
Naval Command,
Control and Ocean San Diego, CA
Surveillance Center RDT&E Division 92152-5000

AD-A255 032

Technical Document 2320
July 1992

A New Matrix
Formulation of
Classical
Electrodynamics
Part II: Wave Propagation in
Optical Materials of Infinite
Extent

R. P. Bocker

.DTICS EECTE fl
AUG27 1992EE M

A "

Approved for public release; distribution Is unlimited.

U U 92-23705



Technical Document 2320
July 1992

A New Matrix Formulation of
Classical Electrodynamics

Part I1: Wave Propagation in Optical
Materials of Infinite Extent

R. P. Bocker

Accesion For

NTIS CRA&IM N
UTIC TAB

U1nJInouLHIed

Distribit~oi I

* i.'.. :,, :

is " :. •

B-i I ,

) . . .3



NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5000

J. D. FONTANA, CAPT, USN R.T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work in this report was performed in the Processing Research and
Development Branch (Code 761) as part of the Independent Research Program.
Sponsorship was provided by the Office of Chief of Naval Research, Arlington,
VA 22217-5000.

Released by Under authority of
G. W. Byram, Head J. R. Wrangler, Head
Processing Research Space Systems and
and Development Technology Division
Branch

PK



CONTENTS

1.0 BACKGROUND 1

2.0 EXTENSION OF THE MATRIX FORMULATION 2

2.1 MAXWELL FIELD EQUATIONS 2

2.2 ELECTROMAGNETIC FIELD WAVE AND CHARGE

CONTINUITY EQUATIONS 4

2.3 ELECTROMAGNETIC POTENTIALS AND LORENTZ

CONDITIONS 6

2.4 ELECTROMAGNETIC POTENTIAL WAVE EQUATIONS 7

2.5 ENERGY CONSERVATION: POYNTING'S THEOREM 8

3.0 OPTICAL MATERIALS 9

3.1 MAXWELL FIELD EQUATIONS 9

3.2 ELECTROMAGNETIC FIELD WAVE AND CHARGE

CONTINUITY EQUATIONS 13

4.0 SPECIFIC APPLICATIONS 14

4.1 CRYSTALLINE MATERIALS 16

4.1.1 Vacuum 18

4.1.2 Dielectrics 20

4.1.3 Uniaxial Crystals 21

4.2 OPTICALLY ACTIVE MATERIALS 27

4.3 ELECTROOPTICAL MATERIALS 29

5.0 SUMMARY AND CONCLUSIONS 33

6.0 REFERENCES 34

iil



1.0 BACKGROUND

In an earlier publication (Bocker & Frieden, 1992) a new covariant matrix

representation of classical electromagnetic theory for vacuum was presented. The

quintessential basis of this representation is a skew-Hermitian space-time 8-by-8

differential matrix operator

['M-= M1 M2],2 j (1)

where

ax az ay

0 0 0-k0 0
and aM2 =x (2)

0 0 a_ ax 0 0

a a a a 0 0 0 0L x jy_ 5-z -;"r

and

"r =_ ict, i =_ ý . (3)

The symbol c represents the speed of light in vacuum. Use of the square matrix operator

[M] allows Maxwell's equations to be placed in a compact matrix form. From the matrix

form of Maxwell's equations, other landmark effects of electromagnetic theory are easily

derived with use of the simple matrix multiply operation: (a) the electromagnetic wave

and charge continuity equations; (b) the Lorentz-gauge and Coulomb-gauge definitions

of the electromagnetic potentials; (c) the wave equations for the potentials; and (d)

Poynting's theorem on energy conservation. Taking the four-dimensional Fourier

transform of the matrix form of Maxwell's equations leads to: (e) a Fourier
representation of Maxwell's equations; (f) their inversion, for the fields directly in

terms of the sources in Fourier-space; and (g) corresponding inversion formulae in

direct-space through the use of the convolution theorem.
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Because of the power of matrix operations, we were able to derive the key effects of
electromagnetic theory without the need for the usual plethora of vector calculus
identities that have become the standard in these derivations: Stokes' theorem, the
Divergence theorem, Green's theorem, and the formula for the curl of a curl, etc. Instead,
the simple matrix operations of matrix multiplication and matrix inversion were used.

In this document, the matrix representation of classical electromagnetic theory for
vacuum will be extended to include the presence of matter. Emphasis is placed on
electromagnetic wave propagation in linear, homogeneous, anisotropic optical media of
infinite extent w'-hout boundaries. A subsequent document treating wave propagation
in optical media will include boundaries.

2.0 EXTENSION OF THE MATRIX FORMULATION

2.1 MAXWELL FIELD EQUATIONS

The fundamental equations of classical electromagnetic phenomena, namely the
Maxwell field equations, serve as our starting point. In the Gaussian system of units, the
four Maxwell field equations in vector form are given by the following (Jackson, 1962):

Ampere-Maxwell law

VxH(r,t) cD (r,t) +- (4a)cat c"

Gauss' law for electricity

V-D (r, t) = 47pe (r, t), (4b)

Faraday's law of induction

VxE(r,t) = 1- B(r,t) 41tm (rt)' (4c)
ca3t c

and

Gauss' law for magnetism

V.B (r, t) = 4tpm (r, t). (4d)
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In rectangular coordinates,

V = ( a ) (5)
ax' ay' az

and

r = (x, y, z). (6)

The physical quaittities appearing in the Maxwell field equations are E (r, t) the
electric field; D (r, t) the electric displacement; B (r, t) the magnetic induction; H (r, t)
the magnetic field; f (r, t) the electric current density; ]m (r, t) the magnetic current
density; pe (r, t) the electric charge density; pm (r, t) the magnetic charge density;
and (r, t) a space-time point. Both magnetic charge and current densities (Magid, 1972)
have been included in Maxwell's equations for purposes of completeness. They, of
course, can be set equal to zero since magnetic charge has not been discovered in nature.

