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DFTS ON IRREGULAR GRIDS: THE ANTERPOLATED DFT

V'AN EMDEN HENSON

Abstract. In many instances the discrete Fourier transform (LIFT) is desired for a data set
that occurs on an irregular grid. Commonly the data are interpolated to a regular grid, and a fas.t
Fourier transform (FFT) is then applied. A drawback to this approach is that typically the data have
unknown smoothness properties. so that the error in the interpolation is unknown.

An alternative method is presented. based upon multilevel integration techniques introduced by
A. Brandt, In this approach, the kernel. C"' is interpolated to the irregul~ir grid. rather titan
interpolating the data to ,he regular grid. This may be accomplished by' prt-niultipi~virig the data by
the adjoint of the interpolation matrix (a process dubbed anterpolation). producing a new regular-
grid function, and tht-n applying a standard FFT to the new function. Since the kerncl is C- the-
operation may be carried out to anY preselected accuracy.

A simple optimization problem can be solved to select the prublem parameters in an efficient way' .
If the requirements of accuracy are not strict, or if a small bandwidth is of interest, the nittlhod canl
be used in place of an FFT even when the data are regularly spaced.

1. The formal DFT arid the ADFT. Thei V)F j'IS dofinvdl as an operat iii

Thal miaps a lonotli-. compi~lex-valite(I soquonce ~j 1  .\ 1 }t lt1rl!2 i

J =0

do(lfilief in (1)~. the- Dii' is perforniod oti data thalt are prfuiziid to I elio r

tin a r'.ý)iilar ari(1. %wih ('utistant spacing between the dtlt a pointls. Firt erniture. tlie

tran sorin valis fue ý {i.x.....X....}1 are als;o prosu med io lip onl a regular grld lin ~
freýqpency domain. Ili niany' applications. hiowev,-r. lie- data for a problditi are, no t
>,pacol rogiklarly. It is o (f somep intr-re.r . thlen,. to deterinine how a discret fuo~

ra~o ni ay he b coniilliteil for suich a data ,ot . To performtis Ili],;uu~a fl.w

develop) and impemiej1(nt lin one diniension anl algorit hini bared 011 intilt ilevell itfral ioh
t0ClIiti(j1I41S (fli11t d bytff l) ;chij Brand~t ( '2].f[1]). I'llie met ioil pre.,emit*d lure (-,ti ;ikff, if

dievolopoed for hiidier-dimlellisiomial problemsl". One aipphicat ioii of ihiie t ecliniiui '11 *. in
lie( reconstruction of imtages fromi projections (invert inrg the R~adon t ranisorii ).

To beg-in, it is necessary to dlecidle what is mevant by a I)iscrete Fourier 'irate-,f'Irtin
for i rregularly spaced dat a. Therefore. thle conicept of a fwinal LIFT 1., Ismt rod ucf-dl
whichj is t](,fined] as follows:

( eftsider any set (if N ordered poiii lit si the I ut rval ,0 , X') a ~v i

arid -,uppose at ve~ctor-valuied futiction (grid fuinCtionl tt Xý )Is Spiecified. hh1' f~It,,f

V FT is deft ied ;ts tw li.Al1l + .1L -. I q uamit it ics

,where, I is all integer, and A.1 and AL1 are positive initege(rs spoifi fing thle rai~i,_e o)f

frequencies of interest. Till forinal DFT nay be thought of as an approximlation to a - ~-

De-partment of Mathematics, Naval Postgraduate School. Monterey, ('alifurnia 9013i
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selection (-MAl < < M 2 ) of the Fourier coefficients of u(x). In this view, u(x) should
be regarded as an X-periodic function known only at the grid points x.

