NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A255 187
LT

DFTS ON IRREGULAR GRIDS:
THE ANTERPOLATED DFT

by
Van Emden Henson
Technical Report for Period

October 1990-March 1992

Approved for public release; distribution unlimited

Prepared for: Navual Postgraduate School
Monterey, CA 93943

2y G 92-25841
e \\l\‘h\'\\“ IR




NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for
the Naval Postgraduate School and for the Institute for Mathematics
and Its Applications. Funding was provided by the Naval
Postgraduate School. Reproduction of all or part of this report is
authorized.

Prepared by:

<7 <£:27%{ ;
77

L

VAN EMDEN HENSON
Asst. Professor of Mathematics

Reviewed by: Released by:

A O, ANewdas .
“RICHARD FRANKE PAUL MARTO
Chairman Dean Research

Department of Mathematics




AR et I N T A S BN R R LN NN B LY By A ]

UNCLASSIFIED
SECURITY CLASSIFWCATION OF ~1:5 PAGE
REPORT DOCUM T o e et
ENTATION PAGE OMB No €704 0188
. 1a REPORT SECUR!TY CLASSIF(ATION o RESTRICT VR ONARE N
o i . v ] " iely
UNCLASSIFIED
23 SECURITY CLASSIF:CATION AUTHORTY 3 DSTRBLTION ALA AR Ty OF 25,0
O v ~ 5 -
‘o 2b DECLASSIFICATION  DOWNGRAD.NG SCHEDULE Aﬁprox'ed for bell(-: release;
distributien unlimited
A PERFORMING ORGANIZATION REPORT NUMBER(S) S PIOMITOR TG HGA N Za T % REFLAT 5, ne5: aig
. L - % LS . o Low ity
NPS-MA-92-006 NPS-MA-92-006
6a NAME OF PERFORMING ORGAN.ZATION Bb CFCT SyATADL 7a MANE OF N ITORNG DECAN JAT DN
. if applicabie) T U
Naval Postgraduate School M2 Naval Postgraduate School
€ ADDRESS (City. State. and 2/P Code) o ADLTESS Gty State andg SR Cooe)
Monterey, CA 92243 Menterey, CA 92933
8a NANE OF £RNDRLG SFONROR T A 5F CF yetrR EIEEI T S DE
; o e : ‘ SEoy BROC RESTT TR NTEL T DI AT e ek
ORGANIZAT-ON NSF, AFOSR, (It 3apphcable) ‘ ’ ‘ T
Naval Pcstgraduate School MA GaMy

8¢ ADDRESS (City State and 2P Code) R
Washington, D.C. (NFS) —
Washington, D.C. (XPS)
Monterey, CA 93943

VY TITLE (Include Security Classification)

DFTS on Irrecular Gricds: The antercolztold DRET

'2 PERSONAL ALi1+0R'S,
Van Emden Herson

'3a TrPE OF REPORT Tim TE (ULERED TEOATI R REDTRT trear AMierh 3 :
C . o, . N ¢ \ y 3 CE ‘
Technical Reoponrt seone 10790 1 03/92 31 Mzrch 1932 13
16 SUPFLEMENTARY H,OTATION
: s - —re—
7 (RS CoD=5 18 SRR Tt CONNrUEe D0 revsrse of Senegs g, 4t o e ety o curher)
FELD GEOUF 5.8 GROL P Discrete Fourier Trarnsfornm

FET
Anterpoclation
19 ABSTRACT (Continue on reverse f necessary and dentify by bluck nurher)

Abstract. In many instances the discrete Fourier transform (DFT) is desired for a data set
that occurs on an irtegular grid. Commonly the data are interpolated :o a regular gnd, aad a fast
Fousier transform (F FT) is then applied. A drawback to this approach is that typicaily the data have
unknown smoothness properties, so that the error in the interpolation is unknown.

An alternative method is presented, based upon multilevel integration techniques introduced by
A. Brandt. In this approach, the kernel, e~*“*, is interpolated to the irregular grid, rather than
interpolating the data to the regular grid. This may be accomplished by pre-multiplying the data by
the adjoint of the interpolation matrix (a process dubbed anterpolation), produdng a new regular-
gnrid function, and then applying a standard FFT to the new function. Since the kernel i1s C* the
operation may be carried out to any preselected accuracy.

