
AD-A255 167

NAVAL POSTGRADUATE SCHOOL
Monterey, California

•GAR AD%31

THESIS
COST ESTIMATION OF SOFTWARE DEVELOPMENT

AND THE IMPLICATIONS
FOR THE PROGRAM MANAGER

by

Glenn Cameron Doyle

June, 1992

Thesis Advisor: Joseph San Miguel
Co-Advisor: Michael Sovereign

Approved for public release; distribution is unlimited

9 22 ii92-25601
i/,/ l 1 I,1

yyf'r

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCH EDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (if applicable) Naval Postgraduate School

36

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, andZIP Code) 10 SOURCE OF FUNDING NUMBERS
Program Eiee•nent No Project No Task No Work Unit A cession

Number

11. TITLE (Include Security Classification)

COST ESTIMATION OF SOFTWARE DEVELOPMENT AND THE IMPLICATIONS FOR THE PROGRAM MANAGER

12. PERSONAL AUTHOR(S) Doyle, Glenn C.

13a. TYPE OF REPORT 113b. TIME COVERED [14. DATE OF REPORT (year, month, day) 15. PAGE COUNT

Master's Thesis 3 rom To 1 June 1992 1148

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Cost estimation of computer software development is a critical problem for the Department of Defense. The aquisition of major weapons or
hardware has been impacted by cost overuns and schedule slippage in software development. Program Managers are responsible for estimating a
program's cost using the information provided by the contractor and the cost analysis divisions within the System Commands. This study first
analyzes why variance exists between the different estimates for the same software project that are provided to the Program Manager as input to
the budget estimate. The study then examines four methods that are used to understand and reduce the variance between the estimates to give
the Program Manager more control over the software development cost estimation process. A set of five specific decision rules is developed for the
Program Manager to implement in the cost estimation process. The intent of the study is to improve the accuracy of the cost estimate by reducing
the variance between the independently generated estimates submitted to the Program Manager.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
13UNCLASSIFIEOIUNLIMITED 3SAME ASREPORI [DIiC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
Joseph San Miguel (408)646-2187 AS/Sm

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

Approved for public release; distribution is unlimited.

Cost Estimation of Software Development
and the Implications for the Program Manager

by
Glenn Cameron Doyle

Lieutenant, United States Navy
B.S., The Pennsylvania State University, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
June, 1992

Author:__ _ _ _ _ __ _ _

,Zlenn Camero Doyle

Approved by:
osepI San guel, Thesis •dvisor

Michael Sovereign, Co-Advisor

Departint of Adminisrtive Sci (ic e

ABSTRACT

Cost estimation of computer software development is a critical

problem for the Department of Defense. The acquisition of major

weapons or hardware has been impacted cost overruns and schedule

slippage in software development. Program Managers are responsible

for estimating a program's using the information provided by the

contractor and the cost analysis divisions within the System

Commands. This study first analyzes why variance exists between

the different estimates for the same software project that are

provided to the Program Manager as input to the budget estimate.

The study then examines four methods that are used to understand

and reduce the variance between the estimates to give the Program

Manager more control over the software development cost estimation

process. A set of five specific decision rules is developed for

the Program Manager to implement in the cost estimation process.

The intent of the study is to improve the accuracy of the cost

estimate by reducing variance between the independently generated

estimate submitted to the Program Manager.

*" A..••

iii d

DrTLc I•UXLITY I N&EcI• 3

TABLE OF CONTENTS

I. INTRODUCTION 1

A. OBJECTIVES 1

B. SCOPE 7

C. METHODOLOGY 8

D. RESEARCH OVERVIEW 10

II. BACKGROUND OF SOFTWARE DEVELOPMENT COST ESTIMATION 12

A. SOFTWARE DEVELOPMENT PROCESS 12

1. Lifecycle Resource Requirements 13

2. Department of Defense Standard 2167A . . 21

B. SOFTWARE COST ESTIMATION TECHNIQUES 26

1. Parametric Estimation 27

2. Analogy Estimation 28

3. Top-Down Estimation 29

4. Bottom-Up Estimation 29

5. Expert Judgment 30

6. Price-to-Win 31

C. SOFTWARE SIZING 32

1. Language Considerations 33

2. Line of Code Definition 33

3. Sizing Techniques 34

a. Analogy 35

iv

b. Structural Decomposition 35

c. Parametric 35

d. Expert Judgment 36

e. Function Points 36

D. SUMMARY 38

III. COST ESTIMATION MODELS 41

A. GENERAL 41

B. AUTOMATED MODELS 46

1. Software Lifecycle Model 46

2. Price-S 48

3. Jensen 51

4. Software Productivity, Quality, and

Reliability Estimator 52

5. Constructive Cost Model 54

6. Software Architecture, Sizing, and Estimating

Tool 59

C. SUMMARY 62

IV. WHY VARIANCE EXISTS BETWEEN INDEPENDENTLY DEVELOPED

COST ESTIMATES 64

A. METHODS USED TO DEVELOP THE ESTIMATE 67

1. Automated Cost Model Biases 68

2. Incomplete Lifecycle Coverage by Automated

Models 70

v

B. INCONSISTENT ASSUMPTIONS BETWEEN INDEPENDENT

ESTIMATORS ON THE PROJECT INPUT PARAMETERS . 72

1. Size Estimate of the Project 73

2. Software System Characteristics 76

3. Software Development Complexities 78

4. Database Selection 81

C. SUMMARY 84

V. VARIANCE REDUCTION BETWEEN INDEPENDENT COST

ESTIMATES 87

A. COMBINING ESTIMATES GENERATED FROM DIFFERENT

SOURCES 87

B. REDUCING INCONSISTENCIES BETWEEN INPUT PARAMETERS

OF INDEPENDENT COST ESTIMATION ORGANIZATIONS 103

1. What Cost Estimation Methodology was used? 104

2. How is a Line of Code defined? 104

3. What are the Software System

Characteristics? 105

4. What are the assumptions made regarding

software project complexity? 106

5. Has the contractor already included into the

estimate a factor for cost growth? 106

C. ORGANIZATIONS TO ASSIST THE PROGRAM MANAGER . 107

1. System Command Organizations 107

2. Naval Center for Cost Analysis 109

vi

...

D. SOFTWARE ENGINEERING INSTITUTE CAPABILITY

MATURITY MODEL 110

1. Initial ill

2. Repeatable 112

3. Defined 112

4. Managed 113

5. Optimizing 113

E. SUMMARY 114

VI. CONCLUSIONS AND RECOMMENDATIONS 117

A. CONCLUSIONS 117

1. Why Variance Exists Between Independently

Developed Cost Estimates 118

a. Methods used to develop the estimates 118

b. Inconsistent assumptions between

independent estimators on project input

parameters 119

2. How To Reduce Variance Between Cost Estimates

Generated By Independent Estimators . . 120

a Combining estimates generated from

different sources 121

b. Reducing inconsistencies between input

parameters of independent cost estimation

organizations 122

c. Organizations to assist the Program

Manager 123

vii

d. Software Engineering Institute Capability

Maturity Model 124

B. RECOMMENDATIONS FOR THE PROGRAM MANAGER 125

1. Use multiple cost models 125

2. Use a CEV weighted equation 126

3. Use the provided list of questions for

defining initial assumptions 126

4. Use existing DON resources for assistance 127

5. Use the Capability Maturity Model 127

C. AREAS FOR FURTHER RESEARCH 128

1. Apply the Combined Estimated Value equation

to areas outside of avionics databases . . 128

2. Appraise the new RCA-Price model 128

3. Software Engineering Institute 129

APPENDIX A. BASE PROJECT PARAMETERS 130

APPENDIX B. LINEAR PROGRAM EQUATIONS 131

LIST OF REFERENCES 134

INITIAL DISTRIBUTION LIST 137

viii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisors, Dr.

Joseph San Miguel and Dr. Michael Sovereign, for their expert

guidance and cooperative assistance. I would also like to

recognize and thank Dr. Thomas Frazier of the Institute for Defense

Analysis for suggesting the mathematical combination of independent

cost estimates.

I would also like to acknowledge and thank CDR Larry Cable,

NAVAIRSYSCOM, for identifying this project as an area of potential

research and for providing funding for the research travel.

A special thanks goes to my wife, Joy, for typing, proofing, and

especially for taking care of everything else while I was working

on the thesis.

ix

I. INTRODUCTION

A. OBJECTIVES

Cost estimation of computer software development is a

critical problem for the Department of Defense (DOD). The DOD

spends billions of dollars annually on computer resources.

Over the last 35 years, the costs of software development have

surpassed hardware development costs and now dominate the cost

of computer resources (Figure 1) [Ref l:p. 18] . Errors or

inaccuracies in estimating software development costs will

result in large differences between expected and actual costs

in the final product.

100

40

20

1955 170 low6

Figure 1. Software versus
Hardware Development Costs

Software developrent has posed significant problems for

management as computers play an increasingly important role in

1

modern weapon systems as technology advances. In the early

1950's, all weapon systems were designed with analog

technology. In the mid 1950's and 1960's, digital subsystems

were introduced and rapidly incorporated into weapon systems.

In the 1970's, there was exponential growth in the field of

electronics with advances in integrated circuits, introduction

of microprocessors, and the need to counter the Soviet threat

with quality and electronically sophisticated weapons. During

the 1980's, the engineering trend was the total digitalization

of weapon systems.

Defense systems have grown increasingly sophisticated

primarily as a result of advancing computer technology. Early

weapon systems employed software mainly for monitoring the

condition of the hardware and used less than 10,000 lines of

code. Modern weapon systems rely on software programs for

command, control, and communication interface with hardware

systems. Current projects use software for the operation and

control of equipment, including signal processing and fire

control systems. The size of these software projects often

exceed one million lines of code. [Ref. 2:p. 11) Software,

therefore, must be highly reliable and fault tolerant.

Technology has evolved to the point where most of the

development effort is in software while the hardware has

become increasingly standardized. With continued advancement

in the development of electronic equipment in the 1990's,

management will find software costs an increasingly

2

significant part of the total lifecycle costs of weapons

systems. DOD faces the challenge of producing high quality

and sophisticated weapon systems that are greatly dependent

upon rapidly evolving software technology.

The dynamic nature of software development has presented

tremendous difficulties for cost analysts. However, accurate

and timely information regarding software development costs is

critical for the budget process as cost estimation plays a

vital role in program management and the Planning,

Programming, and Budgeting System (PPBS) . The program manager

(PM) is responsible for creating a budget and executing a

program within that budget. He/she must be able to estimate

software cost with a reasonable degree of confidence to

responsibly plan and manage a program.

Software development within the Federal Government and

private enterprise has been impacted by cost and schedule

overruns. In addition, delivered end products have not met

the customers needs in terms of capability and quality. It

has been difficult to accurately project software costs due to

problems in assessing accurate input data, a rapidly evolving

and complex software environment, lack of adequate and

available historical information, and the labor intensive

nature of software development. Software project cost

overruns are not uncommon and are frequently accompanied by

significant schedule slippage.

3

A recent example of a Navy program affected by a software

development cost overrun is the S-3B program. According to

the Cost Performance Report (CPR) released by the contractor

in September of 1987, software categorized as "Avionics

Software" was 8.26 percent over budget. This category alone

resulted in a $2.8 million cost overrun. It is difficult to

identify all of the software development costs in the S-3B

program because software costs are aggregated into higher

level hardware costs in certain items. However, it appears

that the total software development cost for the program

(approximately $80.7 million) exceeded the budgeted cost

(approximately $75.2 million) by over $5 five million.

The difficulty with estimating software development costs

is deriving quantitative relationships between the measurable

front end requirements and the output costs and schedule3.

These estimates of costs and schedules must be timely and

accurate. Many factors can cause a final cost to be

significantly different from an initial cost estimate that was

reasonable when it was originally developed. Among these

factors are operational requirements that were changed,

incomplete, or submitted late. Also, contractors that manage

their sub-contractors poorly have difficulty with cost

control. A contractor's business base that decreases will

result in increased overhead and expenses and ultimately

higher costs for the purchaser. Parts, materials, and

government information delivered late will slow down the

4

schedule and increase costs. The reduction of DOD program

budgets may require the project to be reconfigured and the

final cost adjusted accordingly.

There are also many reasons that the initial development

cost estimate itself may be inaccurate. The key element in

most software cost estimates is the size estimate of the

project. The size, or numbers of lines of code (LOC) in many

instances, must be predicted early in the acquisition cycle

when requirements are neither firm nor fully defined. Another

factor that affects the initial cost estimate is the choice of

computer language used. Higher order languages (HOL) such as

Ada and Fortran will have different costs per line than

assembly languages such as INTEL 8086 Assembly and ATAC-16M

Assembly. Variations in methods and standards for counting

lines of code differ between estimators and will affect the

cost estimate. Code condition, whether the code is new,

modified, or re-used, is also an important element in the

costing of a project. Additionally, the development

environment (mainframe versus microprocessor), type of

software (system, application, or support), and accuracy of

the operational requirements are also components in an

accurate estimate. The organizations developing the estimates

must have clear assumptions concerning the methods used and

the inputs considered when developing a cost estimate. In

Chapter IV, the factors affecting the software development

cost estimate are further explored.

5

This research study examines the difficulties in software

cost estimation and the implications for the PM. Estimating

techniques from private contractors, Naval Air Systems Command

(NAVAIRSYSCOM), and the Naval Center for Cost Analysis (NCA)

were analyzed to determine:

1. Why does variance exists between cost estimates generated
by independent cost estimators for the same project?

2. How to reduce variance between cost estimates generated
by independent estimators?

Variance is defined in this study as the difference in cost

between the estimates generated by independent organizations

for the same project.

Sensitivity analyses is conducted to identify elements in

the estimate that have a particularly large effect on creating

variance between the cost estimates. Identifying these

elements is key to bringing the estimation process into

control.

Specific recommendations are then made to reduce variance

between the independent estimators and thereby reduce the risk

and the uncertainty for the manager. Additionally, a set of

decision rules is presented for the PM to assist him/her in

making a reasonable budget estimate and to provide a means to

validate a contractor's estimate.

The two main benefits of the study are:

1. At the Program Manager level - Effective budgeting is
critical for a manager of a major program. Accurate and

6

timely cost estimates will greatly benefit the manager in
his projections of real time and future requirements for
funding. A clear understanding of the difficulties in
software cost estimation and a set of tailored decision
rules will assist the manager in making critical budget
decisions for a software development project.

2. Within the DOD - It is plausible to assume that the
defense budget will continue to decrease in the upcoming
years. Scrutiny in all aspects of program development
will be imperative throughout the DOD. An improved
process for cost estimation, particularly for an area as
elusive as software development, will provide benefits to
the financial management of programs throughout DOD.

This research study will improve the process of cost

estimation of software development by determining why variance

exists between independent estimates of the same project. The

study will also recommend how these variances may be reduced

to assist the Program Manager in reconciling these independent

estimates into a composite estimate that best represents the

most likely cost of the software development project.

B. SCOPE

The principles presented in this thesis are applicable to

software development managers inside, as well as outside, the

federal government. The DOD is one of the largest single

users of computer technology and this study primarily reflects

DOD policies and techniques. The research questions are

directed towards the manager entrusted with budget

responsibility and is designed to provide decision making

guidance for preparing cost estimates for software

development.

7

The nature of current software cost estimation is highly

technical in terms of mathematics. This study maintains a

top-level emphasis and provides technical breakdowns to the

level necessary to understand parametric relationships from a

management perspective. Due to limitations in research time

and access to operating programs, computer models for

generating software development costs are not comprehensively

discussed. A brief description of available models is

provided in Chapter III along with a comparison of their

capabilities and limitations.

Specific software development costs have been difficult to

extract from existing DOD reports including the Contractor

Cost Data Report (CCDR), Cost Performance Report (CPR), and

Selected Acquisition Report (SAR) . Software development costs

are typically embedded into higher levels of the work

breakdown structure (WBS) and cannot be extracted from total

software costs. Currently, however, as PMs are more aware of

software costing problems, new programs have specifically

requested the contractor to delineate these costs. In the

future it should be easier to obtain and evaluate software

development costs.

C. METRODOLOGY

The research was conducted in three overlapping stages.

First, data were collected through books, papers, prior

theses' at the Naval Postgraduate School (NPS), and a key word

l | || | | | |8

search of "cost estimation" and "software". Interviews were

conducted with local experts from the Naval Postgraduate

School within the Administrative Science and Operation

Research Departments. Phone interviews were conducted with

personnel from a variety of organizations within the DOD and

are appropriately documented in the reference section.

Second, a research trip was conducted to Washington D.C.

to interview key organizations and to collect empirical data.

Primary organizations of interest were NAVAIRSYSCOM, NCA,

Institute for Defense Analysis (IDA) and the Navy Comptroller

Office. A comprehensive and personal overview on the various

organization's methodologies and philosophies was acquiredi as

well as an assessment of their current capabilities and future

requirements.

Third, all collected data in steps one and two were

compiled and analyzed. Actual and potential problem areas

within the software costing arena were examined. Variance

between cost estimating techniques from different

organizations were identified and presented. Based on these

variances, decision rules were formulated for the PM. These

decision rules are designed to aid the PM in developing a

reasonable budget estimate. The decision rules will also help

the PM to validate the contractors estimate and thereby reduce

the uncertainty and the risk of costing software development.

9

D. RESEARCH OVERVIEW

In Chapter II, the framework for understanding the

software development process is established. Management of

software development projects is discussed from a historical

perspective and from the official DOD position as set forth by

current instructions. Methods for cost estimation are

presented with the advantages and disadvantages discussed for

each technique. The process for estimating the size of the

software project is addressed since size is typically the

critical input to the cost estimate.

In Chapter III, software cost estimation models are

discussed. A general approach to modeling is presented as it

applies specifically to software development. The study

analyzes five of the most popular and frequently used

automated models in terms of their capabilities, strengths,

weaknesses, and availability. The five models discussed

include the Software Lifecycle Model (SLIM), the Jensen

System-4 model, the Software Productivity, Quality, and

Reliability Estimator (SPQR\20), the Constructive Cost Model

(COCOMO), and the Software Architecture and Sizing and

Estimating Tool (SASET) model.

