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1 EXECUTIVE SUMMARY

We have considered the possibility of using earthshine to measure the
reflectance properties of the carth (albedo and phase function). Measure-
ments of carthshine carried out by Danjon in 1926-33 show that even then
the average albedo could be determined with a precision of + 0.01 and that

both synoptic and secasonal variations could be observed clearly.

We show that, after correction for wavelength dependence and the op-
position effect in the lunar reflectance properties. Danjon’s visual albedo of
0.10 can be reconciled with the ERBE satellite Bond albedo of 0.30. We
recommend a modern earthshine monitoring program (advantages include
global integration. continuous coverage, ground basing. and low cost) as a

complement to present and planned satellite measurements.



2 INTRODUCTION

In this report we consider a “new”™ monitor of global change: observa-
tions of earthshine as a measure of the earth’s albedo and phase function.
This is actually the oldest method of determining the carth’s albedo [l].
and was studied extensively from 1926- 33 by Danjon [2. 3]. Very little has
been done since [1]. we suspect in part because of lack of intense interest in
the subject and because of the advent of satellite measurements. However.
carthshine has several clear advantages in a modern context. as we hope to

demonstrate.,

We begin our presentation with a brief discussion of the importance of
the carth’s albedo to climate. We then turn to a qualitative discussion of
carthshine and review the relevant notions of photometry. This is followed
by a review of Danjon’s measurements, both to illustrate the method and
to show what could be done even with 1920s technology. We note several
corrections to Danjon’s observations and show how thev can be reconciled
with satellite measurements. Finally, we discuss some possibilities for modern

ecart hshin(' measurements,




3 THE EARTH’S ALBEDO AND ITS CLI-
MATE

The earth’s climate system is basically a large heat engine. Energy
comes into the system in the form of short-wavelength radiation from the
sun. peaking at a wavelength of 0.5pm (a black-body temperature of about
6000 K) (see Figure 1). Almost 99 percent of the sun’s radiation is contained
in the so-called short wavelength region of 0.15 to 1.0 gm. Of this energy 16
percent is in the infrared region above 0.71 pm, 9 percent in the ultraviolet
below 0.1 gm and the remaining 45 percent in the visible, 0.1 to 0.74 pm. A
significant fraction of this energy is absorbed by the earth. where it drives the
motion of the atmosphere and oceans hefore being radiated back into space
as long-wavelength radiation peaking at a wavelength of 15 pm (a black-body

jad

temperature of Ty = 235 K).

The power going in to the earth’s climate system is
P,o=Crali(1 - ), (3—1)
where € = 1370 W/m® is the solar constant, Rg = 6378 kim is the carth’s
radius. and 4 = 0.30 s the earth’s shortwave (Bond) albedo. giving the frac-
tion of the incident shortwave solar radiation (between 0.15 and 1.0 gm) that
1= reflected from the earth without being absorbed. For this latter quantity,

we have adopted the value determined by ERBE satellite measurements [6].

Similarly, the longwave power that the planet radiates into space is
I)rm( = 17!'/1";;0(’[2‘ . (3_2)

where 7 s the Stefan-Boltzmann constant and ¢ is the emissivity at the top

of the atmosphere (abont 5.5 k. where the long wave radiation is emitted).

If the planet i< in radiative equilibrinm. these two powers are equal,
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Figure 1. (A) Spectral distribution of longwave emission from black bodies at 6000 K and 255 K,
corresponding to the mean emitting temperatures of the sun and earth, respectively, and
(B) percentage of atmospheric absorption for radiation passing from the top of the atmosphere
to the surface. Notice the comparatively weak absorption of the solar spectrum and the
region of weak absorption from 8 to 12 um in the longwave spectrum (from Reference [5]).




giving
(V
Tt = —(1-4). (3-3)

foe

Thus. the global shortwave albedo directly controls the earth’s temperature.

Most (about 70 percent) of the solar energy entering the climate system
is absorbed by the surface or within the atmosphere, with the balance being
reflected. The energy budgets of the three principal kinds of surfaces that
cover the earth differ dramatically. The heat capacity of the oceans is very
large and the solar radiant energy can penetrate efficiently. The oceans thus
respond slowly to changes in solar flux and act as the regulators of the climate
svstem. Snow and iee reflect a large fraction of the incoming radiation (albedo
up to 0.8). The albedo does not change until near the melting point, when the
optical character of the surface begins to alter. Because of the phase change,
snow and ice have a large effective heat capacity and influence primarily
the slow physies of the atmosphere. Land surfaces respond most rapidly to
changes in solar radiation. Their effective heat capacity is low because visible
light does not penetrate and thermal conduction is very slow. The albedo of
the land surface depends on the angle of the incident radiation and, when the

fand is covered with vegetation. on the spectrum of the incident radiation.

