NPS-OR-92-013

AD-A255 160 NAVAL POSTGRADUATE SCHOOL Monterey, California

INTERACTIVE ANALYSIS OF GAPPY BIVARIATE TIME SERIES USING AGSS

Peter A. W. Lewis and Bonnie Ray

June 1992

Approved for public release; distribution is unlimited.

Prepared for:

National Research Council 2101 Constitution Ave., Washington DC 20418

9 10 066

92

11 pgs

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr. Superintendent

Harrison Shull Provost 7

This report was funded by the National Research Council 2101 Constitution Ave., Washington, DC, 20418.

This report was prepared by:

PETER A. W. LÉWIS Professor, Department of Operations Research

Reviewed by:

Released by:

NRC Fellow

11

PETER PURDUE Professor and Chairman Department of Operations Research

Marte

Department of Operations Research

PAUL J. MARTO Dean of Research

a REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS UNCLASSIFIED a Destructions manufacture of Public release; distribution i unlimited. DECLASSIFICATION/DOWNGRADING SCHEDULE a DISTRUCTION AVAILABLETY OF REPORT DECLASSIFICATION/DOWNGRADING SCHEDULE a NAME OF PERFORMING ORGANIZATION REPORT NUMBER(S) NAVE OF PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) Naval Postgraduate School OR 7 NAVE OF PERFORMING ORGANIZATION REPORT NUMBER(S) Naval Postgraduate School OR A NAVE OF PERFORMING ORGANIZATION NUMBER(S) Naval Postgraduate School OR A NAVE OF PERFORMING ORGANIZATION NUMBER(S) National Research Council EN OFFICE SYMBOL (Mapheable) MONTERLY, A 93943-5006 MONTERLY, A 93943-5006 National Research Council EN OFFICE SYMBOL (Mapheable) SOURCE OF FUNDING NUMBERS MORTERLY, A 93943-5006 National Research Council EN OFFICE SYMBOL (Mapheable) ID SOURCE OF FUNDING NUMBERS Valid Interactive Analysis of Gappy Bivariate Time Series using AGSS PROCEREMENT INSTRUMENT IDENTIFICATION NUMBER PREPORIT THS ME COURCEND The SUME COUR	REPORT I	OCUMENTATI	ON PAGE		P C	orm Approved MB No. 0704-0188
UNCLASSIFICATION AUTHORITY 1 DISTRIBUTION AVAILABILITY OF REPORT Approved for public release; distribution i unlimited. PERFORMING ORGANIZATION REPORT NUMBER(S) NPSOR-92-013 5 MONITORING ORGANIZATION REPORT NUMBER(S) NPSOR-92-013 a NAME OF PERFORMING ORGANIZATION REPORT NUMBER(S) NAVAIL POSTgraduate School 2 MONITORING ORGANIZATION REPORT NUMBER(S) NavaI Postgraduate School c ADDRESS (City, State, and ZIP Code) A ADDRESS (City, State, and ZIP Code) Monterey, CA 93943 Monterey, CA 93943-SD06 A ADDRESS (City, State, and ZIP Code) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (important) 9 National Research Council (important) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (important) 10 SOURCE OF FUNDING NUMBERS c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS WORK UNIT National Research Council 11 10 SOURCE OF FUNDING NUMBERS WORK UNIT 2 PERDANAL AUTHORS) FECONAL AUTHORS) 10 SOURCE OF FUNDING NUMBERS WORK UNIT 2 SUPPLEMENTARY NOTATION TITLE (Inclust Statestation) 11 Task WORK UNIT 3 THE OF REPORT INSTIME COVENED 14 DATE OF REPORT (Year, monit day)	a REPORT SECURITY CLASSIFICATION		15. RESTRICTIV	/E MARKINGS		<u> </u>
A SECONT CONSISTENT CONTROL NOT THE SECONT CONSISTENT OF THE CONTROL OF THE		<u></u>				
be DecLassiFicATION/COWNGRADING SCHEDULE unlimited. PERFORMING OHEANIZATION REPORT NUMBER(S) NPSOR-92-013 MONITORING ORGANIZATION REPORT NUMBER(S) NAVE OF PERFORMING OHEANIZATION Naval Postgraduate School OR A MARE OF PERFORMING OHEANIZATION Naval Postgraduate School OR A MARE OF PERFORMING ORGANIZATION Naval Postgraduate School OR A MARE OF PERFORMING ORGANIZATION Naval Postgraduate School OR Notified School OR Naval Postgraduate School OR ANAME OF PERFORMING ORGANIZATION Naval Postgraduate School ORGENIZATION Naval Postgraduate School Notified School ORGENIZATION Naval Postgraduate School O&MN Direct Publics Organization Notified School National Research Council 2101 Constitution Ave., Washington DC 20418 Bioariate Time Series using AGSS Petroson A dulyois of Gappy Bibariate Time Series using AGSS PROUNCT Time series interpolation; bibariate Time series using AGSS VECOMAL AUTHOR(S) PERSONAL AUTHOR(S) PERSONAL AUTHOR(S) PERSONAL AUTHOR(S) PERSONAL AUTHOR(S) PERSONAL AUTHOR(S) PERSONAL AUTHOR(S) PERSONAL AUTHOR(S)	a Seconity Classification at monity		Approv	ed for public	release: d	istribution is
PERFORMING ORGANIZATION REPORT NUMBER(S) NPSOR-52-013 6 MONITORING ORGANIZATION REPORT NUMBER(S) Naval Postgraduate School NAWE OF PERFORMING ORGANIZATION Naval Postgraduate School 1 A. MARE OF MONITORING ORGANIZATION Naval Postgraduate School Naval Postgraduate School C ADDRESS (ON; Sum, and ZP Code) 0 A. ADDRESS (ON; Sum, and ZP Code) Monterey, CA 93943- A NAME OF FUNDING SPONSORING ORGANIZATION B. OFFICE SYMBOL (Papikable) PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROCENT Funding A NAME OF MONING SPONSORING ORGANIZATION B. OFFICE SYMBOL (Papikable) PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROCENT INSTRUMENT IDENTIFICATION NUMBERS National Research Council 11 (Papikable) DENDEC COUNCIL (Papikable) DENDEC VERD (PADORAM, PROJECT INSTRUMENT IDENTIFICATION NUMBERS 2 101 Constitution Ave., Washington DC 20418 10 SOURCE OF FUNDING NUMBERS NO. NO. 2 PERSONAL AUTHOR(S) 11 DATE OF REPORT (Year, monin day) 15 PAGE COUNT NO. NO. 3 TWE OF REPORT 18 TIME COVENED 14 DATE OF REPORT (Year, monin day) 15 PAGE COUNT 5 SUPPLEMENTARY NOTATION 18 SUBJECT TERMS (Commune on revise (Incessary and dendy by block number) Time series; interpolation; bivariate 7 COSARTCODES 18 SUBJECT TERMS (Commune on r	b. DECLASSIFICATION/DOWNGRADING SCI	IEDULE	unlimit	ed.	, -	
a NAME OF PERFORMING ORGANIZATION Naval Postgraduate School /a NAME OF NONITORING ORGANIZATION Naval Postgraduate School c ADDRESS (Gry, Same, and ZIP Code) /b Naval Postgraduate School Monterey, CA 93943 Monterey, CA 93943 Monterey, CA 93943-5006 NAME OF FUNDING SPONSORING ORGANIZATION Bb OFFICE SYMBOL (#appleade) PPOCUREMENT INSTRUMENT IDENTIFICATION NUMBER PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER National Research Council Bb OFFICE SYMBOL (#appleade) PADOUREMENT INSTRUMENT IDENTIFICATION NUMBER National Research Council Bb OFFICE SYMBOL (#appleade) PADOUREMENT INSTRUMENT IDENTIFICATION NUMBER National Research Council III SOURCE OF FUNDING NUMBERS PROCUREMENT INSTRUMENT INSTRUMENT INSTRUMENT No WORK UNIT 101 Constitution Ave., Washington DC 20418 IIII Element No PROCURE OF FUNDING NUMBERS WORK UNIT 11 THE (Mode Security Cassistanon Interactive Analysis of Gappy Bivariate Time Series using AGSS Percent TASK 2 PHENONI AUTHON Tab. IME COVERED Iune, 1992 To FAGE COUNT 5 SUPPLEMENTARY MATANON The COVERED Time series; interpolation; bivariate 7 FEED GROUP SUB-GROUP SUB	NPSOR-92-013	NUMBER(S)	5. MONITORIN	IG ORGANIZATION	N REPORT NUM	BER(S)