In Chapter IV, the first research question is addressed,

"Why variance exists between cost estimates generated by

independent cost estimators for the same project?" The

question is addressed from two perspectives: variance caused

by methods used to develop the estimates and variance caused

10

by inconsistent assumptions between estimators on the

project's initial parameters.

In Chapter V, the second research question is addressed

"How to reduce variance between cost estimates generated by

independent estimators?" The analysis discusses techniques

for reconciling estimates generated by independent sources for

the same project, procedures for reducing differences in

initial assumptions on the project's parameters, and DOD

organizations and tools. The result of this analysis is that

the program manager will be better equipped to improve the

process of cost estimation and reduce the variance between

independent software development cost estimates.

In Chapter VI, the conclusions of the study are presented

in a concise format and the results of the data analysis are

restated. Recommendations for the Program Manager are stated

in the form of five decision rules that can be applied to a

improve the process of cost estimation of software development

by answering why variance exists between independent estimates

and how to reduce the variance between the independent

estimates.

11

II. BACKGROUND OF SOFTWARE DEVELOPMENT COST ESTIMATION

Cost estimation of software development has been a

difficult problem for the DOD since the beginning of the

computer age. Established procedures have existed for

hardware cost estimation and analysts have attempted to apply

the hardware estimation techniques directly to software

development projects. Although estimators had limited success

with estimating the costs of hardware equipment, the same

techniques had poor results with software project cost

estimates.

This chapter examines how cost estimation for software

development has evolved from the early days of computers to

the current techniques and instructions comprising the

software development field today.

A. SOFTWARE DEVELOPMENT PROCESS

The software development process is divided into

functional phases that delineate distinct areas in a project

development cycle. A process divided into phases provides the

manager information to exercise control over the resource

requirements throughout the software systems lifetime. The

software development process is discussed in this section from

a historical perspective of lifecycle resource requirements to

12

the current perspective as set forth by the military standard

establishing the phases of software development projects.

1. Lifecycle Resource Requirements

Lifecycle phases are functional phases that include

all resource requirements from concept exploration to

operations and support. The user (customer) of software needs

to know the projected resource requirements for manpower,

cost, schedule and critical milestones in order to prepare an

economic analysis to determine funding. Phases in the

software development process help to categorize those resource

requirements to improve management control and cost

estimation.

Early efforts in lifecycle management were put forth

by Peter Norden of IBM in the 1970's. From a large data base

of evidence, Norden empirically deduced that manpower

requirements for research and development (R&D) projects

follow the lifecycle pattern formulated by Lord Rayleigh.

This pattern is composed of overlapping work cycles, or

phases, and are well described by the Rayleigh equation for

manpower (Equation 1).

13

Y 1=2Kate -a' (1)

where:

Y'= Manpower utilized each time period
K = Total cumulative manpower utilized by end of project
a = Shape parameter governing time to peak manpower
t = elapsed time from start of cycle

The magnitude and duration of the phases have stable

and predictive structures that can be exploited for project

planning and control. The cycles are:

1. Proponent Planning and Functional Specification

2. Design and Coding

3. Test and Validation

4. Extension

5. Modification

6. Maintenance

Norden then linked the cycles to create a project

profile. Figure 2 shows the individual cycles laid out in

their respective time relationships. When the individual

cycles are added together they produce the profile of the

entire project called the "project curve." The project curve

has useful applications for projecting the out-year budget,

manpower, and schedule milestone requirements. Note that the

project curve has a long, one sided tail that explains the

14

phenomenon of why project work can be 90 percent complete in

work but only 67 percent complete in time.

EFFORT
PER UNIT
TIME

PROJECT CURVE

TEST & VALIDATION

PLN EXTENSION

DESIGN MODIFICATION TIME

MAINTENANCE

Figure 2. Software Development Project Phases as
presented by Peter Norden

In the late 1970's, Lawrence Putnam, President of

Quantitative Software Management, Inc., specifically applied

the work of Norden to software projects. Putnam related

software system attributes (number of files, reports,

application sub-programs, and source statements) to

development resource requirements including manpower, total

effort, cost, and project duration. [Ref. 3:p. 16] The

Rayleigh equation was rewritten by Putnam with the shape

15

parameter (a) expressed in terms of time to reach peak effort

in a software development process (Equation 2).

Y= K - te -t2/2Td2 (2)
Td 2

where:

Y' = manpower utilized each time period
K = total work done on the system
Td = time to reach peak effort
t = elapsed time from start of cycle

The shape parameter, (a), has been replaced by a new

expression (Equation 3).

a=K/Td 2 (3)

The expression acts as a "software development

difficulty" (SDD) variable in terms of programming effort.

Putnam examined and plotted 40 systems and determined that

when SDD was small it corresponded to easy systems, when SDD

was large it corresponded to difficult systems, and there

appeared to be a continuum in between (Ref. 3:p. 20]. For the

software development industry, the difficulty remained to

accurately estimate the value of the key parameters in the

equation: lifecycle effort (K) and development time (Td).

Putnam also redefined the phases of the lifecycle

model to specifically address software development. The four

phases of the Putnam Model are:

16

1. Systems definition

2. Functional Design and Specification

3. Development

4. Operations and Maintenance

Additionally, there is a fifth phase, Installation,

that overlaps the end of the Development phase and the

beginning of the Operations and Maintenance phase (Figure 3).

The Putnam model is based on and is similar to Norden's model.

However, the Putnam model was specifically designed for

software development and has useful applications ir applying

the Rayleigh manpower relationship to software projpcts.

MANPOWER (PEOPLE / YEAR)

PROJECT CURVE

DEVELOPMENI I
FUNCTIONAL OPERATIONS AND /
DESIGN. MAINTENANCE

SYSTEMSINSTALLATION
DFý-'NITION

TIME

Figure 3. Software Development Project Phases as
presented by Lawrence Putnam

17

Putnam presented several key management implications

based on these concepts. With a constant manpower effort,

work is wasted early in the project, effort is inadequate

during peak requirements, and schedule slippage results based

on the original linear prediction of manpower effort required.

It was customary that management first estimated the number of

source lines of code (SLOC) and then apply a historical

productivity rate (PR) to determine the total man-year effort

required. For example:

SLOC = 600,000 lines of code (estimate)
PR = 1,000 SLOC/MY (man year) (historical)

Therefore:

Development Effort (DE) = 600,000 SLOC/I,000 SLOC/MY = 600MY

DE was then linearly distributed across the predicted

project duration (P1). Figure 4 shows the resulting manpower

distribution and the areas of excess or deficient manpower

resources resulting from a linear application of manpower.

Putnam performed least squares, best fit correlation

analysis to try to determine if there was a linear

relationship between productivity and delivered source lines

of codes. To this point, management had assumed that

productivity and delivered SLOC were closely related. His

database consisted of over 400 projects collected at the

United States Air Force's Rome Air Development Center with a

18

IN THIS AREA MANPOWER IS WASTED
cc 7
WU IN THIS AREA MANPOWER IS NOT

S/: AVAILABLE WHEN REQUIRED2 /

< / IN THIS AREA MANPOWER IS
(APPLIED TOO LATE

/ •\ F EXTR~A EFFORT REQUIRED
TO COMPENSATE FOR

P- MISAPPLIED PEOPLE

SOFTWARE PROJECT
CURVE

TIME

SCHEDULE SLIPPAGE

P1 , LINEAR DISTRIBUTION OF MANPOWER

Figure 4. The Non-linear Nature of a Software
Development Project versus a Linear Application of
Manpower

wide range in system size (100 to 1,000,000 SLOC), project

duration (1 month to 6 years), man-months of effort (1 to

20,000 MM), average number of people (1 to 500 people), and

productivity rate (10 to several thousand SLOC/MM) . The

resulting correlation coefficient (R) was found to be R =

0.033415 which demonstrates virtually no correlation between

productivity and delivered source lines of code [Ref. 4:pp.

29-30].

The conclusion is that management must dedicate

manpower resources in accordance with the particular needs of

19

the project phases and not as an averaged distribution.

Putnam further states:

The money may have been spent, the people may have been
on board, but because some people were not in phase with
the demand of the system, their effort was wasted and must
be reapplied later at increased cost and greater
time.[Ref. 3:p. 71]

Putnam also concluded that management cannot shorten

the development time of a system without severely increasing

the difficulty of the project. Development time is the most

sensitive parameter. There is a natural software development

schedule that results in a minimum cost solution. If

management chooses to compress the schedule, they can expect

significantly higher costs and possibly schedule overruns

exceeding the original, natural schedule [Ref. 3:p. 75].

Man-months are typically used as a means of measuring

the size of the job, but man and months are not

interchangeable. The time, or numbers of months required, is

a factor of sequential constraints. The maximum numbers of

men that can be used at any one time depends upon the number

of independent sub-tasks available. Fred Brooks, author of

"The Mythical Man-Month," stated, "Adding manpower to a late

software project makes it later." [Ref. 5:p. 25] This

conclusion is widely accepted and known as "Brooks Law."

20

A development process that is divided into phases can

be controlled by management because each phase has specific

requirements that must be met before the following phase can

be started. The DOD has incorporated the phase development

ideas of Rayleigh, Norden, and Putnam into a Military Standard

that delineates the phases of the software development

process.

2. Department of Defense Standard 2167A

DOD has a Military Standard publication, "Defense

System Software Development", that divides the software

development process into eight phases (Figure 5) . This

standard, DOD-STD-2167A, was designed to establish

requirements that provide insight for the PM, as well as other

government officials, into a contractor's software development

and testing and evaluation efforts.

The requirements of the standard must be applied

during the acquisition, development, and support process of

software systems. It provides the authority for the PM to

establish, evaluate, and maintain quality in software and

associated documentation by requiring the contractor to work

within prescribed guidelines. These guidelines are

comprehensive and include management, engineering, formal

qualification testing, product evaluation, configuration

management, and the transition to software support.

21

Sysums Softwere soltwaje Pmrnkamry
ReqLuore ts AWyý Requumevnt Anlysix Dmign

DMW led Coding and CSU CSC netlpation
i Tes*1i and Testing

CSCI Sy'm fnaraOW15n
Toetin Wnd Tesoft

Figure 5. DOD-STD-2167A PHASES

The process begins at the aggregate level and is

divided into work element levels. Elements are then coded and

rebuilt into the total end product. An abbreviated work

breakdown structure is provided (Figure 6) to display the

total software development system as a product orientated,

family tree relating the elements of work to each other and to

the end product.

In the first phase, Systems Software Requirements

Analysis, the requirements for the Computer Software

Configuration Items (CSCI) are defined and analyzed at the

system level. A CSCI is at a high level in the WBS,

representing an aggregate of many smaller elements. The

22

S End Prouct I

c CSCI CSCt CSCI

CSC FC S tc CS

Figure 6. Software Development Work Breakdown
Structure

contractor is required to analyze the CSCI's preliminary

system specifications for conformance with the software

requirements. The contractor shall also define a preliminary

set of engineering and interface requirements for each CSCI.

The next phase, Software Requirements Analysis,

continues in tne preliminary analysis process by performing

one or more Software Specification Reviews (SSR) in accordance

with MIL-STD-1521. The contractor is now required to define

a complete set of engineering and interface requirement for

each CSCI.

23

The Preliminary Design phase assigns specification

requirements to each Computer Software Component (CSC) which

is a sub-component of the CSCI. Design requirements are

established for each CSC. The contractor is required to

conduct one or more Preliminary Design Reviews (PDR's) in

accordance with MIL-STD-1521. The contractor is also required

to establish test requirements for conducting CSC integration

and testing and to identify formal qualification tests to

comply with the requirements identified in the Software

Requirement Specification (SRS).

The Detailed Design phase distributes CSC requirements

to their sub-components, Computer Software Units (CSU's) . The

contractor shall establish test requirements,

responsibilities, and schedules for testing all CSU's. The

Detailed Design phase is intended to ensure readiness for

operational coding.

The Coding and CSU Testing phase creates the source

and object code for CSU's. The contractor ensures that code

algorithms and logic employed by each CSU is technically

correct and satisfies all specified requirements. The

contractor is also required to test all CSU's, ensuring that

the test procedures are developed properly and documented

comprehensively. Revisions shall be made to design

documentation and code based on the results of the CSU tests.

24

In the CSC Integration and Testing phase the coded

CSU's are reintegrated into CSC's. The contractor ensures

that the CSC's algorithms and logic are correct and that each

CSC satisfies its specific requirements. CSC's are tested and

the necessary revisions to design documentation and code are

made to bring the CSC's to specification levels. The

contractor shall also conduct one or more Test Readiness

Reviews (TRR) as required by MIL-STD-1521.

In the CSCI Testing phase the CSC's are integrated

into CSCI's. The CSCI's are tested for conformance to all

operational and specification requirements. Preparations are

made for the Functional Configuration Audit (FCA) and the

Physical Configuration Audit (PCA) . All CSCI test results are

documented in the Interface Design Document (IDD) and

revisions are made to the CSCI's to bring them up to

functional and physical specifications.

In the final phase, Systems Integration and Testing,

the CSCI's are combined into the total system which is the end

product. Extensive testing is conducted including the

Functional and Physical Configuration Audits. All support

documentation is tested and revised for delivery. The final

product is complete as an aggregate of all the sub-components

and has been formally tested for acceptance.

25

The phases of the software development process provide

a valuable management control tool that promotes enhanced

front end management visibility. The PM will have formal

access to development manpower cost, schedule, and cr-tical

milestones of the highly complex software development process.

B. SOFTWARE COST ESTIMATION TECHNIQUES

Central to any valid estimating process is an organized

procedure. The following is a seven step approach for

software cost estimation taught by the Naval Center for Cost

Analysis (NCA) in their introductory Software Costs Analysis

course.

1. Establish objectives

2. Plan for data and requirements
a. Purpose
b. Products and schedules
c. Procedures
d. Responsibilities
e. Required resources
f. Assumptions

3. Define software requirements

4. Work out as much detail as possible

5. Use different estimating techniques

6. Compare and iterate estimates
a. Exam rationale for different results
b. Consider best, worse, and most likely case
c. Review estimates

26

7. Follow-up cost estimate
a. Track inputs and outputs
b. Update software as project progresses

With a comprehensive process in place, estimating

techniques can be selected. The methods used to estimate

software development costs originate from and are similar to

the methods used to estimate hardware costs (i.e. aircraft,

missiles, ships). Techniques can be categorized into five

general methods; parametric, analogy, top-down, bottom-up,

expert judgment and price to win [Ref. 6:p. 33].

1. Parametric Estimation

Parametric estimation can be defined as the use of one

or more cost estimating rilationships (CER's) that generate

development effort Rs jutput. Development effort may be in

terms of either -ost or man-months and is an output value of

one or more input variables considered to be cost drivers.

The strength of parametric methods is that they are objective,

repeatable formulas. It is efficient for creating output and

for sensitivity analysis. Most parametric CER's can be

calibrated to the specific requirements of the development

p:oject by tailoring the database that determines the

mathematical relationships.

A significant weakness of a parametric relationship is

that it is always based on past data and experience. Since

27

forward extrapolation is required for current projects, the

past data may not reflect new technologies or difficulties.

Managers must remain aware that the development effort

estimated by these models are based on subjective inputs. The

output from an objective model should not be considered a

final answer in itself but one input into the estimation

process. Current examples of common parametric estimating

tools are automated models such as Constructive Cost Model

(COCOMO), Price-S, and Software Lifecycle Model (SLIM).

2. Analogy Estimation

Analogy is another cost estimating method. The

resources required for a new project are estimated by

comparing the new project to similar past projects.

Inflationary corrections can be made to bring the costs up to

current dollars. It is likely, however, that the historical

database does not contain the same level of technology as the

new program, particularly in a field that evolves as quickly

as software development. This is a limitation that will exist

for any estimation process that is based on historical data.

An analogy should be considered an important part of the

estimation process when there is cost data available on

similar, past programs.

28

3. Top-Down Estimation

The top-down approach to software cost estimating

starts with a rough order of magnitude cost estimate generated

from the "big picture" requirements of the software project.

The estimated resources are then divided among the components

of the project. This technique provides a focus from the

system level which is often the level that the manager in

control of the funding is operating from. This technique

requires less resources up front to produce the estimate than

other methods. The tradeoff to this economy is that the

estimate is not detailed at the smaller elements of the work

breakdown structure. Often the level of accuracy will be

based on the subjective judgment and experience of the manager

and may be subject to large, unpredictable errors. SLIM and

COCOMO are good examples of a top-down estimating approach.

4. Bottom-Up Estimation

The opposite approach to top-down estimation is

bottom-up. Bottom-up methods estimate each component in the

WBS separately at the engineering level and then sums the

component estimates to produce an estimate of the total

project. The advantage of a bottom-up technique is that the

estimate is very detailed and may be quite accurate. It also

provides individual commitment and accountability to the costs

of the components which facilitates a follow-up estimate as

29

actual cost data becomes available. Clearly the bottom-up

estimate requires significant, up front resources to produce

such an extensive cost breakdown.

The type of project that is being estimated will be a

factor in deciding whether to use a bottom-up estimate or not.

Projects that use a high percentage of existing technology

(with known costs) can be estimated with a reasonable outlay

of resources. New technology, however, where each component

has a high level of uncertainty, may generate a bottom-up

estimate where the uncertainties have combined

multiplicatively. The result will be an estimate that may be

less accurate and more expensive than other lower cost

techniques.

5. Expert Judgment

Expert judgment is the process of relying on the

experience of specialists to obtain a software development

cost estimate. Expert judgment represents the knowledge, in

the optimal case, of the best minds in the field. This

provides a particular advantage if the project is a brand new

concept where there is little or no historical data to use as

a reference point. The experts will rely on their judgment

based on past experience to make the best estimate of cost.

