
REPORT DOCUMENTATION PAGE 
rufiit M^a/ivrw 

Ab  AÄ5H     W3l OMB No. 0704-0183 
>.DIiC 't OC~.'"C Ou/Of *cr t"n cci'eCtiOr* Ct •nrorfjhor' .% ritimar« :o 4veraa? ' 10ur 0-' '*1DOf\t •fx-.uc.mc !"* t:*~- :cr rev.fw.ng iniiruaicni. Kifcninc f)-Ui«fl aj[» sourer-, 
3Jtnertna Jr*d miintjimng trie a*\i neroea. jna ccmoienna Jflo reviewing :ne conecwan o' mt/y-.attoi Sena ccm^enTl recarainc, tnn ouroen eitimjte or iny oxrier iioec: cr tin 
COtre-ction o' inronTwrrcv inavainq luqcnuCi *0' reau<ina This Ourae" TO irVlin.nqtO" ^flfloujnf'l Services. Directorate *cr mlormmon Goerittorn irwa Reooni. 1215 Jener van 
Oivn morxiv. Suile 120*  .imngton. vi  22202-» 3C2. jno to fr O^itf 9* Miniori'n «no äuaoe:  B%oerv.o'i Aeaumo" *'Oira (G7GJ-0188I. Wiimncton. OC 20503. 

1.   AGENCY USE ONLY {(.ejve ounk) 2. REPORT OATE 
May 5,  1992 

3. REPORT TYPE   AND DATES COVERED  Final   Report 
March 1, 1991 to March 31, 1992 

A. TITLE AND SUBTITLE 

Analytical Studies of Nonlinear Partial Differential 
Equations of Interest in Nonlinear Optics 

6. AUTHOR(S) 

M. J.  Potasek 

5.   FUNDING NUMBERS 

GRANT DAAL03-91-G0090 

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 

Department of Applied Physics 
Columbia University 
New York, New York 10027 

PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY  NAME(S) AND ADDRESS(ES) 

U. S. Army Research Office 
P. 0. Box 12211 
Research Triangle Park, NC 27709-2211 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The view,   opinions and/or findings contained  in this report are those of the 
author(s)   and  should not  be construed as an official Department  of the Any 
position,   policy,   or  decision,  unless  so  designated fav other  documentation. 

\2i. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Approved for public release; distribution unlimited. 

13. ABSTRACT (Maximum 200 woras) 

This research centers on both quantum and classical effects of 
femtosecond pulses. 

U.  SUBJECT TERMS 

femtosecond pulses, quantum optics 

1S. NUMBER OF PAGES 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18.   SECURITY CLASSIFICATION 

UNCLASSIFIED 

IS.   SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 75-ü-O;-280-5500 Stanaarc -QT. 295 (Rev   2-39 
»•-wore o» iNSi Sic   £35-'S 



Report 

A.)    $tatement of the Problem: 

The research developed mathematical models of physical phenomena for the study 

of complex time-dependent, nonlinear partial differential equations of interest in nonlinear 

optics. Applications of the work include optical communications, optical switching and 

future optical computing. 

The research involved the development of mathematical models describing 

femtosecond pulse propagation in nonlinear optical media. This research is significant 

because, as the duration of optical pulses shortens, new interactions arise. Recent 

advances in femtosecond light sources makes possible the study of new phenomena. 

These interactions must be described by novel nonlinear partial differential equations. A 

second important area of research involved the interaction of multiple beams of light for 

intensity dependent ultrafast optical switching. In particular, we have investigated novel 

solitons. 

B.)    Summary of Results: 

Research in both quantum and classical areas has been investigated. We have 

obtained exact solutions to coupled higher-order nonlinear Schrodinger equations. This 

represents the first work in this significant area. These equations are then used to model 

femtosecond all-optical switching, which has important applications in the optical 

computing area. 
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FIG. 1. Switching dynamics for light into one waveguide only, where the distance is in units of L, and the time is in units of«"'. 

Furthermore, using the time-dependent Harytree approximation, we have derived 

the first investigation of quantum effects for femtosecond pulses. This new work may lead 

to a greater understanding of quantum noise. Our results describe the propagation of 

femtosecond solitons in nonlinear optics. These solitons travel at velocities that differ from 

those of the picosecond solitons obtained from the standard quantized nonlinear 

Schrödinger equation. From the quantum solutions, we find that the soliton experiences 

phase spreading and self-squeezing as it propagates. 
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Femtosecond Solitons in Nonlinear Optical Fibers: 
Classical and Quantum Effects 
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Abstract 

We use the time-dependent Hartree approximation to obtain solutions to a quantized higher-order 

nonlinear Schroedinger equation. This equation describes pulses propagating in nonlinear 

optical fibers and, under certain conditions, has femtosecond soliton solutions. These solitons 

travel at velocities that differ from those of the picosecond solitons obtained from the standard 

quantized nonlinear Schroedinger equation. Furthermore, we find that quadruple-clad fibers are 

required for the propagation of these solitons, unlike the solitons of the standard nonlinear 