The global albedo depends upon the reflectance properties of each sur-
face element of the carth. Any good quality radiation detector (e.g.. pyvra-
nometer) can be nsed to meastre albedo. Two instruments. one looking
npward and vhe other downward. will provide an instantaneous measure of
downwelling and upwelling radiation. The mnstriments may bhe at ground

level or on an aireraft or satellite, depending on the area to he viewed.

The valie obtained by an instrament will depend on the zenith angle of
the sung the transmittance of the atmosphere. the nature of the surface, and
the nature of the cloud cover. if any. inclnding the thickness of the cloud.

the water content of the clond. and the droplet size distribution within the




cloud. The angle of the reflecting surface to the horizontal, particularly if it
is facing towards or away from the sun. is important. The surface albedo is
high for dry, hight-colored, smooth surfaces and is low for wet. dark-colored.
rough surfaces. In the case of vegetation the surface albedo will depend on
the height of plants. percentage of ground cover, angle of leaves and the
leaf area 1udex. Figure 2 shows that. on average, the air and land each
contribute about 25 percent of the reflectivity, with clouds making up the

other 50 percent.

Typical albedos for clear land and ocean are 0.16 and 0.08. respectively,
while the corresponding overcast values are 0.50 and 0.44; the albedo for clear
desert 1s 0.23. while that for snow i1s 0.68. Local albedos show considerable
synoptic and diurnal variability (see Figure 3). The global albedo also shows
a seasonal variability, in part because of the greater land area in the Northern

Hemisphere (see Figure 1).

Although it 1s the (effective) top-of-the-atmosphere temperature that
appears in Equation (3-3). the surface temperature should also vary with
albedo. This is borne out by the data presented in Figure 5, where the
monthly mean global surface temperatures are plotied against the monthly
mean global albedo for 100 years of an atimospheric general circulation model
(GGOM) run with the sea surface temperatures having a fixed seasonal cyvele
[7]. Perhaps comcidentally, the lincarization of Equation (3-3) (AA/ATy =
—0.01 K71) is a reasonable description of the data. A similar conclusion can
be drawn from the observations shown in Figure 6. where the monthly mean
global temperatures for 1985 are plotted against the monthly mean global

albedos determined by ERBE [6].

Greenhonse warming scenarios give ambiguous predictions of the likely
change in the albedo. On the one hand. the increasing water vapor in the

atmosphere could inerease the clondiness and henee the albedo. However,
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Figure 2. Schematic representation of the atmospheric heat balance. The units are percent of
incoming solar radiation. The solar fluxes are shown on the left-hand side, and the
longwave (thermal IR) fluxes are on the right-hand side (from Reference [5]).
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temperatures (from Reference [7]).
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the decreasing snow and ice coverage will act to decrease the albedo. The
net effect need not be negative (as might be expected from Equation (3-3) as
the temperature increases), as the emissivity of the atmosphere will change

with increasing greenhouse gas content.

The most precise measurements of the earth’s albedo come from satellite
measurements such as those of ERBE [6. 8]. Here an instrument measures
the amount of outgoing shortwave radiation for one spot on the earth at one
particular solar zenith angle from a given viewing elevation and azimuth.
Complex “scene” models arc (hen used to convert this measurement into a
total flux of outgoing shortwave radiation (i.e.. that going into all viewing
directions) and hence an albedo; further modeling 1s used to average over the
diurnal cvcle (zenith angle dependence). Finally, all pixel values are averaged
to obtain a global value. The process is quite complex. with many modeling
assumptions involved. Other drawbacks of such measurements include the
expense and risk of satellites and the difficulty of maintaining a very accurate
calibration (better than 1 percent) in a space-based instrument. Although
great effort has been expended to ensure the accuracy of satellite-determined

albedos, an independent check would be, at the least, reassuring.




4 EARTHSHINE

FLarthshine 1s sunlight that is veflected by the earth to the moon (see
Figure 7). 1t therefore contributes to the illumination of the moon bevond
that of the much more intense direct sunshine and is most easily visible as
a ghostly elow of the dark portion of the funar disk. The phenomenon was

known to the ancients and nnderstood hy Kepler in 1601,

The geometry of the sun-carth-moon system is most sunply character-
1zed by the sun-moon-carth angle o0 the phase angle of the moon (see Fignre
N). Becanse the carth-moon distance s much smaller than the earth-sun
distance (ratio = 2.5 x 107%). the sun-carth-moon angle. or phase angle of
the carthiis o &= = — . It is clear that earthshine will be most easily visible
when o is Jargest (ereseent moon as seen ou carth and full earth as seen on
the moon). althongh groundbased measurements for the very largest o are
precluded by davlight. Conversely, carthshine is most difficult to observe

when the moon is nearly fall and the carth is a creseent (10 2 0).