This technique is, however, no better than the level of

expertise of the participants. Even the most objective and

30

comprehensive professional will be subject to personal biases

and incomplete recall. The caliber of the "expert" is

dependent on program need, fiscal resources, and the

availability of the expert. Expert judgment always has a

place in the cost estimation process as a subjective, expert

opinion is a valuable asset to a PM.

6. Price-to-Win

A Price-to-Win estimate is developed by determining

the price believed necessary to win the contract and designing

the estimate to that price. This is in contrast to the

analytical sizing approach where cost is the output of several

input variables such as size, previous productivity, and

complexity factors. In price-to-win, the estimating process

is driven first by the desired expected cost and the input

variables are manipulated to produce that desired output. [Ref.

7:pp. 2-3]

A contractor that needs work to stay in business must

make a competitive bid. If the contract risk is slanted

toward the government instead of the contractor, as in a cost

plus fixed fee (CPFF) contract, getting the award is the prime

concern of the contractor, knowing that he will be able to

adjust the final price later if required.

Clearly there are problems with this technique. The

estimator's focus is on outputs (cost) vice the inputs. This

31

SIIIIl1lIll i |lN

results in an estimate that was created lacking rigor and

discipline. The risk of error under this condition is very

high and will be difficult to predict. Price-to-win

estimating confuses software cost estimation with bidding for

contract award. However, this technique is a reality and PM's

must take steps to control it. Contracts should be written so

that the risk is not fully absorbed by the government.

Additionally, the PM should use multiple cost estimates to

prevent a single Price-to-win estimate from eroding the

baseline budget of a program.

C. SOFTWARE SIZING

The output of the estimation process is only as sound as

the critical inputs are accurate. The majority of cost

estimating methods rely on sizing as the initial and most

significant input parameter. This is a difficult parameter to

estimate because the estimate is formulated early in the

acquisition cycle when the operational requirements (OR's) may

not be firmly or fully defined. Additionally, the project's

system architecture is still volatile to changes based on

funding availability, a changing threat assessment, and the

engineering capability to produce the hardware as specified.

Software sizing is discussed in three parts: language

32

considerations, line of code definition, and sizing

techniques.

1. Language Considerations

The type of computer language used in a project must

be known to accurately predict size. Assembly languages such

as INTEL 8086 Assembly, ATAC-16M Assembly, PDP-11 Assembly,

and VAX 11/780 Assembly are written in machine code. Higher

Order Languages (HOL) such as Ada, Fortran, and BASIC are

structured to read like English. A HOL command is three times

the size (in line of code) of a similar command in assembly

language and uses considerably more memory. In terms of total

programmer effort, however, a HOL command is also about three

times simpler to write than an assembly language command. The

net effect is that the total programmer man-months between HOL

and assembly languages are comparable [Ref. 8]. A sizing

input, however, would erroneously cost the larger HOL programs

three times higher than assembly language programs unless

there is a sizing correction factor in place. Assumptions on

language type must be understood by the estimators before a

meaningful comparison of independent estimates can be made.

2. Line of Code Definition

The counting rules for size, line of code (LOC) for

example, is also a factor in determining the sizing input of

33

a software cost estimate. There are many variations in how

lines of code are counted. The more common methods are:

1. Count only executable lines.

2. Count executable and data definition lines.

3. Count executable, data definition, and comment lines.

4. Count executable, data definition, comment, and job
control lines.

5. Count lines as physical lines on an input screen.

6. Count lines as terminated by logical delimiters.

7. Count lines as a combination of the above methods.

The total quantity of LOC that is used in the sizing

parameter will be a function of the counting method. The PM,

contractor, and independent estimator must understand which

counting method will be used so that they are developing their

estimates under the same assumptions.

3. Sizing Techniques

These are several different techniques in practice to

estimate the size of the software project. Size is the key

parameter in accurately forecasting software development cost

and needs to be carefully addressed by the estimator. The

categories of sizing techniques are parallel to the techniques

used in estimating total software development cost and include

34

analogy, regression, function points, expert judgment and

parametric methods.

a. Analogy

Analogy techniques estimate the LOC size of the

current software project by comparing it to similar, past

programs. This is useful early in a program when general

capability specifications exist but the operational

requirements are not defined sufficiently to allow a detailed

estimate.

b. Structural Decomposition

Structural decomposition is a bottoms-up approach

that is reliable when there is significant data available for

the development project. The structure is decomposed into the

smallest elements practical and individual LOC estimates are

produced for each element [Ref. 6:p. 37]. The summation of

these predictions will give a total size estimate for the

project. Although this technique is resource intensive, it

produces a reliable size estimate and is recommended when

there is valid data available.

c. Parametric

Parametric sizing methodology is useful early in

the lifecycle of the project. Regressir'n analysis can provide

a reasonable LOC size estimate assuming that the historical

data base has:

35

1. high correlation

2. low standard error

3. existing data points including current technology

Since all data bases are historical there will

always be some extrapolation, however, this is acceptable as

long as the above three conditions are reasonably met.

d. Expert Judgment

Expert judgment models are estimates produced,

based on experience, by specialists in the software

development field. It is advantageous to use more than one

expert as resources allow. These predictions can be useful

early in a program, particularly if there is not valid

historical data available to implement other techniques. The

disadvantage of the expert judgment technique is that with the

estimate of size comes certain biases the expert may have.

*. Function Points

Function point models depart from the common

practice of estimating software size by counting lines of

code. This study will look at the International Business

Machine (IBM) function point model as a simple example [Ref.

6:p. 13]. In this function point model, size is estimated

from five functional program attributes:inputs, outputs,

inquiries, master files, and interfaces.

36

The number of each of the attributes is summed and

then calibrated for complexity to give a Function Point Total

(FPT). The FPT is then adjusted by a Language Expansion

Constant (LANG) which is an expression of size requirements

tailored to individual languages. For example, Ada has a LANG

of 72 and Fortran has a LANG of 105. The product of FPT and

LANG is the size of the software project. Examples of

function models in current use are the Software Productivity,

Quality, and Reliability Estimator (SPQR/20) and the Software

Architecture Sizing and Estimating Tool (SASET) model, both of

which consider significantly more attributes and have more

sophisticated size equations than the IBM example.

An advantage of function point models is that they

are available for size prediction earlier in the lifecycle

than LOC models. The function points represent the user's

vision of the software project and the associated attributes.

The model may be more accurate than LOC methods because of the

specific attention to project design attributes in the early

stages.

The major disadvantage of the function point

models is that the choice of weights for the attributes and

calculation of technical complexity factor were subjectively

determined. It is also difficult to define the basic counts

37

of the attributes in constant, quantified units that can be

objectively -.-it into the model.

Even with the risk associated with these

limitations, function point models are establishing a firm

place in the software estimation process. The function point

model has particular merit in the estimation process since it

may be the only sizing method that is not based on counting

lines of code and can be done accurately early in the project

lifecycle.

Sizing a software development project is critical

to getting a valid estimate of cost. The industry trend,

using any combination of the discussed sizing techniques, is

to underestimate the size and cause a cost understatement.

This tendency is caused by unfounded optimism by the

contractor and program manger, incomplete recall of past

experiences, and/or unfamiliarity with the requirements of the

total project.

D. SUMMARY

This chapter has presented a broad background of the

software development process. A manager that divides the

development process into functional phases has increased

control over the project as it evolves. The early pioneers in

software development management, including Rayleigh, Norden,

38

Putnam, and Brooks, understood this and developed techniques

and formulas to optimize project development.

The military has standardized software development by

issuing DOD-STD-2167A. This standard established phases and

test requirements that provide increased oversight for

management into a contractor's software development and test

and evaluation efforts.

The process of estimating software was then discussed. A

seven step approach developed by the NCA provides a organized

procedure to streamline cost estimation. With a comprehensive

procedure in place, estimating techniques can be selected.

Six common software cost estimation techniques were defined

with a brief description of the strengths and weaknesses of

each technique.

Estimating the size of the software project was then

addressed as the key input to most software cost (effort) and

schedule models. Language considerations, line of code

definition, and five sizing techniques were studied as they

applied to estimating size in the software development

process.

In the following chapter, software cost estimation models

will be discussed. A general approach to modeling is

presented as it applies to software development. The study

analyzes five of the most popular and frequently used

39

automated models in terms of their capabilities, strengths,

weaknesses, and availability.

40

III. COST ESTIMATION MODELS

A. GENERAL

Cost estimation models are tools that a manager of a

software development project can use to make reasonable

predictions of the resources required to develop a project.

The need for an effective and efficient model for estimating

software cost has been recognized by managers from the early

days of software development.

The first estimation tools were simple "paper and pencil"

models. Development effort and schedule requirements were

calculated based on a simple set of equations derived from

small, historical databases. Estimates of project size

initially came from counting boxes filled with punch cards and

have evolved to the more sophisticated techniques discussed in

the previous chapter. As the databases became more

comprehensive and the estimators gained experience, equations

were reformulated and expanded to consider additional factors

such as complexity of software, type of project, and

programmer's experience.

As models became increasingly sophisticated, the

mathematics required to support them became more complex and

cumbersome. Concurrently, however, computers became

increasingly common in the office and laboratory as digital

41

technology advanced. With the increased accessibility of

computers and computational power, a variety of automated cost

models were developed to assist the software cost estimator.

Currently, there are over 25 automated cost models in use by

various government agencies throughout the DOD, National

Aeronautics and Space Administration (NASA), and the military

industrial community [Ref. 9:p. 3-3].

Cost models have multiple applications for the manager of

a project. Early in the program, models provide estimates of

expected cost, schedule, and manpower requirements. Models

may also provide a means for the manager to independently

validate estimates provided by contractors or elements within

his/her own organization. Models have additional application

during later development phases as the program evolves.

Operational requirements or available resources may change and

the model may be used for weighing tradeoff options within the

new constraints of the project.

Models typically operate from the same fundamental

arrangement. The general model structure (Figure 7) consists

of five sequentially executed stages: Sizing, Manpower,

Schedule, Manloading, and Cost [Ref. 10:p. 4).

Virtually every software cost model starts with an

estimate of size. Size may be determined based on

parametrics, analogy, function points or expert judgment as

discussed in Chapter II. Most cost models, however, require

42

409

43

an LOC input for size rather than calculate a size estimate.

This puts the program manager in the position of roughly

accepting the contractor's size estimate since size is

difficult to estimate in the early stages of the acquisition

cycle. The Naval Center for Cost Analysis has Plaed to do

some independent sizing as their database improves, but they

are limited in resources and often use the contractor's size

estimate for their Independent Cost Estimate (ICE) [Ref. 8].

Manpower required for the project is typically calculated

from the sizing input. A cost estimating relationship (CER)

correlating manpower effort to software size is derived based

on a historical data base. There are usually additional

parametric factors that are considered and act as multipliers

to tailor the projected manpower requirement to the data base.

Examples of these factors include project complexity,

personnel experience, software language, and required

reliability.

The schedule phase serves to spread the size estimate

across the software development phases to produce a project

schedule. The manloading phase then spreads the manpower

prediction from the manpower phase over the optimal schedule

provided by the schedule phase. Recall from Chapter II that

the manpower requirement for the project is not linear but

rather follows a Rayleigh curve distribution.

The cost phase generates dollar figures for the effort

expended. Not all models include this final phase but rather

44

leave it to the manager to consider the complexities of the

total cost. There are many factors that must be considered in

pricing an entire job including direct development costs,

indirect and overhead expenses, and the present value of money

for lengthy projects.

There r-re many variations of the general model that have

strengths in different areas. Various models may not

emphasize the same development phases or activities of

interest. It is important to select a model that is

particularly suited to the current project, has fidelity in

the value of the estimate, is well documented so the user has

confidence in the model's methodology, and is user friendly

for the cost analyst who only spends a portion of his/her time

operating cost models.[Ref. l:p. 476]

In addition to these criteria, the PM must be concerned

about cost and access. Estimation models can be purchased,

leased or time-shared and range from no cost (Government

provided) to a lease price of $25,000 per year. The model of

choice should be able to run on standard DOD equipment, which

is currently the Zenith 248. The Zenith 248 is an IBM

compatible personal computer (PC) that is common in most DOD

offices and laboratories. It incorporates a 80286 processor

and is by most standards an outdated hardware system. There

are some DOD provided PC's with 80386 processors available but

they are not yet common in the government work place. Other

arrangements exist for the PM, such as telephone hook-ups or

45

time-sharing a large mainframe, but these options create

additional complications for the PM that may not be offset by

the benefits of the particular model. Cost and access

information will be further explored in this chapter as

particular software cost models are addressed.

In summary, there is no "best" model as all models have

strengths and weaknesses. There is, however, a common risk in

over relying on any model. Although inputs to models are

subjective, managers may mistakenly assume outputs to be

objective and express overconfidence in the results [Ref. 8].

Models do, however, provide a powerful tool to the cost

estimator and should be an integral part of the cost

estimation process.

B. AUTOMATED MODELS

1. Software Lifecycle Model

The Software Lifecycle Model (SLIM) is owned and

maintained by Quantitative Software Management (QSM), Inc.

The program was developed by Lawrence Putnam in 1978 based on

his previous work in software lifecycle management. The

program has been continually updated and is widely accepted by

industry as an effective software cost estimating tool.

The model is based on the Rayleigh manpower

distribution function. There are three primary inputs to the

model: lines of source code, the technology constant, and

development time. Source lines of code must be directly input

46

by the user. The technology constant can be input directly by

the estimator or calculated by SLIM based on the database.

Development time must be input and is critical to the SLIM

model because of the heavy emphasis the Rayleigh function

places on schedules and schedule deviations.

SLIM will provide estimates of required personnel,

costs, projected cash flow, limiting constraints, and risk.

It is also useful for sensitivity analysis. Effort and

schedule tradeoffs can be conducted but manpower effort is

significantly influenced by small changes in schedule as

expected from the Rayleigh manpower equations. The model is

"white box," indicating that the equations and database are

published. The SLIM equations for system size and expenditure

rate are as follows:

System size

Ss=(Ck)K 11 3Td413 (4)

where:
Ss = Number of delivered source instructions
K = Lifecycle effort in man-years
Ck = Technology constant
Td = Development time in years

Expenditure rate

Y/=K/Td2te-t 2/2Td2 (5)

where:
Y' = Expenditure rate
K = Total lifecycle effort
Td = Development time in years
t = Time in years

47

The Slim model has many strengths. One is that it is

IBM compatible and will run on the standard DOD PC. The

program is user friendly and easy to apply. SLIM's output is

easy to read and it's graphics capability is outstanding. The

SLIM model places specific emphasis on the relationship

between development effort and total time required.

A weakness of SLIM is also related to the development

effort and time relationship. The Rayleigh equation forces a

severe tradeoff of development effort to schedule time that

may impose too steep an effort "penalt " for small changes in

schedule.

The cost of using SLIM may also be considered a

disadvantage. In 1992, SLIM is available on a lease basis at

a first unit cost of $25,000 per year. Additional units cost

the organization an additional $1,000 per year. QSM no longer

offers a special rate to DOD ($8,000 in 1986) and the high

price may deter PM's from leasing the program. [Ref. II]

2. Price-S

The Price-S model was originated by Frank Freiman and

further developed by Robert Park. It is one in the family of

Price models owned by RCA, Inc. Price Systems Division. The

Price family of models include:

1. Price-S - estimates software development costs

2. Price-SL - estimates software lifecycle costs

48

3. Price-H - estimates hardware costs

4. Price-SZ - estimates software size

Price-S is a proprietorship model and is "black box"

indicating that equation and database information are not

available to the public. The model provides assessments of

manpower, schedule, and budget requirements for software

development and is designed for use over a wide variety of

applications. It was originally designed for the military but

has gained prominence within the government and private

industry [Ref. 9:p. 111-14]. The model provides output in

terms of phase and elements cost, schedule, and sensitivity

analysis.

There are 64 inputs for Price-S that are divided into

three groups of parameters: product related, organization

related and environment related. Of these 64 inputs, most

have default values but eight must have direct input. Those

eight are instructions, application, resources, utility,

platform, complexity, new design and new code. (Ref. 12:p. 8]

The model develops cost by relating input variables to

development effort using CER's derived from the historical

database. These results are adjusted in the calibration mode

to fit the model to the specific environment of the user.

There are several strengths that make Price-S

appealing. It is easy to use and to calibrate. It produces

a comprehensive output particularly tailored to software

49

development. The Price-S model is easy to use for "what if"

sensitivity analysis. The model is designed with over 20

years of experience at RCA and it is updated frequently.

A drawback of the Price-S system for a program office

is it's cost. The model is available as a time-share that

requires a dedicated phone line and costs $82.50 per connect

hour. It is also available as a lease and costs $15,000 per

year. For the leased version, a Prime 750 computer is

required to run the program. There are DOD models available

to the PM at no cost and therefore consideration must be given

to the cost of the both these arrangements for Price-S before

a decision is made on the model.

RCA has announced that there will be a IBM compatible

version of Price-S available in July of 1992. There is no

price data available yet but the required processing

capability to run the model will exceed the current standard

for DOD PC's. RCA recommends a computer with at least a 80386

processor and a math co-processor to make full use of the

model's capabilities (Ref. 13].

Another weakness of the Price-S model is it's black

box nature. The algorithms used are not public domain and the

user cannot analyze the equations or the database to

substantiate the models credibility.

50

3. Jensen

The Jensen model was developed in 1979 by Dr. Randall

W. Jensen, Chief Scientist of Hughes Aircraft 'orporation.

The model is based on the Rayleigh distributio urve for

effort and schedule estimates and tradeoff analysis. The

tradeoff relationship between cost and schedule, however, is

not as steep in Jensen models as it is in the SLIM model. The

model has undergone considerable refinements over the last

decade and has been revised from the original JS-1 model in

1979 to the current System-4 update.

There are four input parameter groups in Jensen models

for cost estimation: size, complexity of the project,

technical ability of the developer, and staff availability.