Naval Postgraduate School (#appleable) OR Naval Postgraduate School C ADDRESS(CN) Sale, and ZP Code) Notterey, CA 93943 Monterey, CA 93943 A NAME OF FUNDINGSPONSONIG ORGANIZATION (B) OFFICE SYMBOL (#appleable) Notterey, CA 93943-006 A NAME OF FUNDINGSPONSONIG ORGANIZATION (B) OFFICE SYMBOL (#appleable) PROCUERMENT INSTRUMENT IDENTIFICATION NUMBER O&MIN Direct Funding C ADDRESS (CN), State, and ZIP Code) (D) SOURCE OF FUNDING NUMBERS O&MIN Direct Funding C ADDRESS (CN), State, and ZIP Code) (D) SOURCE OF FUNDING NUMBERS National Research Council 2101 Constitution Ave, Washington DC 20418 (D) SOURCE OF FUNDING NUMBERS 1 THE (Include Southy Classification) Interactive Analysis of Gappy Bivariate Time Series using AGSS 2 PERSONAL AUTHON(S) (D) SUBCOT FEMOLICE SCOUNT 2 SUPPLEMENTARY NOTATION (B) SUBJECT TEMMS (Commute on reverse if mecassary and demity by block number) 7 COSATI COUES (B) SUBJECT TEMMS (Commute on reverse if mecassary and demity by block number) 7 FIELD GOUP 8 SUBPLEMENTARY NOTATION (B) SUBJECT TEMMS (Commute on reverse if mecassary and demity by block number) 8 ABSTRACT (Continue on reverse if mecassary and demity by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if mecassary and demity	a NAME OF PERFORMING ORGANIZATION	66. OFFICE SYMBOL	7a NAME OF M	ONITORING ORG	ANIZATION	<u> </u>
ADDRESS (<i>City. State, and 2/P Code</i>) Monterey, CA 93943 Monterey, CA 93943 Monterey, CA 93943 Monterey, CA 93943 Monterey, CA 93943-5006 Monterey, CA 93943 Monterey, CA 93943 Monterey, CA 93943-5006 Monterey, CA 9494 Monterey, Cassification Montere	Naval Postgraduate School	(If applicable)	Naval P	ostgraduate	School	
Monterey, CA 93943 Monterey, CA 93943-5006 a National Research Council as: OFFICE SYMBOL (#applicable) 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER O&MN Direct Funding a ADDRESS (Cip, State, and 2P Code) 10 SOURCE OF FUNDING NUMBERS National Research Council 11 SOURCE OF FUNDING NUMBERS 2101 Constitution Ave., Washington DC 20418 PROJECT 1 Interactive Analysis of Gappy Bivariate Time Series using AGSS 2 PERSONALAUTHOR(S) 3 THELD 4 DATE OF HEPORT (Year, month day) 15 PAGE COUNT 7 FIELD 6 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 Time series; interpolation; bivariate 8 ABSTRACT (Continue on reverse if necessary and identify by block number) 7 FIELD GROUP 8 <t< td=""><td>c. ADDRESS (City, State, and ZIP Code)</td><td></td><td>76. ADDRESS (</td><td>City, State, and ZIP</td><td>Code)</td><td></td></t<>	c. ADDRESS (City, State, and ZIP Code)		76. ADDRESS (City, State, and ZIP	Code)	
Monterey, CA 93943 Monterey, CA 93943-5006 Instructional Research Council Bb OFFCE SYMBOL ORGANIZATION National Research Council Cabber Structure O&MN Direct Funding Mational Research Council Distructure 2101 Constitution Ave., Washington DC 20418 Interactive Analysis of Gappy Bivariate Time Series using AGSS Peter A. W. Lewis and Bonnie Ray Supplementation Report Final Report FROM 9/91 to 5/.2 June, 1992 COSAN CODES FIELD GROUP Supplementation on werse in necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on werse in necessary and identify by block number) The continue on werse in necessary and identify by block number) The continue on werse in necessary and identify by block number) The continue on werse in necessary and identify by block number) The continue on werse in necessary and identify by block num	Mantana GA 02042		Mantan	CA 0204	2 5000	
a Mark OF ZNDN CSPONSORIAL and Applicable and Applicable and Applicable National Research Council (#applicable) O&MN Direct Funding c ADDRESS (City, State, and ZIP Code) IDENTIFICATION NUMBERS National Research Council 2101 Constitution Ave., Washington DC 20418 IDENTIFICATION NUMBERS TITLE (Include Security Classification) Interactive Analysis of Gappy Bivariate Time Series using AGSS Peter A. W. Lewis and Bonnie Ray IDENTIFICATION 3a TYPE OF REPORT T35. TIME COVERED Final Report FROM 9/91 to 5/7.2 June, 1992 IS PAGE COUNT FIELD GROUP 18 SUBLECT TERMS (Continue on reverse if Incessary and identify by block number) FIELD GROUP 19 ABSTRACT (Continue on reverse if incessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a implified but effective method of interactively examining and filling in the missing values in other seconal components before automatically estimating arbitrary patterns of miss	Monterey, CA 93943		Montere	Y, CA 9394	3-5006	
National Research Council O&MN Direct Funding C ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS National Research Council 2101 Constitution Ave., Washington DC 20418 WORK UNIT 1 ITLE (Include Security Classification) Interactive Analysis of Cappy Bibariate Time Series using AGSS WORK UNIT 2 PERSONAL AUTHOR(S) Peter A. W. Lewis and Bonnie Ray 14 DATE OF REPORT (Year, month day) 15 PAGE COUNT 3 TIPE OF REPORT TBS TIME COVERED 14 DATE OF REPORT (Year, month day) 15 PAGE COUNT 7 COSAT CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series which display nonstationary behavior, such as cycles or long-term 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series which display nonstationary behavior, such as cycles or long-term 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series which display nonstationary behavior, such as cycles or long-term 9 ABST	ORGANIZATION	(If applicable)	9. PHOCOMEN	MEINT INSTRUMET	NI IDENTIFICA	HON NUMBER
C ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS National Research Council 2101 Constitution Ave., PROGRAM PROGRAM PROGRAM 2101 Constitution Ave., Washington DC 20418 Interactive Analysis of Gappy Bibariate Time Series using AGSS No Accession 1 Interactive Analysis of Gappy Bibariate Time Series using AGSS Peter A. W. Lewis and Bonnie Ray Its Difference Its Difference 2 PERONAL AUTHOR(S) Peter A. W. Lewis and Bonnie Ray Its Difference Its Difference Its Difference 3 NPE OF REPORT TBS DIME COVERED Its Difference Its Difference Its PAGE COUNT 5 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate Its PAGE COUNT 7 COSATI CODES Its SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series is interpolation; by block number) 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; by block number) 9 ABSTRACT (Continue on reverse if necessary and identify by	National Research Council		O&MN	Direct Fund	ing	
