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PREFACE

The goal of this research was to study the relationship between computer animation and
language - developing a link using natural language concepts. The key is to capitalize on this
work to allow the simulation of maintenance tasks. In return, this will benefit several ongoing
and envisioned Air Force sponsored programs.

This effort is part of a major research program housed at the Department of Computer
and Information Science, School of Engineering and Applied Science, University of Pennsyl-
vania. The director of this program, Dr Norman I. Badler, is responsible for a large number
of related efforts sponsored by the Air Force and a host of other organizations. This research
was supported by the Logistics Research Division, Human Resources Directorate, Armstrong
Laboratory, under Work Unit ILIR-40-02.
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1 Introduction

This research project investigates the relationship between computer animation and language;
specifically, developing utilities to generate animation from natural language instructions. Meth-
ods for specifying simulations at a task level rather than at the level of individual motions are
discussed. We envision a system which would allow engineers or technical staff who currently
write instruction manuals to instead generate animations which illustrate the task. However it
is unlikely that these engineers would have sufficient knowledge of animation techniques. For
this reason, such a system must provide high-level tools to permit the engineer to animate a
task without becoming entangled in low-level animation issues.

In addition to its potential as an instructional or human factors analysis tool, the animation
environment provides a means of visually corroborating the interpretation of an instruction set.
This is useful both for Computational Linguists (interested in a means to check implementations
which analyze discourse) and for engineers who write instruction manuals (the animation will
provide a way for instructors to disambiguate their instructions). Animation has benefits over
live video in that the animation scene abstracts extraneous information and focuses on those
details relevant to the task. Furthermore, the task might take place in a hostile or dangerous
environment in which it would be impossiole to create a film due to the dangers to the actors,
or in a developmental environment which simply does not exist.

The research described here was carried out in conjunction with the Animation and Natural
Language Project (AnimNL) - a joint effort between the Computer Graphics Research Lab
and the Language, Information and Computation Lab at the University of Pennsylvania. We
believe that we are in a unique position to investigate instruction understanding, the automatic
generation of human-like motion, and their relationship.

Section 2 begins with a brief discussion of the AnimNL project and this research task.
Section 3 describes the software used in the implementation. Section 4 explains the composition
and hierarchical structure of the task-actions, and discusses such contingencies as timing
conditions. Finally Section 5 elaborates on issues that became apparent while carrying out this
project, and Section 6 presents some ideas for future work.

2 The AnimNL Project

2.1 Project Description

The Graphics Lab's interest in human factors analysis suggested the domain of repair and main-
tenance tasks involving human agents. This domain, goal-oriented but animatable, provides a
rich source of instructional texts. Our initial strategy is to analyze a set of instructions, produce
a linguistic interpretation and analysis of the text, and use this representation to generate an
animation. The goal of the project is:

Given a task specified in Natural Language instructions, automatically generate a
(narrated) simulation of an agent executing the task.

One interest of the AnimNL project is the relation between natural-language instructions and
animated simulations specified at a task level [1, 2].

In discussing these animations certain assumptions are made. One assumption is that the
engineer who currently writes the instruction manuals will "write" the animations - they will not



be created by a professional animator. However current animation systems do not provide for
someone who is not an animator. A method which permits an engineer to specify an animation
is needed. One goal of this research project was to test the feasibility of generating animations
from a task level, as opposed to a lower level; i.e., allow the engineer to specify high-level goals
rather than each simulation movement. This is the third level of Zeltzer's animation taxonomy,
what he referred to as his "task level" [12]. However our motivation differs from his in that
our intention is to design a system not for animators, but for engineers with little knowledge of
task-level motor-control and related issues.

To illustrate some of these issues, consider the instruction:

Move the cup to the table

given in a scene with an animated agent, a table, and a cup on a shelf next to the table. The
animator-engineer should not need to specify the number of degrees to swing the shoulder joint
or straighten the elbow joint for each frame of the animation to move the agent's hand to the
cup. Rather, the animator should be able to specify the action at a much higher level - by
utilizing a set of high-level task-actions. If, instead of specifying joint movements, the engineer
could specify:

reach-action (hand cup)
move-action (hand table-top)

he would be describing the action at a task level. Using combinations of task-actions, an
engineer could "program" an animation. The AnimNL Project is interested in using these
same task-actions in generating animations from instructions.