It is desired that this sum be calculated to a prescribed accuracy, say (ILull 1 , where
1julli is the discrete LI norm Ilull, = N- 1 7-1 lu( )I. Note that any grid spacing
is allowed for the x. (in particular, the spacing needn't be constant), that there is no
relationship between the integers t1 , A-12, and N, and that there is no requirement
that these integers have any special value. (such as being powers of 2). Calculating the
sum in (2) directly would have a computational cost of O(MN) operations. Instead
of forming this sum directly. though. an approximation to it will bh computed, using

an FFT to accelerate the computation.
The procedure begins with the definition of an auxiliary gridt. covering the

rangp of values [0. X). Let N. be an integor, whose value will be doteriiined shortly.
and let the grid spacing h be defined by h = XN... Then the auxiliary grid consists
of the points y, = (r - 1 )h. for r = 1.2.... N..

Suppose that the value of sonie function g(ij-) on the rf"ular grid . is to he
interpolated to the gridpoints x by Lagrangian interpolation. We will identify the
interpolation by s pecifyingr the degree of tIoh pilynoinial to be us]d. Tl irs. p-dodYree
Lagrangian interpolation is cilput,,d usirig a p) ivyno11ial of dleree p 1,r loss. For each
1.r the p + 1 nearest neighbors on the grid Q`'. iii-t he 1,cated. e.,t t,, l ,,pirits b1w
designated . . ) .)Those potints ,,humld bh' ch•,oorl iodulo .Y. ',(, lhar
a point near thre limits of the interval 0..\). tn iy have niwlhbors iar thle (ther ,.lid
of I lie iterval. (Thi.s is juntifiod bh cau>o. a,, ijil he ,een >ihrrlv. thle flitictin to he
interpolat(,d for the formal D I'" i,, \-priodic.) F,)r •u (hi .I_. the 1) 1 l._tramigiam
interpolation weights are coni)pitol hy

(3 )- , .(:) w,(. . 4 = i Y. . . .I ---

amid tl imlt orl, olaniu i if the fiinctin gi to, th" i lil it.' i> 'i

y~x f)' i I f I'

l.('tt�i g . lie t, -,.,cti(r of fiircti,, ,.al,,: ' ;r1l d le tie ,* tr it mwj)1 ltd•l ,Tp ,d
val uies '(. ). t ietterpolatii) nmiay lbe writtorn iII t ;tt nix ftrFit

where I' is the.V x N. interpolation matrix rirappinit a function or) to 1to th
gridpiuints {r 1}. The entries of this matrix are

v ,({ ) If 11 71 1

W\' are n,,• ready to compute an appirxinatmai,,n to e:ialtilon (2j. The, stralt.Iv

will be to inteirpolato, for each -, values of ie, kerneil -. rri tHlie aixiliarv ,_,rid
Qý.-. That is. ,,luiti, •i (2) is aplproximated by

N -

J=uJ



where

p
,( zx-) = • w•~( x3)•-'...iI4

Let the column vector of exponential values ("19k he de.signated rj. arid the vector

of interpolated kernel values .. ,.r2) be denoted il Then this interpolation can be

written

Notice, however, that i,, is to be used as the 1f" row of the matrix ,i vi rt Oie k.rnol
of the summation in (1). To compute jI as a row vwctor. the. adjoirit f 4te matrix
equation equation is needed, namely

(T)T = ( ,- ) '

Let us define the I!-%vector , = t,). the N-'oetor il7 = , ). and the in atrico ov n

the, kernel.,, of equations (2) anl (41) an It' and I'. ri-poctiv4qv. LIo hie .l ý. A'. mat rix
whoe IV" row consists of -•-" for tie N. pints on) S!2 b, de>i,"ziatd II i i.,
o,) ,,bserve that this matrix consists of .11 consecutivo rovws oft (ialie Tmiari I) 1KT ,,rinl

f,,r a uniform qril itiih V. points). Then the formal I)"I" is a,•tint.d

Si,7
-~IVY7

- 7,

This notation can be siiiiplifiod slightly ol dn.oti gY IIhe vwcitr creart,,d 1v m pili ]iII-
7 1v rIfI. a.s, &. Siice the matrix [ is th, adjoint ,,f tho Ita, ii:, n ir:rp hatit

m natrix, the process of com iputing /- 7`= , 7 hiw lc, dun t ,ied ,rdt ,./u,:, t. 'I i,•,
the, aptrn,ximation to the formal DFT is

1,) (1 l ti',

which we call the A nti rpolatcd Di.,cr(t Four•( r Tran.,formn (A l".
The .lDFT. a.s a tratrix inultiplicatiomi. requires ()t AlA., i ,,i,,rai,,it. Ii. io'e.ril.

