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INTRODUCTION

The use of composite materials and structures to provide
characteristics unattainable directliy from the constituent
materials is well known. Perhaps the most widespread example is
steel-reinforced concrete wherein the high tensile strength of
steel in conjunction with the high compressive strength of
concrete yields a composite material with structural properties
far superior to those of either constituent. More recently, work
has been undertaken to apply this principle to the development of
new dielectric materials for use in capacitors with greater
energy density, lower loss, and higher breakdown resistance [1].
High permittivity dielectrics are necessary to achieve high
energy densities, however high permittivity is usually associated
with high loss. Low loss is similarly associated with 1low
permittivity and low energy density dependent on loss tangent.
Composite dielectrics of appropriate combinations of constituent
materials may shcw high overall permittivity with small loss even
though one or more of the constituents has large individual 1loss.
This is known as the Maxwell-Wagner effect [2-4].

The net dielectric behavior of a randomly interspersed
composite is dependent on the spatial dimensionality (1-D vs. 2-D
vs. 3-D), domain geometries (domain size, domain shape,
stratification, etc.), interconnection effects (percolation), and
fractalization (interfaces or connectedness per unit volume). A
self-similarity averaging law which is useful to the dielectric
engineer is Lichtenecker‘'s formula [5,6)

e = E eﬁ Vi (1)
where € is the resultant permittivity of the composite, a is an
exponential averaging factor (-1 < a < +1), and the summation is
over the constituent species with permittivity €, and volume
fraction v, respectively. This formula can be justified
theoreticalfy to apply to random (self-similar, scaleless) and
history invariant composites. The permittivity € is defined
tully in terms of the electric and displacement fields and is
frequency dependent. The factor a is referred to as the
exponential averaging factor or self-similarity factor. The
behavior of this factor has certain values in special limiting
cases and was originally called a "formzahl" (form number) by
Wiener {7}. 1In the case ot isotropic flat layers with surface
normals oriented parallel to the applied electric field, a = -1,
and for isotropic flat layers with surface normals perpendicular
to the applied electric field direction, a = +1. The mathematical
interpretations of the exponential averaging factor for the

following values are: +1 = ‘arithmetic' averaging,
O - ‘'geometric' (or logarithmic) averaging, and -1 = 'harmonic'
averaging. In regard to the physical problem of randomly

interspersed dlelectric composites with a self-similarity, the
values of the exponential averaging factor are only known to lie
within these bounds [7-12]. The exponential averaging factor a
however does offer a useful way of presenting results and general




trends in a comparative sense to one another.

A second factor which is also bounded is the depolarization
factor 'A'. The depolarization factor is a geometrical factor
that arises from a self-consistent treatment of the dielectric
problem where ellipsoidal domains are each surrounded by an
effective medium host. This picture is usually the lowest order
scattering approximation where the dielectric grains are much
smaller than any associated electromagnetic wavelengths. The
actual composite grains may be distant from the ellipsoidal
shape, especially when dealing with mixtures not dominated
strongly by any particular species. This approach is referred to
as the effective-medium-theory coherent-potential-approximation
(EMT-CPA) and has been derived in several manners [13-15]. It is
most succinctly expressed as

5 Gk ~€

Ve = 0 . (2)
Aek-(l-A)e

The depolarization factor 'A' can be determined by an integral
which is taken over the shape of the ellipsoid and is discussed
in Appendix A (11, 16-18]. In the case of a spheroid situated in
N spatial dimensions the depolarization is simply A = 1/N.

Our analysis will be presented in both forms: the
exponential averaging factor 'a' and the depolarization factor
'A'. The exponential averaging factor 'a' may be thought of as a
measure of the degree between series and parallel-like extrema or
Wiener bounds of the composite. The depolarization 'A' is a
measure of geometric grain shape in terms of the
effective-medium-theory coherent-potential-approximation (EMT-
CPA). 1In the limit where the constituents of the composite are
dielectrically infinitesimally close, the relation a = (1 - 2A)
holds. It is interesting to note that equations (1) and (2) are
first order approximations to each other in the close constituent
permittivity limit even though the formulae appear quite
different. However, when constituents having largely difterent
permittivities are examined using our numerical program, the
composite mixture formulae yield different predictions [1]). Both
methods allow us to present our numerical simulation results in a
comparative way which is useful for both theoretical and
experimental analysis.

ELECTRIC DISPLACEMENT FIELD

The electric field E(r,t) 1is defined as the electric force
per unit charge acting on a stationary test charge located at
point r and at time t (Boldface notation will be employed
throughout this report to represent vector and tensor
quantities). The displacement field D(r,t) as used in this report
is the universal displacement field which arises from the
combination of Gauss's Law with charge continuity (conservation).
The result is a continuous flux quantity. In the standard




international (SI) MKSA unit format, these two relations are
respectively

V-E(r,t) = pgolr,t)/e, (3)

where V- is the spatial divergence operator, pn(r,t) is the
volume charge density and €, is the permittivity of free space,
and

V-Jy(r,t) = - dpg (r,t)/dt (4)

where JQ(r,t) is the charge current density (charge current per
unit aréa). A generalized charge polarization field P,(r,t) is
linked to the charge density by the following defining relation
for PQ(r,t)

V:Py(r,t) = - po(r,t) . (5)

Upon partial time differentiation of equation (5) and comparing
to the continuity equation (4) one finds the identity

PQ(r,t)/ t = JQ(r,t) . (6)

Segregation of charge types may be introduced when desired, but
is not necessary for the derivation and application of a
generalized permittivity [19) as in this report. A polarization
field for discrete point charges in an inertial coordinate system
trom equation (5) could be

Po(r,t) = ¥ ajry . (7)
In equation (7) the summation is over all charges g; at locations
r. within the medium. Combining equation (3) and equation (5)
ylelds

{€oV E(r,t) + V-Py(r,t)} =0 . (8)

Rearranging the brackets of equation (8) results in the
divergence relation

V- {e E(r,t) + Po(r,t)} =0 (9)
ar

v-D(r,t) = O (10)
where the quantity in the brackets becomes the definition of the
generalized or universal electric displacement field [20]

D(r,t) = ¢ E(r,t) + Py(r,t) . (11)
For brevity, this generalized field will be referred to as the
'D-field' elsewhere in this report. The time derivative of the
D-ficld gives the generalized or universal displacement current
dencity




D(rlt)/ t = JD(rlt) ’ (12)

referred to by Maxwell as the 'true current' and the D-field can
be referred to as 'true' also [21]). From the combination of
fundamental laws (3) and (4) with (11) and (12), it follows that
the universal current density is always divergenceless and
continuous with

V-I5(r,t) =0 . (13)

Conversely, one might say that according to equation (12), the
antiderivative (in time) of the universal current density is a
vector field called the universal displacement field. The
physical units of the displacement field are charge polarization
per unit volume or that of surface charge density.

Dielectric measurements and analysis are often made in the
frequency domain (22, 23}]. In the case where the displacement
field is periodic with time it can be Fourier decomposed as

D(r,t) = j D(r,f) et72mEt 4¢ (14)
or conversely
D(r,f) = J D(r,t) e J27Et 51 gt (15)

where D(r,f) is the electric displacement field Fourier component
at frequency f, j =v-1, and integrations respectively are over
all f and t. The frequency domain transformation of equation (10)
gives

V-D(r,f)= 0 , (16)
or equivalently from combination of equations (12) and (13)

V-{j 2nf D(r,f)} = O (17)

for £f # O (non-static fields). The relation expressed by
equation (12) becomes in the frequency domain

j 2nf D(r,f) = Jpl(r,£f) (18)
and so it is easy to transpose between equations (16) and (17).
In most natural media, the universal electric displacement
field evolves by a collective decay from the past history of
electric fields which are or have been impressed upon the medium.
This is expressed by the convolution

D(r,t) = JEw F(r,t-t') ‘E(r,t') at (19)

or alternately upon change of integration variable to u defined
as u = t-t',




p(r,t) = [ E(r,u) E(r,t-u) du (20)

where D(r,t) is the displacement field at the present time,
E(r,t) is the electric field from *the past to the present, the

function F(r,u) = df(r,u)/du represents the history or decay
correlation between the fields and u = t-t' is the present to
past time connection variable. The function f(r,u) is referred

to as the normalized displacement decay current or, in short,
decay current. The accumulation of normalized displacement decay
current is called the normalized displacement decay function
f(r,u) or, in short, decay function. The dimensions of the decay
function f(r,u) are displacement field per electric field.
Causality requires that the decay current F(r,t-t') be zero when
t'>t or u<O (i.e., no correlation with the future). In the time
domain both the displacement and electric fields must be real
valued and hence the normalized displacement decay current ¥(r,u)
must also be real valued. If the medium is linear then the decay
current F(r,u) is independent of the electric field in the
medium. For example if the decay function f(r,u) 1is just a step
function (from zero) at u = t-t' = O then equations (19) and (20)
reproduce an instantaneous correlation between the electric and
displacement fields. 1In the next section we will discuss the
implications of these physical constraints upon dielectric
permittivity behavior.

In summary, a universal electric displacement field or 'D-

field' can be defined which is inclusive of all charges. This
generalized D-field is necessary for use in dielectric
composites. Provided there are no unaccounted for sources,

sinks, or charge accumulations, then this field is divergenceless
and continuous. A normalized displacement decay current/function
can be introduced to statistically relate the present observed
displacement field to the past electric field history.

DIELECTRIC PERMITTIVITY

Dielectric permittivity is defined by a tensor relationship
between the electric and displacement field vectors in the
frequency domain which may be expressed as

D(r,f) = e€(r,f)-E(r,f) (21)

where B(r,t) and D(r,f) are respectively the electric and
universal displacement fields at a location r and frequency f.
Alternately this relationship can be expressed using spatial
index notation

Di(r,f) = eij(r,f) Ej(r,f) . (22)
The dielectric permittivity eij(r,f) is a tensor of rank two.

The dielectric permittivity is defined in the frequency
regime because, strictly speaking, there are no known substances




(except vacuum) which exhibit complete instantaneous displacement
response to the application of an electric field. The
implication of this fact is that there are no completely static
time domain constants between electric and displacement fields.
Rather there exists a time correlation behavior between the
present displacement field and the past applied electric fields.
This is expressed by equations (19) and (20) and the normalized
displacement decay current F(r,t-t') or through its accumulation
as the normalized displacement decay function f(r,t-t'). The
frequency domain transformation of the ccnvolution relation
expressed by equations (19) and (20) produces the needed relation
connecting the frequency domain permittivity e(r,f) with the
normalized displacement decay current f(r,t-t') ot the time
domain as

€(r,f) = J"c‘j F(r,u) etJ2nfu 4y (23)

where the time variable is u = t-t'. Because the decay current
and decay function are real valued, the frequency domain
permittivity e(r,f) is necessarily complex valued unless the
decay function is instantaneous. Traditionally, in the field ot
dielectrics, this is expressed as

€(r,f) = €' (r,f) + j e (r,f) (24)

where €' (r,f) and €"(r,f) are respectively the real and imaginary
parts of the dielectric permittivity. The imaginary part ot
permittivity is known as the "lossy" part as it is proportional
to the energy lost during a cycle of a time harmonic field.

When a medium is isotropic, both the displacement and
electric field vectors are colinear and the permittivity can be
regarded as the scalar ratio e(r,f) of the fields D(r,f)/kE(r,f).
In situations where the medium is anisotropic or birefringent,
then the fields are reoriented locally until they lie along the
direction of a principal axis of the local permittivity tensor.
In this alignment the fields are colinear and their ratio can be
measured as before as the corresponding element in the
diagonalized permittivity tensor. In the genzral anisotropic
situation where the principal directions nay not experimentally
be possible to determine, measurements have to be made of all
spatial aspects pertaining to both field vectors. For isotropic
dielectrics where the permittivities are scalar and spatially
uniform, the ratio of the imaginary to real part of the
permittivity is called the loss tangent or dissipation factor
(24, 25]). This is conventionally written as

e"(r,f)y/e'(r,£f) = tan §(r,f) . (25)

In this report we will examine the case of random (Monte
Carlo) composite media simulations with a high degree of
macroscopic isotropy. Expansion to anisotropic cases is
anticipated in future work.



As an illustrative case, when the decay function is
isotropic and iP%pially uniform with an exponential decay
f(t) = €, (1 - et/ ) (reflecting a viscous type relaxation), it
transforms into the familiar simple form of Debye relaxation

e(f) = [2 (ep/m) (e /Ty (e*T27EY) qy (26)
€(f) = €5/ (1 ~ j2nfT) (27)

where ¢, is the transition permittivity (a constant), and T is
the viscous relaxation time. Note that €(f) here is a complex
numbered quantity expressible as the real and imaginary pair

€'(f) = €p/[1 +(2mET)?) (28)

and

€"(f) = €, 2MET/[1 +(2mET)?) . (29)

An interesting feature of the Debye relaxation permittivity is
that the complex plane plot of €'(f) and e€"(f) reveals a
semicircle as frequency is varied. This type of plot is often
referred to as the Cole-Cole plot and is useful as a way of
identifying the relaxation as well as fingerprinting permittivity
characteristics. Elimination of the explicit frequency variable
on the right hand sides of the above equation pair does indeed
verity a semicircle of radius €,/2 whose imaginary part reaches
its maximum value when the frequency is at 1/znT.

CONDUCTIVITY
A universal displacement conductivity o(r,f) is defined by a

tensor relationship between the electric field and universal
displacement current density vectors in the frequency domain as

Jy(r,f) = o(r,f) E(r,f) . (30)
Combining equations (18), (21), and (30) yields

o(r,f)/j2nf = e(r,f) (31)
As the connection of the universal displacement conductivity and
the universal permittivity subject to the constraint that f # O.
The convolution for universal displacement conductivity becomes

o(r,f) = j2nf Ig f(r,u) etJ2mtu gy | (32)

The universal displacement conductivity as a complex number
can be expressed in terms of its real and imaginary parts as

o(r,t) = o'(r,f) - j o"(r,f) (33)

where o' (r,f) and o'"(r,f) are respectively the real and imaginary
parts. The direct current (DC) conductivity is the limiting case




of the real part of the counductivity when the frequency tends
toward zero. However the projected value of DC conductivity
becomes less distinct when nonstatic measurements are made at
higher and higher frequencies especially over a limited
bandwidth.

Exploiting the identity posed by equation (31) yields

o'(r,f) 2nf €"(r,f) (34)

and

o' (r,f) 2nf e€'(r,f) . (135)

When a medium is isotropic, the displacement current density
Jp(r,f) and electric field E(r,f) vectors are colinear. In this
instance, the universal displacement conductivity «can be
regarded as the scalar ratio o(r,f) of vectors given by
Jn(r,£,/E(r,f). If the medium is anisotropic or birefringent,
then one may reorient alongside a principal axis of the local
conductivity tensor to determine the tensor components. The loss
tangent defined in equation (25) becomes

tan 6(r,f) = o'(xr,£f)/o"(xr,£) . (36)
in terms of the real and complex conductivity parts.
CAUSALITY

A physical response is said to be causal if it occurs at or
following ar excitation. 1In classical systems most responses
cannot anticipate future excitations and hence their connecting
functions are null. A partial relaxation of this behavior may
occur 1in quantum mechanical systems wherein the connecting
function becomes a probability. Quantum mechanical causality or
other non-local overlapping shall not be dealt with in this
report. Both frequency domain universal dielectric permittivity
€e(r,f) and conductivity o(r,f) arise from a causal function.
This function is the time domain normalized displacement decay
current F(r,u) or alternately, its accumulation, the normalized
displacement decay function f(r,u). The time variable u is the
difference between present and past times u = t-t’'. The decay
function is a time domain function and it must be zero when u is
negative (a non-zerc value would indicate future excitations that
cannot have happened yet). The decay function relates real-
valued physical vector quantities over past history as specified
in the convolution equations (19) and (20). The consequence is
that the decay function and permittivity are related by
transformation equation (23). The inverse relation that obtains
the decay function from the permittivity spectrum exists and ic
required to possess the aforementioned physical constraints.,  The
inversion procedure is accomplished by means ot complex Laplace
transforms or equivalently unilateral/one-sided Fourier
transforms. This procedure requires that the frequency be




treated as a complex number which can be viewed as lying in the
complex frequency ('s') plane. The complex frequency is defined
as

s = —-j2nf . (37)

The substitution of the variable s into equation (23) leads to
the alternate expression for the permittivity

€(r,s) = Jg f(r,u) e SY gu (38)

where the other variables are the same as before. In Laplace
transform operator notation equation (32) can be succinctly
written as

€(r,s) = €(&(r,u)) (39)

o [ ] e SY du acting upon ¥(r,u). The inverse operation can

Ihere £ denotes the Laplace integral transform operation
e obtained through residue theory and is

+c+]w
f(r,u) = —— I +tSU ¢(r. s) du (40)
+c—-Jco

where the contour c¢ is chosen such that all the singular points
of €(r,s) lie to the left of the contour on the s-plane. In
lLaplace operator notation one can simply write equation (40) as

t(r,u) = £ l(e(r,s)) (41)

where £~ ! denotes the inverse Laplace transform as given in the
expression (39).

The significance of these transformation expressions between
the permittivity and decay function is that of two important
properties: 1) complex conjugation, and 2) analyticity and
interdependence between real and imaginary parts. These two
properties are of consequence to dielectric observation.

1) The property of complex conjugation requires that the
permittivity (as well as conductivity) become complex conjugate
whenever the s-frequency becomes conjugate, i.e.

e*(r,s) - e(r,s*) , (42)

where the asterisk superscript denotes conjugation of the
preceding variable. The relationship expressed by equation (42)
can be inferred by complex conjugation of the s-frequency in the
transformation relations, (38) through (41). Graphically, on the
s-plane the real parts of the permittivity and conductivity
functions are mirror symmetric about the real s-axis, while the
imaginary parts are antisymmetric about the real s-axis. This
property not only allows complex conjugation to occur between




physicists and electrical engineers, i.e., j = -i, but also
applies whenever a dielectric permittivity may be made up of
functions which are functions of complex frequency. This occurs,
for example, in the case of composite mixtures. Therefore the
action of applying composite mixture relations to well-behaved
constituents cannot introduce any violations of the conjugation
property in the resultant dielectric response.

2) The second property of analyticity and real/imaginary parts
interdependence is commonly referred to as the Kramers-Kronig
relationship [23, 26-28). This relationship can be stated in
different forms such as a pair of complementary Hilkert
transforms ¢r as a pair of one-sided integrals between the real
and imaginary parts of permittivity or conductivity. The
Kramers-Kronigq relationship is manifested in the analyticity
(i.e., Cauchy-Riemann conditions) and lack of singularities ot
the permittivity function on the right side (positive s-values,
real part) of the s-plane. If a singularity occurs on this
portion of the s-plane, then an unstable or undefined dielectric
system response would occur at some range of physically
realizable excitation frequencies. In order that the decay
function f(r,u) consistently remains causal and real valued, then
the singularities can only exist on the left side of the s-plane
either on the negative real s-axis or as complex conjugate pairs
on the left side (negative s-values, real part) of the s-plane.
The Kramers-Kronig relation for permittivity may be written

—j €(r,z)
€(r,s) = f dz (43)
n c z-s

wheare the integral is principal valued with the contour c¢ running
first along the imaginary s-axis from negative to positive then
clockwise in a large semicircle about the right half s-plane.
The variable z is a variable of integration. Using the complex
conjugation property of equation (42) and reverting back to the
ordinary frequency notation f, the Kramers-Kronig relation can be
written as the integral pair

2 o f' e"(r,f')
€'(r,f) = j 73 df’ (44)
T o (£'e-£f<)

and

2f 0 €'(r,£')
f af’ . (45)

€"(r, f) 3 3
m ‘o  (f'2-£2)

Kramers-Kronig requirements also apply to composite mixture
permittivities in that the mixing relations cannot introduce
contradictions to well-behaved constituents.
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MACROSCOPIC DIELECTRIC QUANTITIES

Both composite dielectric analysis and dielectric data
acquisition are carried out over regions of finite spatial
extent. Dielectric data acquisition can be a formidable task
because of a limited ability to resolve the electric and
displacement field vector components, as well as other
considerations such as extraneous polarizations and stray fields.

