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Report
A.) Statement of the Problem:

The research developed mathematical models of physical phenomena fer the study
of complex time-dependent, nonlinear partial differential equations of interest in nonlinear
optics. Applications of the work include optical communications, optical switching and
future optical computing.

The research involved the development of mathematical models describing
femtosecond pulse propagation in nonlinear optical media. This research is significant
because, as the duration of optical pulses shortens, new interactions arise. Recent
advances in femtosecond light sources makes possible the study of new phenomena.
These interactions must be described by novel nonlinear partial differential equations. A
second important area of research involved the interaction of multiple beams of light for
intensity dependent ultrafast optical switching. In particula-, we have investigated novel

solitons.

B.) Summarv of Results:

Research in both quantum and classical areas has been investgated. We have
obtained exact solutions to coupled higher-order nonlincar.Schrijdingcr equations. This
represents the first work in this significant area. These equations are then used to model
femtosecond all-optical switching, which has important applications in the optical

computing area.

Llcoossion For
DTIC QUALITY INGFLCTED § | Ni1S CRA&I &

DIIC TAB 0
Unannow.ced

a
Justification

By
| Distribution/

R e T —

Avg?}ability Codes
Avall a‘l‘];'i/o.r_~
Dist Speaial

!




CHRNNEL ]

— FIG. 1. Switching dynamics {oc light into one waveguide only, where the distance is in units of L, and the time is in units of w ™",

Furthermore, using the time-dependent Harytree approximation, we have derived
the first investigation of quantum effects for femtosecond pulses. This new work may lead
to a greater understanding of quantum noise. Our results dzscribe the propagation of
femtosecond solitons in nonlinear optics. These solitons travel at velocities that differ from
those of the picosecond solitons obtained from the standarc quantized nonlinear
Schrodinger equation. From the quantum solutions, we find that the soliton experiences

phase spreading and self-squeezing as it propagates.




G

(b)

t=0.2

t=0.1

(a)

S\0

(d)

0.4

(c)
E ™

oo




C.) PBublications:
"Femtosecond Solitons in Nonlinear Optical Fibers: Classical and Quantum

Effects," Phys. Rev.A, submitted

"An Exact Solution for Femtosecond Pulses including the Effects of the Soliton

Self-Frequency Shift," J. Math. Phys., submitted.

"Soliton Solutions to Coupled Higher-Order Nonlinear Schrédinger Equations,” J.
Math. Phys. 33, 1208 (1992).

"Quantum Theory of Femtosecond Solitons in Optical Fib ers,” Quantum Optics,

accepted.

"Femtosecond Pulses in Directional Couplers near the Zero Dispersion

Wavelength," Phys. Rev. A, submitted.

D.) Scientific Personnel:
M. J. Potasek

Report of Inventions:

None




Femtosecond Solitons in Nonlinear Optical Fibers:
Classical and Quantum Effects

F. Singer, M. J. Potasek, J. M. Fang and M. C. Teich

Departments of Physics, Applied Physics, and Electrical Engineering
Columbia University

New York, New York 10027




Abstract

We use the time-dependent Hartree approximation to obtain solutions to a quantized higher-order
nonlinear Schroedinger equation. This equation describes pulses propagating in nonlinear
optical fibers and, under certain conditions, has femtosecond soliton solutions. These solitons
travel at velocities that differ from those of the picosecond solitons obtained from the standard
quantized nonlinear Schroedinger equation. Furthermore, we find that quadruple-clad fibers are
required for the propagation of these solitons, unlike the solitons of the standard nonlinear
Schroedinger equation which can propagate in graded-index optical fibers. From the quantum
solution, we find that the soliton experiences phase-spreading and self-squeezing as it

propagates.



Soliton solutions to coupled higher-order nonlinear Schrodinger

equations
R. S. Tasgal and M. J. Potasek

Department of Applied Physics, Columbia University, New York, New York 10027 R
(Received 19 August 1991; accepted for publication 30 October 1991)"

A set of coupled higher-order nonlinear Schrodinger equations, which describe electromagnetic
pulse propagation in coupled optical waveguides, is formulated in terms of an eigenvalue
problem. Using that result, the inverse scattering problem is solved and explicit soliton
solutions are found. Additionally, linear coupling terms are studied systematically.