These groups consist of a total of 50 input factors that can

be entered either as a specific values or as ranges. The

central equation to the model is:

Se=(Ce)TdK 1 2 (6)

where:
Se = Effective software size in source lines of code
Ce = Effective developer constant
Td = Development time
K = Total lifecycle effort in man-years

The Jensen model is user friendly and easy to

calibrate to the project environment. It is supported by good

documentation and is "white box." Additionally, System-4 is

compatible to the standard DOD PC which makes it an attractive

option for a program office.

51

The model is leased or time-shared and proprietary

control is held by Computer Economics, Inc. (CEI). The cost

of System-4 may be prohibitive for some DOD users. System-4

costs the user $8,000 per year for three units and $700 per

year for each additional unit to lease the program. The cost

to time-share the program is $49.25 per hour. [Ref. 14]

CEI released a sizing tool in June of 1990 to

supplement the System-4. This new sizing tool, called CEIS,

is an analogy model that is based on mathematical advances

made by Dr. Joseph Lambert, Head of Computer Science

Department at Pennsylvania State University. CEIS has a

relatively small database of 40 projects but is tailored

toward government and military projects and the implementation

of Ada.

4. Software Productivity, Quality, and Reliability
Estimator

Software Productivity, Quality, and Reliability

Estimator (SPQR/20) was developed by T. Capers Jones of

Software Productivity Research, Inc., in 1985. The model is

intended to estimate the outcome of software development

projects very early in the planning stages. SPQR/20 provides

output on cost, schedule, staff requirements, sze, and

predicted product quality. Predicted project quality includes

anticipated defect levels, number of test cases and test runs

required, and the effectiveness of pre-test and test

activities.

52

The model is unique because it is one of the few

models that has the capability to calculate size. Size may

either be calculated as an output of the Albrecht Function

Point technique or it may be directly input by the user. The

Albrecht Function Point technique, similar to the IBM function

point model discussed in Chapter II, is a comprehensive sizing

tool that allows input to the model in 30 different computer

languages. The accuracy of the size estimate has empirically

resulted in estimates usually within 15 percent of actual

size. Function point sizing is an advantage to the PM as it

allows an estimate early in the acquisition cycle and it can

be used to validate a LOC generated estimate.

There are 28 user inputs to the model that primarily

relate to development environment, product complexity, and

sizing inputs. The algorithms are black box but the

proprietor has published that the database has been created

from over 3000 software projects spanning over 200

organizations.

The SPQR/20 can be operated on the standard DOD PC,

but the cost may be prohibitive for a program office. The

first unit is available for $3,250 while additional units have

a sliding cost scale based on volume [Ref. 15].

A weakness of the SPQR/20 model is that function point

models tend to be highly subjective in assigning values to the

function point parameters. Subjective treatment of the sizing

and complexity inputs may create wide variances in output

53

between different estimators on the same project with the same

models.

5. Constructive Cost Model

The Constructive Cost Model (COCOMO) was developed by

Dr. Barry Boehm who was then Director of Software Research and

Technology at TRW, Inc. COCOMO is presented and fully

explained in Boehm's 1981 book, Software Engineering

Economics. COCOMO is considered by many cost estimators to be

the industry standard for software cost estimation models.

Numerous versions of COCOMO are available and it is the most

widely used software cost estimation model.

COCOMO was originally designed from a database of 63

projects representative of the major sectors of the software

world including business, scientific, systems, real time and

support software programs. Correlation was developed between

lines of code and development effort based on the projects in

the database. The estimating equations in COCOMO are not

optimal least-squares fits to the data points but rather

represent a line subjectively fit to the data points that best

represents the relationship between size and effort [Ref. l:p

.85] . Boehm's opinion is that this line will produce less

variation from the actual values than a r-qression line based

on best fit. This relationship is the backbone of all the

COCOMO models.

54

COCOMO is composed of a hierarchy of three

increasingly detailed levels: Basic, Intermediate and

Detailed. The Basic level is the simplest model. It is

designed to provide a quick rough order of magnitude estimate

of effort and schedule early in the lifecycle. Effort is

expressed in man-months (MM) and is a function of thousands of

delivered source instructions (KDSI); schedule is expressed in

development time (TDEV) and is a function of MM's. Basic

COCOMO is most useful for projects that are developed in a

familiar environment and are small to medium size (2 - 32

KDSI) . Accuracy is limited because the model does not account

for specific program development factors concerning the

project, personnel, or hardware. All equations used in

Boehm's COCOMO models are presented in Table 1.

Intermediate COCOMO is more sophisticated and accurate

than the Basic level and is the most frequently used version

of Boehm's COCOMO model. Intermediate COCOMO is suitable for

cost estimation in the more advanced phases of software

product definition. It incorporates 15 predictor variables

that represent cost s in software development. These

predictor variables are effort multipliers (EM's) that

calibrate the estimate to specific project characteristics and

are grouped into four categories: software product attributes,

computer attributes, personnel attributes, and project

attributes. The EM's are multiplied against the base equation

55

TABLE 1. EFFORT AND SCHEDULE EQUATIONS FOR COCOMO

LEVEL/MODE NOMINAL EFFORT SCHEDULE

BASIC

Organic MM=2.4(KDSI)-^.05 TDEV=2.5(MM)^0.38

Semidetached MM=3.0(KDSI) "1.12 TDEV=2.5 (MM) "0.35

Embedded MM=3.6(KDSI)-^.20 TDEV=2.5(MM)^0.32

INTERMEDIATE

Organic MM=3.2(KDSI)^1.05 TDEV=2.5(MM)^0.38

Semidetached MM=3.0 (KDSI) ^1.12 TDEV=2.5 (MM) ^0.35

Embedded MM=2.8(KDSI)A1.20 TDEV=2.5(MM)" 0.32

DETAILED

Organic MM=3.2(KDSI)^I.05 TDEV=2.5(MM)^0.38

Semidetached MM=3.0(KDSI)^ 1.12 TDEV=2.5(MM)^0.35

Embedded MM=2.8(KDSI)^l.20 TDEV=2.5(MM)^0.32

(nominal) for effort and have values ranging from 0.70 to 1.65

(1.00 being the nominal default value).

Detailed COCOMO is similar to Intermediate COCOMO but

has two significant improvements. First, effort multipliers

are applied to each individual lifecycle phase vice across the

entire project as in the Intermediate version. The phase-

sensitive effort multipliers may provide a more accurate total

estimate for those projects which have significant variability

across phases.

Detailed COCOMO also simplifies data input procedures

for large projects with many components. It provides a three-

level product ranking system that groups project components

into three categories: module level, subsystem level, and

56

system level. Effort multipliers can be applied to each of

the three broad categories vice assigning cost values to

every component.

Within each COCOMO model there are three development

modes: organic, semi-detached and embedded. The organic mode

assumes a stable development environment with very little

concurrent development of hardware. There is previous

experience with the project type and high productivity is

assumed. There is little demand for innovative data

processing architectures or algorithms and the projects are

normally low cost and relatively small (less than 50 KDSI).

The semi-detached mode is an intermediate stage

between organic and embedded modes. It is designed for a

programmer team consisting of experienced and inexperienced

personnel. Project size may be as large as 300 KDSI.

The embedded mode is used when the software must

operate within tight project constraints and involves complex

operating requirements with little flexibility. Examples of

embedded software projects are manned space systems, avionics,

and command and control systems. The embedded mode may be

used for any size software project.

There are many advantages to a COCOMO model. It is

user friendly, can be run on a standard DOD PC, and is

relatively accurate [Ref. 16:p. 14]. COCOMO is a white box

system with extensive documentation and instruction in

57

Software Engineerinq Economics. It is simple to use for

sensitivity analysis and to calibrate to specific projects.

Table 2 presents the capability of the model to be

within 20 percent of actual values for each level of COCOMO.

Table 2 was based the relative error between the actual values

for the projects in the database versus the estimated values

for the projects in the database as calculated with the COCOMO

model.

TABLE 2. COCOMO FIDELITY

Ability of COCOMO to predict
within 20% of actual values.

Basic 25%

Intermediate 68%

Detailed 70%

A disadvantage of COCOMO is that it does not generate

a size estimate. The estimated project size must be an input

to the model. An additional disadvantage to the original

COCOMO model is that the database is relatively small (63

projects) and outdated (the most current project is from

1979). Fortunately, there are many COCOMO based models on the

market that use the COCOMO equations and techniques and have

updated databases with current project data. A few examples of

COCOMO based models are:

1. WICIMO - A Pascal version developed by WANG
Institute designed primarily for commercial use.
The cost is a $200 one time charge for first and
additional units.

58

2. PCOC - Designed by Eclectic Systems and implements
both Intermediate and Detailed COCOMO. The cost is
$850 for the first unit and $350-$175 for additional
units.

3. Costmodl - Developed by the Software Technology
Branch of the Johnson Space Center. It is comprised
of four COCOMO versions: Basic, Intermediate, Ada-
COCOMO (designed specifically for projects including
Ada programming), and Keep It Simple Stupid (KISS).
KISS is a user friendly derivative of COCOMO that is
tailored to Mission Critical Computer Resources
(MCCR's). Costmodl can be acquired for DOD users in
limited quantities through the NCA at no cost.

5. Revic COCOMO - A version of COCOMO de-ieloped by the
USAF and tailored specifically for MCCR projects.
Revic is available at no cost for DOD users.

6. Software Architecture, Sizing, and Estimating Tool

The Software Architecture, Sizing, and Estimating Tool

(SASET) was developed by Dr. Aaron N. Silver of the Martin

Marietta Denver Astronautics Group. It was designed for the

NCA under the auspices of the Office of Naval Research to

estimate effort, schedule, cost, maintenance, and risk of a

software development project. Additionally, SASET will also

either generate a size estimate using function point

techniques or allow the user to directly input project size.

Comprehensive documentation for the model is available in the

contract Final Report from Martin Marietta and is referenced

in the bibliography.

SASET is organized into three tiers for software

development cost estimation, Tier 1 addresses high-level

system architecture which includes the class of software,

software programming language, development schedule, and other

59

development and environment issues. Outputs from thii tier

are values representing preliminary budget and schedule

multipliers. [Ref. 9 :p. V-5]

Tier 2 is the sizing segment. It provides the user

capability to generate project size by entering functionality

aspects of the software project as input. Functions are

divided into four high level categories: Processing Software,

Input Tasks, Output Tasks and Security of Multi-User Systems.

These categories are subdivided in specific function areas and

size values are calculated for each function area based on the

selected historical database. The size estimates of each

function area are then compiled to produce an estimate of

total project size.

Software size may also be directly input by the

estimator. To input size, software must be classified as

either HOL or Assembly language and then further categorized

as any combination of new, modified or rehost software.

Software type must be specified as either System,

Application, or Support software. System software is a

collection of programs written to service other programs and

is highly constrained and written in assembly language.

Application software is written to process input data, solve

problems, and. derive outputs. It is less complex than systems

data and is usually written in HOL such as FORTRAN, COBOL, and

Ada. Support software is the least complex of the three and

60

it may include business systems, database systems, or

simulation/model systems.

Tier 3 addresses software complexity issues of the

hardware and software systems. There are 34 inputs that are

ranked from simple to very complex and include factors such as

software requirements, timing and criticality, software

experience, and schedule constraints. Each of these

complexity factors are subjectively determined by the

estimator and input to the model to further refine the cost

estimate.

SASET is user friendly, white box, compatible with a

standard DOD PC, and has a comprehensive and current database.

SASET has good graphics capabilities and produces output in

the forms of tables, bar chart, pie chart or line graph. A

notable strength of SASET is its ability to predict size and

also perform all other roles normally associated with a

software cost estimating tool.

A weakness of SASET is related to its strength of

being a function point sizing model. Function point models

have large subjectivity associated with the values and

multipliers of the initial functions. However, SASET allows

the user to calibrate the database to the specific project

requirements which may increase the accuracy of the estimate

if the user has accurate and comprehensive data.

61

SASET is available to DOD users through the Naval

Center for Cost Analysis. There is no cost for the model and

many program offices already have the program installed.

C. SUMMARY

This chapter has discussed models for estimating costs of

software development. PM's can expect to have success using

models in two areas. The first area is to generate software

development cost estimates. Cost estimates will be used by

the manager for budget input or for validating the credibility

of a contractor's estimate. The second area in which models

are useful for the PM is performing tradeoff studies. During

project development, tradeoff studies will help to minimize

the effect changes in the project requirements or resources

may have on cost and schedule by enabling the manager to make

an optimal decision on the tradeoff of resources.

Although there are over 25 automated models available to

the PM, this study has concentrated on the five most popular

and frequently used models: SLIM, Price-S, Jensen, SPQR/20,

COCOMO, and SASET. There is no "best" model as each model has

different strengths and weaknesses. Model selection should be

based on the specific requirements of the development project

and the resources available to operate the model.

The following chapter will explain why variance exists

between estimates developed by independent estimators working

on the same project. The COCOMO equations will be analyzed

62

and sensitivity analysis performed with SASET to determine

which factors in a software development project have the

greatest effect on cost variance between estimates.

63

IV. WHY VARIANCE EXISTS BETWEEN INDEPENDENTLY
DEVELOPED COST ESTIMATES

Managers with responsibility for generating estimates of

software development costs have implemented computers and

automated cost models over the last decade to improve the

accuracy of the estimate. Computers have reduced some of the

uncertainty from cost estimation by introducing sophisticated

equations and expansive databases into the estimation process.

However, for any software project, there are still significant

variance between cost estimates developed by independent cost

estimation organizations. Causes of variance, those elements

of a project that have the most significant effect, were

identified through a series of interviews with PM's, software

cost analysts, and engineers. This chapter will examine those

causes to determine why discrepancies exist between

independent estimates.

There is some concern among cost analysts that the

elimination of variance between independent estimates is not

desirable [Ref. 8] [Ref. 17]. They fear that the

standardization or uniformity required to eliminate these

discrepancies would stifle innovation and prevent cost

estimators from having the latitude necessary to

comprehensively develop a valid estimate. This study is not

intended to advocate restricting the managers autonomy but

rather to identify cost estimation areas that are producing

64

variance so that a manager may make informed decisions

regarding a cost estimate. The manager must be aware of what

factors are causing differences between estimates when he/she

is faced with reconciling multiple cost estimates to produce

a consolidated cost estimate for budget submission.

For research purposes, a hypothetical software development

project was created for evaluating software estimation methods

and performing sensitivity analysis. Sensitivity analysis is

the process of changing values of individual elements of a

project so the effect of that single element can be observed

on the total project outcome.

The hypothetical project for sensitivity analysis will be

referred to as the "BASE" project. The BASE project was

created tc be similar to the SH-60B LAMPS MK III Block II

Upgrade ctcrently under development at IBM. The SH-60 Program

Office at NAVAIRSYSCOM is the Department of the Navy (DON)

point of contact for the program and the financial sponsor for

the thesis travel conducted in support of this study. All

parameter. given for the Base project closely resemble the

anticipat,'d actual values of the project parameters that will

be released by IBM in June of 1992 and are presented in Tables

3 and 4.

The 3ASE project, Xowever, is not intended to

comprehensively represent the program estimate as certain

information is not available due to the sensitive nature of

65

TABLE 3. PARAMETERS OF THE "BASE" PROJECT

Initial Size Class of Primary Software Software
Estimate Software Language Type

118,500 LOC Avionics Ada (first-time) Systems

HOL vs Assembly Code Database selection for
Language Condition Calibration

100% HOL 100% New SASET Default (TIERS.CAL)

TABLE 4. SOFTWARE DEVELOPMENT COMPLEXITIES OF THE "BASE"
PROJECT

System Software Software Travel
Requirements Requirements Documentation Requirements

Fairly complete Fairly complete Average Little
amount travel

Man liming and Software Hardware
Interaction Criticality Testability Constraints

Highly High Complex Complex
Interactive Reliability

Hardware Software Software Development

Experience Experience Interfaces Facilities

Average Average Some Shared

Development vs Technology Off-the-Shelf Development
Host Systems Impacts Software Team

Similar Minor Few impacts Experienced

Embedded Development Personnel Programming
Development Tools Resources Language

Little impact Good Adequate Ada
availability staffing

specific price information of an ongoing project. Cost values

in real dollars were not included in the BASE project data and

therefore the total project estimates will be expressed in

terms of effort in man-months required to develop the project.

The project was created for estimation with the SASET model

66

and all parameter choices are consistent with the input

options available to the user with SASET.

Causes of variance between independent estimates can be

broadly categorized into two major areas:

1. Methods used to develop the estimates

2. Inconsistent assumptions between independent estimators
on project input parameters

Both of these areas will be analyzed in the remainder of

this chapter with the intent of determining why these factors

cause variance and to what maQnitude the factors affect the

total estimate of effort required to develop the software

project.

A. METHODS USED TO DEVELOP THE ESTIMATE

The choice of methods for developing the software project

cost estimate will directly impact the outcome of the total

project estimate. Different estimation methods will emphasize

different aspects of the software developmert process and may

result in model bias and/or incomplete lifecycle coverage.

The effects of model bias and incomplete lifecycle coverage

must be understood by the PM to recognize why variance exists

between independent estimates. This section will look at the

reasons that model bias and incomplete lifecycle coverage

exists as a result of the methods chosen to estimate the

software development project.

67

1. Automated Cost Model Biases

Model bias is an emphasis by the automated cost model

given to certain favored elements of the estimation process.

This emphasis skews the outcome of the estimate towards the

elements that are favored and may include: effort verses

schedule tradeoffs, estimated size (LOC) as a primary

independent variable, the weighing of certain project

complexity factors, or the intended application of the

software project. Each cost model inherently has model bias

dependent upon the model's intrinsic equations and database.

Because each model has different equations and databases, each

model also will have different model bias. It is important

that the PM understand the model biases for each estimate

submitted to the program office in order to make a legitimate

comparison among independent estimates.