National Research Council PROGRAM PROGRAM PROJECT TASK WORK UNIT 2101 Constitution Ave., Washington DC 20418 Interactive Analysis of Gappy Bivariate Time Series using AGSS No. ACCESSION 1 THEL (Include Secump Classification) Interactive Analysis of Gappy Bivariate Time Series using AGSS Peter A. W. Lewis and Bonnie Ray 2 PERSONAL AUTHOR(S) Peter A. W. Lewis and Bonnie Ray Is DIME COVERED Is DIME COVERED 5 SUPPLEMENTARY NOTATION The COVERED Is DIME COVERED Is DIME COVERED 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) The series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) The series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) The series; interp	ADDRESS (City, State, and ZIP Code)		10. SOURCE OF	F FUNDING NUMB	ERS	
2101 Constitution Ave., Washington DC 20418 Inc.	National Research Council			PROJECT	TASK	WORK UNIT
Washington DC 20418 1. ITTLE (Include Sacuity Classification) Interactive Analysis of Gappy Bivariate Time Series using AGSS 2 PERSONAL AUTHOR(S) Peter A. W. Lewis and Bonnie Ray Sa TYPE OF HEPONT Final Report Final Report Final Report Final Report FIGURE SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in oftware package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each serier interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time eries of ocean current velocities measured off the California coast. 5 DISTRIBUTION/AVAILABILITY OF ABSTRACT V UNCLASSIFIED/UNLIMITED SAME AS RPT. DIC USERS 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED/ 20. OFFICE SYMBOL (40.08) 646-2783 220. OFFICE SYMBOL (40.08) 646-2783	2101 Constitution Ave.,		ELEMENT NO.	NO.	NO.	ACCESSION
1 TITLE (Include Security Classification) Interactive Analysis of Gappy Bivariate Time Series using AGSS 2 PERSONAL AUTHOR(S) Peter A. W. Lewis and Bonnie Ray 3a TYPE OF REPORT 13b. TIME COVERED Final Report FROM 9/91 TO 5, '2 4. DATE OF REPORT (Section 1) 15 PAGE COUNT Final Report FROM 9/91 TO 5, '2 5. SUPPLEMENTARY NOTATION 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical oftware package. Our method allows for possible deternding and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and teseasonalized interpolated data if desired. We illustrate our results using a bivariate time eries of ocean current velocities measured off the California co	Washington DC 20418					
Interactive Analysis of Gappy Bivariate Time Series using AGSS Peter A. W. Lewis and Bonnie Ray 3a TYPE OF REPORT T3b TIME COVERED Final Report FROM 9/91 To 5, 2 III Date OF REPORT (Year, month day) TS PAGE COUNT Final Report FROM 9/91 To 5, 2 SUPPLEMENTARY NOTATION Time series; interpolation; bivariate 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUP-TEMENTARY NOTATION 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a implified but effective method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if	1 TITLE (lock ido Society Classification)		L	<u> </u>		<u> </u>
PERSONAL AUTHORS Peter A. W. Lewis and Bonnie Ray Type OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, month day) 15 PAGE COUNT Final Report FIDE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, month day) 15 PAGE COUNT Final Report FIDE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, month day) 15 PAGE COUNT Final Report FIDE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, month day) 15 PAGE COUNT Final Report FIDE OF REPORT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate SUBJECT CONTINUE OF REPORT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a implified but effective method of interactively examining and filling in the missing values in uuch series using extensions of the methods available in AGSS, an APL2-based statistical oftware package. Our method allows for possible detrending and removal of seasonal tomponents before automatically estimating arbitrary patterns of missing values for each series netractive bivariate spectral analysis can then be performed on the detrended and leseasonalized interpolated data if desired. We illustrate our results using a bivariate time eries of ocean current velocities measured off the California coast. DISTRIBUTION/AVAILABILITY OF ABSTRACT LABSTRACT SECURITY CLASSICIATION UNCLASSIFIED Zb. TELEPHONE (Include Area Code) 2c OFFICE SYMBOL Veries	Interactive Analysis of Gann	v Bivariate Time	Series usino	AGSS		
Peter A. W. Lewis and Bonnie Ray 3a TYPE OF REPORT T3b. TIME COVERED 14. DATE OF REPORT (Year, month day) 15 PAGE COUNT Final Report FROM 9/91 to 5,'2 June, 1992 15 PAGE COUNT 6 SUPPLEMENTARY NOTATION 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a implified but effective method of interactively examining and filling in the missing values in ouch series using extensions of the methods available in AGSS, an APL2-based statistical oftware package. Our method allows for possible detrending and removal of seasonal tomponents before automatically estimating arbitrary patterns of missing values for each series: nteractive bivariate spectral analysis can then be performed on the detrended and leseasonalized interpolated data if desired. We illustrate our results using a bivariate time erries of ocean current velocities measured off the California coast. 0 DISTHIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED 2	2 PERSONAL AUTHOR(S)	9 21001 1010 1 1010				
THELP A: W. Dewis and Domine Ray Interver 13: DIME COVERED Final Report FROM 9/91 to 5,'2 June, 1992 SUPPLEMENTARY NOTATION 7 COSAT CODES FIELD GROUP SUB-GROUP Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical oftware package. Our method allows for possible detrending and removal of seasonal tomponents before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time eries of ocean current velocities measured off the California coast. 8 DISTRIBUTION/AVAILABILITY OF ABSTRACT 2 AME OF REPONSIBLE INDIVIDUAL 2 AME OF REPONSIBLE INDIVIDUAL	Potor A W Lowis and Bonn	io Ray				
Final Report FROM 9/91 TO 5/:2 June, 1992 SUPPLEMENTARY NOTATION 7 COSATI CODES 18 SUBJECT TERMS (Combine on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 18 SUBJECT TERMS (Combine on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in .uch series using extensions of the methods available in AGSS, an APL2-based statistical .oftware package. Our method allows for possible detrending and removal of seasonal tomponents before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time .eries of ocean current velocities measured off the California coast. 6 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED 7 COR /T with secure code 22 OFFICE SYMBOL	3a. TYPE OF REPORT	COVERED T	14. DATE OF REPO	RT (Year, month da	V) T 15 PAGE	COUNT
30 SUPPLEMENTARY NOTATION 7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a implified but effective method of interactively examining and filling in the missing values in oftware package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series netrees of ocean current velocities measured off the California coast. 8 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION VICLASSIFIED/UNLIMITED SAME AS RPT 24 NAME OF RESPONSIBLE INDIVIDUAL 210 ABSTRACT SECURITY CLASSICIATION VICLASSIFIED/UNLIMITED SAME AS RPT 24 VERY	Final Report FROM 9/	91 то 5,12	June, 1992	2		
