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Nonnormal Multivariate Distributions: Inference
based on Elliptically Contoured Distributions *

T. W. Andersont

Stanford University

1. Introduction.

The classical or conventional multivariate analysis is based largely on the multi-

variate normal distribution. This probability model fits many, though not all, sets of

continuous multivariate data. The theory and methodology of inference for this model

is highly developed and has been exposited extensively. The nature of the normal dis-

tribution permits considerable analysis in terms of conventional matrix algebra. The

fact that the parameter set consists of a vector and a matrix that can be interpreted

as the mean of the observation vector and its covariance matrix makes inference rel-

atively easy to interpret and simplifies the analysis. Of course, these advantages of

simplicity are also disadvantages of inflexibility that restrict the applicability. It is

useful therefore, to extend multivariate probability distributions beyond the normal

class.

In this lecture we shall describe a larger class of distributions, thus augmenting

the scope of analysis. The set of nonnormal distributions, of course, is very wide; we

cannot hope to cover more than a portion of this field. In the International Sympo-

sium on Multivariate Analysis and Its Applications held in Hong Kong in March 1992

Ingram Olkin gave a paper entitled "Multivariate Nonnormal Distributions." The top-

ics included bivariate binomial distributions, bivariate Poisson distributions, bivariate

exponential distributions, and multivariate distributions with given marginal distri-

butions; none of these subjects will be included in this present paper. The title of

*The first C.G. Khatri Memorial Lecture given at Pennsylvania State University, May 8, 1992.
t Reaearch supported by the U. S. Army Research Office Contract No. DAAL03-89-K-0033 at

Stanford University



William Cleveland's presentation to the Hong Kong conference was "Computer Inten-

sive Methods and Graphical Methods for Analyzing Multivariate Data;" his approach

was that of data analysis - another subject I am not including here.

My paper is devoted to the exposition of elliptically contoured distributions and

statistical inference appropriate to such distributions. This class of distributions,

provides more flexibility, specifically, it permits nontrivial kurtosis; the marginal dis-

tributions can have long tails. At the same time much of the structure of the normal

distribuLion is retained.

As we shall see, many of the statistical methods appropriate to normal parent

distributions are also suitable for a more general class of elliptically contoured distri-

butions, but since the kurtosis in an elliptically contoured distribution may be quite

different from the null kurtosis of the normal other methods are often needed. Such

methods may be more robust than normal methods, which are usually based on lin-

ear and quadratic functions of the observations. Not only does this larger class of

distributions call for new methods, the class forms an excellent framework in which

to study and evaluate robust procedures.

It can be expected that in the future much more attention will be paid to the

elliptically contoured distribution. This paper will point to some important aspects.

Chmielewski (1981) has given a review of the papers on spherically contoured and

elliptically contoured distributions that appeared before 1980. He mentions Maxwell

(1860), Bartlett (1934), and Hartman and Wintner(1940) as three of the earliest

papers. Kelker (1970) developed some of the properties of spherically and elliptically

contoured distributions. A recent summary is given in Fang and Zhang (1990). See

also Fang and Anderson (1990).
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2. The Normal Distribution.

2.1. General

The normal distribution of a (nondegenerate) p-component random vector X -

(X 1,' ", X,)' has a density which can be written

1 e_(2L'),A 1 (z_) (2.1)

(27r)p/ 21AI/ 2

where P is a p-component vector and A is a positive definite matrix. Integration

shows that the mean vector and covariance matrix of X are

6X = V, E(X - eX)(X - CX)' = A, (2.2)

respectively, There is mnemonic advantage in re-naming this vector V, and this matrix

A as p = (/ 1" " , p,)' and Z - (aij), respectively. Hence the density of X is

1 -(-p,)E'-p) (2.3)
(27r)p/ 21E11/ 2 e

we write X - N(IA, Z).

