
rAD-A254 923 ITTO AEJFrAPProved
F I ii our per response, inckdig te time for reviwng instructios. searching exist data souross~ w g atrnd sia t O a
n I uii,- burden estimate or any other asped of Whe collection of Irformatimn Irluding suneation for retif mi burden, to WasdtVan

1, l~efferson Davis Higway. Sute 1204. Arfmgton, VA 22202-4302. and tolitoOfficeo d inlaiogn and AVA" rAffairs, Offce of

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3.REPORT TYPE AND DATES COVERED

II Final: 20 May 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Irvine Compiler Corporation ICC Ada v7.4.0, VAXstation
3100 Model M38/VI S Version V5.3-1 (Host) Intel i96OMX in Hughes DMV running in
tagged mode (bare machine with CHKSYS kernel version 1 04)(T)92052011 .11260
6. AUTHOR(S)

IABG-AVF
Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

IABG-AVF, lndustriear.lagen-Betriebsgeselschaft REPORT NUMBER
Deot. SZT/ Einsteinstrasse 20 IABG-VSR 106
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY
9. SPONSORING9IONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301 -3081
11. SUPPLEMENTARY NOTES

ELECTE
AUG 251,992n

1 2a. DISTRIBUTIONAVAI LABILITY STATEM ENT 0 pb. DISTRIBUTION CODE

Approved for public release; distribution unlimited. A

13. ABSTRACT (Maximum 200 words)

Irvine Compiler Corporation, ICC Ada v7.4.0, VAXstation 3100 Model M38/VMS Version V5.3-1 (Host) Intel i96OMX in
Hughes DMV running in tagged mode (bare machine with CHKSYS kernel version 104) (Target), 92052011.11260

92-231 64
0 2 8 19 8 9 111111 11 1111 11 il !11

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE __CODE_

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1 81 5A, AJPO. 1.PIECO

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. UIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED IUNCLASSIFIED__________
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

AVF Control Number: IABG-VSR 106
20 May 1992

Ada COMPILER
VALIDATION SIUARY REPORT:

Certificate Number: 92052011.11260
Irvine Compiler Corporation

ICC Ad^ v7.4.0
VAZstation 3100 Model N38/VXS Version V5.3-1 >

Intel ±960MX in Hughes DKV running in tagged mode
(bare machine with CNKSYS kernel version 104)

DTIC QUALITy IIqGPBCTED 5

[Accesion For

NTIS CRA&I

DTIC TAB L]
Unannou;yced LI

justificatio
:

By..

Prepared By:
IABG mbH, Abt. IT!
Zinateinstr. 20

V-SO012 Ottobrunn
Germany

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on May 20, 1992.

Compiler Name and Version: ICC Ada v7.4.0

Host Computer System: VAXstation 3100 Model M38/VMS Version V5.3-1

Target Computer System: Intel i960X in Hughes DMV running in tagged
mode (bare machine with CHKSYS kernel version
104)

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#92052011.11260 is awarded to Irvine Compiler Corporation. This certificate
expires 24 months after ANSI approval of MIL-STD 1815B.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Ada Va iaon Organization
Dircto omputer & Software Engineering Division
Institut for Defense Analyses
Alexandria VA 22311

Ada Joint Po~ao~ie
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Declaration of Conformance

Customer: Irvine Compiler Corporation

Ada Validation Facility: IABG mbH

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: ICC Ada v7.4.0

Host Computer System: VAXstation 3100 Model M38
under VMS 5.3-1

Target Computer System: Intel i960MX in Hughes DMV
running in tagged mode (bare
machine with CHKSYS kernel
version 104)

Declaration:

I, the undersigned, declare that I have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Customer Signature Date/

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES. 1-2
1.3 ACVC TEST CLASSES....... 1 -2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS. 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-5

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT. 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX 8 COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the nFreedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

EAds831 Reference Manual for the Ada Prooramming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, 3, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of 'dentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
8 tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementatLon-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described
in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89)).

I

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transfoxmation of Ada programs into executable form and
execution thereof.

Adz Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses coon storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this lilst of withdrawn tests is 02 August 1991.

E28005C 828006C C32203A C34006D C355081 C35508J
C3SS08M C3SSO8N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C4S6SIA
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D 383026B C83026A C83041A
8SOOlL C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A SC1226A CC1226B
BC3009B BDlB02B BDlB06A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BISC
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD40S1D CD5111A CD7004C ED700SD
CD7005 AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD900SB CDA201E
CR21071 CE2117A CR2117B CZ2119B CR2205B CE2405A
C93111C C93116A CE3118A CE34113 CR3412B CE36073
CZ3607C CZ3607D CZ3812A CZ3814A CR3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and couuionly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The tollowing 201 tests have floating-point type declarations requiring more
digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONG-INTEGER; for this
implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55907A B55809C B86001W C86006C CD7101F

C35713C, B86001U, and C86006G check for the predefined type LONG-FLOAT; for
this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with a name
other than FLOAT, LONG FLOAT, or SHORT-FLOAT; for this implementation, there
is no such type.

A35801Z checks that FLOAT'FIRST..FLOAT'LAST may be used as a range constraint
in a floating-point type declaration; for this implementation, that range
exceeds the range of safe numbers of the largest predefined floating-point
type and must be rejected. (See section 2.3.)

C45423A..3 (2 tests), C45523A, and C45622A check that the proper exception
is raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for this
implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for types
that require a SYSTEM.MAXMANTISSA of 47 or greater; for this implementation,
MAX MANTISSA is less than 47.

C45536A, C460138, C46031B, C46033B, and C460348 contain length clauses that
specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

386001Y checks for a predefined fixed-point type other than DURATION; for
this implementation, there is no such type.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type; this implementation does not support such sizes.

CD2AS3A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten TYPR'SMALL; this implementation does not support
decimal "SMALLs. (See section 2.3.)

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A84O use representation
clauses specifying non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8OO3A, BD004A..B (2 tests), and ADSOlIA use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package SEQUENTIAL 10
with unconstrained array types and record types with discriminants without
defaults; these instantiations are rejected by this compiler.

AE2101H, 3E2401D, and EE2401G use instantiations of package DIRECT 10 with
unconstrained array types and record types with discriminants without
defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised if the
given file operations are not supported for the given combination of mode and
access method; this implementation supports these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL I0
CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT 10

CE2102F CREATE IN FILE DIRECT 10

CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL10
CE2102P OPEN OUT FILE SEQUENTIAL IO
CE2102Q RESET OUT FILE SEQUENTIAL 10
CE2102R OPEN IN0UT FTLE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT 10
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT I0
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-10
CE3102K OPEN OUT FILE TEXT 10.

CE21088, CE2108D, CE2108F, CE208H, CE3112B, CE3112D (6 tests) make checks
that require the use of permanent files; this implementation does not support
permanent files and so raises NAME ERROR on the attempt to open a file
created by an earlier-run test.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict file
capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR if
they specify an inappropriate value for the external file; there are no
inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYJUT ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of COUNT'LAST
is greater than 150000, making the checking of this objective impractical.

