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Nonnormal Multivariate Distributions: Inference
based on Elliptically Contoured Distributions *

T. W. Anderson!

Stanford University

1. Introduction.

The classical or conventional multivariate analysis is based largely on the multi-
variate normal distribution. This probability model fits many, though not all, sets of
continuous multivariate data. The theory and methodology of inference for this model
is highly developed and has been exposited extensively. The nature of the normal dis-
tribution permits considerable analysis in terms of conventional matrix algebra. The
fact that the parameter set consists of a vector and a matrix that can be interpreted
as the mean of the observation vector and its covariance matrix makes inference rel-
atively easy to interpret and simplifies the analysis. Of course, these advantages of
simplicity are also disadvantages of inflexibility that restrict the applicability. It is
useful therefore, to extend multivariate probability distributions beyond the normal
class.

In this lecture we shall describe a larger class of distributions, thus augmenting
the scope of analysis. The set of nonnormal distributions, of course, is very wide; we
cannot hope to cover more than a portion of this field. In the International Sympo-
sium on Multivariate Analysis and Its Applications held in Hong Kong in March 1992
Ingram Olkin gave a paper entitled “Multivariate Nonnormal Distributions.” The top-
ics included bivariate binomial distributions, bivariate Poisson distributions, bivariate
exponential distributions, and multivariate distributions with given marginal distri-

butions; none of these subjects will be included in this present paper. The title of

*The first C.G. Khatri Memorial Lecture given at Pennsylvania State University, May 8, 1992.
'Reaearch supported by the U. S. Army Research Office Contract No. DAAL03-89-K-0033 at
Stanford University




William Cleveland’s presentation to the Hong Kong conference was “Computer Inten-
sive Methods and Graphical Methods for Analyzing Multivariate Data;” his approach
was that of data analysis - another subject I am not including here.

My paper is devoted to the exposition of elliptically contoured distributions and
statistical inference appropriate to such distributions. This class of distributions,
provides more flexibility, specifically, it permits nontrivial kurtosis; the marginal dis-
tributions can have long tails. At the same time much of the structure of the normal
distribuiion is retained.

As we shall see, many of the statistical methods appropriate to normal parent
distributions are also suitable for a more general class of elliptically contoured distri-
butions, but since the kurtosis in an elliptically contoured distribution may be quite
different from the null kurtosis of the normal other methods are often needed. Such
methods may be more robust than normal methods, which are usually based on lin-
ear and quadratic functions of the observations. Not only does this larger class of
distributions call for new methods, the class forms an excellent framework in which
to study and evaluate robust procedures.

It can be expected that in the future much more attention will be paid to the
elliptically contoured distribution. This paper will point to some important aspects.

Chmielewski (1981) has given a review of the papers on spherically contoured and
elliptically contoured distributions that appeared before 1980. He mentions Maxwell
(1860), Bartlett (1934), and Hartman and Wintner(1940) as three of the earliest
papers. Kelker (1970) developed some of the properties of spherically and elliptically
contoured distributions. A recent summary is given in Fang and Zhang (1990). See
also Fang and Anderson (1990).




2. The Normal Distribution.

2.1. General

The normal distribution of a (nondegenerate) p-component random vector X =
(X1,+++,X;) has a density which can be written

1 -$@-vyA~ (@z-v
oy 1)

where v is a p-component vector and A is a positive definite matrix. Integration

shows that the mean vector and covariance matrix of X are
EX =v, EX -EX)X -EX) = A, (2.2)

respectively, There is mnemonic advantage in re-naming this vector v and this matrix

A as p = (py,- -+, 4,) and ¥ = (0y;), respectively. Hence the density of X is

1 “La-py X -,
(2,,);:/2|)3|1/2e A @-m), (2.3)

we write X ~ N(p, X).