I. INTRODUCTION

Optical signal processing is attracting interest be-
cause of its ultrafast response time. Currently, electro-
optic devices generally require a cumbersome interface
between elec.ronics and optics. On the other hand, all
optical signal processing utilizing only the nonlinear in-
dex of refraction results in partial loss of the signal due to
nonuniform intensity distribution wititin the pulse. Soli-
tons, and in certain cases solitary waves, which balance
nonlinearity and dispersion, can improve system perfor-
mance due to their remarkable stability properties.

Slowly varying electromagnetic waves in a nonlinear
medium (an optical fiber, for example) are described by
the nonlinear Schridinger equation (NLS). In order to
increase bit rates it is necessary to decrease the pulse
width. As pulse lengths become comparable to the wave-
length, however, the NLS equation becomes inadequate,
as additional terms must now be considered. We will refer
to equations which include these terms as higher-order
nonlinear Schrodinger equations (HNLS).

One of the first HNLS equations to be solved exactly
(by Hirota' in 1973, two years after the simple NLS
equation was solved’) and, in a sense, the simplest is

ig, + i8q, + (B/2)qu + Bl q1%q — i€(qu + 2u)q) 2q.)(=101»)

where . = 3 and € approaches zero when the pulse width
is long compared to the wavelength.

There are several ways to generalize the HNLS Eq.
(1.1) to a set of coupled equations, depending on the
physical situation that is being modeled. A fairly general
form of coupled HNLS equations is

ig, +i(8, +8_)q1+ (B/)qua + B(Iq1]?
+yl@g+ (A, +A g + (K,

+iK _)q2 — ielqim + p(|q1)?
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igy+i(8, —8_)q1+ (B/2) gy, + Bly|q1|?

+l@|Na+ (A,

Mo

-A_ )+ (K, —iK_)q

— ie[ g+ B(¥ |91 12 + 19211V q2 + p(vglqy,

+ 479241 =0. (13)
A nonlmear directional coupler bas §_

=4_ =0 and K,#0> A buefnngcnt smgle
mode ﬁbcr‘ S and rocking ﬁbcr rotator,® in which the fiber
is periodically twisted, have A, =K_ =0and§_,A_
K, #0, where y is a function of the ellipticity anglc 9
and two material parameters a and b:

2a+2bsin’ 0 Ref.7
V=2 ¥ bcos’ B (Ref.7)

in optical fibers a=b.

Equations (1.2) and (1.3) with &_
=K, =K_ —s—OandA+;&Odmcnbcanonrelanv-
istic boson field®Ina weakly relativistic plasma, nonlin-
ear coupling of two polarized transverse waves with dis- .

persion is described by 6§, =6_=A,=A_
=K+ =K_=¢=0° Also, for the case
—’B A A —K+ —K =0 with a1 92 (R,

Eqs (1.2) and (1.3) are a pair of coupled modified ._'-j
Korteweg-de Vries equations. The intermode swltchmg c:2
term K _, which emerges in a natural way from the math-
ematical derivation below, has not been considered m
previous soliton work.

Solitons have been found in a variety of ( uncoupled)
higher-order NLS equations. Analytic solutions to the
simplest NLS equation—Eq. (1.1) in the limit £~0— :
were discovered in 197] by Zakharov and ShabaLz'"’
Hirota' obtained exact soliton solutions to the HNLS Eq. :
(1.1) by transforming the NLS equation into a homog&
neous form of the second degree. (While this approacb
produces several valuable insights, it has the disadvan- .
tages of being ad hoc, somewhat hard to work with, and

e e
g‘ﬁ"ﬁ* Sras et

M%‘MM

+ 71921191 + (gt + ¥4392)91]=0, (1.2) it treats the higher-order terms and NLS terms differ- i
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ently.) Sasa and Satsuma recently discovered soliton so-
lutions to a more complex HNLS equation.!" The
derivative'™" and mixed derivative'*'’ NLS equations
have been solved. Painlevé techniques produce other
solutions.'® Some exact soliton solutions may be found by
transformation to known NLS equations."”

Exact solitary waves (which may or may not be soli-
tons) can be found by direct substitution.'® Approximate
solitary waves can be found by various techniques.
Among the most useful are numerical computation'? and
variational methods.? (Sometimes, when the exact solu-
tions are not known, these are also fruitful approaches to
integrable systems.?'??)