2-4

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) Were required for 50 tests and 2 support
packages.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

824009A BS3001A BS9001E S59001F 383033B

C34009D and C34009J were graded passed by Evaluation Modification as directed
by the AVO. These test check that 'SIZE for a composite type is greater than
or equal to the sum of its components' 'SIZE values; but this issue is not
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus the 'SIZE of such a record type might be less than the sum
of the components' 'SIZEs, since the heap space that is used by the varying-
length array components is not counted as part of the 'SIZE of the record
type. These tests were graded passed given that the Report.Result output was
"FAILED" and the only Report.Failed output was "INCORRECT 'BASE'SIZE", from
line 19S of C34009D and line 193 in C34009J.

A358013 was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as
the range constraint of a floating-point type declaration because the bounds
lie outside of the range of safe numbers (cf. (Ads83] 3.5.7:12).

LA3004A and LA30048 were graded passed by Processing and Evaluation
Modification as directed by the AVO. These tests check that when the bodies
of library units (a procedure, function, and package) are made obsolete, the
implementation will detect the missing bodies at link time. This
implementation detects the missing bodies at link time, but it also issues
error messages that indicate that the main procedure (reap.) must be
recompiled. This behavior violates (Ada83] 10.3:6 & 8. To verify that the
implementation does not in fact require recompilation of the main procedures,
the obsolete bodies were recompiled (files LA3004A2..4 and LA3004B2..4 were
modified to contain only the bodies) and the tests were then linked and
executed. Report.Result output "NOT APPLICABLE" as expected.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures Length Check
or Enum Check (in the support files LENCRECK.ADA & ENUMCHK.ADA), which use
the geeric procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked ConversLon with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by Al-
00590, which addresses required support for Unchecked Conversion, and since
AI-00590 is considered not binding under ACVC 1.11, the support
procedures were modified to remove the use of Unchecked Conversion. Lines
40..43, 50, and 56..58 in LENCHXECK and lines 42, 43, and S8..63 in ENUMCHEK
were commented out.

2-s

IMPLEMENTATION DEPENDENCIES

CD1009A CD1009I CD1009M CD1009V CDl009W CD1C03A
CDlCO4D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C
CD2ASlA CD3014C CD3014F CD3015C CD3015E..F CD3O1SH
CD3015K CD3022A CD4061A

CD2AS3A wa s graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value am 'SMALL for
a fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

CE2102C, CE2102H, CE2103A..B, CE3102B, and CE3107A (6 tests) were graded
passed by Evaluation Modification as directed by the AVO. Each of these
tests contains a check that requires an illegal file name; but for this
implementation, there are no illegal filenames. These tests are ruled to
have been passed, since all of their applicable checks were indeed passed.
The following Report.Failed output was generated:

CE2102C,
CE2102H: NAME-ERROR NOT RAISED - CREATE (respectively: SEQ I DIR] 1

NAME-ERROR NOT RAISED - CREATE (respectively: SEQ I DIR] 2
CE2103A,
CR2103B,
CE3107A: NAME ERROR NOT RAISED - UNSUCCESSFUL CREATE

CE3102B: NO EXCEPTION RAISED FOR (some file name] - CREATE
NO EXCEPTION RAISED FOR (some file name] - CREATE
OTHER EXCEPTION RAISED FOR [some file name] - OPEN
OTHER EXCEPTION RAISED FOR (some file name] - OPEN

CE2108B, C2108D, CE2108F, CE2108H, CE3112B, and CE3112D were graded
inapplicable by Evaluation Modification as directed by the AVO. These tests
each depend on the contents of a file that was created by a previously
executed test (e.g., CE21088 depends on a file created by CE2108A); but this
implementation uses a file system that is implemented in the target
computer's memory and does not support permanent files. The execution of
tests CE2108F, CE2108H, and CE3112D results in a run-time system error report
since NAMEERROR is raised by the attempt to open the file from the previous
test and is not handled. For tests CR2108B, CE2108D, and CE31123, NAME ERROR
is similarly raised; it is handled anonymously and the following
Report.Failed output is generated:

UNEXPECTED EXCEPTION RAISED ON OPENING OF TEXT FILE, WHICH SHOULD
HAVE BEEN CREATED BY TEST (respectively: CE2108A I C2108C I CE3112A]

2-6

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation .effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation,
contact:

Joe Kohli
Irvine Compiler Corporation
34 Zxecutive Park, Suite 270
Irvine, California 92714 USA
Tel. (714) 250-1366
Fax. (714) 250-0676

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC (Pro9O.

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programing Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system -- if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3783
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tets 91
d) Non-Processed I/O Tests 0
a) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 292 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto the host computer via ETHERNET (DEC DRQ3).

After the test files were loaded onto the host computer, the full set of
tests except 159 Floating-Point Precision Tests were processed by the Ada
implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results were
captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing were

-stack check enable stack overflow checking
-numeric check enable arithmetic overflow checking
-elaboration check enable elaboration checking
-noinfo suppress informational messages
-quiet suppress compiler banners
-link- link the provided subprogram
-listing generate a compilation listing
-maximum errors-0 set maximum number of errors before abort to

unlimited
-nopreprocess disable compilation of preprocessor directives
-nowarnings suppress warnings
-opt optimize code

Test output, compiler and linker listings, and job logs were captured on a
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of theme parameters are explained in (UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V* represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 254 -- Value of V

SBIG-IDl (1..V-l -> 'A, V -> 1')

$BIG-ID2 (l..V-l W>'A, V 0> 2')

$BIG-ID3 (1..V/2 W>'A) a '3' &
(1. .V-1-V/2 -> 'A)

$BIG_1D4 (1..V/2 -> 'A) & 4' G
(l..V-l-V/2 W A)

$BIG INT LIT (l..V-3 -> '0') &"298"

$BIG REAL LIT (l..V-5 -> '0') &"690.0"

$310 STRING1 " (l..V/2 -> WA)&

$BIG-STRING2 ' &(l..V-1-V/2 -> 'A) &'1'

$BLANKS (l..V-20 ->

$MAXLEN INT BASED -LITERAL
"2:" & (1..V-5 -> '0') & 11:"

$MAX LEN REAL BASED -LITERAL
"160" & (l..V-7 -> '0') G "7.3:"

$MAXSTRING-LITERAL 1-1 & (1..V-2 -> WA)&

A- 1

MACRO PARAMETERS

The following table list. all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC-SI ZE 96

$ALIGNMENT 4

SCOUNT-LAST 2147483647

$DEFAULT HEM SIZE 2097152

SOEFAULT STOR UNIT a

$DEFAULT-SYS NAME 1960MX

$DELTA-DOC 2#1.0#E-31

$ENTRY ADDRESS address of-entryl

SENTRY ADDRESS1 address of-entry2

SENTRY ADDRESS2 address of eritry3

SFIELD-LAST 2147483647

$FILE-TERMINATOR '

$FIXED-NAME NO-SUCH-FIXED TYPE

$FLOAT-NAME NO-SUCH-FLOAT-NAME

SFORM-STRING a

$FORM-STRING2 "CANNOT RESTRICT-FILE CAPACITY"