Macroscopic gquantities must be introduced such that the
overall displacement flux remains continuous. The conversion can
be accomplished in going from the differential form equation (10)
(Gauss' law) into an integral form via the divergence theorem of
mathematics as

Jv V-D(r,t) dr3 JV 0 dr3 (46)

and

§a D(r,t)-f dr? o . (47)

In equation (46), the integration is performed over the volume v

enclosed by a closed surface. 1In equation (47), the integration
is taken over the surface enclosing volume v, and fi is the
outward drawn surface normal unit vector. We can conveniently

restate equation (47) in terms of a universal displacement flux ¢
corresponding to the integrated displacement field passing
through a given surface. This may be written in the time domain
as

8. (t) = J D(r,t)-f dr2 (48)
or 1n the frequency domain as
b (f) = J D(r,f) A dr? (49)

with the integral taken over the area of the surface in question.
In terms of displacement flux ¢, the integral form of equation
(47) becomes

§a ds(r,t) = 0 (50)
in the time domain or
@a de(r,f) = O (51)

in the frequency domain. In equations (50) and (51), d¢(r,t) and
d¢(r,t) denote the incremental displacement flux as the
integration proceeds around the closed surface. The right hand
sides of equations (50) and (51) are zero for this universal form
of electric displacement because we have chosen the displacement
to be inclusive of all charges and an overall charge neutrality

exists within the enclosure. The units of displacement flux ¢
are that of charge. The time derivative of displacement flux
11




possesses units of charge current. Equations (50) and (51) are
thus simply a statement of charge/displacement field continuity
and conservation. The interpretation of an electric displacement
field flux is that a flux originates or terminates on a charge of
that value.

The conversion of equations (10) and (16) into the integral
equations (50) and (51) requires the choice of some enclosing
‘Gaussian' surface. Generally this choice is that of convenience
over which the macroscopic permittivity e(f) is defined. The
macroscopic permittivity is defined in the same sense as the
microscopic permittivity of equations (21) and (22) with the
distinction that the field quantities are mean valued over the
volume of the enclosure. The defining relation for the
macroscopic permittivity tensor €(f) becomes

D(f) = €(f) -E(f) (52)

where D(f) and E(f) are respectively the mean valued displacement
and electric fields over the selected 'Gaussian' enclosure.
Since the permittivity or conductivity is always defined in the
context of the frequency domain, for the remainder of this report
we will drop the explicit frequency dependence notation with the
understanding that the frequency dependence does remain. Thus in
this reduced shorthand notation the permittivity € is

D = €'E (53)

where again D and E are respectively the displacement and
electric fields understood to be macroscopic and of the frequency
domain. The macroscopic versions of other relevant dielectric
relations are as follows:

1) The evolution from a decay function corresponding to
equation (23) is
€ = Iﬁ F(u) etd2nfu gy (54)

where € is the macroscopic permittivity (frequency dependent) and
f(u) is the normalized macroscopic displacement decay current.
The integration is performed over all past times u at fixed
frequency f.

ii) The macroscopic permittivity is expressible in terms of its
real and imaginary parts as in equation (24) as

€ = €' + j € . (59)
iii) The loss tangent for the macroscopic and isotropic
dielectric specimen is the ratio of the imaginary to real

permittivity portions

tan § = €"/e' . (56)
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iv) The displacement current conductivity in the macroscopic
case is found from equation (30) to be

Jp = g-E (57)

where E is the electric field and Jy = D/ t is the universal
displacement current density at a given frequency.

V) The relation between the macroscopic permittivity and
conductivity is found from equation (31) to be

o/j2nt = € . (58)

Vi) The macroscopic conductivity can be separated into its real
and lmaginary parts as

g =o0' - 3j ov" . (59)

vii) When the medium is isotropic with espect to the
macroscopic permittivity, it also must be isotropic in the
displacement conductivity and thus the loss tangent given by

tan § = o'/o" (60)
can be found in similar fashion to that of equation (36).

viii) A macroscopic medium obeys causality and its behavior is
derivable as an analytic function through the use of Laplace
transform techniques upon the normalized displacement decay
current. In Laplace operator notation we can write

€(s) = £(f(u)) (61)

here £ denotes the Laplace integral transform operation
[0 9] -sSu . f

TO [...] e du acting upon I1(u).

1x) The complex conjugation property demands that a causal
analytic function which stems from a real valued time function
obey

€“(s) = e(s™) . (62)

The complex conjugation property imposes a restriction on the
choice of compos% e mixture formulae. Application of this
property to the kN constituent species and considering that the
composite response also must be causal results in

* * * * * ;
€ = f{e1 1€y 1 €3 ,..€p .0} (63)

* . . . . . . * .
where € 1s the conjugate permlttlv*ly of the composite, €, 1is
the conjugate permittivity of the xth “constituent species, and f
denotes some functional.

x) The Kramers-Kronig relation expresses the interdependence
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between the real and imaginary parts as

-Jj €(z)
€(s) = f dz (64)
” c z-s

where the integral is principal valued with the contour c running
first along the imaginary s-axis from negative to positive then
clockwise in a large semicircle about the right half s-plane.
The variable z is a variable of integration. Such a relationship
is of use in determining valid composite mixture formulae and for
checking authenticity or filling in data gaps.

The interrelations expressed or implied in i) through x) for
a macroscopic dielectric specimen are valid providing the
macroscopic 'Gaussian' enclosure boundaries do not change.

DIELECTRIC COMPOSITE MIXTURE FORMULAE

Knowledge of the dielectric characteristics such as
permittivity for a particular macroscopic configuration does not
imply full knowledge of the subassembly of possible microscopic
configurations. This degeneracy exists whenever a dielectric
medium is nonuniform such as in the case of composites. This
degeneracy even already exists for a simple composite constructed
of stratified flat layers with fixed constituent volume
fractions. 1In this special case, the solution can be worked out
with treatment as a collection of capacitors aligned either in
series or parallel [4, 29].

As a consequence, there can exist a set of composite mixture
formulae which will satisfy or nearly satisfy a given particular
macroscopic dielectric observation. Evidence of such degeneracy
of formnlae can be found in some of reviews on composite mixtures
{25, 30-34]. Moreover, the wavelengths of the probing fields
typically applied in dielectric measurements generally are not
capable of resolving microscopic features and therefore the
measured macroscopic response can only reflect collective
behaviors.

One criterion for the applicability of a particular
composite mixture formula is that the dielectric response
predicted for a composite cannot introduce any new information,
particularly in regard to nmicroscopic configurations. In the
case of random composites there is by definition a lack of
specific knowledge of microscopic configqurations and in order for
a mixture formula to be of relevance it must contain a minimum of
parameters pertaining to the microscopic configuration. The
composite dielectric response predicted by a mixture formula must
also reflect the same symmetry properties that are posed by the
physical input situation.

Two mixture formulae can be shown to be particularly
applicable to the case of random dielectric composites, namely
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Lichtenecker's formula as given in equation (1) and the EMT-CPA
tormula as given in equation (2). Each of these two composite
mixture formulae can be explained with reference to their
constraints and applicability, as follows:

1) The Lichtenecker's dielectric mixture formula of
equation (1) is a self-similarity formula derivable by a process
of constraint elimination starting with a generalized expression
(5, 6). The several constraining arguments are:

1) Proportionality and role symmetry must be maintained
between the resultant cutcome and that obtained when all the
constituents are changed by the same common factor.
Mathematically this may be stated as

me = g[mel,mez,me3,...] (65)

where m 1s a real multiplicative factor, g means a generalized
functional, € is the composite permittivity, €; is the
permittivity of constituent species 1, etc.. The role symmetry
argument implies that no one constituent be different than any
other as far as its contribution to the overall composite
dielectric behavior.

2) Mixture responses must be invariant with further random
mixing of the type that was employed in order to attain its

present state. 1In other words, if a truly random state has been
reached then further ‘stirring' does not affect the response of
the composite. This property can also be stated as additive

functional invariance to mixing by successive stages of mixtures
of mixtures. This relation would be

f(€) = ¥ vy £(€)) (66)

where f is a common functional, € is the composite permittivity,
€, is the permittivity of the k const%}uent species occupying a
volume fraction vy, and the summation y is over the k species.
This property assumes that constituent volume densities are not
aftfected by successive mixing stages.

3) The macroscopic dielectric response must be independent
of the sample size considered. This results in the mixture
response being dependent on relative volume fractions and not
overall macroscopic size.

4) The constituent volume densities must remain constant
during the mixing process. This requirement results in the
additive relation

= % v. v.
Vi 3 V] vLk (67)
where v, is the fractional volume of the ktM constituent species

in the present stage of macroscopic volume consideration, Vj is
the volume fraction of a submacroscopic volume that goes into” the
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presenghmacroscopic volume, and \: , is the subvolume fraction of
the k species within the jt 'submaﬁﬁescopic volume. The
summation is exhaustive of all possible j submacroscopic volume

fractions. Presumably, the constituents cannot interact with
each other so as to affect the volume density of the other.

The Lichtenecker mixing formula is a self-similarity formula
of the type found in references ([35-38), meaning that regardless
of the macroscopic size scale chosen for observation, one can
expect the same result over and over again. In actuality,
natural materials may only partially fulfill these requirements,
especially if the random mixing occurs only at a particular size
scale. Such a violation is evident when considering molecularly
interdispersed mixtures, even when otherwise perfectly randomly
distributed with no overall sequential ordering.

The exponential averaging factor a of the Lichtenecker
mixing formula must be real valued if the mixture is to be causal
and obey the complex conjugation property as given by equations
(62) and (63). The exact value of the exponential averaging
factor o has not been entirely ascertained for random mixtures.
The value of the exponential averaging factor must lie within a
set of physical bounds called the Wiener bounds. These bounds
require that the exponential averaging factor must be real valued
at or between minus/plus unity. The value of the exponential
averaging factor that is found in a given random composite
configuration will depend on spatial degrees of freedom and
percolation path(s) available to the displacement fluxes or
currents as they traverse the assortment of domain regions. 1f
the composite is built up from submixtures all of the same
exponential averaging factor then the composite has the same
exponential averaging factor. This then implies the exponential
averaging factor has a constant value for a particular mixture
type. When the permittivities of the constituents are close to
each other then the exponential averaging factor a takes on
limiting values which tend to some of the depolarization values
which are discussed next.

II) The effective-medium-theory coherent-potential-
approximation (EMT-CPA) has been derived and rederived many times
(13-15, 39-42). This approximation is one of the simpler of
effective medium theory. Fundamentally, its arqgument is that a
domain region containing one of the constituent permittivities is
treated as being surrounded by a medium whose effective
permittivity is to be determined. All other domains are treated
accordingly with the same approximation of environment. As a
further approximation a certain domain geometry is presumed, so
as to lend to analytic solution of the electric and displacement
fields. The geometry selected is that of ellipsoids, as both
Maxwell's electromagnetic equation set can be solved using a
conformal coordinate system [16, 17]), and because this geometry
involves a minimum of structural detail. This treatment
corresponds to the lowest order scattering of the solution of
Maxwell's electromagnetic equations in an inhomogeneous media
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(15, 43]. This treatment is called the coherent potential
approximation. A number of other approximations and refinements
can be made using the effective medium technique [32, 44, 45).
However, the approach appropriate to random composites must
introduce a minimum of microscopic detail and it is felt the
coherent potential approximation does offer such. Further
subtreatments do exist in so far as different types of randomness
can exist in composites.

An important factor which arises from the effective-medium-
theory coherent-potential-approximation (EMT-CPA) approach is the
depolarization factor 'A'. The depolarization factor 'A' can be
calculated using an integral formula which depends on the
ellipsoid shape and is discussed in greater detail in Appendix A
[16-18, 32]. 1In the case of a spheroid situated in N spatial
dimensions, the depolarization is simply the inverse of the
number of spatial dimensions (degrees of freedom) as

A= 1/N . (68)

When constituent permittivities are close valued with respect to
each other then the exponential averaging factor can be related
to the depolarization as

a - 1 - 2A . (69)

Combining the limit in equation (69) with the identity of
equation (68) yields the limiting parameter value

a >+ 1-2/N (70)

when the constituent permittivity values are close valued with
respect to each other.

In this report we treat both the exponential averaging
factor and depolarization as statistical parametric values. Our
results are presented on a parametric basis both in terms of the
exponential averaging factor ‘'a' and the depolarization factor
'A' for both clarity of permittivities on relative scales, and
presentation of complex numbered permittivities in terms of real
valued parameters.

PERCOLATION

The term percolation refers to whether or not there exists a
continuous connected path through a constituent species. 1In the
context of the dielectric problem, percolation is whether or not
displacement flux/current has at least one path through connected
domains of a single constituent species. A
pernittivity/conductance of zero blocks electric displacement and
an infinite permittivity/conductance allows displacement
flux/current to pass freely along a path. The situation where
the displacement flux/current is in a single constituent but not
the other occurs as the limiting case where the permittivities
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are of infinite ratio to one another and there exists a
percolation path amongst the larger permittivity domains.

The Weiner bounds (i.e., the series and parallel
stratification limits for dielectric composites) can be used to
represent the two extremes of percolation behavior. If the
constituents lie in flat layers with surface normals oriented
parallel to the applied electric field then the exponential
averaging factor as defined by equation (1) takes on the value
a = -1. If the species lie in flat layers with surface normals
oriented perpendicular to the electric field then the exponential
averaging parameter is a = +1. For the depolarization as defined
by equation (2), direct substitution of the parameter values A=1
and A=0 give respectively the series and parallel stratification
limits. Thus the depolarization is also a measure of percolation
with respect to the Wiener bounds.

Most often percolation is discussed in the context of binary
mixtures in which one constituent is nonconducting and the other
is fully conducting. It has been found that as the volume
fraction of the conducting constituent increases, a transition
occurs once a conducting path has been established throughout the
composite mixture. This transition is called the percolation
threshold. At the percolation threshold, network simulations
with iso-sized shuffling elements become self-similar or
scaleless (38]. At other constituent mixing ratios this self-
similarity may not hold. Lichtenecker's mixture formula
stipulates that a self-similarity pattern must always be
maintained in a mixture type regardless of constituent mixing
ratios. The network simulations used in this report principally
employ iso-sized shuffling elements but do not exhibit self-
similarity except at percolation thresho. ..

Percolation mixtures have been extensively studied [38, 46,
47]. It has been found that two~dimensional mixtures with a
random sputtering of iso-sized grains have critical percolation
transitions at .50 for bond cubic lattices and .59 for site cubic
lattices. Our studies of the exponential averaging factor tend
to confirm the percolation threshold behavior for
conducting/nonconducting binaries. At the percolation threshcld
the Lichtenecker factor achieves its best self-similarity values.

THE MACROSCOPIC SELECTION

The 'Gaussian' enclosure used in this report is a
rectangular box. This choice lends itself to a simple
formulation for the macroscopic quantities as well as being easy
to envision as a probe parallel-plate capacitor vith no fringing
fields. The electric field is applied between two opposite faces
of the box contacting normally to these surface boundaries. 1In
essence these surfaces form the plates of the probe capacitor.
The mean value of the quasistatic electric field is normal to the
plate surfaces and has a magnitude of the potential difference
divided by the gap distance separating the plates. In numerical
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terms this is
E = -v/d (71)

where E is the mean electric field magnitude, V is the potential
difference, and d is the gap distance separating the plates. The
mean value of the displacement field is determined by the
displacement flux density averages passing through each of the
three opposite face pairs. Thus for each face the mean
displacement field can be written as

D= d/a (72)

where D is the magnitude of the mean displacement field
Componeng normal to the face, ¢ is the displacement flux passing

throuyh a face, and 'a' is the surface area of the face. One of
the opposite face pairs are the probe capacitor plates. The
other two opposite face pairs are termed as lateral faces. The

permittivity tensor can be determined using equation (52). The
probe capacitor may be oriented along any direction, but for
convenience it may be oriented along a principal axis whereupon
the electric and displacement fields are colinear. In the
isotropic case the displacement and electric field are always
colinear which implies that regardless of the orientation there
is no lateral displacement flux. We used this fact as a test of
isotropy.

The experimentalist may also choose to use a probe
capacitance in the comparative sense in isotropic cases. That is

€ = €4 (C/Co) (73)

where ¢ is the unknown permittivity, €. is the reference
permittivity, C is the measured capacitance with dielectric, and
Co is the reference capacitance.

COMPOSITE DIELECTRIC STRUCTURE

A dielectric composite is a spatial aggregation of
interspersed and interconnected permittivity domains. In this
report, we seek to calculate the resultant macroscopic
permittivity of a composite material for the case of composites
which have insignificant quantum overlap between domains. The
resultant permittivity can be analyzed in relation to that
predicted by the mixture formulae of equations (1) and (2); the
results of the numerical simulations will be displayed in terns
ot the exponential averaging factor 'a' and depolarization factor
‘AT,

The dielectric composite is solved in terms of a pixel-like
rectanqular aorid as shown in Figure 1. A domain is made up of
one or more pixels. Each pixel region is then assigned the
permittivity of the domain it represents. Each pixel experiences
a local electric field and in turn responds with a displacement
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material #1
boundary
Figure 1. Cross-sectional view of the probe parallel-plate
capacitor 'Gaussian' enclosure used in this report. Within the

sample region, the composite dielectric is represented by a
rectangular pixel arrangement.

field as determined by its assigned permittivity. Displacement
field continuity is preserved in passage amongst the pixels. 1In
the general case of a random arrangement of domains there can be
strong effects due to local fields when the permittivity
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differences are large between the constituents. Even though the
macroscopic response tends to wash out local or microscopic
details, these small details seem to matter when the mixture is
near percolation and the constituent permittivity differences are
large. Because of this effect, the numerical analysis requires a
fairly high degree of detail or one must somelow cover the
crucial details. The approximation employed in this report is a
method which is sensitive to at least some degree tc local
effects.

The pixels are assigned the permittivity vaiue of one of the
constituent materials in order not to lend a composite mixing
bias to the overall soluticn, since to assign a pixel a
permittivity other than one of the coastituent permittivities
would require some sort of assumptinmnn about possible composite
mixing within the pixel region. Such ar assumption can only be
made once some composite mixtur - relationship is established.

FINITE DIFFERENCE CR NETWORK ANALYSIS

Equations (1v) & d (21) may be solved simultaneously and
macroscopically to any accuracy "~*‘ng network analysis or

equivalent v iJinite difference apprcwvimation. The procedure
involves the Jivision of the macroscopic sample into a mesh or
node set .f macroscopiz Lubregions. By introducing a regular

rectapgular resh of »oints {r;} with spacings §r.; to contactlgg
neichbors one obtains a sye*em of linear equatléhs at each 1
~ach point with contacting j n naigiibors

z. =

3 ® ij 0] (74)
or equivalently

z _

3 IDij =0 (75)
where ¢ is the universal displacement flux and Ip = = d¢/dt is tge
universal displacement curreng The summation 1s over the j

contacting neighbors of the 1 point, and 2esh points i and j
contain the entire address information needed to specify each
mesh point. The displacement flux and current are each
determined by the displacement field or displacement current
density normal to the interface surface areas surrounding each
mesh point. The determination of these quantities is performed
as described previously in the discussion of macroscopic
dielectric quantities. Expanding equations (74) and (75) one
obtains

‘?Dwéa--zo (76)
dn(’
5 Ipiy a3 = O (77)

where Dij or its time derivative dDDij/dt = IDij are respectively

21




the mean valued displacement field or current normal to surface
fa;i, and é6aj 4 is the Eurfac% area common to the Gaussian
encfhsures betwéen the ith ana 3 h nhodes. The local displacement

field may be related to the local electric field as

Dlj = ‘1] El] (78)
where D;; and E;; are the mean valueghdisplaﬁsment and electric
fields OR the igférface between the i and j Rodes, 35? €5 1s
the permittivity characteristic between the ith ang 3 noaes.
The mean electric field can be expressed quasistatically as a
potential difference

El] = 6Vlj/6rlj (79)
where Ej; - is the mean electric field, 6Vij = (V;-Vy) is the
potentiaf difference between nodes, and §r;. = [f{—ril is the
internodal separation. The potential or volégge at-khe ith mesnh
node point is denoted as Vi. The electric field E;; is the
component in the direcggon pergﬁndicular to the interface shared
commonly between the i and j nodes. Since rectangular boxes
are selected in this report as the type of macroscopic enclosure,
the surface normal direction lies along the same direction as the
internode gaps Srij when the nodes are placed at the box centers.
Substituting the $ﬂuations (78) and (79),into equation (76)
produces at each it node the sum over the 3 neighbors

z

J
where the notations are as before. The potential drops, Vs =
(V--Vi), are the unknowns in a system of simultaneous equatlgns
fo}med when all nodes are taken together with an exciting
electric field or potential applied across the probe. The
factors other than the potential drops in equation (80) may be
combined into a set of internodal admittances, yielding

(ej4 8Vj4 6aj5)/8ryy =0 (80)

z =
j gl] 6Vlj = 0 (81)

with the internodal admittances just Jiy = (Eij 5aij/6rij).