Recently the coupled NLS equations, without higher

order terms, have been the focus of intense attention.?’
Manakov?* found explicit soliton solutions to the coupled
NLS Egs. (1.2) and (1.3) with equal self- and cross-
phase modulation, but without either higher-order terms
or linear coupling 6_=4, =4 _ =K_
=e=0,vy=1 Elphlck' used the quantum mvcrsc scat-
tering method to study the Manakov equations with an
added symmetric self coupling term A, #0,
6_=A_=K,=K_=¢=0, y=1. Belanger and
Paré?* found a transformation that reduces a set of cou-
pled NLS equations with symmetric linear cross-coupling
terms K, 0, 6_=4A,= A_=K_=¢=0, y=1
to the Manakov case, thereby finding solitons with peri-
odic energy exchange between the two coupled modes.

Solitary waves in the coupled NLS equations, includ-
ing noniutegrable (and cuiisequently soiitun destroying)
terms such as 6 _ 70, ys=1, and absorption, are also of
interest. We mention only a sampling of work in this
field, since it is too vast for a thorough survey here.
Christodoulides and Joseph?® discovered exact vector
solitons in coupled NLS equations with a birefringence
term. Paré and Florjanczak® found analytic solutions us-
ing a Lagrangian variational method. Stability analyses
have been performed.”*% There is also a large amount of
numerical work.*®>%

To date there has been no work on coupled nonlinear
Schrédinger equations with higher-order terms, and lin-
ear coupling terms have not been studied sys’~matically.
In this paper, using the method of Ablowitz, kaup, New-
ell, and Segur’® (AKNS), we formulate the coupled NLS
equations in a more systematic way than has been done
previously. With that result, the coupled NLS equations
are generalized in a very natural way to include higher-
order terms and other new linear coupling terms. The
inverse scattering transform’®’*® is then straightforwardly
carried out, yielding explicit solutions.

it. FORMULATION OF THE EIGENVALUE PROBLEM

The method of AKNS is begun by writing the not yet
fully defined eigenvalue problem

v,=Ty,
—p o @\

T=| —qt ip O}, @n
-97 0 ip

v,=2v,
N

Z,= 2 Z\"p". (2.2)

The integrability condition for Egs. (2.1)-(2.2) is
T,—-2,+[T.Z2)=0. (2.3)

Writing each of the nine components of the matrix
explicitly and matching terms of the same order in p
yields an iterative method of determining Z:

ZP =202V + (25 - 25 g
— Z{3* Vgy), ' (24)
Z=G20Z3 Y + (Z* 0 - 27 g,
—Zy* ), (2.5)
z;l - _(’/2)(Z§n+l) l:l-+|)_z(2;+n)q|.
Zi* gy, (2.6)
Z{ = - 2UZ5 Y + (2 - 25 Vgt
V), 2.7

ZN=Z00+ZVa+ Z0 + ZiVg, (28)

ZH=—-Zq - Z)qt, (2.9)
Z{= - Z{Vq, - Z\7'q}, (2.10)
Zil= - ZVqy - Z{Tqt, .11)
Zii= - Z{Pq, - Z7qt, (2.12)

and also four equalities in the zeroth order (1,2), (1,3),
(2,1), and (3,1) matrix components of the integrability
condition, Eq. (2.3):

Qi —Z9 —(ZD - Z9 g, + Z{Jq,=0, (2.13)

9u—Z5 —(ZY - Z)ar + Zq,=0, (2.14)
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gt + 20, + (27 - Z)gt - ZiPgt =0, (2.15) 000
z())= — 81.5 0 1 0 5 (2.17)
&+ 20+ (2D -Z)gt - 21 =0, (216) 00
N ) . 0 a9 @
Each iteration allows five constants of integration in 2 0 0
Z'™. A constant times the identify in Z or T does not ZP=—4¢c| -7
affect the integrability condition, Eq. (2.3). There remain -¢qt 0 O
four possible physical degrees of freedom for each term in
the polynomial Z. 8 000
Q 4) = . 0 .
Setting A =0, an appropriate choice of the con +4i(2) o 1 o] (2.18)
stants of integration and trace yields 2 T
S
lal?+ 1l qu 92 . 0 ¢ ¢
ZW= —2ie T —lal? —9q? +2(5) -qt 0 0} (2.19)
% ~qqt -lal’ -¢7 0 0
914t — gt + 04 — 048 qa+2(la) + 1Q1Da G+ 2010l + |02l
Z%=¢l —gt - 2012 + 102lDe? —(04Y - qigh) — (94" ~ 9:47)
-¢%-201qi1* + 191Dgt = (@14} — 99d) — (947 — 9:43)
191+ lqal? qu 9 0 0 0
+i(5) ¢ —lal —agt |-ilo A +A_ K, -iK_ (2.20)
% -9¢ -lal’ 0 K, +iK_ A, -A_