$GREATER THAN DURATION

524287.5

$GRZATER THAN DURATION BASE LAST
10000000.0

$GRETBRTHAN FLOAT BASE LAST
1. 03+309

$GREATER THAN FLOAT SAFE LARGE
1.03+308

SGREATER THAN SHORT FLOAT SAFE LARGE
1. 03+38

$HIGH-PRIORITY 1s

S ILLEGAL EXTERNAL FILE NAME 1

A-2

MACRO PARAMETERS

/NODIRECTORY/FILENAME

S ILLEGAL EXTERNAL FILE NAME 2
/NOD IRECTORY/ THIS-FILENAME-IS-ILLEGAL

S INAPPROPRIATE LINE LENGTH
-1

$ INAPPROPRIATE PAGE LENGTH
-1

SINCLUDEPRAGMAl PRAGMA INCLUDE ("a28006d1.tut")

$INCLUDE-PRAGMA2 PRAGMA INCLUDE (-b28006d1.tat")

SINTEGER-FIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGERLAST-PLUS-1 2147483648

$ INTERFACE LANGUAGE C

$LESS THAN DURATION -524287.5

$LESS THAN DURATION BASE F IRST
-10000000 .00

SLINE-TERMINATOR ASCII.LF

SLOW _PRIORITY 0

$MACHINE CODE STATEMENT
NULL;

SI4ACHINE CODE TYPE
NO-SUCH TYPE

$MANTISSA-DOC 31

$X..DIGITS 15

$MAX _INT 2147483647

$MAXINT-PLUS-1 2147483648

$3IN-INT -2147483648

$NAME SHORT SHORT INTEGER

$HAME-LIST 1960, 1960KA, 1960KB, 1960MC, 1960CR,
1960SA, 1960SB,1960MM, 1960XA, 1960141

$NAME SPECIFICATIONi X2120A

SHAME SPECIFICATION2 X21203

A-3

MACRO PARAMETERS

$NAME SPECIFICATION3 X3119A

SNEG BASED INT 16#FFFFFFFE#

SKEW HEM SIZE 2097152

$NEW STOR UNIT 8

SKEW SYS NAME 1960MC

SPAGE-TERMINATOR ASCII.F

SEECORD-DEFINITION NEW INTEGER;

$RECORD-NAME NOSUHMAHIECOETYPE

$TASX SIZE 32

$TASXSTORAGE-SIZE 16383

STICK (1.0/4096.0)

$VARIABLEADDRESS address of varl

SVARIABLE-ADDRESS1 address of var2

$VARIABLE-ADDRESS2 address-of-var3

A-4

APPENDIX B

COMPILATION SYSTEM AND LINKER OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and not
to this report.

3-1.

ICC Cimnd Interpreter Cv"?.3.13 Apr 24, 19921 Help

Passive ICC Qualifiers
/ARGLUWY /ARGS Display all arguments to the ICC cc .and
/DISPLAY Display all actions as they are performed

/ZWMRWMTcar*g> Set the enviroent. variable prefix
/MLP List commnly used qualifiers
/KKIPAL fALL List all available qualifiers

IDE Suppress naming ICC subprocesses (VMS only)

Ignore configuration file qualifiers
/IQI0RNm /3 /IQIOP.N_3V

Ignore enviret variable qualifiers
/NORMAL Copile with 'nozzial' Messages
/QUMN1 Cmpile quietlyI
/SKVZ PAS2 Save temzporary files generated by pas2
/WIVETDGS /SXVE Save all intermdiate files

/SUC~Always return the success status
/fflIOLS /SYJIS Sbmw current value of ICC oinndlB s ymbols
/TooP Use temorary directory for intermediate files
/7Wi-<arg> Use <arg> am the t nprary directory
/ONIQUZ Use unique file niae for intermediate tiles
/VnRoez /V Compile with verbse messages

Active ICC Qualifiers
/AR~CfTURE<arg, Specify 19 60 architeture ML, DB, MC, Ch, SAL, SB, MI

ASK Stop at the generated assembly file
/A FLAG /AUI=m'arg> Abplicitly add flag(s) for the asmbler
/PAsfwu /A3BT.Pg Use <arg> as the assembler

/C Stop at the generated C source file
/CCFLAG /CCF=<axg, mitplicitly add flag(s) for the C c niler
/CC:M=I /CCUTmarg> Use carg> as the C cniler
/CCZ -M_ ATODR_3U= /CG1rJmcarg>

<arg> specifies the code generator mode
/COPTIKZN Invoke the C optimaizer

/J= Link a non-Ada program
/EWMUT Recute and delete executable, after linking
/M3OMFLAG /ECC=<arg> Miplicitly add flag(s) for the executable
/ADA =T-carg> Set Ada file extension
/AUECTcarg, Set assemly file extension
/C ZTcarg> Set C file extension
/M~1!MLTarg> Set executable file extension
/InffT <~arg> Set InFORM file extension

/LIBZXT=arg>Set object archive/library file extension
)UG W-<arg> set list merge file extension
/0DrfE21!magp Set object file extension
/071! Tmargp Set optimized 1103 file extension
mvi. Stop at the generated ifr file
/P7WSncarg> Save file(s) with etension Cs) in <arg>
/LNNAZY /LI31wcarg> set the omilation library directory
/linKFZL x1umarg> Set the linker directive file to <arg>
/Lomk ma /Lu /umz/LOAD U /cDazg>"

Use arg> am the linke
/LnmmPRWZaG /Lnumm /LOA= PRWLAG /LONMiJ-arg>

MW1l7citly add pre-f lag(s) for linke
/Lim _PosTLAG /LnSTF /LOADZR POU'IYIAG /LOADPSTF_<arg

atplicitly add post-flag(s) for linker
/l~ucarg> -Generate a link mp file (ICC linker only)

/XU= Invoke the ICC list merger
A= Stop at the generated list mege file

/OW Stop at the generated object file [default]
/ORJLIloaag, Install the object file in library <azg>
/oaaMID..YLAG /CMJLIB~mcarg> Wtplicitly add flag(s) for object librarian
/CWU:IXM /OJL~Mcuarg> Use <arg> as the object librarian

AUT Stop at the optimizer ifoza file
iovrUnuor /Ci1_OPT /OFTOWargp

/OFZDUZ ~Specify optimization optioms
/Op~azz OPTinvoke the Ad& optimizer

/PA LMG=a5St globally applicable page length
/PRE1 U /PRZL0ADERcarg> Execute <arg> before linking
/PRRKER-FLAG /PRELmKF /PRNLOJDR FLAG /PRNLOIF<arg,

________ Mclicitly add flag (a) for prelinker
/Pos~na= POSLOADP.-arg>

Rzecute -carg> after linking
/Pmn= L_ P7n /POSTLOADER FLAG /PsTLOADF=<arg>

Zzlicitlfadd flag(s) for postlinker
_R~DNM/RME=ag Use <arg> as the ranlib library processor

/RZUBZcarg, Set the release directory
/5504_OILY Display all actions to be performed
/SYStft=<arg> Set the system library directory
/TOOL~il Y ImCKarg> Specify the ICC toolset version

Ada Qualifiers
/ADVJSZ Enable advisory warnings (default]

/Cum Eable all runt'lm checks [default]
/CrCWrzIBL CALLS Generate calls comatible with C calls
/CSRinffiUCz /13W Generate cross -reference file (.xf)
/DRCLAft=-carg> Declare an identifier
f/D~mn.2 Compile for the Ada symbolic debugger
/EA30CRAMTI)J_ /ILA_M