7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolated number) 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolated interpolated data if desired. 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Time series; interpolated interpolated data if desired. 9 Meclose and current velocities measured off the California coast. Constribution 0 DISTRIBUTION/AVAILABILITY OF ABSTRACT <td>6 SUPPLEMENTARY NOTATION</td> <td></td> <td></td> <td></td> <td></td> <td></td>	6 SUPPLEMENTARY NOTATION					
FIELD GROUP SUB-GROUP Time series; interpolation; bivariate 9 ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical confuwre package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time erries of ocean current velocities measured off the California coast. 0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED 2a NAME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSICIATION (ADD & ADD & AD	7 COSATI CODES	18. SUBJECT TERMS	(Continue on revers	e if necessary and i	dentify by block i	number)
 ⁹ ABSTRACT (Continue on reverse if necessary and identify by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time erries of ocean current velocities measured off the California coast. ⁶ DISTHIBUTION/AVAILABILITY OF ABSTRACT ⁸ UNCLASSIFIED/UNLIMITED ⁸ SAME AS RPT ⁹ DTIC USERS ²¹ ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED/UNLIMITED ⁸ AME OF RESPONSIBLE INDIVIDUAL ²¹ AME OF RESPONSIBLE INDIVIDUAL ²¹ Lewis 	FIELD GROUP SUB-GROUP	 Time series; in 	terpolation;	bivariate		
⁹ ABSTRACT (Continue on reverse if necessary and identity by block number) Bivariate time series which display nonstationary behavior, such as cycles or long-term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time erries of ocean current velocities measured off the California coast. 0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 2 Lewis 2 NAME OF RESPONSIBLE INDIVIDUAL						
Divinitie time series which display horistationally behavior, such as cycles of hong term rends, are common in fields such as oceanography and meteorology. These are usually very arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. 0 DISTRIBUTION/AVAILABILITY OF ABSTHACT 21. ABSTHACT SECURITY CLASSICIATION UNCLASSIFIED 2a NAME OF HESPONSIBLE INDIVIDUAL 21. ABSTHACT SECURITY CLASSICIATION UNCLASSIFIED 2a NAME OF HESPONSIBLE INDIVIDUAL 21. ABSTHACT SECURITY CLASSICIATION UNCLASSIFIED 2a NAME OF HESPONSIBLE INDIVIDUAL 22. OFFICE SYMBOL (40/8) 64/6-2283	9. ABSTRACT (Continue on reverse if necessary Bivariate time series which	and identify by block numb display popstatic	er) nary behavi	or such as c	veles or le	ng-torm
arge-scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. O DISTRIBUTION/AVAILABILITY OF ABSTRACT CURRENT OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED 22. TELEPHONE (Include Area Code) 22. OFFICE SYMBOL 23. AME OF RESPONSIBLE INDIVIDUAL 24. AME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE (Include Area Code) 25. OFFICE SYMBOL 26. OFFICE SYMBOL 27. AME OF RESPONSIBLE INDIVIDUAL 27. AME OF RESPONSIBLE INDIVIDUAL 28. AME OF RESPONSIBLE INDIVIDUAL 29. AME OF RESPONSIBLE INDIVIDUAL 21. AME OF RESPONSIBLE INDIVIDUAL 21. AME OF RESPONSIBLE INDIVIDUAL 21. AME OF RESPONSIBLE INDIVIDUAL 22. AME OF RESPONSIBLE INDIVIDUAL 23. AME OF RESPONSIBLE INDIVIDUAL 24. AME OF RESPONSIBLE INDIVIDUAL 25. TELEPHONE (Include Area Code) 25. OFFICE SYMBOL 26. AME OF RESPONSIBLE INDIVIDUAL 27. AME OF RESPONSIBLE INDIVIDUAL 28. AME OF RESPONSIBLE INDIVIDUAL 29. AME OF RESPONSIBLE INDIVIDUAL 20. AME OF RESPONSIBLE INDIVIDUAL 20. AME OF RESPONSIBLE INDIVIDUAL 20. AME OF RESPONSIBLE INDIVIDUAL 21. AME OF RESPONSIBLE INDIVIDUAL 22. AME OF RESPONSIBLE INDIVIDUAL 23. AME OF RESPONSIBLE INDIVIDUAL 24. AME OF RESPONSIBLE INDIVIDUAL 24. AME OF RESPONSIBLE INDIVIDUAL 24. AME OF RESPONSIBLE INDIVIDUAL 25. AME OF RESPONSIBLE INDIVIDUAL 26. AME OF RESPONSIBLE INDIVIDUAL 2	Divariate time series winen	ch as oceanogram	by and moto	orology Th	$\rho \in \rho \rightarrow \tau \rho \rightarrow \tau \rho$	ng term
ange scale data sets and orien may contain long gaps of missing values in one of both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. O DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED/UNLIMITED Same of RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED/UNLIMITED ADME OF RESPONSIBLE INDIVIDUAL 21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED/UNCLASSIFI	rends are common in fields su	ch as occanograp	niv and mele	orongy. In	one or he	th sorios
A nume of nesponsible indexent of the periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical coftware package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. 0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION 21 ABSTRACT SECURITY CLASSICIATION 22 UNCLASSIFIED/UNLIMITED 23 NAME OF RESPONSIBLE INDIVIDUAL 21 ABSTRACT SECURITY CLASSICIATION 220 TELEPHONE (Include Area Code) 220 OFFICE SYMBOL 2408 646-2283	rends, are common in fields su	nav contain long	gans of miss	ing values in		
But Price but effective method of interactively examining and mining in the missing values in south series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. Image: Complex Structure of Structure of the California coast. Image: Complex Structure of the Complex Structure of the California coast. Image: Complex Structure of the Complex Structure of the California coast. Image: Complex Structure of the Complex Structure of the California coast. Image: Complex Structure of the Complex Structure of the Complex Structure of the California coast. Image: Complex Structure of the Complex	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring	nay contain long	gaps of miss	ing values ir he two serie	c Wo nro	sont a
Software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series nteractive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. 0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION 21 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION 22 UNCLASSIFIED/UNLIMITED 23 NAME OF RESPONSIBLE INDIVIDUAL 24 Lewis	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method	nay contain long at different time	gaps of miss e periods in t	ing values ir he two serie nd filling in	s. We pre	sent a
