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Analysis of a Linearly Constrained

Least Squares Algorithm for Adaptive Beamforming

Fraoklin T. Luk
Computer Science Department, Rensselaer Polytechnic Institute
Troy, New York 12180
Sanzheng Qiao

Communications Research Laboratory, McMaster University
Hamilton, Ontario L8S 4K1 Canada

ABSTRACT

The problem of linearly constrained least squares has many applications in signal processing. In this paper,
we present a perturbation analysis of a linearly constrained least squares algorithm for adaptive beamforming. The
perturbation bounds for the solution as well as for the latest residual element are derived. We also propose an error
estimation scheme for the residual element, which can be incorporated into a systolic array implementation of the
algorithm.

1. INTRODUCTION

The least squares problem with linear equality constraints has important applications in signal processing,
e.g., adaptive beamforming. To solve this problem, McWhirter and Shepherd [5] proposed a systolic algorithm and
architecture. In this paper, we present a perturbation analysis of the problem and propose an error estimation
scheme for the McWhirter-Shepherd (MS) algorithm [5]. This paper is organized as follows. The least squares
problem is defined in Section 2 and error bounds are derived in Section 3. An error estimation algorithm is given
in Section 4, and in Section 5 a numerical example is presented to illustrate how well our new algorithm works.

2. PROBLEM DEFINITION

Given an n x ¢ complex data matrix X(n), the least squares problem with linear equality constraints is to find
a ¢g-element complex vector w(n) such that

|| X (n)w(n)]| = min (2.1a)

subject to the linear constraints
Sw(n) = b, (2.1b)

where S is a k x ¢ (k < ¢) complex matrix and b is a k-element complex vector. Throughout this paper, we use
the 2-norm:
-t =1l

In signal processing, new data arrives continuously. Define the data matrix .X(n) recursively by

X(n) = (X(n-— 1)) ,

z(n)T
i.e., the nth row z(n)7 represents a snapshot at time n. Our goal is to compute the n-th residual element

Tn =.r(n)Tw(n). (2.2)




Is the solution vector w(n) unique? Define a (k + n) x ¢ matrix Sx(n) by

Sx(n) = (an)) .

We assume that k + n > ¢. The solution is unique if and only if the matrix Sx (n) has full column rank; that is,
the overdetermined matrix equation
Sx(n)w(n) =0 (2.3)

has a unique solution w(n) = 0.
Next, we wish to transform (2.1) into a familiar unconstrained problem; see [3] and [4]. Let
p=q-k

and partition the matrix S as

S=(Sl 52).

where S) is k x k and S» is k x p. For simplicity, we assume that S is nonsingular and upper triangular; for
example, S| may be the result of an initial QR decomposition of S. Accordingly, we also partition .X'(n) as

X(n) = (Xi(n) AXa(n)),

so that X, is n x k and X3 is n x p. Then (2.3) becomes

S S
<X1 (1n) Xr_-(n)) w(n) =0,

S, S
( 0 C(n)) w(n) =0,

C(n) = Xa(n) — X1(n)ST'S,.

which is equivalent to

where

The matrix C(n) is called the Schur complement of S in Sx. The equation (2.3) has the trivial solution if and
only if C(n) has full column rank. We proceed to eliminate the constraints. Let

v = (i)

so that w,(n) is £ x 1 and wa(n) is p x 1. Since

Sywi(n) + Shwa(n) = b,

we get
wy(n) = S7'b — ST Sws(n). (2.4)
Let
v(n) = —X,(n)ST'b.
We derive

|IC(n)wa(n) — v(n)|| = min, (2.5)

an unconstrained problem analyzed in [3], [4]. Now, what about the residual element r,? Define the Schur
complement matrix C(n) recursively by
- (C(n-1)
C(n) = ( c(n)T )




Partition the row vector z(n)T so that
()T =(z1(m)T z2(n)7),
where z,(n)T is 1 x k and z2(n)T is 1 x p. We get
e(n)T = z,(n)T - .tl(n)TSl“Sg.
Let v, denote the n-th element of v(n). The last residual element of (2.5) is then
c(n)T wa(n) = va = 23(n)Twa(n) + 21(n) w1 (1) + Vo = vs = 7,
i.e., the same residual element as desired by the constrained problem (2.1).