Schroedinger equation which can propagate in graded-index optical fibers. From the quantum 

solution, we find that the soliton experiences phase-spreading and self-squeezing as it 

propagates. 
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Soliton solutions to coupled higher-order nonlinear Schrödinger 
equations 

R. S. Tasgal and M. J. Potasek 
Department of Applied Physics, Columbia University. New York, New York 10027 

(Received 19 August 1991; accepted for publication 30 October 1991)-   • 

A set of coupled higher-order nonlinear Schrödinger equations, which describe electromagnetic 
pulse propagation in coupled optical waveguides, is formulated in terms of an eigenvalue 
problem. Using that result, the inverse scattering problem is solved and explicit soliton 
solutions are found. Additionally, linear coupling terms are studied systematically. 

3 

I. INTRODUCTION 

Optical signal processing is attracting interest be- 
cause of its ultrafast response time. Currently, electro- 
optic devices generally require a cumbersome interface 
between electronics and optics. On the other hand, all 
optical signal processing utilizing only the nonlinear in- 
dex of refraction results in partial loss of the signal due to 
nonuniform intensity distribution within the pulse. Soli- 
tons, and in certain cases solitary waves, which balance 
nonlinearity and dispersion, can improve system perfor- 
mance due to their remarkable stability properties. 

Slowly varying electromagnetic waves in a nonlinear 
medium (an optical fiber, for example) are described by 
the nonlinear Schrödinger equation (NLS). In order to 
increase bit rates it is necessary to decrease the pulse 
width. As pulse lengths become comparable to the wave- 
length, however, the NLS equation becomes inadequate, 
as additional terms must now be considered. We will refer 
to equations which include these terms as higher-order 
nonlinear Schrödinger equations (HNLS). 

One of the first HNLS equations to be solved exactly 
(by Hirota1 in 1973, two years after the simple NLS 
equation was solved2) and, in a sense, the simplest is 

iqz + ibq, + (ß/l)q„ + ß\q\lq - ie{qm + 2fi\q\zq,) =0, 
(1.1) 

where p = 3 and e approaches zero when the pulse width 
is long compared to the wavelength. 

There are several ways to generalize the HNLS Eq. 
(1.1) to a set of coupled equations, depending on the 
physical situation that is being modeled. A fairly general 
form of coupled HNLS equations is 

'?•, + '(*+ +S-)?u+(/3/2)?in + /3(k,|2 

+ rk:l2)?i + (A + +A_)?i + (* + 

+ Y\qi\2)qu + nl<]*<iu + rqiq2t)qi]=o,        (1.2) 

*fc* +'(« + - & - >fo + (#2)fc,+ßlr\ii 12 

+ I?2l2)*2 + (A+-A_)92 +(*+-/*_)?, * •_? 

-k[fcm+A*(r|?i|2+ lftl2)fci+/*(retoi 

+ rffti)ft]=0- (1.3) 

A nonlinear directional coupler has 5_ = A + 

= A_ =K_ = 0 and Af + ^^O.3 A birefringent single 
mode fiber4,5 and rocking fiber rotator,6 in which the fiber 
is periodically twisted, have A + = K _ =0 and 5 _, A _, 
K + T^O, where y is a function of the ellipticity angle 6 
and two material parameters a and b: 

la + lb sin2 9 
' la + b cos2 B 

(Ref.7) 

in optical fibers a=b. 
Equations (1.2) and (1.3) with 6_=A_ 

= K + = K_ =£ = 0 and A + =£0describe a nonrelativ- 
istic boson field.8 In a weakly relativistic plasma, nonlin- 
ear coupling of two polarized transverse waves with dis- 
persion is described by 5+=5_=A+=A_ 
= K+=K_ =e = 0.9 Also, for the case 
5_ =/3=A+ =A_ =K+ = AT_ =0 with quq2 eR, 
Eqs. (1.2) and (1.3) axe a pair of coupled modified 
Korteweg-de Vries equations- The intennode switching 
term K _, which emerges in a natural way from the math- 
ematical derivation below, has not been considered in 
previous soliton work. 