The arguments made in equations (78) through (81) can be
repeated in a parallel fashion with the universal displacement
current and universal displacement conductivity. One may view
this application of Gauss' law as an integral formalism embodied
by Kirchoff's rules for a universal displacement current. Each
node within the mesh represents a small 'Gaussian' enclosure.
The rules of dicplacement flux/current continuity are then
applied to the boundaries between contacting nodes [37, 48, 49].

BOND OR SITE CENTERED PIXEL PERCOLATION APPROXIMATIONS
The generalized path admittance characteristics g:.; as given

; : ; 1 ;
by equation (81) may be assigned on the basis of %wo plxel
percolation approximations as illustrated in Figure 2: 1) site
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a) Each path linking adjoining nodes in the site pixel
percolation approximation straddles two pixel cell regions.
Since a single constituent permittivity is assigned to each
pixel, the admittance characteristic of the path is the series
combination of the permittivities of both regions.
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b) In the bond pixel percolation approximation each
displacement flux/current path resides within a single pixel cell
region. The path is assigned the admittance characteristic of
the permittivity of the pixel cell.

Figure 2. Site (a) and bond (b) pixel percolation
approximations. [ o o o ] designates the pixel cell boundary,
[ = = = ] outlines a possible displacement flux/current path, and
a [ ® ] denotes a node where paths meet.

centered pixels and 2) bond centered pixels. In both instances,

simulations yield similar trends in the results with some
background changes in the overall percolation.

1) The pixel permittivity/conductivity assignment method in the
case of site centered pixels is to assign each mesh node region
to 4 pixel. In the site representation the internodal paths have

two consecutive admittances/conductances which are treated as a
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series combination.

2) The permittivity/conductivity assignments for the case of
bond centered pixels are that each internodal path represents a
pixel characteristic. Since each pixel has bcen assigned only
one of the constituent characteristics, each path is not a
combination of properties.

Both types of arrangements are discussed in the literature
on percolation problems (37, 46, 47, 49].

LATERAL BOUNDARY CONDITIONS

The overall rectangular node mesh representing a dielectric
composite specimen is solved with exciting electrodes or ‘'plates’
placed in contact with the opposite faces. Continuity of the
displacement field requires that the same amount of displacement
flux/current which begins on one plate terminates on the other

plate. This displacement flux/current boundary condition is
satisfied at the plates when the exciting field is solved
together with equation (81). This leaves an open question as to

how to handle the displacement flux/current on the other
(lateral) faces formed by the rectangular mesh that has been

superimposed on the dielectric specimen. The displacement
flux/current could still enter and exit at the other faces so
long as the overall quantity is conserved. As illustrated in

Figure 3, two types of lateral boundary conditions are
implemented here.

The first and simplest condition is that of 'insulating'
faces, wherein we consider the dielectric specimen to be
electrically isolated or 'guarded' along the lateral boundaries.
In this instance at the lateral boundaries, the normal component
of the displacement field approaches zero as no displacement flux
can leave the specimen. The 'insulating' boundary condition can
be imposed exactly with the computer model although in physical
reality this is more difficult to dc because of the effect of
fringing fields. This condition can be implemented through
equation (81) by having the lateral mesh nodes interact only with
adjacent interior mesh nodes. The 'insulating' boundary
condition is applicable to isolated specimen samples or lattice
cells with mirror symmetries and planes. For example, an
eliipsuid has symmetry planes between each pair of semi-axes, and
the solution for an ortant of the ellipsoid is also the solution
for a cubic repeating lattice of ellipsoids with the same
repeating symmetry boundaries.

A second type of boundary condition is that of ‘'periodic'
boundaries in which the specimen represents a repeated cell in a
cyclic lattice structure. In this case the magnitude of the
normal component of the displacement field is the same at similar
locations on opposite lateral faces. In some cases eilther
boundary condition can be used on the same problem.
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D"(a) t Composite 1 D"(b)

Dielectric
Dy (a) - -+ Di(b)
X = a x =D
Insulating Periodic

Dy(a) # Dj(b) # O D) (a) = D) (k) # O

Dy(a) = Dy(b) =0 Di(a) = Dy(b) =0
Figure 3. Lateral boundary conditions on the composite
dielectric. ‘'Insulating' means that no displacement flux/current
enters or exits the lateral faces. '‘Periodic' means that

entering or escaping flux/current on a lateral face must enter at
a similar location on the opposite lateral face such that overall
displacement flux/current conservation is maintained.

In the case of random isotropic media the lateral
displacement field becomes a vanishingly small statistical
fluctuation and the choice between either set of boundary
conditions has little effect on the overall solution. If the
distribution of dielectric constituents is not uniformly random
but shows an overall anisotropy, a lateral displacement
flux/current may occur and the macroscopic permittivity will be
nonuniformly tensored.

SOLUTION AND COMPUTER IMPLEMENTATION OF THE NETWORK

The mesh approximation is equivalent to an electrical
network or a finite difference grid scheme. The nodes are the
intersections between displacement flux/current paths. The
electrical elements are the displacement flux/current path
admittances between the nodes. The N nodes infer that there are
N simultaneous node equations plus one for the exciting node. An
important prerequisite to solving this set of N+1 simultaneous
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equations is the choice of a numbering scheme. 1In the scheme
adopted here, the nodes are numbered sequentially from the ground
eéectrode and in relation to (x,y,z) coordinate location. The
i node number is

1=x+ (y-1) X + (2-1) X, Yo (82)
where (x,y,z) are integers in the range (1. Xpr 1--Ypg
The node address may be specified by the node number 1 or by @
coordinates (X,y,z). The values X m’ and Z, are the extents

of the rectangular mesh array in eagh dlrectlon

The N+1 simultaneous node equations are solved directly and
methodically by means of Gauss-Seidal elimination, a plodding but
sure fire technique which can be adapted to the mathematics of
complex numbers. Back substitution may be invoked to double
check the consistency of a numerical solution. By solving the
node equations in a sequence that roughly follows the order ot
the expected node potentials (i.e., the solution is worked from
the ground potential up), one can minimize the buildup of
truncation errors. The neighbor nodes of the boundary nodes wrap
around to the opposite lateral face in the case of periodic or
cyclic boundary conditions.

INTERACTION MATRIX

The set of N + 1 mesh equations as formed from equation (81)
can be cast into a matrix form. The elements of this matrix are
the interactions between nodes. The elements along the main
diagonal of the matrix are self-interaction terms corresponding
to the sum of all admittance paths connecting to a node. The
other elements are the neighbor interactions. When the
neighboring node directly adjoins, the corresponding matrix
element is the negative admittance of the path. When the nodes
are not directly joined by a single bond path, the matrix element

is zero. The matrix formalism is convenient because many
standard mathematics packages have libraries and function
capabilities for matrix operations. The set of equations in

matrix form may be written

(¢} = {g} (V} (83)

where {¢®} is a column matrix whose elements are the total
displacement flux at each node. According to the continuity
requirement, all elements of (%} are zero except that of the
exciting flux. {V} is a column matrix whose elements are the
node potentials and {g} is a matrix representing the admittance
interactions between nodes. The admittance matrix {g} 1is
symmetric and most off-diagonal elements are zero as they
represent interactions between pairs of other than nearest
neighbor nodes. (Classical rules of electromagnetism do not allow
flux to jump from one region of space to another without an
intervening path, thus interactions occur only between adjoining
node pairs.) The quantum mechanical formalism does allow for
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nonlocal jumping of displacement flux/current and hence more non-
zero terms in the admittance matrix; however, in this report we
will only deal with the classical case.

In the sparse symmetric matrix case examined here, a
judicious Gauss-Seidal elimination progression proved to be
substantially faster than full matrix inversion, especially when
the N+1 equations become large. Equation (82) tells us that the
maximum node number is the mesh box size which is
N+1 = (X, Y, 25)+1. The number of non-zero terms in any row is
only the number of neighbors in actual contact. By selecting a
node numbering scheme as compact as possible between neighbors it
is possible to solve the matrix with a minimum of memory space
and computer operation. The solution time for the procedure
inplemented here went roughly as the square of the admittance
interaction matrix size N+1. This allowed simulations of pixels
and their mesh networks of up to about 40x40 in two dimensions
and 12x12x12 in three dimensions.

The exponential averaging factor 'a' is computed by
iteration of equation (1) until a consistent solution is reached
between the resultant and constituent permittivities. The
depolarization factor 'A' for binary composites can be solved
from a quadratic solution of equation (2). The depolarization
factor for composites having more than two constituents must be
solved iteratively until a self-consistent solution of equation
(2) is obtained.

VERIFICATION OF NUMERICAL SOLUTION

The numerical analysis has been implemented using the
Hewlett-Packard HP Basic/UX 6.0 programming language, also known
15 Rocay Mountain Basic. This language follows the IEEE Std 754-
198% tor binary numbers. The code is run on an HP 9000 Series
300 workstation with a machine precision of 8 bytes for real
numbers and 16 bytes for complex numbers. The precision for
complex numbers equates to a precision in the mantissa of abcut
one part in 10°°. The accuracy of the numerical solution has
been tested in several ways.

The first and most obvious test was the calculation of the
macroscopic response of a sequence of layers with surface normals
either aligned along or normal to the electric field direction.
This could be accomplished by randomizing selectively on
successively the &, ¢, and 2 axes. No deviations from the
expected limiting Wiener Bounds were found to occur other than
truncation errors in the lowest few mantissa bits. A second test
was to examine the stability of a given composite layout as it
was enlarged or symmetrically folded into another pixel size.
Since the physical problem is still the same in the symmetrical
sense, then the expected solution cannot vary. The observed
results were consistent with our expectations.

We had two methods of matrix inversion available in solving
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the nodal analysis. One was the intrinsic matrix inversion built
into the HP Basic language and the other was the tailored sparse-
advantaged Gauss-Siedal elimination that we developed for the

progran. The two methods agreed with each other to within
machine precision. Furthermore, in either mode the solutions
could be checked by back substitution comparison to the original
problen. We found errors no worse than in the lowest two or

three mantissa bits.

RESULTS

The results of our work are displayed in Figures 4 through
31. Both the exponential averaging factor 'a' and the
depolarization factor 'A' are displayed as the volume fraction ot
the constituents is changed. Both the exponential averagiling
factor 'a' and the depolarization factor 'A' are real numbers (as
opposed to complex numbers) in causal systems, even when the
permittivities of the constituents are complex. This fact
provides an additional simplification of the results. In Figures
6 through 27, the real part of the averaging factor of interest
is denoted with a (+) and the imaginary part with a (-) on the
graphs. The imaginary part remains near zero (as expected) and
tends to fluctuate markedly less than its real counterpart.

Figures 4 and 5 show respectively the resultant permittivity
versus constituent volume for isotropic binary composites of
el=1, =2 and ¢ —10 In each case the Wiener bounds are
drawn along w1th several curves at equidistant spacings of
exponential averaging and depolarization factors. For the case
of nearly equal constituent permittivities as shown in Figure 4,
the exponential averaging and depolarization curves are nearly
indistinguishable. For larger permittivity differences as shown
in Figure 5, the two formulae yield distinctly different results.
In these figures, the permittivity is displayed directly to
demonstrate that data can be presented in this way, but the
curves are squeezed at the ends and lie within a banana-shaped
envelope. With complex permittivities of real and lossy parts
the data become even more difficult to display. Subsequent
figures are thus presented by exponential averaging and
depolarization factor windows whose abscissa limits are the
Wiener bounds and whose ordinate limits are the minimum and
maximum possible constituent volume fractions.

A number of cases are examined and displayed in terms of the
exponential averaging and depolarization windows. The first case
shown in Fiqures 6 and 7 is that of three-dimensional spheres
spaced in an infinite cubic lattice. For small volume fraction
of spheres, this case corresponds correctly to the far field
limit of the depolarization expected for dielectric spheres
embedded within a host. However, as the volume fraction of the
spheres increases, near field changes occur and the
depolarization departs from the far field approximation.
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Figures 8 through 27 present various Monte Carlo simulations
both in two and three dimensions. The two-dimensional cases in
Figures 8 through 13 are complex valued extensions of real-valued
analyses from the earlier work [50]. The numerical permittivity
simulations have been carried out with both bond and site
centered pixel arrangements.

There generally can be a multitude of constituent grain
shapes for various heterogeneous composites or mixtures that can
be modeled. The simplest possibility is a random shuffling of

iso-sized constituent grains. The iso-sized grain case would
probably best correspond with molecular mixing without the
chemical and quantum interactions. In geology, 'sandy'

composites or iso-sized conglomerates could be examples. The
iso~sized constituent grain model is mainly what has been
approximated by our network models in Figures 8 through 23.
Another likely possibility is a composite in which there is a
range of constituent grain sizes randomly shuffled. A ‘'marbled’
mixture would have some distribution of assorted constituent
grain sizes. Many natural composites exhibit this feature to
some degree. Figures 24 through 27 show network simulations
where a preliminary effort has been made to include a limited
range of constituent grain sizes. Oour results indicate :n
increased scatter which is due to the additional fluctuations
induced by having the larger grains present. Also our results
still closely approximate the iso~sized case in that the
effective medium or depolarization factor 'A' is mostly constant.
The calculated values of Lichtenecker's factor 'a' would remain
more constant if the same self-similarity pattern were maintained
over a composite sample which is much larger than the largest
constituent grain. Obviously our network simulations are very
limited in this respect. Only near the percolation threshold
transition is the self-similarity aspect primarily evident in the
grain layout of the iso-sized shuffling case [38]. 1In the even-
numbered Figures 8 through 26 the percolation is approximately
marked at the centers ot transition in the 'a'-factor.

Indications from the numerical simulations are that both the
exponential averaging factor 'a' and the depolarization factor
'A' are nearly congruent for representing the resultant permit-
tivity of composite mixtures where the constituent permittivities
difter by less than a factor of two such as in Figures 14 and 15.
When the constituent permittivities differ by more than a factor
ot two, the exponential averaging factor and depolarization
factor diverge according to the mixture type. This is evident in
the Figures 8 through 13 and 16 through 27. The implication is
that the resultant permittivity is dependent on the randomness
type involved in the composite, such as whether the constituent
grains are iso-sized or have a self-similar range of assorted
S17205.,
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Figure 14. Three-dimensional composite mixture with constituent

permittivities of €,=(1,0) and €,=(1,1), a-windowed. Each site
or node cluster is randomly assigned one of the permittivities.
Resolution size at 10x10x10 bonds.
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Figure 15. Three-dimensional composite mixture with constituent
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Figure 16. Three~-dimensional composite mixture, a-windowed,

with constituent permittivities of €,=(1,0) and €,=(1,10)
randomly shuffled in a site grid, 10x10x10. Ratio of €,/€,; is
(1,10)/(1,0)=(1,10).
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Figure 17. Three-dimensional composite mixture, A-windowed,
with constituent permittivities of €,=(i,0) and €,-=(1,10)
randomly shuffled in a site grid, 10x10x10. Insulated boundary
conditions apply. The depolarization remains at about .5.

36




COMPLEX RANDCM 3D NETWORKS

-
[+]
-4

[ ] T 1 T L) T L] T T
C £ - ~
O -I— S 1
Pefin i i
D) :n 6 | B
O o - .
W g .4} -

@ i ey sty it o,
o] 2L " gﬁo"‘w.b'i#‘ ‘?' L] i
C **o ’: “""1
| Rl i ]
g\l . :\__H\‘—“ -— ’:‘1“. ; + i
C -2} .:.?o"# .
(3] L + bt -
> -.4al &’1.“1“"4- -
T o -y i

£ F

— =-.6}F ~
a o - =
X ¥ -8} 4
w g = -

w ..’ B L. 1 A 1 Fa—— a 1 ! A 1 " L " i A

2.8 1 .2 .3 [} -] .8 .7 .a .8 1.
Uolume fraction
Figure 18. Three-dimensional composite mixture, a-windowed,

with constituent permittivities of €,=(1,0) and €,=(1,100)
randomly shuffled in a site grid, 10x10x10.

COMPLEX RANDOM 3D NETWORKS

6

c
D

» 6 -
5 R ot A Ay,
N PO . + o ’w,"*ﬂ’”’
— ‘“"‘1¢.,~ '“u“"?*r A
( 4 LY MRS
0 be
O
5 2
)

O

e L _ —
-~~~ f..___‘_____h e
-2
a 1 2 3 4 = .6 7 -] 1] 1.0
Uolume fraztion
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with constituent permittivities of €,=(1,0) and €,=(1,100)
randomly shuffled in a site grid, 10x10x10. The depolarization
slightly deforms with a minimum around the percolation threshold.
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Figure 20. Three-dimensional composite mixture, a-windowed,

with constituent permittivities of €,=(1,0) and €,=(1,1000)
randomly shuffled in a site grid, 10x10x10. 1Insulated lateral
boundary conditions apply.

COMPLEX RANDOM 3D NETWORKS

1.8
8
c
0
I € v plaradst]
+? ga30ke7e ¢
N £ 4 st *t+#'t $
— + *b+ + “’? + .3; -
L 4 Fa t ‘*o‘? 3?‘
o L 4 . "$
0
o 2
[i}]
(]
[ I [, L R - L
-2
a { 2 3 q .5 B 7 a -] 1.8
Uolume fraction
Figure 21. Three-dimensional composite mixture, A-windowed,

with constituent permittivities of €,=(1,0) and €,=(1,1000)
randomly shuffled in a site grid, 10x10x10. The depolarization
deforms with a minimum around the percolation threshold.

38




COMPLEX RANDOM 3D NETWORKS

‘E ' B il T T L] L g T Ll T T
L= ol
O i 7
S5 = N i
(D] ; 6 .
6] o = .
Li q L b
lE " - I'i:"#tt“'lt:+“' _
o, +"* 71&’
C 2 4+ " " -
- - I, -
o)) s - I - J SOy — b!-: .............................. -—
@) s + ¥ + i
C -2} + 1 .
i L Thet 4
> —afl , §t33” + -
T e 431" ]
Z -8l i
a . - -
x Y -8}l i
LLJ L = -
©
W_’ B 1 P L 1 1 1 A L 1 i i " 1 i
B.@ t .2 3 q -] .B .7 .a .9 1.8
Uolume fraction
Figure 22. Three-dimensional composite mixture, a-windowed,

with constituent permittivities of €,=(1,0) and €,=(1,1000)
randomly shuffled in a site grid, 10x10x10, with periodic
boundary conditions.
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Figure 23. Three-dimensional composite mixture, A-windowed,

with constituent permittivities of €,=(1,0) and €,=(1,1000)
randomly shuffled in a site grid, 10x10x10, with periodic
boundary conditions. The change from insulated to periodic
bcundary conditions has little effect on this random case.
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Figure 24. Three-dimensional composite simulation with 8x8x8
sites, a-windowed, with permittivities € =(1,0) and €,=(0,1000) .
Each 51ze stage 2x2x2, 4x4x4, and 8x8x8 is randomly scaled and
shuffled.
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Figure 25. Three-dimensional composite simulation with 8x8x8
sites, A-windowed, with permittivities €,=(1,0) and €,=(0,1000).
Each size stage 2x2x2, 4x4x4, and 8x8x8 is randomly scaled and
shuffled. Note that the random composites grains have more
scatter as a result of the wider size distribution.
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Figure 26. Three-dimensional composite simulation with 8x8x8
sites, a-windowed, with permittivities €,=(1,0) and €,=(0,107).