How do we calculate r, recursively? Suppose that we have available a8 QR decomposition of the (n — 1) x p
matrix C(n —1):

Cin-1)=Q(n~1)R(n-1),

where Q(n ~ 1) is (n — 1) X p with orthonormal columns and the matrix R(n — 1) is p x p upper triangular. The

problem (2.5) is reduced to
” (Ré?n;Tl)> wa(n) — (u(nv: 1)) ” = min,

where u(n — 1) = Q(n — 1)#v(n — 1). We triangularize the coefficient matrix by a unitary matrix P. Then

pH (R(n—l) u(n—l)) - (R(n) u(n))

e(n)T Up oT ¥

so that R(n) is p x p upper triangular. The matrix P cousists of p Givens matrices. From P and Q(n — 1) we can
construct an n x p orthonormal matrix Q(r) such that C(n) = Q(n)R(n) and u(n) = Q(n)¥ v(n). The desired
element r, is given by

o= ~{c1...¢)7,

where c1, ..., ¢p denote cosines of the p rotations that make up P.

3. PERTURBATION ANALYSIS

Eldén [1] presented a perturbation analysis of the linearly constrained least squares problem. Since his theory
is general, it involves weighted pseudoinverses and their corresponding condition numbers. In this section, we
derive simpler perturbation bounds for the solution w(n) as well as for the residual element r,. To simplify our
presentation, we will drop the argument (n) for the matrices and vectors, and let (M) denote the condition number
of a matrix M with respect to the 2-norm.

Let i solve the perturbed least squares problem
(X1 +eEx, X2+¢eEx,)d| = min . (3.1a)
subject to the perturbed linear equality constraints
(Si+¢Es, Sa+e€Es,)w=b+¢f;. (3.1b)
Suppose that ¢ > 0 is a real variable and let
C +1tEc = (X2 +tEx,) — (X1 +tEx,)(S1 + tEs, )~} (S2 + tEs,)

and
v tfy = (X1 +tEx, )(S1+tEs,) " b+ tfi).
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Recall that S, is nonsingular and that C has full column rank. Suppose ¢ is sufficiently small so that for t € [0, ¢]
we have S; + tE, is nonsingular and C + tE¢ has full column rank. Let w(t) solve the matrix equation

S1+tEs, Sy +tEs, wlt) = b+1tfy (3.2)
0 (C +tECYH(C +tE,) T\(CHEHNH v+ tf) ) '

Then w(0) and w(e) are solutions to problems (2.1) and (3.1), respectively. Define w = w(0) and @& = w(e¢). Then
W = w(0) + ew(0) + O(e?).

Differentiate (3.2) with respect to ¢ and set { = 0. We get
Es, Es, St S s on fo
( 0 EgC+CHEC>w(0)+(0 C"C) w(0) = (Egv+C”fu . (3.3)
s_ (S S . 1 0 (b s
S:(o I), C (0 C), d—_—(v) and fd:(fb)

51 5 - S=1; H fy-1 =
0 CHC =57(C70) and ||C]| < IC)).

Let

Then

Solving for w(0) in (3.3), we obtain

. S S, -t f Es, Es, 0 0 0
o0 = (3 die) (o) - (5 i) e+ (o) - (3 s

_ =1 oH Gy =1 ol Es, Es, a1~ Hm-1 [ 0
=S5-HCTCYyC [fd——<0 Ec)w}—s (C7C) (Egr)' (3.4)
where r = Cwy — v denotes the residual vector. Furthermore, by assuming
el < sl Nl < iwll, liEel < ICI (3.5a)
and E S S
E 2 S0 A
[(5 S| <)% 2)] <vsnen, (3.56)

we derive the inequality
(@) < IS~ IEH )= S [l + UCH ISIE Nl + 1S~ 1S ¢ IC el
Consequently, we obtain the following perturbation result.

Lemma. Using the notations defined above and assuming that ¢ in (3.1) is sufficiently small so that the inequalities
(3.5) are satisfied, we get

lw—u] _ { ) (o ) +siomier L 1+ o
— (S OY| ————+1 )} +6(S)C)Yy—"F—"—"1>+0 . 3.6
AR AN eI A T 39

To illustrate the effect of x(5) on the solution of (2.1), consider a simple example in which S =(S; 0) and
X = I,._ In ), where I, is an n x n identity matrix and n < k < 2n. By observation, w; = Sl'lb and wo = —w,.
Since k(S) = &(S)) in this example, we see why the presence of k(S) is necessary in (3.6).
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We proceed to derive a bound for the error in the residual. Let

0 _ S;1 +tEs, Sa+tEs, w(t) - b+tfy
r(t) ) 0 C+tEc v+tf, )’

differentiate the equation, and then set ¢t = 0. Using (3.4) to substitute for w(0), we get

(f((i))) = (E;l i‘?) W (b;)l %) (0 — Ja
—a-cen|(Br B )w-nl-cemer ().
where Ct = (CH(C)~'CH. Consequently,
#0) = (I - CC'YEcws — f,) ~ C(CHC) ' EHr.