N. will exceed N'. so as a matrix-vector multiplication, the ADIT has n,, avinalorw,
over (2). If. however. N. is selected appropriately, the approximation can he cornputod
quite rapidly. Let M. = max {,M1 .1 , }. Then if N. is selected such t hat V. > 2.1..
and at the same time N. is a numrner for which an fPT module exists. then the fas,t
Fourier transform can he applied to compute the DFT sumnmatio

I v .\ - I NV . .V . .V .

1 i c I i / . f r I= - -- , - -- + . . . __

FFT {} = i,- for 1.

Recalling that It X /.V.. it triav be seen that the DFE sun1a1iniat tIherer,' %ields

(1/A. )i.) (2-. 1/.X'). Multiplying by N. thu., yieldds a swt of valui- th:it includev. a- a
subset. all the desired values of '(-:i ).

Computing the ADFT, then, consists of two phases:
I. ii is computed from it by ant-rpolation: = [I_7-],.
2. iU is computed from It by a Fast Fourier Transform.



2. Operation count for the ADFT. The cost of computing the ADFT con-
sists of the cost of computing the interpolation weights, the cost of computing the
vector ii = [j"]TU. and the cost of the FFT on N. points.

Computing the (p + I)N interpolation weights, w,(x,), by the formula in (3) is
the cost of the computing the numerator, since the regular spacing on S. means
that the denominators of w,,(x,) are independent of f. To compute the numerators,

p
the product 1" (xj - 1 ,,(jm)) is computed for each x,. requiring 2p + 1 operations.

,n =0

Then the n1h interpolation weight can be obtained by dividing by the product of
r

(-T,1 - x.r,,m)) with the precomputed denominator 1- (X. - r,." requiring 2

operations for each of the p + I weights associated with the point x,. The calculation
of the weights thus requires O(.N( p+ 1)) operations. It is important, however, to note
that the calculation of the weights is dependent onlyv on the relati4onships btween t1h
gridpoints {!1b.} and {x }. and is indeplendent of the data set. u(.r ). This means t bat
if a known set of gridpoints {x } and a sanidard auxiliary grid Q"- are, to bh, sd

repeatedly', the interpolation weeights w,,.) may he, procomputied and stored, and
i,,t'dnIt be included in the cost of the alorithmm. This will lie assiimiod to he the itca>&.

The matrix [ZT' is N.%' ;, aid the dlata vector WTis N x 1. so the ctn~pmitation of

U L yTj wio•uild be O(.iN.\.) if performed as a matrix-vet'Tor niultiplicati,,i. T,,re
is. however, a niuch more efficient method. The index table K(j.n) can be 1 twred
along with the interpolation weihts, I",r each .r and for each ni. lie value of K(j. 11

is Ieh, ind,ex of t.he u , in) terpolation neighbor that is used to interpolate from !?k-
to, the gridpoiit .J. The periodic naturi of tle kernel bing interpoilated locals that
the ititerlilation is always to a gridpoiint x, in th, ceter of the .et ofp intrtlatiri

points (as is Wll knmwn. [7,]. t, ie a ram iani inttrpolatli,,tin is better ,liehav,,d wl,,t th i

is the c.,e If J) is odd. theii xj ,aways lie., bet y, .er ,. L2 and . 1. . v hile if 1)

is even. then tI<..) is the closest gridpoint oil S!".. t1(.) .

('omiputing tIe1 veclor - is llen virv a;m~v. aith Y ,i n l dotoep II 2.\ ,- I ,t rlit,44.
according to tli algorithin:

1. Initialize, i(y-) = 0 for all !y- c (1 " I < 7 .
2. For j=0.1 ..... N- I

For n = 0. ..... 1

Set iI (Yj0), ) - 0 ( ., + w,,(x f l. .. ).