The electric displacement and electric field, as well as the magnetic induction and
magnetic field, are related (Jackson, 1962) through the expressions

D (r, t) = E (r, t) + 4r P (r, t) (7a)

and

B (r, t) = H (r, t) + 47t M (r, t), (7b)

where P (r, t) is the macroscopic polarization and M (r, t) is the macroscopic
magnetization. By using the approach adopted previously by Bocker and Frieden (1992),
the four Maxwell field equations (4) with the use of equation (7) can be cast into the
following matrix form

-] f.1 
(8)

M2M M 0 1d c s

The 4-by-4 matrix operators [M1] and [M2] are defined by equation (2). The matrix [0]
represents the 4-by-4 null matrix. The 4-by-1 field vectors appearing in equation (8) are

3



defined by

iEx H iPiE H iP M

f1 iY2] [Y-,Y and [ -Y (9)
iE, H iPz Mz

o 0 0 0

The source vectors in equation (8) are xcativistic 4-vectors defined by

e m

Y and [S2]- (1)

* e 
m

lcpe c ra

2.2 ELECTROMAGNETIC FIELD WAVE AND CHARGE

CONTINUITY EQUATIONS

Multiply both sides of matrix equation (8) by the complex conjugate of the space-time

operator [M]. This gives

*D O f2] + 471 
(Or S 2D2]2

The matrix [D] is defined by

E]2  0 0 0

[D] [M1 M11 + [M2  [M2 0 E 0 0 (12)

0 0 E2 0

0 0 0 E]2
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The D'Alembertian operator -2 appearing in equation (12) is defined by (Ohanian,

1988)

2= o2 32 2 32

ax2 DY2 az2 a't2 (13)

The matrices [D 1 ] and [D 2 ] are defined by

[D1] [M1 ] [M 1] and [D2 [M2 ] [M1 ]. (14)

Again, the matrix [01 represents the 4-by-4 null matrix. Matrix equation (11) is

equivalent to eight scalar equations. These scalar equations are equivalent to the vector

electromagnetic field wave equations:

V2 EE - t1 a2 e=4. V 4-P_ + 4nc m

--- E= p +---r+-VxJ
C2at2 2 at C

44nr a2  4n% (I15a)-4nt V (V°P) + -- 3-P+c2 (VxM)
ca2 ýý Cat4

and

V2H- 2H 4n=4n Vpm+ 4na-m - 4 nVxJe
C 2at 2c 2W

4n a2  4na (15b)
-4n V (VoM)+ - m- -- (Vx-P)-

C2 at2  c 2(Cat

and the electric and magnetic charge continuity equations

v.je+ e =0 (16a)a =

and

Vj m+ PM = 0. (1 6b)
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2.3 ELECTROMAGNETIC POTENTIALS AND LORENTZ
CONDITIONS

We found before that the space-time operator [M] defines the eight scalar Maxwell
field equations. We now observe the complex conjugate of [M] also provides the
definition of the electromagnetic fields in terms of the familiar vector and scalar
potentials. In particular, for the Lorentz gauge we have

[= [LP M2] (17)

where the relativistic 4-vector potentials are defined by

Ae
x x

!Y and [P2] (18)

J9e 9m

Equation (17) is equivalent to eight scalar equations. Six of these are equivalent to the
two vector equations defining the relationship between the electromagnetic potentials

and the electromagnetic fields:

d- c- - VxE (19a)
andca

H V pm 5-t ++VxA (19b)

The remaining two scalar equations correspond to the Lorentz conditions

V.Ae + 1 a-- e = 0 (20a)
C ý

and
VoAm + m = 0. (20b)

C Wit

Equations (19) and (20) are easily verified by explicit multiplication of the right-hand
side of matrix equation (17).
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2.4 ELECTROMAGNETIC POTENTIAL WAVE EQUATIONS

We know the electromagnetic vector and scalar potentials satisfy inhomogeneous
wave equations (Jackson, 1962). Once again, we show this by simple matrix
multiplication. First, substitute the matrix expression (equation 17) into the matrix
representation (equation 8) of the Maxwell field equations. This gives

MN1 MI ] F 21 +4,Rr M211 M01 al 4i ,
LM2 MIL2 MI1 2 LO d2L

For the Lorentz gauge choice of [ML,

I2 1 L2JkiM2M] M1 M21  [D 0] (22)M 2 1 LM 2

by direct evaluation of the matrix product. Then, by equations (21) and (22), the
following matrix representation of the electromagnetic potential wave equations is
obtained

0D P0 d2 4rC (23)

By explicit evaluation, this single matrix equation is equivalent to eight scalar
equations. Six of these scalar equations are equivalent to the following pair of
inhomogeneous wave equations for the electric and magnetic vector potentials:

V2Ae 2 2 A = c p (24a)

and
,V2A 1 2A _ 47tm_ 4na M.

V 2Am -I - - • (24b)
C22 C5t
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The remaining two represent the inhomogeneous wave equations for the electric and
magnetic scalar potentials:

v2 2 = 4n pe +47c V.P (25a)C 2 a t 2

and

V2 Tni 1 2 (Pm = 4 m pm+4n VeM. (25b)

2.5 ENERGY CONSERVATION: POYNTING'S THEOREM

The law of conservation of energy, often called Poynting's theorem (Jackson, 1962), is
an important milestone of electromagnetic theory. Again, simple matrix manipulation of
equation (8) will accomplish the derivation. Multiply both sides of equation (8) by the
Hermitian conjugate of the electromagnetic field vector. Directly,

LM2M O 4I 4t Fli Sl

[f, FM M2[] Lf2JLM 1J47 [f,[ 2 (26)f [Ma M f 2 2- M] =d 2 Cf2J S2J"(6

This is a single scalar equation representing Poynting's theorem

t+Hoa = 0. (27)

We define quantity u, the total energy density of the electromagnetic fields, to obey

u- (E o E+ H o H) (28)

and define S, the Poynting vector representing energy flow, by

S-= (E x H). (29)
471

Again, this is verified by explicit evaluation of the matrix products in equation (26).
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3.0 OPTICAL MATERIALS

The study of the propagation of electromagnetic radiation through matter comprises
an important branch of modern optics (Fowles, 1968). Many of the optical properties of

matter can be unaerstood on the basis of classical electrodynamics. In this section, the

matrix representations of both the Maxwell field equations (8) and electromagnetic wave

and charge continuity equations (11) will be used to mathematically describe wave
propagation in linear, homogeneous, anisotropic optical media of infinite extent.
Monochromatic plane-wave solutions in the absence of charges and currents will be

considered.