Fach size stage 2x2x2, 4x4x4, and 8x8x8 is randomly scaled and
shuffled.
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Figure 27. Three-dimensional composite simulation with 8x8x8
sites, a-windowed, with permittivities €,=(1,0) and €,=(0,107).
Each size stage 2x2x2, 4x4x4, and 8x8x8 is randomly scaled and
shuffled. Even at this large ratio of permittivities, back
substitution revealed little error.
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Figure 28. The Maxwell-Wagner effect of mixing a low loss
constituent with a high loss constituent for permittivities
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EXPONENTIAL ARUERAGING FACTOR at 9

30 T T T T T | SR T —/ 18
|
- | -
B i ¢
y -
™ o —
w \ ] ~ O
-
i Q
ER 3
; 1S \ _.5318
3 I P
f | o I3
E 3 o~
m,
& 3
5 !
o [
a e
0.0 0.3 t O

Volume Fraction C(group #1)J
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Figure 30. The Maxwell-Wagner effect of mixing a low loss

constituent with a high loss constituent for permittivities
€,-(1,0) and €,=(0,100) and a=0.25.
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Figure 32. Run times for two-dimensional simulations.
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FUTURE WORK

The completion of the design and computer coding for the
bond and site models for composite dielectrics opens up a large
range of research possibilities. Future work should include:

a) Analysis of composites with three or more components.
Studies allowing mixture formulae to be employed within the
pixels in a fashion self-consistent with the overall composite
solution.

b) Studies of the mapping of the displacement field and the
electric field within specimens.

c) Extension to cases of dyadic or tensorial permittivity
constituents and composite dielectric response.

d) Study of fractal and self-similar composites especially
random fractals and scaling of percolation. Fractal
dimensionality and spatial correlation layout measurements would
reflect the degree of self-similarity and also allow spectral
dimensionality considerations.

e) Investigation of the Maxwell-Wagner effect over different
types of composite mixtures.

f) Development of engineering design code, tables, and
approximations which make these composite mixture formulae easily
accessible.

4) Extension to pole-zero analysis and design of artificial
dielectrics as well as the utilization of the Kramers-Kronig
relations for cross-checking laboratory data as to causality or
the interpolation and smoothing of partial data gaps. Examination
of the relationship between our network studies and the phenomena
of universal type of frequency dependence in ponderable
dielectric properties as exhibited by many substances.

h) Studies of stretched, elongated, and stratified composites.
1) Studies of quantum overlap, quantum sensitive, and non-local
effects.
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APPENDIX A. Depolarization

The resultant permittivity of a dielectric ellipsoid of one
permittivity embedded in a medium of another permittivity can be
determined by solving Laplace's equation within each of the media
using confocal ellipsoidal harmonics [16-18, 30, 31, 51-55]. The
solutions for the two regions are then matched at the dielectric
interface according to the boundary conditions of continuity of
the normal component of the electric displacement field and
continuity of the tangential component of the electric field. A
geometric factor related to the ellipsoid shape which emerges
from the solution is

abc © du

Ap = | (p=a,b,c)
p 2 o R (u+p?)

where a, b, and ¢ are the ellipsoid axes and A_ is the depolari-

zation factor when the overall fields are alig&%d along an axis.

Accordingly, within the integral p assumes the value of a, ta or
R

c. The func}ion R 1is defined by positive =
(x+a2)(x+b2)(x+c ). Integration by parts yields the identity
A +A+A. = 1. Thus the relation for the case a=b=c is A =1/3.

The wo-dimensional case is obtained by examining the 1limit as
one of the ellipse axes goes to infinity so as to effectively
eliminate it from the integral. Thus in the two-dimensional case
the identity is A,+Ay = 1 and for a=b we have A = 1/2. The same
procedure can be appfied to solve the one-dimensional case giving
the trivial solution of A = 1. In general, a spheroid (ellipsoid
with a=b=c) has a depolarization of A = 1/N, where N is the
number of spatial dimensions. Other oblate and prolate cases can
also be evaluated directly with the depolarization integral.
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APPENDIX B. Program Codes

- kK = Ak =k e K am K am K e ok m K e A = K = K = k= k=
"DIEL_BOND"
Program in HP BASIC for numeric analysis based on the bond model

P B T AT S S S S SR S ST S S
10 ! < < < < < < < "DIEL_BONDS" > > > > > > >
?O !*_*_..*—*—*_t-*—i_*—*—*—*—ﬁ_*—*-*_*_*
10 ! A main program to evaluate a 3 dimensional composite complex
40 ! dielectric response for a pixel network of capacitors.
50 ! S. R. Wallin, 6/1/91
60 !*_*_*_*_*_*—*_*_*—*—*_*—*—*—*—*—*—*
70 PRINT " MEMORY IS";VAL(SYSTEMS("AVAILABLE MEMORY"))/8;" (reals)"
80 OPTION BASE 1
90 DATA 1,0,2,1,4,3,7,6,11,10,16,15,22,21,29,28,37,36 ! Prog diel data
100 COM /Pass/Relay(0:7) ! for sharing to subs 1 var
110 COM /Pixel/Chdr$(80],Dhdr$(80], INTEGER Lxtnt,Pix1(1:20,1:20,1:20)
120 COMPLEX Hpiv(1:202),Hpr(1:10000) ! dim to reasonable size for 3D
130 DIM Hdr$([80) ! available string for headers
140 COMPLEX Admt (0:7),Admsl,Adms2 { neighbor admittance values

[]

150 INTEGER Kube, Xt (0:7),Yt(0:7),2t(0:7) neighbor addresses

160 COM /Memr/Graf(1:512,1:4),Ahdr$(80),Bhdr$(80),INTEGER Rep,Kwd |trials mem
170 t**x%x> COM areas can be reaccessed with next RUN if identical name & sizes
180 t***> nb., max Lside >= .5 + cube root(.25 + 2*(max dim - 1) )

190 LET Start=TIMEDATE

200 INTEGER Lside,Kond, Nodesz

210 INTEGER Ptrn,Nd,Nd1l,Nd2,Boxes,Slant,Sprss

220 INTEGER Xkin,Ykin, Zkin,Xcnt,Ycnt, Zcnt,Xaddr, Yaddr, Zaddr

230 INTEGER Qdrnt,Rptr,Trans,Pose,Grpt,Tls,Sctr, Itmp,Occp,Nsvf,Rsw

240 INTEGER Hmem, Hedge, Hpremax, Hopped, Hsteps, Hnde,Hecnt ,Kcnt , Hkm

250 INTEGER Cnmb,Hnbr(0:7),Hcnr,Jxt

260 DIM Frpx(0:9),Msd$[60],FlnS$([(60],Fsv$(60)

270 COMPLEX Ctmp,Resp,Hnrm,Diel(1:9)

280 LET Grpt=0 ! Initialize the data storage counter
290 !*_*_*—*_*_*—*-*_*—*-*—t—*—*—*—*—*—*
300 ! for which the integer variables roles are:

3110 ! Relay = an available common pass variables

320 ! Lside = the # of pixel capacitor elements encounter along an edge
330 ! of the square of pixels

340 ! Tls = Lside or Lside/2 1f 2x2x2 tiling

350 ! Qdrnt = guadrant pixel array expanding switch, O=off & l=on

360 ! Px tot = total # of pixels in square = Lside*Lside

370 ! Rsw = even/odd switch, etc

380 ! Kond = the boundary condition on the sides of the o-erall composite
190 ! capacitor, 1) insulating sides or 2) periodic or sides which
400 ! wrap around

410 ! Nodesz = the maximum number of interaction nodes in forming

420 ! network, with 0 as the ground or base plate, 1 as center
430 ! node, and the final node number for the top plate.

440 ! Its value is: L*L*L/4+L*L/4-5L/2+4

450 !

460 ! X SECTION OF CAPACITOR CUBE

470 ! |
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480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
(]
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020

I % =
PRINT
PRINT
PRINT
PRINT
PRINT
t o f
! The
|

=S E=TE=mzsS=S==E==ETz===== tOp node or plate

X XX XXXXXXX
XXX XX XXXXX
XX XXXXXXXX
XX XXXXXXXX
XXX XXX XX X X center node at midpoint
X XXX XXX XXX
X XXX XXXXXX
XX XXXXXXXX
XX XX XXX XXX
==s================== base node or plate
_ ... X's represent nodes
Pixl() = the overlaying matrix representing the capacitor pixels
Dsplc() = displacement current of pixel per normalized volt/meter
Potnt () = pixel voltage relative to one volt across entire sample
Diel() = dielectric value or admittance value of a capacitor pixel
attached to addresses represented in the pixel grid
Frpx() = volume fractions associated with pixel types

Xt(),Yt() = neighbor addresses
Fln$ = string refering to a filename, Hdr$ = 80 chars
Ahdr$,Bhdr$ = headers of 80 chrs for Data Title & ID for COM /Memr/
Chdr$,Dhdr$ = headers of 80 chrs for Pixel Title & ID for COM /Pixel/
Ptrn = choice of pixel grid filling pattern
Nd = a single number label for a node
Nd1l,Nd2 = refers to a 1lst node & a 2nd node @ specified by single
node numbers

Xkin,Ykin, Zkin = kinship 3D address of a node number ie (x,y,z)
Xcnt,¥cent,Zcnt = step counters to pixels neighbouring a node in 3D
Xaddr,Yaddr, 2Zaddr = addresses of neighbouring pixels in 3D
Boxes = total concentric boxes fitting within pixel grid or

number of 2x2 cell blocks along an edge on pixel grid
Jxt = a juxtaposition counter
Kube = inside cube territory test
Slant = 0 if foward slash or 1 if backslash slanting capacitor
Rep,Rptr = overall number of repeats, Kwd=# of data storage types
Grpt = overall plus transpose repeats for use of data storage
Sprss = Suppression of printout details
Trans,Pose = Pixel transpose selection
Resp = Overall dielectric response of pixel sample along E
Nsvf switch indicating if intended to save repeat info

Tmp, Tmpl, Tmp2,Vt1l,Vt2 = reals available for various uses
K o A e K e N e K e A e Ak K e K m K e K e K m Rk = R o A o ok~ ok

" > > > Happy capacitor composite adventures in 3 dimensions < < <"
" preformed on ";DATES(TIMEDATE);
" at ";TIMES(TIMEDATE)

# # ¥ ¥ # # # # 4 + # ¥ ’ # ¥ ] ¥
hopper reduction subarray: S. Wallin, July 1990
> large symmetric sparse matrix

| 1,1] <=< NODE PAIR
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1030
1040
1050
1060
1070
1080
1090
11c0
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1480
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1200
1510
1520
1530
1540
1550
1560
1570

{INPUT "Oct- fold symmetry expansion of pixel grid? 0) No 1) Yes”,Qdrnt

PR
DI
IN
IF
IF
IF
IF
IF
1F
1F
IF
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
IN
IF
DI
IN
LE
IF
IF
IF
IN
Tl
1F
LE

LE

. .. The hopper subarray moves
. .. down as pivoting progresses
\/ lg sym sparse matrix .o

- - . . - . . . . - - . - - . . . - . . - .

The "H" prefix is mainly used to denote variable use in hopper program

Hnbr(*) = neighbor nodes
Hedge = altitude or base or diag # elements of reduction hopper
Hmem = the total # of elements contained within reduction hopper
Hpremax = same as Hmem but less Hedge (ie less largest row)
Hsteps = extent of larger interaction matrix upon hopper reduces
Henr = corner node #s of insulated sides Pixel grid cube
Hpiv() = Pivoting vector of node reduction
Hpr() = working hopper array of matrix reduction

# # # # # # # # ¥ # # # # ¥ # # #
INT “>Try hopping along to a solution of sparse matrices at ";

SP "IO to be: O)default 1l)lab 3.5"" 2)lab hardisc 3,4)A,B office ";
PUT "S)user defined”,Nd

Nd<O THEN STOP

Nd=0 THEN Msd§$=""

Nd=1 THEN Msd$=":CS80,700,1"

Nd=2 THEN Msd$=":CS80,700"

Nd=3 THEN Msd$=":CS80,703,0"

Nd=4 THEN Msd$=":CS80,703,1"

Nd=5 THEN INPUT "Name (completely) storage?",6 Msd$

Msd$<>"" THEN PRINT RPTS$(" ",50);"storage";Msd$

INT " The pattern choices are:"

INT " 0) internal, via COM /Memr/"

INT * 1) from file storage"”

INT " 2) every pixel filled by user"”

INT * 3) random (i.e. well mixed)"

INT " 4) by slanted fill level"”

INT " 5) with an circle or ellipse of which can be tilted”
INT * 6) with strata”

INT " 7) concentric boxes"

INT " 8) an ellipse with host & inclusion (2 components only,”;
INT " but symm wrt 1/2 vol)"

PUT "Select design of pixel grid? (see above)",Ptrn
Ptrn<0 THEN STOP
SP " & boundary conditions? 1) Insulative ";
PUT "2) Wrap around or periodic”,Kond
T Kond=1 !TEMPORARY
Kond<0O THEN STOP
Kond=0 THEN Kond=1
Kond>2 THEN Kond=1+BIT(Kond+1,0)
PUT “"Use 2x2x2 tiles on pixel grid? 0) No 1) Yes",Tls
8=0 !temporary until programmed
Tls<O0 THEN STOP
T Tls=1+(Tls=1)

T Qdrnt=0 !temporary until programmed
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1580 IF Qdrnt<0 THEN STOP
1590 LET Qdrnt=1+(Qdrnt=1)
1600 SELECT Ptrn

1610 CASE =0

1620 IF Lxtnt<2 THEN

1630 PRINT " Are Pixels there in memory? ..idled ..start again”

1640 STOP

1650 END IF

1660 IF Lxtnt>21 THEN PRINT " .. there may be toco many Pixels"”

1670 REDIM Pixl(l:Lxtnt,l:Lxtnt,l:Lxtnt)

1680 LET Lside=Lxtnt*Qdrnt*Tls

1690 PRINT " From internal memory via COM, Pixels";Lxtnt;"x";Lxtnt;”x";Lxtnt;",
title,”

1700 IF Chdr$<>"" THEN PRINT Chdr$

1710 IF Dhdr$<>"" THEN PRINT Dhdr$

1720 CASE =1 ! Get pixels from file

1730 INPUT " Enclose (in """"g) file name to contain pixel pattern?",Fln$

1740 IF Fln$="" THEN STOP

1750 IF POS(Fln$,":")=0 THEN Fln$=Fln$&Msds$

1760 DISP " File named """;Fln$;""" ([";LEN(Fln$);") characters)";

1770 DISP " is being read from storage"

1780 ASSIGN @Pixsrc TO Fln$;FORMAT OFF

1790 ENTER @Pixsrc;Chdr$,Dhdr$;Lxtnt { NB header assigned length of 80

1800 PRINT " Pixels contained in file """;Fln$;""", entitled with"

1810 PRINT Chdr$

1820 PRINT Dhdr$

1830 REDIM Pixl(1l:Lxtnt,l:Lxtnt,1l:Lxtnt) ! read initial Pixl(*) array

1840 ENTER @Pixsrc;Pixl(*) ! retreive pixels from file

1850 ASSIGN @Pixsrc TO * ! close file

1860 LET Lside=Lxtnt*Qdrnt*Tlg { actual Pixel side anticipated

1870 PRINT

1880 CASE ELSE ! Generate pixels

1890 DISP "How big a capacitor pixel grid in elements/side? *;

1900 INPUT "(even #, max 20 int addr 1lmt)”,Lside

1910 IF Lside<0 THEN STOP

1920 IF Lside<>SHIFT(SHIFT(Lside,1),~-1) THEN

1930 PRINT " Odd”;Lside;"Pixel length changed to even”;

1940 LET Lside=SHIFT(SHIFT(Lside,1),~-1)

1950 PRINT Lside

1960 END IF

1970 IF Lside=0 THEN Lside=2

1980 LET Lxtnt=Lside ! initial Pixel side length

1990 LET Lside=Lside*Qdrnt*Tls ! Pixel side length anticipated

2000 IF Lside>32 THEN PRINT " ... near integer addressing limit"

2010 END SELECT { end Ptrn test

2020 PRINT

2030 1IF Tls=2 OR Qdrnt=2 THEN PRINT " Pixels now
measures”;Lside;"x";Lside;"x";Lside

2040 PRINT " Pattern=";Ptrn;")";Lside;"x";Lside;"x";Lside

2050 IF Tls=1 THEN PRINT "pixels,";

2060 IF Tls=2 THEN PRINT "tiled pixels,";

2070 IF Kond=1 THEN PRINT " insulated or ""D"" field parallel to edge."

2080 IF Kond=2 THEN PRINT " periodic or voltage wrapping around at edges."”

2090 !ALLOCATE REAL Dsgplc(Lside,Lside,Lside),Potnt(Lside,Lside,Lside)

2100 !**»> Initializing
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2110 MAT Diel=(CMPLX(0,0))

2120 DISP "Dielectric sources? ";

2130 DISP "1) (from program) 2) user ";

2140 INPUT "3) by steps 4) lossy/real binary ",Nd
2150 IF Nd=0 THEN Nd=2

2160 SELECT Nd

2170 CASE =1

2180 FOR Nd1=1 TO 9

2190 READ Diel(Nd1l)

2200 NEXT Nd1l

2210 CASE =2

2220 FOR Nd1=1 TO 9

2230 DISP "Give dielectric complex value at";Ndl;

2240 INPUT "? (or enter (-real,0) if to cease)”,Diel(Nd1l)

2250 IF REAL(Diel (Ndl))<0O THEN

2260 LET Diel (Nd1)=CMPLX(0,0)

2270 LET Nd1=9

2280 ELSE

2290 PRINT "diel(";Ndl;"}=(";VALS(DROUND(REAL(Diel(Nd1l)}),4));",";
2300 PRINT VALS(DROUND (IMAG(Diel (Nd1)),4));"),";

2310 END IF

232¢C NEXT Nd1l

2330 CASE =3

2340 INPUT "Complex dielectric value of pixel type ""[1]""2",Ctmp
2350 DISP "Multiplier of progression for each succeeding value ";
2260 INPUT “"to fill [2),{3),..,{9] 2?",Tmpl

2370 FOR Nd1l=1 TO 9

2380 Diel (Nd1l)=Ctmp

2390 Ctmp=Ctmp*Tmpl

2400 PRINT “"diel[";Ndl;"]=(";VALS(DROUND(REAL(Diel(Nd1)),4));",";
2410 PRINT VALS (DROUND(IMAG(Diel (Nd1)),4));"),";

2420 NEXT Nd1l

2430 CASE =4

2440 DISP "Constituent (1] is solely imaginary(lossy), ie=(0, _),";
2450 INPUT " what is the value? ",Tmpl

2460 LET Diel(1)=CMPLX(0,Tmpl)

2470 DISP "Constituent (2] is solely real, ie=(_,0),";

2480 INPUT " what is the value? ",Tmpl

2490 LET Diel(2)=CMPLX(Tmpl,0)

2500 CASE ELSE

2910 STOP

2%20 END SELECT

2530  PRINT

2540 LET Sprss=1

2550 IF Nodesz<32 THEN

2560 INPUT "Surpress screen listing details, 0) No 1) Yes?",Sprss
2570 IF Sprss<(0 THEN STOP

2580 END IF

2590 INPUT "Any overall repeats (0O=single manual run)? ",Rep

2600 LET Rep=SHIFT(Rep,-1) t! double if conjugates

2610 LET Relay(0)=Rep ! Manual when Relay=0

2620 LET Relay(1)=SHIFT(Rep,1)+1 | repeat conjugates

2630 IF Rep<O THEN STOP

2640 IF Rep=0 THEN LET Rep=1 { If manual, still go thru once

2650 LET Nsvf=0
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2660 IF Rep>1 THEN

2670 INPUT "Save data in a file? O=No 1l=Yes ", Nsvf

2680 LET Nsvf=BIT(Nsvf,O0)

2690 IF Nsvf=0 THEN

2700 LET Fsv$=""

2710 ELSE

2720 INPUT "Name a new file to receive data output ",Fsv$

2730 IF Fsv$<>"" THEN LINPUT "Title or description? (<80) ",Ahdr$
2740 END IF

2750 END IF

2760 INPUT "Desire transpose of pixel grid? 0) No 1) Yes",Pose

2770 IF Pose<(Q THEN STOP

2780 LET Pose=1+BIT(?Pose,0)

2790 REM " Solution acheived by a sparse matrix reduced pivoting technique”
2800 t***>> Overall repetition, may require additional editing