Hlaving computed the val]iies of ý. consisder now tlie cost of the F1T 1 portion of
the .ADFIT. This is simply the cost of am. N.-point FlT. Ini the next section criteria

for choosing N. will be determined. For noA the only requirenent is that an EFT can
be computed on a vector of length iiN.. As such. N. lniUv., have factors for %khich FET
miod(iles are available. For the purpose of an operation count, h11wver. it is ,a.i,.t
to assume that N. is a power of 2. Indeed, we shall see that we have great flexibility
in our selection of N.. and since powers of 2 or 4 produce the most efficient 1/17s.
this is a good assumption. In this case, the cost of the tFT portion of the .- DlFT is

O( N. logI .M).

4



The costs of the ADFT can now be computed. In terms of data storage it requires

four arrays. One is the N-point vector containing the input data. 9'. In addition, an
N.-point complex vector is required for the input and ouitlput of the FIT. A,,uniing)
that thle weights are precornputed and~ stored, two auxiliary array,) are necessar'y.,ian
N x (p + 1) real (or double precision) array holding the initerpolat ion wtei~ghts ,( I
and the N x (p + 1 ) integer array of indices. x(j. ni).

W If the operations of multiplication andl addition are counted equally, and if thle
weights and indices are pre-stored. the operation count is C1 N. Iogr N. complex o--per-
ations for the EFT portion of the algorithm,. where C, depends onl thet choice of FF1'
algorithm. The computation of Fi entails 2.V(p+ 1 ) operations, that are real or complex
according to whether it is real or comiplex. Counting bot h phases of tlie( algorit hni.
the operation couint o)f t he ADIFT is

C, N. lIg N\. + 2)N(p1)

This should he compared with the operation couint (if the frmnal DF)T. wýhich IS
0)( AINA ). The coniipin at ion of the ADIIY is more efficient providf'd .11 is I a rlgr 1I ii Ii

2(j) + I) -ý- ( -.1 i \- %. )I"-% . a co ,II IoildIi ion tat will geonerallIy tccur Iii p racT i'

3. Error analysis for the Anterpolated DFT. One (if th a rtc v
tires of thet ADF I-1,,i that thec interpolatioln is performled o)il tOe %~reI ili>!ih~

known sinionthine,ý properties, rather than thet da.ta set, which -,onolrl lvhi~t> uiikiiA, it

slilootlhies-s prpriS.ince i titeorpolat ion ferror dependsk on th li,11:11141114. iief IIl,,

iiiterpol~tioie fmictliein. tlie error coiniliutotd ilsli IIhe' .11)F1 r-'l;ttIi,~ e1 -v It)

('oýIider tile error Iil p-(legreeL,, rgai iviiii iieo;ttl h'l1.

initerpol)ation isý froiti a seýt of p I aridpwints that are equially >al Llt lee

gridpoinilt> be dveliiý iated 'C. 11 -. ,,. A funct ion ft ( .r . !oýe values- ar,ý'.%l ' k St \ ý t

Ihie-e 11ridlpoiitit.> i> to h e interpolatedto t e po) int 1-111 x E ,c. ] Let - - ci - t!)i*% 1whi

I t heý t rilt pcia and t C r1. ;i) The approxitmation tieft f  Ili i>, tI o ;t li, (if

t lie l~e.rmeiqiai iri nterjedmatWieni pluelnom~ial !I. ri It )i.

P- t wz(xa) f ( c, wher w- -)-

Defining t,(f ) - I )(t - 2)... (I - p). and E [c, %c, 1!. the error 'in the intitrpilatiti

t) 1- f 4 i ,I I

wh Ie re Q ,+~ - ni a x I f~i+ ~ SPee . paget-s 21 -2 70. fo r a deriat i' n o f thIs
0 ~error termn.

It is useful to hound this error more pre-cisel~y. To do this, we examine the behavior
of thle factorial polynomi al T, .''his pl)(lniioiiah has heen well-st tIdied, and i n any
results can he found in various nu merical analysis texts. ( [5). V. llv. VI .jh~

results, however, are developed for the case that x- can he any wh ere in [1c 0~. In thle
present case the interpolation is always to the ccntcr subinterval. I hus for p odd.