The characteristic function of X is

itX -t'E t+it' . 2'6e e-~2 (2.4)

The moments of X up to order 4 are

EX = JA, 6(X - IA)(X - A)' Z, (2.5)

F(X - Ui)(Xj - pj)(Xk - PA)' = 0, (2.6)

C(Xi - pi)(Xj - pj, )(Xk - Pk)(X - Al) = O jaki + Oikajil + aiajk (2.7)

Every moment of odd order is 0. The contours of constant density are ellipses

(z - I)'-(z - I) = const. (2.8)
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2.2. The spherical normal distribution

Let A be any nonsingular matrix satisfying

AA'=Z. (2.9)

Define

Y = A-(X - is). (2.10)

Then the density of Y is
1 2 (2.11)

(2 r)PI2

The characteristic function of Y is

Ct 'Y = e- t t .  (2.12)

The moments of Y of order up to 4 are

EY = 0, .YY' = IP. (2.13)

£YYYk =0, (2.14)

EYiY Yk Y = bij6 kI + 5ik 6 jl + b 6ljk, (2.15)

where 6, = 1 and 6ij = 0, i 4 j. Every moment of odd order is 0. The contours of

constant density are spheres centered at the origin.

Define

R2 = jjyjj2 = y'y, (2.16)

U I = I Y. (2.17)
IIYIIR

Then
R24 Xd , (2.18)

where (2.18) means R 2 is distributed as X2 , the chi-squared random variable with p

degrees of freedom. The density of W = R 2 is

I iplew"(2P/2r(p/2)w2(.9
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The vector U has the uniform distribution on the unit sphere

uu' = 1; (2.20)

that is, the distribution of PU is that of U for any (fixed) orthogonal matrix P. We

write this as

PU U. (2.21)

The scalar R and the vector U are independent. We can represent Y as

Y -A RU, (2.22)

and we can represent X as
X d it+ RAU. (2.23)

If Z is of rank r, then we can write X = AA' with Ap x r. If Y ,- N(0, I,), we

can represent X as AY + v, where R2 _ X2 and U has the uniform distribution on

uu' = 1 in r dimensions. The characteristic function of X is (2.4).

The moments of Y are the products of the corresponding moments of R and those

of U. Since the first two moments of R2 are

ER'=p, ER 4 = p(p + 2), (2.24)

the odd-ordered moments of U are 0,

CUU' = YY= I,, (2.25)

1
UiUjUkUl = 1 (bijb + bik6bj + 6 tlbk). (2.26)

p(p + 2

3. Elliptically Contoured Distributions.

3.1. Spherical distributions.

Analogous to the normal distributions a spherical distribution in general can be

characterized in several ways as follows:
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1. If Y (p x 1) has a density, it is of the form g(y'y), where g(y'y) 2_ 0 and

0j ... j0°g(y')dy-. (3.1)

Contours of constant densities are spheres: Vy = const. However, Y may have a

spherical distribution even though a density does not exist. For example, the vector

U defined in Section 2 has a spherical distribution.

2. For every orthogonal matrix P

y d py. (3.2)

If Y has a density, (3.2) follows from the form g(y'y).

3. Property 2 irrplies that the characteristic function of Y has the form

e' Y = 0(t't). (3-3)

4. The random vector Y has the representation

Y RU, (3.4)

where R > 0, U has the uniform distribution on u'u = 1, and R and U are indepen-

dent. The density of R is found from g(y'y) by transforming to polar coordinates and

integrating out the p - 1 angles. [See Anderson, (1984), Problems I to 4, Chapter 7,

for example]. The resulting density is

272 P-1

/(r) = r(P/2) r-'g (r'). (3.5)

We note that ER' < 0o if and only if

jo 0 rh+p-lg(r 2 )dr <00. (3.6)

We can write the characteristic function of Y as

4(t't) = eiRtW = 1w(rtt)f(r)dr, (3.7)

where

w(s's) = £e's 'U (3.8)
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is the characteristic function of U.

5. If Ilall = Ilbhl, then

a'Y A bY. (3.9)

We shall denote the distribution of Y with characteristic function (3.3) as Sp(O).

3.2. Elliptically contoured distributions in general.

Define

X =I + AY, (3.10)

where A is a nonsingular matrix such that

AA'= A. (3.11)

1. The density of X is

JAj- g[(z - p&)'A-(z - IA)]. (3.12)

3. The characteristic function of X is

Eeis 'X = e'81Pq(s'As). (3.13)

4.
X dp+RAU, (3.14)

where R and U were defined above.

Contours of constant density are

(z - t&)'A- 1 (z - u) = const. (3.15)

We shall denote the distribution of X with characteristic function (3.13) as

ECp(p, A; 0).
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3.3. Moments.

