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Analysis of a Linearly Constrained

Least Squares Algorithm for Adaptive Beamforming

Franklin T. Luk

Computer Science Department, Rensselaer Polytechnic Institute

Troy, New York 12180

Sanzheng Qiao

Communications Research Laboratory, McMaster University

Hamilton, Ontario L8S 4K1 Canada

ABSTRACT

The problem of linearly constrained least squares has many applications in signal processing. In this paper,
we present a perturbation analysis of a linearly constrained least squares algorithm for adaptive beamforming. The

perturbatlun bounds for the solution as well as for thu lat¢t residual element are derived. We also propose an error

estimation scheme for the residual element, which can be incorporated into a systolic array implementation of the
algorithm.

1. INTRODUCTION

The least squares problem with linear equality constraints has important applications in signal processing,

e.g., adaptive beamforming. To solve this problem, McWhirter and Shepherd (51 proposed a systolic algorithm and

architecture. In this paper, we present a perturbation analysis of the problem and propose an error estimation

scheme for the McWhirter-Shepherd (MS) algorithm [51. This paper is organized as follows. The least squares
problem is defined in Section 2 and error bounds are derived in Section 3. An error estimation algorithm is given

in Section 4, and in Section 5 a numerical example is presented to illustrate how well our new algorithm works.

2. PROBLEM DEFINITION

Given an n x q complex data matrix X(n), the least squares problem with linear equality corstraints is to find
a q-element complex vector w(n) such that

JIX(n)w(n)JI = min (2.1a)

subject to the linear constraints
Sw(n) = b, (2.1b)

where S is a k x q (k < q) complex matrix and b is a k-element complex vector. Throughout this paper, we use

the 2-norm:
11" Ii = 11II -12-

In signal processing, new data arrives continuously. Define the data matrix X(n) recursively by

X(n) X(n - 1)X~) kx( )T )]'

i.e., the nth row x(n)T represents a snapshot at time n. Our goal is to compute the n-th residual element

r, = x,(n)Tw(n). (2.2)



Is the solution vector w(n) unique? Define a (k + n) x q matrix Sx(n) by

X(n )

We assume that k + n > q. The solution is unique if and only if the matrix Sx(n) has full column rank; that is,
the overdetermined matrix equation

Sx(n)w(n) = 0 (2.3)

has a unique solution w(n) = 0.

Next, we wish to transform (2.1) into a familiar unconstrained problem; see [31 and [4]. Let

p=q-k

and partition the matrix S as
S = (Si S2),

where S is k x k and S2 is k x p. For simplicity, we assume that S1 is nonsingular and upper triangular; for
example, S1 may be the result of an initial QR decomposition of S. Accordingly, we also partition X (n) as

X(n) = (Xl(n) X 2(n)),

so that X1 is n x k and X2 is n x p. Then (2.3) becomes

S( XS2fn) )w(n) = 0,
XI (n) X()

which is equivalent to
S1 S2 w(n) = 0,(0~ C(n))

where
C(n) =- X2 (n) - X,(n)S71S 2.

The matrix C(n) is called the Schur complement of S 1 in Sx. The equation (2.3) has the trivial solution if and
only if C(n) has full column rank. We proceed to eliminate the constraints. Let

w(n)= wl(n)(W2(n) '

so that wl(n) is k x 1 and w2 (n) is p x 1. Since

Slw(n) + S2 w2(n) =b,

we get
wi(n) = SI lb - Sj'S 2w2 (n). (2.4)

Let
v(n) = -XI(n)Sjlb.

We derive
IIC(n)w 2(n) - v(n)II = min, (2.5)

an unconstrained problem analyzed in [3], [4]. Now, what about the residual element r,? Define the Schur
complement matrix C(n) recursively by

2C(n - 1)C~n)= \c(n)r )



Partition the row vector z(n)T so that

x(n)T ( x(n)r X2(n)T)

where z 1 (n)T is 1 x k and x2 (n)T is I x p. We get

c(n)T = x 2 (n)T -- i(n)TS1 'S2 .

Let vn denote the n-th element of v(n). The last residual element of (2.5) is then

c(n)TW2 (n) - v,, = X2(n)Tw 2 (n) + xzl(n)Twl(n) + vn - = rn,

i.e., the same residual element as desired by the constrained problem (2.1).