A simple optimization problem can be solved to select the problem parameters in an «fficient way.
If the requirements of accuracy are . ot strict, or if a small bandwidth is of interest, the method can
be used in place of an FFT even when the data are regularly spaced.

20 DISTRIBUTION  AVAILABILITY OF ABSIRA(T 21 ABSTRACT SECURITY Ci A% i A0
B uncrassimeponimaen  [J same as aer (J one useas UNCLASSIFIED
223 NAIE OF RESPONSIBiE INDIVIDUAL 220 TELEPHOINE (Inc) A P S SR
Van Emden Henson 3 NE (Inciude lm(mww.¢ e et
DD fForm 1473, JUN 86 Previous editions are obsoiete e R e (LASSy (AT e (i e, A
S/N N102-LF-014-6603 UNCLASSIFIED

]




DFTS ON IRREGULAR GRIDS: THE ANTERPOLATED DFT
VAN EMDEN HENSON *

Abstract. In many instances the discrete Fourier transform (DFT) is desired for a data set
that occurs on an irregular grid. Commonly the data are interpolated to a regular grid. and a fast
Fourier transform (F FT) is then applied. A drawback to this approach is that typically the data have
unknown smoothness properties, so that the error in the interpolation is unknown.

An alternative method is presented. based upon multilevel integration techniques introduced by
A. Brandt. In this approach, the kernel. €', is interpolated to the irregular grid. rather than
interpolating the data to the regular grid. This may be accomplished by pre-multiplving the data by
the adjoint of the interpolation matrix (a process dubbed anterpolation). producing a new regular-
grid function, and then applving a standard FFT to the new function. Since the kernel is ('™ the
operation may be carried out to any preselected accuracy.

A simple optimization problem can be solved to select the problem parameters in an efficient way.
If the requirements of accuracy are not strict. or if a small bandwidth is of interest. the method can
be used in place of an FFT even when the data are regularly spaced.

1. The formal DFT and the ADFT. The DFT is defined as an operation

that maps a length-V complex-valued sequence {ry.ry.....rv2p) 1o anotier leneth-
N complex-valued sequence {rg.ryooo o F v 2y} by the rule
N
: - - PEREST TAY -
i) Feo= Y FTETERN for k=000 N - L
J=u

As defiued in (1 the DFT is performed on data that are presumed 1o be aiven
on a regular grid. with constant spacing between the data points. Furthermore, the
transform values {ro 0y, ... Iy} are also presumed 1o lie on a regular grid in the
frequency domain. In many applications. however, the data for a problem are not
spaced reeularly. It is of some iuterest, then. to determine how a discrete Fourier
tran~form may be computed for such a data set. To perform this computation. we
develop and implement in one dimension an algorithm based on multilevel inteeration
techuiques outlined by Achi Brandt ([21.[1]). The method presented hore can also he
developed for higher-dimensional problems. One application of this technigue 60 1 in
the reconstruction of images from projections (inverting the Radon transform).

To begin. it is necessary to decide what is meant by a Discrete Fourier Transform
for irregularly spaced data. Therefore. the concept of a formal DFT is iutrodiced.
which is defined as follows:

Cousider any set of .V ordered poiuts in the interval [0, V). <ati~fving

0<rpg<ry...<rx1 < X

and suppose a vector-valued function (grid function) uir, ) is specified. The forma
DFT is defined as the M = M, + M, + 1 quantities

N1 9=
(2) wwy) = Z u(r e~ o=

JS=U

where [ is an integer. and M and M, are positive integers specifving the range of

frequencies of interest. The formal DFT may be thought of as an approximation to a
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selection (—M; <[ < M;) of the Fourier coeflicients of u(z). In this view, u(z) should
be regarded as an X-periodic function known only at the grid points z,.

