
PD-E-S'b SSOAD-A 5 9 0Copy 14 of 50 copiesADA254 920

IDA DOCUMENT D-855

RECOMMENDED PRACTICES FOR INTERACTIVE
VIDEO PORTABILITY

Philip Dodds
Randall House Associates

Scott Lewis
DSL Associates

David McFarling D1 lf
SBCS Inc. DT I C

.nc. ELECTE

Henry MistrotAU139R
Video Associates Labs UG 13"1

Geoff Snowman S Ii.i
Randall House Associates

Jack Spiegelberg
IVID Communications

October 1990 92-22586

Prepared for I11111111 11IDl1U!i Il
Office of the Assistant Secretary of Defense

(Force Management and Personnel)
and

Office of the Assistant Secretary of Defense for Public Affairs
(American Forces Information Service)

IAppome for public relee; distrbion ul imited

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street. Alexandria, Virginia 22311-1772

92 8 10 0,.1--, ID og No. NO ,o-36513

DEFINITIONS
IDA publishes the following documents to report tire results of Its work.

Reports
Repents are the most sutertatvm ad momt camfuly considered products IDA publishes.
They manually embody reault of major projects which (a) bave a direct buarlng on
decisions affecting major program, 1b) address issues; at significant concern to the
Executive Brancb, thre Congress; mnd/sr No public, or le) address lsues t have
significant economic Implications. IDA Reports are reviewed by outside penels at experts;
to ecsure their bigh quality and relolece to the problem studied, and they are released
by the President ft IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
putIs composed of olaor lediduais addreesslmg major lasue which etherise would he
the aubject of ae IDA Roed. IDA Oro" Reports are rviwed by the sealIdividuals
responsible for the project and etesa selected by IDA Is asue their high quality and
relevance to the problems studied, ad ar relsmmed by the President of IDA.

Paper:
hPapes mistoritative and carefully coasidered products of IDA. address studies ta
= =arraw- In scope than those cmovrd In Reports. IDA Papers are reviewed to emre

that they meet the high standards expected of refereed papers in proatsenal journals or
fermal Ageny reports.

Documents
IDA Documents are used for the conven at the sposors or the ana"st (a) to record
sebistautive work doe in quick reaction studies, (b) to record the proceedings of
Oerno and meetings. (c) to make available preliminary and tentative results of
Analyses. (d) to record data developed In the, course el an Investigto, or (1)1 forwonard
Information tha Is essentially unanalyzed aod unevaluated. The rview of IDA Documents
ls called to their coolest end lmtuded me.IThe work reported In thls document was conducted under contract MDA 903 8 C 000 for

the Department of Defense. The publication of this IDA document does not Indlcate
edorsement by the Department of Defense, nor should the contents be construed a

reflecting the official position of that Ageancy.

REPORT DOCUMENTATION PAGE Form Appro ved
PM spc~e~gw I" ha dc. co "m4aimc is hsad in averae I hawr Per MOW"b. m~digl.beb a~ ~loa eelng " MWW11011er11fibs 101fih ~ ising. (111111 96 ed moamb.ning ft. did needed wind

cWmpl end re o~ -be ...ta If ahlme . Saenelnefllb nighan has -ad essial. or any eAw apect of 0" edlecian of inm m. incdng; ouggeeba' for seucinSg ha burdan. lo Wuhnglbn
Headqtm Sen echa rsoel fr h~ilmo Operalar. ha Reports, 1215 Jeffesso ma, Deni a Suighr te 1204. M4ngton, VA 22202-4302. a so Ow. CU.. of Management nd Gudgal Papoirwok Reduobon Projct

1. AGENCY USE OY(Laeba) 2.ROTDAE 3. REPORT TYPE AND DATES COVERED

October 1990 Final--September 1989 to July 1990
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Recommended Practices for Interactive Video Portability C - MDA 903 89 C 0003