An example of two models that would produce

incongruous model biases would be estimates produced by the

SLIM and the COCOMO model. SLIM, consistent with the Rayleigh

equation, places a heavy emphasis on the tradeoff between

developmentOffort and the total time required to develop the

project (Equation 7).

Ss= (Ck) K1/ 3 Td4/ 3 (7)

where:
Ss = Number of delivered source instructions
K = Lifecycle effort in man-years
Ck = Technology constant
Td = Development time in years

68

COCOMO, on the other hand, does not address

development time as a variable in the equation. The equation

for effort in Intermediate COCOMO (Embedded mode) is (Equation

8):

MM=2.8 (KDSI)'. 20 (IEM) (8)

where:
MM - Man-months
KDSI - Delivered source lines of code in thousands
EM - Effort multipliers corresponding to the 15

predictor variables.

Development time as a project input parameter would have

significant effect on the SLIM generated estimate but possibly

no effect on the COCOMO generated estimate. Variance due to

model bias will exist between the SLIM estimate and the COCOMO

estimate for any project that uses development time as a

project input parameter.

Equation 9 modifies the SLIM equation to solve for the

effort variable (K).

K=Ss 3Ck- 3Td 4 (9)

In both the COCOMO equation (Equation 8) and the modified SLIM

equation (Equation 9), there is an exponential relationship

between project size and required development effort.

However, the exponent values are not equal and the result will

be that different estimates of total required effort will be

generated by each model based on project size as an input

factor.

69

The conclusion to this example is that model bias will

cause variance between estimates developed by different

models. PM's must be knowledgeable about the model used in

developing individual estimates that are submitted to the

program office. A clear understanding of potential model

biases that can be generated by automated models will help to

explain why variance exists between estimates generated by

different automated cost models.

2. Incomplete Lifecycle Coverage by Automated Models

Various automated cost models do not all provide the

same coverage of the phases of the software development

lifecycle as delineated in DOD-STD-2167A. Different models

may cover all or only parts of the entire lifecycle. It is

important for the PM to know what part of the development

lifecycle is covered by the models that are producing the

total project estimate because models that emphasize different

lifecycle phases may produce different estimates for the same

project.

Table 5 presents the previously discussed automated

cost models and the respective lifecycle range that they cover

[Ref. 18:p .19]. These models were not designed using a

standard definition of lifecycle phases therefore the table

will describe each model in its own terminology consistent

with the documentation published by each model developer.

70

TABLE 5. SOFTWARE DEVELOPMENT LIFECYCLE RANGE COVERED BY
EACH COST MODEL

MODEL LIFECYCLE RANGE COVERED

SLIM Feasibility Study to Full Operational Capability plus
Operations and Maintenance

PRICE-S Software Design through Test and Integration plus
Operational Support of user specified length

JENSEN SYSTEM-4 Requirements Definition up to Development Test and
Evaluation plus 15 years of Operational Support

SPQR/20 Planning through Integration/Test plus 5 years of
__ _Operational Support

COCOMO Plans and Requirements Phase to Operations and
Maintenance Phase

SASET Systems Software Requirements Analysis to Systems
Integration and Testing plus Maintenance

Managers need to be aware that different choices in

automated models will result in different lifecycle phases

being covered or emphasized in the cost estimate. Varying

lifecycle coverage will effect the values of the total project

cost estimate and cause variance between estimates developed

by different models.

The methods used by the organizations developing the

cost estimates will affect the outcome of the total project

estimate. Model biases and incomplete lifecycle coverage may

result when independent estimators use different models based

on dissimilar methods to generate a cost estimate. In the

next section, the inputs to the cost models will be analyzed

to determine how inconsistent assumptions between independent

estimators about input values affect the total project

estimate.

71

B. INCONSISTENT ASSUMPTIONS BETWEEN INDEPENDENT ESTIMATORS ON
THE PROJECT INPUT PARAMETERS

The most frequently cited contribution to variance between

independent estimates is inconsistent assumptions between

estimators on the elements comprising a software project while

assigned to the same project. Independent estimators will

inevitably have different opinions on the software pr-ject

inputs that are used to generate a cost estimate. These

differences will result in variance in the estimate for the

entire project.

Certain inputs will be more critical than others and act

as primary causes of project estimate variance. Unless

estimates are being generated from the same initial

assumptions on inputs, the estimates will not have a

meaningful relationship to each other. The manager will not

be able to validate the estimates interrelationship and will

not have the confidence that multiple estimates should

provide.

PM's, cost analysts, and engineers in the software

development industry were interviewed to determine which input

parameters had the greatest effect on the total estimate when

inconsistent assumptions were made concerning their values.

The consensus of opinion is that there are four areas of

inputs for a software development program that act as primary

causes of project cost variance (Refs. 8, 17, 19, 20, 21, 22,

23, 24, 25]:

72

1. Size estimate of the project

2. Software system characteristics

3. Software development complexities

4. Database selection for project calibration factors

These four areas will be analyzed to determine to what

extent inconsistent assumptions of their values influence the

outcome of the estimation process.

1. Size Estimate of the Project

The estimated size of a software project is a key

factor in the total cost estimate. Most models use size as a

primary variable in the estimation equations whether the model

generates size or size is input directly. For example, the

equation for effort in Intermediate COCOMO (Embedded mode) is

(Equation 10):

MM=2.8 (KDSI) 1.20 kEM) (10)

where:
MM - Man-months
KDSI - Delivered source ±ines f code in thousands
EM - Effort multipliers corresponding to the 15

predictor variables.

In COCOMO, size is a primary input variable. To

isolate the effect size has on total effort, the partial

derivative with respect to the size variable (KDSI) was

derived from the effort equation (Equation 10) and presented

as Equation 11.

73

MM'=2.8(1.20(KDSI) 02 0) (HEM) (11)

This new effort equation indicates that the marginal

change in effort is an exponential function of size. Percent

change in size as an input will yield a greater percent change

in the effort estimate. When considering the Organic and

Semi-detached development modes, the relationship continue to

hold true. However, the two simpler development modes, with

the smaller exponent in the equation, do not impose as large

of a marginal change in effort for change in size as the

highly constrained Embedded mode.

Sensitivity analysis of input size versus output

effort was conducted with the SASET model to empirically

validate the relationship derived from the COCOMO model. From

the BASE model, size was increased 25 percent to 148,125 LOC

and decreased 25 percent to 88, 875 LOC. As a result of these

changes in sizt. j the input variable), the total effort

estimates changed as well (as the output variable). The

percent change in output effort can be calculated and compared

to the percent change in the input size (exactly 25 percent).

In both the cases of size being increased and size being

decreased, the total effort estimate changed exactly 25

percent. This indicates that within the SASET model, there is

a 1.00:1.00 relationship in percent change between changes in

effort and changes in size.

74

This validates the COCOMO model. In both the SASET

and COCOMO models, changes in the estimate of size as an input

parameter resulted in significant changes in the estimate of

total effort for the project. The relationship between

percent change in size and percent change in effort is not

identical for both models, however, some variation between the

models is anticipated due to the differences in estimation

methods within the models. It is likely that SASET does not

weight size as heavily as COCOMO because SASET has a greater

number of parametric inputs that additionally classify

software project characteristics. The net effect of changes

in size on the total estimated project effort is sign: •7iant

and comparable for both models.

Managers need to be aware that any inaccuracies in the

initial project size estimate will translate into a

significant error in the estimate of total effort required to

develop the project. Table 6 presents the results of the

sensitivity analysis of size as a cause of variance.

TABLE 6. PERCENT CHANGE IN THE ESTIMATED SIZE OF THE SOFTWARE
PROJECT AND THE EFFECT ON THE TOTAL PROJECT EFFORT
REQUIREMENT

Size (LOC) Effort Percent change Percent change
BASE +/- 25% required to in required in Effort

complete the Effort versus
project man- Percent change
months) in Size

118,500 (BASE) 4023.04 N/A N/A

148,125 (+25%) 5028.80 25.00% 1.00:1.00

88,875 (-25%) 3017.28 25.00% 1.00:1.00

75

2. Software System Characteristics

Software system characteristics are those factors that

describe the project from a high-level perspective. System

characteristics include class of software, primary software

language, software type, and code condition. The valuation by

the estimator of each of these characteristics will have an

effect on the output value of the estimate.

In Intermediate COCOMO, the system characteristics are

embedded in the effort multipliers (EMs) . To isolate the

effect of the EMs on the total effort estimate, the first

order partial derivative for each of the 15 EM's is required.

Each EM is multiplied against the nominal equation and will

affect the marginal change in effort in the same manner.

Equation 12 is the partial derivative of the COCOMO effort

equation with respect to the variable EM.

MM E2.8(KDSI)12(f-5 -EM1) (12)dEMi ` dE~i

In the first order derivative, there is a

multiplicative relationship between the EM variable and the

output of the equation in terms of effort. Any percent change

in an EM will have an equivalent percent change in total

effort required for the project, a 1.00:1.00 relationship. It

should be noted, however, that this is true only if one

predictor variable is changed at a time. Any combination of

variables changed will result in the product of the percent

76

changes of each EM applied to the nominal equation

exponentially vice multiplicatively and therefore a greater

than 1.00:1.00 relationship will exist.

Sensitivity analysis was run on SASET to empirically

determine the relationship between system characteristics and

total effort. Four characteristics will be analyzed: class

of software, primary software language, software type and code

condition.

Table 7 displays the percent change in estimated

effort for a change in each of the software characteristics.

The input choices to the BASE model were changed to reflect

some of the options the estimator has when developing an

estimate with SASET. When using SASET, subjective choices

made by the estimator on inputs will have significant effect

on the total effort estimate. For example, a

misclassification of software type may result in a percent

change in estimated effort of over 74 percent.

In the SASET model, three of the four system

characteristics analyzed affected the total project effort

estimate by over 20 percent by changing the input selection

available to the estimator. The analysis of the COCOMO

equations and the sensitivity analysis of SASET both indicate

that high level system characteristics of a software project

are causes of variance between independent estimates. Careful

consideration must be given to the subjective choices for

software system characteristics when developing a cost

77

TABLE 7. THE EFFECT OF CHANGES IN SYSTEM CHARACTERISTICS ON
THE TOTAL EFFORT REQUIRED TO COMPLETE THE DEVELOPMENT PROJECT

Class of Software Effort Percent change

Avionics (BASE) 4023.04 -

Unmanned flight 6705.06 66.67%

Ship/Submarine 3017.28 25.00%

Primary Software Language

Ada (BASE) 4023.04 -
low experience

Assembly 3965.29 1.44%

HOL 3686.16 8.37%
experienced Ada

Software Type

Systems (BASE) 4023.04 -

Application 2316.29 42.42%

Support 1036.24 74.24%

Code Condition
"new-modified-rehost"

100%-0%-0% (BASE) 4023.04 -

75-25-0 3751.48 6.75%

75-0-25 3117.85 22.50%

50-25-25 2846.30 29.25%

estimate as these characteristics have a significant effect on

the outcome of total estimate.

3. Software Development Complexities

Software development complexities represent the

working details of the software development process and

include factors such as software requirements, timing and

criticality, and programmer experience. The subjective value

assigned to each of these complexities by the estimator will

affect the output of the total cost estimate.

78

In COCOMO, these complexities are embedded in the EM's

in the same manner as the system characteristics. Software

development complexities have a multiplicative effect on the

total effort estimate that results in a 1:00:1:00 relationship

between percent change in the input complexities and the

percent change in the output effort estimate. Any significant

change in assigned complexity values will have significant

effect on the cost estimate.

SASET incorporated 20 complexity factors into the

model that affect the effort estimate. The model also

provides an additional 12 integration factors that apply to

projects that consist of multiple CSCI's. The BASE project is

designed with only one CSCI, therefore, the integration

factors default to 1 and have no effect as multipliers.

The complexity factors have four settings available

for the user: "Very Complex", "Complex", "Average", and

"Simple". Average is the default value and has a multiplier

value of 1.0. The other selections have multiplier values as

set by the calibration database and tend to range from 0.85 to

1.05. Sensitivity analysis was conducted on SASET with the

BASE project and the results are compiled in Table 8. For

each complexity factor, SASET was run for all four settings of

complexity. "EFFORT" is the new computed estimate for

required effort in man-months and "PERCENT CHANGE" is the

percent change from the Base value to the new value for

effort. The shift between Simple to Average settings created

79

TABLE 8. THE EFFECT OF CHANGES IN INDIVIDUAL COMPLEXITY
FACTORS ON THE TOTAL EFFORT REQUIRED TO COMPLETE THE
DEVELOPMENT PROJECT.

COMPLEXITY Very Complex Average Simple
FACTORS Complex

System Requirements 4363 / 8.5% 4123 / 2.5% BASE 3822 / -4.9%

Software Requirements 4223 / 5.0% 4123 / 2.5% BASE 3822 / -4.9%

Software Documentation 4123 / 2.5% 4063 / 1.0% BASE 3722 / -7.5%

Travel Requirements 4494 /11.7% 4423 / 9.9% 4376 / -8.8% BASE

Man Interaction 4081 / 1.5% BASE 3983 / -1.0% 3784 / -5.9

Timing and Criticality 4081 / 1.5% BASE 3983 / -1.0% 3784 / -5.9

Software Testability 4081 / 1.5% BASE 3983 / -1.0% 3689 / -8.3%

Hardware Constraints 4081 / 1.5% BASE 3983 / -1.0% 3784 / -5.9

Hardware Experience 4123 / 2.5% 4063 / 1.0% BASE 3722 I -7.5%

Software Experience 4123 / 2.5% 4063 / 1.0% BASE 3722 / -7.5i

Software Interfaces 4123 / 2.5% 4063 / 1.0% BASE 3722 / -7.5%

Development Facilities 4081 I 1.5% BASE 3983 / -1.0% 3689 / -8.3%

Development versus 4123 I 2.5% 4063 / 1.0% BASE 3722 / -7.5%
Host Systems

Technology Impacts 4123 / 2.5% 4083 I 1.5% BASE 3722 / -7.5%

Off the Shelf Software 4083 / 1.5% 4063 / 1.0% BASE 3722 / -7.5%

Development Team 4123 / 2.5% 4063 / 1.0% BASE 3722 / -7.5%

Embedded Systems 4123 / 2.5% 4083 I 1.5% BASE 3722 / -7.5%

Development Tools 1083 / 1.5% 4063 / 1.0% BASE 3722 / -7.5%

Personnel Resources 4083 / 1.5% 4063 / 1.0% BASE 3722 / -7.5A

Programming Language 4083 / 1.5% .4063 / 1.0% BASE 3722 / -7.5%

80

the largest variance of any of the other single setting

shifts. For example, 16 of the 18 complexity factors resulted

in a percent change in effort required of over 7.5 percent.

The average for all the other shifts between complexity

settings was approximately 2.5 percent. There is a trend of

less variation in the shifts between the median settings

(Complex and Average) than the shifts to the extreme settings

(Complex and Very Complex or Average and Simple).

Software development complexities have an impact on

the total effort estimate generated with an automated model.

With COCOMO, the effect is that the percent change in the

input value is applied multiplicatively to the total effort.

This results in a 1.00:1.00 relationship between percent

change in the inputs to percent change in the output. SASET

empirically tends to decrease the estimate of effort required

to a greater degree when relaxing complexity inputs than it

increases the estimate of effort when complexity inputs become

more constrained from nominal. There also appears to be

greater variation in the required total project effort when

the extreme complexity settings are chosen (very complex and

simple) than when the middle settings are chosen (complex and

average).

4. Database Selection

The use of an appropriate historical database for

parametric estimation is important for accurate software cost

estimation. The database is used to calculate the calibration

81

coefficients that weight the various input choices offered to

the user in automated models. The database is also used in

sizing models to store actual function task values that may be

analogous to function tasks in the project being estimated.

The database needs to be large enough to provide

reasonable confidence to the user that the full spectrum of

the predicted project range is covered. The database may also

be tailored to the specific type of project under development,

such as avionics or business application, to emphasize

specific traits of the project type into the calibration

coefficients. It is appropriate, however, to have some variety

in project type within the database because many diverse

projects share common characteristics such as language type

and programmer experience.

The accumulation of information for databases has been

handled poorly in the past. Data specific to software

engineering is difficult to find and to extract from higher

levels within the WBS. PM's have recently recognized the

problem and have specified in the contract Request for

Proposal (RFP) that the contractor shall specifically

delineate software costs. In the future, it should be easier

to obtain software development costs to update databases with

the most current software development project information.

For the BASE model, the SASET default calibration

database (TIER.CAL) was used to calibrate the weight

coefficients used to calculate the estimate. For sensitivity

82

analysis, each calibration weight was altered to simulate that

the calibration weights were re-calculated based upon

different database information. The calibration weights,

typically ranging from 0.85 to 1.05, were increased by a

factor of 0.01 and 0.03 simulating an increasingly complex and

constrained project database. The calibration factors were

then decreased 0.01 and 0.03 simulating a more simple and

flexible project database. The effect on the estimate of

project effort was significant and ranged from 16.41 to 65.37

percent. The complete results of the sensitivity analysis are

graphically presented in Figure 8.

Percent Change
100

90

80-

70- O

00

50,
/X

40-

30-

20 -

10 .

0 " '-.--,--'- -..---,:.---.

-0.03 -0.01 40.01 +0.03
Adjustrmet: to CalJfrtuon Database

Figure 8. The effect of changes in calibration
factors as determined by the database on the total
effort required to complete the development
project.

83

The results indicate that there are large changes in

the estimate of project effort even with small calibration

changes in the calibration weights as determined by the

selection of the historical database.

C. SUMMARY

Software development cost estimates generated from

independent estimators on the same project will normally have

some variance between the estimates of total effort

requirements to complete the project. The manager who has a

clear understanding of the factors influencing these variances

will be better equipped to reconcile the variances and produce

an estimate that accurately represents the resources required

to develop the project.

The choice of methods for developing the software project

cost estimate will directly impact the outcome of the total

project estimate. Different estimation methods will emphasize

different aspects of the software development process and may

result in model bias and/or incomplete lifecycle coverage.