As for the residual element we have r, = e,’,n r, where ¢, = (0,...,0,1) denotes the n-th unit coordinate vector.
Using the assumptions (3.5a) and noticing that w, = Ctv and » = (I — CC')v, we derive our major result.

Theorem. Under the same conditions as in the Lemma, we get

%ILH < e[l = CCMi(26(C) + 1)] + O(€?) (3.7)

and

|Pn = rnl
Il

< e[|l - CCHIR(C)+||C]| [ICtenll +1)] + O(e?). @ (3.8)
Here are some additional remarks. If we set S = I and b = 0, then (3.6) leads to a perturbation bound for the
standard least squares problem [2]. We also note that [|C'Swl||® + ||7||* = ||d||*>. Thus, we can define
cos 8 = [|CSuwl/ |
and use (1/cosf) and tanf in (3.6). The bound (3.7) is similar to a result derived in [2]. The inequality (3.8)
indicates that |#, — r,| depends on x(C) as well as on ||v||. Both (3.7) and (3.8) can be simplified by using the

relation that ||/ — CC'|| = min{1, n - p}.

4. ERROR ESTIMATION

Although the error bound (3.8) is simple, it requires C'e,, whose computation involves at least a back-solve.
In this section, we present an error estimation scheme for the desired residual element. When the new data vector
z(n)T arrives, it is first processed by S so that z,(n)7 is annihilated. In particular, let

(2(10) :go)) =z(n)7 and u ¥ =0.
Then the preprocessing proceeds as follows:
(Su LI FERERE Sl,q) ( 1 0) ( SIt SLi+1 - Sig )
RO ) =1 _ LU=1 (=1 Li=1)
0 zp o % g 1) \z Her o He

and




for{=1,2,... ,k, where g; = zf"”/s“. Writing in algorithmic form, we have

for[=1,2, ..,k
begin
gi=2""V/s11;
for j=1+1,...,q
z}l) = z}"l) LI
u® = yl=1) _ g,

end.
The above process shows that

k —-1o e
(z,(H,)l zé")) =z3(n)T - zl(n)TSI 1S, and u'f) = —.t:l(n)Tb1 1.

These two variables are then used for updating the QR decomposition of C(n — 1) and computing the residual
element. We present below the algorithm derived in {4].

forl=1,2,...,p

begin

( ~1) k+1-1)
et = \Jlel1 VR + |2 0

cos = cgvr;'”/c?";);

. (k+1-1) n),
sind; = et /cf_,),

forj=I{+1,...,p

begin

(n) _ (n=1) k-1 . .
aj =C; cosgl+4,‘+j sinf;;
k4D _ (n=1) . (k+1-1)

Sy =0 sxn0,+zk+j cos 6,
end;

o™ = ("D cos §; + ulk+'=-Dsing;;
ulk+) = —v;"'” sinf; + u¥+'=1 cos
end;

re = ulk+r) [1%-, cosb;.

In the above, cg";) (for k = n — 1,n) denotes the (i, j)-element of C(k) and vfk) the i-th element of v(k).




Now, we discuss an error estimation scheme for the preprocessing. Let * denote the corresponding computed
value and fl the floating point computation. In the above procedure we calculate

= f2 Y50,
50 = £ = s ),
D = £V~ fl(gimy)).

Define the relations between the exact and computed quantities as follows:
8ij = 8ij(1 +0i;6:;(c)),
.~,(1) (’) b
5 (146w e)),

o= 91(1 + oi(€)),
&“) = U(”(l + 7](')9(”(6)),

-

by = bi(1 + pibi(e)),

where |¢; j(€)] = O(e), lt/)(')(e)l = Ole), |&i(€)] = O(e), 18U (€)] = O(e) and |&(€)] = O(e). The five quantities o, g

C(’) a;, 7'V and y are all real and nonnegative. We also assume that the errors such as 0; j¢i ;(¢) and g“) (e)

are so small that higher order terms like (o1,¢;(€))? and (01,0 ,(e))(g(' l)u,“ 1)(e)) can be ignored. meg the

lemma in {3}, we obtain the following algorithm for estimating the errors in preprocessing.
forl=1,2,.. )k
begin
a = max{(“ R
forj=1+1,....9

0 1V Vg, maxfan o))
Q] lz(l)l ]
1

1y 1YV D140g, 8 max{eru }
= TatD]

end.