The moments of X can be found from the moments of R and U, which are

independent. The moments of U were given in Section 2. We find

CX =/is, (3.16)

-(x - 0)(x - )' = CR--A = E, (3.17)
p

say,

E(xi - ,)(Xj - j)(Xk - Fh) = 0, (3.18)

In fact, all moments of X - 1A of odd order are 0. The fourth-order moments are

obtained from (2.26) and (3.10) as

-(iA)X - Aj(k- A)( - JAI)

SER 4  (AiAkI + A kAjl + A IAjk)(-p+ 2)

(ER 2)2  ,7-.( ai + O'i .a + oi o',l .). (3.19)

The first moments of R are related to the characteristic function 0(.) by

CR2 = -2po'(0), (3.20)

ER4 = 4p(p + 2)0"(0). (3.21)

The fourth cumulant of the i-th component of X standardized by its standard devi-

ation is

C(X, - ,)4 - 3[6(X, - pi)2]2  3CR - 3 ( 2 )2 (3.22)
P(x, - - ((3.)2

(ER4) p 1= 3 [E)3 .2 l

= 3 02"(0) 1]I[gy(o)]2
3K,
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say. Note that the fourth cumulant is 3x for every component of X. The fourth

cumulant of Xi, Xj, Xk, and X1 is

I9ijkl = C(i- ,,)(X, - Aj k- IAk)(X1 - A)- (ffijoa + OrikOrit + OE7,1Ojk)

= c(oijo'k + aikarjL + 7,1o'jk). (3.23)

3.4. Marginal and conditional distributions.

The characteristic function of a linear function of X, say Z = BX. is

£eit'Z = Ceit'BX

= eit'BttO(t'BAB't) (3.24)

by use of (3.13). This shows that Z has the distribution ECp(Bis, BAB'; 0). In

particular, if

X(2) )' I JA(2) )' = 21 2 (3.25)

where X, has ph components, then X, has the distribution ECp( I ), rl; ,O).

We can also characterize marginal distributions in terms of the representation

(3.14). Consider

Y= y(l) =RU = R ( (3.26)

where y") and U(') have Pi components and y( 2) and U (2) have P2 components

(pi + p2 = p). Then R 2 = y(l)'y(') has the distribution of R2U(l)'Ul), and

UO -U _ = U( U d y__)'y_ (3.27)
U'U Y'Y

In the case Y - N(O, Ip) (3.27) has the beta distribution, say B(pi,p 2), with density
r(p/2) 1 -1

F(p-/2) 1 - z) 2', 0 < z < 1. (3.28)

Hence, for arbitrary SP()
y(l) A R, V, (3.29)
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where R2 _ R2b, b - B(pi,p 2), V has the uniform distribution on v'v = 1 in

p, dimensions, and R2 , b, and V are independent. All marginal distributions are

elliptically contoured.

Now suppose that A satisfying (3.11) is lower triangular. It can be partitioned as

A= (All 0 (3.30)

A21 A21 /

Then the first pi rows of (3.14) yield

XO ) d A (') + AllY()

d ) + A,,RV. (3.31)

Suppose X has the density

g[(x- ts)'A-'(z - p)] (3.32)
- { . , - , ) - B( .(2) _ 1,(2)]' A 11.2 [ () - J - B (( 2 ) - I(2))I + Q2}

where B = A12A-1, A 1 1 .2 = All - A12A- A 21, and

Q2 = (2( 2) - /( 2))'A-(Z(2) - I( 2)). (3.33)

[See Anderson (1984), Chapter 2, Problem 58, and Theorem A. 3.1.] The conditional

density of X(1) given X (2) = X(2) is (3.32) divided by 92(Q2), where 92(') is the

marginal density of X ( 2) at X(2) . Note that g1.2(') is the density of an elliptically

contoured distribution. From (3.32) it follows that

E(X (1) T(2)) = j&(1) + B(0(2 ) _ IA(2)), (3.34)

Var(X(1 )Iz( 2)) = h(M( 2))A 1 1 .2, (3.35)

where h(z(2)) is a nonnegative function of Z(2) . Note that the conditional expectation

of XM) given Z(2) is the same as for the normal distribution and the conditional

covariance matrix is proportional to that to that for the normal. In this sense the

structure of the normal distribution is maintained.
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3.5. Examples.