Solitons have been found in a variety of (uncoupled) 
higher-order NLS equations. Analytic solutions to the 
simplest NLS equation—Eq. (l.l) in the limit f—0— 
were discovered in 1971 by Zakharov and ShabaL2,10 

Hirota1 obtained exact soliton solutions to the HNLS Eq. 
(1.1) by transforming the NLS equation into a homoge- 
neous form of the second degree. (While this approach 
produces several valuable insights, it has the disadvan- 
tages of being ad hoc, somewhat hard to work with, and 
it treats the higher-order terms and NLS terms differ- 

Vi 
•'•* 
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R. S. Tasgal and M. J. Potasek: Coupled higher-order nonlinear Schrodinger equations 1209 

ently.) Sasa and Satsuma recently discovered soliton so- 
lutions to a more complex HNLS equation." The 
derivative1213 and mixed derivative1415 NLS equations 
have been solved. Painleve techniques produce other 
solutions.16 Some exact soliton solutions may be found by 
transformation to known NLS equations.17 

Exact solitary waves (which may or may not be soli- 
tons) can be found by direct substitution.18 Approximate 
solitary waves can be found by various techniques. 
Among the most useful are numerical computation" and 
variational methods.20 (Sometimes, when the exact solu- 
tions are not known, these are also fruitful approaches to 
integrable systems.21,22) 

Recently the coupled NLS equations, without higher 
order terms, have been the focus of intense attention.23 

Manakov24 found explicit soliton solutions to the coupled 
NLS Eqs. (1.2) and (1.3) with equal self- and cross- 
phase modulation, but without either higher-order terms 
or linear coupling 5_=A+=A_ = K+ =K_ 
= e = 0, y = 1. Elphick8 used the quantum inverse scat- 

tering method to study the Manakov equations with an 
added symmetric self coupling term A + =£0, 
6_=A_=/C+=Af_=£ = 0, y = 1. Belanger and 
Pare25 found a transformation that reduces a set of cou- 
pled NLS equations with symmetric linear cross-coupling 
terms K + =£Q, <5_ = A + = A _ = K_ = e = 0, y = 1 
to the Manakov case, thereby finding solitons with peri- 
odic energy exchange between the two coupled modes. 

Solitary waves in the coupled NLS equations, includ- 
ing nonintegrable (and consequently sou tun destroying) 
terms such as 5_^=0, y=fc\, and absorption, are also of 
interest. We mention only a sampling of work in this 
field, since it is too vast for a thorough survey here. 
Christodoulides and Joseph26 discovered exact vector 
solitons in coupled NLS equations with a birefringence 
term. Pare and Florjanczak27 found analytic solutions us- 
ing a Lagrangian variational method. Stability analyses 
have been performed.28,29 There is also a large amount of 
numerical work.30"33 

To date there has been no work on coupled nonlinear 
Schrödinger equations with higher-order terms, and lin- 
ear coupling terms have not been studied sys'^matically. 
In this paper, using the method of Ablowitz, Kaup, New- 
ell, and Segur36 (AKNS), we formulate the coupled NLS 
equations in a more systematic way than has been done 
previously. With that result, the coupled NLS equations 
are generalized in a very natural way to include higher- 
order terms and other new linear coupling terms. The 
inverse scattering transform37,38 is then straightforwardly 
carried out, yielding explicit solutions. 

II. FORMULATION OF THE EIGENVALUE PROBLEM 

The method of AKNS is begun by writing the not yet 
fully defined eigenvalue problem 

v,= Tv, 

(2.1) 

vz=Zv, 

z„= I 4V (2.2) 
«=o 

The integrability condition for Eqs. (2.1)—(2.2) is 

T,-Z,+ [T,Z\=0. (2.3) 

Writing each of the nine components of the matrix 
explicitly and matching terms of the same order in p 
yields an iterative method of determining Z: 

Z\? = (i/2)(Z&+ " + (Zft + " - Z\\ + »),, 

-Zj2 + I)ft). (2-4) 

zi;>=(i/2)(z{;,+" + (z\i* •> - z\r »)ft 

-Zlr'Vi). (2.5) 

Z[?= - (i/2)(Z<-,+ » + {Z\I* " -Z<r »)rf 

-33y+"rf). (2.6) 

z^= - a/2)(z\i; " + (z{;+" - z\\+")*• 

-Z\r"ti). (2.7) 

z<d=z<2U + AV<n + A?ti + A'?fr     (2.8) 

Z^-Z^.-Z^f, (2.9) 

Al\=-A'?<ii-Ante. (2.io) 

Zii=-Zj^i-Zj;'* (2-12) 

and also four equalities in the zeroth order (1,2), (1,3), 
(2,1), and (3,1) matrix components of the integrability 
condition, Eq. (2.3): 

qu - Zjg - (Zj?' - Zg')f, + Zi0),2=0,       (2.13) 

to-Z{SJ - (Zi?1 -ZSS')*+ Zg,«.=a      (2.14) 

J Math. Phvs. Vol 33 No 3 Wa'ch 1992 



1210 R. S. Tasqal and M J. Potasek: Coupled higher-order nonlinear Schrodinger equations 

& + zi?; + i?y -*?>)*: -o?-a   (2.i5) 

q\\ + AV, + (AV - AVtf - 2S5'«f=0.      (2.16) 

Each iteration allows five constants of integration in 
Zin). A constant times the identify in Z or T does not 
affect the integrability condition, Eq. (2.3). There remain 
four possible physical degrees of freedom for each term in 
the polynomial Z. 