It is desired that this sum be calculated to a prescribed accuracy. say el|u||;. where
[luf|; is the discrete Ly norm ||ull; = V7! ZJ\;OI lu(r,)]. Note that any grid spacing
is allowed for the r, (in particular, the spacing needn’t be constant), that there is no
relationship between the integers My, Mo, and .V, and that there is no requirement
that these integers have any special value. (such as being powers of 2). Calculating the
sum in (2) directlv would have a computational cost of O(3M V) operations. Instead
of forming this sum directly. though. an approximation to it will he computed, using
an FFT to accelerate the computation.

The procedure begins with the definition of an auxiliary grid. Q"\ covering the
range of values [0..Y'). Let .V, be an integer. whose value will be determined shortly.
and let the grid spacing h be defined by A = X/.N.. Then the auxiliary grid consists
of the points y, = (r = )h.forr = 1.2..... V..

Suppose that the value of some function g(y-) on the recular grid (_)_'h\.. is to be
interpolated to the gridpoints r;, by Lagrangian interpolation. We will identify the
interpolation by specifving the degree of the polvnomial to be used. Thns, p-degree
Lagrangian interpolation is computed using a poivnomial of degree p or less. For each
I,. the p + 1 nearest neighbors on the grid Q% must be located. Lot these points be
designated y oy Wuii)e - -+« Un(yp)- Lhese points should be chosen modulo X so that
a point near the limits of the interval 0..X) may have neighbors near the other end
of the interval. (This is justified because. as will be seen shortly, the function to be
interpolated for the formal DFT is X-periodic.) For each . the p + 1 Liagrangian
interpolation weights are compnted by

lJ', = N« ""i'
(3 w (r,)= H - L

= '.f/nl‘;".l - .’4'-.1_;Am)’
wEn
and the interpolation of the function g to the gridpoints £ i~ given

n

+

gir j x Z W LT g

=4
Letting 7 be the vector of function values goy )y and ¢ be the veetor ot interpolatid
values gir ). the interpolation may be written in matrix form
- r 1‘]—-
4= Aij.‘]
where 77 is the .V x .V, interpolation matrix mapping a function on Q25 to the

gridpoints {r,}. The entries of this matrix are

v (r)) if wljon) =m

rT =
Ly Lo 0 oloe

v
We are now ready to compute an approximation to equation (2). The strategy

will be to interpolate. for each wy. values of the kernel ¢ 7=+ from the auxiliary arid

Slf‘\-.. That s, equation (2) is approximated by

AN
(4) ulwy) = Z w(rVe(wpor,)
=0




where

P
((*‘1'11) = Z wn(TJ)f_'*lly"” n

=

Let the column vector of exponential values e7'+i¥% be designated 67, and the vector
of interpolated kernel values ¢(wy.r,) be denoted é; Then this interpolation can bhe
written

Notice, however, that ¢, is to be used as the I'" row of the matrix giving the kernel
of the summation in (4). To compute €; as a row vector. the adjoint of the matrix
equation equation is needed. namely
(et =Irent = hint

Let us define the M-vector u = al.;), the N-vector il = ulr.), aud the matrices giving
the kernels of equations (2) and (4) as W and W, respectivelv. Let the M < V. matrix
whose [*% row consists of e 7=t for the V. points on Sll‘\v‘ be designared 1o is useful
to observe that this matrix consists of M consecutive rows of the standard DFT keruel
for a uniform grid with V. points). Then the formal DFT is approximated

io= Wi
Wi
= wiznlz.

2

This notation can be simplified slightly by denoting the vector creired by mnltiplving
7 by TF) . as @ Siuce the matrix [I5)7 is the adjoint of the Lagraneiaun interpolation

ST has been dabbed ante rpolation. Then

matrix. the process of computing @ = [I7)

the approximation to the formal DFT is
i) b= Wi

which we call the Anterpolated Discrete Fourier Transform (ADFT).