Generate K.AB03kZIC1 checking
/UZCNC I= Ruble extra MXZTICT information [default]
/I Ua~I able informational warnings [default]
/LISTMG generate list file (.1st)
/LISTIUQ_071ZNS /LMSTOPT /LIST Mcarg>

Specify list file optimas
/MADIWflORS <arg> Set uaximum number of errors reported

/P3WOUS Generate 1cinented preprocess file (.app)
/PA=E Rate code efficiency
/RUNT= generate Ada ==mtim calls [default]
/S77RCK CEC generate stack checking code
/S'MTI IAE0RAT!K Perfoa static elaboration [default]
/rTMM CRLY Syntax check only
/TAMI -generate trimmed preprocess file (.app)
/W5N~ 1wq /KEable wip7Lngs
/0"RA mabie auto-wrapping err massages [default]
/mZo Zero all records (default]

ICC CoeGenerator Qualifierws
-_A~ RZL&TIVE Us. rel At branches (580 only)

/C'STY r-r POD Pace constant aggregates in CODE segment
J=NWAW/DEP /05 /B5Generate host debugger information

fm"Iwn LI8TMG /WM. /ASL Generate extended code listing output
/wimrwj _ Mw /M WPT /Z~Oag>

Specify extended cod listing options
lila generate inline hardware iRA code (IPUX only)

IAny =CUS Generate LUP procs when possible Ui960 only)
/GPUrxiL Generate runtim 'gprOf' profiling
/LOC O Generate extended local information
/hiqf/X68882. /X6 8882 generate inline batrwmre floating-point code
/IRMOsiZE Generate from size for each subp Ui960 only)

/W Generate namlist file (.n)
/NMinIC I /UIC Generate overflow detection code
tPww3 SYACK -Generate stack probes
/PI Or Generate runtim profiling
/3511. Use real namw
/qUOn= Static mods (C coegenerator only)

ICC Prelinker Qualifiers
/CrJWLW fCzLmazv> Ada oceil.s and link <arg> into cue file
/IPRCI LM Force link, eve if WepIMnc errors
/ap ksuuwCarg> Allocate -arg> bytes of beep Ui960 only)

/ .LzCzT RIL= " k main with implicit exoeption table
/L3m /LZ,, 8.g Aa link cnilatim unit <arg
/ouTT /O,<azg Use <axg as the moutable file name
/STXK_SiZ /STACK,<azg> Allocate <arg> bytes of user stack (U960 only)
/TAP stablish rmtmric fault trap handler

PVMDBUG=Link with VRX/IMS Debugger

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are given on the following lines.

package STANDARD is

type SHORT SHORT INTEGER is range -128 .. 127;
type SHORTINTEGER is range -32768 .. 32767;
type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range
-1.797693134862321+308 .. 1.797693134862321+308

type SHORTFLOAT is digits 6 range
-3.402822+38 .. 3.402822+38

type DURATION is delta 2.0'*(-12) range -524287 .. 524287;

end STANDARD;

C-I

Appendix F
ICC Ada Version 7.4

VAX / VMS to Intel i960Th MX / Bare

Irvine Compiler Corporation
34 Executive Park, Suite 270

Irvine, CA 92714
(714) 250-1366

May 20, 1992

1 ICC Ada Implementation

The Ada language definition leaves implementation of certain features to
the language implementor. This appendix describes the implementation-
dependent characteristics of ICC Ada.

2 Pragmas

The following predefined pragmas are implemented in ICC Ada as described
by the Ada Reference Manual (LRM):

Elaborate This pragma allows the user to modify the elaboration order of
compilation units.

Inline Subprogram inlning is implemented. Inline substitutions are per-
formed by the ICC optimizer. This pragma is not sup-orted for generic

-subprograms or subprograms which contain nested subprograms.

List This pragma enables or disables writing to the output list file.

1

2

Optimize is a predefined pragma which has been implemented for both
SPACE and TIME. Specifying this pragma currently does not control
whether the ICC optimizer is called; however, it does impact which
optimizations are performed.

Pack Packing on arrays and records is implemented to the bit level. Slices
of packed arrays are not implemented, except boolean arrays.

Page This pragma ejects a new page in the output list file (if enabled).

Priority This pragma sets the priority of a task or main program. The
range of the subtype priority is 0..15.

The following predefined pragmas have been extended by ICC:

Interface This pragma is allowed to designate variables in addition to sub-
programs. It is also allowed to have an optional third parameter which
is a string designating the name for the linker to use to reference the
variable or subprogram. The third parameter has the same effect as
pragma Interface-name.

Suppress In addition to suppressing the standard checks, ICC also permits
suppressing the following:

Assertion.check Suppressing Assertion-check suppresses the gen-
eration of assertion checking code that is emitted when using the
ICC-defined package ASSERTION.

Exception-info Suppressing Exception-info improves run-time per-
formance by reducing the amount of information maintained for
messages that appear when exceptions are propagated out of the
main program or any task.

AlL-checks Suppressing AlLchecks suppresses all of the standard
checks as well as Exception-info and Assertion-check.

The following predefined pragmas are currently not implemented by ICC:

Controlled

Memory-size

Shared

3

Storageunit

System-name

The following additional pragmas have been defined by ICC: (For further
details on these pragmas refer to the ICC Ada User's Reference Guide.)

Access.address This pragma allows the user to indicate how an access
type will be physically represented. The first parameter specifies the
name of an access type. The second parameter specifies the type of
address. Valid types are linear, virtual, and ad. Linear addresses
are 32-bits wide. Virtual addresses are 64-bits wide and consist of an
access descriptor (AD) and an offset. AD addresses are 32-bits wide
and consist of an access descriptor with an implicit offset of zero.

Compatible-calls This pragma is used to specify that pass-by-reference
parameter passing should be used for OUT and IN OUT scalar param-
eters. By default some of the ICC code generators use copy-in/copy-
back for scalar OUT and IN OUT parameters. This pragma allows pass-
by-reference calls to be performed (primarily for downward compati-
bility).

Compress This pragma reduces the storage required for discrete subtypes
in structures (arrays and records). Its single argument is the name
of a discrete subtype. It specifies that the subtype should be repre-
sented as compactly as possible (regardless of the representation of the
subtype's base type) when the subtype is used in a structured type.
The storage requirement for variables and parameters is not affected.
Pragma Compress must appear prior to any reference to the named
subtype.

Export This pragma is a complement to the predefined pragma Inter-
face. It enables subprograms written in Ada to be called from other
languages. It takes two or three arguments. The first is the language
to be called from, the second is the subprogram name, and the third
is an optional string designating the actual subprogram name to be
used by the linker. Pragma Export must appear prior to the body of
the designated subprogram.

Externaltname This pragma is equivalent to the ICC pragma Export
with an implicit language type of "Ada" and a required external name.

4

This pragma allows the user to specify the exact name of the subpro-
gram that will be used in the generated object file. This pragma is
provided for compatibility with existing Ada source files.