The characteristic function of X is

et X _ it Zt+it'p (2.4)
The moments of X up to order 4 are
EX =p, E(X —p)(X —p) =%, (2.5)
E(Xi — m)(X; = pi)( Xk — i)' = 0, (2.6)
E(Xi — mi)(X; — pj, ( Xk — pi)(Xi — ) = 0ijom + oixoji + duoje (2.7)

Every moment of odd order is 0. The contours of constant density are ellipses

(z — pu) XY (x — p) = const. (2.8)




2.2. The spherical normal distribution

Let A be any nonsingular matrix satisfying

AA'=X. (2.9)
Define
Y =AY(X - p). (2.10)
Then the density of Y is .
—_— Y'Y
(2”)p/2e 2 (2.11)
The characteristic function of Y is
Eet'Y — o-it't (2.12)

The moments of Y of order up to 4 are

EY =0, EYY'=1, (2.13)
EYY,Y, =0, (2.14)
EYY; YY) = 60k + 6ixbjt + 6tbjk, (2.15)

where 8; = 1 and §;; = 0, ¢ # j. Every moment of odd order is 0. The contours of

constant density are spheres centered at the origin.

Define
R =|Y|'=Y"Y, (2.16)
1 1
U=-—Y==Y. 2.17
Y =R (@17)
Then
R 2y, (2.18)

where (2.18) means R? is distributed as x?, the chi-squared random variable with p
degrees of freedom. The density of W = R? is

1

SN ¥ 5 P 1"
21’/21*(11/2)w2 e 1Y, (2.19)
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The vector U has the uniform distribution on the unit sphere
uu' = 1; (2.20)

that is, the distribution of PU is that of U for any (fixed) orthogonal matrix P. We
write this as
PULU. (2.21)

The scalar R and the vector U are independent. We can represent Y as
Y £ RU, (2.22)

and we can represent X as
X £ u+ RAU. (2.23)

If X is of rank r, then we can write ¥ = AA' with Apxr. If Y ~ N(0,1I,), we
can represent X as AY + v, where R? ~ x? and U has the uniform distribution on
uu’ = 1 in r dimensions. The characteristic function of X is (2.4).

The moments of Y are the products of the corresponding moments of R and those

of U. Since the first two moments of R? are
ER? = p, ER* = p(p +2), (2.24)

the odd-ordered moments of U are 0,

UV = ——cyy' =

77 oI, (2.25)
1
EU.'UJ'UkU{ = m(&j6kl + 6ik6jl + 6&16_1'}:)- (2'26)

3. Elliptically Contoured Distributions.

3.1. Spherical distributions.

Analogous to the normal distributions a spherical distribution in general can be

characterized in several ways as follows:




1. fY (p x 1) has a density, it is of the form g(y’y), where g(y'y) > 0 and

[ [ sy =1. (3.1)

Contours of constant densities are spheres: ¥’y = const. However, Y may have a
spherical distribution even though a density does not exist. For example, the vector
U defined in Section 2 has a spherical distribution.

2. For every orthogonal matrix P

Y £ pPY. (3.2)

If Y has a density, (3.2) follows from the form g(y'y).
3. Property 2 imrplies that the characteristic function of ¥ has the form

cet'Y = 4(tt). (3.3)
4. The random vector Y has the representation
Y £ RU, (3.4)

where R > 0, U has the uniform distribution on 'u = 1, and R and U are indepen-
dent. The density of R is found from g(y’y) by transforming to polar coordinates and
integrating out the p — 1 angles. [See Anderson, (1984), Problems 1 to 4, Chapter 7,

for example]. The resulting density is

T Lt

r)= rP1g(r?). 3.5
1) = T () (35)
We note that ER* < oo if and only if
00
[) rh*P=1g(r?)dr < oo. (3.6)
We can write the characteristic function of Y as
s(t't) = g REU /:"w(r%'t) F(r)dr, (3.7)
where
w(s's) = geitU (3.8)
6




is the characteristic function of U.
5. If ||a|| = ||b]l, then
ay 2by.

(3.9)

We shall denote the distribution of Y with characteristic function (3.3) as S,(¢).

3.2. Elliptically contoured distributions in general.

Define
X=p4+AY,

where A is a nonsingular matrix such that
AA = A

1. The density of X is

A gl(z — p) A~ (= — p)).

3. The characteristic function of X is

Ee®X - ¥ P y(s' As).

X £ 4+ RAU,

where R and U were defined above.

Contours of constant density are

(2 — u)’A™Y(z — u) = const.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

We shall denote the distribution of X with characteristic function (3.13) as

EC,(s, A; 9).




