2

1)1t

|

IJ_HHII

| (l“lll

|

100 200 300 400 500 600 Y00 800 600 1000 1100 1200 1300 1400

TIME (sec)

Figure 11, Case 1: gyro scale factor errors vs. time.

58




5.5.2 Case 2: L = 7.0 inches, W = 450 deg/sec, T = 0.78 sec

In this case, a lever arm of L = 7 inches as shown in figure
1 is assumed. Again, good position and velocity error performance
is obtained (figures 12 and 13). In addition, however, attitude
errors are estimated. Figures 14 and 15 illustrate the attitude
error profiles in Geographic Coordinates and RSS value,
respectively.

The results show that attitude error has been estimated to
within 2 degrees - roughly, an order of magnitude improvement over
Case 1. The RSS attitude error profile in figure 15 consists of a
period of transient performance followed by a nearly flat behavior.
This 1is due to the estimation of the instrumentation errors.
Figure 16 shows that the Y, axis gyro scale factor error is
estimated to within TBD ppm. The other scale factor errors are not
estimated since there is no rotation about those axes.

Note that the position and velocity error profiles here are
identical to those in Case 1. This illustrates that position and
velocity errors are fully decoupled from attitude errors under free
fall conditions. Consequently, although here attitude errors were
reduced through estimation, the position and velocity errors were
not reduced any further.
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5.5.3 Case 3: L = 7.0 inches, W = 450 deg/sec, T = 1.00 sec

In this case the delta-range integration time 1s increased to
1l sec. As per the discussion in Section 4, the increase in delta-
range integration time results 1n a more favorable product T
(angle swept during the DR integration time). Again, the position
and velocity error profiles were identical to the ones obtained 1in
the previous cases (figures 17 and 18).

The attitude error profiles are shown in figures 19 and 20 in
Geographic Coordinates and RSS value, respectively. Figure 20 shows
that the attitude error is now estimated to within 0.2 degrees,
roughly twoc orders of magnitude improvement over Case 1 and an
order of magnitude improvement over Case 2. Figure 21 shows that
the scale factor error is now estimated to within 0.2 ppm.

5.5.4 Sensitivity Results

Additional simulations were performed using the lever arm
length L and the spin rate ® as simulation parameters. Figure 22
shows the RSS attitude error at the end of the simulation vs the
lever arm length. Figure 23 shows the RSS attitude error at the end
of the simulation vs the spin rate. These results agree with the
predictions in Section 4, i.e., the attitude error is inversely
proportional to the lever-arm length and shows a cosecant
dependence on the spin rate.
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6.0 SUMMARY

A method was presented which permits estimation of attitude
and attitude rate errors with an offset GPS antenna mounted on a
platform undergoing attitude changes. The method exploits the
attitude information inherently present in the pseudo range and the
delta range measurements. The attitude information is primarily
recovered through processing the delta range measurement with
standard recursive estimation techniques such as the Kalman Filter
algorithms of GPS/INS systems. A brief comparison to GPS
interferometric techniques for attitude estimation was included.

Certain design considerations and performance sensitivities
were 1dentified and verified with covariance simulations.
Specifically, attitude estimation performance is sensitive to the
angle 0T angle swept during the DR integration, the length of the
antenna lever arm, and satellite directions.

The method 1is ideally suited to spinning vehicles 1in
exoatmospheric trajectories. In these applications recovery of
attitude errors with conventional GPS/INS algorithms 1is not
possible due to the decoupling between velocity and attitude

errors. Certain Dbenefits may be possible 1in terrestrial
applications where rotary motion of the antenna platform 1is
inherent, e.g., a helicopter with a GPS antenna mounted on the

blade of the rotary wing.

In general, an integrated GPS/INS system 1is required for
*good" performance. In that case, the implementation impact 1is
minimum - a few terms in the observation matrix of the GPS/INS
Kalman filter. 2 stand alone GPS receiver may suffice in certain
applications such as benign or well known nominal angular dynamics.
In that case, the implementation impact also includes constructing
an attitude solution in near real time.

Although use of multiple offset antennas (and their associated
receivers) has not been given specific treatment, the corresponding
general observation matrix is simply obtained by incorporating a
similar set of rows for each offset antenna/receiver combination.
This may be accomplished whether the observation matrix is based on
the use of pseudo-range or delta-range residuals or both.
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APPENDIX A

Given the error state vector, the nonlinear equation for the
measurement process and its counterpart for the nominal trajectory

Ox (t
zf{t))
E!A(t:)

(t),e, ]+ vit) (A1)

The measurement residual 1s then
dz(t,)=z(t)-z (t)=hix(t),t,]-hix (t;),t]+v(t). (A2)

1

If we expand hix(t,), t,] about x.(t,) using Taylor’s Theorem

dh (X, ty)
RIx(ty), 80 =R, (), )+ =3 ey o (X081 Xn (£ ] 15,

+o?2[x(ty) —x,(t;)].

We then have

h [dx(t),x(t),t. ] &

_— — i i 1 ll..[ (') tx]_ﬁ[i(t)’t]
0

hi(x.t,) . (Ad)
=5 X

and, therefore, by treating 8x as an independent variable
oh’ (8x,x,t,) _dh(x,t))

= ) & A5
d (0X) Jx ‘i’_nx ot 5 (8x) (A3)
Evaluating at 6x = 0
dh’ (8x,x,t.) oh(x,t,)
fad faE L ~—\ = . A
557 |5y,v |z Hlt ;x, (t))]. (A6)

If hix(t,), t,] has the more restrictive form

(£, t)]
(t)),t.] (A7)

hix(t),t]=




and, similarly,

h' [dx(t,).x(t,),t,] =[* "7=""" o

then we may deal only with a representative "row" for the above.
In this event we have

6z, (t;) =h,[8x(t)), x(t,),x, (£)] + v (£,
oh. (x,t;) dh.’ (8x,x, (t;) (A9)
Tn . - J Ve 1 = J 1
-h—j [tul"_n(tl)] —ﬁ———“lx-xn(t,) d(bz(:) l6x=0 4

where
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APPENDIX B

In this appendix, we show that

Nv-gul VK (B1)
BT
We note that.;% =[5%,c£h, dik]and functions as a post
operator.
dlv + Kul )
b = T =
—gz — [CrEwT E ] oy
-1 T '-f- T
= [(¥ + Ku)"(V + Ru] "2(V + Ku)K (B2)
. Y+ Ku'K
- TTY TRl
Therefore,
T
Ay v Kl VK (83)
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