I E j ~ ~ ,while for p even, either it E [L. r - I or I E [L 1



To shorten the discussion, assume that p is odd. This is the most common case,
where p = 1 gives linear interpolation and p = 3 give cubic interpolation. Similar
results can be obtained for p even. Consider the following lemma, the proof of which
may be found in [6].

LEMMA 1. If p is a positivc odd integer. then

jr•,(t)j I
t I " t2-(+ X 17,m I) r+

I!EL:ý 211(p-i 1)! 2,

This result can be used to finid an error bound for thl AD.FT. In Ohis case the
functions being interpolated are

G-'- for 1 -I + 1, - +2....

Fromn this set of functions, the only ones w h sp values are of ilitferest are th ise for
I between -- MIl and .1 2. Recalling thle definition At. = ax {A 1 . Aj}. the 'iargest
absolute valie a nong the froqlivilcies of Hiterest is - (2-. A.)//.\N Tlwr,,efr,,

liserlti ni this aid tlie boinid frormt I.emmin a I i (li I q i;T' inmi I '

w hich i•, th~ lll ,t 11 ,(ý 1 ,dbt 111

h - l|'h'l : ; -'\ -I ,•,r )t..... ',\ - .r,=

< ( 1• ,1 ý f/"2 ); V " 'x-

(= -h,%f /2)," N'-U-l.\ l'!

Finally. subs,,tituting It X/.V and = (2-.1.)/X ,,staillishe> The ,ljird error
bound. riw error in the .- )f I approximlatio•n to the fbirual 1)1t i, hbomdled. for
-. 11, < I < M2 . v

where -'t = 2-, 1/Y. anrd t lie I DI"T (5) is coniputeid using an IFT of le,-i Li N..
Since thtle hound holds for all desired valuies of '-.: it tlwn follow.s that

([) ! ;, < .- T. . i

6



where 11 e is defined as the maximumn absolute value in the vector. It Is also worth
noting that an error bound for any desired frequency can be obtained by replacing
-'4AIJ with ý..' in the derivation. leading to

(10) U [<~(~ ViallI...

This is especially useful informnation for those occasions whten only tlie, low frequency
components are of interest, or when the accuracy require'd of Ohe approJximation Is,
t,reater for the low frequencies than for the high frequencies.

4. Selection of p and N.. The error bound juist (lerived is usefull in that it
provides a way' to select the operational paramieters N. andl p. Recall t hat the zoal
is to calculate an approximation to u- to sorni prescribed accuracy. I - <V r1 I u '
In practice we will want to make the error smnall, so it wkill he a,,sined thlat<K1
Comparison wit i ( , ) gives the( requi renment

\Yli~lc i~ hota likritteli ais

1,()r a givyen formial D)17. Ht- lh w, oa e f _11., N. and art, nm.ýi ilirel tt) lii Jiart f
tlhe problemn spociticatlinhi. To et~tethat t10 si'tie C1I arC.%a iý, itta1iti d. it ,!'v
Iieces~arv to seeNitees . anld J) 4() thait I is sajT1.isid. .N;titr;l t~v. tlhrvr tiavt b"

111111'~ cott' ia o*11ý1 0 tis if paramtittr vaýl lies t hat achie'v' t hii.ý L'al . 'I e !w rinter .
ieref~ore he se~lected to fullfill >om,' other dfe'irahile propertyv a., well. >po;)ecihal!v. titey

>liuu1(1ld, :e >lected akt, to uiniittiiize the ompuitational efor~qt of te it(-ihii
To see' hlow thisý may lie" accout pd i>, lied, regal I thiat the, wor-k lin'.) 1vo i can iplt -

ing tlie .119T kl wit N~. point> on)I tite auxiliary grid Q'Y'-. and ;i-d#-.ireeLortio t