The ADFT. as a matrix multiplication. requires O¢ M N,y operations, I general.
Noowill exceed V. 50 as a matrix-vector multiplication. the ADFT hasx no advantaee
over (2). If. however, N, is selected appropriately. the approximation can be computed
quite rapidly. Let M. = max {M,. M.}, Then if V. is selected such that N, > 23,
and at the same time .V, is a number for which an £ F 7T module exists. then the fast
Fourier transform can be applied to compute the DFT summation

No—1 - . .

N T R N N .
FFT{ii} = o 3 a,e™ 7% for 1= -84 L-S5 42 2
T or=u) “ “ -

Recalling that A = X/.N.. it may be seen that the DFT summation therefore vields
(/N (2717 X ). Multiplving by N, thus vields a set of values that includes i a
subset. all the desired values of ().
Computing the ADFT. then. consists of two phases:
1. it is computed from @ by anterpolation: o = [I;]T&'.
2. i is computed from i@ by a Fast Fourier Transform.

3




2. Operation count for the ADFT. The cost of computing the ADFT con-
sists of the cost of computing the interpolation weights, the cost of computing the
vector & = [I7)T . and the cost of the FFT on N, points.

Computing the (p + 1).V interpolation weights, w,(r,). by the formula in (3} is
the cost of the computing the numerator, since the regular spacing on &Zf‘\v_ means
that the denominators of w,(z;) are independent of j. To compute the numerators,

P
the product H (r, = I,m)) is computed for each r;. requiring 2p + 1 operations.

m=0
Then the nt* interpolation weight can be obtained by dividing by the product of
r
(Tm = Tq(;m)) with the precomputed denominator H (Ta(ny) = Tx(yom))s TEQUITING 2
m=3
m#EN

operations for each of the p+ 1 weights associated with the point r,. The calcnlation
of the weights thus requires O(.Y(p + 1)) operations. It is important, however, to note
that the calculation of the weights is dependent only on the relationships between the
gridpoints {y:} and {r,}. and is independent of the data set, u(r,). This means that
if a known set of gridpoints {r,} and a standard auxiliary grid Q% are to be used
repeatedly. the interpolation weights w,(r,) may be precomputed and stored. and
needn’t be included in the cost of the algorithm. This will be assumed to be the case.

The matrix {Ifﬁ i5 VMo x .V oand the data vector 7 is V x 1. so the computation of
= [ijrﬁ would be QLN N if performed as a matrix-vector multiplication. There
is. however, a much more efticient method. The index table x(j.n) can be stored
along with the interpolation weights. For each r, aund for each n. the valne of x( ). n)
is the index of the n*™ interpolation neighbor that is used to interpolate from Q3
to the gridpoint r,. The periodic nature of the kernel being interpolated means that
the interpolation is always to a gridpoint r, in the center of the set of p interpalation
points (as is well known. [5]. the Lagranzian interpolation is better behaved when thas

is the cased. If pis odd. then o, always lies between . and g el while if p

.
is even, then . py is the closest gridpoint on Q% tor,.

Computing the vector it is then verv easv. aned may be done in 2V (p~ 1 operations.
according to the algorithm:

1. Initialize 7(y-) = 0 for all y. € Slfi.. (1<t NN
2. Forj=0.1.....¥% -1
Forn=0,1..... P
Set iy, m)) — Wlyg,an) + W lr Yulr)).

Having computed the values of &. consider now the cost of the FFT portion of
the ADFT. This is simply the cost of an N.-point FFT. In the next section criteria
for choosing .. will be determined. For now the only requirement is that an FFT can
be computed on a vector of length V.. As such. N, must have factors for which FFT
modules are available. For the purpose of an operation count. however, it is easiest
to assume that .V, is a power of 2. Indeed. we shall see that we have great flexibility
in our selection of V.. and since powers of 2 or 4 produce the most efficient FFTs.
this is a good assumption. In this case, the cost of the FFT portion of the ADFT is
O(N. log, V.).