One of the formatically estimating arbitrary patterns of missing values for each serie interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast. 0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION x UNCLASSIFIED/UNLIMITED 23 NAME OF RESPONSIBLE INDIVIDUAL 24 Lewis	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method	nay contain long g at different time of interactively the methods avai	gaps of miss e periods in t examining as	ing values ir he two serie nd filling in	s. We pre the missin	sent a ng values in
O DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSICIATION X UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS 22b. TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL 21. Lewis OR / Live	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of	nay contain long g at different time of interactively the methods avai	gaps of miss e periods in t examining as ilable in AGS	ing values ir he two serie nd filling in S, an APL2- g and remov	s. We pre the missin based stati	sent a sent a ng values in stical
0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 2 DISTRIBUTION/AVAILABILITY OF ABSTRACT	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method	nay contain long at different time of interactively the methods avai allows for possib	gaps of miss e periods in t examining as ilable in AGS ole detrendin	ing values ir he two serie nd filling in S, an APL2- g and remov	s. We pre the missin based statival of seaso	sent a ng values in stical onal
0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION x UNCLASSIFIED/UNLIMITED 2a NAME OF RESPONSIBLE INDIVIDUAL 2a NAME OF RESPONSIBLE INDIVIDUAL 2a Lewis	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral an	hay contain long at different time of interactively the methods avai allows for possibly estimating arb	gaps of miss e periods in t examining as ilable in AGS ole detrendin itrary patterr	ing values ir he two serie nd filling in S, an APL2- g and remov as of missing on the data	s. We pre the missin based statival of seaso values fo	sent a ng values in stical onal r each series
0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSICIATION x UNCLASSIFIED/UNLIMITED 2a NAME OF RESPONSIBLE INDIVIDUAL 2b TELEPHONE (Include Area Code) 2c OFFICE SYMBOL (408) 646-2283	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral and deseasonalized interpolated dat	nay contain long at different time of interactively the methods avai allows for possib ly estimating arb alysis can then be	gaps of miss e periods in t examining as ilable in AGS ole detrendin itrary patterr e performed illustrate out	ing values ir he two serie nd filling in S, an APL2- g and remov is of missing on the detre	s. We pre the missin based statival of seaso y values fo nded and	sent a ng values in stical onal r each series
0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 1 ABSTRACT SECURITY CLASSICIATION 1 UNCLASSIFIED/UNLIMITED 2 NAME OF RESPONSIBLE INDIVIDUAL 2 Lewis	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral and deseasonalized interpolated dat	hay contain long at different time of interactively the methods avai allows for possibly estimating arbi- alysis can then be a if desired. We	gaps of missi e periods in t examining as ilable in AGS ole detrendin itrary patterr e performed illustrate out he California	ing values in he two serie nd filling in S, an APL2- g and remov is of missing on the detre r results usin	s. We pre the missin based statival of seaso values fo nded and ng a bivari	sent a ng values in stical onal r each series ate time
0 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSICIATION 1 UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED 2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL 2 Lewis 0R / L wr	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral and deseasonalized interpolated dat series of ocean current velocitie	hay contain long g at different time of interactively the methods avai allows for possibly estimating arb alysis can then be a if desired. We s measured off th	gaps of missi e periods in t examining as ilable in AGS ole detrendin itrary patterr e performed illustrate ous he California	ing values in he two serie nd filling in S, an APL2- g and remov as of missing on the detrea r results usin coast.	s. We pre the missin based statival of seaso values fo nded and ng a bivari	sent a ng values in stical onal r each series ate time
X UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS UNCLASSIFIED 2a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL 2 Lewis (408) 646-2283 OR / Lwit	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral and deseasonalized interpolated dat series of ocean current velocitie	hay contain long g at different time of interactively the methods avai allows for possibly estimating arbi- alysis can then be a if desired. We s measured off th	gaps of missi e periods in t examining as ilable in AGS ole detrendin itrary patterr e performed illustrate out he California	ing values in he two serie nd filling in S, an APL2- g and remov s of missing on the detre r results usin coast.	s. We pre the missin based statival of seaso values fo nded and ng a bivari	sent a ng values in stical onal r each series ate time
2 I DEWIS	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral and deseasonalized interpolated dat series of ocean current velocitie	hay contain long at different time of interactively the methods avai allows for possibly estimating arbi- alysis can then be a if desired. We s measured off th	gaps of missi e periods in t examining as ilable in AGS ole detrendin itrary patterr e performed illustrate out he California	ing values in he two serie nd filling in S, an APL2- g and remov is of missing on the detre r results usin coast.	s. We pre the missin based stati val of sease values fo nded and ng a bivari	sent a ng values in stical onal r each series ate time
	rends, are common in fields su arge-scale data sets and often n with the gaps perhaps occurring simplified but effective method such series using extensions of software package. Our method components before automaticall interactive bivariate spectral and deseasonalized interpolated dat series of ocean current velocitie	hay contain long g at different time of interactively the methods avai allows for possibly estimating arbi- alysis can then be a if desired. We s measured off the RPT	gaps of missi e periods in t examining at ilable in AGS ole detrendin itrary patterr e performed illustrate out he California	ing values in he two serie nd filling in S, an APL2- g and remov s of missing on the detre r results usin coast. SECURITY CLASS	s. We pre the missin based statival of seaso values fo nded and ng a bivari	sent a ng values in stical onal r each series ate time