The nse of a coronagraph enables ohservation of the earthshine as close
as 38 hours hefore fall moon (9], even though at this time the carthshine
comes from a very narrow crescent of the earth and scattering and diffraction
effects ave relatively strong. The ratio of eart hishine to sunshine visible from
the carth thus varies throughout the Innar evele: it is less than abont 107°

nnder the most favorable conditions.,

To first orders carthshine observations measnre scattered light in the
plane of the ecliptic. The assnmption of incident azimuth independence
takes the observations ceneral. The relations hetween the toneitides of the

st the moon, and the observation station are deseribed in Fignres 9 and 10,

15




Figure 7. Photographs of the earthshine at various lunar phases (from Reference [2]).

16




/// AN
\
// \
7/ |
/ |
/ Earth
/ /
/ /
/ /
/
i o
\ Moon
\ Ve
\ v
~N //
\\\-_‘,‘,/
A A
Sun

Figure 8. Geometry of the earth-moon-sun system. The earth's phase angle ® is related
to the moon's phase angleWas® =n - W




Farths<hine clearly depends upon the visible retlectance properties of the
carth and thus can be used to determine the earth’s albedo. Such measure-
ments were pursned by NVery in 1912 [1] and more extensively by Danjon [2].
In a modern context they offer a number of attractive advantages. incliding
an instantancons coverage of a large region of the ¢glohe the potential for
nearly contimons long time series of observations. and the fact that they are
eround based (and are hence relatively mexpensive and easily mamtamed,

calibrated. and nperaded).
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5 ELEMENTARY PHOTOMETRY

In order to deseribe the use of carthshine to determine the carth's
albedo, it s necessary to review some elementary notions of photometry,
Consider, as shown in Figure 11 a plane surface of area S illuninated uni-
formly by licht making an angle 0, with the normal and observed at a similarly
detined angle #, and azimuth . In generall the cross section for the plane
to effect this scatrering will depend upon all three angles: plus the azimuth

of the incoming light. Dependence on the fatter s nsnally ignored.

However, for a perfectly diffuse scatter (Lambert sirface). the cross
section is eiven by the azimuth-independent expression

do \,l‘/)‘.” -
do. I;‘m (O (=1

where Q0 i< the solid anele of scatterine and r s the reflectance of the siurface
material. As expected. the total eross section for scattering is [ JQ (da [dQ,) =
Sreostthe produact of the rellectanee and the projection of the illiminated
arca on the direetion of illimination. We also note that when 0, = 0.

4/fT,//I/Q, = (_\'I'/ﬁ }('ux“)/)l,

Now consider the more complex sitnation of the carth illnminated by
the sun. Fora given phase angle o, the cross section for hight scattering cau

bhe written as

1//7 s .’l - - .
JQ =zl ;[)‘f[.‘-((“)) . (=2
Hereo the carth’s phase funetion i s defined so that fi40) = 1. -

plving that the cross section for the carth to backscatter the sunhght (and
henee the intensity of the tull carthy is given by plig=. The quantity pis

called the vcomerric athedo and depends upon the reflectance properties of

21




Figure 11. A plane reflector of area S illuminated at an angle ¥ and observed

at angle O; with azimuth xr.



the earth’s surface and the geometry of a sphere. From its delinition, it can
be seen that pois the ratio of the light backscattered by the sphere to that
backscattered by a notmally tlhiminated perfectly reflecting (r = 1) Lam-
bert disk of the same area (71;%). For a Lambert sphere. p = 2173 and
flo) = (sin o+ (7 — o)eos o)/x. It should be noted that since the carth
has a variegated surface. both p and [ will depend upon the particular

hemisphere tlnminated.