3.1 MAXWELL FIELD EQUATIONS

For linear, homogeneous, anisotropic optical media, both the macroscopic

polarization and the magnetization vectors are related to the electric and the magnetic
field vectors through 4-by-4 electric and magnetic susceptibility tensors [Xe] and [Xm].
Mathematically, we can express these relationships in the compact matrix form

[dil = [ e 0] F1 (30)
Ld2j 0 Xj L f2]

In a medium with neither free charges nor currents, we also have

= •1 (31)

Substitution of equations (30) and (31) into the Maxwell field equations (8) gives

M 12MM f f21]+ 4A r O1 M0l IXeX I fj] = O (32)

For monochromatic plane-wave fields, the electromagnetic field vector in equation

(32) can be expressed in the form

fi2 = fo 2 e (33)

9



where the relativistic 4-vectors [r] and [k3 are defined by

x kxx
k

[r] -Y and [k] =- Y (34)
z kz

ict i (co/c)

The superscript, T, appearing in equation (33) denotes transpose. The 4-by-1 vectors

[f01] and If02] appearing in equation (33) are both constant and describe th'?
polarization properties of the plane-wave field. With the use of equation (34), the

argument of the exponential function in equation (33) is given by

[k] T[r] = k-r-cwt = xkx+yk y+zk z-cot. (35)

The wave vector k in equation (35) defines the direction of wave propagation within the
medium. Its magnitude k, commonly referred to as the wavenumber, is related to the
wavelength X of the electromagnetic wave through the equation

2n
k = Y. (36)

The angular frequency co appearing in equation (34) is related to the frequency f
through thp equation

(o = 2 rf. (37)

Note the monochromatic plane-wave representation (equation 33) is equivalent to the
vector equations

E(r, t) = E ei(kr -cot) and H(r, t) = H ei(kor -wt) (38)

Substitution of equation (33) into equation (32) gives the following monochromatic
plane-wave matrix representation of the Maxwell field equations for an infinite
anisotropic optical medium:

[1K2] ] I [Xe 0] [ (39)
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The 4-by-4 matrices [K1] and [K2] are defined by

0 0-k 0 -k ky 0

[K 0 -kx 0 -k and [K 2 ]i kz 0 x0 (40)
=~ i Y n i(0L~il0 0 -k~ -kz -ky kx 0 0

kx kkz -k -0 0 0 00

where, by definition,

i-= (41)

Note the matrix equation (39) represents a system of algebraic equations in contrast to

equation (32), which describes a system of first order partial differential equations.

Through the use of matrix multiplication, equation (39) can be rewritten in the form

KIK2K F 1o +47c KIXe 1 Po ll= (42)
[K2 1] fo2i M KmJf021 Loi0

The 4-by-4 dielectric tensor [-] is related to the electric susceptibility tensor [Xe]

and the 4-by-4 identity matrix [I] through the defining equation

[E] =-[(1 + 47 el. (43)

Similarly, the 4-by-4 permeability tensor [g] is related to the magnetic susceptibility

tensor [Xm] and the identity matrix [I] through the defining equation

[g =- [I] +47c Xm]. (44)

Using definitions (43) and (44) with equation (42) gives

[KE K 1 [2 ] (45)

2 f02 K111



Matrix equation (45) is equivalent to the following transversality conditions in vector

form:

CO
kH = -- D, (46a)

0 CO0

keDo 0, (46b)

O)
kxEo c+-B o (46,c)

and

k.B = 0. (46d)
0

The next important step in this development is to cast equation (45) into an
eigenvalue equation. The 4-by-4 matrices [K1 ] and [K2] , first defined in equation (40),
can be rewritten in the form

[K1] = ik [oa1 ] + c [I] and [K2] = ik [oa2], (47)

where the matrices [ax1 ] and [a 2] are defined by

0 0 0 -ao 0 -a oa 0
0 0 0 a an c a0 -a 0 (8

2x zy0 0 0-a• a 0 -a 0
[0a1 ] = and [• 2 ] - z x (48)

0 0 0-a -a ac 0 0z y x

axaO cc 0 0 0 0 0

Again, the matrix [I] represents the 4-by-4 identity matrix. The matrix elements

a•x, aY , and az appearing in equation (48) are direction cosines (Morrill, 1961) defining
the direction of the wavevector k. These direction cosines are related to the components
of k and the wavenumber k through the equation

kx = ka x, ky = ka•y, and kz = kac . (49)

Also,

k2 = k2 +k2 +k2 and a2 + 2 + a 2 
- (50)

x y z x y z

12



With the use of equations (47) and (48), matrix equation (45) can be rewritten as a
generalized -igenvalue equation

lc I lOt2 ] foi nio 012' (51)f021~ f021
where the index of refraction n is related to the temporal frequency f, the wavelength X,
and the speed of light in vacuum c through the equation

n Xf = c. (52)

The matrix eigenvalue representation (equation 51) of the Maxwell field equations,
hereafter referred to as the Maxwell eigenvalue matrix representation, is the most
important result of subsection 3.1. Knowledge of both the dielectric and permeability
tensors [E] and [pt] of the optical medium of interest, as well as the direction of wave
propagation within the optical medium, completely specifies the two 8-by-8 matrices
appearing on both sides of equation (51). Once these 8-by-8 matrices have been specified,
then the unknown eigenvalues i/n (hence, eigenindices of refraction n) and

corresponding unknown eigenvectors [fol fo2] T (hence, eigenstates of polarization)
can, in principle, be determined. Off-the-shelf computer software packages, like
MATLAB for numerical computations and MATHEMATICA for symbolic
manipulations, can facilitate the process of finding the eigenvalues and eigenvectors of
equation (51).