Interactive Analysis of Gappy Bivariate Time Series Using AGSS

Peter A. W. Lewis and Bonnie K. Ray Dept. of Operations Research, Naval Postgraduate School Monterey, CA 93943

Abstract

Bivariate time series which display nonstationary behavior, such as cycles or long term trends, are common in fields such as oceanography and meteorology. These are usually very large scale data sets and often may contain long gaps of missing values in one or both series, with the gaps perhaps occurring at different time periods in the two series. We present a simplified but effective method of interactively examining and filling in the missing values in such series using extensions of the methods available in AGSS, an APL2-based statistical software package. Our method allows for possible detrending and removal of seasonal components before automatically estimating arbitrary patterns of missing values for each series. Interactive bivariate spectral analysis can then be performed on the detrended and deseasonalized interpolated data if desired. We illustrate our results using a bivariate time series of ocean current velocities measured off the California coast.

1 Introduction

Gaps of missing values of various sizes are a common problem in many data sets. In oceanographic data, for example, a single large gap may arise in the gathering of tidal data when an instrument stops working and the malfunction is not detected for several days. Many small gaps are more characteristic of data gathered from satellites. The missing value problem is complicated for bivariate series in that the gaps may not fail at the same time periods in both series. Ad hoc univariate methods, such as basing "suitable" replacement values on the range of values assumed by neighboring points or points of the same periodicity, fail to account for possible cross correlation in the data. In order to successfully analyze the spectrum of gappy data sets, or use the data for other purposes, the missing values need to be estimated in a way that is characteristic of the rest of the bivariate data set.

The problem of missing values in time series has been studied by several authors in recent years, primarily in a state space framework. Jones (1980) used a Kalman filter recursion to calculate the exact likelihood of a univariate stationary autoregressive moving average (ARMA) process with missing values, while Harvey and Pierce (1984) and Kohn and Ansley (1986) extended the Kalman filtering method to nonstationary autoregressive integrated moving average (ARIMA) processes. Ansley and Kohn (1985) gave a method of recursively calculating the likelihood for a multivariate state space model with incompletely specified initial conditions which can be used to interpolate an arbitrary pattern of missing values in multivariate time series. Both the computation and derivation are much simpler in the univariate case than in the multivariate case. More recently, Ljung (1989) derived an exact expression for the estimates of missing values in a univariate ARIMA process in a form that is useful for examining the estimates and their mean squared errors. For an arbitrary pattern of missing values, however, the computations are not very efficient. None of the above methods is thus easy to implement in practice for bivariate series which are possibly nonstationary and have arbitrary patterns of missing values in both series.

In this paper, we present an algorithm for semiautomatically filling in gaps in bivariate time series, allowing for trends, cycles, and cross correlation in the data. The interactive implementation of the algorithm allows for visual examination of the data at each step, giving the practitioner the opportunity to view the original data with missing values, the "patched" data in which the missing values have been filled in using linear interpolation, and the estimated autospectrum of the crudely interpolated data. After this examination, one may choose to remove a trend or cycles from the data. The remaining series is automatically modeled as an autoregressive process and the estimated model is used for interpolation. The method allows

Ū

35

w. widt

for joint interpolation of two correlated series, incorporating an estimate of the autocorrelation for each series, and the cross correlation between the two series, into the interpolated values. At the end of the interpolation phase, the user has the choice of examining the coherence function of the interpolated series, as well as producing more detailed plots of particular segments of the series. The following section presents the interpolation algorithm in detail, while Section 3 gives an application of the algorithm to a bivariate series of ocean current velocity meter readings measured off the California coast.

2 Algorithm

The following algorithm has been coded in APL2 using the IBM APL2 AGSS program as a computing platform. Thus functions such as regression, the Fast Fourier Transform used for computing the periodogram of the series, and random number generation from AGSS are used, as well as some of the AGSS graphics screens. The algorithm is available in a AGSS library from the authors for mainframe or microcomputer data. The algorithm is as follows:

- 1. The user is asked to enter the name of the original series containing gaps and the series is plotted. Denote this series by x(t), t = 1, 2, ..., n. If there are two series containing gaps, and the two series are cross correlated in some way, the user is asked to enter the name of the second series and the second series is plotted as well. Denote this series by y(t), t = 1, 2, ..., n. The two series must have the same length, but the location and length of gaps in the series may differ.
- 2. The user is asked to enter the number used on the data record to indicate a missing value.
- 3. The program then computes the locations of the gaps and fills in the missing values for each series by linearly interpolating between the two points on either side of the gap. Denote the linearly interpolated series as $x_1(t)$ and $y_1(t)$ respectively. The resulting series are then plotted and can be visually examined by the user to decide whether removal of a linear trend is necessary.

Note: Steps 4-8 are applied to both the $x_1(t)$ and $y_1(t)$ series in exactly the same manner. Only the results for the $x_1(t)$ series are given below.

4. If so desired, the program removes a linear trend from each series. The trend is estimated using least squares applied to the initial "patched" series. The resulting series is

$$x_2(t) = x_1(t) - \hat{a} - \hat{b}t,$$

where \hat{a} is the estimated constant and \hat{b} is the estimated slope.