How do we calculate rn recursively? Suppose that we have available a QR decomposition of the (n - 1) x p
matrix C(n - 1):

C(n- 1) = Q(n - 1)R(n- 1),

where Q(n - 1) is (n - 1) x p with orthonormal columns and the matrix R(n - 1) is p x p upper triangular. The
problem (2.5) is reduced to

(R(n -1) w~n u(n -1)' mi,
c(n)T ) \2n -(Vn ) 1=min

where u(n - 1) = Q(n - 1)Hv(n - 1). We triangularize the coefficient matrix by a unitary matrix P. Then

PH (R(n -1) u(n -1)) R(n) u(n))

c(n)T Vn ) 0 T =[ V
so that R(n) is p x p upper triangular. The matrix P consists of p Givens matrices. From P and Q(n - 1) we can
construct an n x p orthonormal matrix Q(n) such that C(n) = Q(n)R(n) and u(n) = Q(n)Hv(n). The desired
element rn is given by

r, = -(c, ... cp)-f,

where cl, ... ,cp denote cosines of the p rotations that make up P.

3. PERTURBATION ANALYSIS

Elddn [1] presented a perturbation analysis of the linearly constrained least squares problem. Since his theory
is general, it involves weighted pseudoinverses and their corresponding condition numbers. In this section, we
derive simpler perturbation bounds for the solution w(n) as well as for the residual element rn,. To simplify our
presentation, we will drop the argument (n) for the matrices and vectors, and let #c(M) denote the condition number
of a matrix M with respect to the 2-norm.

Let 4v solve the perturbed least squares problem

11(X1 + cEx, X 2 + EEx 2 ) CvJJ = min (3.1a)

subject to the perturbed linear equality constraints

(S 1 +EEs, S 2 +cEs,)b= b+cfb. (3.1b)

Suppose that t > 0 is a real variable and let

C + tEc = (X 2 + tEx 2 ) - (Xl + tEx,)(Si +tEs, )-I(S2 + tEs2 )

and
v + tf, = -(Xi + tEx,)(S1 + tEs,)-'(b + tfb).

3



Recall that Si is nonsingular and that C has full column rank. Suppose c is sufficiently small so that for t E [0, C]
we have S1 + tEs5 is nonsingular and C + tEc has full column rank. Let w(t) solve the matrix equation

(S, +tEs, (C +tEs( )w(t)= (( b+t f ) (3.2)
0 (C +tEc )H(C +tE,)) c ) (C +tEc)H(v +tf') (32

Then w(0) and w(c) are solutions to problems (2.1) and (3.1), respectively. Define w =_ w(O) and i, = (E). Then

io = w(O) + Efl(o) + O(-2 ).

Differentiate (3.2) with respect to t and set t = 0. We get

( HEC±CH CW(O) +( 6~)w(0)I ~ '+~~ (3-3)0 EcC+CHEc 0CHC IEHcv+CHf,

Let
~.(S1 S2) 0~( ) d =-(b) and fd (A).

Then ( , -Then S1- S2)- and 11C 11 < 11011.
k. 0 CHC J =S(H) n jj I~~I

Solving for &(0) in (3.3), we obtain

S($1 S2 )-'y[(Cb (I Es )
(0 S(H [fd H ( fV) 0 C (c H v) () (34)\C

where r Cw2 - v denotes the residual vector. Furthermore, by assuming

and SI 1bKl ) < (1f, Si S•J<vjj, 5)Ecj! <II1IiC (3.5a)

we derive the inequality

Ib•( )ll< I5 -1l I(C" )-' Hli[11dll + 11011131 II 11Iwlj] + jis-'11 110 11c-I{ 11rl l'l.

Consequently, we obtain the following perturbation result.

Lemma. Using the notations defined above and assuming that E in (3.1) is sufficiently small so that the inequalities
(3.5) are satisfied, we get

II? - W1 <EJ~7 ( IdII + 1)+ K(S)X(C) 2  }M + 0(C2). 0 (3.6)
1W1l -(110 1111 11 11W 1 I s1h Il0 11wll

To illustrate the effect of K(.,') on the solution of (2.1), consider a simple example in which S = (S 0 ) and
X (I, I,,), where I, is an n x n identity matrix and n < k < 2n. By observation, w, = S- 1b and w2 = -Wi.

Since oc(S) = K(Sj) in this example, we see why the presence of Kt(S) is necessary in (3.6).