Setting Z<4) =0, an appropriate choice of the con- 
stants of integration and trace yields 

 I 

/0  0  0\ 

z<3)= -8/el0    1    Oj, 

\o   0 .1/ 

/   0       qx    q2 

z<2,= -4*     -rf    0    0 
\-rf    0    0 

0   0   0) 

1    0 

0   0    1. 

/kil2+lftl2     i\ 
Z<"=-2«: 

111 

\ it 

(O       qt    q2\ 

-q*    0     0 
-*?    0    0 

2?0) = 

0\<q*-<l\<iu + °it<li-<iA,    ?i«+2(|?,|2+ k2|
2)?i    *„ + 2(|?,|2+|ft|2)?2\ 

-9*,-2(k,i2+ k2i
2)*f    -(?i/?r-?i?f,)       -(^^f-^r) 

- ?*, - 2( 1 ?, |2 + | ft12)9* - (ft/ft* - ftft*) - (ft,ft* - ?*£) 

+ /' 
k.l2+lftl ft» 92/    \ /0 0 0 

-|ftl2     -ftrf ]-/    0    A++A_    K+-iK_ 
-liti     -1*17        \0   *++<*-     A+-A_ 

(2.17) 

(2.18) 

(2-19) 

(2.20) 

Wc have neglected the symmetric group velocity 
term 5 + 1 which enters at the Z* "level, since it can be 
eliminated by a trivial change of variables. Setting Eq. 
(2.13) equivalent to Eq. (2.15) and Eq. (2.14) equiva- 
lent to Eq. (2.16) forces ß, A + , A_, K+, K_, ceR. 
Insertion of Z*0) into Eqs. (2.13)-(2.16) yields a set of 
coupled HNLS equations: 

»ft,+ {ß/2)qltt + ß( |ft|2 + |ft|2)ft + (A+ + A_ )qt 

+ (* + + «*_)ft-/£[ftm + 3(|ft|2-f-|ft|2)ft, 

+ 3(ft*ft, + ft*ft,)ftl=0. (2.21) 

/ft,+ (0/2)ft„ + 0(|ft|2+|ft|2)ft+(*+-*-)* 

+ {K+-iK_)ql-ie[qlm+3(\ql\
2+\q2\

i)qll 

r-3(tfft, + ft*ft,)ft]=0. (222) 

These are Eqs. (1.2) and (1.3) with 6+=6_=0, y 
= 1, and n = 3. There are four constants of integration 

introduced in Z*0', two of them on the diagonal. Equa- 

tions (2.21) and (2.22) therefore contain the most gen- 
eral linear coupling terms that the AKNS formalism al- 
lows for Eqs. (2.1)-(2.3). 

III. ELIMINATION OF THE LINEAR COUPLING 
TERMS 

Having formulated the coupled HNLS equations as 
above, the zeroth-order constants of integration may be 
diagonalized by a rotation: 

Ai»,= ArA_,Ai», 

At/,=AZA-,Au, 

where 

A= 

1 0 
0     e-(^^cos(ö/2) 

(3.1) 

(3.2) 

e<w,*sin(0/2) 

K0    -t7li/1)'sm{8/2)   e(W)*cos(0/2)/ 
I 

(3.3) 

J. Math. Phya., Vol. 33. No. 3. March 1992 
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tan(^j)=^—, 
+ 

(3.4^ 

(3.5) tan(0) = JK\ + Kl_ /A _. 

This is equivalent to the transformation 

ql = el,/7)9[cos(8/2)q\ -sin(fl/2)9J], (3.6) 

qi=e- u/7)"[sin(d/2)q\ + cos(e/2)q'2], (3.7) 

with primed terms 

*'+=*'_ =0, (3.8) 

- _ = ± J&ITTP^+K1-.   sign( A'_ ) =sign( A _ ), 
(3.9) 

and all the other terms unchanged. 
The linear self coupling terms A + and A'_ may now 

be removed by a second substitution: 

*;=•'*•-*-V. 

?2 = «'<** -4'-%". 

(3.10) 

(3.11) 

That leaves the coupled HNLS equations (omitting the 
primes) 

iqu + (ß/2)qu, + ß(\q{\
2 + \q2\

2)q\ - ie[qiin 

+ 3( ki I2 + lal J)?i. + 3(^„ + ^2/)?.]=o, 
(3.12) 

iq^+{ß/2)q1„ + ß(\ql\
1 + |ft|,)«2-«[ft« 

(3.13) 

which, in the limit e—0, is the Manakov case. 
Belanger and Pare" made the substitution 

ql = cos{K + z)q\ - itin(K+z)q'v (3.14) 

?j= -isin(Ar + r)^; + cos(A" + z)9j (3.15) 

to eliminate K + from the coupled NLS equations (1.2) 
and (1.3) with 6_=A+=A_=A:_=£ = 0andy 
= 1. In contrast to the transformation given by Eqs. 
(3.6)-(3.11), Belanger and Pare's transformation breaks 
down (i.e., fails to eliminate K +) ifA_=^0orJC_#0, 
although it does work for the other linear coupling terms 
and the higher-order terms. Equations (3.14) and (3.15) 

cannot be applied, for example, to a periodically twisted 
birefringent fiber. Neither transformation works if 5 _ ^0 
or 7^=1. 