3.2 ELECTROMAGNETIC FIELD WAVE AND CHARGE
CONTINUITY EQUATIONS

As previously demonstrated, multiplication of both sides of the matrix form of the
Maxwell field equations (8) by the complex conjugate of the space-time operator [M]
leads to the matrix form of the electromagnetic field wave and charge continuity
equation (11). For the case of monochromatic plane-wave fields (equation 33)
propagating in linear, homogeneous, anisotropic optical media (equation 30) in the
absence of charges and currents (equation 31), the matrix equation (11) simplifies to

[K1K2]K L K2 = ]o (53)

K302 0

1:3



Matrix multiplication further yields

K K1 K +K2 K2  K1 K2 +K2 Klp fo1 = . (54)

K2K 1 E +K 1 K2  KK 2 + K 1K 1*Ki jf2 L

Substituting the mathematical expressions for [K1 ] and [K2 ] from equation (47) into
equation (54), with the help of equation (52), leads to the following important result for

subsection 3.2:

fI = 1[ E ]L2. (55)
i-0• ~ ~ ~ 0 neI I-00ll- [42_ O t 02j

n 2

Hereafter, equation (55) will be referred to as the electromagnetic wave equation
matrix representation. Equation (55) greatly simplifies in structure when either the
dielectric tensor [E] or the permeability tensor [i ] is equal to the identity matrix [I].
This fact will become quite evident in section 4 where monochromatic plane-wave
propagation in a variety o, nonmagnetic optical media is considered in greater detail.

4.0 SPECIFIC APPLICATIONS

The utility of using the Maxwell eigenvalue matrix representation (equation 51) or

the electromagnetic wave equation matrix representation (equation 55) in solving wave-
propagation problems for a variety of nonmagnetic optical media will be pursued in this
section. Examples of nonmagnetic optical materials considered include crystalline
materials, optically active materials, and electrooptic materials. For nonmagnetic optical
materials, the permeability tensor, defined by equation (44), simplifies to the following

form

[41 = [IU. (56)

At this point, we introduce the optical impermeability tensor [ni] (Yariv & Yeh, 1984),
which is defined as the multiplicative inverse of the dielectric tensor I E. That is,

[1 = [E]-1. (57)
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With the use of equations (56) and (57), the Maxwell eigenvalue matrix representation
(equation 51) can be rewritten in the form

[: ( : ] E$2 40] (58)

Matrix multiplication involving the left-hand side of equation (58) leads to the following

pair of matrix equations:

i [fo2a (59a)
[a 2 ] [f 0 1 ] + [ 1 ] [f 0 2 ] = 2 ]

and

[i' [cy1 [ I [foi] + [hiI [0a2] [fo21 ] f= (59b)

Similarly, with the use of equations (56) and (57), the electromagnetic wave equation
matrix representation (equation 55) simplifies to

1 Ir-r (Xl lE - 1) 0 f•ol 2 = 1 (oi0.([1- ) 0c2 e-2 (1[) 1 (60)

Matrix multiplication involving the left-hand side of equation 60 leads to the following
pair of matrix equations:

[rIl] ([IM - [ac1] [a 1l] [c-IU) [foil = -21foil (61a)
n

and

fo2 = - n [2 Ia21 -I [f11ol. (61b)
n -

Equation (61a), like equation (58), is an eigenvalue equation. However, equation (61a)
involves the unknown vector [folI only. Equation (61b) allows [fo21 to be determined
directly in terms of the solution [fol] obtained from equation (61a). Thus, for non-
magnetic materials, the electromagnetic wave equation matrix representation (equation
55) reduces to the simplify pair of matrix equations given by equation (61).

15



At this time, it is important to emphasize the following point. Either the Maxwell
eigenvalue matrix representation (equation 58 or 59) or the electromagnetic wave
equation matrix representation (equation 60 or 61) can be used to determine the
eigenvalues (hence, eigenindices of refraction) and corresponding eigenvectors (hence,
eigenstates of polarization) associated with the propagation of monochromatic
electromagnetic plane-wave radiation in nonmagnetic media.

4.1 CRYSTALLINE MATERIALS

A basic feature of a crys*- Iline material, as far as optical properties are concerned, is
that crystals are generally electrically anisotropic. Hence, the macroscopic polarization
produced in the crystal by an applied electric field varies in a manner that depends on
the direction of the applied electric field in relation to the crystal lattice. It is a simple
matter to show that for ordinary nonabsorbing crystals (Born & Wolf, 1965), there
always exists a set of coordinate axes, called principal axes, such that the dielectric tensor
[e] assumes the diagonal form

Oc1 0 0 0

0 [, 22 0 0(62)
0 0 E 33 0
0 0 0 1

Using equation (57), we find the optical impermeability tensor is given by

EI1 0 0 0

0 -1 0 0
[Tf] = 22 (63)

0 0 E331 0
33

0 0 0 1
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Substituting these expressions for [c] and [qi back into the Maxwell eigenvalue matrix

representation (equation 58) yields the following 8-by-8 eigenvalue equation:

0 0 0 -XOLxI 0 -a Cx yEI 1  0
Xv 11 Z Y 11  0 j E

-a (X-1 0 -CC E 0 iE iE Ey 2 2  z 22  x 22  Y Y

0 0 0 -cXE 1 -a (aC 0 0 iE iEZ 3 3  y 3 3 z z
(X 11 y E22 Oz E33 0 0 0 0 0 0 / 0

=3  (64)

o -aoz a 0 0 0 0 -aX H n Hx

a 0 -aX 0 0 0 0 -ax H H Yz x y Y Y

-CC oa 0 0 0 0 0 -Co H Hy x z zZ

0 0 0 0 ca ax ai 0 0 0
x y z

Substituting the expressions for [e] and [fi] back into the electromagnetic wave

equation matrix representation (equations 61a and 61b) yields the following 3-by-3

eigenvalue equation:

1+oc2 (ell-1) a (e 2 2 -1) a( a a 3 3 -1)
X EX E 2 X 3 - E XE X

O CO~(11 -1 1  1 +oi E
a~~ ~ ( Y(221 - 1) o+0 2o E2 ( (X (E33-1) 1

y z E =- E (65a)

E22 £22 E2 2  Y n y

a~O~ (X (l - 1) aOty~ (E2- 1) 1 + oC2z( E3 - 1)

z z
L 33 E33 E33

"17



as well as the solution for the magnetic field in terms of the electric field

Hx X 0 -oCZ (E 22- cc Oy (EBB3- 1) 1 x

H 2 a, ( -1) 0 -C x (E33 -1) E (65b)

Hy (y (11 1) cxc (E 2 2 - 10 ] E
Hz - z

A crystalline medium in which all principal dielectric tensor elements are different
has two optic axes (Fowles, 1' 8). For this case, the crystal is said to be biaxial. On the
other hand, two of the principal dielectric tensor elements of uniaxial crystal are equal. A
uniaxial crystal has a single optic axis. A linear, homogeneous, isotropic optical medium

is commonly referred to as a Class A dielectric. The principal dielectric tensor elements
of a dielectric are all equal. Vacuum is a special case of a dielectric. For vacuum, the
principal dielectric tensor elements are unity. To illustrate the use of equations (64) and
(65), let us consider wave propagation in a vacuum, a dielectric, and a uniaxial

crystalline medium, respectively.

4.1.1 Vacuum

For a vacuous medium, the elements of the dielectric tensor [E] are given by

11 '= 22 = 33 =1. (66)

Substituting these values of ell E22, and P33 back into equation (65a) gives

1 0 0 E E

0 1 0 Ey 1 -2 Ey (67)

0 0 1_ Ez_ _ Ez

The 3-by-3 matrix on the left-side of equation (67a) is independent of the direction
cosines. Inspection of equation (67) indicates the only physically acceptable value for the
index of refraction is

n = 1 (68)

for all possible states of polarization.

18



Substituting the values of 1,l E2 2 , E3 3 and n from equations (66) and (68),
respectively, into the Maxwell eigenvalue matrix representation (equation 64) gives

0 0 0 -a 0 -a a 0
X Z y iE iE

0 0 0 -o o 0 -o 0 Ey z x iE iE

0 0 0 -a -oX oa 0 0 Y E .z y x iE~ iE~
a• a• a 0 0 0 0 0 0 .x y z =10.(9= i (69)
0 -a a 0 0 0 0 -ox H Hz y x x x

at 0 -ax 0 0 0 0-al H Hz x y y y

-aa YX 0 0 0 0 0 - HZ H Hy x 0 0a a a z Z iZ

0 0 0 0 oX cc cc 0 0 L0
x y z

Matrix equation (69) is equivalent to eight scalar equations. Six of these scalar equations
correspond to the vector equations

E0 = -(6cxH 0) (70a)

and
H° = +(fxE ), (70b)

and the remaining two scalar equations are equivalent to

& oE 0 (71 a)
and

6.H =0. (71b)

6 is the unit vector whose components are ax ', ax , and axz . Equations (70) and (71)
reveal the three vectors Eo, H0 , and & are mutually orthogonal to one another. Also,
the magnitudes of the electric and magnetic field vectors are equal. That is

Ho = Eo. (72)

Thus, monochromatic electromagnetic plane-waves in vacuum propagate at the
speed of light, namely c. The electric and magnetic field vectors associated with these
waves are orthogonal to each other as well as to the direction of wave propagation. Such
waves are called transverse waves. Any state of polarization is allowed as long as it
satisfies the above transversality conditions.
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4.1.2 Dielectrics

As previously mentioned, the principal dielectric tensor elements of a dielectric

material are all equal

E11 = 22 = 3 3 = (73)

Substituting these values of the principal dielectric tensor elements back into the 3-by-3

eigenvalue equation (65a) gives

x x ycz xE En xcc 2aa( X 2 E

: o 2 o E = 2 E (74)X a a aZ E y n2(E-1) E

zx yz z E E

The only physically acceptable value for the index of refraction satisfying equation (75) is

n = (75)

This value of the index of refraction applies to all possible states of polarization.

Substituting the values of ll, E22, and ,33 back into the 8-by-8 eigenvalue equation

(64) gives

0 0 0 -a•X C 1  0 -az c- C I -1 0 iE  iEx z Y/x[ x

0 0 0 -a '- 1 cX Z- 1  0 -(X X- 1  0  iE iEy/ z x Y/ Y/

0 0 0 -aoZ F- _a Y C- a E-1 0 0 iEz y/ x i~l iz

a F- a c az e 0 0 0 0 0 0 i 0
X y z ,- . (76)

0-(X o 0 0 0 0 - H n Hz y x Hx

oC 0 -cc 0 0 0 0 -a H Hzx y3 y3/

0 0 0 0 0 -a H Hz

0 0 0 0 o c x 00O! 0x y/ z
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Matrix equation (76) is equivalent to eight scalar equations. Six of these scalar equations

correspond to the vector equations

1
E0 ( 0 x Ho) (77a)

and

H + ( x E), (77b)

and the remaining two scalar equations are equivalent to

oE 0 (78a)

and

&OH = 0. (78b)0

Equations (77) and (78) tell us the three vectors Eo, H0 , and 6 are mutually orthogonal
to one another. Also, the magnitudes of the electric and magnetic field vectors are related
by the equation

H° = F Eo. (79)

So monochromatic electromagnetic plane-waves in a dielectric optical medium
propagate at the speed of c/n, where the index of refraction n is given by equation (75).
The electric and magnetic field vectors associated with these waves are orthogonal to
each other as well as the direction of wave propagation. Any state of polarization is
allowed providing it satisfies the transversality conditions (equations 77 and 78).