Model bias is an emphasis by the automated cost model

given to certain favored elements of the estimation process.

This emphasis skews the outcome of the estimate towards the

elements that are favored and may include: ef fort verses

schedule tradeoffs, estimated size (LOC) as a primary

independent variable, the weighing of certain project

complexity factors, or the intended application of the

software project. Estimates submitted to the PM that have

84

been generated on different cost models may have variance

between the estimates for total project cost because of model

bias.

Incomplete lifecycle coverage may result because different

cost models may cover all or only parts of the entire

lifecycle. It is important for the PM to know what part of

the development lifecycle is covered by the models that are

producing the total project estimate because models that

emphasize different lifecycle phases may produce different

estimates for the same project.

Different assumptions between estimators on the parameters

comprising a software project is the most frequently cited

driver of variance. Independent estimators may develop a cost

estimate for a project with inconsistent assumptions depending

on the estimators information, experience, and personal

prejudices. The result is that variances will exist between

estimates of the same project when more than one estimator or

group of estimators are used.

There are four areas of a software development program

identified as primary causes of the total project cost

variance due to inconsistent assumptions on project input

parameters. These four areas are:

1. Size estimate of the project

2. Software system characteristics

3. Software development complexities

4. Database selection for project calibration factors

85

Unless estimates are being generated from the consistent

initial assumptions, independent estimates will not have a

meaningful relationship to each other. The manager will not

be able to validate the estirmates interrelationship and will

not have the confidence that multiple estimates should

pr, vide.

The choice of methods used to generate the estimate and

the consistency of the assumptions concerning the inputs to

the cost estimate will both have significant effect on the

total project cost estimate. In Chapter V, methods for

reducing variance between independently developed estimates

will be discussed. Techniques for reconciling estimates

generated by independent sources, procedures for reducing

differences in initial assumptions, and DOD organizations and

tools to assist a program manager will be introduced to

improve the process of software development cost estimation.

86

V. VARIANCE REDUCTION BETWEEN INDEPENDENT COST ESTIMATES

There are many factors that can cause a variance between

estimates developed by independent estimators. Managers

charged with budget responsibility must be able to identify

the causes of the variances and extract the valuable

information from each estimate. In spite of the fact that

software development cost estimation is not an exact science,

the manager needs to be able to make an absolute decision for

budget submission. This chapter presents ways to reduce the

variance and the effect of variance between software

development cost estimates generated by independent

estimators. Variance reduction is discussed in four distinct

areas: combining estimates generated from separate sources,

reducing inconsistencies in input parameters between

independent cost estimation organizations, organizations to

assist the PM in the estimation process, and the use of the

Software Engineering Institute Capability Maturity Model.

A. COMBINING ESTIMATES GENERATED FROM DIFFERENT SOURCES

It is important to have more than one estimate of software

development cost to insulate a manager from the effect of

model bias and/or incomplete lifecycle coverage. This is

particularly true in light of the industry's history of

significant cost overruns and schedule slippage for software

87

development projects. Software cost models and estimators

have different strengths and weaknesses. The difficult

question for the manager is how to combine the different cost

estimates to harness the strengths of each estimate and to

cast aside the misleading information.

Nearly all cost estimation organizations recognize the

need for multiple estimates generated by independent

estimators. However, there is very little attention given to

the methods or techniques used to combine the estimates into

one estimate that best represents the development project.

This section of the chapter analyzes various mathematical

techniques to determine a method that effectively combines the

independent estimates.

The result of the analysis will be a weighted equation

that combines the estimates from each cost model and produces

a new Combined Estimated Value (CEV). The CEV is closer in

value to the actual value of the project than any of the input

models could have generated independently. The weighted

equation will be in the form of Equation 13.

C V- J Il iJ (13)

Where:
CEV = the new combined estimated value of all the models
i = the independent automated cost model
j = the projects in the sample
m = the total number of cost models
n = the total number of projects in the sample
W = the weight of cost model i
E = the estimated value from cost model i for project j

88

A sample of past project data is required to formulate the

weighted equation by relating the models' estimates to the

actual project values. Each individual cost model will

calculate an estimate for each project in the sample. The

individual project estimates will then be combined with the

other model estimates of the projects to form the CEV. The

sum of the weights of the cost models are not required to

equal one, and considering the industry's history of

underestimating software costs, it is likely that the weights

will sum to a value greater than one.

The data for the formulation of the techniques in this

study were compiled from the avionics project section of the

SASET database. Included in the database were the actual

values of the effort in man-months (MM) of the software

development projects. Software project input parameters given

within the database were line of code (LOC), software

complexity factors, software class, software project type, and

host hardware information. The projects range from 1,300 to

325,000 LOC, low to high complexity factors, six software

class choices, three software project types, and a variety of

host hardware systems including the F-16, F-ill and X-15

advanced aircraft. A complete breakdown of all the data

points and their parameters is included in Appendix A.

Given the input parameters of the projects in the

database, estimates for each project were calculated with two

automated models. SASET and the COSTMODL version of COCOMO

89

were used for the analysis because both these models are user

friendly, compatible to the standard DOD PC, available at no

cost to DOD users, and relatively accurate. Between the two

models, the entire lifecycle of the software development

project is fully covered. These two estimates for each

project will be combined in various ways to determine the CEV

that most closely matches the actual project values.

A measure for comparing the results of the CEV to the

actual project value is needed. Two different statistical

formulae were considered to compare the CEV to the actual

values: Mean Squared Error (MSE) and Mean Absolute Percent

Error (MAPE) (Equations 14 and 15).

MSE E (A3-CEV,)2 (14)
n

MAPE 00 AJ-CEV (15)
n E1 A(

where:
A = actual value for effort of project j

CEV = the new combined estimated value of all the models
j = the projects in the database
n = the total number of projects in the database

MAPE was selected for the project analysis because of the

wide dispersion within the size (LOC) of the projects in the

database. Since MAPE is a percent error, it is possible to

90

make relevant comparisons of error between projects of

different sizes.

MSE was also calculated for each technique analyzed. MSE

inherently weights the error prediction in favor of the larger

(more costly) projects. In this study, with a large range of

project size in the database (1,300 - 325,000 LOC), MSE is

influenced to such a significant degree by errors in the

larger projects that MSE loses significance for the smaller

projects.

For example, for all the techniques analyzed, the best

prediction of error by MSE was 8,916 MM's. However, only one

of the 31 projects aiialyzed had a actual value of effort

greater than 8,916 MM's. This large prediction of MSE is the

result of squaring the errors in the largest projects and then

dividing through by a relatively small sample number of 31.

The wide dispersion in project size within this database

results in predictions of MSE having little value to evaluate

techniques to effectively combine the estimates from the

different cost models. It is the intent of this study to

provide information to the manager without preference towa-ds

larger projects and therefore MAPE will be used as the measure

of error.

Eleven different algorithms were employed to attempt to

identify the optimal procedure to combine the individual cost

model estimates. The optimal combined estimate will result in

a minimum MAPE, provide the benefits)f multi-model cost

91

development estimate, and be more accurate on the average than

any single model independently. The different choices of

techniques analyzed, the equations used, and the results in

terms of MAPE and MSE are presented in Table 9.

TABLE 9. TECHNIQUES FOR COMBINING INDEPENDENT COST MODEL
RESULTS INTO A SINGLE OPTIMAL ESTIMATE

TECHNIQUE I EQUATION USED TO MSE MAPE

COMBINE MODELS (%)

Linear analysis

COCOMO Model C 21,477 20.84

SASET Model S 11,417 17.07

Average of both models CEV = (C+S)/2 14,304 16.10

Regression (COCOMO vs CEV = 1.26(C) 11,449 24.60
Actual Values)

Regression (SASET vs CEV = 1.09(S) 9,834 19.61
Actual Values)

Multiple regression on CEV = 0.48(C)+0.68(S) 8,916 19.84
both models
Linear program solution CEV = 0.43(C)+0.59(S) 12,476 15.81

for both models

Logarithmic analysis

Regress (COCOMO vs logCEV = 1.03(logC) 12,191 19.57
Actual Values)

Regress (SASET vs Actual logCEV = 0.99(logS) 11,417 16.51
Values)

Multiple regression on logCEV - 0.39(logC) + 9,811 16.54
both models 0.62(logS)

Linear program solution logCEV - 0.1465(logC) 11,821 16.25
for both models + .853t(logS)

The results of this analysis will specifically apply to

this database only. However,-this database is representative

of many avionics databases and the results of this analysis

could be directly applied to other avionics projects with a

92

minimum of expected deviation from the results in this

study.[Ref. 24] For projects outside the scope of avionics,

the techniques applied here can be reapplied to the specific

software development areas of interest to determine a CEV

equation for that area.

The first two predictions for CEV were the individual

estimates of each cost model. The independent estimates

calculated from each model were compared directly to the

actual values of the project in terms of MAPE with relatively

accurate results. COCOMO was analyzed first and resulted in

a MAPE of 20.84 percent; SASET was then analyzed and resulted

in a MAPE of 17.07 percent.

The arithmetic average of the independent estimates

generated by the two cost models was calculated as a technique

to combine the estimates. MAPE for the average estimate was

16.10 percent, slightly lower than either individual model

estimate indicating that a CEV derived from an arithmetic

average is preferable to either individual model estimate.

Figure 9 presents the relationships between the COCOMO

estimate, the SASET estimate, and the average of the two in

terms of MAPE.

Linear regression was used to develop equations

correlating the estimates generated by the cost models to the

actual project values. Linear regression will solve for the

equation of the line that best fits the data points. That

line equation can then be used to make predictions relating

93

Mean Absolute Percent Error

100.00%-

90.00%.

80.00%

70.00%

60.00%

50.00%'

40.00%

30.00% 3
20.00% ,,-

10.00%

0.00%-
COCOMO SASET AVERAGE

Algorithms for Combined Estimated Values

Figure 9. MAPE's for COCOMO, SASET, and their
Average used as techniques to estimate actual
project values

the estimates of the cost models to the expected value of the

actual project. The regression analysis was calculated to

force the Y axis intercept to zero. Although some accuracy

might be sacrificed in the overall best fit by forcing the Y

intercept to zero, it was necessary to keep the percent error

of the smaller LOC projects in the relevant range.

The regression equation correlating the COCOMO estimates

of the individual projects in the database to the actual

project values is Equation 16. The regression plot is

presented in Figure 10. Regression with the COCOMO

94

CEV=1.255(C) (16)

where:
CEV = the estimate of the actual project value

C = the estimate developed by the COCOMO model

model results in a MAPE of 24.60 percent. This is

significantly higher than all the previously derived MAPEs and

will not be considered a good technique to generate an

estimate of the software development project cost.

The regression equation relating the estimates generated

by the SASET model to the actual values was then developed

(Equation 17). The regression plot for the SASET model is

presented as Figure 11. Regression with the SASET model

results in

CEV=1.09(S) (17)

where:
CEV = the estimate of the actual project value

S = the estimate developed by the SASET model

a MAPE of 19.61 percent. This is higher than the previously

developed MAPE for the model average and therefore will not be

further considered as an alternative equation to optimally

correlate a cost model estimate to the project's actual

values.

A multiple regression equation was formulated to correlate

the estimates of the COCOMO model and the SASET model to the

actual project values (Equation 18). The sum of the weights

applied to each model is greater than one, indicating that

95

LINEAR REGRESSION
ACTUAL VALUES VS COCOMO ESTIMATES

12

S1 0/

10

b4U

0 /

,1 = I /
E4

4 X . -- ._ --- --- ----------- ----

S" •

0 2 4 6 8 10 12
PROJECT VALUES ESTIMATED BY COCOMO

(Thousands)

Figure 10. The regression plot presenting the correlation
between the COCOMO estimates and the actual project values

96

LINEAR REGRESSION
ACTUAL VALUES VS SASET ESTIMATES

12

x

00
V X/

0 x °i

0. -• Ki,,
I -,

". m -................. - / ----- /................. --- --
44

• o/x

1 K(0 0

S2 ".
E -

U /
of

0 2 1 6 8 10 12

PROJECT VALUES ESTIMATED BY SASET

(Thousands)

Figure 11. The regression plot presenting the correlation
between the SASZT estimates and the actual project values

97

CEV=O.48(C) +0.68(S) (18)

where:
CEV = the estimate of the actual project value

C = the estimate developed by the COCOMO model
S = the estimate developed by the SASET model

the COCOMO and the SASET models had underestimated the actual

project value.

The multiple regression equation resulted in a CEV for the

project data that had a MAPE of 19.84 percent with respect to

the actual project values. This is higher than the MAPE

resulting from the average of the two models and therefore

does not represent the optimal equation relating the two cost

models to the project's actual values (Figure 12).

Mean Absolute Percent Error

100.00%-

90.00%

80.00%-

70.00%,

60.00%

50.00%

40.00%-

30.00%--

20 .00%

1 0 .0 % -7

COCOMO SASET AVERAGE REGRESSION REGRESSfON MULTIPLE
C~r.OMO ASET REGRESSOON

Algorlthm. for Combrvid Estimated Values

Figure 12. MAPE's for COCOMO, SASET, their
Average, and Regression equations used as
techniques to estimate actual project values.

98

Linear programming was then used to try to find an optimal

solution to fit the estimated values produced by COCOMO and

SASET to the actual values. The objective was to minimize the

MAPE (Equation 19).

M 100 En JAJ (19)in--m- 2J Ai

where:
j = a project in the database
m = the total number of cost models
n = the number of projects in the database
A = the actual project value of project j
CEV = the combined estimate of the actual project value

of project i

The CEV is determined by the linear program as a function

of the weight factors applied to the individual model

estimates (Equation 20).

CEVJ - WE (20)

where:
i = the automated cost model
j = a project in the database
m = the total number of cost models
W = the weight of cost model i
E = the estimated value from cost model i

The objective function of the model was formulated to

minimize the MAPE similar to Equation 19. The constraints to

the model were the values for the weights of Equation 20 that

satisfied each of the 31 projects in the database. The sum of

the weights for each cost model were not constrained to equal

one to allow the linear program to compensate for

underestimates by the individual cost models of the actual

99

project values. All objective and constraint equations used

in the linear program are included in Appendix B. The program

was run on the Linear, Interactive, and Discrete Optimizer

(LINDO), an automated model for solving linear programs.

The relationship generated by the linear program to relate

the best combination of single model estimates to the actual

values is Equation 21.

CEV=0.43 (C) +0.59(S) (21)

where:
CEV = the combined estimate of the actual project value

C = the estimate developed by the COCOMO model
S = the estimate developed by the SASET model

The linear program solution was designed to combine

independent model estimates to produce a CEV that has minimum

deviation from the actual values of the projects in the

database. The measure of that deviation, the MAPE, was 15.81

percent for the linear program. This linear programming

solution has produced the optimal equation to this point in

terms of minimizing MAPE and employing the benefits of a

multiple model estimate. Figure 13 presents the techniques

discussed thus far and their respective values of MAPE.

After linear analysis, all data values were transformed to

logarithms to test for a better exponential relationship

between the estimates by the cost models and the actual

project values. The results of the exponential analysis were

not better than the results from the original linear program

(Figure 14). Additionally, the extra work and training

100

Mean Absolute Percent Error

100.00%

90.00%

80.00%

70.00%-

60.00% -

50.00%-

40.00%-

30.00%-

000%
100000%REQRI•SSON REOkESSIOH MULTIPt.E LINk.R~

COCOMO SASET AVERAGE COCOMO SASET REGRESSION PROGI.I

Algorithms for Combined Estimated Values

Figure 13. NAPE's for COCOMO, SASET, their
Average, Regression Equations, and the Linear
Program used as techniques to estimate actual
project values.

required to generate the logarithmic analysis makes the

logarithmic analysis less desirable for the PM than the linear

analysis techniques. There was not a logarithmic algorithm

that outperformed the linear program solution in terms of

minimizing MAPE and providing a multiple model estimate.

The conclusion from this analysis is that the best

relationship between the estimated values from COCOMO and

SASET is calculated using a linear program representing the

estimates of two models. For this particular avionics

database, the equation of the optimal relationship is Equation

21.

101

Mean Absolute Percent Error

100.00%-

90.00%- Legend

90.00%- [Unear

70.00%- Logaittmlc

60.00%

50.00%•

40.00%-

30.00%-v

20.00%-I

10.00%-
10.00%-- l

REGRESSION REGRESSION MULTIPLE LNA
COCOMO SASET REGRESSION FiOg=A

Algorfthms for Corntlnd Estimnated Values

Figure 14. Linear and Logarithmic NAPE'S for the'
Regression Equations and the Linear Program used as
techniques to estimate actual project values.

This weighted equation represents the optimal CEV that

minimizes MAPE between the combined estimate and the actual

project values. By using multiple models, the equation also

reduces the uncertainty for the PM caused by model bias and

possible incomplete lifecycle coverage. The equation can be

used by any manager who is estimating an avionics software

project and has access to DOD provided COSTMODL (COCOMO) and

SASET. In a broad sense, the techniques can be adapted to any

project that has sufficient actual information available to

perform the mathematical techniques to generate a new weighted

equation tailored to that type of project. The weighted

equation will provide a more accurate estimate of the software

102

development project than either COCOMO or SASET could generate

as an individual estimate.

A second alternative to the linear program would be the

arithmetic average of the two estimates. Generating the

linear program may be beyond the scope of the resources of the

program office. The average, in the case of this project,

provided relatively accurate results as evidenced by the low

MAPE. However, an average does not have the capability to

compensate for estimates that typically under-cost the

software development project. The average of the independent

estimates received by the program office should be used to

combine the estimates into a superior composite estimate if

the resources to formulate a linear program are not available.

B. REDUCING INCONSISTENCIES BETWEEN INPUT PARAMETERS OF
INDEPENDENT COST ESTIMATION ORGANIZATIONS

Reducing the inconsistencies between the input parameters

used by estimation organizations will reduce the variance

between the output estimates of these organizations. It is

difficult for a manager to make legitimate comparisons between

independent estimates if the estimates have been generated

from a different set of input parameters. Within a program

office, the PM must know what assumptions were made in

generating the cost estimates before he/she can be reasonably

confident of their validity. A series of questions were

developed to aid the PM in determining those assumptions.