W, have neglected the symmetric group velocity
term 5, , which enters at the Z'!level, since it can be
eliminated by a trivial change of variables. Setting Eq.
(2.13) equivalent to Eq. (2.15) and Eq. (2.14) equiva-
lent to Eq. (2.16) forces B, A,, A_, K,, K_, €€R.
Insertion of Z'? into Eqgs. (2.13)-(2.16) yields a set of
coupled HNLS equations:

igy+ (B/2)q1u+BUai 1 + |921D91 + (A, +A_)q,
+ (K, +iK_)g—iclqim+ 301 [2 + |921D)qu,

+ 3(qtq1 + 97929, ] =0, (2.21)

iqu+ (B/2)qu+BUai 1 + 1g21D g2 + (A, — A )qy

+ (K, —iK_)q —iclgue + 3(|q: |2 + 0219

F 391 + 9%92:)9:) =0. (2.22)

These are Egs. (1.2) and (1.3) with §, =6_=0, 7
=1, and u = 3. There are four constants of integration
introduced in Z©, two of them on the diagonal. Equa-

I

tions (2.21) and (2.22) thercfore contain the most gen-
eral linear coupling terms that the AKNS formalism al-
lows for Egs. (2.1)-(2.3).

iil. ELIMINATION OF THE LINEAR COUPLING
TERMS

Having formulated the coupled HNLS equations as
above, the zeroth-order constants of integration may be
diagonalized by a rotation:

Av,=ATA "~ 'Ay, 3.1
Av,=AZA"~ A0, (3.2)
where
1 0 0
A=[0 e WPecos(072) € Vsin(672) |,
0 —e7Wesin(8/2) & YV®c0s8(0/2)
- (3.3)

J. Math. Phys,, Vol. 33, No. 3, March 1992
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K_
tan{g) =X’ 34
+
tan(8) = VK%, + KL/A _. (3.5)
This is equivalent to the transformation
q,=¢€""?[cos(6/2)q; — sin(6/2)q}), (3.6)
g,=e " “V®[sin(0/2)q] + cos(6/2)q;], (3.7
with primed terms
K', =K'_=0, (3.8)

.=+ Jar + K + KL, sign(A’_)=sign(A_),
(3.9)

and all the other terms unchanged.
The linear self coupling terms & , and A’_ may now
be removed by a second substitution:

q;=el(.\ +* +* A'_ )lq;" (3,0)
gy=e'd+ — 80 (3.11)

That leaves the coupled HNLS equations (omitting the
primes)

igye + (B/2)q1u + BU gy ] + 1921191 — i€iquun

+3(1q1* + 1921 g + 3(qtq1 + 93920 0] =0,
(3.12)

igy + (B/2)q24 + BUq1 |2 + 1921192 — i€ qay

+30q11* + 1921192 + 3(gT 91 + 94792:)92) =0,

(3.13)
which, in the limit € -0, is the Manakov case.
Bélanger and Paré®® made the substitution
gy=cos(K ,2)q] — isin(K ,2)qy, (3.14)
g= —isin(K , 2)q] + cos(K , 2)q; (3.15)

to eliminate X', from the coupled NLS equations (1.2)
and (1.3) with 6 _=4,=A_=K_=€e=0and 7
= 1. In contrast to the transformation given by Egs.
(3.6)~(3.11), Belanger and Paré’s transformation breaks
down (i.e., fails to eliminate XK', ) if & _ 50 or X _ 540,
although it does work for the other linear coupling terms
and the higher-order terms. Equations (3.14) and (3.15)

cannot be applied, for example, to a periodically twisted
birefringent fiber. Neither transformation works if § _ 5£0

or ys=1.

IV. THE INVERSE SCATTERING TRANSFORM

Solitons solutions to the coupled HNLS equations
may now be found using the inverse scattering transform.
If |q,], |g3] =0 as |t| ~ o (which implies bright soli-
tons), then the Jost functions may be defined as the eigen-
functions v in Eqs. (2.1) and (2.2) with boundary con-
ditions

o

e ¥ ast- — o, (4.1)

¥n—

o

Vp—

vp—

0
I)("" as {— ~ oo, (4.2)
)e" as f— — o, (4.3)

e~ % a5 t-w, (4.4)

d’rl -

\b,) ad

———— p— e—

0

&,3—. 0
1

&' as (- . (4.6)

0
l)e‘?‘ as (-, (4.5)