The Bond albedo is. by definition. the ratio of the total cross section to

the arca of the planet’s disk (7124, Thus.
A=py: = / fr(o)sinodo . (H—13)

where ¢ is termed the phase mtegral. A basic difficulty in albedo measure-
ments is this apparent: any one observation of the reflected light (whether
a given view {rom a satellite or the earthshine at a given phase of the 1oon)
determines the eross section at only one scattering angle. so that some ex-
trapolation to all scattering angles must be performed to obtain the entirve
phase function and henee the phase integral. In satellite measurements, this
is done by scene models: for the earthshine, it is done partially by measuring
frat various phases. More generally, for carthshine it is necessary to make
assitiptions about for models fory the sunlight scattered ont of the edliptic,

Many decades of photometry have determined the phase fanetion. ge-
ometric albedo. phase mtegral. and visual albedo for various solar system
objects. For example. the phase function of the moon as determined by

Rougicr [10] is shown i Fignre 12, taken from [11].

Selected values of the phaseintegral and albedo are: Mercury (0.563.0.055).
Venus (1.296.0.6 1) carth (1.095.0. 1), and the moon (0.081.0.073), as given

by Danjon (31

<
-
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6 DANJON’S MEASUREMENTS

Danjon’s measurements of carthshine [2.3] involved comparing the in
tensities of two well defined patehes of the Tunar sarface (denoted by 4 and
[ with one i the sunshine and the other in the carthshine. The patches
were chosen to be bricht (highland) with simitlar optical properties aned «l
most diametrvically opposite near the lanar limb (see Figure 13). A phaton
ter produced adjacent tmages of the moon, so that pateh Vin the carthst e
was adjacent to pateh 2 in the sunshine (see Figure 1oy, A adjustable
diaphracin (“eat’s eve™) redueed the intcasity o the Laht from 13 10 allow
the ratio of the intensities: Doy D/, to 7 o mcasured for varions phase

aneles. For opposite phaseo th -~ roles o0 the patches were reversed.,

Sncle ditferential measiiremants retaoved many of the uneertainties as

~octated with crmespierie absor;tion, varving solar constant. ete.

Stnee the ea ishine 1s backscattered from pateh A while the sunshine
~catters from 3 with plm.\'(' angle o the observed ratio of the mtensitieos is
| .
[y - paf ) Il

I)\l'f | . .
[\,l'u_//f('.') I fate)

(6 1)

where [p and 1o are the intensities of the carth and sun as observed on the
moon. pey gy are the seometric albedossand [y are the phase functions.
e second cquality follows from assimine that py pyand that [ [y

[ae oo conmon phase finction for hoth linar patches. Note that if these
assnptions were not valido there would he svstematic differences hetween

abservations durine the ]m\ili\'«' and neeative [lll;ls('\ af the moon.

Solvine ]‘«|H.Hinlr ch D Tor the ratio of mtensities A\'i«'l(l.\
/) | o
Dvpate) . (b 2)




Map of near side of moon, showing the two regions used by Danjon.

Figure 13.
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Figure 14. Schematic diagram of the cat's-eye photometer {from Reference [3]).
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However. this ratio 15 also given in terms of the earth’s reflectance prop-
erties as

]/:' | l/fT[t' |

L = S = —
Iv  Itiy, d2 iy,

where Rpyy is the carth-moon distance. and pg and fg are the carth’s geo-

, 1
= It} =pfe(0) . (6—13)

metric albedo and phase function. Upon equating (6-2) and (6-3) and solving

for ppfr. we find

Rivg\”
Ilf,”> Dagfaule) . (6—1)

pefelo) = (

Danjon used a separate series of comparisons between the intensities of

the moon and the sun to determine fyy. as shown in Figure 15, Using this
result, together with his observations of D g, he could determine pp fi: (or.

equivalently. [/ 1s) from Eqnation (6-2). as shown in Figure 16.

Finallv. the albedo is given as

A= //'. pefe(o)sin(o)do (6-5)

which is evaluated munerically after extrapolation to nnmeasured phase an-

gles. Separate vahies for ppand ¢ can be obtained by an extrapolation to

Danjon’s results show a nnmber of interesting features. The daily means
of the observations vary more widely than would be expected on the basis
of the variation of measurements on a single night: this can be attributed
to daily changes i clond cover. .\ scasonal variation was also evident (sce
Fienre 170, which is of the same shape as that of the ERBE measurements
(Fieure 1) bat a factor ol five Targer in amplitude. Observations at several
wavelengths also indicated that the carth’s color changes with season. (These
last two points were contirmed by the observations of Dubois [12]) No secular