The costs of the ADFT can now be computed. In terms of data storage it requires
four arrays. One is the N-point vector containing the input data. @. In addition, an
XN.-point complex vector is required for the input and output of the FFT. Assuming

. that the weights are precomputed and stored. two auxiliary arrays are necessary, an
N x{p+1) real (or double precision) array holding the interpolation weights w, (r,).
and the N x (p+ 1) integer array of indices, x(j.n).

v If the operations of multiplication and addition are counted equally, and if the
weights and indices are pre-stored. the operation count is ('1.V, log, V. complex oper-
ations for the FFT portion of the algorithm, where ('; depends on the choice of FFT
algorithm. The computation of & entails 2.V (p+ 1) operations that are real or complex
according to whether @ is real or complex. Counting both phases of the algorithm.
the operation count of the ADFT is

1.\, lugz No + 2N(p+ 1)

This should be compared with the operation count of the formal DFT. which is
O(MN). The computation of the ADFT is more eflicient provided M is Lirger thun
20p+ D)= (N og, Ny V0 a condition that will generally oceur in practice.

2

3. Error analysis for the Anterpolated DFT. One of the attractive fea-
tures of the ADFT is that the interpolation is performed on the korredl which has
known smoothness properties, rather than the data set. which generadly has unkuown
simoothness properties. Since interpolation error depends on the sizoothness of the
interpolared function. the error committed by using the ADFT is relatively easv to
analyse.

Consider the error in p-degree Luerangian polvnomisl interpolation. when the
interpolation is from a set of p + 1 gridpoints that are equally spaced. Lot these

gridpoints be designated & 60,008 A function fir whose valnes are Snown at
- these gridpoints.is to be interpolated to the poiut 1 € Lf(,ij Let r = & —th, where

Iois the aridspacing. and t € [U.p). The approximation to fi& + thiis the value of

the Lagrangian interpolation polynomial Poo&, ~ th),

FP » , e
I,;(I): ZW‘(I)](S;) where \\'l(_r): H L <o h .

=1 =

Defining =.(t) = t{t = 1)(t=2)...(t=p). and € [§. &L the error in the interpolation
is bounded by

= (OVThPTV .

(6) (fily+ thy = P&y + thy < = '
! (p+ 1
where Q41 = maxg, ¢ IfPD($)]. See NI pages 264-270. for a derivation of this
° error term.
It is useful to bound this error more precisely. To do this. we examine the behavior
of the factorial polynomial =,(¢). This polvnomial has been well-studied. and many
A J

results can be found in various numerical analysis texts. ([5]. [NL 195 (1100 These
results, however. are developed for the case that z can be anywhere in {£,.£;]. In the
present case the interpolation is always to the center subinterval. Thus for p odd,
t e [BF, L‘:—l] while for p even, either t € [L.E + 1] or t € [L - 1.£].

5
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To shorten the discussion, assume that p is odd. This is the most common case,
where p = 1 gives linear inierpolation and p = 3 give cubic interpolation. Similar
results can be obtained for p even. Consider the following lemma. the proof of which
may be found in [6].

LeMMA 1. If p is a positive odd integer. then

m(l 1

max
! e

te[L2 e {p+ 1)

This result can be used to find an error bound for the ADFT. In this case the
functions being interpolated are

\ AW AY
ez - _t 9 .
€ for | = 2+1. 2+-..‘.2

From this set of functions. the only ones whose values are of interest are those for
[ between — 1, and M;. Recalling the definition M. = max{M,. M}, the largest
absolute value among the frequencies of interest is wyy = (27 MO/ X Therefore

f p4]
|

nmax !
L€LIL by ]

i
A

(, -=~\rf>i — (*.‘\”I--rl
,[_r;'f] ;

Inserting this and the bound from Lemma 1 into equation {61 gives

_ v\
{7 T e 2 ( S >

which i~ then used to obtuin

L - .- . N ey S
- [} 11: = s ! i oje et — v'\: ! wes et

=l 4.

