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Interactive Analysis of Gappy Bivariate Time Series Using
AGSS

Peter A. W. Lewis and Bonnie K. Ray
Dept. of Operations Research, Naval Postgraduate School

Monterey, CA 93943

Abstract The problem of missing values in time series has
been studied by several authors in recent years, pri-

Bivariate time series which display nonstationary be- marily in a state space framework. Jones (1980)
havior, such as cycles or long term trends, are common used a Kalman filter recursion to calculate the ex-
in fields such as oceanography and meteorology. These act likelihood of a univariate stationary autoregressive
are usually very large scale data sets and often may moving average (ARLMA) process with missing values,
contain long gaps of missing values in one or both se- while Harvey and Pierce (1984) and Kohn and Ans-

ries, with the gaps perhaps occurring at different time ley (1986) extended the Kalman filtering method to
periods in the two series. We present a simplified but nonstationary autoregressive integrated moving aver-
effective method of interactively examining and filling age (ARIIL-M) processes. Ansley and Kohn (1985) gave
in the missing values in such series using extensions of a method of recursively calculating the likelihood for a
the methods available in AGSS, an APL2-based statis- multivariate state space model with incompletely spec-
tical software package. Our method allows for possible ified initial conditions which can be used to interpolate
detrending and removal of seasonal components before an arbitrary pattern of missing values in multivariate
automatically estimating arbitrary patterns of missing time series. Both the computation and derivation are
values for each series. Interactive bivariate spectral much simpler in the univariate case than in the mul-
analysis can then be performed on the detrended and tivariate case. More recently, Ljung (1989) derived an
deseasonalized interpolated data if desired. We illus- exact expression for the estimates of missing values in
trate our results using a bivariate time series of ocean a univariate ARLMA process in a form that is useful
current velocities measured off the California coast. for examining the estimates and their mean squared er-

rors. For an arbitrary pattern of missing values, how-
ever, the computations are not very efficient. None

1 Introduction of the above methods is thus easy to implement in
practice for bivariate series which are possibly nonsta-

Gaps of missing values of various sizes are a common tionary and have arbitrary patterns of missing values
problem in many data sets. In oceanographic data, in both series.
for example, a single large gap may arise in the gath-
ering of tidal data when an instrument stops working In this paper, we present an algorithm for semi-
and the malfunction is not detected for several days. automatically filling in gaps in bivariare time series,
Many small gaps are more characteristic of data gath- allowing for trends, cycles, and cross correlation in the
ered from satellites. The missing value problem is com- data. The interactive implementation of the algorith-
plicared for bivariate series in that the gaps may not m allows for visual examination of the data at each
fail at the same time periods in both series. Ad hoc step, giving the practitioner the oppotrunity to view
univariate methods, such as basing "suitab!e" replace- the original data with mnising values, the 'patched" LJ
menrt values on the range of values assumed by neigh- data in which the missing values have been filed in
boring points or points of the same periodicity, fail using linear interpolation, and the estimated autospec-
to account for possible cross correlation in the data. trum of the crudely interpolated data. After this ex-
In order to successfully analyze the spectrum of gap- amination, one may choose to remove a trend or cycles
py data sets, or use the data for other purposes, the from the data. The remaining series is automatically
missing values need to be estimated in a way that is modeled as an autoregressive process and the estimat-
characteristic of the rest of the bivariate data set. ed model is used for interpolation. The method allows
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for joint interpolation of two correlated series, incor- least squares applied to the initial "patched" se-
porating an estimate of the autocorrelation for each ries. The resulting series is
series, and the cross correlation between the two se-
ries, into the interpolated values. At the end of the z 2(t) = (t)- -bt,

interpolation phase, the user has the choice of exam- where & is the estimated constant and b is the
ining the coherence function of the interpolated series,
as well as producing more detailed plots of particular estimated slope.
segments of the series. The following section presents 5. The sample periodogram is automatically esti-
the interpolation algorithm in detail, while Section 3 mated and plotted for the interpolated and de,
gives an application of the algorithm to a bivariate se- trended data, x2 (t). (see, for example, Priestly
ries of ocean current velocity meter readings measured (1981) for a definition of the periodograrn and its
off the California coast. interpretation).

6. The program calculates the probability of obtain-

2 Algorithm ing the computed values for the 20 largest val-
ues of the normalized periodogram under the as-

The following algorithm has been coded in APL2 sumption that z 2 (t) is a Gaussian white noise pro-
using the IBM APL2 AGSS program as a comput- cess. A small probability indicates that a cycle
ing platform. Thus functions such as regression, the may be present in the data. The probabilities
Fast Fourier Transform used for computing the peri- are computed using the large sample test statis-
odogram of the series, and random number generation tic for 1j,j = 1, 2, [n/21, where I, denotes the
from AGSS are used, as well as some of the AGSS jth largest ordinate of the periodogram. (Priestly
graphics screens. The algorithm is available in a AGSS 1981, p.407).
library from the authors for mainframe or microcom-
puter data. The algorithm is as follows: 7. Using the information obtained in the previous