2.2 This Research

While the AnimNL group plans on beginning with natural-language instructions and ending
with animation, the goal of this research project was to test the robustness of the interplay
between software packages available at the University of Pennsylvania which will be used in
building the animations. In addition, we wanted to test the feasibility of specifying high-level
task definitions in this environment. As non-animators, we were interested in developing a set
of high-level animation definitions that would enable the animation of a set of instructions.
The instructions chosen for the exercise describe the removal of a Fuel Control Valve (FCV)
from an aircraft fuselage. The results of this research illustrate issues the AnimNL project will
encounter in future attempts to generate animation from natural language instructions. They
also demonstrate that it is indeed possible to define a set of high-level animation definitions
which provides a means of describing an animation at a task level.

3 Programming Environment

The research described herein uses software developed in the Computer Graphics Research Lab
at the University of Pennsylvania. The environment is the Jacka modeling system which runs on
Silicon Graphics Iris workstations and provides three-dimensional (3D) modeling capabilities
as well as extensive human factors and anthropometric analysis tools. Built on a powerful

tJack is a trademark of the University of Pennsylvania.
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represertation for articulated figures composed of joints and segments with boundary geometry,
Jack provides an interactive interface into a 3D articulated world. Jack provides low-level
animation support through real-time inverse-kinematics and constraint satisfaction. in addition
to collision detection and strength analysis, among other features (see Figure 1).

The scene for the animation was created in Jack; the work area, tools, and parts were mod-
eled as specified in the instructions. Just as the engineer who currently writes the instruction
manuals has knowledge of the task and knows, for example, that a Phillips head screw driver
is required, it is assumed that the engineer-animator will have the knowledge required to lay
out the scene of the animation. It is also assumed that a skilled engineer is already trained in
analyzing tasks and developing instruction sets for the domain. This project simply provides a
different medium in which the engineer can explain the task.

ýJ I : SMAIK%

Figure 1: Beginning scene from the animation, FCV installed. The animated agent is in the
center. His projection to the yz-plane at the far left. gives a 3D effect to the picture. An oil bottle
is on the worktable. The circle in the upper center of the picture is an abstract representatioln
of the fuselage; the FCV is the cylindrical object mounted to the attached plate.

The animation was programmed in Yaps, a symbolic task simulator [4]. Yaps provides
animation-directives which access Jack's low-level animation commands. These animation-
directives are not only ordered and sequenced via Yaps's temporal and conditional relation-
ships, but can also be composed to produce parameterized simulation procedures. These pro-
cedures, called task-actions, are defined for a number of parameters (agent, object. location.
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etc.). The same task-action can thus be used any number of times with different parameters to
create different animation segments. The possibility of defining and reusing these procedures
greatly simplifies the animation programming problem for the engineer. By extending these
procedural compositions far enough, high-level procedures could be generated such that the
mapping from the instructions to these procedures would be straightforward.

KB (31 is a frame-based, object-oriented knowledge system which establishes symbolic ref-
erences to Jack's geometric data. While Jack maintains and manipulates the geometric model
of the world, KB maintains the symbolic information. Yaps uses KB's symbolic representa-
tion to manipulate the geometric model. (These symbolic KB representations are passed to
the Yaps task-actions as parameters.) This frees Yaps from "knowing" the specific world
coordinates of an object or the object's geometric representation in Jack. For instance, if Jack
contains a model of a cup, KB would have an entry which identified cup as that particular
Jack entity. Yaps has no knowledge of the object's location; KB's mapping from symbolic to
geometric representation will resolve any ambiguity. Thus the animator need not talk about
the-cup-on-the-table-at-world-coordin ates-(x,yz), but can reference the symbolic entity, cup.
Should the cup move during the course of the action, KB resolves the problem of the cup's
exact location.

4 Task-actions

At the time of this research, Yaps provided only three low-level animation-directives with
which to access Jack's animation commands. These are generate-motion, create-constraint, and
delete-constraint. Generate-motion causes an object (not necessarily animate) to move from its
current location to another. (Jack has no notion of how motion is generated. It uses inverse
kinemstics and joint constraint information to analyze how a motion is propagated through
a figure.) Create-constraint establishes a physical link between two (not necessarily adjacent)
objects. If two objects are linked together and one of the objects is moved, the second object
moves along with it. The physical constraint (relation) between the objects is maintained.
Create-constraint can be further specified to use positional and/or orientational alignments.
Delete-constraint removes the specifiod constraint between two objects.