1. The multivariate t-distribution. Suppose Z - N(O, I,), ms2  2 and Z

and s2 are independent. Define Y = (1/8)7. Then the density of Y is

(1+ (3.36)

and 2

R2  ItYl Fp, m xP (3.37)

p p PXm

If X =it + AY, the density of X is

++P ( )'A-(z - ii)]p/2 J AI' 1 + (3.38)
r(M)mp/27 P/2I'-' m

2. Contaminated normal. The contaminated normal distribution is a mixture of

two normal distributions with proportional covariance matrices and the same mean

vector. The density can be written

(1-) 1 =, (_)A(z_) + 11 e (3.39)

(27r)p/21AI e + (2ir)p/ 21Ai ,

where c > 0 and 0 < e < 1. Usually e is rather small and c rather large.

4. Sampling.

4.1. The density and characteristic function

A random sample from EC,(p&, A; 0) consists of N vectors X 1, X 2 ,..., XN. The

density of the sample is

N
iAI-  1 g-9(z. - z)'A-'(z. - it)]. (4.1)

a=1

The characteristic function of the sample is

i n, . N [V] N

e t =- [Cit'.tO(t'At ) = ¢= r J (t'Atj). (4.2)
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In the case of the normal distribution the density and characteristic function are

based on

( w/2  (4.3)

O(v) = e - '/ . (4.4)

The density of X 1 ,'., XN is

(I exp H (z. - t)'A-(a. - p) (4.5)

a----I(27r)- J2AI-N=x tr A-'- (= - A)(= - I)'

= (2 Atr)pNI2l[NI 2 exp [-'trAA + N(2 - I#)A-1(t -

where
N

A = -(a, - ) - i)', (4.6)

1 - z=.(4.7)

Display (4.5) shows that A and t are sufficient for A and is and A and F are

independent. In fact t - N[ts, (1IN)A] and A - W(A,n), where W(An) denotes

the Wishart distribution with covariance matrix A and n = N - 1 degrees of freedom.

That A and t are sufficient statistics and are independent is due to the fact that

g(w) is exponential. These properties do not hold for other elliptically contoured

distributions.

4.2. The asymptotic distribution of the sample mean and

covariance matrix

We define the sample covariance matrix as

S = 1A, (4.8)
n

12



where n = N - 1 is the number of degrees of freedom. Then the sample mean and

covariance matrix are unbiased estimators of the model mean and covariance matrix:

6 =, CS = X. (4.9)

By the law of large numbers they are consistent estimators as N -. 0o:

- SZ. (4.10)

The covariances of t and S are
1

Cov (t) Z' C(sii - ij)(. - JA) = 0 (4.11)

Cov(sij, Ski) -(ijoak + aikOai + Odloak) + -(oaikaj + ailaok). (4.12)
n

Then as N -- o

nCov (sij, ski) - (1 + K)(aikaji + jilcTak) + KaijOkl, (4.13)

It will be convenient to use more matrix algebra. Define vec B, B 0 C (the

Kronecker product) and K,, (the commutator matrix) by

bi

vecB = vec(bl,...,b) b2  (4.14)

bn

bjjC ... bi.C

D ®C = : (4.15)

bmiC ... bmnC

K,vec B vec B'. (4.16)

See, for example Magnus and Neudecker (1979). We can rewrite (4.13) as

n Cov(vecS) = C(vecS-vec 7)(vecS-vecZ)'

(K + 1)(I2 + Kp)(E r E) + Kvec (vec )'. (4.17)
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Then

v[f)  ] (4.18)

0.[ :~ 0 (tc+l1)(1p2 + Kp)(S 0 ) + xvec.E(vec r)')0( ) I(o o )]I
by the central limit theorem for independent identically distributed random vectors

(with finite fourth moments). This statement forms the basis for large-sample infer-

ence.

4.3. Functions of sample covariances

Define

s = vecS, O = vec E. (4.19)

Consider f(s), a vector-valued function. Under the usual regularity conditions

vI_ [f(s) - f(o)] = Of () VA- ') + oP(1) (4.20)

SN {O, o, [2(1 + ,)(E O X,) + , (O.'] 0 ') )I}.
Functions of the sample covariance matrix are also asymptotically normally dis-

tributed.