2810 LET Stmrp=TIMEDATE { Timer for repeat"

2820 LET Kwd=4 ! user has selected to program for 4 data columns
2830 REDIM Graf (1l:Rep,l:Kwd)

2840 MAT Graf=(0) ! Intialize to zero

2850 FOR Rptr=1 TO Rep

2860 LET Rsw=BIT(Rptr,0) {Even=0/0dd=1 switch

2870 {ILET Grpt=Grpt+l ! Increment data store counter
2880 LET Grpt=Grpt+Rsw ! !Increment storage counter(on 2s)
2890 IF Relay(0)<>0 THEN LET Relay(0)=Rptr !Standard option of Relay
2900 MAT Frpx=(0) tReset volume fractions to O
2910 MAT Diel=CONJG(Diel) ! lconjugation option

2920 {!{IF Rptr>0 AND Rptr MOD Lside*Lside=0 THEN MAT Diel=CONJG(Diel)!!Conjg
2930 {**> if Ptrn=0 internal or Ptrn=1 then Pixels read from file
2940 IF Ptrn=2 THEN CALL Pix13d fill

2950 IF Ptrn=3 THEN CALL Pix13d_rand

2960 IF Ptrn=4 THEN CALL Pix13d_tilt

2970 IF Ptrn=5 THEN CALL Pix13d _ellps

2980 IF Ptrn=6 THEN CALL Pixl3d_strat

2990 IF Ptrn=7 THEN CALL Pix13d_cbox

3000 IF Ptrn=8 THEN CALL Pix12d 3d

3010 IF Tls=2 THEN

3020 LET Xkin=SIZE(Pixl,1) ! redimensioning

3030 LET Ykin=SIZE(Pixl,2)

3040 LET Zkin=SIZE(Pixl, 3)

3050 LET Nd1=2*(Xkin+Ykin+Zkin) DIV 3 ! ave new dimension

3060 LET Nd2=SHIFT(Xkin*Ykin*Zkin,-3) 1| 8*Xkin*Ykin*Zkin

3070 REDIM Pix1(1:1,1:Nd2) ! shifting Pixl array contents
3080 FOR Xcnt=(Xkin-1) TO O STEP -1

3090 FOR Ycnt=Ykin TO 1 STEP -1

3100 LET Pixl(1,1,Xcnt*2*Ykin+Ycnt)=Pix1(1l,1,Xcnt*Ykin+Ycnt)
3110 NEXT Ycnt

3120 NEXT Xcnt

3130 REDIM Pix1(1:Nd1l,1:Nd1l,1:Nd1l) ! set new array dimen

3140 FOR Xcnt=Xkin TO 1 STEP -1 ! tiling 2x2

3150 FOR Ycnt=Ykin TO 1 STEP -1

3160 ILET Itmp=Pixl{(1,Xcnt,Ycnt)

3170 LET Xaddr=SHIFT(Xcnt,-1) ! effective 2* op

3180 LET Yaddr=SHIFT(Ycnt,-1)

3190 LET Pixl(1,Xaddr,Yaddr)=Itmp

3200 LET Pix1l(1,Xaddr-1,Yaddr)=Itmp
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3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
334G
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
1600
3610
36,20
3H 30
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3749
3750

LET
LET

Pixl (1, Xaddr,Yaddr~-1)=Itmp
Pixl (1, Xaddr-1,Yaddr-1)=1tmp

NEXT Ycnt
NEXT Xcnt

END IF

IF Qdrnt=2 THEN

LET Nd1=
LET Nd2=

(SIZE(Pixl,1)+SIZE(Pix1,2)+SIZE(Pix1,3)) DIV 3
SHIFT(Nd2,-1)

REDIM Pix1(1:Nd2,1:Nd2,1:Nd2) ! redim to dble guad duplic
FOR Xcnt=Ndl TO 1 STEP -1

LET Xaddr=Nd2+1l-Xcnt
LET Xkin=SHIFT(Xcnt+1,1)
LET Ykin=BIT(Xcnt+1,0)

quad complement X counter
effectively DIV 2 op
effectively odd<=>even op

- = =

FOR Ycnt=1 TO Ndl

LET Yaddr=Nd2+1l-Ycnt ! quad complement Y counter
LET Itmp=Pix1(1l,Xkin,Y¥cnt+Ndl*Ykin)
LET Pikl(l,ant,cht)=Itmp ! Itmp takes care of redim elements
LET Pix1l(1,Xaddr,¥cnt)=Itmp
LET Pix1l(1,Xcnt,Yaddr)=Itmp
LET Pix1l(1,Xaddr,Yaddr)=Itmp
NEXT Ycnt
NEXT Xcnt
END IF
LET Lside=SIZE(Pixl1,1) ! update Pixl extent along edge
LET Px_tot=Lside*Lside*Lside ! update actual Pixl volume
LET Boxes=SHIFT(Lside,l) t 1/2 of edge length in Pixls

IF Boxes<l THEN PRINT "WARNING! may be too small of a pixel grid"
LET Nodesz=SHIFT(Lside*Lside*(Lside+1),2)-SHIFT(5*Lside,1)+4
{***x> Tranpose of Pixel grid

LET Trans=
'FOR Trans=

Pose ! if loop then use next line
1 TO Pose

IF Trans=2 THEN ! Tranpose in @ Xplanes

PRINT *

TRANSPOSING about the X direction”

FOR Xcnt=1 TO Lside
FOR Ycnt=1 TO Lside

FOR

Zcnt=(Ycnt+1l) TO Lside

LET Itmp=Pixl(Xcnt,Zcnt,Ycnt) !swap Ycoordinate<->Zcoordinate
LET Pixl(Xcnt,Zcnt,Ycnt)=Pixl (Xcnt,Yent, Zent)
LET Pixl(Xcnt,Ycnt,Zcnt)=Itmp

NEXT Zcnt
NEXT Ycnt
NEXT Xcnt
END IF
!***> Evaluation of pixel type volume fractions
IF NOT (Sprss) OR Lside<l0 THEN PRINT " Pixels";Lside;"x";Lside;"x";Lside
FOR Xcnt=1 TO Lside by X-plane sections
IF NOT (Sprss) OR Lside<l0 THEN PRINT RPTS$(" ",Boxes);"X=";VALS(Xcnt)
FOR Zcnt=Lside TO 1 STEP -1 'Z printout by rows, largest Z lst row
FOR Ycnt=1 TO Lside 1Y printout across, increasing Y
LET Frpx(Pixl(Xcnt,Ycnt,Zcnt))=Frpx(Pixl(Xcnt,Ycut,Zcnt))+1
IF NOT (Sprss) OR Lside<l10 THEN PRINT " ";VALS$(Pixl(Xcnt,Ycnt,Zcnt));
NEXT Ycnt
IF NOT (Sprss) OR Lside<10 THEN PRINT
NEXT Zcnt
NEAT Xocnt
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3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
41300

MAT Frpx=Frpx/(Px_tot)
PRINT " Volume %s: “;
FOR Nd=1 TO 9
IF Frpx(Nd)<>0 THEN PRINT PROUND{100*Frpx(Nd),-1);"%=>[";Nd;"),";
NEXT Nd
PRINT
IF Frpx(0)<>0 THEN PRINT "WARNING! check pixels”
DISP " .. wait";Rptr;"of";Rep;".. solving node interact matrix,";
DISP Nodesz;"by";Nodesz;"from time ";TIMES (TIMEDATE)
LET Tmp=TIMEDATE ! Benchmarker
{***> HOP technique of sparse matrix reduction
PRINT " Solving node INTERACTION matrix";Nodesz;"x";Nodesz;"via hopper"”
LET Hedge=SHIFT(Lside*Lside,l)+Lside-2 thopper edge, max interact diff
LET Hmem=(1l.0+Hedge)*Hedge/2 ! total hopper memory requirement
LET Hsteps=Nodesz
LET Hpremax=Hmem-Hedge
REDIM Hpiv(1:Hedge),Hpr(1l:Hmem)
MAT Hpiv={CMPLX{(0,0))
MAT Hpr=(CMPLX(0,0))

LET Hkm=0 t 0,1,3,6.. previous hopper row end
FOR Hnde=1 TO Hedge { Filling hopper work array
IF NOT (Sprss) THEN PRINT " node's";Hnde;" lower neighbors are";
FOR Sctr=0 TO 7 ! Diagonal or self interact terms

IF Kond=1 THEN CALL Cv3ndi(Hnde,Lside,Sctr,Xt(Sctr),Yt(Sctr),Zt(Sctr))
IF Kond=2 THEN CALL Cv3ndp(Hnde,Lside,Sctr,Xt(Sctr),Yt(Sctr),Zt(Sctr))
LET Kube=(Xt(Sctr)<l OR Xt(Sctr)>Lside OR Yt (Sctr)<l) !in cube?
LET Kube= NOT (Kube OR Yt(Sctr)>Lside OR 2Zt(Sctr)<l OR Zt(Sctr)>Lside)
IF Kube THEN
LET Admt (Sctr)=Diel (Pixl(Xt(Sctr),Yt(Sctr),2Zt(Sctr)))
IF Kond=1 THEN ! adj for insl BC on Pixel grid
LET Hcnr=(Xt(Sctr)=1 OR Xt(Sctr)=Lside)!Pix on corner
LET Hcnr=(Hcnr AND (Yt(Sctr)=1 OR Yt(Sctr)=Lside))
LET Hcnr=(Hcnr AND 2t (Sctr)>1 AND 2t(Sctr)<lside)
IF Hcnr THEN ! test if corner
LET Jxt=SHIFT(SHIFT(2t(Sctr),1),-1)+BIT(BINCMP(Zt(Sctr)),0)
LET Admsl=Diel (Pixl(Xt(Sctr),Yt(Sctr),Zt(Sctr)))
LET Adms2=Diel (Pixl(Xt(Sctr),Yt(Sctr),Jxt))
LET Admsl=Admsl*Adms2/(Admsl+Adms2)

LET Admt (Sctr)=Admsl ! admittance of path
END IF ! end of Hnde=Hcnr test
END IF ! end if for Kond=1 test
LET Hpr (Hkm+Hnde)=Hpr (Hkm+Hnde) +: ‘*(Sctr) !self interact
IF BIT(Sctr,0)=0 THEN ! find out lower Z neighbors
IF NOT (Sprss) THEN
PRINT " (";VALS(Xt(Sctr));",";VALS(Yt(Sctr));",";
PRINT VALS(Zt(Sctr));")e";
END IF
SELECT Kond
CASE =1
LET Hnbr(Sctr)=FNNni(Xt(Sctr),Yt(Sctr),Zt(Sctr),Lside, 1)
CASE =2
LET Hnbr (Sctr)=FNNnp(Xt(Sctr),Yt(Sctr),Zt(Sctr),Lside, 1)
CASE ELSE
PRINT " out of bounds, boundary condition, detected in HOPper"
END SELECT
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4310
4320
4330

4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
47730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840

IF NOT (Sprss) THEN PRINT VALS(Hnbr(Sctr));
IF Hnbr(Sctr)>Hnde THEN PRINT " 222";
IF Hnbr(Sctr)<=Hnde-Hedge THEN PRINT "Node";Hnbr(Sctr);"outside of
hopper at*®;Hnde
IF Hnbr (Sctr)<Hnde AND Hnbr(Sctr)>0 THEN
LET Hpr (Hkm+Hnbr(Sctr) )=Hpr (Hkm+Hnbr (Sctr))-Admt (Sctr) !neighbr

END IF
END IF { end if for even Sctr
END IF ! end if for Kube

NEXT Sctr

IF NOT (Sprss) THEN PRINT ! end of output line

LET Hkm=Hkm+Hnde ! lcop count accumulator
NEXT Hnde ! end of set up of work matrix
LET Kcnt=0
IF NOT (Sprss) THEN

FOR Xcnt=1 TO Hedge | printout HOPper

FOR Ycnt=1 TO Xcnt
PRINT " (";VALS(DROUND(REAL (Hpr(Kcnt+Ycent)),3));",";
PRINT VALS (DROUND(IMAG (Hpr (Kcnt+Yent)),3));") ";
NEXT Ycnt
PRINT
LET Kcnt=Kcnt+Xcnt
NEXT Xcnt
END IF
FOR Hopped=1 TO Hsteps-1

-

Let the PIVOTING begin, & drip dry
LET Hnde=Hedge+Hopped count of oncoming node number
LET Hpiv(1)=CMPLX(1,0) !{ normalize to 1lst elment pivot vectr
LET Kcnt=2 ! convert array storage for 1st colmn
IF Hpr(1)=CMPLX(0,0) THEN { don't waste steps if O

PRINT "1st=02";

MAT Hpiv=(CMPLX(0,0))

ELSE
LET Hnrm=1/Hpr(1) ! set normalizing multiplier
FOR Hcnt=2 TO Hedge ! set pivot vector
LET Hpiv(Hcnt)=Hpr (Kcnt)*Hnrm
LET Kcnt=Kcnt+H-nt t 2,4,7,11,..@1lst elmnt in hoppr row
NEXT Hcnt
END IF

t***x> one can output pivot here for backsub iater
IF NOT (Sprss) THEN
IF Hnde<=Hsteps+1l THEN
PRINT "feed node";Hnde-1;

FOR Ycnt=1 TO Hedge ! printout of hopper feed row
PRINT " (";VALS$ (DROUND (REAL (Hpr (Hpremax+Ycnt)),3));",";
PRINT VALS (DROUND ( IMAG (Hpr (Hpremax+Ycnt)),3));") ";

NEXT Ycnt

PRINT

END IF ! end if for Hnde<Hsteps

PRINT " At reduction";Hopped;"the complex pivots are:"
LET Xcnt=MIN(Hedge,Hsteps-Hopped+1l) !significant
FOR Hcnt=Xcnt TO 1 STEP -1
PRINT " {";VALS$ (DROUND (REAL(Hpiv(Hcnt)),4));",";
PRINT VALS (DROUND ( IMAG (Hpiv(Hcnt)),4));"}";
NEXT Hcnt
IF Hpiv(1)=CMPLX(0,0) THEN PRINT "21";
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4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080

5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330

5340
5350
5360
5370

PRINT
END IF
LET Kcnt=1 ! initialize filling counter
FOR Xcnt=2 TO Hedge { heart of pivoting
IF Hpiv(Xcnt)<>CMPLX(0,0) THEN | sparseness efficiency =0, no-op
FOR Ycnt=2 TO Xcnt ! adj each array row with pivot vectr

IF Hpiv(Ycnt)<>CMPLX(0,0) THEN ! sparseness efficiency =0, no-op
LET Hpr(Kcnt+Ycnt)=Hpr (Kcnt+Ycnt)-Hpr(Kcnt+1l)*Hpiv(Ycnt)

END IF
NEXT Yent
END IF
LET Kcnt=Kcnt+Xcnt 11,3,6,10,.. gives previous row end
NEXT Xcnt
LET Kent=0 ! initialize filling counter lower
FOR Xcnt=1 TO Hedge-1 ! X,Y refer to hopping counters
FOR Ycnt=1 TO Xcnt { hopping along for shake up
LET Hpr (Kcnt+Ycnt)=Hpr(Kcnt+Ycnt+1l+Xcnt)
NEXT Ycnt
LET Kcnt=Kcnt+Xcnt
NEXT Xcnt
FOR Ycnt=1 TO Hedge { feed hopper, clear last row
LET Hpr(Hpremax+Ycnt)=CMPLX(0,0)
NEXT Ycnt
IF NOT (Sprss) AND Hnde<Hsteps THEN PRINT " node's";Hnde;" lower neighbors
are”;
FOR Sctr=0 TO 7 ! find neighbors
SELECT Hnde
CASE <Hsteps ! feed unless over 1lg array extent

IF Kond=1 THEN CALL Cv3ndi(Hnde,Lside,Sctr,Xt(Sctr),Yt(Sctr),2t(Sctr))
IF Kond=2 THEN CALL Cv3ndp(Hnde,Lside,Sctr,Xt(Sctr},Yt(Sctr),2t(Sctr))
LET Kube=(Xt(Sctr)<l OR Xt(Sctr)>Lside OR Yt(Sctr)<l) !in cube?
LET Kube=(Kube OR Yt (Sctr)>Lside OR Zt(Sctr)<l OR Zt(Sctr)>Lside)
LET Kube= NOT (Kube)
IF Kube THEN
LET Admt(Sctr)=Diel (Pixl(Xt(Sctr),Yt(Sctr),Zt(Sctr})))
IF Kond=1 THEN { adj for insl BC on Pixel grid
LET Hcnr=(Xt(Sctr)=1] OR Xt(Sctr)=Lside)!Pix on corner
LET Henr={Hcnr AND (Yt(Sctr)=1 OR Yt(Sctr)=Lside))
LET Hcnr=(Hcnr AND Zt(Sctr)>1 AND 2t (Sctr)<Lside)
IF Hcnr THEN { test if corner
LET Jxt=SHIFT(SHIFT(2Zt(Sctr),1),-1)+BIT(BINCMP(2t(Sctr)),0)
LET Admsl=Diel (Pixl (Xt (Sctr),Yt(Sctr),2t(Sctr)))
LET Adms2=Diel (Pixl(Xt(Sctr),Yt(Sctr),Jxt))
LET Admsl=Admsl*Adms2/(Admsl+Adms2)
LET Admt(Sctr)=Admsl! admittance of path

END IF ! end of Hnde=Hcnr test
END IF ! end if for Kond=1 test
LET Hpr (Hmem)=Hpr (Hmem)+Admt {(Sctr)
IF BIT(Sctr,0)=0 THEN { find lower Z neighor interactions
IF NOT (Sprss) THEN PRINT "
(";VALS (Xt (Sctr));",";VALS(Yt(Sctr));",";VALS(Zt(Sctr));")@";
SELECT Kond
CASE =1
LET Hnbr(Sctr)=FNNni(Xt(Sctr),Yt(Sctr),2t(Sctr),Lside,1)
CASE =2
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5380 LET Hnbr (Sctr)=FNNnp(Xt(Sctr),Yt(Sctr),2t(Sctr),Lside,l)

5390 END SELECT ! to SELECT Kond

5400 IF NOT (Sprss) THEN PRINT VALS(Hnbr(Sctr));

5410 IF Hnbr(Sctr)>=Hnde THEN PRINT " 222";

€420 IF Hnbr(Sctr)<=Hnde-Hedge THEN PRINT "Node";Hnbr(Sctr);"outside of
hopper at";Hnde

5430 IF Hnbr (Sctr)<Hnde AND Hnbr (Sctr)>0 THEN

5440 LET Hnbr(Sctr)=Hnbr (Sctr)+Hmem-Hnde

5450 LET Hpr (Hnbr(Sctr) )=Hpr(Hnbr(Sctr))-Admt (Sctr)

5460 END IF

5470 END IF ! end if for even Sctr

5489 END IF { end if in Kube

5490 CASE =Hsteps { special case, exciter electrode

5500 IF BIT(Sctr,0)=0 THEN ! do on even Sctr

5510 {IF NOT (Sprss) THEN PRINT " ";VALS(Hsteps);