For peR, T'= — T. Therefore

d
5 (W01 =0, (4.7)
where t,(p,f) is a solution to Egs. (2.1)-(2.3), and

Whp.0 ¥, (p.0) =¥} (p.0) ¥y (p.t) =6 (4.8)

The Jost functions (4.1)-(4.3) are related to the Jost
functions (4.4)-(4.6) by the scattering matrix a:

)
Yulp)= _ZI a,(p)¥,(p:t), (4.9)
I-
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a,lp)= Un(p.) by (put), (4.10)

3

kZl a%(pla,lp)=5; (4.11)

Using Eq. (4.10), a,;(p) may be analytically contin-
ued into the upper half-plane Im(p) >0; and a,,(p),
an(p), ay(p), and ay,(p) into the lower half-plane
Im(p) <0. From this and the unitarity of @ (4.11)

a,‘,(p°)=det( (4.12)

ayn(p) azs(P))
ayn(p) as(p) '

At this point we posit that a;,{p) has N simple ze-
roes at the points p,, py,....ox in the upper half-plane. It
will be shown below that the locations of the zeroes de-
termine (some of) the physical parameters of the soli-
tons.

Introduce an integral representation of the Jost func-
tions

1
Ualpt)=|0 e"P’+J'”K,,(u)e“‘”ds. (4.13)

0
0
Valpr)=|1 e""-}-J- K, (1,5)e® ds, (4.14)
O t
0
Valpt)=1{0 e""+j K 3(15)e ds, (4.15)
1 t
K“)
K. = K(Z)
K(])

The functions ¢, and ¢, are found in terms of X by sub-
stitution of Eqgs. (4.14) and (4.15) into Eq. (2.1):

g= — 2K (4,0, (4.16)

g= — 2K (1,0). (4.17)

To find X'}’ and K’ we first recall the definition of
the scattering matrix (4.9):

Yn(pt) =a; (p)é.(pt) + ana(p)éna(p.t)

+ ap(p)e,s(pt), (4.18)

R. S. Tasgal and M. J. Potasek. Coupled higher-order nonlinear Schrodinger equations

¢n(p.f) =a, (PW’A(P-') + all(p)d’rl(p’t)

¥n(pt) =ay (p)¥na(p.r) + ay(p)alp,o)
+ ayu(p)dalpt). (4.20)
Substitute the integral representation of the Jost func-

tions (4.13)-(4.15) into Eqgs. (4.18)-(4.20). Operate on
Eq. (4.18) with

1
;fc‘d e

where C, goes from — « 10 «, over p,...,py and on
Eqgs. (4.19) and (4.20) with

a;(p)’

1

— =
2 Cc_ dpe

afl (p*) '

where C_ goes from — w t0 «, under p?,...,p¥.
This gives the Gel'fand, Levitan, and Marchenko
(GLM) equations

0=K(t,r) + J-” ds(K (10 + 5)Fip(t + 54 1)
0
+ KP4+ 9F 5t +5+ 9], (4.21)

0=K{(6r) + Fylt +5) + f" ds[K (0t + 5)
) 0

XFy(t+s+7r) + KDt +5)Fyy(t 45— 1)),

(4.22)

0=K$ (1) + Fy(t +3) + Jw ds{K (01 + 5)
0

XFy(t+5+7) + K (1t 4+ ) Fu(t +5— 1),

(4.23)
where
1 all(p) .
Flj(t)=i; fc* % a,(p)
N
R a,/(p)
= e . 'd ——t
:El Cif(2p,)e® +..7[a”(p)] (0,

J. Math. Phys., Vol. 33, No. 3, March 1992
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1 ayp) o
Fi/(')‘;‘z—ﬂ fc_ a”(pO)
- . a,(p)
= = Ci(zptle— o'+ F Shat/ALCAN P
i El fepDeH+ T 1305 ] (

i=23.

Note: the z dependence, which was previously implicit in
a, is now written explicitly in C;;

The residues’ contribution to F; corresponds to soli-
tons; the Fourier transform part corresponds to radiation.
Since we wish to obtain soliton solutions, we will neglect
the latter. Performing the integrations, Eqgs. (4.21)-
(4.23) become

N
=KD (6r) —i 2 e+ D[Ca(z,p,)K(1,0,)

r=1
+ CIJ(Zan)I?rJ(t»P,.)]: (424)
0=KP(e,r) —i }: e"P~(r+r)C [ (zp3)
=]
X1+ 3,.(1. —p4), (4.25)
ad L ]
0=K(4r) —i 2 e~ 8"*1Cy(2,08)
A=)
X(1 + K, (1, = p2)), (4.26)

where a hat denotes the operator

2(t,p) = J‘a dse= 2 AV (6, +5).
0

To find ¢, and ¢;, set r=t in Eqgs. (4.25) and (4.26):

I

= —2K (1)

=-2 Z e~ BNCy (2p)(1 + K (8, — p2)),

Rml

(4.27)

@1= — 2K (4,0)

=2 2 e~ 2NCy (2p2)(1 + Ku(r, —p2)).