IV. THE INVERSE SCATTERING TRANSFORM 

Solitons solutions to the coupled HNLS equations 
may now be found using the inverse scattering transform. 
If Itfil« Ifcl—0 ** M — °° (which implies bright soli- 
tons), then the Jost functions may be defined as the eigen- 
functions v in Eqs. (2.1) and (2.2) with boundary con- 
ditions 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

*,.- v as t— oo, 

*,,-•   1   e*"   as r-oo, 

For peR, T*= -T. Therefore 

(4.7) 

where 1>,(p,t) is a solution to Eqs. (2.1)-(2.3), and 

i>Up,Di>ri(p.i) =*l(p.r)tf/,(p.O =«„ (48) 

The Jost functions (4.1)-(4.3) are related to the Jost 
functions (4.4)-(4.6) by the scattering matrix a: 

1>u(p,l)= I a,/(p)^(p.O. (4.9) 

J Math. Phys.. Vol. 33..NO. 3. March 1992 



1212 R. S. TasgaJ and M. J. Potasek: Coupled higher-order nonlinear Schrödinger equations 

au(p) = ^(p,r)^(p./). 

3 

X a*(p)«;*(p)=$,/ 

(4.10) 

(4.11) 

Using Eq. (4.10), au(p) may be analytically contin- 
ued into the upper half-plane lm(p)>0; and a22(p), 
a23(p), ccu(p), and an{p) into the lower half-plane 
Im(p) <0. From this and the unitarity of a (4.11) 

a?,(p*) =det 
an(p)    a23(p) 

an(p)   a 
2llP>\ 

»<P>A 
(4.12) 

At this point we posit that a^ip) has N simple ze- 
roes at the points p,, pI(...,piV in the upper half-plane. It 
will be shown below that the locations of the zeroes de- 
termine (some of) the physical parameters of the soli- 
tons. 

Introduce an integral representation of the Jost func- 
tions 

0,1(p.O = (oL-*-+ j'Krl (tjje-^ds,   (4.13) 

iMp.') = 

i/v3(p.') = 

1 \e*+ j   Kr2{t^)e^ds, 

W 
(4.14) 

Ole^'4- j> (V)«*"*, (4.15) 

'<"' 

^l<"|. 
r<3) 

The functions q{ and ft ue found in terms of K by sub- 
stitution of Eqs. (4.14) and (4.15) into Eq. (2.1): 

9,=-2X^(1,1), 

fc=-20r.l). 

(4.16) 

(4.17) 

To find A^2" and X^" we first recall the definition of 
the scattering matrix (4.9): 

iMp,r) = a,,(p)iMp,f) + <*\i(p)1>,z(p,t) 

+ a„(p)*„(p.»). (4.18) 

\l>n(p,i)=a1 (p)^,(p,;) + au(p)it>rl(p,t) 

+ a2i(p)tpri(pj), (4.19) 

^/3(p,0=a3l(p)^,l(p,r) + a32(p)\Mp.O 

+ a33(p)<Mp.O- (4.20) 

Substitute the integral representation of the Jost func- 
tions (4.l3)-(4.l5) into Eqs. (4.l8)-(4.20). Operate on 
Eq. (4.18) with 

5 L * «*» 
l 

<*n(p) ' 

where C + goes from  — 00 to 00, over pi-.,ptv and on 
Eqs. (4.19) and (4.20) with 

where C_ goes from — 00 to 00, under pf,...,p%. 
This gives the Gel'fand, Levitan, and Marchenko 

(GLM) equations 

0 = 0'.') +   f " *[**"('.' + *)*u(' + * + ') Jo 

+ <3
I)(r,r + 5}FI3(f+ 5 + r)], (4.21) 

0=K%Hv) + F2l(t + s) +   f*ds[K<lHt,t + s) 
Jo 

XF2l(t + s + r) + KilHt.t + s)F2i(t + s- r)], 

(4.22) 

Q=K<,l)(t,r) + Fn{t + s) +   {mds[K%\tj + s) 
Jo 

XFll(t + s + r)+K(
rl
)(t,t + s)Fn(t + s-r)], 

(4.23) 

where 

1    r au(p)   . 
1        2ir Jc+   ^„(p) 

= -1 I CifaJ^ + P 
ai/p) 

<•-! Q||(P) 
(/), 

J. Mam. Phys.. Vol. 33, No. 3, March 1992 



R. S. Tasgal and M. J. Potasek: Coupled higher-order nonlinear Schrodinger equations 1213 

^-i/,.*^-- 
N 

= -'! Cv{zrfi)e-**' + r 
/»-I 

Oy(p) 

«f.(p') 
(-0. 