S. AUHORS)T - T-1-2-565 and T-Z2-629.3

Philip Dodds, Scott Lewis, David McFarling, Henry Mistrot, Geoff
Snowman, Jack Spiegelberg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION

Institute for Defense AnalysesREOTNMR
1801 N. Beauregard St. IDA Document D-855
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING
AGENCY REPORT NUMBER

OASD/FM&P/MM&PP/TP OASD/AFIS
The Pentagon, Room 3B3930 601 North Fairfax Street
Washington, DC 20301 Alexandria, VA 22314-2007

11. SUPPLEMENTARY NOTES

12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (aximum 200 Wds)

The recommended practices in this document provide platform independence for Level Ill interactive
video systems. Platform independence permits applications to run without modification on any hardware
platform based on a general class of host computers. These recommendations establish a uniform
application interface and command set for achieving platform independence. They are intended for system-
level, not device-level independence. The recommendations address MS-DOS and PC DOS systems based
on Intel 80x86 processor architecture. Other operating systems and architectures will be addressed in the
future. Adoption of the current recommendations will benefit the interactive video community by furnishing a
common ground for manufacturers, system integrators, courseware developers, and end-users in a field of
rapidly changing technologies.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Training, Education, Instructional Technology, Interactive Videodisc Instruction, 214
Computer-Based Instruction, Interactive Video, Software Portability 16. PRICE CODE

17. SECURITY CLASSIFICATION I14. SECURITY CLASSIFICATION 19. SCURITY CLASSIFICATION 20. LIMITATION oF ABSTRACT
OP REPORr OF THIS PAGE IOF ABSTRACT

UNCLASSI FlED UNCLASSIFIED jUNCLASSIFIED ISAR
NISN 7540-01-280-4500 Standard Form 296 (ROv. 2-69)

Puaembed by AW1SM l.

IDA DOCUMENT D-855

RECOMMENDED PRACTICES FOR INTERACTIVE
VIDEO PORTABILITY

Philip Dodds
Randall House Associates

Scott Lewis
DSL Associates

David McFarling
SBCS Inc.

Henry Mistrot
Video Associates Labs

Geoff Snowman
Randall House Associates

Jack Spiegelberg
IVID Communications

October 1990

Approved for public relase; distribution unlimited.

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Tasks T-L2-565 and T-Z2-629.3

FOREWORD

These standard practices were developed by the Compatibility Committee of the
Interactive Video Industry Association with the support and guidance of the Institute for
Defense Analyses. They are being distributed for comment to major vendors, developers,

and users of interactive video systems, software, and courseware in industry and

government. Once this process is complete, these practices will be incorporated in Military
Standard 1379D "Military Training Programs," for use by all departments and agencies of

the Department of Defense. The version documented here has been reviewed by J. D.
Fletcher for the Institute for Defense Analyses, by the Interactive Video Industry

Association Board of Directors, and by senior technical staff of the following companies:

Baker Videoactive, Online Computer Systems, Sony Corporation of America, and WICAT

Systems.

This work was sponsored by the Office of the Assistant Secretary of Defense for
Force Management and Personnel under the technical monitorship of Gary Boycan and by

the American Forces Information Service, Office of the Assistant Secretary of Defense for

Public Affairs, under the technical monitorship of LTC G. A. Redding, USA.

Accession For
NTIS GRA&I

DTIC TAB 0
Uxi~rjnrm~nccd
Jusi if iric5.o1

By-

Di tribution/

Availobility Codes

Avai l end/or il
Dist Special

ABSTRACT

The recommended practices in this document provide platform independence for

Level 1I interactive video systems. Platform independence permits applications to run
without modification on any hardware platform based on a general class of host computers.
These recommendations establish a uniform application interface and command set for

achieving platform independence. They are intended for system-level, not device-level
independence. The recommendations address MS-DOS and PC DOS systems based on

Intel 80x86 processor architecture. Other operating systems and architectures will be

addressed in the future. Adoption of the current recommendations will benefit the
interactive video community by furnishing a common ground for manufacturers, system

integrators, courseware developers, and end-users in a field of rapidly changing

technologies.