4.1.3 Uniaxial Crystals

As previously indicated, two of the principal dielectric tensor elements of a uniaxial
crystal are equal. Also, a uniaxial crystal has a single optic axis. Without loss of
generality, we will take the z-axis as the optic axis of the uniaxial crystal. The dielectric
tensor elements then have the form

El1 = E22 =C and E33 =e (80)

0 is referred to as the ordinary dielectric constant and eC is called the extraordinary
dielectric constant.
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For both uniaxial and biaxial crystals, the speed of propagation of a light wave in the
crystal is a function of the direction of propagation and the polarization of the light.
There exists, in general, two possible values of the phase velocity for a given direction of
propagation. These two values are associated with mutually orthogonal polarizations of

the light waves. Crystals are thus said to be doubly refracting or birefringent. The 8-by-8
eigenvalue equation (64) or the 3-by-3 eigenvalue equation (65a), in conjunction with
equation (65b), can be used to find these phase velocities and corresponding
polarizations states. Let us now look at some specific examples to i 1 :-strate these ideas.

Example 1: Wave Propagation Along the x-Axis. The direction cosines describing wave
propagation in the positive x-direction are given by

0a = 1, o• = 0, 0 = 0. (81)

Substituting the dielectric tensor elements from equation (80) and the direction cosines
from equation (81) back into the 8-by-8 eigenvalue equation (64) gives

0 0 0 -F-1 0  0 0 0 iE iE
0 X X

0 0 0 0 0 0 -6-1 0 iE iE
0 y y

0 0 0 0 0- 1  0 0 iE iE
e Z Z

E 0 0 0 0 0 0 0 i 0
o (82)

0 0 0 0 0 0 0 -1 Hx Hx

0 0 -1 0 0 00 Hy Hy

0 1 0 0 0 0 0 0 Hz H

000 0 10 0 0 0 Lo

It is a simple matter to show that only two physically acceptable eigenvalues satisfy
equation (82). The corresponding eigenindices of refraction are given by

n and n = e" (83)
E0 e (8)
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Associated with each value of n is a corresponding eigenvector solution (eigenstate of
polarization). The eigenvector solutions are

IffE iEi 0 x 0

iE i iEy0yy 0

iE 0 iE iz

0 0 0 0
C and C (84)

H 0 Hx 0
x

H F 0 H 0
z z

0 L0 0

where C is an arbitrary cons' -nt These two eigenvector solutic-, ,epreseiLt orthogonal
states of linearly polarized -lectronagnetic radiation

Substituting the dielectric tensor elements from ,quation (80) and the direction
cosines from equation (81) bad, nto equations (65a) and (65b), respectively, gives

0 GO Ex E
1x

0 y0 0 -2 E (85a)
0 0 E-1 Ez E

and

H 0 0 0 Ex

Hy n 0 0 -(e-1) E . (85b)

H 0 (c -1) 0 EEZ

23



It can be shown that only two physically acceptable eigenvalues satisfy equation (85a).
The corresponding eigenindices of refraction are again given by equation (83). The
corresponding eigenvectors (electric fields) obtained from equation (85a), and
subsequent solutions (magnetic fields) obtained from equation (85b), are identical to the
electric and magnetic field solutions summarized in equation (84). We see the Maxwell
eigenvalue matrix representation (equation 64) and the electromagnetic wave equation
matrix representation (equation 65) yield identical results. As previously indicated,
either representation can be used in solving wave-propagation problems in crystalline

media.

Example 2: Wave Propagation in the xz-Plane. Our second example concerns wave
propagation in the xz-plane. Suppose the direction of wave propagation is such that the

wavevector k makes an angle of 45 degrees with respect to both the positive x- and z-
axes. The direction cosines associated with this example are given by

a F2 OY = 0, F2 (86)

Substituting the dielectric tensor elements from equation (80) and the direction cosines
from equation (86) back into the 8-by-8 eigenvalue equation (64) gives

00 0 -e 1 0-- 1  0 0 iE xE
0 0 X

o o 0 0 0 1  0 -0 1 0 iE iE
0 0 Y Y

0 0 0- 1 0 C- 0 0 iE iE
e e z

E 0 0 E0 0 0 0 0 i2 0o e

H n H (87)

1 0 -1 0 0 0 0 0 Hy Hy

0 1 0 0 0 0 0 -1 H, H

0 0 0 0 1 0 1 0 0 0
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It can be easily shown that only two physically acceptable eigenvalues satisfy equation

(87). The corresponding eigenindices of refraction are given by the following formula:

2E
0o en = FEo and n= F- e (

0 e

Associated with each value of n is a corresponding eigenvector solution (eigenstate of

polarization). The eigenvector solutions are

iEx 0 iE i

iE i E 0

iEz 0 iE -i ( o/ e)
0z

S00 0
C -/ and C (89)Hx qo "- Hx X

H 0 H 0(9

e + o e
Yz + /2

H o H 0
z z

0 0 O0 0

where C is an arbitrary constant. These two eigenvector solutions represent orthogonal

states of linearly polarized electromagnetic radiation.