Interpol atiton is

0( N. loa,N. )+ 0( N(p± + I

The value of the const ant on t lhe O( .VIp 1)) tcnn depenids on)i w pliethr tlie( weiMlt s
and indices are pre- stored, or calc ulated ..()t th fl [1 v*. Fotr the, arualv' '!i> that foijiuws.
wp assume tlie( wei gluts aTIdl i tti ices are, lrf~-storedl in w l~ chi case Hthe cmi st artt is 2.
The( constant ont thli first term (lepends im several fact ors. IFI'ls 2ienoralY lv 1ave
a complexity of ( N/q )logt .V/q ) for some tttimhbcr q > 1 . If thli data have cert aini
svinitetries. then a specialized FIFT may be, tised four fa~t em colinpuitat ion (`T ".I.[10>).
The varietv of available FET algorithmis pursuades us to leave the constant on thle
first t eriti as an utntspeci fied piaramteter. C,

The( total work in compu11t ing thle .11)FT can t hirefore, he v.kri tt en as a futnct ion of
the t wo parafliters N. and p. For a fi xedl problem size, ( N and .11. ). and a presri bed
error tolerance (, the work in computing the .4DFT to the required accuracy is

(12) UV( N., p) = C, N. l og2, N. + 2N( p 1)I



and w.e seek an optimal parameters minimizing W(N., p) over all combinations (N.. p)
satisfying ( 11). if such a choice exists.

Limiting cases may be determined by examining n(.arts rifn(ighbor intterpolat iofl
(p =0), as well as extremely high degrees of interpolation (p - -)). Subs"tituting, the

limiting values of p into (11), and noting that equality will suiffice to ensure that the
required accuracy is attained, we obtain bound., for the selection of N.. namiely

Af < N. <_ f

for all values of p > 0.
The existence and uniqueness of optimal solutions are fairly ea~sy to establish.

UN N.. p) is continuous with respect to each of its variables, anid hothl of the fir.,t
partial derivatives are everywhere positive. This observation leads to

LEMMA 2. Lo S & tht sct {(N..p) N. > Y~(N i~) arid I t I S bt

fliat Portion of thc boundarty of .5 gil'(71i by {(N., p ) : . = .1. 7 1N 1 ) ' )}. ; It'I I

if ( .ro. YuA E S. fiN IT cXI~fS (I point (C~. 71) C OS POICI h fit 1V( 1. 1)) < IV( 1,,.

Proof: Sin1ce ( E, y S, the point ( c. 'j, ) C- 0S. whewre C = M.-

Furt hiprmure. Ic < x-,. Then since the( p~artial de~rivative (of the( wo-,rk fiiji tO ii v\ it Ii

respeýct to N. isý iv~rywhere positive. HW(&cY,,) < IIa~.yt

TIe( utility of Leninnia 2 Is tliat tlie( -,ptlinrizatioti proble~ni can;ier\ t bf % iittl ;t - a

prohhiji ini a single variable. S-)ince for everY point in S t here is sorti tijnt altý- 0.",i
that re(jtiirt*.les work, it is onlyv neceý,.sarv to) see1k a triir~itrirtr frimi tht. poiritý of 0.,'

This can bep donep by paraimetr .izing, N. anld J) aS 111i 'if a sil aiiie

13

TheN onI O.S wel fi tid htl,

1)N. = M.-b and p1) l2I

Since 0 < p < t. the value of b is restricted ti the interval (1. N/f]. Siibstitiuting1

thiese exprepssions Ir ut ( 12). t lie wotrk et jtat ion miiay be rewri t te a>t i a fo lt it c tii (f 1)

aloneo

(15) U( b) =C', A.1f'-b 1ln-( 111. 7) ± 2NV ]og;, NI

and the problem is to Iiiiiniize ( 15) suibje~ct tt) the comistraiTit I < b < i N,',. On1ce- b
is determi~ned. thei necessary values Of N. arid p) cartt 1e obtained frtttrt I I). We nmnly
now estab~lish

Ttii O RE NI 1 . 7'1ir- in na-its a tin iqtu ra/ti bt fthat Iiti/ S ~u h~Uttt I

b leq( N/). Thfr(furf I&( work functioll

W(N.. p) = C', N. log, N. -+ 2N(p + I)

hsa uniqti( rin inriurn, subj~ct to th( coisttyit it.Is

N. > 11!7, and 0 < 1)<



Proof: IU(b) is continuous and differentiable with respect to b on (1 N /fl Dif-
ferentiating equation ( 15) yields