V

Contents

1. Introduction 1-1
1.1 Scope of the recommended practices1-1
1.2 Goals and benefits 1-2
1.3 Document organization and intended audience 1-3
1.4 Document conventions 1-4
1.5 Comment submission 1-5

2. System overview 2-1
2.1 Hardware and operating system assumptions2-2
2.2 Interface design criteria 2-2
2.3 The rationale for two interfaces 2-3
2.4 Service groups and command organization2-4
2.5 Core and extended commands and parameters 2-4

3. Using the interfaces 3-1
3.1 An introduction to parameters and values3-1
3.2 Using the binary interface3-3

3.2.1 General procedure 3-3
3.2.2 Confirming that the binary interface exists3-4
3.2.3 Parameter packets 3-4
3.2.4 Return values to parameters3-6

3.3 Using the ASCII interface 3-7
3.3.1 General procedure 3-7
3.3.2 Confirming that the ASCII interface exists3-7
3.3.3 Command strings 3-8
3.3.4 Response strings 3-8

3.4 Mixing ASCII and binary commands3-9

4. Implementation details 4-1
4.1 Installation issues 4-1

April 15, 1990 Release R 1.0 vii

contents

4.1.1 VDI Management installation. 4-1
4. 1.2 Logical device numbers 4-20

4.2 Operating system issues 4-3
4.2.1 Operating system requirements. 4-3
4.2.2 MS-DOS reentrancy limitations. 4-3

4.3 ASCII interface issues 4-4
4.3.1 ASCII string formats. 4-4
4.3.2 ASCII string formal syntax. 4-5
4.3.3 ASCII parameter value formats 4-7
4.3.4 Device driver buffer behavior. 4-8
4.3.5 Device dniver IOCTL and mode options 4-9

4.4 Binary interface issues 4-9
4.4.1 Setting the software interrupt. 4-9
4.4.2 Binary parameter value formats 4-10

5. Command set summary tables 5-1
5.1 Command names and token numbers 5-1
5.2 Parameter names and token numbers 5-4

6. System commands (sy) 6-1
syCheckError. 6-2
syErrorMsg 6-6
syGetState 6-8
sylnit. 6-12
syQueue. 6-14
syStop 6-19

7. Visual-management commands (yin) 7-1
7.1 Terms of reference. 7-1
7.2 General information and assumptions 7-2 09

7.2.1 Overlayable graphics modes. 7-2
7.2.2 Mode trapping. 7-3
7.2.3 Genlock control 7-3
7.2.4 Graphics registration to the background video . . . 7-3
7.2.5 VGA graphics versus CGA and EGA graphics . . . 7-3
7.2.6 Logical versus physical colors 7-4

7.3 Rounding methods for fades and dissolves. 7-4
vmFade 7-6
vmGetPalette 7-11
vmGetState. 7-15

Vill Releas R 1.0 April 15, 1990

Contents

vmlnit. 7-22
vmSetGraphics 7-24
vmSetPalette 7-27
vmSetTrans. 7-31
vmSetVideo. 7-34

8. Videodisc commands (vd) 8-1
8.1 General information and assumptions 8-1

8. 1.1 CAV and CLV videodisc support. 8-1
8.1.2 Play and scan speeds 8-2
8.1.3 Searches and instant jumps 8-2
8.1.4 Fields, frames, and chapters. 8-2

8.2 Rounding methods for player speeds 8-3
vdGetState 8-5
vdlnit. 8-il
vdPassThru. 8-15
vdPlay 8-18
vdScan 8-24
vdSearch 8-27
vdSet. 8-30
vdStep 8-35
vdStill. 8-37

9. XY-input commands (xy) 9-1
9.1 General information and assumptions 9-1

9.1.1 Device mapping 9-1
9.1.2 Handling the graphics plane and cursor 9-2
9.1.3 Coordinate space mapping 9-2
9.1.4 Buttons. 9-3