Yaps provides a mechanism for building animation templates by combining 01 cuonipo-
ing the above animation-directives. Using different combinations of generate-motion, create-
constraint, and delete-constraint, and varying the agents and the objects of these animation
directives as well as their temporal and causal relations, it is possible to build a set of task-
actions. Task-actions can themselves be composed into more complex task-actions. As the
procedures acquire more specification, the task-actions approach task-level descriptions. It is
important to note, however, that task-actions simply define templates; an animation is realized
by instantiating the task-actions, supplying parameters as well as timing constraints and other
conditions. The composability of the task-actions allows for the definition of some abstract and
high-level concepts. It is these high-level animation descriptions which will allow the engineer
to program an animation at a task level.
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4.1 Defining Task-actions

4.1.1 Motivating Task-actions

The first templates to be defined were simply encapsulations of the entry points into the Jack
animation-directives. These task-actions are reach-action(agent object), hold-action(agent
object), and free-object-action (object); they correspond to generate-motion, create-constraint,
and delete-constraint respectively.' In the following, the use of agent and object is simply for
readability; for example, a hold-action can be applied between two objects (e.g., hold-action
(wrench-head 5-8th-socket)).

Consider trying to describe the actions inherent in the example:

Move the cup to the table

assuming that the agent is not currently holding the cup. The agent must first hold the cup
before he can move it. How is this animation specified? Explicitly stating the sequence of
actions:

reach-action (agent cup)

hold-action (agent cup)

to cause the agent to reach his hand to the location of the cup and to constrain the cup to
his hand seems awkward. The composability of the task-actions allows a new task-action,
grasp-action, to be defined:

(deftemplate grasp-action (agent object)
reach-action (agent object)
hold-action (agent object)).

Grasp-action is a sequence of instantiations of two primitive task-actions.
Now that the agent can grasp the cup, how can he move the cup? A second action, position-

action, is defined to relocate the cup to a new location:

(deftemplate position-action (objectI location)
reach-action (objectl location)
hold-action (objectl location)).

If a previous action had left an object (the cup) in the agent's hand, this task-action could be
used to move the object to a new location (position-action cup table). (In this instruction set,
the only time the instruction "move something that is already being held" was used required
that the object be constrained to the new location. This is the justification of the hold-action
in this definition.) Note here that location could be the location of object2.

'Although the names chosen for the task-actions do make some attempt to elicit their definition, there was

no attempt to come up with definitive definitions of these actions in this segment of the research project.
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Thus, to animate the instruction:

Move the cup to the table

the animation-script could be:

grasp-action (agent-right-hand cup)
position-action (cup table-top).

In animating move, it is still necessary to specify a list of commands. No high-levei task-action
has been defined for move; therefore, the action must be described in increments. However, it
is possible to encapsulate the elements of the primitive list at a still higher task level. Move-
action could be defined as:

(deftemplate move-action (agent object 1 location)
grasp-action (agent object 1)
position-action (object] location)).

The actual definition is:

(deftemplate move-action (agent objecti location)
grasp-action (agent object])
reach-action (object l location));

in other words, reach to objectl, create a constraint, and move objectl to location (where
location might be the location of some object2). In the Move the cup example, the instantiation
required to achieve the desired animation would be:

move-action (agent-right-hand cup table-top).

This conciseness is one benefit of task-action composition.
Once the cup is actually on the table, it can be "un-grasped" by using:

free-object-action (cup)

which breaks the constraint between the hand and the cup. If the hand is later moved, the cup
will no lnger move with it.

4.1.2 Domain-specific Task-actions

The Move the cup to the table example motivated a few fundamental task-action definitions.
Some of these are actions common to many instructional tasks and milieus; this set of task-
actions is also usable in the instruction set describing the FCV removal. Hlowever, it was also
necessary to return to the instruction set and develop Yaps definitions for actions specific to
the domain in question. These task-actions can be either primitive (see turn-action below) or
compositional (see ratchet-action). The first new task-action, attach-action, is defined as:

(deftemplate attach-action (agent object I object2)
move-action (agent objectl object2)
hold-action (objectl object2)).