(4.28)

Now return to Eqs. (4.24)-(4.26). Substitute r=¢
+ 5 and operate with

J‘a dse® .
0

to give > set of 3N lincar-equations in 1 + 1?,‘(5 —pL),
K,(tp,), and K 5(4p,), with m=1,._N:

N N b
I=1+ Kt —ph) - 2 = [Cu(z-p.)K,z(l.p,.)
+ CIJ(Zan)I?rJ(',Pn)]: (429)
N e—24p.l

0=K(t,p,) + Z o 3 Cul(zp8)

rn

X(1+K (1, —p2), (4.30)
N o=l
0=Ks(tpm) + 2 Culzp?)
3 m n=1 pM—P: "
X(1 + K, (1, — p*). (4.31)

The z dependence of the Jost functions (4.1)-(4.6)
may be determined from Eq. (2.2). For simplicity, we use
the z dependence of the Jost functions in the limit |¢] -0
to determine the z dependence of a;; and, consequently,
C,; (for all 1):

an(Z.§+i-g-)
“C;s(zvg-i-l )«C",(Z,g—x )“6‘1(5 Z)
«exp{i(B/2) (& + in)? — &(§ + in)’]2}

« exp{n[(B/2)(2£) — £(38* — V) }2}

xexp{i[ (B/2)(&* — 9%) )z — &(&? — 3n%)).
(4.32)

Substitution of the z dependence of the Cjs, Eq.
(4.32) into Eqgs. (4.29)-(4.31), and substitution, in turn,
of the appropriate results of Egs. (4.29)-(4.31) into Egs.
(4.27)-(4.28) gives exact soliton solutions.

V. THE ONE-SOLITON SOLUTION

The simplest nontrivial soliton, found by setting N
=1 above, is a single solitary wave:

J Math Phvs., Vol. 33, No. 3. March 1992




1214

= 2ie=%Cy (p*)

R. S. Tasgal and M. J. Potasek: Coupled higher-order nonlinear Schrodinger equations

=T & 7 — p*V[Cp) Cor (p*) + Ci3(p)Car(p*)]

— 2ie=2#"Cy (p*)

”

(5.1)

(5.2)

T 1= 60— p) 1 Cu(p)Cur(p*) + Ci3(p)Car (™1

On substitution on the z dependence Eq. (4.32) and
2p = £ + i, and some algebra, we may express ¢, and ¢,
in the form

g =sin(a)e®-q" (5.3)
q§'=cos(a)e“i¢-q', (5.4)

where
q" =nsech{n{t — 1, + [(B/2)(2£) — (3&* — 1*)12}}

Xexp{ — i{£(2 — 10) + [(B/2)(§2 — 1)

’

—eE(E¥ -3z + 4. }) (5.5)

tan(a) = | C1,(0,0) | /| C13(0,0) | (5.6)

Finally, the transformation given by Egs. (3.6)-
(3.9) gives the unprimed ¢, and ¢,:

0 =e("/2)"”[cos(0/2)sin(a)e"("'-"|~ ¢-)

—sin(0/2)cos(a)e A~ 7+4-)1g, (5.7)
gr=e~ “P?[sin(6/2)sin(a) b~ +¢-) |
+ cos(8/2)cos(a)e (BLz+4-)1q, (5.8)
where
g=n sech{n{t — 1o+ [(B/2) (2§) — e(38* — ") 12}}

Xexp{ — H{E(t—10) + [ — A, + (B/2N(E — )

—eE(E2—37") 1z + 6, }); (5.9)

a, ¢, ¢_, and & are free (real) parameters, as are the
components of the eigenvalue £/2 and 7/2. Recall that

tan((p) =K_/K+’
tan(9) = K% +K°/A_,
and

A_==x A + K +K°.

—

The other parameters are given in the coupled HNLS
equations.