Note that if [Of(a )/Of'jfr = 0 the covariance matrix in (4.20) is simply a multiple

of the covariance matrix when sampling from a normal distribution. Suppose f(.) is

scale invariant (homogeneous of degree zero); that is,

f(cs) = f(s), Vc>0, V Sp.d.. (4.21)

Then

0- Of(ca) = of(cs) o(c) Of(ca) (42)

that is, (for c = 1)

a =()' =0. (4.23)
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Then

V [f(s) - f(,)] -dN 0, 2(1 + x) Of (a,) S Of ( (4.24)

that is,

- i[f(a) _ f(o,)j d + N 0, 'Of(' Zo )(.5
71FF T-I , ®Z) f [O~.]'} (425

Note that the normal distribution in (4.25) does not depend on K [tiiat is, g()].

This result applies to any sequence of random positive definite matrices W,, such

that W, - $7 and

v/'n(vecw , - vec w) -d N[O,Tri(Ip2 + K,)( 17S) + r2tvtw', (4.26)

where w, = vec W, and w = vec 7. Then

v/' [f(w) - f(W)] -d N 0, 2T1 '')(1®7 0 ( ) [f(W) (4.27)

Tyler (1983) gave the above result in Theorem 1.

Example. Correlation coefficients. Let

- j a i (4.28)

be the sample and model coefficients. The limit distribution of

=(r - sq), i~ = 1, ,p, (4.29)

is the same as for S having a Wishart distribution.

Example. Eigenvectors and ratios of eigenvalues. The eigenvalues of the sample

covariance matrix satisfy

IS -AII -0 (4.30)

The eigenvectors satisfy

So = Aix, z 1,... ,p. (4.31)

For p = 2 there is an angle 0 such that

15



S( Cos sine cose sine ( (4.32)

-sin0 cos0 -sine cose 0 A2

The normalized eigenvectors are (cos 0, sin 0) and (- sin 0, cos 0). The angle 0

and the ratio of eigenvalues A1/A 2 are scalar invariant. Hence, they have the same

asymptotic normal distribution after correcting for the kurtosis as when sampling

from the normal distribution.

4.4. Likelihood ratio criteria.

For normal distributions usually

- 2log LRC + xf (4.33)

under the null hypothesis H. Consider a scalar function h(s) such that

h(a,) = 0, Oh(o) - 0, o E H. (4.34)

Then

nh(s) = 1Vn -f(- j2h(o.\/**.( - a) + o,,(I)

d + ViX?, (4.35)

where vi are the characteristic roots of

1 02h(o ") [2(1 + )(, ® r) + ,coa'] (4.36)2 0€0f '

and X? denotes X2 with 1 d.f.

Suppose h is scale invariant; that is,

h(cs) = h(s), Vc > 0, Vs p.d. (4.37)

Then

0 2h(cs) = C2 ,6h(s) (438)
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For c = 1 we obtain 82h(.) (439)
0*--- *- = 0. ( .9

Here vi are the characteristic roots of

(1+ X) 2--- 0 ). (4.40)

- 2 log LRC nh(a) d E VX? (4.41)

under normality, then for an elliptically contoured distribution with kurtosis r.

-2log LRC d ( ViX?. (4.42)
1+ic

Example. Sphericity. Consider the null hypothesis

H : A = const I.. (4.43)

Under normality the likelihood ratio criterion is

LRC [A]n (4.44)

which is clearly scale invariant, and

- 2 log LRC = nfplog(tr S) - log ISI - p log p]. (4.45)

Then -2 log LRC d 2

1 + K -') Xf, (4.46)

where the number of degrees of freedom is f = p(p + 1) - 1.

Many hypotheses in multivariate analysis are invariant with respect to some group

of linear transformations. For example, the hypothesis (4.43) is invariant with respect

to transformations X -* cQX, where Q is orthogonal. If the group of transforma-

tions includes multiplication by a constant, the likelihood ratio criterion will satisfy

(4.37).
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Tyler (1983) has an alternative approach to testing hypotheses. Suppose a null

hypothesis is defined by k(o,) = 0, where k(.) has q components and satisfies the

usual regularity condtions and (4.21). A Wald test can be based on

ni 8's) A s ( S) [O~s 'I k(). (4.47)

Tyler showed that this statistic has a limiting xq-distribution under the null hypoth-

esis. A function that is asymptotically equivalent to (4.47) is

h(s) = 1 kJ()' {k(s) (Z -X) (4.48)

which satisfies (4.34).