4



We proceed to derive a bound for the error in the residual. Let

(0)= S, + tEs, S2 +tEs,) W(t) - (b +tfb)r(t) )= ( 0 C+tEc )V+ tf,

differentiate the equation, and then set t = 0. Using (3.4) to substitute for wb(O), we get

so)0 Ec ) ( 'C

where Ot = (OH)-1•H. Consequently,

i(0) =(I - CCt )(Ecw2 - f,) - C(CHC)-lEcr.

As for the residual element we have rn = er r, where en =_ (0 . 0,1) denotes the n-th unit coordinate vector.
Using the assumptions (3.5a) and noticing that w, = Ct v and r = (I - CCt)v, we derive our major result.

Theorem. Under the same conditions as in the Lemma, we get

IIP - r__ < f [II - CCtII(2K(C) + 1)] + 0(2) (3.7)

IlvI-

and
N < [III - CCtll(K(C) + IICII IIC teT'I + 1)] + o((2). o (3.8)

I1vII

Here are some additional remarks. If we set 3 = I and b = 0, then (3.6) leads to a perturbation bound for the
standard least squares problem [2]. We also note that 1IC.ýwII

2 + 11r"12 = IidII2. Thus, we can define

cos 0 = II1,C¢wll/llldll

and use (1/cos0) and tan0 in (3.6). The bound (3.7) is similar to a result derived in [2). The inequality (3.8)
indicates that I#n - rnj depends on K(C) as well as on l1vil. Both (3.7) and (3.8) can be simplified by using the
relation that III - C011 = min{1, n - p}.

4. ERROR ESTIMATION

Although the error bound (3.8) is simple, it requires Cte, whose computation involves at least a back-solve.
In this section, we present an error estimation scheme for the desired residual element. When the new data vector
x(n)T arrives, it is first processed by S so that xl(n)T is annihilated. In particular, let

zO) ... zO)) =x(n) and u(°) = 0.

Then the preprocessing proceeds as follows:

8 1 + ... (.. 8,1,1+1 ... 8,
lz1) -g' At-i) '(1-i) .. i-1)

and

u( -g 1

mmmm•~ ~~ U("1T lm---'



for 1= 1,2,... ,k, where gI = Z' /1)s- Writing in algorithmic form, we have

for 1=1,2, .. ,k

begin

gI = Z 811I

for j= + 1,. ,q

(1t) (I-i)
Z -- = 91S1J

u(0) = u(I- 1) - gibi

end.

The above process shows that

(2) = .2(n)T - (l)TSIS and u(k) Xl(n)TS-b(zk+l . .. z 2n - 1.1' 2 n b

These two variables are then used for updating the QR decomposition of C(n - 1) and computing the residual
element. We present below the algorithm derived in [4].

for I= 1,2,...,p

begin

C(n) = + (k+1-1)12.1, • V 1,1 | k+I

cosO - )Co 1= C 'I, I Itl,

(k+1-1)1 (n)

sin 01 = zk+l / ci;

for j =1+ 1,...,p

begin

'j = C 'j cos01 + 44+j-) sino 0

k+) = C(n-) s (k+l- 1) cos
2+1) -I- sin 01 + z.+ COS01+j

end;

v~n)= V(n-1)cosO1 + u(k+ 1-1) sin 0;
u(k+/) _(n-1)

I vt sinO, + u(2+l-1 )cosOi

end;

r, u(k +P) Y=I Cos 0i.

In the above, c (for k = n - 1, n) denotes the (i,j)-element of C(k) and v (k) the i-th element of v(k).
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Now, we discuss an error estimation scheme for the preprocessing. Let denote the corresponding computed
value and fl Ithe floating point computation. In the above procedure we calculate

f1J ( -- -fl,)I

f = f4(fi(- nt))

Define the relations between the exact and computed quantities as follows:

8ij= si,,(1 +r OUi~~i~j(E)), [

,(l) __ _(1) .t

.j _j (I+ ' '
4, g=(1 + a,',()),

1= bdl +j 1 6,(•)),

where 10i,j(e)l = O(c), Io'tf(e)1 = 0(E), 14,(0)1 = o(e), 10(')(c)l = o(e) and 61(c)l = O(c). The five quantities ai.,
j(), al, Y7) and pi are all real and nonnegative. We also assume that the errors such as o1i,pij(c) and (3 t (

are so small that higher order terms like (o1,v/.,i(e))2 and (a1 1,t(E))(qt 1 )(0)) can be ignored. Using the
lemma in [3], we obtain the following algorithm for estimating the errors in preprocessing.

for I= 1,2,...,k

begin

ai = maxf(,t- 1), at't}

for j==+..