5520 FOR Xcnt=1 TO Boxes ! pixels which abut exciter electrode

5530 LET Xkin=SHIFT(Xcnt,~-1)+BIT(Sctr,2)-1! X address in Sctr

5540 FOR Ycnt=1 TO Boxes | & neighbors

5550 LET Ykin=SHIFT(Ycnt,-1)+BIT(Sctr,1)-1! Y addrss in Sctr

5560 LET Hpr (Hmem)=Hpr (Hmem)+Diel (Pixl(Xkin,Ykin,Lside))

5570 LET Hnbr (Sctr)=Hsteps-1l-(Boxes-Ycnt+1l)*Boxes+Xcnt

5580 IIF NOT (Sprss) THEN PRINT "@";VALS(Hnbr(Sctr));!neighbr

5590 LET Hnbr (Sctr)=Hnbr (Sctr)+Hmem-Hnde {rel. to hopper address

5600 Hpr (Hnbr (Sctr) )=Hpr (Hnbr (Sctr))-Diel (Pix1l (Xkin,Ykin,Lside))

5610 NEXT Ycnt

5620 NEXT Xcnt

5630 END IF ! end if even SCTR

5640 END SELECT ! to SELECT Hnde

5650 NEXT Sctr

5660 IF NOT (Sprss) AND Hnde<=Hsteps THEN PRINT ! end of print out line

5670 NEXT Hopped

5680 IF NOT (Sprss) THEN

5690 PRINT " Complex hopper funnels down to {";DROUND(REAL(Hpr(l)),4);

5700 PRINT ", " ;DROUND(IMAG(Hpr(l)),4);"}"

5710 END IF

5720 t***> Hpr(l) contains the end of the interaction reduction

5730 ! LET Hpiv(Hsteps)=1/Hpr(1) { backsubstitute for solution vector

5740 ! FOR Hcnt=(Hsteps-1) TO 1 STEP -1

5750 ! LET Hpiv(Hent)=0

57¢€0 ! FOR Kcnt=Hcnt TO Hsteps

5770 ! LET Hpiv(Hcnt)=Hpiv(Hcnt)-Pivotstorg(Hent, 14Kcnt-Hent ) *Hpiv(Kent)

5780 ! NEXT Kcnt

5790 ! NEXT Hcnt

5800 PRINT " ... at ";TIMES(TIMEDATE);" inversion excution ";

5810 PRINT "time took";PROUND(TIMEDATE-Tmp,-1);"seconds"”

5820 DISP

5830 LET Resp=Hpr(l)/Lside { principal diel resp

5840 !**x> Pixl displacement field/current & potentials

5850 ! FOR Ycnt=1 TO Lside

5860 ! FOR Xcnt=1 TO Lside

5870 ! Slant=(Xcnt+Ycnt) MOD 2

5880 ! Xaddr=Xcnt-Boxes-Slant ! (x,y) of node upper to pixel

5830 ! Yaddr=Ycnt-Boxes

5900 ! CALL Xy to node(Ndl,Xaddr,Yaddr,Lside,Kond)

5910 ! Xaddr=Xcnt-Boxes+Slant~1 t (x,y) of node lower to pixel
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5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
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6110
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6140
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6190
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6210
6220
6230
6240
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6260
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6280
6290
6300
6310
6320
6330
6340
6350
6360
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6380
6390
6400
6410
6420
6430
6440
6450
6460
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Yaddr=Ycnt-Boxes-1
CALL Xy_to_node(Nd2,Xaddr,Yaddr,Lside,Kond)
IF Nd1l<>Nd2 AND Nd1>0 AND Nd2>0 THEN
Dsplc(Xcent,Yent)=Diel (Pix1(1,Xcnt,Yent) ) * (Hpiv(Nd1l)-Hpiv(Nd2))
Potnt (Xcnt,Yent)=(Hpiv(Ndl)+Hpiv(Nd2))/2
END IF
IF Nd2=0 AND Nd1>0 THEN
Dsplc(Xcnt,Ycent)=Diel (Pix1l(1,Xcnt,Ycnt))*Hpiv(Ndl)
Potnt (Xcnt, Ycnt )=Hpiv(Nd1l)/2
END IF

NEXT Xcnt
NEXT Ycnt
*x*> additional modification of Potential & Displacement array fields
IF Kond=1 THEN
FOR Ycnt=2 TO (Lside-2) STEP 2

FOR Nd=-1 TO 1 STEP 2

LET Xcnt=(Nd+1l)*Boxes+(Nd=-1) ! (Xcnt,Ycnt) refer to pixel

LET Xaddr=Nd*(Boxes-1) | (Xaddr,Yaddr) refer to node

LET Yaddr=Ycnt-Boxes

CALL Xy to_node(Ndl, Xaddr,Yaddr+1,Lside,Kond)! node # upper

CALL Xy_to_node(Nd2,Xaddr,Yaddr-1,Lside,Kond)! node # lower

IF Nd1<>Nd2 AND Nd1>0 AND Nd2>0 THEN | Evaluate along side nodes
LET Tmpl=Diel (Pix1(1,Xcnt,¥cnt+l))! Upper dielectric pixel
LET Tmp2=Diel (Pix1l(1l,Xcnt,¥Ycnt))! Lower dielectric pixel
LET Vtl=Hpiv(Nd1l)
LET Vt2=Hpiv(Nd2)
IF Tmpl<>0 AND Tmp2<>Q THEN Tmp=(Vtl1*Tmpl+Vt2*Tmp2)/(Tmpl+Tmp2)
LET Potnt (Xcnt,Ycnt+1)=(Vtl+Tmp) /2! Pixl volts
LET Potnt{Xcnt,Ycnt)=(Vt2+Tmp) /2
IF Tmpl<>0 AND Tmp2<>0 THEN

LET Dsplc(Xcnt,Yent+1)=(Vtl-vt2)/(1/Tmpl+1/Tmp2)

END IF
LET Dsplc(Xcnt,Ycnt)=Dsplc(Xcnt,Ycnt+l)! Displacement mag.

END IF

NEXT Nd

NEXT Ycnt

END

FOR

IF

Potnt= Potnt*(Resp) ! Normalizing to 1 volt across sample
Dsplc= Dsplc*(Resp) ! & sum of displacements along row=diel
Nd1=1 ! sign provider for fcllowing loop
Xcnt=1 TO Lside

LET n-sp2=Resp2+Ndl*(Dsplc(Xcnt,Boxes)-Dsplc(Xcnt,Boxes+1))
LET Nd1l=-Ndl
NEXT Xcnt

LET

Regp2=Resp2/2 ! dielectric response perp to E

t***> Should be end of calculations, printouts follow
!***> Printout of the dielectric pixel array
IF NOT (Sprss) AND Lside<10 THEN
PRINT "DIELECTRIC PIXEL ARRAY, 3-dimensional,";Lside;"x";Lside;"x";Lside

FOR

Xcnt=1 TO Lside

PRINT RPTS$(" ",Lside);"X plane=";VALS(Xcnt)
FOR Zcnt=Lside TO 1 STEP -1

FOR Ycnt=1 TO Lside
PRINT " (";VALS(DROUND(REAL(Diel (Pixl(Xcnt,Ycnt,2Zcnt))),3));",";

PRINT VALS(DROUND(IMAG(Diel(Pixl(Xcnt,¥Ycnt,2cnt))),3));") ";
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6470
6480
6490
6500
6510
6520
6530
6540
6550
65€0
6570
6580
€590
6600
6610
6620
6630
6640
6650
6660
6670
6680
6630
6700
6710
6720
6730
6740
6750
67€N
6770
6780
677
€800
6810
6820
6830
6840
6850
6860
6870
6880
68950
6900
6910
6920
6930
6340
6950
6960
6970
6980
6990
7000
7010

NEXT Ycnt

PRINT
NEXT 2cnt
NEXT Xcnt

END IF
txxx> Printout of the hopper array
*x*x*x> Find the series<->parallel factor
LET Ctmp=FNWnr(Diel(*),Frpx(*),Resp,Tmp,9)

t

P
P

P
P
P

¢N
NEX

RINT

RINT "Composite Dielectric Response Tensor Components:”
PRINT " princ
PRINT " & series<->parallel factor =";
RINT " (";VALS(DROUND (REAL(Ctmp),4));",";VAL3(DROUND (IMAG(Ctmp),4));")";
RINT "(+/- ";VALS(DROUND(100*Tmp,4));"% iteration error)"

RINT

ipal=";Resp

IF Sprss=0 THEN
PRINT "PIXEL VOLTAGES 2-dimensional,";Lside;"by";Lside
Tmp=FNMatprnt (Potnt (*),-Lside)
PRINT "PIXEL DISPLACEMENT FIELD MAGNITIUDES, ";Lside;"by";Lside
Tmp=FNMatprnt (Dsplc(*),-Lside)

END IF

t***x> NOTE: Tranpose used then it is an additional cycle to Rptr
'‘Graf (Grpt,1)=Rptr+Tmp/100
tGraf (Grot,2)=Frpx(1)
!Graf (Grpt, 3 )=REAL(Ctmp)
!Graf (Grpt, 4)=IMAG(Ctmp)
Graf (Grpt,1)=(Rptr+Tmp/100)*.25+Graf (Grpt,1)+.125
Graf (Grpt,2)=Frpx{1)*.5+Graf(Grpt,2)

Graf (Grpt,3)=REAL(Ctmp)*.5+Graf (Grpt, 3)

Graf (Grpt,4)=IMAG(Ctmp)*.5+Craf (Grpt, 4)

EXT Trans
T Rptr

| save real part of exp ave factor
{ save imag part of exp ave factor

I*»*x*x> output repeat calculations
LEY Stmrp=TIMEDATE-Stmrp
IF Stmrp>300 THEN BEEP

IF
IF
IF
IF
IF
IF
IF
I1F
1F
LET
LET
LET
LET

! Repeat tine elapsed

! Beep if longer than 5 minutes
IF Rptr>1 THEN PRINT "Finished";Rptr-1;"repeat trials in";
LET Bhdr$="("&VALS$(Lside)&"x"&VALS(Lside)&"x"&VALS(Lside)&")"
I+ Tls=1 THEN LET Bhdr$=Bhdr$&” elmnts"

IF Tls=2 THEN LET Bhdr$=Bhdr$&"/(2x2x2s)"
IF Kond=1 THEN LET Bhdr$=Bhdr$&" InslBC"
IF Kond=2 THEN LET Bhdr$=BhdrS$&" PrdcBC"

LET Bhdr$=Bhdr$&"” Sparse"

! solution by sparse methods

Qdrnt=2 THEN LET Bhdr$=Bhdr$&" 4fold"

Ptrn=0 THEN
Ptrn=1 THEN
Ptrn=2 THEN
Ptrn=3 THEN
Ptrn=4 THEN
Ptrn=5 THEN
Ptrn=6 THEN
Ptrn=7 THEN
Occp=LEN(Bh
Bhdr$ [ 1+0cc
Bhdr$S(60)="
Dhdr$=Bhdr$

Bhdr$=Bhdr$&" intrnl,"

Bhdr$=Bhdr$&" "&Fln$

Bhdr$=Bhdr$&" USER,"

Bhdr$=Bhdr$&" RANDOM, "

Bhdr$=Bhdr$&" SLANT,"

Bhdr$=Bhdr$&" ELLIPSE,"

Bhdr$=Bhdr$&" STRAT,"

Bhdr$=Bhdr$&" BOXES,"

drs$)

p]=RPTS (" ",80-0Occp) ! pad with blanks

"&DATES (TIMEDATE)&", "&TIMES (TIMEDATE)
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7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
738C
7390
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560

IF Rep=1 THEN PRINT ” for the case abbreviated .."
IF Rep=1 THEN PRINT Bhdr$
IF Rep>1 THEN
PRINT " Summary of";Grpt;"repeat variations: (as programmed)"”
FOR Rptr=1 TO Grpt
PRINT " Case"; ((Rptr-1) DIV Pose)+1;")",DROUND(Graf (Rptr,1),4),
PRINT DROUND (Graf (Rptr,2),4),DROUND(Graf (Rptr,3),4),
PRINT DROUND (Graf (Rptr,4),4)
NEXT Rptr
IF Nsvf=0 THEN
DISP " Save repeat info (array form,”;SIZE(Graf,l);"x";SIZE(Graf,2);
INPUT ")2 O0) No 1) Definitely”,Ndl
ELSE
LET Nd1=0
IF Fgv$<>"" THEN
REDIM Graf (1l:Grpt,1l:Kwd)
CREATE Fsv$,1 !<--<DOS if 1 unit
ASSIGN @Savstr TO Fsv$; FORMAT OFF
OUTPUT @Savstr;Ahdr$,Bhdr$,Grpt,Kwd,Graf (*),END
ASSIGN @Savstr TO *

ELSE
Nd1l=1
END IF
END IF
IF Ndl=1 THEN
DISP " Enclose (in """"s) new file name to send info vectors to?";
INPUT " (@/null=use old file)",Fln$
IF POS(Fln$,":")=0 THEN Fln$=Flng$&aMad$

LINPUT " Title, (up to 80 characters)",Ahdr$
LET Ahdr$(1+LEN(Ahdr$) }=RPTS$(" ",80-LEN(AhdrS$j)! pad with blanks

DISP " File named """;Fln$;""" ([";LEN(FlnS);"] characters)";
DISP " to contain repeat info”
PRINT " File """;Fln$;"""'s user and description headers are ";

PRINT " (2 linesj):"”
PRINT Ahdrs$
PRINT Bhdr$

IF Fln$="" OR Nsvf=1l THEN
INPUT " Enter the filename to be created? null=stop",Fln$
IF Fln$="" THEN STOP
{DISP " Enter file""";Fln$;"""'s storage size limit in bytes (™ ";

DISP VALS(256+8*Rep*Pose*Kwd);")";
INPUT "?27",Ndl

1 IF Nd1<1048 THEN Nd1=1048 t 1 kiloBYTE min (LIF disks)
CREATE Fln$,Ndl
ELSE
IF POS(F1ln$,":")=0 THEN Fln$=FlnS&Msd$
END IF

ASSIGN @Infostr TO F1ln$;FORMAT OFF

OUTPUT @Infostr;Ahdr$,Bhdr$,Rep,Kwd,Graf (*), END

ASSIGN @Infostr TO *

END 1IF

END IF
{#*%> pixel file output choice
LET Nd1=0
!IF Ptrn<>1 THEN INPUT " Save last pixel gridz O)No l)Yes”, Ndl
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7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7800
7810
7820
7830
7840
7850
7860
7870
7880
7890
7900
7910
7920
7930
7940
7950
7960
71970
7980
1990
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110

LET Nd1=0 !l!temporary unitl reprogramming done

IF Nd1=1 THEN
DISP " Enclose (in """"s) new file name to send pixel pattern to?";
INPUT " (null=use old file)",Fln$
IF POS(Fln$,":")=0 THEN Fln$=Fln$&Msd$
LINPUT " Title (up to 80 characters) if null then default label”,Chdr$
LET Dhdr$=Bhdr$

DISP " File named """;Fln$;""" ([";LEN(FlnS$);"]) characters)";
DISP " contains the pixel grid"

PRINT " File """;Fln$;"""'s header is "

PRINT Hdr$

IF Fln$<>"" THEN
DISP " Give file""";Fln$;"""'s max capacity limit in bytes";
DISP "? (~";VALS$(128+SHIFT(Px_tot,~1));")";
INPUT " *,Nd1l
IF Nd1<256 THEN Nd1=256
CREATE Fln$,Ndl

ELSE
INPUT " Enter the existing filename?",Fln$
IF POS!{Fln$,":")=0 THEN Fln$=FlnS&Msd$

END 1IF

ASSIGN @Pixstr TO Fln$;FORMAT OFF
OUTPUT @Pixstr;Hdr$,Lside,Pix1l(*),END
ASSIGN @Pixstr TO *
END IF
t***x> Interaction file output choice
PRINT RPTS(" ",25);"...elapsed”;PROUND(TIMEDATE-Start,-1);
PRINT "sec for completion at ";TIMES(TIMEDATE)
PRINT " MEMORY IS";VAL(SYSTEMS$("AVAILABLE MEMORY"))/8;"(reals)”
LET Lxtnt=Lside ! update COM /Pixel/ ie Pix1l(*) size
END
I I IO IO I I A IO R IR R IO I A I AR I AR I AR O N A T AR I AR I SR I O N AR
SUB Cv3ndi (INTEGER Nodi,Lszi,Sctri,Xouti,Youti,Zouti)
{ Converts a node number of layering scheme into the (x,y,z)
! coordinates of neighboring nodes
! IN Nodi = node number
! IN Lszi = Pixl extent along either X or Y
! IN Sctri = selection adjacent Pixl neighbor to node
! ie, quadrant number from binary (x/0/1 y/0/1 z/0/1)
! example 5>=>101 or x=1 y=0 z=1 or
! (0= X lower,Y lower Z lower; l= X lower,Y lower, Z higher
¢ 2= X lower, Y higher, Z lower; etc

! OUT Xouti = X coordinate address outcome

! OUT Youti = Y coordinate address outcome

! OUT Zouti = Z coordinate address outcome

! internal variables:

! Lyri = a counter for number of layers

! Swi = an even odd switch

! Ovri = overfill counter

! Nodmaxi = maximum node for given Pixel grid size, Lszi

! Hfszi = half of Pixel grid size, Lszi (then Lszi must be even)
! Sgvi = 1/4 of square whose edges are: Lszi*Lszi

! Bilv = the number of nodes between bilayers z={1,2 3,4 5,6 ..
INTEGER Lyri,Swi,Ovri,Nodmaxi,Hfszi,Sqvi,Bilv
LET Sctri=BINAND(Sctri,?7) ! mask only relevant bits
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8120
8130
8140
8150
8160
8170
8180
8190
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8300
8310
8320
8330
8340
8350
8360
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8380
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8400
8410
8420
8430
8440
8450
8460
8470
8480
8490
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8600
8610
8620
8630
8640
8650
8660

IF BIT(Lszi,0) THEN PRINT " warning, odd Pixel grid extent"”
LET Sqvi=SHIFT(Lszi*Lszi,2) ! 1/4 of =ruare Lszi*Lszi
LET Bilv=SHIFT(Lszi*Lszi,l)+Lszi~3 !Nodes .n bilayer

LET Nodmaxi=Sqvi*(Lszi+1l)-SHIFT(5*Lszi,1)+4 !max node #

LET Hfszi=SHIFT(Lszi, 1) ! effectively DIV 2 operation
SELECT Nodi
CASE <1 { grounded

LET Xouti=Hfszi
LET Youti=Hfszi
LET Zouti=0
CASE >=Nodmaxi { exciter node
LET Zouti=Lszi+1
LET Youti=Hfszi
LET Xouti=Hfszi

CASE ELSE { node is in cube
LET Lyri=(Nodi-1) DIV Bilv ! for Bilayer
LET Ovri=(Nodi-1) MOD Bilv ! for # Nodes in Bilayer itself
LET Swi=(Ovri>=Sqvi) { O=lower l=upper in Bilayer
IF Swi THEN LET Ovri=QOvri-Sqgvi t adjust for # Nodes in upper
LET Zouti=1+SHIFT(Lyri,-1)+Swi+BIT(Sctri,0)
IF Swi=0 THEN ! compute according to z level

LET Youti=1+SHIFT(Ovri DIV Hfszi,-1)+BIT(Sctri,l)
LET Xouti=1+SHIFT(Ovri MOD Hfszi,-1)+BIT(Sctri,2)
ELSE

IF Ovri<(Hfszi-1) THEN ! along Y=1 edge
LET Youti=BIT(Sctri,l)
LET Xouti=SHIFT(Ovri,-1)+2+BIT(Sctri,2)

ELSE ! not along Y=1 edge
LET Ovri=Ovri-Hfszi+l
LET Youti=Ovri DIV (Hfszi+l)
LET Xouti=Ovri MOD (Hfszi+l)

IF Youti=Hfszi-1 THEN { along Y=Lszi edge
LET Xouti=SHIFT(Xouti,-1)+2+BIT(Sctri,2)
ELSE ! somewhere in cube
LET Xouti=SHIFT(Xouti,-1)+BIT(Sctri,2)
END IF
LET Youti=SHIFT(Youti,-1)+2+BIT(Sctri,l)
END IF
END IF
END SELECT

SUBEND
D T S I I S G G A 0 A O A G R O O N G A S O A A A A e B
DEF FNNni (INTEGER Xn,¥n,Zn,Lszn,Lup)
! Returns the node number for Pixel grid network cube
! of capacitors for case of insulated sides.
! (Xn,¥Yn,Zn) 3D coordinates of Pixel leading to the nearest node
{ If Up=1 then Pixl situated above node, else Pixl situated below node
! Wwhere up is orientation towards exciter electrode
! & down is orientation towards grounded electrode
INTEGER Ysw,Ndb,Lyr,Lsqhv,2typ, 22

LET Zz=Zn ! Copy of 2 value for function call
LET Lup=BIT(Lup,0)