4.5. Estimation of the kurtosis parameter.

To apply the large-sample distribution theory derived for normal distributions to

problems of inference for elliptically contoured distributions it is necessary to know

or estimate the kurtosis parameter re. Note that

([(X - iJ)'. -(X - )I2 = E(Y'Y) 2

= p&Y? + p(p- 1)(- Y?)2

= p(3tc + p + 2). (4.49)

We see that

M N

2P p(3c + p + 2) (4.50)

and M-p(p+2) p + (4.51)

3 p

Mardia (1970) proposed the left-hand side of (4.51), say k, as a consistent estimator

of x. The convergence in (4.25) and (4.42) is valid when r is replaced by the estimator

k.

18



5. Estimation of Covariance Parameters.

5.1. Maximum likelihood estimation

We have considered using S as an estimator of X = (ER 2 /p)A. When the parent

distribution is normal, S is the sufficient statistic invariant with respect to translations

and hence is the efficient unbiased estimator. Now we study other estimators.

We consider first the maximum likelihood estimators of p and A when the form

of the density g(-) is known. The logarithm of the likelihood function is

N N

logL = _N log A I + E logg[(za - p)'A-(x,. - IA)]. (5.1)

The derivatives of log L with respect to the components of I are

8 log L : -2 g'[(= - )'A( - ) A-( ). (5.2)

ip A -- - IA)'A-'(z. - ))5

Setting this vector of derivatives to 0 leads to the equation
N - '(0.N -- AA)I-(z - 4)]

E '[(= -X X" = (AE -')X= it)]' (5.3)
=1 g[( l) ' ,I 1 ( - )=1 g[(= - A)'A1 ( -

1 ( )]

Setting to 0 the derivatives of log L with respect to the elements of A 1 gives

2 N [( - ,'(z , - Oc - fi)(Z . - )'. (5.4)
N,0=1 g[(Oct- 'A(1;t - i)]

The estimator A is a kind of weighted average of the rank 1 matrices (, - js)(z, -4)'.
In the normal case [g(y) given by (4.3)] the weights are 1/N. In most cases (5.3) and

(5.4) cannot be solved explicitly, but the solution may be approximated by iterative

methods.

The covariance matrix of the limiting normal distribution of v(V(vec A - vec A)

is

Cov(veci) = a1j(I 2 + Kp,)(A 9 A) + a2gvecA(vecA)', (5.5)

where

OrIg = p(p+ 2) (5.6)
94 [RR

2]
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29 2,,(1 - g0,) (5.7)
0"o= 2 + p(1 - a"1g)"

See Tyler (1982).
Example. Multivariate t. If the density g(y'y#) is given by (3.36), then

0al = p+m+2 2 (5.8)

Note that 1 +Ic = (m - 2)/(m - 4); that is, , = 2/(m - 4). As m --+ oo, ic -- 0,

alo "" (p + 2 )/p, and 02, --+ 0; these are the values for N(i, Z).

5.2. Robust estimators.

Maronna (1976) has studied robust estimators or M-estimators. Set

d = (Z" - A)'V-(Z. - )' (5.9)

for a vector As and a positive definite matrix V. Suppose that js and V also satisfy

1 NEul(d.)(a. - is) = 0, (5.10)

1 N

E U2 (d.2)(0. - j&)(X& - C)'= V (5.11)

for u I(d) and u2 (d) nonnegative, nondecreasing, and continuous for d > 0 such that

dul(d) and d2u2(d2 ) are bounded. [Maronna (1976) gives two other conditions on

ul(.) and u2(').] Then is estimates is = EX and V estimates !A = 0, say, where f

satisfies

6TR2u2(,tR2 ) = p. (5.12)

These estimators have an asymptotic normal distribution. The covariance matrix of

the limiting distribution of VN[vec V -vec 17] has the same form as (4.17) and (5.5);

it is

a71.(Ip2 + Kp,)(9 ® 7) + cr2u vec 0(vec 17', (5.13)

where

= (p + 2)2 b1  a t - i 2t1(¢2 - 1)[(p + 4)02 + PI
(2, + p)2' 2(2b + ) (
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¢, = tR2U2(tR 2)]2

p(p + 2) ' (5.15)

k2 = 7 ER2 [u2(7 R2) + -/R 2U,(-yR 2 )] (5.16)
P

See Tyler (1982). Note that if in (5.13) we replace V by -yV and 07 by -y7 = A, the

coefficients alu and a2u are unchanged.