Example 3: Wave Propagation Along the Optic Axis. Our third example deals with

wave propagation along the optic axis. Recall the optic axis lies along the z-axis. The

direction cosines describing wave propagation in the positive z-direction are given by

oX = 0, o• = 0, X = 1. (90)

Substituting the dielectric tensor elements from equation (80) and the direction cosines

from equation (90) back into the 8-by-8 eigenvalue equation (64) gives the following
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eigenvalue equation:

0 0 0 0 0 -C 0 0 iE iE
0

0 0 0 0 C- 0 0 0 iE iE
0 y Y

0 0 0 _-1 0 0 0 0 iE iE
e Z Z

0 0 0 0 0 0 0 O0 i O0
e 0 - (91)

0-1 0 0 0 0 0 0 Hx Hx

1 0 0 0 0 0 0 0 Hy Hy

0 0 0 0 0 0 0 -1 Hz Hz

0 0 0 0 0 0 1 00 0

It can be easily shown that only one physically acceptable eigenvalue satisfies equation

(91). The corresponding index of refraction is given by the following:

n =0Mo

The corresponding eigenvector solution is given by

iE iCX X

iE iC
Y Y

iE 0

0 0
(93)

H E CHx qoy

Hy + n-x Cx

H o0

00
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where C and C are arbitrary constants. This eigenvector solution describesx y
monochromatic electromagnetic plane-waves propagating along the z-direction (optic

axis) with speed of c/n. The electric and magnetic field vectors of this wave are

orthogonal to each other as well as the direction of wave propagation. Any state of

polarization is allowed providing it satisfies the transversality conditions summarized in

equation (93).

4.2 OPTICALLY ACTIVE MATERIALS

Certain optical materials are found to possess the ability to rotate the plane of
polarization of electromagnetic radiation passing through them. This phenomenon is

commonly referred to as optical activity. Optical activity can be explained on the basis of
the assumption that the speed of propagation for left circularly polarized light in the
material is different from that of right circularly polarized light. If a dielectric material is
placed in a static magnetic field and a beam of linearly polarized light is sent through the

dielectric material in the direction of the applied magnetic field, then a rotation of the
plane of polarization of the emerging light is found to occur. In other words, the presence

of the magnetic field causes the dielectric material to become optically active. This is
known as the Faraday effect.

It is a simple matter to show that if the dielectric tensor has conjugate imaginary off-

diagonal elements (Fowles, 1968), namely

E11 + iE12 0 0
-ii 12

[£] = E2 11 0 
(94)

0 0 F_ 33 0

0 0 0 1

where £12is real, then the tensor describes an optically active medium. For the case of

the Faraday effect, the off-diagonal dielectric tensor element E12 is proportional to the
applied static magnetic field strength assumed to lie along the z-axis. The optic axis of
the material also lies along the direction of the applied magnetic field. Note the dielectric
tensor (equation 94) is identical to that of a uniaxial crystal aside from the off-diagonal

elements.
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Using equation (63), we find that the optical impermeability tensor has the form

0 0
£2 E2 2 £2

1 - 12 11 12
- i F-12 £11

0 0
[ EI]] 2 2 2 2 . (95)

£11 £12 £11 12

0 0
£33

0 0 0 1

Let us now look at another example to illustrate these ideas.

Example 4: Wave Propagation Along the Optic Axis. For this case we have

ax = 0, ao = 0, ao = 1. (96)
x y z

Substituting the dielectric tensor (equation 94), the optical impermeability tensor

(equation 95), and the direction cosines (equation 96) back into the electromagnetic wave
equation matrix representation (equation 61a) gives the 3-by-3 eigenvalue equation

E11 -i£ 1 2  0 E E

£2 E2 £2 -E2
11 12 11 12

12 11 E 12) E (97)+ i12 11 0 Yy

£2 £2 £2 2

11 12 11 -£12
0 0 1 EE

It can be easily shown only two physically acceptable eigenvalues satisfy equation (97).
The corresponding eigenindices of refraction are given by the following formula

n= £11-£12 and n= Li1 +£12. (98)
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Associated with each value of the index of refraction n is a corresponding eigenvector

solution (eigenstate of polarization). The eigenvector solutions are

E 1 E

Ey = and E C - , (99)

E ZL0E Z0Ez zE-

where C is an arbitrary constant. These two eigenvector solutions represent orthogonal

states of circularly polarized electromagnetic radiation.

4.3 ELECTROOPTICAL MATERIALS

In this subsection, we consider the propagation of electromagnetic radiation in a

crystalline material in the presence of an applied static electric field. For certain types of
crystals, the application of an electric field results in a change of the optical birefringent

properties of the crystal. This is referred to as the electrooptic effect. The electrooptic
effect affords a convenient means of controlling the phase or intensity of electromagnetic
radiation. The electrooptic effect is used in a number of applications, including optical

modulation, optical beam deflection, and spectral tunable filters (Yariv & Yeh, 1984).

There are prirmarily three electrooptic effects described to various degrees in the

literature. They are (1) the Pockels effect, (2) the Kerr effect, and (3) the Stark effect. The

Pockels effect is concerned with the alteration in the refractive properties in a

piezoelectric crystal by the application of a strong electric field. The effect is proportional

to the first power of the electric field. The Kerr effect deals with the occurrence of

birefringence in a transparent isotropic medium when it is placed in an electric field. The
medium then behaves like a uniaxial crystal with its optic axis lying in the direction of

the applied electric field. The effect is proportional to the square of the electric field

strength. The Stark effect concerns the displacement and splitting of the lines in atomic
spectra, and the appearance of new lines, owing to the influence of a transverse electric

field. For pedagogical purposes, we will only concern ourselves with the electrooptic

Pockels effect. A detailed discussion on the various electrooptic effects can be found in

the book of selected reprints on electrooptic devices by Kaminow (1974).
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A popular method for determining the eigenindices of refraction and corresponding

eigenvectors associated with wave propagation through electrooptical materials is
through the use of the index ellipsoid (or optical indicatrix) describing the electrooptic
crystal of interest (Yariv & Yeh, 1984). For the case of the Pockels effect, the mathematical
form of the index ellipsoid equation is given by

"Illx2 + r' 2 2 y2 + 13 3 z 2 +2i1 + 2Ty31 zx + 2r 1 2 xy = 1, (100)

where

Till 1/n 2 rll r12 r13

T 22 1/n 2  r21 r22 r 23

133= i1/n 2 + r3 1 r 32 r33  y (101)TI 23 0 r: r: 4 :: [4 Y
1131 0r51 r52 r53 Lý

1112 0 r6 1 r62 r63

The quantities 11.. are the elements of the optical impermeability tensor, r.. are the linear
(or Pockels) electrooptic coefficients, i are the components of the applieg static electric
field along the three principle crystallographic axes, and n. are the principal indices of

refraction of the electrooptic crystal in the absence of the applied electric field.