Foreign This pragma is used to add an object file or an object library file
to the link command line used when linking the current compilation
unit. Pragma Foreign is most frequently used in conjunction with
pragma Interface so that foreign object files may be automatically
included when the Ada compilation unit is linked. This pragma ac-
cepts two parameters. The first parameter indicates the location of
the foreign object name on the link command line. It must be either
Normal or Post. The second parameter is a string denoting the foreign
object. This string is passed unmodified to the linker, so it should be
a complete filename. If the location is Normal, then the foreign object
is included immediately after the current Ada compilation unit on the
link command line. If the location is Post, then the foreign object
name is included at the end of the link command line. When multiple
Foreign Post pragmas are used in a single program, the order of the
foreign objects on the link command line is not defined.

Interface-constant allows access to externally defined constant values. It
can only be applied to scalar variables and is similar to pragma In-
terface except that it interfaces to a constant or address rather than
to a value.

Interface-Name This pragma takes a variable or subprogram name and
a string to be used by the linker to reference the variable or subpro-
gram. It has the same effect as the optional third parameter to pragma
Interface.

Interrupt.-handler This pragma is used when writing procedures that will
be invoked as interrupt handlers (independent of the tasking runtime).
It does not have any parameters and must appear immediately within
the declarative part of a procedure. The presence of this pragma causes
the code generator to produce additional code on procedure entrance
and exit which preserves the values of all global registers. This pragma
has no other effect.

Noinline allows the programmer to specify that a subprogram never be
inlined. This suppresses auto-inlining for the named subprogram. The
parameter to pragma Noinline is a list of subprogram names. This

5

pragma is useful for machine code insertions where a call must always
be performed.

No-zero The single parameter to No.zero is the name of a record type.
If the named record type has holes (or gaps) between fields that are
normally initialized with zeroes, this pragma will suppress the clearing
of the holes. If the named record type has no holes this pragma has
no effect. When zeroing is disabled, comparisons (equality and non-
equality) of the named type are disallowed. The use of this pragma
can significantly reduce initialization time for record objects. The
ICC Command Interpreter also has the qualifier /NOZERO which has
the effect of implicitly applying pragma No-zero to all record types
declared in the file.

Optimize-options allows the user to modify optimization defaults. This
allows better control of the options used in various portions of a com-
pilation unit. This pragma has two parameters, a comma-separated
list of subprograms (optional), and a list of optimization options. The
options are specified in named association format (i.e., option.name
=> value). The option(s) are applied only within the scope of the
enclosing declarative region and any nested regions. If a list of sub-
programs is not supplied, the option(s) apply to all subprograms in the
current compilation unit. Note that, like pragma Suppress, options
specified by this pragma in a package specification are inherited by the
package body.

The following table summarizes the available options and their values:

Name Value Description
Space Boolean Optimize for space
Time Boolean Optimize for time
Autoinline Boolean Enable/disable autoinlining
Peephole All-code Enable peephole optimizations for

all code generated
Machine.code Enable peephole optimizations only

for machine code insertions
Nopeephole All-code Disable peephole optimizations

Machine code Disable peephole optimizations only
for machine code insertions

Inline Boolean Enable/disable explicit inlining

6

Protect- registers This pragmais used with the 1960-KACHINE.CODE pack-
age to specify a list of machine registers which should be saved on en-
trance to the current subprogram and restored on exit. This pragma
is used primarily for low-level interrupt handlers.

Put, Put-line These pragmas take any number of arguments and write
their value to standard output at compile time when encountered
by the compiler. The arguments may be expressions of any string,
enumeration, or integer type whose value is known at compile time.
Pragma Put-line adds a carriage return after printing all of its argu-
ments. These pragmas are often useful in conjunction with conditional
compilation. They may appear anywhere a pragma is allowed.

Reserve-registers This pragma is used with the 1960-MACHINE-CODE
package to reserve a list of registers for machine code insertions. The
listed registers will not be used by the ICC Optimizer or ICC Code
Generator so that the programmer can use them in machine code in-
sertions. Note: Do not attempt to reserve the i960 special registers
(i.e., rO, rl, r2, and g15). This may cause error messages in the code
generator. Reserving a large number of registers may cause the code
generator to run out scratch registers and will cause the compilation
to fail.

Simple-task is used to eliminate the normal dynamic tasking runtime as-
sociated with a task and request that the task be elaborated statically
by the ICC i960 Initial Memory Image Builder. This pragma must
appear within an entryless specification of a top-level task. Use of
pragma Simple-task requires that there not be any operations per-
formed that would require importing of the tasking runtime.

Simple tasks (i.e., those to which pragma Simple-task has been ap-
plied) may not declare entries and may not perform entry calls. The
pragmas Time-slice and Time-slice. attributes may be applied to
simple tasks to modify their runtime behavior.

Static-elaboration This pragma is used immediately within a package
specification to state that all elaboration for the package is intended to
be static. NOTE: This pragma does not modify the behavior operation
of the Ada compiler; in particular, it does not enable static exceptions.
This pragma only conveys information to the compiler that the user's
intention is that all elaboration for the package be static. Warnings

7

will be generated for all objects within the package specification or
corresponding body which require dynamic elaboration; however, the
compiler will still compile those packages statically.

Time-slice may be used only in a task which has pragma Simple-Task
applied to it. Pragma Time- Slice accepts one parameter: the period
of a time slice. This parameter is of the predefined type Duration.

Time- slice-attributes may be used only in a task which has pragma Sim-
pleTask applied to it. This pragma accepts one parameter: a list of
initial values to be applied to the task's Process Controls.

Unsigned-Literal This pragma, when applied to a 32-bit signed integer
type, affects the interpretation of literals for the type. Literals between
2**31 and (2**32)-l are accepted for the type and are represented as
if the type were unsigned. Operations on the type are unaffected.
Note that (with checking suppressed) signed addition, subtraction,
and multiplication are equivalent to the corresponding unsigned op-
erations. However, division and relational operators are different and
should be used with caution.

Useib This pragma is used within a context clause to explicitly add a
list of named search libraries to the library search list of the current
compilation. The specified libraries are searched first in all following
WITH clauses.

Volatile notifies the ICC Optimizer and Code Generator peepholer that a
scalar variable's value may change outside the scope of the program.
Pragma Volatile accepts one parameter: the global scalar variable
to be considered volatile. The use of this pragma suppresses value-
following so that every reference to the specified variable always gen-
erates a memory load or store instruction. This is useful for memory
mapped I/0 devices where a global variable may be mapped directly
to a device address.

3 Preprocessor Directives

ICC Ada incorporates an integrated preprocessor whose directives begin
with the keyword Pragma. They are as follows:

8

Abort This pragma causes the current compilation to be immediately
halted. It is useful when unexpected circumstances arise inside condi-
tionally compiled code.

If, Elsif, Else, End These preprocessor directives provide a conditional
compilation mechanism. The directives If and Elsif take a boolean
static expression as their single argument. If the expression evaluates
to False then all text up to the next End, Elsif, or Else directive is
ignored. Otherwise, the text is compiled normally. The usage of these
directives is identical to that of the similar Ada constructs. These di-
rectives may appear anywhere pragmas are allowed and can be nested
to any depth.

Include This preprocessor directive provides a compile-time source file in-
clusion mechanism. It is integrated with the library management sys-
tem and the automatic recompilation facilities.