103

1. What Cost Estimation Methodology was used?

The choice of cost estimation methodology will affect

the results of the estimate and the manner in which the PM

views the estimate. Was the estimate produced using

parametric, analogy, top-down, bottom-up, expert judgment, or

price-to-win methods. If automated models were used, what

were the equations representing the relationships between

input and output values. How were these relationships derived

in terms of:

a. What database was utilized? For example, an avionics
software project should be developed from a model that
includes avionics data in the database as in the BASE
project.

b. How good of a statistical fit existed in the relationship
between input and output values of the model. Fit can be
measured by correlation coefficient (R), coefficient of
determination (R squared) and standard error of estimate
(SEE).

The better the PM understands the methods used to

develop the estimates, the better equipped he/she will be to

make comparisons between the estimates and reconcile the

differences between them.

2. How is a Line of Code defined?

As discussed in Chapter II, there are many different

ways to define what a line of code is. The more common

methods are:

1. Count only executable lines.

104

2. Count executable and data definition lines.

3. Count executable, data definition, and comment lines.

4. Count executable, data definition, comment, and job
control lines.

5. Count lines as physical lines on an input screen.

6. Count lines as terminated by logical delimiters.

7. Count lines as a combination of the above methods.

Different definitions will change the initial size

estimate used to generate the cost estimate. Since size is a

key variable in many cost models, variance in the size

estimate drastically affects the estimate of total cost. The

PM should specifically understand the working definition of

LOC for each independent estimate before comparisons between

the estimates are made.

3. What are the Software System Characteristics?

The PM should know the assumptions made about the

software system characteristics. System characteristics form

the high level structure of the estimate and small differences

in these characteristics may have significant effect on the

outcome of the cost estimate. For example, software code may

be classified as either new, modified, re-use, or any

combination of the three. As the combination changes within

a project, the estimate of cost will vary significantly.

Other examples of software system characteristics include

class of software (i.e. avionics or manned flight), primary

105

software language (i.e. Ada, Fortran, or assembly), and

software type (i.e. system, application, or support).

4. What are the assumptions made regarding software
project complexity?

Various assumptions must be made by the cost estimator

on project complexities as the estimate is being developed.

These assumptions will affect the outcome of the total

estimate of cost since many models apply these complexities as

linear multiplier calibration weights. The PM should have a

realistic understanding of what assumptions were made and what

values the calibration weights for each complexity factor were

assigned. This will help the PM to make informed decisions in

comparing cost estimates because he/she will know specifically

how each complexity factor was weighted and how it affected

the total estimate.

5. Has the contractor already included into the estimate
a factor for cost growth?

A PM can and should expect cost growth during the

project acquisition cycle. However, the estimate received

from the independent estimator should not be "padded" but

should accurately reflect the most likely estimate of project

cost based on the best information available. The PM must

know what growth factors are included in all the independent

estimates so a valid comparison of the estimates can be made.

It is also important that the PM know what, if any, growth

factors are already embedded into the estimate so that he or

106

she can to avoid duplicating the expected growth factor and

creating a redundant cost requirement.

These five questions will serve the PM to help reduce

the variance in software project estimation by reducing the

inconsistencies between the input parameters used by the

different estimation organizations. To facilitate an open

exchange of information regarding these questions, the PM

should state in the RFP that the contractor will be required

to provide information in response to the above questions.

C. ORGANIZATIONS TO ASSIST THE PROGRAM MANAGER

There are organizations within the U.S. Navy that can

provide assistance to the PM in terms of expert knowledge,

material resources, and/or an independent estimate. These

organizations and the services they provide can reduce the

effect of variance between project estimates and improving the

overall quality of the cost estimation process by enhancing

the PM's ability to understand the more delicate aspects of

the software development cost estimation process. These

organizations have personnel specifically trained for cost

analysis and represent the leading edge in the cost estimation

field.

1. System Command Organizations

The System Commands (SYSCOM's) have central cost

estimating and analysis groups that have been established to

support their respective PMs with responsive, quality cost

107

estimation services. These groups have the capability to

provide a variety of cost estimation services either within

their own staffing or through their support activities. [Ref.

26] These estimation/analysis groups provide the following

functions:

1. Cost Estimating for:
a. Programming and Budget Submission
b. Development and production programs
c. Operating and Support costs
d. Contracting and contract modifications

2. Cost Analysis for:
a. Source selection and evaluation
b. Contract negotiation
c. Tracking and update of cost database
d. Economic analysis and program evaluations
e. Cost effectiveness studies

3. Other Services
a. Development of costing models and cost estimating

technique
b. Maintenance of historical cost database
c. Cost estimating consultation, special reports, and

presentation
d. Cost estimating and analysis training
e. Focal point for obtaining outside cost estimating

services

The cost estimating and analysis groups within each

SYSCOM are staffed with highly specialized professional

costing personnel. There is a cost estimating and analysis

group within each SYSCOM. The following list presents the

cost estimating division for each SYSCOM.

1. AIR-524 Naval Air Systems Command

2. SEA-017 Naval Sea Systems Command

3. SPAWAR-02 Space and Naval Warfare Systems Command

108

The PM should utilize these groups to the fullest extent

possible in all cost estimating aspects of the program.

2. Naval Center for Cost Analysis

The Naval Center for Cost Analysis (NCA) is an

organization created to provide an independent cost analysis

capability for the Secretary of the Navy (SECNAV) and the DOD

Cost Analysis Improvement Group (CAIG). The NCA will generate

an independent cost estimate (ICE) to validate the program

office's estimate before funds are granted for major programs

to ensure credible lifecycle cost estimates are generated to

support PPBS and system acquisition.

The NCA reports to SECNAV within a separate chain of

command than the SYSCOM's to facilitate the important

requirement that the two organizations remain independent from

each other. This independent operating procedure facilitates

the NCA's effort to submit an estimate that can be used to

validate the program office's estimate without any pressure

from the program office. The NCA reports to SECNAV directly

through the Assistant Secretary of the Navy for Financial

Management (ASN(FM)), while the SYSCOMs report to SECNAV

through the CNO's office.

However, the NCA and the program office often have

some interaction prior to formally submitting their individual

cost estimates to the DOD level CAIG. This interaction

serves to allow the groups to come to an informal agreement on

109

the software development cost estimate, usually within 10

percent of each other. This does not defeat the purpose of

the NCA as they still provide an independent estimate,

although most the "negotiating" between the NCA and the

program office occurs prior to the CAIG.

In addition to preparing Independent Cost Estimates

(ICE's), the NCA is charged with the responsibility to:

1. Guide, direct, and strengthen cost analysis within the
Department of the NAVY (DON).

2. Perform miscellaneous tasks such as economic and special
studies.

Although separated by the formal chain of command, the

NCA can provide services to the PM in the form of expert

advice and material resources. The NCA is a highly

professional organization that specializes in the field of

cost analysis.

The cost analysis organizations within the SYSCOMs and

the NCA can provide expert assistance to the program office in

the cost estimation field. The PM should rely on the

specialized knowledge and experience the personnel in these

organizations can offer for cost estimation of software

development.

D. SOFTWARE ENGINEERING INSTITUTE CAPABILITY MATURITY MODEL

The Software Engineering Institute (SEI) of Carnegie-

Mellon University has developed the Capability Maturity Model

110

(CMM) that is designed for evaluating the software development

process of a government contractor. SEI is a Federally funded

research institute that was established in December of 1984 to

address the problems that the DOD was experiencing with

software development. SEI has developed a comprehensive

project, the Software Process Measurement Project (SPMP), that

is designed to assess the capabilities of a software

development organization. The CMM is a tool within the SPMP

that the PM can use to determine the software development

process maturity of a contractor.

Within the CMM, there are five levels of process maturity

for an organization (Ref. 27]. Software process maturity

indicates both the richness of an organization's software

process and the consistency with which the process is applied

in projects throughout the organization. The CMM is based on

the premise that maturity is an indicator of the capability

and reliability of the software development process. The five

levels of process maturity are presented in Figure 15.

1. Initial

The software development process is generally ad hoc,

poorly controlled, and redefined for each new project.

Project outcomes are characterized by large cost and schedule

overruns and a low level of software quality.

111

Continually
ImprovingProcess Optimizing)

Predictable r
Process Managedr (4)

Standard
Consistent DefinedProcess (3)

Disciplined Repeatable")

Process -\ (2)

CInitial

Figure 15. The Five Maturity Levels of The CMM.

2. Repeatable

Management controls are put in place to standardize

the company's procedures and software quality assurance. The

development process is now in control for projects that do not

widely vary from the norm. Any significant changes in product

type, however, may destroy the relevance of the controls and

return the process back to ad hoc.

3. Defined

Process standards are institutionalized first within

the urganization and then tailored to the project type.

Project results are more predictable across a broader range of

projects. The process, however, is still defined using only

qualitative measurements of performance.

112

4. Managed

Quantitative quality and productivity tools are placed

into the development process. Goals are specifically set for

each defined step in the process; success or failure in

meeting goals is recorded. High predictability is achieved

not only for each project as a whole, but also for each step

along the project's process.

5. Optimizing

Quantitative data from each process step is used to

pinpoint process weaknesses and bottlenecks. Causes of errors

are determined and analyzed with action taken to prevent

similar errors in the future. Process improvement is now

embedded in project development and the process has strong

capabilities across a wide spectrum of projects.

The PM can letermine the maturity level of a

prospective contractor by requesting that a contractor

complete the Maturity Questionnaire part of the CMM. The

Maturity -estionnaire consists of 120 questions covering 18

Key Process Areas (KPAs) consisting of a total of 343 Key

Processes (KPs) . Most contractors have offered no resistance

to the requirement of the questionnaire and many defense

contractors have already completed the process maturity

evaluation. To date, a relatively effective and efficient

contractor has typical rated a "Defined" on the evaluation

[Ref. 20] [Ref. 21]. It is the goal of DOD to use the SEI to

113

further educate and train organizations in areas of process

improvement to reach an "Optimizing" level and therefore

maximize the effectiveness and efficiency of the software

development process.

The CMM provides a tool for the PM to assess the

relative strengths of a prospective contractor in regards to

their software development process. The higher the

credibility of a contractor, the less risk is present of cost

and schedule errors in the estimate. To date, most

contractors rate 1 - 3 on the CMM. The contractor with a more

mature software development process should have a reliable

estimating process that is subject to minimal variance due to

errors and inaccuracies.

E. SUMMARY

Variance between independent software development cost

estimates may reduce the manager's ability to confidently

generate a composite budget quality estimate. The manager

must understand why variance exists and how to reconcile it.

The use of multiple cost models increases the managers

confidence that the combined estimate is not adversely

affected by either different lifecycle phase emphasis or model

biases. However, methods for combining the multiple estimates

have not been comprehensively developed in the academic arena

or in actual practice. This study has analyzed five general

approaches encompassing 11 different algorithms to combine

114

multiple cost models that result in minimal expected error

between the estimate and the actual values. A linear

programming solution was empirically determined to be the

optimal algorithm to produce a CEV for an avionic system

software development project using SASET and COCOMO (COSTMODL

version). Reducing the differences in input parameters

between independent estimation organizations will also reduce

variance between the estimates generated from each

organization. This chapter presented five questions that the

PM can use to reduce the significant drivers of variance

between the contractor and the program office. These five

questions are:

1. What cost estimation methodology was used?

2. How is LOC defined?

3. What are the software system characteristics?

4. What are the assumptions made regarding software project
complexity?

5. Has the contractor already included into the estimate a
factor for cost growth?

The PM has support organizations available to assist in

the cost estimation process. The Cost Analysis Division

within each SYSCOM and the NCA are available to help the PM

with cost estimation, cost analysis, and other related issues.

The PM should rely on these organizations as they are

specifically designed for the cost analysis role and are

115

staffed with highly specialized and knowledgeable

professionals.

SEI has developed a Capability Maturity Model for the DOD

that the PM can use to assess the maturity of the estimation

organization's software development process. A 120 question

survey is completed by the contractor to provide the PM

information required to rate the contractor's software

development as either Initial, Repeatable, Defined, Managed,

or Optimizing. A contractor with a mature software

development process will have a reliable cost estimating

operation as well.

How to reduce variance and the effect of variance between

independent estimators is an important tool to the manager

charged with budget responsibility. The manager must be able

to sift through the available cost estimate information and

make an absolute decision for budget submission. The tools

presented in this chapter will assist the PM in controlling

variance between independent estimates and to gain control of

the software development cost estimation process.

116

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Cost estimation of software development has been a

critical problem for the DOD over the last 35 years. Software

development costs have grown to exceed hardware development

costs within computer resource projects as technology has

advanced from analog to digital equipment. Current technology

projects use software intensive computer resources for

command, control, and communication of highly sophisticated

electronic systems. Errors or inaccuracies in the cost

estimate of the software development project in the early

stages of the acquisition cycle will result in significant

variance between the estimate and the actual costs of the

final product.

Variance will also exist between the software project

estimates that the PM receives from the contractor, from the

ICE, and from within his/her own organization. However, the

PM is responsible for combining the independent estimates and

submitting a composite estimate that best reflects the most

likely cost of the software project. The PM needs to have a

clear understanding of why variance exists between these

estimates and how to reduce the variance to confidently

reconcile the individual estimates into a valid combined

117

estimate. This study has presented the reasons why variance

exists between independently generated estimates and how the

variance can be reduced.

1. Why Variance Exists Between Independently Developed
Cost Estimates

Why variance exists between independent estimates can

be broadly categorized into two major areas:

1. Methods used to develop the estimates.

2. Inconsistent assumptions between independent estimators
on project input parameters.

Both these areas were closely analyzed to determine what

specific factors cause variance between the independently

generated estimates for the same software development project.

a. Methods used to develop the estimates

The choice of methods for developing the software

project cost estimate will directly impact the outcome of the

total project estimate. Different estimation methods will

emphasize different aspects of the software development

process and may result in model bias and/or incomplete

lifecycle coverage.

Model bias is an emphasis by the automated cost

model given to certain favored elements of the estimation

process. This emphasis skews the outcome of the estimate

towards the elements that are favored and may include: effort

verses schedule tradeoffs, estimated size (e.g. lines of code)

118

as a primary independent variable, the weighing of certain

project complexity factors, or the intended application of the

software project. Estimates submitted to the PM that have

been generated on different cost models may have variance

between the project estimates because of model bias.

Incomplete lifecycle coverage may result because

different cost models may cover all or only parts of the

entire lifecycle. It is important for the PM to know what

part of the development lifecycle is covered by the models

that are producing the project estimates because models that

emphasize different lifecycle phases may produce different

estimates for the same project.

b. Inconsistent assumptions between independent
estimators on project input parameters

Different assumptions between estimators on the

parameters comprising a software project is the most

frequently cited cause of variance. Independent estimators

may develop a cost estimate for a project with different

assumptions on inputs depending on the estimators information,

experience, and personal prejudices. The result is that

variances will exist between estimates of the same project

when more than one estimator or group of estimators are used.

There are four areas of a software development

program identified as primary causes of the variance between

estimates due to inconsistent assumptions on project input

parameters. These four areas are:

119

1. Size estimate of the project

2. Software system characteristics

3. Software development complexities

4. Database selection for project calibration factors

Unless estimates are being generated from

consistent initial assumptions, independent estimates will not

have a meaningful relationship to each other. The manager

will not be able to validate the estimates' interrelationships

and will not have the confidence that multiple estimates

should provide. Methods to reduce variance between estimates

are required to decrease the negative effect of the variances

on the cost estimation process.

2. How To Reduce Variance Between Cost Estimates
Generated By Independent Estimators

Understanding how to reduce variance and the effect of

variance between estimates generated by independent estimators

is an important capability for the manager charged with budget

responsibility. The manager must be able to sift through the

available cost estimate information and make an absolute

decision for budget submission. Most cost estimators

recognize the need for multiple estimates to harness the

strengths of each individual estimate and to cast aside the

misleading information. However, methodology for combining

multiple estimates into one superior composite estimate is a

largely undefined task within program offices.

120

a. Combining estimates generated from different

sources

The study analyzed techniques to combine

individual estimates into a superior composite estimate.

Estimates for analyses were generated using the SASET and

COCOMO (COSTMODL version) models based on real project data

from the avionics database within the SASET model. The

objective was to determine the optimal relationship that

combines the SASET and COCOMO estimates to minimize MAPE

between the combined estimate and actual project values.

Five general techniques were used to determine the

best estimate to predict the actual project values: single

model estimates, arithmetic averages of the estimates, linear

regression, linear programming, and logarithmic analysis of

the linear techniques. The optimal relationship between the

estimated values from the two models resulted from linear

programming (Equation 21).

CEV=0.43(C)÷0.59(S) (21)

where:
CEV = the estimate of the actual project value

C = the estimate developed by the COCOMO model
S = the estimate developed by the SASET model

Equation 21 will provide a combined estimate, CEV,

that is more accurate than asingle model estimate by either

SASET or COCOMO (COSTMODL) for this particular database. The

sum of the weights of the two models in the equation is

121

greater than one indicating that each model tends to

underestimate the total project cost. The avionics database

in this project is representative of current avionics

databases and therefore this equation can also be used by any

manager who is estimating an avionics software project and has

access to DOD provided COSTMODL (COCOMO) and SASET.

A second alternative to the linear program would

be the arithmetic average of the two estimates. The average

provides the confidence gained by coverage of more than one

cost model and may produce more accurate estimates than any of

the individual input estimates (as was the case in the project

example) . However, an average does not have the capability to

compensate for estimates that typically under-cost the

software development project. The average of the independent

estimates received by the program office should be used to

combine the estimates into a superior composite estimate if

the resources to formulate a linear program are not available.