Canmnal or loneery variations were fonnd.
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Figure 16. Abscissae, phase angle of the earth; ordinates, magnitude difference (as seen from the moon)
between earth and sun. Corrected to mean distances and for seasonal variations (from
Reference [3]).
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Figure 17. Variation of the monthly mean intensity of earthshine, expressed in magnitudes
(from Reference [3])
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[n order to obtain the Bond albedo. Danjon’s measurements in the vi-
snal must be corrected for the balance of the shortwave radiation (half of the
sun’s intensity is a wavelength greater than 0.7 gm). Estimates of this cor-
rection were made by Fritz [13], who also took into account that the Western
Hemisphere most frequently observed by Danjon has a greater fraction of
land than the globe as a whole. As the carth’s albedo decreases with inereas-
ing waveleneth tafter all, the carth is sometimes called the “blue planet™).
Fritz finds that Danjou’s visual albedo of 0440 corresponds to a Bond albedo

of 0.36,

A second correction to the earthshine measurements must be made for
the “opposition effect™ present in the lunar reflectance properties: to onr
knowledge, this has not been considered previously.  Observations of the
moon [11. 15] (see Figure 18) show that the moon’s phase function can rise

by as meh as a factor of 2 as [o] decreases from 5 degrees to 0 (exact

hackscattering).  This enhancement is cansed by the porons nature of the
linar surface [11]0 and was nnknown at Danjon’s time since measurements
close to v = 0 are hindered by lunar eclipses. (Note that the smallest angle
measured in Danjon’s Tnuar phase curve is only 11 degrees.) The extent of

the small-angle rise varies over different regions of the lunar surface [11 15].

but can casily be the 20 percent required to reduce Fritz’s 0.36 to 0.29. This

Latter value is consistent with the ERBE satellite estimates of 0.30 [(»‘
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7 THE POTENTIAL FOR MODERN
MEASUREMENTS

In the modern context, carthshine measurements have a number of at-
tractive aspects.  Ground-based measurements that integrate on a global
scale are rare and the albedo is a basic parameter of the climate system.
Earthshine measurements would complement more detailed satellite studies
and could serve, at a minimun, as a cross check on the scene models used.
That is. given meteorological data, these models make clear, non-trivial pre-
dictions of the time variation of the earthshine, which shonld be checked

observationally.

Modern photometey can do significantly better than the state of the
art i the 1920s0 CCODs with 10210 x 1021 vesolution and <ufficient dynamic
rauge to observe bhoth the sunshine and the carthshine simultancously can
be purchased off the shelf. This would snpplant Danjon’s two-spot scheme.
Together with a small (sav 87 reflecting telescope, the total cost should he
under $50.000. Two-dimensional imaging arravs that could extend observa-
tions to the near IR are also available, althongh at a somewhat greater cost.
It might also be possible to lluminate the moon divectlv with a ground-based
laser to measure the lunar geometric albedo. This Tatter is essential to de-
terring the absolute value of the carth’s albedo bhat is unimportant if only

changes are of interest,

Bevond a set of demonstration measurements, a long term monitoring
program conla make inigue contribntions to global chanee studies. Three ol
servation sites spaced around the globe are suthicient for continuons coverage
during the magorite of the month when the carth<lilne is intense enoueh 1o

Iy(' ()')\4'['\'1‘([, lnl«‘l,‘.[ml],‘ql vVl i;ﬂ it)ll\ u[. { ||c' .1||n‘4lu alre (‘](‘ul’l_\‘ l)f ereat i]l!(‘l'(‘\l .
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as are their correlations to global mean surface temperature. (As interan-
nual temperature variations are < 05K, we might expect albedo variations
< 0.005.) The phase funetion itself may he more sensitive to global warming

than is the phase integral: this can. of course, be studied with models.

Today almost all GCMs give geographic models of surface albedos. Var-
jous parameterization schemes are used to capture changes in ice and snow
cover. alteration of vegetation. ete. One of the results of running a GO'M
ix the albedo determined as the difference between incoming solar radiation
and the calculated ontgoing infraved radiation. In this calculation the ef-
fects of assumptions about the surface and clondiness are integrated over the
globe. A measurement of the integrated albedo, such as that obtained from
obzervations of carthshine, would provide a valuable chieck as to how well the
model was representing the surface and cloud components of the albedo. A
comparison of the scasonal variation in observed and computed albedo wonld
provide another check on GCMs. H the observation could be maintained over
a long mterval. then the secular changes in observed and computed albedo

could be compared.

Finallv. there is the interesting possibility of an historical record of earth-
<hine measurements spanning the 60 vears since Danjon’s work. Qur prelim-
inary investigations have turned np only the work of Dubows extending to
195% [12]. However.if other data exist, they could vrovide a unigue window
on the secular chanee of the carth’s climate. [We have recently learned of
efforts at the University of Arizona (D, Hutfian. private communication)

aitned at duplicating Danjon’s instrinment and observing technique.]
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