9.2 Stream-mode and point-mode devices. 9-3
xyGetinput 9-4
xyGetState 9-7
xylnit. 9-12
xySet. 9-15

A. Default positions of
graphics relative to video A-i

A.! Terms of referenceA-2
A-2 Special considerations for VGA graphics A-3

A.2.1 Differences in signals and timing A-3

April 15, 1990 Releas R 1.0 Ix

Contents

A.2.2 Differences in the size of active graphics. A-3
A.3 Horizontal positions A-40

A.3.1 General assumptions A-4
A.3.2 NTSC A-5
A.3.3 PAL. A-8

A.4 Vertical positions. A-i 1
A.4.1 General assumptions. A-li 1
A.4.2 NTSC. A-i i
A.4.3 PAL A-i 5

B. IBM PC and compatible graphics modes B-1
C. Application programming examples C-1

0.1 Using the ASCII interface C-i
0.2 Using software interrupt calls.- 2
C.3 Library calls with parameter numbers- 4
C.4 Analyzing bit fields- 5

D. Error handlingD-
D.1 General information. D-1
D.2 Error listingsD-2

D.2.1 Command problems D-2
D.2.2 ASCII interface problems. D-3
D.2.3 Binary interface problems. D-3
D.2.4 Parameter problemsD-4
D.2.5 Hardware problems. D-5 0
D.2.6 System resources D-6
D.2.7 Filing syst'.m problems. D-7
D.2.8 Miscellaneous problems D-9
D.2.9 System group problems. D-1 0
D.2.1 0 Visual-management problems D-1 0 0
D.2.1 1 Videodisc problems. D-1 1
D.2.i12 XY-input device problems. D-1 2

IndexI-

C,

xReesR .0 April 15,1990

Figures

Figure 2-1. The general software architecture of a compliant system 2-1

Figure 7-1. A simplified functional model of a video overlay subsystem 7-2

Figure A-i. A simplified diagram of an overlayed display using CGA or
EGA graphics .. A-2

Figure A-2. One horizontal line of NTSC video with 640- or 320-pixel overlayed
graphics .. A-5

Figure A-3. One horizontal line of PAL video with 640- and 320-pixel overlayed
graphics .. A-8

Figure A-4. NTSC vertical timing with 200-line overlayed graphics A-1 2

Figure A-5. PAL vertical timing with 200-line overlayed graphics A-i 6

April 15, 1990 Release R 1.0 xl

Figures

xl Releas R 1.0 April 15, 1990O

Tables

Table 3-1. Example parameter block layout 3-5

Table 4-1. Formal BNF syntax for ASCII command and response strings 4-6

Table 4-2. ASCII bit field values 4-7

Table 4-3. Binary bit field values 4-11

Table 5-1. Service group prefix values for the binary interface 5-1

Table 5-2. Command word values for the binary interface 5-2

Table 5-3. A summary of command names including binary token numbers and types5-3

Table 5-4. A summary of parameter labels including binary token numbers 5-5

Table 6-1. System command names, token numbers, and types 6-1

Table 7-1. Visual-management command names, token numbers, and types .. 7-1

Table 7-1. A simplified functional model of a video overlay subsystem 7-2

Table 8-1. Videodisc command names, token numbers, and types 8-1

Table 8-2. The effects of rounding on speed parameters for the Sony 2000 8-3

Table 8-3. The effects of rounding on speed parameters for the Pioneer 4200.. 8-3

Table 8-4. Example speed parameter values for boundary player speeds 8-4

Table 9-1. XY-input command names, token numbers, and types 9-1

April 15, 1990 Relese R 1.0 xlll

Tables

Table B-i. IBM-compatible graphics modes B-1

xlv Release R 1.0 April 15, 1990

1 Introduction

This document presents recommendations for commands and interface mech-
anisms used in level-III interactive video (IV) systems. The recommendations
are based on functional definitions that were developed with input from IV
manufacturers, developers and users. The foundation for these definitions in-
cludes an extensive set of models that were developed for internal use to en-
sure an approach that addresses current needs and capabilities while
providing for future growth in IV technology.