1. The user is asked to enter the name of the original step, as well as any intuitive or physical knowledge
i of cyclic behavior in the series, the user specifies

series containing gaps and the series is plotted, cycles to be estimated and removed from the in-
Denote this series by z(t), t = 1, 2, ... , n. If there
are two series containing gaps, and the two series cere ans teed data, fdr e
are cross correlated in some way, the user is asked
to enter the name of the second series and the
second series is plotted as well. Denote this series 3t 3{'yicos(..t) -t- 3, smn ,t)j},
by y(t), t = ,2,...,. n. The two series must have
the same length, but the location and length of where i = 2-,rf, are the frequencies that you
gaps in the series may differ, would like to remove and J is the numb-r of cy-

2. The user is asked to enter the number used on the cles. The -r, and 3, are estimated using least
data record to indicate a missing value, squares. The resulting series is Xs(t) = X2(t) - ic.

3. The program then computes the locations of the S. A fist order autoregressive (AR.) model is fitted
gaps and fills in the missing values for each series to the detrended and deseascr.alized data X3 (t).
by linearly interpolating between the two points An .AR(1) model has the fc-m
on either side of the gap. Denote the linearly in-
terpolated series as z1 (t) and y1(t) respectively. X3(t) = (Ps(t t = 2, 3,..., n.

The resulting series are then plotted and can be We assume that a-)"- iidN(O, o,' ). The pa-
visually examined by the user to decide whether rameter o is estimated using least squares. The
removal of a linear trend is necessary. residual series d.,(t) is

Note: Steps 4-8 are appliA. to both the xl(t) and 0(t)=.C 3(t) - -" 3 (t - 1 = 2.3..

y (t) series in e.'cactly the same man ner. Only the 9. The variance of {a,(t)} is calculated and a white
results for the xi(t) series are given below. noise series of length n having the distribution

4. If so desired, the program removes a linear trend .V(0, ) is generated. Denote this series by
from each series. The trend is estimated using a'- t).
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10. Let I denote the length of a particular gap in the noise term in the usual expressions for the backward
series and let X3 (t) and X3 (t + I + I) denote the and forward forecasts of an AR(1) model. This is to
points on either side of the gap. The program eliminate unrealistic "smoothness" in the interpolated
forecasts and backcasts from each end of the gap values, which will occur if the gap is very long. Real-
using the following recursive equations for j = istic noise in the series is important if the interpolated

1,2,...,.. series will be used to estimate the spectral density of
the series. Similarly, in Step 11 we incorporate an esti-

i 3 (t -- ) = %3 (t4- -+ ) + -a(t+-) mate of the contemporaneous correlation between the

E3 (t +4-1- j) = +1X 3 (t + I + 2 - two series into the estimates of the interpolated values
of the second series by including a noise term taken

+ aZ(t + i - from a simulated bivariate Normal pair of series with

Then the interpolated value is correlation c. The method for generating a bivariate
Normal pair with specified correlation is taken from

Z3(tj) =wIji3 (t-i-j)w 2.Ji3(t + I+1--j), Lewis and Orav (1989, p.301). A discussion of con-
temporaneous bivariate time series models made be

where wij = 1 - (ill 4+ 1) and uWj = I - wij. found in Camacho, Hipel, and McLeod (1987).

11. If interpolating values for two correlated series,

the standard deviation of the residual series
{a.(t)} and {a,(t)} found in Step 8 is calculat- 3 An Example
ed and the sample cross correlation at lag 0 be-
tween (d.(t)} and (da,(t)} is computed. Denote We apply the above algorithm to a vector pair of

this by c. A white noise series of length n having ocean current velocities collected off Point Sur, Cal-

the distribution X(0, &I ) is generated. Denote ifornia over the period 0000 hours, Sept. 19, 1990

this series by a,(t). A second white noise series of to 2300 hours, Oct. 30, 1990, a total period of 1008

length n is generated using the following relation: hours. Current velocities are just one set of variables
which are collected regularly by uceanographers at the

a•/= c(t3',/8=)a(tf) +- V a(t). Naval Postgraduate School in order to provide infor-
Y% mation related to the long term variability in sea sur-

face temperatures off the California coast. The veloci-
12. The values for the y3 (t) series are interpolated as ties were measured using a paddlewheel and electronic

in Step 9, with a!•(t + j) repla~ed by a'(t +3) counter assembly located at the top of the recording

13. The estimated trend and cycle are added back to unit placed at a depth of 350 meters. Velocity, in units

the interpolated series and the series containing of cm/s, was determined from the number of revolu-

the final estimates of the missing values is plotted. tions made by the paddlewheel during each sampling
interval, to an accuracy of ±1.0 cm/s. The data was

14. The user may choose to plot the coherence func- initially recorded at 30 minute intervals. After inital
tion for the detrended and deseasonalized inter- visual inspection for outliers or periods suspect of in-

polated series if desired. strument failures, and manual editing if necessary, the

115. The user may also choose to plot more detailed data was filtered using a Cosine-Lanczos filter with

segments of the final interpolated series if desired. a centered 25 point data window and interpolated to
specified 60 minute intervals. At this point, there re-