LET Lyr=SHIFT(Lszn,1l) ! in essence divides by 2

LET Lsqv=SHIFT(Lszn*Lszn,2) ! 1/4th of square Lszn*Lszn

IF Xn>0 AND Xn<=Lszn AND Yn>0 AND Yn<=Lszn AND Zz>0 AND Zz<=Lszn THEN
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8670
8680
8690
8700
8710
8720
8730
8740
8750
8760
3770
6780
8790
8800
8810
8820
8830
8840
8850
8860
8870
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8900
8910
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91490
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9160
9170
9180
9190
9200
9210

LET Ndb=1
IF 2z=1 AND Lup THEN LET Ndb=0 lat ground electrode or next exciter
IF Zz=Lszn AND NOT (Lup) THEN LET Ndb=Lsqv*(Lszn+1)-SHIFT(S5*Lszn,1)+4
REM above program line contains computation for EXCITER node number
IF Ndb=1 THEN ! Node Numbering. Executes if node not yet assigned
IF 22<0 THEN 2z=-22 { also entry line if node recalc
LET 2typ=BIT(Zz+1-Lup,0) ! O=no nodes on edge l=on edge
LET Ndb=(Zz-1-Lup)*Lsqv+SHIFT(Zz-Lup,1)*(Lszn-3)+Ztyp*(2-Lszn)
LET Ndb=Ndb+(Lyr+2typ)*SHIFT(Yn+2typ-1,1) !node # up to y row
LET Ndb=Ndb+SHIFT(Xn+1l-2typ,1) ! node # up to x location
IF Ztyp=1 THEN ! special cases
IF Yn=1 THEN
LET Ndb=Ndb+1l
IF Xn=1 OR Xn=Lszn THEN Z2z=-(22+(1-SHIFT(Lup,-1)))
END IF
IF Yn=Lszn THEN
LET Ndb=Ndb-1
IF Xn=1 OR Xn=Lszn THEN 2z=-(2z+(1-SHIFT(Lup,-1)))
END IF
END IF !for(Ztyp=1)
END IF !for(if Ndb=1)
IF Z2z<0 THEN GOTO 8720 !recalculate
ELSE
LET Ndb=-1
END IF
RETURN Ndb
FNEND
I I I I IO IO T I T A I I AR IO IO I O I U IO I A IO I A IO RO I G N A 1
SUB Pix13d_rand
!***> Subprogram to create a 3D pixel array of random distribution
! @SE " %*"&%) ! RANDOM 3D PIXEL GRID & #1#%)(% 5>
COM /Pass/Relay(0:7)
COM /Pixel/Chdr$(80],Dhdr$(80),INTEGER Lpix,Pix1(1:20,1:20,1:20)
INTEGER Xp,Yp,2p,Xq,Yq,2q,Fill,Frdm,Sqrs,Pxs,Pixtmp,When,Lt,Ldb
INTEGER Knpx,Nrdm,Rot,Dmn
'LET Xg=SIZE(Pixl,1)<>Lpix OR SIZE(Pixl,2)<>Lside OR SIZE(Pixl,3)<>Lpix
REDIM Pixl(l:Lpix,1l:Lpix,1l:Lpix) 1?2 needed in sub"
PRINT " Enjoy creating a randomized 3D pixel grid whose pixel elements"”
PRINT " are labelled 1..9"
LET Nrdm=INT(Relay(0)+.0000001) {Integer of relay
IF Nrdm=0 THEN ! Manual seed
INPUT "Random seed? (integer or neg if to be via timer)",Nrdm
INPUT "Apply to 0) full 3D pixel cube 1) to 2D X-section ",Dmn
IF Dmn>0 THEN
INPUT "Contortions? none=0 compress=.5 elongate=2 ",Vchk
IF Vchk>.25 AND Vchk<.75 THEN Vchk=1
LET Lt=INT(Vchk+.5)
ELSE
LET Lt=0
END IF
ELSE
LET Lt=INT(Relay(2)) MOD 3 ! Test of relay fraction O0,1,2
LET Dmn=INT(.0000001+Relay(4)) ! Relay(4) pony for 2D or 3D
IF Dmn=0 THEN Lt=0
END IF
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9220
9230
9240
9250
9260
9270
9280
9290
9300
9310
9320
9330
9340
9350
9360
3370
9380
9390
9400
9410
9420
9430
9440
3450
9460
9470
9480
9490
9500
9510
9520
9530
9540
9550
9560
9570
9580
9590
9600
9610
9620
9630
9640
9650
9660
9670
9680
9690
9700
9710
9720
9730
9740
9750
9760

LET Ldb=1+(Lt>0)

! Doubling factor

IF Nrdm=0 THEN RANDOMIZE INT(TIMEDATE MOD 32767)

IF Nrdm>0

LET Fill=0

THEN RANDOMIZE Nrdm

LET Sqrs=Lpix*Lpix/Ldb
LET Knpx=Sqrs
IF Dmn=0 THEN Knpx=Knpx*Lpix

LET When=0

LET Pxs=0
LET Rq=0

LET Nrdm=SHIFT(INT(Relay(0)+1.000001),1)

!1Divide by 2 conj pairing

IF Relay(0)>=1 AND Relay(1)<>0 THEN LET Rg=100*FRACT(Nrdm/Relay(1))
WHILE Fill<Knpx
Pxs-1 tDecrement
WHILE Pxs<0
LET When=When+1
IF INT(Relay(0))=0 THEN
DISP "Filling with component {[";VALS(When);"”}, give volume ";
INPUT "percent (volume fraction * 100) ",Rqg

LET Pxa=

ELSE

IF When>1 THEN Rg=-1
END IF

IF Rq<0 THEN

LET
ELSE

LET Pxs=INT(Rg*Knpx*.01+.5) MOD Knpx

Pxs=Knpx~Fill

IFill with rest, after 1st pass

IF Pxs>Knpx-Fill AND Knpx>Fill THEN Pxs=Knpx-Fill

PRINT " Component [";VALS(When);"] is assigned”;Pxs*Ldb;"pixels”

END IF
END WHILE
IF Pxs>0 AND Dmn>0 THEN
LET Fill=Fill+l t{Update
LET Zp=((Fill-1) DIV Lpix)+1 IRow of
LET Yp=Fill~-(Zp-1)*Lpix !Column
LET Pixl(1,Zp,Yp)=When !Assign
END IF

IF Pxs>0 AND Dmn=0 THEN
LET Fill=Fill+l tUpdate

LET Zp=((Fill-1) DIV Sqrs)+1
LET Xq=(Fill-1) MOD Sqrs
LET Yp=(Xqg DIV Lpix)+1

LET Xp=(Xq MOD Lpix)+1

LET Pixl(Xp,Yp,Zp)=When

END IF
END WHILE

t**x> lotto-ing or random mixing
IF Dmn=0 THEN
FOR Fill=1 TO Knpx
LET Frdm=INT(1+RND*Knpx)
IF Fill<>Frdm AND Frdm<=Knpx THEN

LET
LET
LET
LET
LET

Zp=((Fill-1) DIV Sgrs)+1l
Xp=(Fill-1) MOD Sqrs
Yp=(Xp DIV Lpix)+1
Xp=(Xp MOD Lpix)+1l
Zg=((Frdm-1) DIV Sqrs)+1l
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9770
9780
9790
9800
9810
9820
9830
9840
9850
9860
9870
9880
9890
3900
9910
9920
9930
9940
9950
3960C
9970
9980
9990
1.000
10010
10020
10030
10040
10050
10060
10070
100806
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310

LET Xg=(Frdm-1) MOD Sgrs
LET Yq=(Xqg DIV Lpix)+1
LET Xg=(Xgq MOD Lpix)+1
LET Pixtmp=Pixl(Xp,Yp,2p)
LET Pixl{Xp,Yp,2p)=Pixl(Xq,¥Yq,2q)
LET Pixl(Xq,Yq,2q)=Pixtmp
{PRINT "r";VALS$(Frdm);"p”;VALS(Pixtmp);

END IF

NEXT Fill
ELSE
FOR Fill=1 TO Sqgrs

LET Frdm=INT(1+RND*Sqrs)

IF Fill<>Frdm AND Frdm<=Sqrs THEN
LET Xp=1
LET Zp=1+((Fill-1)
LET Yp=1+((Fill-1)
LET Xg=1
LET Zg=1+((Frdm-1)
LET Yg=1+( (Frdm-1)
LET
LET

MOD Lpix)
DIV Lpix)

MOD Lpix)

DIV Lpix)
Pixtmp=Pix1l(Xp,Yp, 2p)
Pixl(Xp,¥Yp,2p)=Pixl(Xq, ¥Yq,2q)

LET Pixl(Xq,Yq,2q)=Pixtmp
'PRINT "r";VALS$(Frdm);"p";VALS(Pixtmp);
END IF
NEXT Fill

FOR Yp=1 TO Lpix
FOR Zp=(1+Yp) TO Lpix
LET Pixtmp=Pixl(1,Yp,2p)
LET Pix1(1,Yp,2p)=Pixl(1,2p,Y¥Yp)
LET Pixl(1,Zp,Yp)=Pixtmp
NEXT Zp
NEXT Yp
IF Ldb>1 THEN
FOR Yp=Lpix TO 1 STEP -1
LET YQ=SHIFT(Xp+1,1)
FOR Zp=1 TO Lpix
LET Pix1(1,Yp,Zp)=Pix1l(1,Yq,Z2p)
NEXT 2Zp
NEXT Yp
END IF
FOR Xp=2 TO Lpix
FOR Yp=1 TO Lpix
FOR Zp=1 TO Lpix
LET Pixl(Xp, ’p,2Zp)=Pix1l(1,¥Yp,2p)
NEXT Zp
NEXT Yp
NEXT Xp

{swap

tcheck random sequencing

tcheck random sequencing

tCentort expand

|Copy over X planes

IF Relay(0)=0 THEN INPUT "Rotate about Z axis? 0=N/1=Y ",Rot

IF Rot=1 OR Relay(3)=1 THEN
FOR Zp=1 TO Lpix
FOR Yp=1 TO Lpix
FOR Xp=(1+Yp) TO Lpix
LET Pixtmp=Pixl (Xp,Yp,2Zp)
LET Pixl(Xp,Yp,Zp)=Pixl(Yp,Xp,2p)
LET Pixl(Yp,Xp,Zp)=Pixtmp

{swap
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10320 NEXT Xp

10330 NEXT Yp

10340 NEXT Zp

10350 END IF

10360 END IF { Dmn=0 for 3D or Dmn>1 for 2D

10370 SUBEND

10380 1 30 30 D0 IO M0 JC MO OICOYOOYCOICONC DO ONCOYCORCOYCONC RO ML MO N OO0 ML
10390 DEF FNwWnr (COMPLEX Diel(*),REAL Frpx(*),COMPLEX Din,REAL Alferr, INTEGER Nth)
10400 REM Object of this function subprogram is to

10410 REM find the exponential averaging factor (or

10420 REM percolation related factor) "alf"

10430 REM from a given set of complex number

10440 REM dielectric values & fractional volume

10450 REM weights and effective or resultant

10460 REM complex dielectric value of composite

10470 REM written by S. wallin, 4/91.

10480 REM The Wiener or exponential averaging factor

10490 REM is defined as follows:

10500 REM DielO(resultant) Alf = sum {Frpx(k)*Diel(k) Alf}

10510 REM where DielO(resultant) = response of composite

10520 REM Alf = exponential ave or Wiener or percolation factor
1C530 REM Frpx(k) = fractional volumes of species k

10540 REM Diel(k) = (dielectric) response of species k

10550 COM /Pass/Relay(0:7)

10560 INTEGER 1,J,K,K1,K2,Kdo,Ns,Lsn,Lst,New

10570 COMPLEX DielO,DlogO,Alf,Alf0,CcO,Cl,C2,C3,Clg,Clg2
10580 LET Ns=Nth

10590 IF Ns<=0 THEN STOP

10600 ALLOCATE COMPLEX Dlog(Ns)

10610 LET Avg=0

10620 LET DielO=Din

10630 FOR I=1 TO Ns

10640 IF Diel(I)<>CMPLX(0,0) THEN Avg=Avg+Frpx (1)
10650 NEXT I

10660 REM Normalize ACTIVE volume to total 1

10670 FOR I=1 TO Ns

10680 'IF Avg<>0 THEN LET Frpx(1)=Frpx(I1)/Avg

10690 IF Diel(I)=CMPLX(0,0) THEN Frpx(I)=0

10700 NEXT 1

10710 !PRINT " Species data: (trial#, complex ";CHRS$(238);" pair, adj vol wt)"
10720 t{FOR I=1 TO Ns

10730 tPRINT " [#";I;") (";REAL(Diel(I));",";IMAG(Diel(I));")",DROUND(Frpx(1),4)
10740 !NEXT 1

10750 !PRINT " [ eff] (";REAL(DielO);",";IMAG(Diel0);")",1
10760 REM Determination of slope direction by log wt
10770 LET Dlog0=CMPLX(0,0)

10780 IF Diel0<>CMPLX(0,0) THEN Dlog0=LOG(Diel0)

10790 LET Clg=CMPLX(0,0)! Clg=Logarthimic mean

10800 LET Clg2=CMPLX(0,0)

10810 FOR I=1 TO Ns

10820 LET Dlog(I)=CMPLX(0Q,0)

10830 IF Diel(I)<>CMPLX(0,0) THEN Dlog(I)=LOG(Diel(I))-DlogO
10840 LET Clg=Clg+Frpx(1)*Dlog(I)

10850 LET Clg2=Clg2+Frpx(I)*Dlog(I)*Dlog(I)

10860 NEXT I
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10870
10880
10890
10900
10910
10920
10930
10940
10950
10960
10970
10980
10990
11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220
11230
1124cC
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
113¢0
11400
11410

LET Lsn=-SGN(REAL(Clqg))
{PRINT " The logarithmic slope is " ;DROUND(REAL(Clg),4);
!PRINT DROUND{IMAG(Clg),4);"indicates ";CHR$(224);" is ";
!IF Lsn=1 THEN !PRINT "positive."
tIF Lsn=0 THEN {PRINT "at zero."
{IF Lsn=-1 THEN !(PRINT "negative.”
REM Extrema values
LET Lst=0
LET 28t=0
FOR I=1 TO Ns
IF Frpx(1)<>0 THEN
LET Tmp=Lsn*ABS(Diel(I))
IF Tmp>Zst OR Zst=0 THEN
LET Zst=Tmp
LET Lst=I
END IF
END IF
NEXT I
IF Lsn=0 THEN Lst=0
LET Alf=CMPLX(0,0)
IF Lst>0 AND Lst<=Ns+1 THEN
IF Dlog(Lst)<>CMPLX{0,0) THEN Alf=-LOG(Frpx(Lst))/Dlog(Lst)
END IF
LET CO=CMPLX(Lsn,0)
IF Clg2<>CMPLX(0,0) THEN CO=-2*Clg/Clg2!A 2nd gquess
LET Wt=ABS(CO)
LET Wt=1/(1+Wt*Wt)!Relative weights for ave the 2 guesses
LET Alf=Alf+Wt*(CO-Alf)!Combined 1st guess
'PRINT © Guess 1 ";CHRS$(224);" = ";
IPRINT DROUND (REAL(Alf),4);DROUND (IMAG(R1f),4)
LET Alf0=CMPLX(0,0)
LET Alferr=1
LET J=2
LET New=0
WHILE Alf<>A1f0 AND J<32 AND Alferr>1.0E 13
IF New=1 THEN
LET AlfO=Alf!Keep track of last iteration
New=0
END IF
LET C1=CMPLX(0,0)
LET C2=CMPLX(0,0)
LET C3=CMPLX(0,0)
LET K=0!Keep count of non-zero terms
FOR I=1 TO Ns
LET CO=Alf*Dlog(I)
IF ABS(REAL(CO0))>700 THEN !Failure possible
LET Alf=-2*Clg/Clqg2
LET Alf0O=CMPLX(0,0)
LET CO=CMPLX(0,0)
LET C1=CMPLX(0,0)
LET Alferr=0i!Set to exit
END IF
IF CO<>CMPLX(0,0) AND Diel(I)<>0 THEN
LET CO=Frpx(I1)*EXP(CO)
LET C1=C1+CO
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11420
11430
11440
11450
11460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650
11660
11670
11680
11690
11700
11710
11720
11730
11740
11750
11760
11770
11780
11790
11800
11810
11820
11830
11840
11850
11860
11870
11880
11890

LET C2=C2+Diog(I)*CO
LET C3=C3+Dlog(I)*Dlog(I)*CO
LET K=K+1!Tally another non-zero term
END IF
NEXT I
IF C1<>CMPLX(0,0) AND K>1 THEN ! Log func deriv
REM Oth, 1st, & 2nd logarithmic derivs
LET C2=C2/C1
LET C3=C3/C1-C2*C2
LET C1=LOG(Cl)
REM Newton-Raphson estimate via 2nd degree polynomial
LET K1=SGN(REAL(C1l))
LET K2=SGN(REAL(C2))
LET CO=CMPLX(0,0)
SELECT K2
CASE O
!PRINT " o";
IF C3<>CMPLX(0,0) THEN LET CO=-2*Cl1/C3
IF CO<>CMPLX(0,0) THEN LET Alf=A1f+K1*SQR(CO)
CASE Lsn
{PRINT " +";
LET CO=C2*C2-2*C1*C3
IF CO=CMPLX(0,0) THEN
LET CO=2*Cl/C2

ELSE
LET CO=2*C1/(C2+K2*SQR(CO0))
END IF
LET Alf=Alf-CO !New estm of exp factor
CASE -Lsn
{PRINT " -";

LET CO=C2*C2-2*C1*C3
IF CO=CMPLX(0,0) THEN
IF C3<>CMPLX(0,0) THEN LET CO0=C2/C3

ELSE
IF C3<>CMPLX{0,0) THEN CO=(C2+K2*SQR(C0))/C3
END IF
LET Alf=Alf-CO !New estm of exp factor
END SELECT

LET Alferr=ABS(REAL(Alf)-REAL(ALf0))+ABS(IMAG(ALlf)-IMAG(ALf0))
IF ABS(REAL(Alf))>700 THEN Alf=CMPLX(Lsn/2,0)-Clg/Clg2/(1+J)!Retry

11900 FNEND

LET New=1 {Set for update
END IF
{PRINT " Guess";J;" ";CHR$(224);" = ";Alf;" varied ";Alferr
LET J=J+1
END WHILE
LET Alferr=ABS(Al1f0-Alf) !Iteration variance
{IF Alferr<>0 THEN !PRINT " Iteration variance =";Alferr
RETURN Alf
~ - * - * — * - * - * - * — »* —_ * -— * - * —_ *
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- * - * - x - * - * - * - * - * - * - * - * - x - *
"DIEL_SITES"
Program in HP BASIC for numeric analysis based on the site model

- * - * - * - * -— * - * - * - * - * - * - * — * -_ *
10 REAL MemO, TmO
20 LET TmO=TIMEDATE
30 LET MemO=INT(.5+VAL(SYSTEMS ("AVAILABLE MEMORY")))
40 ! < < < < < < "DIEL_SITES" > > > > > >
50 1 * - * - * —_— * - x - * - * - ® - *x -— *x - * - *
60 ! A main program to evaluate a box arrangement of pixel nodes .
70 ' for the displacement fields and resultant dielectric response .
80 ] of a composite where nodes and pixels are co-existent. .
90 ! S. Wallin, June 1991 .
100 ! * - * - * - * - * - * - * - * - * - * - * - *

110 CLEAR SCREEN

120  PRINT "Date: ";DATES(TmO);RPTS(" ",48);"Time: “;TIMES(TmO)

130 PRINT " ";RPTS$(™ > ™“,7);"""DIEL_SIM""";RPTS$(" < ",6);" <"

140 PRINT RPTS$(" ",56);"(S. Wallin, June 1991)"

150 PRINT

160 PRINT " This program "“"DIEL_SIM"" simulates a dielectric composite:";
170 PRINT " a box represented"

180 PRINT "as an interconnected electrical network. The displacement field";
190 PRINT " (in analogy to "

200 PRINT "current) is a continuous quantity. The electric field is the";
210 PRINT " voltage drop gra-"

220 PRINT "dient along the displacement field path segments.";

230 PRINT " Schematically, each pixel is"

240 PRINT "cross joined between faces with a node."”

250 PRINT " . . . . .

260  PRINT * Paths . | o

270 PRINT " Node at”

280 PRINT " connect . I <"y

290 PRINT * center”

300 PRINT " faces . .

310 PRINT " . .

320 PRINT " . . . . .

330 PRINT "The pixels are then interconnected into a nodal network."
340 PRINT " ] <-< Exciter electrode”

350 PRINT " ====z=========="
360 WAIT .1

370 PRINT " + 4+ 4+ + + 4"
380 WAIT .1

390 PRINT " X plane + o+ 4+ by
400 PRINT " Y across”

410  WAIT .1 )

420 PRINT " on page + + + + + 4
430 PRINT " Z to/from"

440 WAIT .1

450 PRINT " surface + 4+ + + + "
460 PRINT " electrodes”

470 WAIT .1
480 PRINT " m=ozzzasszo=="
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490
500
510
520
530
540
550
560
570
580
590
600
610
620

630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020

WAIT .1

PRINT * | <-< Ground electrode”

PRINT "Initial memory is";PROUND(Mem0/16,2);

PRINT "(available as complex number storage units)."