3.3. Moments.

The moments of X can be found from the moments of R and U, which are
independent. The moments of U were given in Section 2. We find

£EX =p, (3.16)
EX —pu)(X —p) = _f,'_pl_i:A =X, (3.17)

say,
E(Xi — pi)(X; — pi)(Xi — me) =0, (3.18)

In fact, all moments of X — u of odd order are 0. The fourth-order moments are
obtained from (2.26) and (3.10) as

E(Xi — wi)(X; = p)( Xie — pe)(Xi — )

ER?
=T 2)(’\lJAkl + AikAji + AiAje)
ER?
r3-73Y) p (U,JO’H + oo + actajk) (3.19)
T (ERY?p

The first moments of R are related to the characteristic function ¢(:) by

ER? = —2p4'(0), (3.20)

ER* = 4p(p + 2)¢"(0). (3.21)

The fourth cumulant of the i-th component of X standardized by its standard devi-

ation is

E(Xi —m) = 3EX: — w)? _ oam — W)

(3.22)

[E(X: = i) ]2 N E3%
_ | R P _ 1]
- (ER*)*p+2
_ ¢u(0) _ ]
= 3igopE !
= IJx«,




say. Note that the fourth cumulant is 3x for every component of X. The fourth
cumulant of X.',X,‘,X),, and X is

kit = E(X; = i) (X — 1) (X — p)(Xi = 1) = (0ij0n + Oirajt + o ji)

= &(0ijom + ikl + Tudjk). (3.23)

3.4. Marginal and conditional distributions.
The characteristic function of a linear function of X, say Z = BX. is
gt Z _ goit'BX
= ¢t'BByt'BAB't) (3.24)

by use of (3.13). This shows that Z has the distribution EC,(Bu, BAB';¢). In

particular, if
xm (1)
X = @ ) y B = “(2) ) , = Zu Tn , (3.25)
X 7] Xn X

where X; has p, components, then X; has the distribution ECp(u“), Zn; é)-

We can also characterize marginal distributions in terms of the representation

(3.14). Consider
Yo\ , U
Y=(ym)=RU=R<wﬂ : (3.26)

where Y1) and U have p, components and Y? and U'® have p, components
(p1 + p2 = p). Then R? = YW'Y® has the distribution of RZUM' UM, and

Oy, yo'ym

vy = 4 X
U U0 Y (3.27)
In the case Y ~ N(0,1,) (3.27) has the beta distribution, say B(p,p2), with density

I‘(p/z) 1p,—1 lpr—1

- - = <z<l1. .

Mo/ (D7 052st (329
Hence, for arbitrary 5,(¢)

YW 4 pv, (3.29)

9




where R? 2 R%, b~ B(p1,p2), V has the uniform distribution on v'v = 1 in
p1 dimensions, and R?,b, and V are independent. All marginal distributions are
elliptically contoured.

Now suppose that A satisfying (3.11) is lower triangular. It can be partitioned as

A= ( Aun 0 ) (3.30)
An Agn

Then the first p, rows of (3.14) yield

XM & L0044, Y0
L 44 ARV, (3.31)

Suppose X has the density

gl(z — p) A7 (= — p)] (3.32)
= g{[#® - u = B=® - uD)|' Aua [z - 4 — B(=® - 4] + @},

where B = AlgAz-zl, An,z = Au - Ale;;Agl, and
Q2 = (2 — p®YAZ (2 — u®). (3.33)

[See Anderson (1984), Chapter 2, Problem 58, and Theorem A. 3.1.] The conditional
density of X" given X® = £ is (3.32) divided by g5(Q2), where g5(-) is the
marginal density of X(® at 2(?). Note that g,2(-) is the density of an elliptically
contoured distribution. From (3.32) it follows that

E(XM2®) = pO 4 B(2® — p@), (3.34)

Var(X W|2®) = h(2?) Ay 4, (3.35)

where h(z'?) is a nonnegative function of #(?). Note that the conditional expectation
of X given £(? is the same as for the normal distribution and the conditional
covariance matrix is proportional to that to that for the normal. In this sense the

structure of the normal distributjon is maintained.

10




3.5. Examples.

1. The multivariate t-distribution. Suppose Z ~ N(0,I,), ms® < x3, and Z
and s? are independent. Define Y = (1/s)7. Then the density of Y is

m _mip :
[(Z)mp/2xr/2 m )
e B _ Y|P m X2
R ~F,, =X 3.37
P p T XA (3.57)
If X =u+ AY, the density of X is
L(=32) A (z—p)yA ' (z—p)
——————F(%)mﬂzﬂnlzﬂz 1+ - (3.38)

2. Contaminated normal. The contaminated normal distribution is a mixture of
two normal distributions with proportional covariance matrices and the same mean

vector. The density can be written

(1— &) _e-3@-prA™ @-p)

- 6_____16—3‘;(::-[1.)'/1"(2—;1)’ (3.39)
(2m)P/2| Al (27)°/2| Al

where ¢ > 0 and 0 < £ < 1. Usually ¢ is rather small and ¢ rather large.