In a broad sense, the techniques applied to

develop a CEV for this database can be adapted to any project.

The difficulty is finding sufficient data to perform the

mathematical techniques to generate a new weighted equation

specifically tailored to that type of project.

b. Reducing inconsistencies between input parameters
of independent cost estimation organizations

Variance between estimates produced by independent

organizations can also be reduced by decreasing the

122

inconsistencies in input parameters used by the independent

organizations to generate the estimates. Inconsistencies in

input parameters can be reduced by an improved exchange of

information between the estimation organizations. The study

has presented five key questions the PM can ask of the

independent estimation organizations to establish a common

base of information to evaluate the individual estimates from.

Those questions are:

1. What cost estimation methodology was used?

2. How is LOC defined?

3. What are the software system characteristics?

4. What are the assumptions made regarding software project
complexity?

5. Has the contractor already included into the estimate a
factor for cost growth?

With these questions answered, the PM is in a better position

to make decisions regarding each of the individual estimates.

C. Organizations to assist the Program Manager

The PM within the DON has organizations available

to assist in decisions regarding cost estimation. Each SYSCOM

has a cost analysis division staffed with highly specialized

professional cost analysts that can support the program office

in cost estimating, cost analysis, and other services.

Another organization available to assist the PM is the Naval

Center for Cost Analysis. The NCA is an independent DO!

123

organization that can also support the PM in the same areas as

the SYSCOM divisions in addition to it's responsibility for

providing an ICE for SECNAV's use. The PM should rely on the

cost estimation groups within the SYSCOMs and the NCA as these

organizations are specifically designed for the cost analysis

role and are staffed with highly specialized and knowledgeable

professionals.

d. Software Engineering Institute Capability
Maturity Model

Outside of DON organizations, the PM has available

a powerful tool developed by the DOD sponsored Software

Engineering Institute called the Capability Maturity Model.

The CMM is useful to assess the software development process

maturity of a cost estimation organization through an

extensive 120 question survey filled out by the estimation

organization. Software process maturity indicates both the

richness of an organization's software process and the

consistency with which the process is applied in projects

throughout the organization.

The PM can use the CMM to help establish the

credibility of a contractor and reduce the uncertainty in the

software development cost estimation process. The higher the

software development process maturity of an organization, the

less risk is present of cost and schedule overruns. The

contractor with a mature process should have a reliable

124

estimating process that is subject to minimal variance due to

errors and inaccuracies.

Understanding why there is variance in cost

estimates between independent cost estimators and

understanding how to reduce this variance will greatly improve

the software development estimation process for the PM. The

manager entrusted with budget responsibility will be better

equipped to produce a cost estimate of the development project

that accurately reflects the most likely requirement of

resources necessary to complete the project.

B. RECO-4ENDATIONS FOR THE PROGRAM MANAGER

Based on the research and conclusions of the study,

decision rules were formulated for the PM as recommendations

for reducing variance between independent estimates of

software cost. These decision rules will reduce the

uncertainty in the estimate process and aid the PM in

developing an accurate estimate of total project cost. The

applicable section where each decision rule is supported

within the study is provided with each rule to facilitate

referencing each decision rule for more details.

1. Use multiple cost models

Use multiple cost models to reduce model bias and to

ensure complete lifecycle coverage of the development process.

SASET and the COSTMODL version of COCOMO are recommended for

DOD users because both these models are user friendly,

125

compatible to the standard DOD PC, available at no cost to DOD

users, r-latively accurate, and between them provide complete

coverage of the project development lifecycle. [Cha-cer V.,

section A.]

2. Use a CZV weighted equation

Use a CEV weighted equation formulated by the process

developed in this study to combine independent cost estimates

into a superior composite estimate. The equation formulated

in this study, Equation 21, can be applied to avionics

software development projects since it was developed from an

airionics project database. The average of the independent

estimates is the second alternative to the CEV weighted

equation. [Chapter V., section A.]

3. Use the provided list c questions for defining
initial assumptions

The PM should use the provided list of questions to

reduce inconsistencies between assumptions of the initial

input parameters to the cost models by the independent cost

estimators. [Chapter V., section B.]

1. What cost estimation methodology was used?

2. How is LOC defined?

3. What is the condition of software code?

4. What are the assumptions made regarding softwafe project
complexity?

5. Is there embedded growth factors already incorporated
into the cost estimate?

126

4. Use existing DON resources for assistance

Use the organizations within the DON to assist the PM

in terms of expert knowledge, material resources, and

independent estimates. Multiple estimates and opinions

validate each other and reduce uncertainty. Existing

organizations include the cost analyst divisions in the

SYSCOMs (AIR-524, SEA-017,and SPAWAR-02) and the NCA. [Chapter

V., section C.]

5. Use the Capability Maturity Model

Use the Capability Maturity Model provided by SEI to

evaluate the maturity of the software development process of

a contractor or other independent estimator. A more mature

development process in synonymous with a more capable and

reliable process and therefore allows greater confidence in

the final project estimate for the PM. [Chapter V., section D.)

In summary, cost estimation of software development

projects has been an elusive task that has given managers

problems since the early days of computer resources 35 years

ago. Cost overruns and schedule slippage has been the

trademark vice the exception in the software development

field. However, managers are still responsible for submitting

an estimate for the software development project that

represents the most likely cost of the project. The use of

these five decision rules will assist the PM in gaining

control over the software development cost estimation process

127

and producing a budget estimate that represents the most

likely estimate of the total project cost.

C. AREAS FOR FURTHER RESEARCH

The study of software development is a enormous field and

is rapidly growing as computer technology and software

manufacturing resources continue to develop. Cost estimation

of this volatile field is a complex task and must be continual

researched to keep up with the advances in computer resources.

The following subjects are recommended areas izr further

research to continue improving the software cost estimating

process.

1. Apply the Combined Estimated Value equation to areas
outside of avionics databases

The CEV process developed in this study was applied

specifically to avionics databases. The CEV equation should

be formulated to cover a wide variety of databases to create

a set of equations that managers can employ to develop cost

estimates for the full spectrum of software development

projects.

2. Appraise the new RCA-Price model

RCA-Price has announced the release of a new cost

model scheduled for July 1992. The new model is compatible to

IBM PC's and requires a 80386 processor and a math co-

processor to maximize the programs capabilities. The current

RCA-Price models are available only as a time-share or as a

128

lease arrangement. The new model should be analyzed to

determine the benefits it may offer to the DOD.

3. Software Engineering Institute

The Software Engineering Institute has been sponsored

by DOD to address the problems DOD has been having in the

software development field. SEI has developed a comprehensive

project, the Software Process Measurement Project (SPMP)), that

is designed to assess the capabilities of a software

development organization in the cost estimation field to

improve the quality of the cost estimation process. Further

research of the progress SEI has made and the continued

dissemination of their results may improve the process of cost

estimation within the DOD.

129

APPENDIX A.

BASE PROJECT PARAMETERS

Summary information on the 31 projects' parameters in the
hypothetical avionics database "BASE."

Project Complexity Software Type LOC Effort(MM)

1. LOW SUPPORT 1300 12
2. MEDIUM SYSTEMS 1427 81
3. MEDIUM SUPPORT 1700 18
4. HIGH SYSTEMS 1733 12
5. HIGH APPLICATION 2331 98
6. MEDIUM SYSTEMS 2400 116
7. MEDIUM APPLICATION 2667 64
8. LOW SUPPORT 3000 28
9. MEDIUM APPLICATION 3000 100
10. MEDIUM SUPPORT 3300 30
11. MEDIUM APPLICATION 4067 93
12. MEDIUM APPLICATION 700 119
13. MEDIUM APPLICATION 4798 176
14. MEDIUM APPLICATION 5000 119
15. HIGH SUPPORT 6000 45
16. MEDIUM APPLICATION 6167 152
17. LOW SUPPORT 9865 94
18. LOW APPLICATION 10752 225
19. MEDIUM SUPPORT 15000 204
20. HIGH APPLICATION 21000 800
21. HIGH APPLICATION 22000 800
22. HIGH APPLICATION 24000 755
23. MEDIUM APPLICATION 26000 567
24. HIGH APPLICATION 75000 2334
25. HIGH APPLICATION 75000 2500
26. HIGH APPLICATION 100000 4250
27. HIGH APPLICATION 100000 4067
28. MEDIUM APPLICATION 102000 2750
29. MEDIUM APPLICATION 200000 7000
30. MEDIUM APPLICATION 263767 5365
31. MEDIUM APPLICATION 325000 10500

130

APPENDIX B.

LINEAR PROGRAM EQUATIONS

Minimizing Mean Absolute Percent Error with a Linear Program

Indices:
i cost model i = 1,...,m
j observation j = 1,...,n

Data:
E sub ij = predicted value of model i on observation j
A sub j = actual value of observation j

Decision variables:
W sub i = weight of predictive model i
Z sub j = the absolute value of the jth term

Desire to minimize:

Mn-- 1=1 Ai

where

CEVj-E:ZiW.E.

Let Z sub j represent the absolute value of the jth term

MINIEn Zj

M J

Subject to:

ZjŽi_ 1 Wj SiJ -1

131

The comprehensive list of equations is as follows:
observations (I - 31) were represented by (A - AHl)

MINIMIZE:

ZA + ZB + ZC + ZD + ZE + ZF + ZG + ZH + ZI + ZJ + ZK +

ZL + ZN + ZO + ZP + ZQ + ZR + ZS + ZT + ZU + ZV + ZW +

ZX + ZY + ZZ + ZAA + ZAB + ZAC + ZAD + ZAE + ZAF + ZAG +

ZAH + ZAI

SUBJECT TO:

1) ZA- 1.03 WC - 0.93 WS >= -1
2) ZA + 1.03 WC + 0.93 WS >= 1
3) ZB - 0.64 WC - 0.78 WS >= -1
4) ZB + 0.64 WC + 0.78 WS >= 1
5) ZC - 1.13 WC - 1.08 WS >= -1

6) ZC + 1.13 WC + 1.08 WS >= 1
7) ZD - 0.57 WC - 0.93 WS >= -1
8) ZD + 0.57 WC + 0.93 WS >= 1
9) ZE - 0.94 WC - 1.05 WS >= -1
10) ZE + 0.94 WC + 1.05 WS >= 1
11) ZF - 0.75 WC - 0.92 WS >= -1

12) ZF + 0.75 WC + 0.92 WS >= 1
13) ZG - 0.00 WC - 1.07 WS >= -1
14) ZG + 0.00 WC + 1.07 WS >= 1
15) ZH - 1.01 WC - 0.92 WS >= -1
16) ZH + 1.01 WC + 0.92 WS >= 1

17) ZI - 0.72 WC - 0.77 WS >= -1
18) ZI + 0.72 WC + 0.77 WS >= 1
19) ZJ - 1.31 WC - 1.26 WS >= -1
20) ZJ + 1.31 WC + 1.26 WS >= 1

21) ZK - 1.01 WC - 1.12 WS >= -1
22) ZK + 1.01 WC + 1.12 WS >= 1
23) ZN - 0.94 WC - 1.01 WS >= -1
24) ZN + 0.94 WC + 1.01 WS >= 1
25) ZO - 0.65 WC - 0.70 WS >= -1

26) ZO + 0.65 WC + 0.70 WS >= 1
27) ZP - 0.00 WC - 1.08 WS >= -1

28) ZP + 0.00 WC + 1.08 WS >= 1
29) ZQ - 1.59 WC - 2.33 WS >= -1
30) ZQ + 1.59 WC + 2.33 wS >= 1
31) ZR - 0.97 WC - 1.04 WS >= -1
32) ZR + 0.97 WC + 1.04 WS >= 1
33) ZT - 0.99 WC - 0.90 WS >= -1

34) ZT + 0.99 WC + 0.90 WS >= 1
35) ZU - 0.90 WC - 0.91 WS >= -1
36) ZU + 0.90 WC + 0.91 WS >= 1
37) ZV - 0.88 WC - 0.84 WS >= -1
38) ZV + 0.88 WC + 0.84 WS >= 1
39) ZW - 0.63 WC - 1.03 WS >= -1

132

40) ZW + 0.63 WC + 1.03 WS >= 1
41) ZX - 0.66 WC - 1.08 WS >= -1
42) ZX + 0.66 WC + 1.08 WS >= 1
43) ZY - 0.76 WC - 1.24 WS >= -1
44) ZY + 0.76 WC + 1.24 WS >= 1
45) ZZ - 1.10 WC - 1.17 WS >= -1
46) ZZ + 1.10 WC + 1.17 WS >= 1
47) ZAA - 0.77 WC - 1.26 WS >= -1
48) ZAA + 0.77 WC + 1.26 WS >= 1
49) ZAB - 0.72 WC - 1.17 WS >= -1
50) ZAB + 0.72 WC + 1.17 WS >= 1
51) ZAC - 0.56 WC - 0.92 WS >= -1
52) ZAC + 0.56 WC + 0.92 WS >= 1
53) ZAD - 0.59 WC - 0.96 WS >= -1
54) ZAD + 0.59 WC + 0.95 WS >= 1
55) ZAE - 0.89 WC - 0.95 WS >= -1
56) ZAE + 0.89 WC + 0.95 WS >= 1
57) ZAF - 0.68 WC - 0.73 WS >= -1
58) ZAF + 0.68 WC + 0.73 WS >= 1
59) ZAG - 1.17 WC - 1.26 WS >= -1
60) ZAG + 1.17 WC + 1.26 WS >= 1
61) ZAH - 0.74 WC - 0.79 WS >= -1
62) ZAH + 0.74 WC + 0.79 WS >= 1

133

LIST OF REFERENCES

1. Boehm, B.W., Software Engineerinq Economis, Prentice-
Hall, Inc., Englewood Cliffs, 1981.

2. Shyman, S.R., and Blankenship, T.K., Improving Methods
for Estimating Software Development Costs, Institute
for Defense Analysis, June 1990.

3. Putnam, L.H. and Wolverton, R.W., Quantitative
Management Software Cost Estimation, IEEE Computer
Society, November 1977.

4. Putnam, L.H., Software Cost Estimating and Lifecycle
Control, IEEE Computer Society, October 1980.

5. Brooks, F.P., The Mythical Man-Month, Addison-Wesley,
December 1974.

6. Naval Center for Cost Analysis, Software Cost
Estimation Course Guide, 1991.

7. Kile, R.L., A Process View of Software Estimation,
Presented at the 7th International COCOMO User' s Group
Meeting, November 1991.

8. Interview between S. Gross, Naval Center for Cost
Analysis, and the author, 10 February 92.

9. Martin Marietta Corp., Software Cost Estimation Study,
by Silver, A.N., July 1988.

10. Bourdon, G.A., A Computerized Model for Estimating
Software Life Cycle Costs, Electronic Systems
Division, July 1977.

11. Telephone conversation between Dickerman, C.,
Quantitative Software Management, Inc., and the
author, 01 April 1992.

12. Clark, G.A., Software Cost Estimation Models, Which
One to Use?, Master's Thesis, Air Command and Staff
College Air University, Maxwell Air Force Base,
Alabama, April 1986.

13. Telephone conversation between Krisch, M., RCA-Price
Systems, and the author, 01 April 1992.

134

14. Telephone conversation between Katz, P., Computer
Economics, Inc., and the author, 01 April 1992.

15. Telephone conversation between Zimmeran, J., Software
Productivity Research, Inc., and the author, 01 April
1992.

16. Staker, R.D., StrenQths and Weaknesses of Four
Software Cost EstimatinQ Models, Student Report, Air
University, Maxwell Air Force Base, Alabama, June
1990.

17. Telephone conversation betwen Anderberg, M.R.,
Operations Research Analyst for Assistant Secretary of
Defense (Program Analysis and Evaluation), and the
author, 28 January 1992.

18. Bailey, E.K., Frazier, T.P., and Bailey, J.W., A
Descriptive Evaluation of Automated Software Cost-
Estimation Models, Institute for Defense Analysis,
October 1986.

19. Interview between Wilson, R., Naval Center for Cost
Analysis, and the author, 10 February 1992.

20. Interview between Colvert, R.G., Captain, United
States Navy, Program Manager for Air ASW Systems,
Naval Air Systems Command, and the author, 13 February
1992.

21. Interview between Bell, J.K., Captain, United States
Navy, Program Manager for S-3A/B/ES-3A, Naval Air
Systems Command, and the author, 13 February 1992.

22. Interview between Cable, L., Commander, United States
Navy, Assistant Program Manager for Systems and
Engineering (SH-60B), Naval Air Systems Command, and
the author, 12 February 1992.

23. Interview between Shrank, A., Naval Air Systems
Command, and the author, 12 February 1992.

24. Interview between Frazier, T.P., Institute for Defense
Analysis, and the author, 12 February 1992.

25. Interview between Herd, J., Deputy/Technical Director,
Naval Center foL Cost Analysis, and the author, 12
February 1992.

26. Interview between Cardarelli, J., Cost Analysis
Division (Avenue), Naval Air Systems Command, and the
author, 11 February 1992.

135

27. Software Engineering Institute, Technical Report
CMU/SEI-91-TR-24, Capability Maturity Model for
Software, by M.C. Paulk, W. Curtis, and M.B. Chrissis,
August 1991.

136

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor Joseph San Miguel, Code AS/Sm 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Michael Sovereign, Code OR/Sm 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

5. Director 2
ATTN: Mr. S. Gross, Code NCA-7
Naval Center for Cost Analysis
Pentagon, Room 4A538
Washington, District of Columbia 20350-1100

6. Institute for Defense Analysis 1
ATTN: Dr. Thomas Frazier
1801 North Beauregard Street
Alexandria, Virginia 22311

7. Commander 2
ATTN: CDR Cable, Code 5115B
Naval Air Systems Command
Washington, District of Columbia 20361-5110

8. Mr. Thomas Kodey, Code MD 0532 1
IBM Corporation
Owego, New York 13827

9. LT Glenn C. Doyle, USN 2
22 Highland Avenue
Rockville, Connecticut 06066

137