In conclusion, we have obtained bright soliton solu-
tions to a generalized set of coupled higher order nonlin-
ear Schrodinger equations. Higher-order and NLS terms

are treated the same way. Also, we found a transforma. :

tion that eliminates all of the four linear coupling terms
that the AKNS formalism allows for this problem. Fu-
ture papers will focus on dark soliton solutions and mixed
dark and bright soliton solutions.
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Quantum theory of femtosecond solitons in optical fibres
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Abstract. We use the time-dependent Hartree approximation to obtain the solution to the
quantum higher-order non-linear Schrddinger equation. This equation describes femto-
sccond pulses propagating in non-linear optical fibres and can have soliton solutions.
These solitons travel at velocities that differ from the picosecond solitons obtained from
the standard quantum non-linear Schrédinger equation. We find that these femtosecond
solitons cannot propagate in graded-index fibres: ruther, they require quadruple-clad
fibres. This is the tirst investigation of quantum effects in femtosecond solitons to our
Knowledge.

There is considerable interest in the non-linear Schrédinger equation (NLs) in terms of
both classical and quantum phenomena [1-6]. In particular it has been used extensi-
vely to model the propagation of pulses in non-linear optical fibres; however, the NLs
is generally not valid for pulses with durations shorter than the picosecond time scalef.
Yet the recent development of optical sources that generate pulses in the femtosecond
domain makes possible the exploration of many new phenomena. Therefore the
investigation of solitons arising from the higher-order Nts (HNLS), which can be used
in the femtosecond time domain. is of interest.
One of the simpletst unts is 7]
0p 0’9 ;

oy LR ,09
A ) 0 — " — =
i—-+ 5= +2Clgl'p +id =5 +ipClof ——=0.

ot  ox* (M

where C, d and p are constants. We follow the conventional notation in the
mathematical literature. which uses £ and x to represent normalized space and time,
respectively. This equation gives rise to soliton solutions when p = 6d [7]. Equation (1)
reduces to the Nus for p=d=0.

In certain circumstances the HNLs can be used to describe femtosecond pulses
propagating in optical fibers: these are outlined in (8] and described in detail by us in
(9]. Using experimental fibre parameters to evaiuate the physical parameters in
equation (1) we find that the pulse width must be below 200 fs for wavelengths in the
1.48-1.57 um region in order for d and p to become significant. In addition, the
dispersion parameters. 8 and ;. given by the second and third derivatives of the
propagation constant respectively. evaluated at the carrier frequency w, must be
negative. This necessitates a quadruple-clad fibre rather than the typical graded-index
fibres used in calculations and experiments to date. This is a significant feature of our
results [9]. The soliton self-frequency shift (ssFs) (10, 11] may be an important effect
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when considering femtosecond solitons. However, we use the numerical-beam propa-
gation method to show that at distances required for the quantum effect to be
observed the effect of the ssrs on the soliton described by equation (1) can be
neglected [9).

In the case of optical soliton Z{gp represents the nornxfnzed envelope of the electro-
magnetic licld. The quantitics C and d are given by

2

and p is a parameter involving the frequency-dependent index of refraction and the
frequency-dependent radius of the mode of the fibre [8]. n. is the non-linear index of
refraction. o is the k¥ width of the pulse dusaticn, [ is the peak amplitude of the
pulse and c is the spead of light.

The general solution of equation (1) has the form (7]

¢ = ¢, sech(e(x —x,) + Br] exp{i[ y(x = x,) + &¢]}. 3)

where €. B, y and d are constants and x, is the zero of time. Substituting this in
equation (1) yields the following relations

low =¢%C d=¢e =y --3dye* +dy’ B=e(Qy+de*=3dy). (4)

We proceed by considering the quantum version of equation (1) from a mathe-
matical point of view. In (9] we examine the physical aspects of this problem in detail
and describe the role played by other effects such as the ssrs. The initial portion of our
anulysis closely follows that of Lai and Haus [5] for the ~Us. To obtain the quantum
version of equation (1). the quantities ¢(r. x) and ¢*(¢. x) are replaced by the field
operators @(r. x) and @ (r. x). which satisfy the bosoiﬁ commutation relations

[p(r.x). @~(1. X)] =0(x—x) [p(t.x). @(t. )] =@ (1. x"). $"(1. )] =0 (3)

where @(r.x) and @~(¢.x) are the photon annihilation and creation ope rators,
respectively, at £ and x.
The quantized equation can be written as

a . . .
ih —o(t.x)=[p(r. x). H] (6)
at
with

H=Ix[j P (0. ). (t. x) d.t-qu;.((. X)@ (6. x)p(t. X)@(r, x) dx

+id( f P.t. x)@(t. x) dx = 3C f q'r(:..r)q‘a'(:..z)é(:..z)q‘;,(:,.r)dr)]//

1%
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where the subscripts x and xx signify differentiation and double differentiation
respectively.
In the Schrodinger picture, the state of the system |ip) evolves according to