4. Sampling.

4.1. The density and characteristic function

A random sample from EC,(ps, A; ¢) consists of N vectors X, X,,---, X n. The

density of the sample is

N
1A% I gl(za — 1) A (20 — p)). (4.1)

a=1

The characteristic function of the sample is
. N tl X N i . n tr N
feiLam taa — T [e't°“¢(t;Ata)] = &' La=i ba 1 TT 4(2, At (4.2)
a=1 a=1

11




In the case of the normal distribution the density and characteristic function are
based on

1
g9(w) = (27-),,‘56"”/ ? (4.3)
é(v) = e~v/3, (4.4)
The density of X;,:-:, XN is
S 1 1 A 4.5
EW exp [-—5(% - p) A (20 ~ #)] (4.5)
N
= R IA  ep -5 tr 47 3 (e - e - ]

= (2r)"PN2| AN 2 exp [—-% {tr ATTA+ Nz - p)A™ N (z - u)]} ,

where N
A=Y (20 - &)(za - B, (4.6)
1 N
T = —N- g [ P (47)

Display (4.5) shows that A and & are sufficient for A and ¢ and A and Z are
independent. In fact 2 ~ N[u,(1/N)A] and A ~ W(A,n), where W(A,n) denotes
the Wishart distribution with covariance matrix A and n = N —1 degrees of freedom.
That A and Z are sufficient statistics and are independent is due to the fact that
g(w) is exponential. These properties do not hold for other elliptically contoured

distributions.

4.2. The asymptotic distribution of the sample mean and

covariance matrix

We define the sample covariance matrix as

s=1a4, (4.8)
n

12




where n = N — 1 is the number of degrees of freedom. Then the sample mean and

covariance matrix are unbiased estimators of the model mean and covariance matrix:
Ex = p, ES=X. (4.9)
By the law of large numbers they are consistent estimators as N — oo:

SHp, S33. (4.10)

The covariances of Z and S are

1
Cov(Z) = NE’ E(si; — oij)(® — p)=0 (4.11)
1
Cov(si;, sk) = %(Ue,‘dkt + 0ikoi1 + ougik) + ;(Uikajl + 0uo;i). (4.12)
Then as N — oo
nCov (sij, se) — (1 + k)(owoji + oaoji) + KOijow, (4.13)

It will be convenient to use more matrix algebra. Define vec B, B ® C (the
Kronecker product) and K., (the commutator matrix) by

[ b, 1
b2
vecB = vec(by,---,ba)=| |, (4.14)
L bn J
b C -+ haC
BC= : : ) (4.15)
bmlc e bmnC
K,..vec B = vec B’. (4.16)

See, for example Magnus and Neudecker (1979). We can rewrite (4.13) as

n Cov(vecS) = §&(vecS — vec X')(vecS ~ vec XY
= (k+1)Ip + Kpp) (X ® X) + kvec X(vec X).  (4.17)

13




Then
Jn [ (& - p)f ] (4.18)

vecS — vec ¥

)5 : )
0/'\ 0 (k+1)I;s 4+ Kp) (LR L)+ xvecE (vecE)

by the central limit theorem for independent identically distributed random vectors
(with finite fourth moments). This statement forms the basis for large-sample infer-

ence.

4.3. Functions of sample covariances

Define
8 = vecS, o =veck. (4.19)

Consider f(8), a vector-valued function. Under the usual regularity conditions

Vit - £@) = L e o) 401 (4.20)
4, N{ ,ag:)[z(u )(2@2)-}-&0’6}(9%—)) }

Functions of the sample covariance matrix are also asymptotically normally dis-
tributed.