Include-file is used to =11stinguish include files from normal Ada compi-
lation units. If the Ada frontend encounters this pragma in a source
file which has not been included (via Pragma Include), compilation is
aborted immediately. NOTE: This pragma does not modify the behav-
ior of the Ada compiler. It only conveys information to the compiler
that the source file is intended as an include file. Specification of this
pragma in include files is optional; however, ICC recommends this
pragma be included in all include files to assist the ICM make facility.

The results of the preprocessor pass, with the preprocessor directives
deleted and the appropriate source code included, may be output to a
file at compile-time. The preprocessor may be disabled by using the
/NOPREPROCESS command-line qualifier, in which case the above directives
are ignored.

4 Attributes

ICC Ada implements all of the predefined attributes, including the Repre-
sentation Attributes described in section 13.7 of the LRM.

Limitations of the predefined attributes are:

9

Address This attribute cannot be used with a statement label or a task
entry.

The implementation-defined attributes for ICC Ada are:

Alignment This attribute returns the bit alignment for the prefix type.
The value returned is a universal integer.

Architecture This attribute is for internal use within the ICC runtime and
returns a value depending on the i960 architecture being targeted.

Declared This attribute is used to test the state of a value that may have
been provided on the command-line when the compiler was invoked.
Declared is used primarily in conditional compilation code (in con-
junction with the preprocessor directive If) to modify how the source
is compiled based on a compile-time option. The prefix to Declared
must be a discrete type. Its result is a value of this discrete type.

Linear, address This attribute is currently identical to the predefined at-
tribute Address. In the future Linear, address will return the 32-bit
linear address for i960 targets and Address will return a full 64-bit
virtual address.

Version, System, Target, CG. mode These attributes are used by ICC
for conditional compilation. The prefix must be a discrete type. The
values returned vary depending on the target architecture and oper-
ating system.

5 Input/Output Facilities

Standard Input and Output for embedded targets is implemented through
the serial communications link between the host and embedded system. The
normal TWT_I0 calls PUT and GET can be used for console I/O.

5.1 Virtual File System

Since embedded systems typically do not have access to disk storage, file
I/O operations are simulated through a RAM-based virtual fie system im-
plemented by a low-level runtime support package. This virtual file system

10

behaves like a disk-based file system, except that files do not persist be-
tween program executions. Therefore, it is not possible to write a virtual
file with one program and then to read it using another one. Also, the vir-
tual file system never raises the exception NAME-ERROR since all file names
are considered legal.

The implementation-dependent specifications from TEXTOI0 and DIRECT_ IO
are:

type COUNT is range 0 .. IITEGER'LAST;

subtype FI&D is IrEGER range 0 .. ITEGER'IAST;

5.2 FORM Parameter

ICC Ada implements the FORK parameter to the procedures OPEN and CREATE
in DIRECT-IO, SEQUENTIALIO, and TEXTIO to perform a variety of ancil-
lary functions. The FORM parameter is a string literal containing parameters
in the style of named parameter notation. In general the FORM parameter
has the following format:

field,.> value, [, field4 -> value.]

where fieldi a> valuej can be

OPTION => NORMAL
OPTION => APPEND
PAGEMARKERS => TRUE
PAGE.MARKERS a> FALSE
READ-INCOMPLETE a> TRUE
READ-INCOMPLETE => FALSE
MASK a> <9 character protection mask>

Each field is separated from its value by ">" and each field/value pair
is separated by a comma. Spaces may be added anywhere between tokens
and case is insignificant. For example:

create(i, o tjil, "list.data",
"option a> append, PkGLMIKXS => FALSE, Mask => ruzzx-r");

11

The interpretation of the fields and their values is presented below.

OPTION Files may be opened for appending. This causes data to be ap-
pended directly onto the end of an existing file. The default is NORMAL
which overwrites existing data. This field applies to OPEN in all three
standard I/O packages. It has no effect if applied to procedure CREATE.

PAGE-MARKERS If FALSE then all TEXTI0 routines dealing with page termi-
nators are disabled. They can be called, however they will not have
any effect. In addition the page terminator character (-L) is allowed to
be read with GET and GET. LIVE. The default is TRUE which leaves page
terminators active. Disabling page terminators is particularly useful
when using TEXT.I0 with an interactive device. For output files, dis-
abling page terminators will suppress the page terminator character
that is normally written at the end of the file.

READ- INCOMPLETE This field applies to DIRECTIO and SEQUENTIAL._IO and
dictates what will be done with reads of incomplete records. Normally,
if a READ is attempted and there is not enough data in the file for a
complete record, then END-ERROR or DAT,_ERROt will be raised. By
setting READ- INCOMPLETE to TRUE, an incomplete record will be read
successfully and the remaining bytes in the record will be zeroed. At-
tempting a read after the last incomplete record will raise END.ERROR.
The SIZE function will reflect the fact that there is one more record
when the last record is incomplete and READ- INCOMPLETE is TRUE.

MASK Set a protection mask to control access to a file. The mask is the
standard nine character string notation used by Unix. The letters
cannot be rearranged or deleted so that the string is always exactly
nine characters long. This applies to CREATE in all three standard
I/O packages. The default is determined at runtime by the user's
environment settings.

The letters in the Mask 'are used to define the Read, Write, and
eXecute permissions for the User, Group, and World respectively.
Wherever the appropriate letter exists, the corresponding privilege
is granted. If a "-" (dash) is used instead, then that privilege is de-
nied. For example if Mask were set to "rw-rw ---- " then read and
write privileges are granted to the file owner and his/her group, but
no world rights are given.

12

If a syntax error is encountered within the FORM parameter then the
exception USE-.ERROR is raised at the OPEN or CREATE call. Also, the stan-
dard function TEXL. 10. FORM returns the current setting of the form fields,
including default values, as a single string.

6 Package SYSTEM

package SYSTEM is

type SHOI.T-.SHORT..ORDINAL is range 0.. (2**8)-1;
for SBORT-.SHORT-.ORDINAL'size use 8;

type SHORT..ORDINAL is range 0.. (2**16)-1;
for SHORT-ORDINAL'siz. use 16;

type ORDINAL is range 0.. (2**32)-1;
for ORDINAL'size use 32;

type NAME is (1960,
1960KA, 1960KB, I960MC,
I960CA, 1960SA, 1960SB,
1960MM, I9601A, 1960K!);

SYSTEM-NANE :constant NAME := ±960K!;
STORAGE..UNIT :constant a8; -- Storage unit size in bits.
MEMORY..SIZE :constant :2'.(2**20); -- Bytes.
MIN-IUT :constant a-2**31;
MAZ.INT :constant :a2**31-1;
MAX-.DIGITS :constant a15;

MAX_..MNTISSA :constant :a31;

FINE..DELTI constant 2.*(3)
TICK :constant a1.0/4096.0; -This is ma for type

-- DURATION.

type LINEAR-.ADDRESS is range 0.. (2**32)-1;
for LINEAI..ADDRESS 'SIZE use 32;

type MIXZED.-WORD in range 0.. (2**32)-1;
for NMUED-.VORD'SIZE use 32;

subtype PRIORITY is INTEGER range 0 .. IS; -0 is default priority.