Tyler (1983) has given a table of values of a, (= a,, or a'T), a2 (= a2, or a2.),

and -f for several estimators and several elliptically contoured distributions; part of

his table is reproduced as Table 1 below. The estimators include maximum likelihood

for the multivariate t-distribution with 1 and 5 degrees of freedom [ML:T(1) and

ML:T(5)] and Huber-type estimates with ul(.) and u2(.) defined by

uj(d) = 1, d (5.17)r1 , d > r

Ou2(d2) =  1, d2 < r 2  (5.18)
r2  r 2"

1 , d2 >r

A Huber-type estimator is denoted by HUB(q), where q = Pr{X2 > r} and /# is

determined by .Xu2(2) = p. The distributions are the multivariate t-distributions
with 1 and 5 degrees of freedom, the contaminated normal (CN) with e = .1 and

c = 9, and the normal.

Table 1
p=2

T(1) T(5) CN Normal

0l a2 ^ al a2 Y ai a2 I al 02 7
ML:T(1) 1.67 3.33 1.00 1.48 0.89 1.75 1.45 0.69 1.73 1.43 0.46 2.02

ML:T(5) 2.28 5.84 0.28 1.29 0.51 1.00 1.28 0.51 1.03 1.11 0.05 1.31

HUB(.5) 1.70 3.73 0.65 1.50 1.41 0.92 1.46 1.10 0.89 1.44 0.98 1.00

HUB(.1) 2.15 5.10 0.29 1.32 0.57 0.78 1.23 0.36 0.83 1.09 0.09 1.00

S 00 00 - 3.00 2.00 0.60 2.77 1.77 0.56 1.00 0.00 1.09
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p= 10

a1 a2 7 0 1 a2 If a 0 2 7 a1 a2 7

ML:T(1) 1.18 2.37 1.10 1.17 0.50 1.17 1.16 0.18 1.10 1.16 0.05 1.22

ML:T(5) 1.28 2.89 0.60 1.13 0.45 1.00 1.11 0.22 1.00 1.09 0.02 1.15

HUB (.5) 1.23 2.68 1.09 1.15 0.63 1.07 1.09 0.16 0.95 1.08 0.12 1.00

HUB (.1) 1.48 3.55 0.50 1.21 0.50 0.85 1.07 0.11 0.91 1.01 0.01 1.08

S 00 00 - 3.00 2.00 0.60 2.77 1.77 0.56 1.00 0.00 1.00

The two values, a, and a2, for the maximum likelihood estimator ML:T(1) are the

smallest for the distribution T(1) although the values for HUB(.5) are only slightly

larger. Similarly, the values for ML:T(5) are the smallest for T(5), but the values

for ML:T(1) and HUB(.1) are close. The values for HUB(.1) are smallest for CN. Of

course, S is best for the normal and HUB(.1) is close. S is not a valid estimator for

T(1) because the second moment of X does not exist, and S is not accurate for T(5)

and CN. We see that S is not a very robust estimator.

6. Spherical Matrix Distributions

The observations 0 ,... XN constitute an N x p matrix

X- (6.1)

Consider an N x p random matrix Y. We define the following classes of matrices:

Left-spherical

QNY A y V QN, (6.2)

Right-spherical

YQ" -A Y V Q,, (6.3)

Vector-spherical

QNpVec Y -A vec Y V QNp, (6.4)
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where Qm denotes an orthogonal matrix of order m.

If Y is vector-spherical and has a density, it is also left-spherical and right-spherical

and Y' is also vector-spherical because the density has the form

g[(vec Y)'vec Y] y,.(2E~ ) = g(trYY')

= g(trY'Y) = g[(vecY')'vecY'], (6.5)

An example is the case of all of the elements of Y being independent N(O, 1) variables;

in that case g(w) = (21r)-pN/ 2e-w/ 2.