Note that if [0 f(e)/80']o = 0 the covariance matrix in (4.20) is simply a muitiple
of the covariance matrix when sampling from a normal distribution. Suppose f(-) is
scale invariant (homogeneous of degree zero); that is,

f(cs) = f(s), Ve>0, VSpd. (4.21)
Then 8f(cs) _ 8f(cs)B(cs) _ Of(ca)
0= ="or oc - o8 (422)
that is, (for ¢ = 1)
agf:) =0. (4.23)
14




Then

vatre - son 4 v {o, 204 0L zo ) [FD L sy

that is,
\,}/—%[f(s) - f@) SN {0, 2%’—)(2 ® %) [% } . (4.25)

Note that the normal distribution in (4.25) does not depend on « [tnat is, g(-)].

This result applies to any sequence of random positive definite matrices W, such
that W, 5 £ and

Vn(vecw, — vecw) > N[0, 11(I2 + K p)(2 @ 2) + nww'], (4.26)

where w,, = vec W, and w = vec 2. Then

Valf(w,) - f(w)] 5 N {o, 27, a;g.:)(n =X1)) [%“’—)]} . (4.27)

Tyler (1983) gave the above result in Theorem 1.

Ezample. Correlation coefficients. Let

. g = (4.28)

be the sample and model coefficients. The limit distribution of

vn ..
—\/—I__'F_;(r'.j -‘9"1')1 L1 = 17' *r Dy

is the same as for S having a Wishart distribution.

(4.29)

Ezample. Eigenvectors and ratios of eigenvalues. The eigenvalues of the sample
covariance matrix satisfy
|S-AIl=0 (4.30)

The eigenvectors satisfy
Sz = \z, i=1,---,p. (4.31)

For p = 2 there is an angle 6 such that

15




s cosf sinf |\ ( cosd sind A O
—sin@ cosé ~sin@ cos@ 0 X/

(4.32)

The normalized eigenvectors are (cos @, sin #) and (— sin 8, cos #). The angle 8

and the ratio of eigenvalues A;/A; are scalar invariant. Hence, they have the same

asymptotic normal distribution after correcting for the kurtosis as when sampling

from the normal distribution.

4.4. Likelihood ratio criteria.

For normal distributions usually
—2log LRC 5 x3

under the null hypothesis H. Consider a scalar function k(8) such that

—g Ohlo) _
ho)=0, —=2=0, o€k

Then

0%h(o)

nh(s) = ZvA(s - o) 5]

d
- Z Vixga
1]
where v; are the characteristic roots of

19%h(o)
2 dodo’

and x? denotes x? with 1 d.f.

Foa V(s — ) +ay(1)

RA+x)(2®X)+ koo

Suppose A is scale invariant; that is,
h(cs) = k(s), Ve> 0, Vs pd.
Then

0%h(cs) _ 2 ,Oh(s)

0="3a ~°°s0s"

16
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(4.35)

(4.36)

(4.37)

(4.38)




For ¢ = 1 we obtain .
k(o)

/ = V. .
ey o=0 (4.39)

Here v; are the characteristic roots of

1+ n)%%’i;—:,l(z ® X). (4.40)

o

— 2log LRC = nh(s) 5 ¥_vix? (4.41)
under normality, then for an elliptically contoured distribution with kurtosis «

—2log LRC 4 2
T+ x — Z': vixi. (4.42)

Ezample. Sphericity. Consider the null hypothesis
H:A=constl,. (4.43)

Under normality the likelihood ratio criterion is

n/2
15| ] , (4.44)

LRC = -(E)-;
)

which ie clearly scale invariant, and
— 2log LRC = nlplog(tr S) — log |S| — plog p]. (4.45)

Then

1 + K X I
where the number of degrees of freedom is f = 1p(p +1) — 1.

(4.46)

Many hypotheses in multivariate analysis are invariant with respect to some group
of linear transformations. For example, the hypothesis (4.43) is invariant with respect
to transformations X — cQX, where Q is orthogonal. If the group of transforma-

tions includes multiplication by a constant, the likelihood ratio criterion will satisfy
(4.37).

17




Tyler (1983) has an alternative approach to testing hypotheses. Suppose a null
hypothesis is defined by k(or) = 0, where k(-) has ¢ components and satisfies the
usual regularity condtions and (4.21). A Wald test can be based on

ﬁ;k(sy{a"(’)(5®3) [‘”‘” } k(s). (4.47)

Tyler showed that this statistic has a limiting x3-distribution under the null hypoth-
esis. A function that is asymptotically equivalent to (4.47) is

{ OIS [a"( )] } k(s), (4.48)

h(s) =

1 + ko
which satisfies (4.34).