6



This allows the agent to grasp object1, move it to the location of object2, and establish a
constraint between objectl and object2. The expansion of this task-action is the command
string:

reach-action, hold-action, reach-action, hold-action.

Attach-action could have been equivalently defined as:

(deftemplate attach-action (agent object] object2)
grasp-action (agent object1)
position-action (object) object2))

which would expand to exactly the same Jack animation-directive command string as above.
The task-action definitions are associative; this provides flexibility and power to the system,
and increases the feasibility of defining a minimal set of task-actions to be used throughout the
domain.

The FCV removal instructions also require: turn-action (object degrees). Turn-action
causes the object to rotate by the specified number of degrees. The geometric definition of the
object includes information as to its degrees of freedom; for example, around which axis a bolt
will be allowed to rotate. At the time that this research was done, the system did not have a
feedback tool to monitor Jack entities; instead of testing for an ending condition on an action
(a bolt being free of its hole), actions had to be specified iteratively (the number of times to
turn a bolt). Turn-action is actually a support routine, used in the final task-action needed
to animate the FCV instructions: ratchet-action. This is defined as:

(deftemplate ratchet-action (object degrees iterations)
turn-action (object degrees)
turn-action (object -degrees)
ratchet-action (object degrees iterations-I)).

Ratchet-action is used to animate a socketwrench ratcheting back and forth.2

The complete set of task-actions is listed below. With this set of only nine task-actions, it
was possible to program the entire animation script from the natural language instructions (see
Appendix B for an excerpt of the final animation script).

"* reach-action (agent object)

"* hold-action (agent object)

"* free-object-action (object)

"* grasp-action (agent object)

"• move-action (agent object location)

"* attach-action (agent object) object2)

"* position-action (object1 object2)

"* turn-action (object degrees)

"* ratchet-action (object degrees iterations)
2 Having to explicitly state a number of degrees is not an elegant programming solution; it would have been

preferable to take advantage of Jack's collision detection algorithms to determine the range of the ratchet
movement. However, processing considerations at the time tike work was done required this rather rough
implementation.
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4.2 Instruction Translation

The set of task-actions now provides a language for describing the instructions. If this set is
robust enough in the domain, mapping from the instructions to the animation script will be
straightforward for the engineer/animator. There is still quite a bit of room for interpretation,
and the nature of the task-actions dictates that there will be more than one way to describe an
animation. Returning to the Move the cup to the table example, the engineer can now equally
well animate:

Move the cup to the table.

as:

grasp-action (agent-right-hand cup)
position-action (cup table-top)
free-object-action (cup)

or:

move-action (agent-right-hand cup table-top)
free-object-action (cup).

In both cases, the engineer has decided to release the constraint between the agent and the cup
as soon as the cup is on the table-top. However, the engineer has also described the required
animation at the task level.

4.3 Sequencing Subtasks

Yaps is a simultaneous language; that is, all task-action instantiations are resolved concurrently.
To sequence the actions and force them to occur in a specific order, the engineer/animator
must use the timing-constraints option provided by Yaps. This construct allows the user
to specify starting, ending and duration conditions for the instantiation of each action. It
is possible to achieve the ordering needed to create a sequential animation by predicating
the starting condition of instruction-2 on the ending condition of instruction-1. However, a
task-action template, which is defined as a series of other task-actions, has the sequencing
automatically built in via the instantiation process. If this were not the case, defining grasp-
action, for example, would be impossible because achieving and completing the reach-action
before starting the hold-action could not be guaranteed.

The actions do not need to be performed discretely. Other Yaps timing constructs allow
the actions to be overlapped and delayed by specifying (start (after 5 min)) or (start now),
for example. Nor is defining a discrete linear order on the subtasks the only possibility. The
simultaneous nature of Yaps is used to animate actions (such as moving an object with both
hands) by simultaneously animating:

move-action (agent-left-hand box)
move-action (agent-right-hand box).

The Yaps timing constraints provide a powerful mechanism for specifying the relationships
among the task-actions in the animation. Timing is one of the most critical issues involved in
generating realistic animations; the power that Yaps provides in resolving timing issues greatly
enhances the potential of the Jack animation system.