An alternative method for determining the eigenindices of refraction and
corresponding eigenvectors is through the use of either the Maxwell eigenvalue matrix
representation (equation 58) or the electromagnetic wave equation matrix representation

(equation 61). The dielectric tensor [E] can be determined from the optical
impermeability tensor [rl] with the help of equation (57), namely

[1] - . (102)

With the help of equation (101), the optical impermeability tensor can be written in a
form compatible with both equations (58) and (61), namely

['ii = [Io] + [Ail, (103)
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where, by definition

1/n2 0 0 0

0 1/n 2  0 0
2110] = Y , (104)

0 0O1/n• 0

0 0 0 1

and

rll r61 r51 0 r1 2 r6 2 r52 0 r13 r6 3 r5 3 0

[Al] = x r61 r21 r41 000 (15

+]60 r62 r22 r42 0 + r63 r23 r43 (105)

r51 r41 r31 0 r52 r42 r32 0 r53 r43 r33 0

0 0 0 0 0 0 0 0 L 0 0 0 0

Let us look at one final example, now illustrating wave propagation in an electrooptical

medium.

Example 5: Bismuth Silicon Oxide (Bi 1 2 SiO 20 ): Bismuth silicon oxide belongs to the

cubic class of crystals (Yariv & Yeh, 1984), hence

1/n2 0 0 0

0 1/n 2  0 0
T] 0 1n2 0 (106)

0 0 0 1

In addition,

r41 = r52= r 6 3 . (107)

All other Pockels (linear) electrooptic coefficients are equal to zero for bismuth silicon
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oxide, hence equation (105) simplifies to

0 0 0 0 0 0 r 4 1 0 0 r 4 1 0 0

[AT] 0r 1 0 00 r410 0 0 (108)
= 0 0 r 4 1 0 000

0 r 41 0 0 Yr 4 1 0 00 00 0 0 0

0 0 0 0 0 000 0000

Suppose, for this example, that the applied static electric field points only along the z-

axis. That is,

ýx = 0, ýy = 0, z # 0. (109)

Also, let us consider wave propagation along the z-axis. For this case we have

cx = 0, X = 0, 0X = 1. (110)x y z

Substituting the optical impermeability tensor information (equations 103, 106, 108 and

109), dielectric tensor (equation 102), and the direction cosines (equation 110) into the

electromagnetic wave equation matrix representation (equation 61a) gives the following

3-by-3 eigenvalue equation:

1 x x2_ •z r41 0 XE
no

0 0 E
~zr 4 1 2 0 nill

0

0 0 1 1E jEz

It can be shown only two physically acceptable eigenvalues satisfy equation (111). The

corresponding eigenindices of refraction are given by the following formula

no no

n n and n- n (112)2 12 (112)
1 + Jr 41 no z
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Associated with each value of the index of refraction n is a corresponding eigenvector

solution (eigenstate of polarization). The eigenvector solutions are

E 1 E 1

E C and E = C (113)
E EEz 0 Ez0

where C is an arbitrary const.ant. These two eigenvector solutions represent orthogonal

states of linearly polarized electromagnetic radiation.

5.0 SUMMARY AND CONCLUSIONS

From the vector form of the Maxwell field equations (4), an 8-by-8 covariant matrix

formulation of Maxwell's equatior: (8) was developed. Tantamount to this formulation
is a skew-Hermitian spac. ,..,e 8-by-8 differential matrix operator [M] defined in
equation (1). In additior, v ,er landmark effects of classical electromagnetic theory were
easily derived with tfe use of the 8-by-8 matrix operator [MI: (a) the electromagnetic
wave and chargu continuity equations (11); (b) definition of the electromagnetic
potentials (employing the Lorentz gauge) in terms of the electromagnetic fields, and the
Lorentz conditions (equation 17); (c) the wave equations for the electromagnetic

potential', (equation 23); and (d) Poynting's theorem (equation 26) on energy
conservation. These matrix-based derivations completely avoid the need for vector
calculus and attendant special-purpose identities involving multiple curls and
divergences. The necessary mathematical baggage is strongly reduced by the approach.
Note that the extension of the matrix [M] into a square form, described above, is essential
fo the above electromagnetic derivations.

The matrix form of the Maxwell field equations (8) were then cast into the Maxwell
eigenvalue 8-by-8 matrix representation (equation 51). This eigenvalue matrix
representation was used to solve for the eigenindices of refraction and corresnonding

polarization eigenstates for a variety of wave-propagation problems dealing with linear
homogeneous anisotropic optical media of infinite extent in the presence of
monochromatic plane-wave electromagnetic fields. In a similar manner, the
electromagnetic wave and continuity equations (11) were used to formulate a wave

equation eigenvalue 3-by-3 matrix representation (equation 61) for nonmagnetic
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materials. This eigenvalue representation can also be used to find the eigenindices of
refraction and polarization eigenstates for monochromatic plane-wave electromagnetic

fields.

A variety of examples were considered to illustrate the usefulness of these matrix
eigenvalue representations in solving wave-propagation problems. In particular, the
eigenindices of refraction and corresponding polarization eigenstates associated with
wave propagation in vacuum, dielectrics, uniaxial crystalline media, optically active
media and electrooptical media were easily obtained. Off-the-shelf computer software

packages, like MATLAB for numerical compus-ations and MATHEMATICA for symbolic
manipulations, are well suited for finding these eigenindices and polarization

eigenstates.
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