4.5. Estimation of the kurtosis parameter.

To apply the large-sample distribution theory derived for normal distributions to
problems of inference for elliptically contoured distributions it is necessary to know

or estimate the kurtosis parameter k. Note that

E(X - )T Y (X -p) = EY'Y)
= pEY}!+p(p—1)(EY?)
= p(3k+p+2). (4.49)
We see that
M = 5 ?;l[(za - 2)'S V(2o — 2))°
5 p(B3x+p+2) (4.50)
and

M-p(p+2) »
ZAFTS R,
3p
Mardia (1970) proposed the left-hand side of (4.51), say &, as a consistent estimator

(4.51)

of x. The convergence in (4.25) and (4.42) is valid when « is replaced by the estimator

~

K.

18




5. Estimation of Covariance Parameters.

5.1. Maximum likelihood estimation

We have considered using S as an estimator of ¥ = (€R?/p)A. When the parent
distribution is normal, S is the sufficient statistic invariant with respect to translations
and hence is the efficient unbiased estimator. Now we study other estimators.

We consider first the maximum likelihood estimators of 4 and A when the form
of the density g(-) is known. The logarithm of the likelihood function is

N
log L = —% log |A] + ) logg[(®a — ) A7 (2o — p)). (5.1)

a=1

The derivatives of log L with respect to the components of p are

dlog L —_9 al gl(2a — p) A (za - D)

a“ a=1 g[(ca - ”’)’A-l(za - I‘)]

Setting this vector of derivatives to 0 leads to the equation

L gl(wa = )VA (e =) _ o 9N (@0 — i)A (20 — i)

A_l(za - “) (52)

e —Zo = ———7 —. (5.3)
a=1 g[(Za — 2)'A (2o — )] a=1 g[(2a — )'A (x40 — f1)]
Setting to 0 the derivatives of log L with respect to the elements of A™! gives
. 2 Mg za—;}’fl-lza—ﬁ . .
A= 2y NEe WA @Bl e, iy, (4)
o=l g[(Za — ) A (2o — i2)]

The estimator A is a kind of weighted average of the rank 1 matrices (To—ft)(a—f).
In the normal case [g(y) given by (4.3)] the weights are 1/N. In most cases (5.3) and
(5.4) cannot be solved explicitly, but the solution may be approximated by iterative
methods.
The covariance matrix of the limiting normal distribution of v/:V(vec A — vec A)
is
Cov(vecA) = O19(Ip2 + Kpp)(A ® A) + oygvecA(vecA)', (5.5)

where

oy, = PP+ (5.6)

€[S
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- _ 201,(1 - Ulg)

= . 5.7
T8 T (1 -y (51)
See Tyler (1982).
Ezample. Multivariate t. If the density g(y’y) is given by (3.36), then
p+m+2 2
Oy = W’ 099 = -r-r—lalg. (5.8)

Note that 1 + k = (m — 2)/(m — 4); that is, x = 2/(m — 4). Asm — o0, x — 0,
019 — (p+ 2)/p, and oy — 0; these are the values for N(u, X).

5.2. Robust estimators.

Maronna (1976) has studied robust estimators or M-estimators. Set
4y = (o — B) V™ (Za — ) (5.9)

for a vector f2 and a positive definite matrix V. Suppose that ft and V also satisfy

1 N
5 2 wi(da)(@a — ) = 0, (5.10)
a=1
1 N
N X wldh)(@e ~ )ea~ ) =V (5.11)

for uy(d) and uz(d?) nonnegative, nondecreasing, and continuous for d > 0 such that
du;(d) and d*u;(d?) are bounded. [Maronna (1976) gives two other conditions on
u1(+) and ug(-).] Then js estimates pp = £X and V estimates 2 A = 12, say, where v
satisfies

EvR*us(vR?) = p. (5.12)

These estimators have an asymptotic normal distribution. The covariance matrix of
the limiting distribution of v N[vec V — vec £2] has the same form as (4.17) and (5.5);

it is

oru(Ip2 + K,,,)(.O ® 12) + 02, vec §2(vec 12)', (5.13)
where
_(p+2)%% _hi=1 (e —1)[(p+4)¥2+ 1] 4
Oy = (2'1’1 n p)'z", T2y —' ¢% 2 11)3(2!"2 +p)2 ’ (5.1 )
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_ SR uy(tR?))?