9 :
ih = lw) = H,ly) ()
where

H,=h[ f o7 (x)o /id.\'— C f ? ()P~ (x)@()p(x) dr

+ id( j P.(x)p(x) de =3C f 97 (X)9 " (x)P(x)p.(x) ctr)]. ©)
In general. any state of this system can be expanded in Fock space as

1y — ! : Q5 QO 1

hy) = 2 @y | Trpfulti 2 007() - 97(R) ey - de, 0. (10)
The quantity |a, " is the probability of finding n photons in the field and we require

>laf=1 (1)
f. obevs the normalization condition

flf,,(.\q.... Jx. o) dey e ode, =L (12)

Substituting equations (9) and (10) into (3) we obrain

a3 W E
i— = -5 —=2 -
i 6D ( 2 5 _szq“é(x, x)
' ] a) ' a .
-id Y 30~ 6icd > é(-‘,‘-‘.)&)ﬂ(.r,......r,.l). (13)

jar 4 1< %

(¥)
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We solve equation (13) using the time-dependent Hartree approximation [12]. We
define a Hartrez wavefunction

e xnt) =H ®,(x,. (5, (14)

it

where @, has the normalization

j|¢,(.:,:)|f de=1. (15)

The functions &, are determined by minimizing the functional

] " a: 63 . ~
- “(H) . = AR
[= jf,, (oo X0 0) [1 al+ ;(5\7, 3 lﬂck,’) M"f"é

/
9 {
+ Z 6(.(1 -r) <2C~J-6iCQéT>:|ﬂ‘“'(.q. IR S {) de, - - - d,. (16) (/;—-},:
[Si<; %A ! :
which provides
gb, oo, A Lo, :
i7+ Ppe +2C(n—l)}¢,.f'<b..+l_ci_-——ata. +6iC§(n—l)l¢',,’-¥=o_ (17) bﬁ,‘j (XL)

C(#—1). Thus the solution to the quantized femtosecond soliton equation is obtained
directly from equations (3) and (4):

This 15 identical to the classical nxLs given in equation (1), with C replaced by j
&, (x.t)=[C(n = 1)]™"* e sech{e[(x = x,) + (= 3dy* + de* + 2y)]} i
x exp[ = i(dy’ + 3dye’ + y = e +iy(x —xy)]. (18)
The normalization condition. equation (11), gives
e=n-1C. (19)
Substituting equation (19) into (18) leads to

D, (x.0)=¥n=1)"C" sech{t(n— I)C[(.t'— x) + (=3dy +4d(n=1)°C*+2))]}

x exp{[idy’ = dHy(n=1)C =iy + An = 1)'C'Y+iy(x - )} (20) {24"'\ Y o
The Hartree product eigenstates are, using equaticns (10) and (14), (* 2') '

1 . .
|n. 7'1)"=W1 [f D, (x.N)p~(x) d.r] |0). (1)

A superposition of these states, using a Poissonian distribution of a for a coherent-
state pulse, gives

b= S e ( f ®,, (x. 06 (x) d:>"|0), @2

where |a,|* =, is the mean photon number.
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Figure 1. Plots of the quasiprobability density Qfa. r. 1) against the real and imaginary
partsof a fora,=3, C=0.23,d=0.25, y=0. (t—x,)=0and («) =0 and (5) ¢=0.1.

The quasiprobability deasity for the amplituce of the envelope of the field is defined
as

Qla.x, t)=[{a. x|y 23)
wher.
@)= T — (5 (r ) @y

is a local coherent state at the time x. Substituting equation (22), with (20) and (24),
into (23) gives

Qla.x.t)= c-Eai-'-;,.,, y

% (@ta) (-1
xz n!(ZC-

noll

n-1 . (N-l): . »
X SCCh{TC (.f'.fll)+(-3(fy'+d n C'+2;'>[ })

. H . sy 13 . > . ("-!): *
X 2xp (md'/"-m(n-l)':d‘,'C‘-xrzy'+1n i C-)r

Hmuﬂm]i (23)

In figure | we illustrate how this quantity changes as the soliton propagates in space.
We have ignored the n dependence of the amplitude and kept it in the phase. We
observe phase spreading similar to that in the ~us case (3. 6].
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