٤

- 5. The sample periodogram is automatically estimated and plotted for the interpolated and detrended data, $x_2(t)$. (see, for example, Priestly (1981) for a definition of the periodogram and its interpretation).
- 6. The program calculates the probability of obtaining the computed values for the 20 largest values of the normalized periodogram under the assumption that $x_2(t)$ is a Gaussian white noise process. A small probability indicates that a cycle may be present in the data. The probabilities are computed using the large sample test statistic for I_j , j = 1, 2, [n/2], where I_j denotes the j^{th} largest ordinate of the periodogram. (Priestly 1981, p.407).
- 7. Using the information obtained in the previous step, as well as any intuitive or physical knowledge of cyclic behavior in the series, the user specifies cycles to be estimated and removed from the interpolated and detrended data, if desired. The cycles are assumed to be of the form

$$s_t = \sum_{j=1}^{J} \{\gamma_j \cos(\omega_j t) + \beta_j \sin(\omega_j t)\},\$$

where $\omega_j = 2\pi f_j$ are the frequencies that you would like to remove and J is the number of cycles. The γ_j and β_j are estimated using least squares. The resulting series is $x_3(t) = x_2(t) - \hat{s}_t$.

8. A first order autoregressive (AR) model is fitted to the detrended and deseasonalized data $x_3(t)$. An AR(1) model has the form

 $x_3(t) = \phi x_3(t-1) - a_x(t), \quad t = 2, 3, \ldots, n.$

We assume that $a_z(t) \sim iid N(0, \sigma_{a,x}^2)$. The parameter ϕ is estimated using least squares. The residual series $\dot{a}_x(t)$ is

$$\hat{a}_{x}(t) = x_{3}(t) - \hat{\phi}x_{3}(t-1), \quad t = 2, 3, \dots, n.$$

9. The variance of $\{\hat{a}_x(t)\}$ is calculated and a white noise series of length *n* having the distribution $\mathcal{N}(0, \hat{\sigma}_{a,x}^2)$ is generated. Denote this series by $a'_x(t)$.

10. Let l denote the length of a particular gap in the series and let $x_3(t)$ and $x_3(t + l + 1)$ denote the points on either side of the gap. The program forecasts and backcasts from each end of the gap using the following recursive equations for j = 1, 2, ..., l.

$$\hat{x}_{3}(t+j) = \hat{\phi}\hat{x}_{3}(t+j-1) + a'_{x}(t+j)$$
$$\hat{x}_{3}(t+l+1-j) = \hat{\phi}x_{3}(t+l+2-j) + a'_{x}(t+l+1-j).$$

Then the interpolated value is

 $\tilde{x}_3(t+j) = w_{1,j}\hat{x}_3(t+j) + w_{2,j}\hat{x}_3(t+l+1-j),$ where $w_{1,j} = 1 - (j/l+1)$ and $w_{2,j} = 1 - w_{1,j}.$

11. If interpolating values for two correlated series, the standard deviation of the residual series $\{\hat{a}_x(t)\}\$ and $\{\hat{a}_y(t)\}\$ found in Step 8 is calculated and the sample cross correlation at lag 0 between $\{\hat{a}_x(t)\}\$ and $\{\hat{a}_y(t)\}\$ is computed. Denote this by c. A white noise series of length n having the distribution $N(0, \hat{\sigma}_{a,y}^2)$ is generated. Denote this series by $a'_y(t)$. A second white noise series of length n is generated using the following relation:

$$a_y''(t) = c(\hat{\sigma}_{a,y}/\hat{\sigma}_{a,x})a_x'(t) + \sqrt{1-c^2}a_y'(t).$$

- 12. The values for the $y_3(t)$ series are interpolated as in Step 9, with $a'_z(t+j)$ replaced by $a''_u(t+j)$
- 13. The estimated trend and cycle are added back to the interpolated series and the series containing the final estimates of the missing values is plotted.
- 14. The user may choose to plot the coherence function for the detrended and deseasonalized interpolated series if desired.
- 15. The user may also choose to plot more detailed segments of the final interpolated series if desired.

Using a weighted average of backward and forward forecasts made from each end of a gap using an estimated univariate ARMA model, as was used in Step 10, was discussed by Abraham (1981). He calculates the weights to minimize the mean-squared error of the interpolated value, thus the weights depend in a complicated way on both the estimated model parameters and the length of gap. Our method, although simple, is intuitively appealing in that it gives less weight to interpolated values at long lead times and is easy to implement when the lengths of the gaps are different. Note that in Step 10, we include a simulated noise term in the usual expressions for the backward and forward forecasts of an AR(1) model. This is to eliminate unrealistic "smoothness" in the interpolated values, which will occur if the gap is very long. Realistic noise in the series is important if the interpolated series will be used to estimate the spectral density of the series. Similarly, in Step 11 we incorporate an estimate of the contemporaneous correlation between the two series into the estimates of the interpolated values of the second series by including a noise term taken from a simulated bivariate Normal pair of series with correlation c. The method for generating a bivariate Normal pair with specified correlation is taken from Lewis and Orav (1989, p.301). A discussion of contemporaneous bivariate time series models made be found in Camacho, Hipel, and McLeod (1987).

3 An Example

We apply the above algorithm to a vector pair of ocean current velocities collected off Point Sur, California over the period 0000 hours, Sept. 19, 1990 to 2300 hours, Oct. 30, 1990, a total period of 1008 hours. Current velocities are just one set of variables which are collected regularly by oceanographers at the Naval Postgraduate School in order to provide information related to the long term variability in sea surface temperatures off the California coast. The velocities were measured using a paddlewheel and electronic counter assembly located at the top of the recording unit placed at a depth of 350 meters. Velocity, in units of cm/s, was determined from the number of revolutions made by the paddlewheel during each sampling interval, to an accuracy of ± 1.0 cm/s. The data was initially recorded at 30 minute intervals. After initial visual inspection for outliers or periods suspect of instrument failures, and manual editing if necessary, the data was filtered using a Cosine-Lanczos filter with a centered 25 point data window and interpolated to specified 60 minute intervals. At this point, there remained a period of 63 consecutive hours of missing data, in which the data gathering instruments were not working. There were also a few scattered individual missing values.