1 = 2,3. 

Note: the z dependence, which was previously implicit in 
a, is now written explicitly in C^ 

The residues' contribution to Fi{ corresponds to soli- 
tons; the Fourier transform part corresponds to radiation. 
Since we wish to obtain soliton solutions, we will neglect 
the latter. Performing the integrations, Eqs. (4.21)- 
(4.23) become 

N 

+ Cxi{z,pn)kri{t,Pn)), (4.24) 

N 

0=Of.i-) -i 1 e-ti{t + r)Cix[z,p*n) 
« = 1 

X(l+Krl(t,-p*)), (4.25) 

0=^1
I)(r,r)-i£e-*J(' + "CJ1(z^:) 

II-I 

X(\+krl(t,-p*)), (4.26) 

where a hat denotes the operator 

AUp)= (" dse-W>V,t + s). 
Jo 

To find g, and g2, set r=f in Eqs. (4.25) and (4.26): 

qx=-2K%\t,t) 

N 

= -2i I *-^'C21(z^*)(l +^I(r,-pJ)). 

(4.27) 

n-l 

q2=-2K<,l\t,t) 

s 
= -2i i «-^„UPDO+^,.(/,-P:)). 

(4.28) 

<i-i 

Now return to Eqs. (4.24)-(4.26). Substitute r=l 
+ 5 and operate with 

Jo 
,*w 

to give ? set of 3N linear equations in 1 + #Trl(f. —p«), 
*r2('.Pm). and A" r3(',pm), with m = l,..JV: 

1 = 1 + £„(r, -pi) -   I  -5—-[Cu^pJ^d^J 
n=l  Pm      P« 

+ C,3(A/Jfl)A'r3(/>p„)], 

0=Kr2(t,pn)+   X   T,C2j(v!) 
„=1   Pm—Pn 

X(l+Kri(t,-p*n)), 

0=Kri(t,Pm)+  I  ~ -;<oi<vJ> 
n=l Pm —Pn 

x(\+krlu,-p*)). 

(4.29) 

(4.30) 

(4.31) 

The z dependence of the Jost functions (4.1)-(4.6) 
may be determined from Eq. (2.2). For simplicity, we use 
the z dependence of the Jost functions in the limit | <| — 0 
to determine the z dependence of ay and, consequently, 
q, (for all r): 

M2(*2 + /l) 

* C13 ^Z,- + i - j a C?, ^Z,- - / - J <x C}, (z,- - 1 ^ j 

<r exp{«(0/2) (§ + n,)2 - e(£ + h>)3]z} 

a exp{7,[ (ß/2)(2£) - £(3£2 - T/2)]Z} 

Xexp{/[(/?/2)(£2 - T,2)]Z- £^2 - 3n2)}. 

(4.32) 

Substitution of the z dependence of the C^'s, Eq. 
(4.32) into Eqs. (4.29)-(4.31), and substitution, in turn, 
of the appropriate results of Eqs. (4.29)-(4.31) into Eqs. 
(4.27)-(4.28) gives exact soliton solutions. 

V. THE ONE-SOLITON SOLUTION 

The simplest nontrivial soliton, found by setting N 
= 1 above, is a single solitary wave: 
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•; 

-2ie-2i*>''Clx{p*)  
91     1 - [f^-P'i'/ip-p^nCnWCnip*) + Cu{p)CM(p*)] ' 

qi   i - [e
2'(p-",)'/(p-p*)2][c12(p)c21(p*) + c13(p)c31(/3*)] • 

I  

(5.1) 

(5.2) 

On substitution on the z dependence Eq. (4.32) and 
2p = | + ftj, and some algebra, we may express qx and q2 

in the form 

9;'=sin(a)e'*-9-, 

q'{ =cos(a)e* -¥- 

(5.3) 

(5.4) 

where 

q" =r, sech{r]{t - t0 + [(0/2)(2£) - e(3£2 - n2)]Z}} 

Xexp( - /{£(*- t0) + [03/2)(J-2 - T;
2
) 

-£^-2T,
1
)]Z + 4> + }} (5.5) 

tan(a) = |C12(0,p)|/|C13(0,p)|. (5.6) 

Finally, the transformation given by Eqs.  (3.6)- 
(3.9) gives the unprimed qx and q2: 

q1=eu/2),p[cos(e/2)sm(a)ei('"'-2+*-) 

-sm(6/2)cos(a)e-i^'-z + *-)]q, (5.7) 

92=e-('
y2'*'[sin(ö/2)sin(a)e''(A'-z+^-) 

+ cos(0/2)cos(a)e -i(\'_z + 4t_) 
}?, (5.8) 

where 

q=V sechfoO - h + ! (^/2) (2£) - £(3£2 - T,
2
) ]Z}} 

Xexp{ - /{£(*- f0) + [ - A+ + ()3/2)(£2- ij2) 

-e^2-3r,2)]z+ $ + }}; (5.9) 

a, 4> + , (j>_, and f0 are free (real) parameters, as are the 
components of the eigenvalue £/2 and T//2. Recall that 
tan(«p) =*_/*•+, 

tan(0)=^2
+ +K\/L_, 

and 

A'_ = ± VA2_ + J:2
+ + ^. 