8



4.4 Task Duration

A formula developed by Fitts [6] was used to approximate the duration of a task-action. This
equation estimates the time required for a human to "hit" a target (e.g., for an agent to
press a button or push a panel). The calculation is based on the dimensions of the target,
the performance level of the agent, and the agent's distance from the target. Fitts' Law was
used to calculate the duration of all reach-action instantiations. Thus time requirements were
cumulative (i.e., the sum of the subtask-action times). Create-constraint uses a small default
constant time to estimate subtask length.

4.5 Comparison with Earlier Work

Previous work by Kalita [8, 9] took the output of a parser (BUP) [5], built representations
following a verbal analysis (ASAM), translated these representations into Yaps, and generated
a short animation. The current research did not attempt to start with a language parser; rather,
the focus was to test the robustness of Yaps, KB and their interaction with Jack (see Figure
2).

Kalita took a different approach to the problem of action description. He did not build a set
of task-actions to be used in programming his animation. Instead, Kalita defined each subtask
as a sequence of animation-directives. His final animation script was completely "flat," with no
hierarchical definitions. Not only does this imply that he did not benefit from using Yaps as
a programming language (and defining reusable animation procedures), but that his animation
required the animator to repeatedly decompose each verb to the level of animation-directives.
He did not make use of the concept of hierarchical task-actions. This composability is the
powerful tool which allows us to create animations at a task level.

ASAM

h2DSIMtr

YAPS KB

Figure 2: Converting natural language instructions to animation.

5 Discussion

This section presents a brief discussion of issues encountered in generating this animation, and
how the information gained from this research has and will effect future research.

9



5.1 Flexibility of This System

* Timing
The Yaps timing constraints provide a powerful mechanism for specifying the inter-
relationships among the task-actions in the animation script. Timing is one of the most
critical issues involved in generating realistic animations. It is not sufficient to simply list
all the actions; they must be sequenced and connected temporally. The power that Yaps
provides in resolving timing issues greatly enhances the potential of the Jack animation
system. An excerpt of the output from Yaps (a list of Jack commands) appears in Ap-
pendix C, which illustrates the complexities of the timing conditions required to produce
the animation.

* Domain

Although this report only discusses animated agents, the abstract task-action definitions
are equally applicable for other simulated agents, be they animated or robotic. This
investigation into the semantics of these instruction verbs has wide applicability. The
ability to use hierarchical action descriptions to define a set of commands for a robot
arm, or to describe the actions of an animated agent in a dangerous work environment,
should be of interest in many different domains.

* Agent Ability

One question which arises in defining the task-actions is whether or not the instructions
need to be concerned with how the task-action varies depending on the agent and his
abilities. Is it necessary to describe different task-actions for a five-foot agent, as opposed
to a six-foot five-inch agent?

Because this work is embedded in Jack, variations in agent ability at the animation
specification level are not a concern. As long as the animation is within the agent's
capabilities (i.e., "solvable"), substituting different agents gives different evaluations of
the tasks. By testing different agents with varying abilities, one can analyze the task
requirements and gather information on human factors issues. Similarly, it is possible to
vary workplace geometry, tools, and agent placement (location).

There is a comparison here between innate and planned action. In reaching to grab a cup,
we do not think about how to control the muscles in the forearm, however, we do consider
the goal of getting our hand to the same location as the cup. This distinction between
cognizant motion and action is internal in this animation; Jack manages the motor skills.
The same distinction is found in the level of detail of the instructions. One does not tell
someone:

Reach your hand to the cup, constrain your hand to the cup, begin ...

Rather, we give them a goal, and allow that goal to lend information as to how it will
be accomplished. The hierarchy of the task-actions captures some of this understood
knowledge.

The task-actions have been defined such that they are not concerned with the abilities of
a specific agent, but allow for interpretation based on each agent's capabilities. Not only

10



does this allow the same animation script to be used for different agents (thereby gener-
ating different analyses), it also means that the primitives used to define the elementary
task-actions are themselves defined in terms of this level of innate action.

* CPU Considerations

The result of the research is a short film depicting an animated agent removing a part from
an airplane. The generation of each frame requires a significant amount of computation;
the frames were saved as they were generated and collected into a short film. The resulting
animation can be played back whenever and as often as necessary.