\—‘.\'—

Y

I~

P v

I Vot -
< Chaa /2yttt
= (haoy /23Nl
Finally. substituting h = X/ N, and ~yy = (27 M)/ X establishes the desired error

bound. The error in the ADFT approxiwation to the formal DET is bounded. for
_41“ S ! S \’_' })_\'

_ M.m\"H!
(%) atwr) = Wij(w)] < (——) Nl

where &y = 270/ X and the ADFT (5) is computed using an FFT of lenath V..
Since the bound holds for all desired values of wy. it then follows that

X _ Mom\PH
(9) Hu—[” u]”l §< N > Niulh

Ve

6




where || o || _ is defined as the maximum absolute value in the vector. It is also worth
noting that an error bound for any desired frequenicy can be obtained by replacing
w1s with &y in the derivation. leading to

; . [=\7 "t
(10) Ja{wy) = (W &](-1)1§<\—.) Nilulhy

This is especially useful information for those occasions when only the low frequency
components are of interest. or when the accuracy required of the approximation is
sreater for the low frequencies than for the high frequencies.

4. Selection of p and N.. The error bound just derived is useful in that it
provides a way to select the operational parameters N. and p. Recall that the goal
is to calculate an approximation to 4 to some prescribed accuracy, [i — W i) < ¢]jull.
In practice we will want to make the error small. so it will be assumed that ¢ < 1.

Comparison with (X) gives the requirement

Y )"“‘ ¢
A <
( AV - N

which mayv be written as

N\
(1) .\'_2_\/.:(,->’ :

¢

For a given formal DFT. the vadues of MO0 N and ¢ are considered 10 be part of
the problem specification. To ensure that the specificd acenracy is obtained. it is only
necessary to select integers Noand p <o that (11)is sarisfied. Natural'vothere ay be
many combinations of parameter valnes that achieve this goal. The parameters <hould
therefore he selected to fullfill some other desirable property as well. Specificallv. they
should be selected also to minimize the computational effort of the aleorithin.

To see how this may be accomplished. recall thar the work involved in comput-
ing the ADFT with V. points on the auxiliary grid Q_'{l-. and p-degree Lagraneian
interpolation is

O(Nlog, V) + O(N(p+ 1)) .

The value of the constant on the O(.N(p+ 1)) term depends on whether the weights
and indices are pre-stored. or calenlated “on the flv™. For the analvsis that foilows,
we assume the weights and indices are pre-stored, in which case the constant is 2.
The constant on the first term depends on several factors. FFTs aenerally have
a complexity of (V/g)log(.N/q) for some number ¢ > 1. If the data have certain
svmuetries, then a specialized FFT may be used for faster computation ({3'. [71.[10}1.
The variety of available FFT algorithms pursuades us to leave the constant on the
first term as an unspecified parameter, 'y,

The total work in computing the ADFT can therefore he written as a function of
the two parameters N, and p. For a fixed problem size (.V and M.). and a prescribed
error tolerance ¢, the work in computing the ADFT to the required accuracy is

(12) W(N..p)=CyN.log, Vo + 2N (p + 1)




and we seek an optimal parameters minimizing W(.V.. p) over all combinations { N,.p)
satisfying (11). if such a choice exists.

Limiting cases may be determined by examining nearest neighbor interpolation
(p = 0), as well as extremely high degrees of interpolation (p — x). Substituting the
limiting values of p into (11), and noting that equality will suffice to ensure that the
required accuracy is attained, we obtain bounds for the selection of V.. namelv

M.z N

€

M.x < N, <

for all values of p > 0.

The existence and uniqueness of optimal solutions are fairly easv to establish.
W(.N..p) is continuous with respect to each of its variables, and both of the first
partial derivatives are everywhere positive. This observation leads to

Levya 20 Let S be the set {(f\'..p) N> .\[.:(.\'/e)’/""””‘}. and let (085 be

that portion of the boundary of 5 given by {(.\'..p) SN = Mo (N /e )]/"'“"”f. Titen
if(ro.yo) € 5. there exists a point (£.1) € 45 such that W{E. ny < W(zy. y).