PRINT "[Hint: Use up/down arrow keys to scroll on CRT when paused”;

PRINT " (halt=Clear"

PRINT "I/O & Stop, break=Pause & Stop).]"

! * - * - * - * am * - * - * - w* - * - L] - * - * !
! DATA !
{ Data is for use as default permittivities !
DATA 1,0,2,2,4,6,5,8,6,16,7,32,8,64,9,128

t % = * - * — * = KX 0 Kk o Kk = * = k = * = Kk — % 1

1 COMmon Memory !

COM /Info/ INTEGER Dsrc,Kond,Ptrn,Knj,Spcs,Meth,Back,Sgj,Svr,Fln$[80]),Msd$([60],COMPL
Dlct (0:9)

COM /Pass/Relay(0:7)

COM /Pixel/ INTEGER Xmax,Ymax,Zmax,Pixl(1:8000),REAL Xscl,Yscl,Zscl

COM /Memr/Graf(1:512,1:8),Ahdr$([(80},Bhdr${80}, INTEGER Rep, Kwd

COM /Titles/Chdr${80],Dhdr$(80)

] * - * - * - * - * - * - * - * - * - * - * - * 1
! VARIABLES !
INTEGER Xadr,Yadr,Zadr,Xcnt,Ycnt,2cent

INTEGER Axs,Dtl,Face, Infc,Lpiv,Hdig,Hedge,Hlmt, Hmem,Hrel, Hrow, Hclm,Hcnt
INTEGER Nd1,Nd2,Ndmax,Nmr,Nwrk,Ovr,Rcyc,Rman,Rptr,Spc0, Zxy

REAL Iterr,Meml,Ntrt,Norm,Tml,TmvO,Tmvl, Tmcyc, Tmup, Xadm,Yadm, Zadm, Frk(0:9)
COMPLEX AdmtO,Admtl,Admt2,Alph,Hnrm, Resp

DIM Trs$(40),Ws$[250)

! COM /Info/ variable descriptions:

! Dsrc = Dielectric or permittivity selection

Kond = boundary condition 1) Insulative 2) F2riodic or wrap around
Ptrn Pixel fill pattern choice

Knj permittivity conjugation, O=none l=alternating 2=averaged

Spcs = number of species or types

v— = em tm = e b

Meth = nodal analysis method l=classic 2=sparseness advantage
Back = backsubtition indicator O=off 1=on
Sgj = conjugation state +1 or -1

! Svr = flag to save output on a file

! Fln$ = name of file

! Msd$ = name of mass storage device

! Dlct(*) = array of complex dilectric values

! COM /Pass/ Relay passes information to SUBprograms with B reals
! CoOM /Pixel/ variable descriptions:

! Xmax,Ymax,Zmax = greatest of each pixel address extent

! Pixl(*) = integer array of pixel species for dielectric types

! Xscl,Yscl,Zscl = real scaling factors

!{ COM /Memr/ variable descriptions:

! Graf(*) = a data output storage array kept after program run

! Ahdr$ = 1lst title line for output description

t Bhdr$ = 2nd title line for output description

! Rep = integer of number of repeats or length of array Graf(*)

! Kwd = integer of width of array Graf(*)

! Variables in the MAIN program:

! Xadr,Yadr, Zadr integer pixel addresses in (X,Y,2) coordinates
! Xcnt,Ycnt,Zcnt = pixel counter addresses in (X,Y,Z) coordinates
! Axs = 1,2,3 <=> X,Y,2 directions
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1030 ! Dtl = 0 to surpress 1 to print, nodal analysis details

1040 ! Face = integer for 3D axis selection or sector

1050 ! Infc= interfaces tally

1060 ! Lpiv = pivoting occurances

1070 ! Hdig = a counter used for hopper/sparse nodal analysis

1080 ! Hedge = # along edge of hopper/sparse nodal analysis technique
1090 ! Hmem = hopper storage requirement

1100 t Hrel,Hrow,Hclm,Hcnt = row & column addresses in hopper/sparse tech
1110 ! Ndl = integer of primary node address

1120 ! Nd2 = integer of a node adjoining primary node

1130 ! Ndmax = node maximum = l+Xmax*Ymax*Zmax

1140 ! Nwrk = work integer

1150 ! Ovr = integer indicating for overwrite/append output file

1160 ! Rcyc = integer flag to reuse COM /Info/ variables as input
1170 ! Rman = manual flag O0=OFF 1=ON

1180 ' Rptr = integer overall repeat counter

1190 ! SpcO = integer used in determining species limit

1200 ' 2Zxy = integer number of pixels on a Z plane, Xmax*Ymax

1210 ¢ Ntrt = real number of integer value for sparseness memory array
1220 ¢ Norm = real normalization constant, Zmax/Xmax/Ymax

1230 ¢t Frk(*) = real array of volume fractions of different types
1240 ! AdmtO,Admtl,Admt2 = complex admittance paths

1250 ! Alph = series<=>parallel, Wiener, or exponential averaging factor
1260 ! Hnrm = normalizing element for hopper pivoting

1270 ! Resp = resultant permittivity

1280 ' Trs$,Ws$ = work string of 40 chars, 250

1290 ! Variable arrays to be ALLOCATED

1300 ! Actl(*),Act2(*) = complex nodal interaction array

1310 ¢ Tcal(*),Tca2(*) = complex inverse of nodal interactoin array
1320 ! Ptn(*) = complex potentials (w/ backsubstition)

1330 ! Endex(*) = complex exciter interactions (w/ backsubstition)
1340 ' 1Iterr = real iteration error

1350 ! Meml,MemO = real available internal memory for program

1360 ! TmO,Tml,TmvO,Tmvl, Tmcyc,Tmup = real start and stop times

1370 ¢t Xadm,Yadm,Zadm = pixel face admittance factors

1380 1IF Zmax>0 THEN ! presumably now a rerun

1390 LET Rcyc=0

1400 IF Kond>0 THEN

1410 INPUT "Rerun at previous settings? O=no l=yes (default=0) ",Rcyc
1420 END IF

1430 IF Rcyc<0O THEN STOP !panic stop

1440 LET Rcyc=(Rcyc>0)

1450 END IF

1460 IF Rcyc THEN reuse previous inputs, Rcyc=1

!
1470 LET Zxy=Xmax*Ymax ! Pixs on a 2 level
1480 LET Ndmax=Zxy*Zmax+1 ! Exciter node
1490 LET Xadm=Yscl*Zscl/Xscl ! X face admittance factor
1500 LET Yadm=Xscl*Zscl/¥scl { Y face admittance factor
1510 LET Zadm=Xscl*Yscl/Zscl { Z face admittance factor
1520 LET Norm=Zmax/Zadm/Zxy ! Normalization for permittivity
1530 PRINT "From COM /Memr/ pixel array is";Xmax;"x";Ymax;"x ";VALS(Zmax);"."
1540 IF Xmax<=0 OR Ymax<=0 OR Zmax<=0 THEN LET Rcyc=0
1550 LET WsG=""
1560 FOR Xcnt=1 TO Spcs ! set up a current title
1570 LET Ws$=Ws$&"["&VALS (Xcnt)&"}s"&"="
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1580 LET Ws$=Ws$&" ("&VALS (DROUND (REAL(Dlct (Xcnt)),3))

1590 LET Ws$=Ws$&", "&VALS (DROUND ( IMAG(Dlct(Xcnt)),3))&")"
1600 NEXT Xcnt
1610 LET Ycnt=MIN(LEN(Ws$),75)
1620 LET Ahdr$="Diels "&Ws$S[1l;Ycnt]
1630 LLSE ! get new input info, Rcyc=0
1640 LET Nwrk=0
1650 DISP "IO to be 0) default 1) lab 2) hardisk 3,4) office 5) user defined”;
1660 INPUT " (default=0) ",Nwrk
1670 SELECT Nwrk
1680 CASE <0
1690 STOP
1700 CASE =0
1710 LET Msd§=""
1720 CASE =1
1730 LET Msd$=":CS80,700,1"
1740 CASE =2
1750 LET Msd§=":CS80,700,0"
1760 CASE =3
1770 LET Msd$=":CS80,700,0"
1780 CASE =4
1790 LET Msd$=":CS80,703,1"
1800 CASE =5
1810 LINPUT "Name your storage device_ ", Msd$
1820 CASE ELSE
1830 DISP "Mass storage selection too big for menu, defaults"
1840 LET Msd$=""
1850 END SELECT
1860 IF MsdS<>"" THEN PRINT RPTS(" ",48);"mass storage device ";Msd$
1870 PRINT "Indicate Pixel fill pattern:"
1880 PRINT " O) internal, via COM /Memr/"
1890 PRINT » 1) from file storage"
1900 PRINT " 2) hand fill, (tedious)"
1910 PRINT " 3) random, basic shuffle of pixel iso-sized grains"”
1920 PRINT " 4) random, shuffle with dual blocking"
1930 PRINT " 5) ellipsoid, (semi-model of effective medium theory)"
1940 PRINT " 6) correlation, (exponential, power laws)"
1950 PRINT " 7) fractal with evolution by successive generatinns”
1960 PRINT " default is currently ";VALS(Ptrn);"."
1970 LET Ndl=Ptrn ! keep track of previous
1980 IF Kond=0 THEN Ptrn=3
1990 DISP "Pixel fill selection? (default=";VALS(Ptrn);
2000 INPUT ") ",Ptrn
2010 IF Ptrn<0 THEN STOP
2020 IF Ptrn<>Ndl THEN MAT Relay=(0) ! zero upon Ptrn change
2030 SELECT Ptrn
2040 CASE =0
2050 IF Xmax<=0 OR Ymax<=0 OR Zmax<=C THEN
2060 DISP "May have memory error, pixel box measures ";
2070 DISP VALS(Xmax);"x";VALS(Ymax);"x";VALS(Zmax)
2080 STOP
2090 END IF
2100 PRINT "The pixels are from internal memory and measure ";
2110 PRINT VALS (Xmax);"x";VALS(Ymax);"x";VALS (Zmax)
2120 CASE =1
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2130 LINPUT "File source name for Pixels? ",Fln$S

2140 IF Fln$="" THEN STOP
2150 IF POS(FlnS$,":")=0 THEN F1ln$=FlnS$&Msd$
2160 DISP "File """;FlnS$;""" is being read from storage"
2170 ASSIGMN @Pxsrc TO Fln$; FORMAT OFF
2180 ENTER @Pxsrc;Ahdr$;Bhdr$;Xmax;Ymax;2max;Xscl;Yscl;Zscl
2190 IF Xmax<=0 OR Ymax<=0 OR Zmax<=0 THEN
2200 DISP """";Fln$; """ may have error, pixel box measures ";

. 2210 DISP VALS$(Xmax);"x";VALS(Ymax),"x";VALS (2Zmax)
2220 ASSIGN @Pxsrc TO *
2230 STOF
2240 END IF
2259 IF Xmax<=0 OR Ymax<=0 OR Zmax<=0 THEN PRINT Xmax;"x";Ymax;"x";Zmax;"?2"
2260 cOR Xcnt=1 TO Xmax*Ymax*Zmax
22706 ENTER @Pxsrc;Pixl(Xcnt)
2280 NEXT Xcnt
. .90 ASSIGN @Pxsrc TO *
2300 END SELECT
2310 IF Ptrn>2 THEN ‘get Pixel limits from user
2320 IF Xmax<l THEN Xmax=1
2330 DISP "Give X pixel limit, (how many X planes, default=";VALS(Xmax);
2340 INPUT ")? " ,Xmax
2350 IF Xmax<0 THEN STOP
2360 IF Xmax=0 THEN Xmax=1
23770 IF Ymax<l THEN Ymax=1
2380 DISP "Give Y pixel limit, (lrow many Y columns/plane,”;
2390 D.SP " default=";VALS(Ymax);
2400 INPUT ";? ",Ymax
2410 IF Ymax<0 THEN STOP
2420 IF Ymax=0 THEN Ymax=1
24130 IF Zmax<l THEN 2Zmax=1
2440 DISP "Giv.© Z pixel limit, (kow many Z rows between electrodes,";
2450 DISP " default ";VALS(Zm |
2460 INPUT ")2 " ,Zmax
2470 IF Zmax<(Q THEN STOP
2480 IF Zmax=0 THEN Zmax=1
2490 IF Xscl<=0 THEN Xscl=1
2500 DISP "Give X pixel scale factor (>0 to inf, default=";VALS(Xscl);
2510 INPUT ")? ",Xscl
2520 IF Xscl<f) THEN STOP
2520 IF Xscl=0 THEN Xscl=1
2540 IF Yscl<=" THEN Yscl=1
2550 DISP "Give Y pixel scale factor (>0 to inf, default=";VALS(Yscl);
2560 INPUT )2 ",Y¥scl
2570 IF¥ Yscl<O THEN STOP
2580 1F Yscl=0 THEN Yscl=1

. 2590 IF 2Zscl<=0 THEN Zscl=1
2600 DISP "Give Z pixel scale ftactor (>0 “_ inf, default=";VALS(Zscl);
2610 INPUT ")? ",2s8cl
2620 IF Zscl<0 THEN STOP
2630 IF Zscl=0 THEN Zscl=1
2640 END IF tend if for Ptrn>2 test
2650 PRINT " The scale factors are: X's=";VALS$(DROUND(Xecl,q4));
2660 PRINT ", Y's=";VALS(DROUND(Yscl,4));", & 2Z's=";VALS(DROUND(Zscl,4))
2670 IF Kond=0 THEN Kond=1
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2680 DISP "Boundary conditions? 1) Insulated 2) Periodic or";
2690 DISP " wrap around (default=";VALS$(Kond);

2700 INPUT ") ",Kond

2710 IF Kond<0 THEN STOP

2720 LET Kond=(Kond>1)+1

2730 LET Spc0=9 { overall species limit set at 9
2740 IF Spcs=0 THEN Spcs=2 ! binary species default

2750 DISP "How many species overall? (<=";VALS$(Spc0O);",default=";VALS(Spcs);
2760 INPUT ")",Spcs { later.. incl option for subspecies
2770 IF Spcs<0 THEN STOP ! panic stop

2780 IF Spcs=0 THEN Spcs=2 ! default to binary composite
2790 IF Spcs>SpcO0 THEN Spcs=9 { reset to programming limit
2800 IF Dlct(1)=CMPLX(0,0) THEN LET Dsrc=1 !default

2810 DISP “"Permittivi-ies from? O=intrnl mem l=prog 2=user ";

2820 IF Spcs=2 THEN DISP “"3=binary insl/cond ";

2830 DISP "(default=";VALS(Dsrc);

2840 INPUT ")",Dsrc

2850 IF Dsrc<O THEN STOP

2860 IF Dsrc>3 THEN Dsrc=2

2870 IF Dsrc>0 THEN LET Sgj=1 ! reset conjugation state to fresh=+1
2880 SELECT Dsrc

2890 CASE =1

2900 FOR Xcnt=1 TO Spcs

2910 READ Dlct(Xcnt)

2920 NEXT Xcnt

2930 CASE =2

2940 FOR Xcnt=1 TO Spcs

2950 DISP "Complex permittivity for species [";VALS(Xcnt);

2960 DISP "]s (previous=(";VALS(DROUND(REAL(Dlct(Xcnt)),4));",";
2970 DISP VALS(DROUND (IMAG(Dlct (Xcnt)),4));"))";

2980 - ",Dlct (Xcnt)

2990 NEXT Xcnt

3000 CASE =3

3010 FOR Xcnt=1 TO Spcs

3020 IF BIT(Xcnt,0)=0 THEN

3030 LET Iterr=REAL(Dlct(Xcnt))

3040 DISP "For the species [";VALS(Xcnt);"], give the real part?”;
3050 DISP " (previous=";VALS(DROUND(Iterr,4));

3060 INPUT ") ",Iterr

3070 LET Dlct(Xcnt)=CMPLX(Iterr,0)

3080 ELSE

3090 LET Iterr=IMAG(Dlct(Xcnt))

3100 DISP "For the species [";VALS$(Xcnt); ), give the imaginary";
3110 DISP " (loss) part? (previous=";VALS(DROUND(Iterr,4));
3120 INPUT ") ",Iterr

3130 LET Dlct (Xcnt)=CMPLX (0O, Iterr)

3140 END IF

3150 NEXT Xcnt

3160 END SELECT

3170 IF Meth=0 THEN Meth=2

3180 DISP "Select nodal analysis method 1) classic matrix";

3190 DISP " 2) sparse advantage (default=";VALS(Meth);

3200 INPUT ") ",Meth

3210 IF Meth<(0 THEN STOP 'panic stop

3220 LET Meth=1+(Meth>1)
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3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
2360
3370
3380
3390
3400
3410
3420
3430
3440C
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
390
36720
3610
3620
3630
3640
3650
3660
3670
R13-10]
31690
3700
3710
3720
3730
3740
3750
3760
3770

DISP "Backsubstitution, ie backchecking & field mapping? “;
DISP "O=no 1=yes (default=";VALS(Back);
INPUT ")",Back
IF Back<0O THEN STOP
LET Back=(Back>0)
DISP "How many repeats? (default=";VALS$(Rep);
DISP ", O=manual, ";VALS(SiZE(Graf,l));"=max prog)";
INPUT " " ,Rep
IF Rep<O THEN STOP
LET Ws$=""
FOR Xcnt=1 TO Spcs ! set up title
LET Ws$=Ws$&"["&VALS(Xcnt)&"}s"&"="
LET We$=Ws$&" ("&VALS (DROUND (REAL(Dlct (Xcnt)),3))
LET Ws$=Ws$&", "&VALS (DROUND (IMAG(Dlct (Xcnt)),3))&")"
NEXT Xcnt
LET Ycnt=MIN(LEN(WsS),75)
LET Ahdr$="Diels "&WsS${1l;Ycnt]
IF Rep>1 THEN
DISP "Conjugate pairing (by 2s)? O=no l=alternating 2=averaged "
DISP " (default=";VAL$(Knj);")";
INPUT " ",Knj
IF Knj<0 THEN STOP
IF Knj>2 THEN Knj=0
DISP "Save repeat information in a file?™";
DISP " O=no l=yes (default=";VALS$(Svr);
INPUT ") ",Svr
IF Svr<0 THEN STOP ! panic stop
LET Svr=(Svr>Q0)
IF Svr THEN
LET w3$=Fln$ !for a suggested file naming
IF Ptrn>0 THEN
IF Ptrn=1 THEN Fln$="S8"
IF Ptrn=2 THEN Fln$="H"
IF Ptrn=3 THEN FlIn$="G"
IF Ptrn=4 THEN Fln$="B"
IF Ptrn=5 THEN Fln$="E”"
IF Ptrn=6 THEN Fln$="K"
IF Ptrn=7 THEN FlnS$="F"
LET Xcnt=MIN(Xmax,Ymax,Zmax)
LET Ycnt=MAX(Xmax,Ymax, Zmax)
IF Xcnt=Ycnt AND Xmax>9 THEN
Fln$=F1lnS&"3D"&VALS (Xmax)
ZL5k
LET Fln$=F1ln$&VALS (Xmax)&VALS(Ymax)&VALS (Zmax)
END IF
IF Kond=1 THEN FlnS$=F