5.2 Features Needing Improvement

* Timing

At the time of this research, Yaps provided only limited timing capabilities; therefore
animating conditional actions was impossible. However, extensions to Yaps now provide
access to monitors which allow for conditional constraints. One can create a monitor
which continually checks certain conditions in the world. Upon detection of a given
condition, the monitor can trigger (instantiate) a new task-action or terminate an old
one. A simple example is to establish a gravity monitor and attach it to an object in
the scene. If the monitor ever discovers that the object is unsupported, it would invoke
fall-action (object).

An additional and far more complex example would be to replace ratchet-action with
a task-action with an inherent monitor which would turn the object (a bolt) until it was
free. This would be an improvement over ratcheting the bolt for a specified number of
iterations, as was necessary in this preliminary implementation.

9 Creating-constraints

To avoid circularities, Jack must define a source and destination for each create-constraint.
While the source object controls what is constrained to it, the destination does not. That
is, if the hand (source) is constrained to the cup (destination), moving the cup will result
in the hand also moving. However, moving the hand will not necessarily preserve the phys-
ical distance between it and the cup. This is clearly unintuitive and awkward, although
it was possible to program the animation despite this problem. One requires a create-
constraint (hold-action) which bypasses the constraint mechanism. This functionality is
implemented in Jack, but is not currently accessible via Yaps.

* Posture Planning

Work by Jung [7] promises to eliminate problems that were encountered in generating
certain movements. In determining animations, there must be a certain level of postural
planning to prevent the agent's hand from colliding with his leg or to determine that
the agent is currently too far away from the table to move the cup to it. These are
unspecified in instructional dialogue. Jung's proposal is to plan the postures needed in
the course of satisfying an animation-directive. This functionality, when combined with
the investigation into understanding the influence the task has on the interpretation of
each instruction, should greatly enhance the power of our system.
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e Fitts' Law

Fitts' Law was used to estimate the time required for many of the movements in the
animation; however, the results are not exactly correct. Fitts' Law was not intended to
calculate the time required for an agent to move his hand from one location to another,
but rather depends crucially on the target of each motion. It also gives the fastest time
requirement. Any use of Fitts' Law should be scaled by some motivation factor. Other
algorithms need to be investigated that will give a set of durations for each task. Although
Fitts' Law is not directly applicable for this domain, the algorithm does give a reasonable
estimate for the durations of the task-actions. Relative to one another, the subtask times
make sense. Although the length of each task-action might not be correct, the animation
does appear to be temporally coherent.

Options which exist for obtaining accurate subtask times include:

- using existing databases for task times - these are found in the human factors domain;
and

- using a strength model to predict the minimum task completion time from the max-
imum rate of motion.

6 Future Directions

This is an ongoing research project. Other areas for study are briefly discussed below.

* Timing

One useful project would be to test and illustrate the power of the Yaps monitors, using
different starting and ending conditions and subtask durations. A set of these condition-
als would greatly enhance the task-action library. Preliminary tests in defining action
templates using monitors include:

start (action2) when-start (actioni)
do (action2) until-finish (actionl).

These task-actions work quite well and provide considerable programming power.

e Minimal Task-actions Set

A subject not discussed here is the usefulness of the set of task-actions defined for the
purposes of this animation. Investigating the applicability of these task-actions to other
task domains, and discovering how their definitions would need to be changed is another
area for further research. Additionally, one could try to establish which task-actions might
constitute a minimal set, or if such a set even exists. Limiting this discussion to the world
of animatable instructions might make it feasible.

Since this project was completed, the set of animation-directives provided by Jack has
been greatly expanded [10]. In fact, whether or not these commands should still be called
"primitives" is questionable. Jack now handles much more sophisticated actions, such as
move left foot; the implication is that the task-action descriptions will also move up the
task-level hierarchy.
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e The Object-oriented Approach

One can view the work to date as using the verb in the natural language instructions as
the means of selecting a particular task-action, and its arguments (subject, object, etc.) as
parameterizing that selection. However, a verb such as remove has significant variations
in behavior when applied to objects as diverse as jar lids, labels, or bolts. Because of
this, the appropriateness of treating the different actions simply as parameterizations is
questionable. One possible course for future research is to investigate an "object-centered"
approach in generating animation.