(16) 11 "k ) I1 ln K 2 b) - K3

where

C,2 A 2 . noA 3 - 11

For Wt'(15) =0, then. b must satisfy b( In b )2 In ( A',b) = Kj/ K1 . (o, [V' i> akco c-ent lll
noirs and differentiable on ( 1. N/(J . anid differet jitat ii nt vieldis

KInb + A3 K 2lny

"Since b > I we see that IE()> 0 for all b E ( 1. N/#'.. >( anly critical ;'t

interval muiist citrrespoi.2 to a local nlitili;I11IInl.

bi Lý apparent that I1F' 15) - --x- a, 1) 1. Lx~lrriiiat it'l 'd lheý "Idpo'?I1 1 1

reveals that slMice A1' > It ', > .a.id t 1 . we have t hat1 Nt e U I
> 0 ilriqiiis that tU~l has eXactlY silgn chmala" Ill 1111 ,n1 N

ToIme put 1), at which T his occurs is t ijrefar, a idlobal rnnin Foi it . n
value1tk X.p where

The vausof N. alid 1) obtained Ill th niai mantr art, re~il rimer.1 hr. 'i

limite~d i.unber of integeýýrs for which efficient FFI's exi,-t. and L~~r~~n ~n}u~I
requires p to he atn Integer. Further, this eniare discusý,ioriia beeni Ircclct, d1 elit!

as-umlpto that p Isan odd~ a il long! a si~lilllr ar~l~>alt ho, :1ild fr, 1

even. Once the theoretical v-aluies of N. and p) are, deterninieod. lif, me just 1e mimauified
to allow comrputatimn. There Is , uniel flexibility in t his.1,hit ctvrtinil v >.lct Ai' A. to

be the first integer laIrger than .rbfo)r wohich ai, IIFF isT and cht;>irgý p too be

the smallest odd int eger greater thIan

wo.ill suf1fice.
In ordler to fnd the( opitimnal va)i f 1) and N. It i., net eary it) finid t hue valu of

b satisfyingo

17) blIi by I~ It'b

WNhile a~r analvt ic solution of this equnat ion cai not be foundl Newt on's iteration mnay'
lbe used. Table 1 displays optimal parameters N. and p) for several conibinratroins of
N. M.1. anid.



. m. • N. p N M. N. p

32 8 .1 48.7 7.7 128 32 .1 193 9.9
32 32 .1 142.6 15.5 128 64 .1 325.7 13.8
32 64 .1 257.6 22.2 128 128 .1 570.7 19.4

32 8 .01 52.9 9.8 128 32 .01 206.7 12.1

32 32 .01 150.1 19.1 128 64 .01 344.1 16.6
:12 64 .01 267.8 27.1 128 128 .01 595.6 23.1

Table 1. Optitnal paranicters N. and p coniputed for various probl(tns.

5. An .4DFT Example. To illustrate the A D FT. consider the problem• of corn-

puting the formal DFT of the function u(x) = [(7r - x )/l]2, sampled on alt irregular
grid. The irregular grid consists of N = 12q points x, randomly spaced in the interval

ý0.2- ). Since the extent of the interval is 2,.. the frequencies ,-1 are just the integers
1. anid the, forrntal DFT' is

A -

,Il= Z (x). -6( <1 < 6.1
J=u

Fi,, s;unplod ilti, ar, shown in the top of Iir_,ure 1. The real part of 1 is plotted
,IIie, blv'm,ni ,f l'i1irr 1. The .-tDFT was iiýed to al))roxiniaot the, formal DtT.

hii \almli, of'f A". = 12•. 276. .512. and 1021. tFiowre 2 displayw, for each choice

,,f A'.. tie, ahi>u',lt, valuie of the error "l) - [ii'' 1). plotted as a fuicliion of I.
Lrinar initerpulat in (p = 1) was used in each case. Note that increasing the value
of .\. prfduces a noticeable decrease in the error. and that the error increa:,es witlh