= p+2) (5.15)
4o = YER OO R) : 1R ( R (5.16)

See Tyler (1982). Note that if in (5.13) we replace V by 1V and £ by 702 = A, the
coefficients oy, and o3, are unchanged.

Tyler (1983) has given a table of values of oy (= 1, or 014), o2 (= 025 oOr 024),
and v for several estimators and several elliptically contoured distributions; part of
his table is reproduced as Table 1 below. The estimators include maximum likelihood
for the multivariate t-distribution with 1 and 5 degrees of freedom [ML:T(1) and
ML:T(5)] and Huber-type estimates with u,(-) and u,(-) defined by

wr(d) = { L dsr, (5.17)
5 od>r,
1, &#<r?
&?) = ) =0 5.18
Bus(d’) {§,£>ﬂ (518)

A Huber-type estimator is denoted by HUB(q), where ¢ = Pr{x? > r} and f is
determined by Ex3u;(x3) = p. The distributions are the multivariate t-distributions
with 1 and 5 degrees of freedom, the contaminated normal (CN) with ¢ = .1 and

¢ =9, and the normal.

Table 1
p=2
T(1) T(5) CN Normal
g1 g2 7 g1 02 v J1 a2 Y gy 02 v

ML:T(1) | 1.67 3.33 1.00 148 089 175|145 069 1.73 1.43 0.46 2.02
ML:T(5) | 2.28 5.8¢ 0.28 1.29 0.51 1.00|1.28 0.51 1.03 1.11 0.05 1.31
HUB(.5) | 1.70 3.73 0.65 1.50 1.41 0.92|1.46 1.10 0.89 1.44 0.98 1.00
HUB(.1) | 2.15 5.10 0.29 1.32 0.57 0.78|1.23 0.36 0.83 1.09 0.09 1.00
S oo 0o - 3.00 200 0.60}2.77 1.77 0.56 1.00 0.00 1.09
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p=10
o o2 Y 4} 4] 7 o1 4] v o0 o2 2
ML:T(1) | 1.18 237 110 117 050 117116 0.18 110 1.16 0.05 1.22
ML:T(5) | 1.28 289 0.60 1.13 045 100111 022 1.00 1.09 0.02 1.15
HUB (.5) | 1.23 2.68 1.09 1.15 0.63 1.07|1.09 0.16 095 1.08 0.12 1.00
HUB(.1) | 148 3.55 0.50 1.21 0.50 0.85}1.07 011 091 1.01 0.01 1.08
S 00 oo - 3.00 2.00 0.60]2.77 1.77 056 1.00 0.00 1.00

The two values, o, and o, for the maximum likelihood estimator ML:T(1) are the
smallest for the distribution T(1) although the values for HUB(.5) are only slightly
larger. Similarly, the values for ML:T(5) are the smallest for T(5), but the values
for ML:T(1) and HUB(.1) are close. The values for HUB(.1) are smallest for CN. Of
course, S is best for the normal and HUB(.1) is close. S is not a valid estimator for
T(1) because the second moment of X does not exist, and S is not accurate for T(5)
and CN. We see that S is not a very robust estimator.

6. Spherical Matrix Distributions

The observations @,,- -,y constitute an N x p matrix
z
X = . (6.1)
zy

Consider an N x p random matrix Y. We define the following classes of matrices:
Left-spherical

QY 2Y  VYQy, (62)
Right-spherical
YQ, iy va@, (6.3)
Vector-spherical
QnyvecY LvecYy V Qnps (6.4)
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where Q.. denotes an orthogonal matrix of order m.
If Y is vector-spherical and has a density, it is also left-spherical and right-spherical
and Y’ is also vector-spherical because the density has the form

N »p
gl(vecYYvecY] = g zz:y.-’.) - g(tYY)

=1 ¢=1

= g(trY'Y) = g[(vecY') vecY’], (6.5)

An example is the case of all of the elements of Y being independent N (0, 1) variables;
in that case g(w) = (2x)~PN/2e~v/2,
Define
X=YA +eny, (6.6)

where AA’ = A and €y = (1,---,1). Since (6.6) is equivalent to Y = (X —
enw')(A')1, and (A")"'A™! = A™!, X has the density

N
|A] ¥ gltr(X — enpY AN(X — enpd)) = |A] N3 |3 (X — p) A~ (X o - u)] :

a=-1
(6.7)
From (6.5) we deduce that vecY has the representation
vecY 2 RvecU, (6.8)
where w = R? has the density
ki INP-1
_I‘(Np/Z)wz g(w), (6.9)

vec U has the uniform distribution on ©™¥_, 7%, u?, = 1, and R and vec U are
independent. The covariance matrix of vec Y is

ER? ER?