1 .1t "- 0,71- '11+1gb', maxf a, pill)

end.

As explained in [3], the above estimation scheme can be incorporated with the preprocessing procedure and imple-
mented 'rn the same systolic architecture. Additional time is minimal because the calculations can be carried out
during the otherwise idle time of the processors.

The error estimate for rn can be obtained by the algorithm presented in [3] using (k+)I ... (9k )) and q as
the error estimates for (z•k) ... z4 )) and u(k), respectively. Again, we list the error estimation algorithm and
refer the details to [3]. Define the relations between the exact and computed quantities as follows:

(!n.-1) C (n- 1) ý n,( = n) ( ,, 0 , f )j = cij (1 + ia•,()), = c' (1 + Qi, ,j( )),

.(k) (k) (Vk1z + j), cosdi = coso,(1 +

fi(k) = u(k)(1 + ,l(k)O(k )()), sin9d = sin Ot(I + or,j0() (c)),

S=v n-)(1 + ='P+lIqiP+ I (n) = in)

and
Pn = r. (1 + r?9()).

7



The following algorithm estimates the error in the last element of the residual vector:

for 1= 1,2,...,p

begin

0,,, = max{V1,+,(t }1

forj=1+

begin

. -- c- •(- max . I+j_('•-+')wnsn j max,
"1lý,-, Cos0, +Z"r k +1- )sn

- sine8 max{Ei,,,oi,7j1+Iz, .t1  coS$, maxj( .,
tk+j (,•- I (•+I- c"'-,. s n i--. +1 t O 1

end;

l-" ' - cos8 1 max(6,P+,,at.}1 +Iu(r+'-t) sine T max{,0 &+- 1)o II} .
,p+ Iv,(' - ) cos +u(k+l- 1) sin 0u

r(k+l) IV•,(- sin#, rnax{fi,.+l ,,,7j.l+Iu('+l1-) cosi rn "x{I7•'+l') ,a0.i11

IV,('-') sin, -- u(k+'-1) cos oj

end;

9= ,}(k+P) max{of,-. , Opp).

5. AN EXAMPLE

The example in this section shows that the computed residual element may be accurate even when the matrix
C is ill-conditioned. In this case, the proposed scheme gives a better error estimate than (3.8). Both the MS
algorithm and the error estimation algorithm were implemented using MATLAB and run on a VAX 8300 with
machine precision E = 1.1102 x 10-16 in the Communications Research Laboratory at McMaster University.

Example. Suppose the exact constraint matrix and corresponding right side vector are

103 a a1 (.-120oOOv2/7 \
S= 0 -1 00 01 and b= '-/770 0

0 0 1 00 1 6-vr /7

Thus we set the error estimates as ai, = pt = I and Oi.(c) 61(E) = c. The data matrix at time n - 1 is

x(n - 1) 0o -1 V2- 0 0 0
0 0 -1 0 0

Suppose we know the exact R(n - 1) and u(n - 1):
(0.001 1000vr 2Vnd u10 1)- ,r2

R(n - 1) = 0 100 .. ..n ~ -1 /'-
0 0 16v/5/7

Similarly, the error estimates of their elements are all initialized as c. Now the new data

(nT= (--1 -V5 -2,/10 0.001 0 0) and u(°0 = 0

8



are available and their error estimates are initialized as '0) = 1, for j = 1,... 6, and 11(01 = 1, respectively. After

preprocessing, we get c(n)T = (0.002 1000v\5 2V/io) and v,, = -10v'2/7. The corresponding error estimates

are (3) = 1 for j = 4,5,6, and r/(3) = 23. The QR updating scheme and its error estimation algorithm are then

applied to R(n - 1), u(n - 1), c(n), vn and their error estimates. The exact residual element r,, = 6v'2/35. The
computed error is

it, - rj = 1.11 x 10-16.

The condition number of C(n) is 4.6 x 106 and the error bound as given by (3.8) equals 3.40 x 10-•. The estimation
algorithm gives a much more accurate value of 9.62 x 10-16.
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