Define

X =YA'+ CNi', (6.6)

where AA' = A and c'N = (1,... ,1). Since (6.6) is equivalent to Y = (X -

CNJ')(A') - ', and (A')- 1A - ' = A- ' , X has the density

I A I-Nl[tr(X - cN')'A-'(X - £N')] = IAIN 2 g (X.. - ))A-(X. - •

(6.7)
From (6.5) we deduce that vecY has the representation

vecY A RvecU, (6.8)

where w = R' has the density

rNp 1 
W NP-1 .rw ) (6.9)

r(N -p/2)W g ,(

vec U has the uniform distribution on to-i ua = 1, and R and vec U are

independent. The covariance matrix of vec Y is

vecY (vecY)' = ER2 - fR 2 (Ip® IN), (6.10)

Since vec FGH = (H' ® F)vecG for any conformable matrices F, G, and H, we

can write (6.6) as
vecX = (A 0 IN) vecY + A 0 eN. (6.11)
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Thus

E vec X = A ® CN, (6.12)

Cov(vecX) = (A ®IN)cov(vecY)(A' ®IN)

= A® IN, (6.13)

E( row of X) = is', (6.14)

Cov(zow of X) = -- A. (6.15)
Np

The rows of X are uncorrelated (though not necessarily independent). From (6.11)
we obtain

vecX A R(A®IN)vecU+Ap®CN, (6.16)

X d RUA'+ CNIA'. (6.17)

Since X - CNAs' = (X - CNV) + CN(a' - S)', we can write the density of X as

JAI-N/2g[trA-l(X - CNV)'(X - cnN') + N(t - A)'A- 1 (t - A)], (6.18)

where * = (1/N)X'eN. This shows that a sufficient set of statistics for 1 and A is

. and aS = (X - CNk)'(X - CN2') as for the normal distribution.

The maximum likelihood estimators of t& and A are

/=A (6.19)
N

Aj = -L (z, - ) - i)', (6.20)w/g a~1

where w. maximizes wNP/2g(w) [Anderson, Fang, and Hsu (1986)]. Note that i is

the same estimator as for the normal and A is a multiple of the estimator of A in the

normal case.

Theorem. Let f(X) be a vector-valued function of X such that

f(X + CNi') = f(X) V V, (6.21)

and

f(cX) = f(X) V c O 0. (6.22)
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Then the distribution of f (X), where X has the arbitrary density (6.7), is the same
as the distribution of f(X), where X has the normal density (6.7).

Proof. Substitution of the representation (6.11) into f(X) gives

f(X) = f[R(A 0 IN)vecU + A 0 C0N] (6.23)

= f[R(A 0 IN)vecU] (6.24)

by (6.20) and

f(X) = f[(A 0 In)vecU] (6.25)

by (6.21). 0
Any statistic satisfying (6.20) and (6.21) has the same distribution for all g(-).

Hence, if its distribution is known for the normal case, the distribution is valid for all

elliptically contoured distributions.

Anderson and Fang (1990b) gave the examples of the correlation coefficients and
the multiple correlation coefficient. They also showed that when i = 0 the distri-
bution of Hotelling's T2 = NSS- 1 z does not depend on 9(.). Any likelihood ratio

criterion under normality that is scale invariant and location-invariant in the sense of

(6.20) has the same distribution for g(.). The sphericity criterion is an example.
Any function of the sufficient set of statistics that is translation invariant, that is,

that satisfies (6.20), is a function of S. Thus inference concerning Z can be based

on S.

Anderson, Fang, and Hsu (1986) considered the likelihood ratio criterion for test-

ing the null hypothesis (it, A) E w in the model (IA, A) E Q. Suppose (it, A) E w
implies ($&, cA) E w and (ts, A) E fl implies (t&, cA) E Q V c > 0. Then the likelihood
ratio criterion for arbi.,-ary g(.) is the same as the LRC for normal g(.).

Suppose further that w = w, xwI, l = f,,Xfl, Al/1 ,A 2 E w., implies p 2 -p 1  E wm,

IA1 ,p 2 E fl, implies IA2 - tI E 0, As E w,,, implies cp& E w,, and IA E !n, implies
cIA E fl, V c. Then if the distribution of the LRC does not depend on (pu, A) under

normality, it does not depend on g(.) or on (IA, A). Anderson, Fang, and Hsu gave
several examples including the test for lack of correho.ion between sets of variates.

They pointed out that the result also applies to tests of equality of several covariance

matrices.
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This class of vector elliptically contoured distributions shows that the sampling

theory for the normal distribution is valid for a much wider class of distributions.

Several papers in Fang and Anderson (1990) show that many properties of the normal

can be extended to this class. The disadvantage of these models is that except for

the normal the observations are dependent, though uncorrelated. The advantage is

that the similarity to the normal is exact rather than asymptotic.
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