Using a weighted average of backward and forward mained a period of 63 consecutive hours of missing da-
forecasts made from each end of a gap using an es- ta, in which the data gathering instruments were not
timated univariate AR.MA model, as was used in Step working. There were also a few scattered individual

10, was discussed by Abraham '1981). He calculates missing values.

the weights to minimize the mean-squared error of the Figures 1 and 2 show plots of the E-W (or u) com-
interpoiated value, thus the weights depend in a com- ponent of the current velocity, and the N-S (or v) com-

plicated way on both the estimated model parameters ponent of the current, with missing values coded as 0.
and the length of gap. Our method, although sim- Figures 3 and 4 depict the same series with missing
ple, is intuitively appealing in that it gives less weight values 'patched" using linear interpolation. There ap-
to interpolated values at long lead times and is easy pear to be regular cycles in the data, as expected for
to implement when the lengths of the gaps are dif- current data, as well as the presence of a long term

ferent. Note that in Step 10, we include a simulated trend. We fit a linear trend to both the u and 'v cur-
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rent components, with estimated constants of 3.91 and 4 S uxnmary
1.60, respectively, and estimated slope coefficients of
-0.0018 and -0.0003. Standard t-tests on the signifi- We have presented a simple algorithm which permits
cance of the regression coefficients are not appropriate interpolation of arbitrary patterns of missing values in
because the residuals are not assumed to be uncor- both univariate and bivariate time series, allowing for
related. Figures 5 and 6 show the periodogram for the possibility of non-stationarity. The implementa-
each detrended series. Diurnal and semi-diurnal cy- tion is interactive and has graphical capabilities avail-
des are clearly indicated for the v-component of cur- able at each step. It is also much easier to implement
rent velocity, with only the diurnal cycle clearly seen in practice than the state-space approach of Ansley
in the u-component. In addition, there appears to be and Kohn(1985), which requires modified versions of
some long range dependence in the data, as evidenced the Kalman filter and the fixed point smoothing al-
by the large values of the periodogram at small fre- gorithm. The estimated contemporaneous correlation
quencies, which remain even after the removal of a between the two series is used in the interpolation al-
long term trend. See Lewis and Ray (1992) for a dis- gorithm in order to estimate the missing values in a
cussion of long range dependence in sea surface data. manner that is consistent with the rest of the data.
Based on the approximate p>-values of the test statistic Although we have assumed that each series follows a
for each of the 20 largest periodogram ordinates and simple A.R(1) model, the algorithm could easily be ex-
knowledge of the tidal cycles, we remove cycles at fre- tended to model each series as an A.kRMIA(p, q) model,
quencies (in cycles per 1008 hours) 81, 82, and 84 in with the orders of p and q chosen by the user after
the u-component and frequencies 42, 81, 82, and 84 examination of the sample autocorrelation and par-
in the v-component. Table I gives the values of the tial autocorrelation functions of the detrended and de-
normalized periodogram values at these ordinates and seasonalized "patched" data. Functions necessary to
the resulting p-values for the test statistic. After this compute the sample correlation functions and estimate
step, the missing values are automatically estimated the parameters of an AR-MA(p, q) model are already
for the detrended and deseasonalized data. Figures 7 present in the IBM A.PL2 AGSS package. (The AGSS
and S show the two series with final estimates of the application disdussed here is available from the au-
missing values, after the trend and cycles have been thors; the AGSS package is available from IBM.)
added back to the series. The estimated values appear
to follow the pattern of the data quite nicely.
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Figure 1: U-component of Current Velocity (missing
Tables and Figures values coded as O's)

Table 1: Normalized Periodogram Values for Ocean
Current Velocities

U-component of current velocity
I Frequency 1 Norm. Periodogram Value p-value M" OF'CURRENT

i1 106.14 0.00 . .

81 88.52 0.00
9 35.67 0.00

82 2-2.42 0.00r
34 20.35 {0.00

V-component of current velocity

Frequency I Norm. Periodogram Value 1 p-value
81 195.51 0.00 i
1 69.88 0.00 a84 34.81 0.00

2 20.90 0.00
32 14.40 0.00
42 10.09 0.11 '

Figure 2: V-component of Current Velocity (missing
values coded as O's)
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Figure 3: TJ-component of Current Velocity (missing Figure 5: Periodogram of U-%component of Current Ve-
values linearly interpolated) locity after Linear detrending
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Figure 4: V-component of Current Velocity (missing Figure 6: Periodogram of V-component of Current Ve-
values linearly interpolated) locity after linear detrending
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Figure 7: U-component of Current Velocity (missing Figure 9: Cross-amplitude Spectrum (top), Phase
values estimated using complete interpolation proce- Spectrum (middle), and Coherence (bottom) of
dure) U-component and V-component of Current Velocity
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Figure 3: V-component of Current Velocity (missing Figure 10: Detailed segment of U-component and
values estimated. u~sing the complete interpolation pro- V-component of Current Velocity after ainal estima-
cedure) tion of missing values
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