The other parameters are given in the coupled HNLS 
equations. 

In conclusion, we have obtained bright soliton solu- 
tions to a generalized set of coupled higher order nonlin- 
ear Schrödinger equations. Higher-order and NLS terms 
are treated the same way. Also, we found a transforma- 
tion that eliminates all of the four linear coupling terms 
that the AKNS formalism allows for this problem. Fu- 
ture papers will focus on dark soliton solutions and mixed 
dark and bright soliton solutions. 
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Abstract. We use the time-dependent Hartree approximation to obtain the solution to the 
quantum higher-order non-linear Schrödinger equation. This equation describes femto- 
second pulses propagating in non-linear optical fibres and can have soliton solutions. 
These solitons travel at velocities that differ from the picosecond solitons obtained from 
the standard quantum non-linear Schrödinger equation. We find that these femtosecond 
solitons cannot propagate in graded-index fibres: rather, they require quadruple-clad 
fibres. This is the first investigation of quantum effects in femtosecond solitons to our 
knowledge. 

There is considerable interest in the non-linear Schrödinger equation (NLS) in terms of 
both classical and quantum phenomena [1-6]. In particular it has been used extensi- 
vely to model the propagation of pulses in non-linear optical fibres; however, the NLS 

is generally not valid for pulses with durations shorter than the picosecond time scale/ 
Yet the recent development of optical sources that generate pulses in the femtosecond 
domain makes possible the exploration of many new phenomena. Therefore the 
investigation of solitons arising from the higher-order NLS (HNLS), which can be used 
in the femtosecond time domain, is of interest. 

One of the simpletst HNLS is [7] 

d3<p 
(I) 

dtp    d:(p dtp 

where C. d and p are constants. We follow the conventional notation in the 
mathematical literature, which uses t and x to represent normalized space and time, 
respectively. This equation gives rise to soliton solutions whenp = 6d[7j. Equation (1) 
reduces to the NLS for p = d = 0. 

In certain circumstances the HNLS can be used to describe femtosecond pulses 
propagating in optical fibers: these are outlined in [8] and described in detail by us in 
[9]. Using experimental fibre parameters to evaluate the physical parameters in 
equation (1) we find that the pulse width must be below 200 fs for wavelengths in the 
1.48-1.57/un region in order for d and p to become significant. In addition, the 
dispersion parameters, ßz and ß}, given by the second and third derivatives of the 
propagation constant respectively, evaluated at the carrier frequency wn, must be 
negative. This necessitates a quadruple-clad fibre rather than the typical graded-index 
fibres used in calculations and experiments to date. This is a significant feature of our 
results [9]. The soliton self-frequency shift (SSFS) [10. 11] may be an important effect 

is 
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when considering femtosecond solitons. However, we use the numerical-beam propa- 
gation method to show that at distances required for the quantum effect to be 
observed the effect of the SSFS on the soliton described by equation (1) can be 
neglected [9]. 

In the case of optical solitons/^ represents the normalized envelope of the electro- 
magnetic held. The quantities C and d arc given by 

n:u>Qo
:l: 

d = 
\ß, 

3a|/3:|' 
(2) 

and p is a parameter involving the frequency-dependent index of refraction and the 
frequency-dependent radius of the mode of the fibre [8]. n: is the non-linear index of 
refraction, o is the ksii width of the pulse rii,irr.:;cn, / is the peak amplitude of the 
pulse and c is the speed of light. 

The general solution of equation (1) has the form [7] 

0 - <p„ sech[f (.r-.ru) +ßi] exp{i[y(.r -*„) + dt}}. (3) 

where e. ß, y and <5 are constants and .ru is the zero of time. Substituting this in 
equation (1) yields the following relations 

|<p„|: = £:/C d = e:-y:~3dy£:-rdys ß = s(2y~ d£:-2dy:). 
(•*) 

We proceed by considering the quantum version of equation (1) from a mathe- 
matical point of view. In [9] we examine the physical aspects of this problem in detail 
and describe the role played by other effects such as the SSFS. The initial portion of our 
analysis closely follows that of Lai and Haus [5] for the NLS. To obtain the quantum 
version of equation (1). the quantities <p(t,x) and <p"{t.x) are replaced by the field 
operators <p(t.x) and <p~(t.x). which satisfy the bosotri commutation relations 

[<j>(t.x-).i-(t.x)\ = d{x-x') [j(t.x),<p{t.x)\ = {j-(t.x'),i'{i.x)] = 0 (5) 

where <p{t.x) and 4>'(t.x) are the photon annihilation and creation operators. 
respectively, at t and .r. 