EvecY (vecY) = —N—p-IN,= Np

(Ip® IN), (6.10)

Since vec FGH = (H' ® F)vecG for any conformable matrices F',G, and H, we
can write (6.6) as
vecX = (A@ In)vecY + u@en. (6.11)
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Thus
EvecX = uQen, (6.12)
Cov(vecX) = (A®IN)cov(vecY)(A' ® Iy)
= AQ@Ip, (6.13)
E(rowof X) = 4, (6.14)
Cov(tow of X) = -élf-A (6.15)
10 = N4 .

The rows of X are uncorrelated (though not necessarily independent). From (6.11)
we obtain

vecX 2 R(AQ®In)vecU + p®en, (6.16)
X £ RUA +eny. (6.17)

Since X —enp' = (X — enz') + en(Z — p)’, we can write the density of X as
| AN 2g[trA"Y(X — en@') (X — end') + N(& — p) A" (& — p)), (6.18)

where 2 = (1/N)X'en. This shows that a sufficient set of statistics for i and A is
2 and nS = (X — eny@’)(X — en2’) as for the normal distribution.

The maximum likelihood estimators of g and A are

p=z, (619)

A=2L fj(z —&)(xa— 2) (6.20)

Wy a=1

where w, maximizes w"?/?g(w) [Anderson, Fang, and Hsu (1986)]. Noie that i is
the same estimator as for the normal and A is a multiple of the estimator of A in the
normal case.

Theorem. Let f(X) be a vector-valued function of X such that
(X +ent)= f(X) Vv, (6.21)

and
f(cX) = f(X) Vec#0. (6.22)
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Then the distribution of f(X), where X has the arbitrary density (6.7), is the same
as the distribution of f(X), where X has the normal density (6.7).
Proof. Substitution of the representation (6.11) into f(X) gives

f(X) = FIR(A® In)vecU + u® en] (6.23)
= f[R(A® In)vecU] (6.24)
by (6.20) and
f(X) = fl(A® I,)vecU] (6.25)
by (6.21). a)

Any statistic satisfying (6.20) and (6.21) has the same distribution for all g(-).
Hence, if its distribution is known for the normal case, the distribution is valid for all
elliptically contoured distributions.

Anderson and Fang (1990b) gave the examples of the correlation coefficients and
the multiple correlation coefficient. They also showed that when u = 0 the distri-
bution of Hotelling’s T? = N&'S™'z does not depend on g(-). Any likelihood ratio
criterion under normality that is scale invariant and location-invariant in the sense of
(6.20) has the same distribution for g(-). The sphericity criterion is an example.

Any function of the sufficient set of statistics that is translation invariant, that is,
that satisfies (6.20), is a function of S. Thus inference concerning X can be based
on S.

Anderson, Fang, and Hsu (1986) considered the likelihood ratio criterion for test-
ing the nul’ hypothesis (4, A) € w in the model (u, A) € Q. Suppose (g, A) € w
implies (p,cA) € w and (pu, A) € N implies (u,cA) € QV ¢ > 0. Then the likelihood
ratio criterion for arbi:rary g(:) is the same as the LRC for normal g(-).

Suppose further that w = wm xwi, @ = Qpy x U, g, py € Wy implies g, —p, € Wi,
#y, 47 € Qm implies u; — p; € Q, p € wy, implies cp € wm, and p € N, implies
cp € Qm V c. Then if the distribution of the LRC does not depend on (g, A) under
normality, it does not depend on g(-) or on (g, A). Anderson, Fang, and Hsu gave
several examples including the test for lack of correla*ion between sets of variates.
They pointed out that the result also applies to tests of equality of several covariance

matrices.

25




This class of vector elliptically contoured distributions shows that the sampling
theory for the normal distribution is valid for a much wider class of distributions.
Several papers in Fang and Anderson (1990) show that many properties of the normal
can be extended to this class. The disadvantage of these models is that except for
the normal the observations are dependent, though uncorrelated. The advantage is
that the similarity to the normal is exact rather than asymptotic.
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