Figures 1 and 2 show plots of the E-W (or u) component of the current velocity, and the N-S (or v) component of the current, with missing values coded as 0. Figures 3 and 4 depict the same series with missing values "patched" using linear interpolation. There appear to be regular cycles in the data, as expected for current data, as well as the presence of a long term trend. We fit a linear trend to both the u and v cur-

rent components, with estimated constants of 3.91 and 1.60, respectively, and estimated slope coefficients of -0.0018 and -0.0003. Standard t-tests on the significance of the regression coefficients are not appropriate because the residuals are not assumed to be uncorrelated. Figures 5 and 6 show the periodogram for each detrended series. Diurnal and semi-diurnal cycles are clearly indicated for the v-component of current velocity, with only the diurnal cycle clearly seen in the u-component. In addition, there appears to be some long range dependence in the data, as evidenced by the large values of the periodogram at small frequencies, which remain even after the removal of a long term trend. See Lewis and Ray (1992) for a discussion of long range dependence in sea surface data. Based on the approximate p-values of the test statistic for each of the 20 largest periodogram ordinates and knowledge of the tidal cycles, we remove cycles at frequencies (in cycles per 1008 hours) 81, 82, and 84 in the u-component and frequencies 42, 81, 82, and 84 in the v-component. Table 1 gives the values of the normalized periodogram values at these ordinates and the resulting p-values for the test statistic. After this step, the missing values are automatically estimated for the detrended and deseasonalized data. Figures 7 and 3 show the two series with final estimates of the missing values, after the trend and cycles have been added back to the series. The estimated values appear to follow the pattern of the data quite nicely.

We study the correlation between the two series in more detail by looking at the coherence function for the two interpolated, detrended and deseasonalized series. The coherence is initially computed assuming a cosine arch window of length 7. The user has the option of changing the window at any point in the coherence analysis. Figure 9 shows the cross-phase, cross-amplitude, and cross-coherence functions of the two series. The cross-amplitude spectrum shows dependence between the series at fairly low frequencies, but the (normalized) coherence measure shows that the dependence extends to high frequencies as well. No systematic effect can be seen in the phase spectrum.

Additionally, the enlarged segment in Figure 10 depicts the two series with values plotted as vertical lines drawn from the x-axis. The segment partially includes the interpolated values shown in Figures 7 and 3. No apparent difference between the known and the interpolated values can be seen.

4 Summary

We have presented a simple algorithm which permits interpolation of arbitrary patterns of missing values in both univariate and bivariate time series, allowing for the possibility of non-stationarity. The implementation is interactive and has graphical capabilities available at each step. It is also much easier to implement in practice than the state-space approach of Ansley and Kohn(1985), which requires modified versions of the Kalman filter and the fixed point smoothing algorithm. The estimated contemporaneous correlation between the two series is used in the interpolation algorithm in order to estimate the missing values in a manner that is consistent with the rest of the data. Although we have assumed that each series follows a simple AR(1) model, the algorithm could easily be extended to model each series as an ARMA(p, q) model, with the orders of p and q chosen by the user after examination of the sample autocorrelation and partial autocorrelation functions of the detrended and deseasonalized "patched" data. Functions necessary to compute the sample correlation functions and estimate the parameters of an ARMA(p,q) model are already present in the IBM APL2 AGSS package. (The AGSS application disdussed here is available from the authors; the AGSS package is available from IBM.)

P

References

Abraham, B. (1981), "Missing observations in time series", Commun. Statist.-Theor. Meth., A10(16), 1643-1653.

Ansley, C. F. and Kohn, R. (1985), "Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions," *Annals of Statistics*, 13, 1286-1316.

Camacho, F., McLeod, A. I., and Hipel, K. W. (1987) "Contemporaneous bivariate time series," *Biometri*ka, 74(1), 103-113.

Harvey, A. C., and Pierse, R. G. (1984), "Estimating missing observations in economic time series," *Journal of the American Statistical Association*, 79, 125–131.

Jones, R. H. (1980), "Maximum likelihood fitting of ARMA models to time series with missing observations," *Technometrics*, 22, 389-395. Kohn, R. and Ansley, C. F. (1986), "Estimation, prediction, and interpolation for ARIMA models with missing data," *Journal of the American Statistical Association*, 81(395), 351-361.

Lewis, P. A. W. and Orav, E. J. (1989) Simulation Methodology for Statisticians, operations Analysts, and Engineers, Pacific Grove: Wadsworth & Brooks/Cole.

Lewis, P. A. W. and Ray, B. K. (1992), "Modeling nonlinear time series with long range dependence," Technical report, Naval Postgraduate School.

Ljung, Greta M. (1989), "A note on estimation of missing values in time series," Commun. Statist. - Simula., 18(2), 459-465.

Priestley, M. B. (1981) Spectral Analysis and Time Series, London: Academic Press.

Table 1: Normalized Periodogram Values for Ocean

Tables and Figures

Figure 1: U-component of Current Velocity (missing values coded as 0's)

Current Veloc	tities					
U-component of current velocity						
Frequency	Norm. Periodogram Value	p-value				
1	106.14	0.00				
81	88.52	0.00				
2	35.67	0.00				
82	22.42	0.00				
84	20.35	0.00				
V-0	V-component of current velocity					
Frequency	Norm. Periodogram Value	p-value				
81	195.51	0.00				
1	69.88	0.00				
84	34.31	0.00				
2	20.90	0.00				
1	1	0.00				
82	14.40	0.00				

Figure 2: V-component of Current Velocity (missing values coded as 0's)

5

An a sum a

PLOT OF UCURRENT WITH INITIAL ESTIMATES OF MISSING VALUES

Figure 3: U-component of Current Velocity (missing values linearly interpolated)

Figure 5: Periodogram of U-component of Current Velocity after linear detrending

Figure 4: V-component of Current Velocity (missing values linearly interpolated)

ESTIMATED SPECTRAL DENSITY FOR VOURRENT

Figure 6: Periodogram of V-component of Current Velocity after linear detrending

ESTIMATED SPECTRAL DENSITY FOR UCURRENT

PLOT OF UCURRENT WITH FINAL ESTIMATES OF MISSING VALUES

Figure 7: U-component of Current Velocity (missing values estimated using complete interpolation procedure)

Figure 9: Cross-amplitude Spectrum (top), Phase Spectrum (middle), and Coherence (bottom) of U-component and V-component of Current Velocity

PLOT OF VOURRENT WITH FINAL ESTIMATES OF VISSING VALUES

Figure 3: V-component of Current Velocity (missing values estimated using the complete interpolation procedure)

Figure 10: Detailed segment of U-component and V-component of Current Velocity after final estimation of missing values

INITIAL DISTRIBUTION LIST

1.	Library (Code 0142)2 Naval Postgraduate School Monterey, CA 93943-5000
3.	Defense Technical Information Center
4.	Office of Research Administration
5.	Prof. Peter Purdue, Code OR/Pd1 Naval Postgraduate School Monterey, CA 93943-5000
6.	Prof. Peter A. W. Lewis