13

ELABORATIOI.PRIORITY: constant PRIORITY := PRIORITY'LAST;

-- Constants tor the STIHEAP package

BITSPER._BMU : constant := 8; -- Bits per basic machine unit.

MAXI.ALIGNIMT : constant := 4; -- Maximum alignment required.
MIXMEN._BLOCK : constant :a 1024; -- Minimum chunk request size.

-- Constants for the HOST package

-- HOSTCLOCK-RESOLUTION changed to 128 microseconds to support any
-- clock rate (16,25,33Mhz) for the i960. See GET-TIME in HOST

-- for how actual time is loaded.

HOSTCLOCK-RESOLUTION : constant := 128; -- 128 microseconds

BASE.DATECORRECTION : constant := 25_202; - Unix base date is 1/1/1970.

TULLLINEARADDRESS : constant LINEAR.ADDRESS 0: 0;

subtype ADDRESS is LINEAR-ADDRESS;

pragma PUT-LINE ('System name is ", SYSTEM.NANE);

NULL-ADDRESS : constant ADDRESS := 0; - Value of type ADDRESS
- equal to NULL.

end SYSTEM;

7 Limits

Most data structures held within the ICC Ada compiler are dynamically
allocated and, hence, have no inherent limit (other than available memory).
Some limitations are:

The maximum input line length is 254 characters.

The maximum number of tasks abortable by a single abort state-
ment is 64.

Include files can be nested to a depth of three.

14

The number of packages, subprograms, tasks, variables, aggre-
gates, types, or labels which can appear in a compilation unit is
unlimited.

The number of compilation units which can appear in one file is

unlimited.

The number of statements per subprogram or block is unlimited.

Packages, tasks, subprograms, and blocks can be nested to any
depth.

There is no maximum number of compilation units per library,
nor any maximum number of libraries per library system.

There is no limit on the range of numeric literal values.

There is no limit on the accuracy of floating point literal expres-
sions.

There are no limits on the depth, levels of parentheses, or the
number of terms in an expression.

All compile-time computations are done using exact integer or
rational arithmetic.

8 Numeric Types

8.1 Integer Types

ICC Ada supports three predefined integer types:

Type Value Range Width
SHORTSHORT..INTEGER -128..127 8 bits
SHORTINTEGER -32768..32767 16 bits
INTEGER -2147483648..2147483647 32 bits

In addition, unsigned 8-bit, 16-bit, and 32-bit integer types can be de-
fined by the user via the SIZE length clause. Storage requirements for types
can be reduced by using pragma Pack and record representation clauses;
for subtypes, by using the ICC pragma Compress.

8.2 Ordinal Types

ICC Ada supports the declaration of ordinal types using the size length
clause. The following ordinal types are defined in package SYSTEM:

Type Value Range Width
SYSTEM .SHORT-.SHORT-.ORDINAL 0_.255 8 bits
SYSTEM.SHORT..ORDINAL 0-.65535 16 bits
SYSTEM. ORDINAL 0..4294967295 32 bits

All predefined operators for signed integers are also defined for the ordi-
nal types.

8.3 Floating and Fixed Point Types

Type Float and type Short- Aloat are implemented and have the following
attributes:

Attribute Value
_______________type FLOAT type SHORT-.FLOAT

Machine-rounds FALSE FALSE
Macin-overf lows FALSE FALSE
Machin-radix 2 2
Machine-m.antissa 52 23
Machine-e..az 1020 124
Machine-emin -1021 -125
Mantissa 51 21
Digits 15 6
Size 64 32
First -1.79769313486232E + 308 -3.40282E + 38
Last 1.79769313486232E + 308 3.40282E + 38
Base'Firut - 1. 79769313486232E + 308 -3.40282E + 38
Base'Last 1.79769313486232E + 308 3.40282E + 38
Emax 204 84
Safe-.Emax 1020 124
Epsilon 8.88178419700125E - 16 9.53674316406250E - 07
Small 1.94469227433161E - 62 2.58493941422821E - 26
Sat .- umall 4.45014771701440E - 308 2.35098870164458E - 38
Large 2.57110087081438E + 61 1.93428038904620E + 25
Saf e-large 1. 12355820928895E + 307 2.12676377913539E + 37

16

Fixed point types automatically assume the smallest storage size nec-
essary to represent all of the model numbers with the indicated delta and
range. The size of a fixed point type may be changed via the SMALL rep-
resentation clause and the SIZE length clause. Unsigned fixed point types
may be defined using the SIZE length clause.

NOTE: ICC Ada rounds fixed point values away from zero at the mid-
point between integral values. On the i960, ICC Ada uses round-to-nearest-
even for floating point types. This means that the same value will round
to an integer differently depending on whether it is a fixed or floating point
value. The following table details the rounding behavior of fixed and floating
point types on the i960.

Value Fixed Round Float Round
1.00 1 1
1.25 1 1
1.50 2 2
2.50 3 2
2.75 3 3
3.50 4 4

-1.25 -1 -1
-1.50 -2 -2
-1.75 -2 -2
-2.50 -3 -2

8.4 Other Numeric Types

The ICC-defined type SYSTEM.ADDRESS is represented as a 32-bit nsigned
integer. This allows address calculations to be performed as unsigned values
and also allows the use of unsigned 32-bit literals.

The ICC-defined type SYSTEM.MIXED_-WORD is a special 32-bit ordinal
type which preserves the tag (33rd) bit on the i960 processor.

9 Tasks

The type DURATION is defined with the following characteristics:

17

Attribute Value
Delta 2.44140625E - 04 sec
Small 0.0002 sec
First -524287.0 sec
Last 524287.0 sec

The subtype SYSTEM.PRIORITY as defined provides the following range:

Attribute Value
First 0
Last 15

Higher numbers correspond to higher priorities. If no priority is specified
for a task, PRIORITY' FIRST is assigned during task creation.

10 Representation Clauses

10.1 Type Representation Clauses

10.1.1 Length Clauses

The amount of storage to be associated with an entity is specified by means
of a length clause. The following is a list of length clauses and their imple-
mentation status:

" The SIZE length clause is implemented. When applied to integer-range
types this length clause can be used to reduce storage requirements,
including storage of unsigned values. It may be used to declare an
unsigned 32-bit type. Length clauses are allowed for float and fixed
point types, however the storage requirements for these types cannot
be reduced below the smallest applicable predefined type available.

* The STORAGE-SIZE length clause for task types is implemented. The
size specified is used to allocate both the task's Task Information Block
(TIB) and its stack.

" The STORAGE-SIZE length clause for access types is implemented.
When a length clause is encountered for an access type, a block of

18

memory is reserved in the user's heap space. This block of memory
cannot be expanded beyond the bounds specified in the length clause.
When the memory in this block is exhausted, STORAGE-ERROR is raised.
Due to heap management overhead, the full amount of memory indi-
cated in the length clause may not be available for allocation.

The SMALL length clause for fixed point types is implemented for pow-
ers of two. ICC Ada does not support SMALL values that are not
integral powers of two.

10.1.2 Enumeration Representation Clauses

Enumeration representation clauses are implemented. The use of enumera-
tion representation clauses can greatly increase the overhead associated with
their reference. In particular, FOR loops on such enumerations are very ex-
pensive. Representation clauses which define the default representation (i.e.,
the first element is ordinal 0, the second 1, the third 2, etc.) are detected
and cause no additional overhead.