.. , . o fa ) T
Proof: Since (ry.yy) € 8. the point (£oyy) € U8, where £ = M.z \—\—) et
Furthermore, € < r,. Theu since the partial derivative of the work function with
respect to N is everywhere positive, W ) < Wirg. p). ]

The utility of Lemma 2 is that the optimization problem can be rewritten as a
problem in a single variable. Since for every point in 5 there is some point along 085
that reguires less work, it is only necessary to seck a winimam from the point< of (9.
This can be done by parameterizing V. and p as Dnatons of a <single variable,

, NN T
{13) b= <—~> .
[

Then on 5 we find that

. gAY
{11 No=Mz=o and p+l=log (-—)
¢
Since 0 < p < x. the value of b is restricted to the interval (1..V/¢]. Substituting
these expressions into (12). the work equation may be rewritten as a function of §
alone

N
(15) Wib) = CiMozblog,(Moxh) + 2.V log, (—)
¢

and the problem is to minimize (15) subject to the constraint 1 < b <N/}, Once b
is determined. the necessary values of N, and p can be obrained from (11 We may
now establish

THEOREM 1. There exrists a unique value b that muodnmizes (15) subject to 1«
b leq(N/e€). Therefore the work function

W(Nop)=CiNolog, No+ 2V (p+ 1)

has a unique nunimum, subject to the constrac its

. N p+1
N.> M.« (—) and 0<p<x
€

8




Proof: 1 (b) is continuons and differentiable with respect to b on {1..V/¢l. Dif-
ferentiating equation (13) yields

" . . Iy
(16) Wby = Ky ln(Ab) ~ ZIT;TZT .
where
'y M. . . . AR
N, = —1——[—: . Ky =2M.r . and K3 =2VIn (——) .
In2 Y

For H7(h) = 0. then. b must satisfv b(Inb)°Inf Aub) = A3/ A . Nov W7 is also contin-
uous and differentiable on (1..V/¢]. and differentiating vields

. 1\'1 . lnb+2\
W)= =L 5 | <-——-)
W= T N\ ey

Since b > 1 we see that W) > 0 for all b € (1..V/el so any erivical jaoint b othe
interval mnst correspord to a local minimum.

[vis apparent that Wb} — —x as b — . Examination of the endpoint b = N
reveals that since Ky > w0 Ky > e aad ¢ < Lowe have that WO N oy w00 Furtber,
W70y > 0 implies that W5 has exactly one sien change in the intervad 00N
The poiut by at which this oceurs is therefore o elobal miniie S S0 and the
value W{N_.p). where
AN

¢

Moo= Moxhy and  p=log k ) -1

is the unique elobal winimum for Woon 08, | |

/

The values of V. and p obtained in this manner are real numbers. There i oniy a
limited number of integers for which efficient FFTs existiand Lagraneian interpolation
requires p to be an integer. Further. this entire discussion has heen predicared on the
assumption that pis an odd integer. althoueh a similar analvsis can be made for p
even. Once the theoretical values of N, and p are determined. theyv must be modified
to allow computation. There is some flexibility in this. bat certainly selecring N, to
be the first integer larger than M. zb for which an FFT exist<. and choosing p 1o be
the smallest odd integer greater than

log, <%> -1

In order to find the optimal valves of p and V. it is necossary to find the valiue of
b satisfving

will suffice.

- X . l\"‘;
(17) blub) It A oby = — |
’\‘

While an analytic solution of this equation cannot be found. Newton's iteration mayv
be used. Table 1 displays optimal parameters V. and p for several combinations of
Nl and e




NEAML e N, p N [ M| e N, p
32| 8 A 487 1T 1281 32 | .1 193 | 9.9
32 32 (.1 [ 1426} 155 128 [ 64 | .1 | 325.7 ] 13.8
320 64 | .1 [ 257.6 | 222 128 1 128 1 .1 | 570.7 | 19.4
321 % 101§ 529 ] 98 128 1 32 | .01 | 206.7 | 12.1
321 32 .01} 150.1 ] 19.1 128§ 64 | .01 | 344.1 | 16.6
321 64 | .01 [ 267.8¢ 27.1 128 | 128 | .01 | 595.6 | 23.1

Table 1. Optimal parameters N. and p computed for various problems.