The quantized equation can be written as 

i/;-p(r..r) = [?(;. .*)./?] (6) 

/* 
a.' 

l/e - 
f 

'"N 
lh-Zs" 

rv 

with 

fc(t.x)9,{t.x) •(;..r)p-(r..r)0(;..r)<p(f.x)dt dr-C| i' 

\d( I <p,(r..t)<ptJ(r..r)dr-3C    <p-{t,x)<p-{t.x)i>(t.x)<p,(t,x) dr)  / Iri*^ f*-'K 

(?) 
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where the subscripts x and xx signify differentiation and double differentiation 
respectively. 

In the Schrödinger picture, the state of the system |i^) evolves according to 

at (S) 

where 

Ht = h <p;{x)<pf<Lx-C |  <p-(.r)<p-(.r)<?(.Op(.r)d.r 
(!) 

m     p1(-t)p,,(.r)dr-3C    <?'{x)(p-{x)<p(x)(pt(x)±x (9) 

In general, any state of this system can be expanded in Fock space as 

IV ') = 2 a.    ^7/-(-r .r».09'(Jf.) • • •^•(.Odr, • • • dt.i 0). (10) 

The quantity \a„\z is the probability of finding n photons in the field and we require 

Yk!:=l: (ID 

/„ obeys the normalization condition 

!/..(.*. .r,.;)|drl---dt,= l. (12) 

Substituting equations (9) and (10) into (3) we obtain 

(13) 



de 
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We solve equation (13) using the time-dependent Hartree approximation [12]. We 
fine a Hartree wavefunction 

m 

zw. *"0=n°-c^.o 
where <J>„ has the normalization 

4».(.r.0|:dt=l. 

(W) 
y-i 

/ 
(15) 

The functions <t>„ are determined by minimizing the functional 

+   2   c5(.r;-.r,)(2C.6iCd^ /r(-r, .r„.;)d.r,---dra.   (16) 

which provides 

3<t>,    3:<J>„ , S5$, ,3<t>, 
i — + —T- + 2C(/i- I) *,-*, + id—p + 6iCd(/i-l)|<t>,|: —- = 0. 

of       dxm dxJ — o.r (17) 

This is identical to the classical HNLS given in equation (1), with C replaced by 
C{n - 1). Thus the solution to the quantized femtosecond soliton equation is obtained 
directly from equations (3) and (4): 

<t>„(.t. i) = [C(n - l)]-": e sech{£[(.t -.r„) - (-3dy: + dr + 2y)t\) 

x exp[ - [{dy1 + Idyz- + -/: - e :)t + i-/(.t -x,)]. (18) 

The normalization condition, equation (11). gives 

f = i("-l)C (19) 

Substituting equation (19) into (13) leads to 

<M-t. 0 = :(" " 1)":c": s«h{i(#i " l)C[(.t -*,) + (- 3dy: + irf(/i - 1):C: + 2-/)r]} 

x exp{[irfy;- m(» ~ D:C:- iy: + &« " I):C;Ii + i'/Cr-x,)}. (20) 

The Hartree product eigenstates are. using equations (10) and (14), 

1 
|/».y.'>H = V«! $,r(.r.r)p"(.r)dt |0>. (21) 

A superposition of these states, using a Poissonian distribution of n for a coherent- 
state pulse, gives 

M"=2 ^e"""::(/<t>,,(r'°*~(r)dr),|0)' 
where |a,|: = «,i is the mean photon number. 

(22) 

'uh4 

'J <* 

uhJ   (*\) 



Figure I. Plots of ths qussiprobabiiity density Qta.x.i) against the real and imaginary 
parti of a fora„ = -i. C = 0.25. d = 0.25. 7 = 0. (.r-.r„) = 0 and (u) f = 0 and (4) r = o".t. 

The quasiprobability density for the amplitude of the envelope of the field is defined 
as 

wher. 
2(a..r.0H(a..rkO|: 

'   a' 

«•0 

(25) 

(2J) 

is a local coherent state at the time .r. Substituting equation (22), with (2Ü) and (24), 
into (23) gives 

Ö(a..r.r)=e-;*":-:""V 

f/i-i 
x sechj —— C (x -.r„) H- ( - ldy: + d -^-r- C: + 2y )f 

xexp \ndy:' - \n{n - l): \dyCl - \ny: -r \n —-— C: 11 

•~\yn(x-x„) (25) 

In figure I we illustrate how this quantity changes as the soliton propagates in space. 
We have ignored the n dependence of the amplitude and kept it in the phase. We 
observe phase spreading similar to that in the NLS case (5.6J. 

£Vf^^~f rt 
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