10.1.3 Record Representation Clauses

Record representation clauses are implemented to the bit-level. Records con-
taining discriminants and dynamic arrays may not be organized as expected
because of unexpected changes of representation. There are no implemen-
tation generated names that can be used in record representation clauses.

Record representation clauses allow more precise packing than pragma
Pack. Record representation clauses allow the user to specify the exact
location of fields within a record to the bit-level. The ICC Ada compiler
implements bit-level record representation clauses including nested records
starting on bit-boundaries. Since the user specifies the exact bit location,
overhead for extracts and stores may be very high, so record representation
clauses should be applied very carefully. Record representation clauses are
implemented using the following rules:

* Fields of records may be allocated to the nearest bit for elements
which are smaller than 32-bits. This includes small nested records.
Elements which are 32-bits or larger (and all arrays) must be placed
on byte boundaries.

19

" If the specified storage space for an element is not adequate using its
default allocation, it will automatically be packed in two stages: (1)
normal packing will be attempted using the default alignment rules. If
this does not adequately reduce storage then (2) bit-level packing will
be attempted with all fields aligned on 8-bit or smaller boundaries. If
this bit-level packing still does not meet the storage requirement, an
error message will be generated.

" The optional alignment clause may be used to specify an alignment
up to 8192 bytes. However, records can only be aligned to 16 bytes
when used within a local stack frame. If a record with an alignment
larger than 16 is allocated in the local frame of a subprogram, an error
message will be generated.

* All fields of a record representation clause which are left unspecified
will be allocated at the end of the record using the default alignment
rules for each element.

* The fields of a record representation clause may be specified in any
order and the storage order of the fields does not need to be the same
as the order in which they were declared.

" If no alignment clause is specified, the alignment requirement for the
record is equivalent to the largest alignment requirement of its ele-
ments.

10.2 Address Clauses

Address clauses are implemented for variables. Address clauses for local
variables using dynamic values are implemented. The use of a dynamic ad-
dress can facilitate overlaying since the address specified may be the value of
a variable of type Sys-tem. Address or may be the result of an expression us-
ing the predefined Address attribute. Address clauses are not implemented
for subprograms, packages, tasks, constant objects, or statement labels.

11 Interface to Other Languages

Pragma Interface allows Ada programs to interface with (i.e., call) subpro-
grams written in another language (e.g., Assembly); pragma Export allows

20

programs written in another language to interface with programs written
in Ada. The accepted languages are: Intrinsic, Ada, C, and Assembly.
The aliases Assembler and ASK can be used instead of Assembly. The
alias Builtin can be used instead of Intrinsic. The language Intrinsic
should be used with extreme care-it is used by ICC for internally handled
operators.

12 Unchecked Type Conversion

The generic function Unchecked- conversion is implemented. In general,
Unchecked.conversion can be used when the underlying representations of
values are similar.

Acceptable conversions are:

" Conversion of scalars. Unchecked- conversion can be used to change
the type of scalar values without restriction. In most circumstances
the unchecked conversion produces no additional code.

" Conversion of static constrained structures. Constrained static arrays
and records are represented as contiguous areas of memory and, hence,
can be converted using unchecked conversion.

" Conversion of scalars to static constrained structures. Scalar objects
may be converted to static constrained structures with no additional
overhead. If a scalar value is converted to a structure, an aggregate
is first built to hold the scalar value and its address is used as the
address of the resulting structure.

Because the representation of dynamic structures uses implicit pointers
and dope-vectors, ICC Ada does not allow unchecked conversions to or from
dynamic or unconstrained structures (arrays or records). A compile-time
error message will be generated for such instantiations.

Although the Ada compiler does not produce errors for the following
unchecked conversions, they should be avoided since their results are not
obvious:

e Conversion from constrained discriminant records. Conversion from
discriminant records can cause unpredictable behavior because of un-
derlying representation changes. Unchecked-conversion will use the

21

same rules as described above for performing the copy; however, the
results of this operation may not be what the user desires since ICC
Ada does not place arrays constrained by the discriminant in-line with
the other fields in a discriminant record. In place of the array only a
pointer is used and the array is allocated dynamically from the inter-
nally maintained heap.

* Conversion to or from pointers to unconstrained arrays. Unconstrained
array pointers are implemented as special dope-vectors in ICC Ada.
Conversions to or from these dope-vectors are not recommended.

e Conversion to or from any type or object declared in a generic. Gener-
ics can cause hidden representation changes. Unchecked- conversions
of any object or type declared in a generic should be avoided.

ICC Ada does not require that the sizes of the parameters to an
unchecked-.conversion be identical. The size of the target type is used
to determine the number of bytes to copy. The size of the target type (in
bytes) is determined by the Ada frontend and exactly that many bytes are
copied from the source address to the target address. This can cause prob-
lems (e.g., memory faults) when the source object is smaller than the target
object. For example, using unchecked.conversion to convert a character
into an integer will cause four bytes to be copied starting from the address
of the character. The first byte copied will be the value of the character,
but the values of the remaining three bytes cannot be predicted since they
depend on values of variables or fields immediately after the character in
memory. If the source object is larger than the target object then only the
bytes that will fit in the target object are copied from the source starting at
the address of the first byte of the source.

13 Unchecked Storage Deallocation

Unchecked-deallocation is implemented. Unchecked.deallocation of
structures containing dynamic elements (such as discriminant records with
dynamic arrays) should not be performed since these nested structures are
not automatically deallocated.

22

14 Machine Code Insertion

The package MACHINE-CODE described in the LRM is not provided or sup-
ported. Instead, machine code insertion is implemented using the ICC-
defined package 1960-MACHINE-CODE. This package defines a variable for
each machine register (GO, G1, P.O, FPO, etc.) and a procedure for each
instruction (ADDI, ADDO, CALL, LDL, etc.). References to these special
variables and calls to these special procedures are trapped by the ICC Na-
tive Code Generator and converted into the appropriate machine object
(register or instruction). This allows machine code to be inserted in any
context, including interspersed within Ada statements.

For example, to perform an FKARK instruction in the middle of a subpro-
gram, the following could be written:

with i960_aachin..._od.;
use i96O..achin..._cods;
procedure force_markit_n.eded(test-condition: boolean;

val: integer) is
begin

if testcondition then -- It we're supposed to FU...
ov(val, go); - ove VAL parameter into GO.

fmark; - Force Mark.
end if;

end;

In addition, the following subprograms are declared in package
I960-MACHINE-.CODE:

address-index This function can be used to explicitly build complex addressing modes
with an offset of type Systm.Address for use in the LOAD and STORE
instructions. The Base, Offset, Index-register, and Scaling-factor can
all be explicitly provided.

integer- index This function can be used to explicitly build complex addressing modes
with an offset of type Integer for use in the LOAD and STORE instruc-
tions. The Base, Offset, Index-register, and Scaling-factor can all be
explicitly provided.

index This function is identical to address-index.

23

label This subprogram is overloaded as both a procedure and a function.
When called as a procedure it will emit a label with the corresponding
integer ordinal value into the output code. When called as a function
it will reference the corresponding label. These subprograms are used
primarily for branches and loops.

24