KB is an object-oriented language. Objects could store domain-specific information;
for example, their degrees of freedom. A bolt might be constrained by its geometry
such that, when turned, it "knows" that it must turn around a certain axis. Work has
begun in defining a set of task-actions which will act as object-oriented procedures. One
current thought is to build a hybrid system of underspecified definitions of the task-
actions in conjunction with an object-centered knowledge base. Each class of objects
will have enough geometric and other supplementary inherited information that when the
procedure is applied to the object, the object can provide the missing information and
the task-action can be animated. There might be a core task-action definition for open
which will behave differently depending on whether one is animating open the door or
open the umbrella. The intent is to capture the idea that action specifications describe
the goals of the action - not the behaviors.

As a further extension of this approach, it would be interesting to investigate what it
means to instantiate, for example, remove-action on a hierarchical assembly. In the
animation described here, remove-action was applied to each bolt. It would also make
sense to program either remove-action (the-bolts) or remove-action (FCV). One ques-
tion is whether it is correct to simply apply remove to each subpart in order, or if more
information is needed in the data structure of the object and what that information
entails.

7 Conclusions

This work, and the work of the AnimNL group, has applications in many different fields.

9 Computational Linguistics

Not only will a system which allows the generation of animation from natural language
instructions provide a forum for testing algorithms which build interpretations of language,
it will also allow study of instructions as discourse. Additionally, a task-level description
of an animation will allow us to capture and utilize the duality inherent in instructions
that they specify both a goal to be achieved and the manner to achieve that goal [11]. This
knowledge is crucial in generating animation, specifically animations of low-level motions.

* Maintenance and Human Factors Analysis

The possibilities for using these animations from instructions as a test bed for human
factors analyses of different tasks are extensive. The resulting animations can be used
to analyze whether or not an agent will be able to perform a task in an environment
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before the environment is actually built. They will be equally useful in designing a part
for use in an environment which dictates limitations on number of agents or access to a
part. As a utility which allows an engineer to "walk" an agent through a proposed design
of a factory plant or test different strategies for repairing a faulty part (to find a work
strategy which offers minimal stress to the worker), this animation facility should also be
of interest and can be a crucial step in the design and test process for many industries.

e Lexical Semantics

This project also provides an interesting means of studying taxonomies of actions and
objects as well as the difference in how humans think about actions and specify them.
Given the limited set of animation directives in Jack, is it realistic to believe that one could
derive a set of high-level task-actions which would allow someone to describe any set of
instructions? Does such a set exist in the general case, or even in a limited environment?

As a result of this research project, a short animation of the agent removing the FCV from
the fuselage of an aircraft was produced. This animation was created at a task level by this
author, who had minimal knowledge of animation. Excerpts of the final animation script can be
found in Appendix B. We are continuing our investigation of a high-level language for specifying
animations at a task level.
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A Fuel Control Valve Removal Instructions

1) With right hand, remove socket wrench from tool
belt, move to front of body. With left hand,
reach to tool belt pocket, remove 5/8'' socket,
move to wrench, engage. Adjust ratchet for
removal.

2) Move wrench to left hand bottom hole, apply
pressure to turn in a loosening motion, repeat
approximately 7 times to loosen threaded hole.

3) Move wrench away from bolt, with left hand reach
to bolt and remove bolt and washer from assembly,
move left hand to belt pouch, place bolt and washer
in pouch.

4) Move wrench to bottom right hand bolt, apply
pressure to turn in a loosening motion, repeat
approximately 7 times to loosen threaded hole.

5) Repeat operation 4.

6) Move wrench to top bolt, apply pressure to turn
in a loosening motion, repeat approximately 6 times
to loosen threaded bolt. Move left hand to grasp
assembly, loosen the bolt the final turn. Move
wrench to tool belt, release. With right hand,
reach to bolt, remove bolt and washer, place in
pouch. Return right hand to assembly; with both
hands, move Flow Control to movable cart and release.
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B Final Animation Script (Instr. 1)

;;; No. 1
;;; With right hand, remove socket wrench from tool belt,
;;; move to front of body. With left hand, reach to tool belt

;;; pocket, remove 5/8" socket, move to wrench, engage.
,;; Adjust ratchet for removal.

with the right hand, grasp the wrench from the tool belt,
and move it to site-front-body

(instantiate move-action
(fred-rh wrench-handle fred-front-body-site planar)

:instancename "rO-wrench-to-front"

:time-constraints '((start now)
(duration

(eval(+(fitts fred-rh wrench-handle)
(fitts wrench-handle
fred-front-body-site)))))

; with the left hand, attach socket to wrench handle.
; an attach entails, reaching for the socket, grasping
; it and moving it to the wrench head.
; if successful, free the left hand from the socket.