I ,,'r,,a-i n wavn, iher,,r as nilght he if--frred from (10). Figure :3 displays the effect of
uit i dihfFerr,.t values of p for fixed .'.. It Inav be seen that the error decreases rapidly

. i i ,rncre,t,.d. Equa tioni 9) preidicts thIat the error should decrease at least a., fast

a:'-W-. ) dcra-,,,ý as 1) or A'. are increased. Table 2 gives hotth thle ifiiitv and

L, Turni s oif tle error U (1) - [IVli)! for several values of p and each of . 2.56

, .It ,'. =512. V .r =. 256. the error bomllud decreases by 0.616!1) each tni, pe is

increasid bY 2. Tlie -xipenriiental error is dinrinished by a factor of approxinmat elv

0.3 as p is increasd from I to :3. and by a factor of approxintately 0.1 ith teach
-ucredcj]ig in crease, better than tlihe theory predicts. Sitmilarl . for .\. = 512. lte
hteorotical bound decreases by 0.15.121 as p is increased by 2. while t he experiment al

decrease is approximately 0.11 for each increase, a slightly better result. Numerical
expririents on numerous other irregularly sainpled functions. with various degrees
of mirroothrness, produced similar results. lit these experiments the .-IDIFT behaved

in a sirilar fa.,hion as it did for the function discussed above. There is dramatic

)niIprovoetient with increasing values of .\.. and p. As might be expected(. t he error
diniunishied faster with stmooth functions than (discontinuous function s.

.V. p IIL'rrorj, ('Errorl, .'. p I Error]K, JýErr,,rfl 2

256 1 1.20663 O.-TI S6 1 .512 1 0.290501 0. 1099 13
25•6 3 0.35.•79 0.11lO0qO 512 3 0.0293.51 0.00s31.5

256 .5 0.144-178 0.0391:36 512 .5 0.003360 0.000,17

2.56 7 0.061305 0.01.1983 512 7 0.000419 9.663:85P-.05

Table 2. Errors of thf. .4 DFT for various values of N. and p.

1 0



6. Some Open Questions about the ADFT. Like the continuous Fourier
transform, the DFT has several important properties, such as linearity, the convolu-
tion and correlation properties, the shifting property. the modulation property, and
Parseval's relation. To what extent these properties hold for the .ADIFT is an open
question. The linearity holds can be established immediately, by noting that both thle
formal DFT and the ADET can be written as matrix operations, so they are linear
operators. Certain symmnetr - properties are easy to establish. For example. applying
the .4DFT to a real-valued vector will yield a conj .ugate syflimctric result. that 'is

t(),because the vector [1,,T 7i is real-valued. andl because the .4 B T Is
computed by applying the PET operator to this vector. The DET. and therefore thle
FFT, maps a real vector to a conjugate symmnetr ic vector [4]. Applying the DET to
data vectors with other symmetries (even. odd. quarter-wave. etc.) yields output vec-
tors with other types of symmetries [10]. It is natural to ask which of these symmetry
prop~erties are inherited by thle formial DE-T or the .4D17. It seemis reasonable to
p~ostuolate that if the irregular gridpoints are symmnet rically disposed in(l tilt-e ftnct ion
U(xj ) i, s , ymmnetrnc then the symmetry property of thle D['T inight b~e in lien ted liv
lie formal D IT and the .4D fT.

kin important question isý: flow i, flie foirital l)FT related to the continulousl
Fourier transfornii? That is. to what extent. mind wýith wkhlat error. Ioe he( folriial Dl[Y
approximiate tho IT7' Answering this quest ionl niav prove lo he a lzg vpoes

laitv related que-stions will also arise. For examtple. how (lies I e azn phing theoreni
apply to au irregultar riWhat frequeincis can be repre~senteil accuratloY. aniii what
com1ýistwtit e aliasing'! Is there soine anabo. to tilte lPois~on suninmiaut iiin t het rerin! Mlanv

probleitis feat nre irregulairly sp~aced data. ;(, it 11ay bel ~su ted hat t liioe(jlCt on

aIre Of s 11110 itt rest.
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