As explained in (3], the above estimation scheme can be incorporated with the preprocessing procedure and imple-
mented sn the same systolic architecture. Additional time is minimal because the calculations can be carried out
during the otherwise idle time of the processors.

(k)

The error estimate for r, can be obtained by the algorithm presented in [3] using (C N +1 - ) and 5'*¥) as

the error estimates for (zf:"f,_)l q")) and u(*), respectively. Again, we list the error estxmatxon algorithm and

refer the details to {3]. Define the relations between the exact and computed quantities as follows:

&nD =m0 (1 4 6 ja i (e)), &% =+ 0461 4(0)),
P = 2B 4+ (Fut(e)), cosfi = cos6i(1 + 011} (¢)),
a8 = u(B)(1 4 n®1g8) (¢)), sinfd; = sinf(1 + a;y;a&}",)(e)),
8"V = 0"V + €& prrai pra(0)), 8™ = o™ (1 + 04 pr1 i pa1(€)),

and
Pn = ra(l + 770(5))

7




The following algorithm estimates the error in the last element of the residual vector:
forl=1,2,...,p
begin
(k4i-1 )} .

o = max{{1, ¢y,

for j=1+1,...,p

begin
o |cf"'”coa0; max{Eu‘,,mJ}IHz:‘:"”smag max{(,‘"_‘:;"”,o.,;}| .
o= |r(""') cos @ +z“'“_”s|n0 | *
“1.y iy, !
-1) . kpi-1 SkHi=1)
C(H.-k) — Ic::, ) sin 4, max{E,',,a.,,}l-}»lziﬂH‘F) cos §; max{g:ﬁ o H
k+j |cl(";'” sin 0,—:I+, " cas 8,
end;
o _ IU,("-') cos 8; max{€) p41.00} | +Hu**H "V sing; max{n'* =1 5,1} .
Lp+1 |u'"'nc059¢+u“‘+"‘)Sinﬁl H
n(k_H) 1V gin g max{€r,p41,00 H+Hu® 71 cos 8 max{n* =1 o, 1}
lu,("'wsin 9 —ulk+=1) cos 9y
end;
— k
n =1 "'P)max{m,,,u‘,ap’p} .

5. AN EXAMPLE

The example in this section shows that the computed residual element may be accurate even when the matrix
C is ill-conditioned. In this case, the proposed scheme gives a better error estimate than (3.8). Both the MS
algorithm and the error estimation algorithm were implemented using MATLAB and run on a VAX 8300 with
machine precision € = 1.1102 x 10~ !¢ in the Communications Research Laboratory at McMaster University.

Example. Suppose the exact constraint matrix and corresponding right side vector are

10020 0 010 0 —1200001/2/7
S=]l 0 10 0 01 0] and b= \v10/700
0 0 10 01 6V5/7

Thus we set the error estimates as 6; ; = p; = 1 and ¢; ;(¢) = §;(¢) = €. The data matrix at time n — 1 is

-1 -5 -2V10 0 0 ©
X(n-)=|0 =1 V2 0 0 0
0 0 -1 00 0

Suppose we know the exact R(n — 1) and u(n —1):

0.001 1000y5 210 —10v2/17

R(n-1)= 0 1000 -2v2| and uln-1)=| 4/10/7
0 0 1 6v5/7

Similarly, the error estimates of their elements are all initialized as ¢. Now the new data
2(n)T = (=1 -5 —2V10 0001 0 0) and w® =0

8




are available and their error estimates are initialized as CJ(»O) =1,for j=1,...,6, and 5'® = 1, respectively. After
preprocessing, we get e(n)T = (0.002 1000v5 2v10) and v, = —10/2/7. The corresponding error estimates
are CJ(-a) =1, for j = 4,5,6, and 7'® = 23. The QR updating scheme and its error estimation algorithm are then
applied to R(n — 1), u(n — 1), ¢(n), v, and their error estimates. The exact residual element r, = 61/2/35. The

computed error is i
[#n — ral = 1.11 x 1071°,

The condition number of C(n) is 4.6 x 10% and the error bound as given by (3.8) equals 3.40 x 10~Y, The estimation
algorithm gives a much more accurate value of 9.62 x 10~ '6.
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