(instantiate attach-action
(fred-lh 5-8th-socket wrench-head

attach-socket-time planar oriented)

:instancename "rS-attach-socket"

:time-constraints '((start (end "rO-wrench-to-front"))
(duration (eval

(+ (fitts fred-lh 5-8th-socket)
(fitts fred-left-pocket

fred-front-body-site)
attach-socket-time))))

:on-success '(progn
(free-object-action fred-lh)
(free-object-action 5-8th-socket)
(hold-action wrench-head 5-8th-socket

:orientation-type '("orientation")))
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C Yaps Output of Jack Commands

advance-.clock-.to..time(0);
create-.motion( "yapsOO", 0,111inear" ,"end eff ector" *"site",

"pbmale95.r4-ght..fingers .distal", "none" ,"position", "lpbmale95 .right..shoulder");
create-.site-.colocation("warld" ,"yapsOl" ,"site", "pbmale9S.right-.fingers.distal");
add-.mot ion..keyfrane ( "yapsOO" ,"0" ,"site" ,"vorld. yapsOl");
add-m.otion-.keyfrazne("lyapsOO" ,"50.0"1, "site" ,"socketvrench socketwrench.handle");
create-.motion("yaps02" ,0,"linear" ,"end effector" ,"site"

"pbmala9S.right..upper-.arm.distal" ,"none" ,"position" ,"pbmale95.right-.shoulder");
create..site..colocat ion( "world" ,"yapsO3" ,"site",

"pbmale9S .right-.upper..arm.distal");
add...motion..keyframe ("yapsO2", "0","site" , "world. yapsO3");

ad'vance-.clock-.to-.time (50);
delay-.command(S0);
create..motion("yapsOS",50,"linear" ,"end effector" ,"site",

"socketwrench .socketurench handle"t, "none" ,"lposit ion" , 0);
create-.site-.colocation("vorld" ,"yaps06" ,"site", "socketwrench.socketwrench.handle");
add-.motion..keyframe("lyapsOS" , "0" ,"site", "world .yapsO6");
add-.motion-.keyframe("Iyapso5" ,"7.0", "site" ,"pbmale95. center..torso .work");
advance-.clock-.to-.tine(55);
create-.named-.constraint ("yaps04" ,"sie, "socketwrench. socketvrench .handle",

"site", "pbmale9S .right-fingers .distal", "none"l,"position",
"pbmale95.right-.shoulder" ,1 .00);

advance-.clock-.to-.time(57);
create-.motion("yaps07",57,"linear" ,"end effector" ,"site",

"pbmale95 left-.f ingers .distal" ,"none", "position" ,"pbmale9S. left-.shoulder");
create-..ite..colocation("wvorld" ,"yapsO8" ,"lsite" ,"pbmale95.left-.fingers .distal");
add-.mot ion-.keyframe ("yaps07" ,$"0" ,"site" ,"world. yapsO8");
add-.motion-.keyframe("yaps07" ,"35.0", "site"l,"socket .socket .base");
create-.motion("yaps09" ,57,"linear", "end effector" ,"site",

"lpbmale9 . left-upper..arm distal" ,"none" ,"position" ,"pbmale9S .left-shoulder");
create..site..colocation("wvorld" , "yapslO" ,"site", "pbmale95 .left-upper-arm. distal");
add-.motion..keyfrazne( "yapsO9" , "0", "site" ,"world. yaps 10");
add-.motion-.keyframe("yaps09","35-0","site","pbmale95.center-.torso.left-.elbow-.reach");
advance-.clock-.to-.time(92);
advance-clock-.to-.time(95);
create-.nazned-.constraint("yaps 13" ,"sitel, "socket. socket .base" ,"site",

"pbmale95.left..fingers.distal" ,"none" ,"position" ,"pbmale95.left..shoulder", 1.00);
delay-.conmand(95);
advance..clock-.to-.time(97);
create-.named-.constraint ("yaps 14" ,"site" ,"socketwrench. socketvrench .head",

"site","socket.socket.top","orientation","position",O.50,0,1.00);
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