5. An ADFT Example. Toillustrate the ADFT. consider the problem of com-
puting the formal DFT of the function u(z) = [(7 — z)/7]*. sampled on an irregular
grid. The irregular grid consists of .V = 12% points r, randomly spaced in the interval
(0.27). Since the extent of the interval is 27, the frequencies . are just the integers
[.and the formal DFT is

N-1
PINg iy =3 wlraeTH L -6 <1< 64

J=u

[he sampled data are shown in the top of Figure 1. The real part of (1% 1s plotted
on the borrom of Fignre 1. The ADFT was nsed to approximate the formal DFT.
with values of Vo = 123,236,512, and 1024, Figure 2 displays. for each choice
of V.. the absolute value of the error iyl) — Zli'ﬁjll)f. plotted as a function of [.
Linear interpolation {(p = 1) was used in each case. Note that increasing the value
of N, produces a uoticeable decrease in the error. and that the error increases with
increasing wavember. as might be inferred from {10). Figure 3 displays the effect of
using different valiues of p for fixed N.. It may be seen that the error decreases rapidly
as p i~ increased. Equation +9) predicts that the error should decrease at least as fust

-

as il{—i) decreases as p or No are increased. Table 2 gives both the infinity aund
Ly norms of the error [a(l) = [Wiay(H! for several values of p and each of V. = 256
amwd Noo o= 5120 For Vo = 236, the error bound decreases by 0.6169 each titue p s
increased by 2. The experimental error is diminished by a factor of approximately
0.3 ax pis increased from 1 to 3. and by a factor of approximately 0.1 with each
suceeeding increase, better than the theory predicts. Similarly. for V. = 512, the
theoretical bound decreases by 0.15421 as p is increased by 2. while the experimental
decrease is approximately 0.11 for each increase, a slightly better result. Numerical
experiments on numerous other irregularly sampled functions. with various degrees
of smoothness, produced similar results. In these experiments the ADFT behaved
in a similar fashion as it did for the function discussed above. There is dramatic
improvement with increasing values of V.. and p. As might be expected. the error
diminished faster with smooth functions than discontinuous functions.

No I pllErrorll« | H{Error]); Mol plijError]« [ Erroril,
256 | 1 1.20663 0.431861 3121 1] 0.290501 0.109913
256 1 31 0.3578%9 | 0.116080 512131 0.029351 0.00%315
256 151 0.14447% 1 0.039136 5121 5] 0.003360 0.000817
2361 71 0.061305 | 0.014983 512 | 7| 0.000419 | 9.66385e-05
Table 2. Errors of the ADFT for various values of N. and p.
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8. Some Open Questions about the ADFT. Like the continuous Fourier
transform, the D FT has several important properties, such as linearity. the convolu-
tion and correlation properties. the shifting property. the modulation property, and
Parseval’s relation. To what extent these properties hold for the ADFT is an open
question. The linearity holds can be established immediately, by noting that both the
formal DFT and the ADFT can be written as matrix operations, so they are linear
operators. Certain symmetry properties are easy to establish. For example. applying
the ADFT to a real-valued vector will vield a conjugate symmetric result, that is
#(w) = u(—w). because the vector [I;]T&‘ is real-valued. and because the ADFT is
computed by applving the FFT operator to this vector. The DFT, and therefore the
FFT, maps a real vector to a conjugate symmetric vector [4]. Applying the DFT to
data vectors with other symmetries (even, odd. quarter-wave, etc.) vields output vec-
tors with other tvpes of symmetries [10]. It is natural to ask which of these symmetry
properties are inherited by the formal DFT or the ADFT. It seems reasonable to
postulate that if the irregular gridpoints are svimmetrically disposed and the function
u(r;) is svmmetric then the symmetry property of the DFT might be inherited by
the formal DFT and the ADFT.

An important question 150 How ix the formal DFT related to the continnous
Fourier transform? That is. to what extent. and with what error. does the formal DFT
approximate the FT? Answering this question may prove to he a lenathy process,
Many related questions will also arise. For example. how does the sampling theorem
apply to an irregular grid? What frequencies can be represented accuratelv, and what
constitutes aliasing? Is there some analog to the Poisson summation theorem? Many
problems feature irregnlarly spaced data. so it may be assumed that these questions
are of some interest,
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