This is a working document. As such, it serves two major purposes. First,
manufacturers and developers can start working to implement the recommen-
dations now instead of waiting for the completion of the formal ratification
process. Second, industry members and end-users can contribute to the final
recommendations by submitting comments.

1.1 Scope of the recommended practices

The recommended practices in this document provide platform independence
but not device interoperability (plug-and-play). 1 Platform independence lets
applications run without modification on any hardware platform based on the
same general class of host computers. It requires consistent behavior from dif-
ferent hardware platforms at the application-interface level.

Furnishing such consistency is the immediate goal of the software definitions
in this working document. This goal is not trivial. We anticipate changes in
this document as specific needs are uncovered during the implementation of
the recommendations. However, we anticipate that these changes will be un-
covered early in the implementation process and will not be extensive enough
to significantly impact implementations based on this document.

1. Device interoperability requires classes of related devices to furnish functionally identical services at the
component level. This document does not address device interoperability.

April 15, 1990 Release R 1.0 1-1

Recommended Practices for interactive Video Portability

The current recommendations address MS-DOS and PC DOS systems based
on Intel 80x86 processor architecture. Other operating systems and architec- •
tures will be addressed in the future.

1.2 Goals and benefits

IV technology fulfills many types of training and educational requirements,
yet platform-specific courseware has severely restricted its use. Many applica-
tions require proprietary software, special hardware, or both. We recognize
the critical need for compatibility in IV technology to promote IV usage; lower
costs for integrators, developers, and users; and encourage integration in a
competitive market.

The specific goal of the current recommendations is to establish a uniform ap-
plication interface and command set that supports unmodified IV application
programs on different delivery systems. We do not endorse specific IV hard-
ware systems or mandate the use of products from specific suppliers. Instead,
our ultimate mission is to end such requirements.

Adoption of the current recommendations will benefit the IV industry by fur-
nishing a common ground for manufacturers, systems integrators,
courseware developers, and end-users in a field of rapidly changing technolo-
gies. The recommendations will furnish many benefits including:

" Broader acceptance of IV technology and subsequent growth of the mar-

ketplace.

" Assurance of long-lasting investments in IV applications and systems.

" Reduced need to change and support IV applications for specific hard-
ware configurations.

" Increased productivity, lower maintenance costs, and improved applica-
tion consistency across platforms.

" Higher quality and less costly IV applications resulting from a larger
marketplace and the application of resources to software development
instead of customizing software and platforms.

" Greater compatibility between international IV communities.

1-2 Release R 1.0 April 15,1990

.....

Section 1. Introduction

1.3 Document organization and intended audience

The information in this document is intended for IV manufacturers, systems
integrators, authoring system developers, and software developers who wish
to comply with the recommended practices. This document includes nine
major sections and four appendices.

" Section 1, this section, includes background information, the scope of
the recommendations, the benefits of adopting them, document conven-
tions, and comment procedures.

" Section 2 includes an overview of the software architecture, the hard-
ware and operating system assumptions, a summary of the V service
groups addressed by the command set, and an explanation of required
and optional commands and parameters.

" Section 3 introduces the binary and ASCII application interfaces, ex-
plains the parameters and associated values used by the interfaces, and
explains how to use the interfaces.

" Section 4 covers implementation issues including software installation,
operating system issues, and ASCII and binary interface issues. It in-
cludes detailed information on command and parameter value formats,
buffer behavior, device driver modes, and binary interface interrupt
settings.

" Section 5 includes summary tables for the command set and its parame-
ters including lists of available commands and parameters including
their token numbers.

* Sections 6 through 9 contain detailed command descriptions for the sys-
tem, visual-management, videodisc, and XY-input device service groups,
respectively.

" Appendix A gives detailed recommendations on graphics registration rel-

ative to background video.

" Appendix B summarizes accepted graphics modes.

" Appendix C includes brief programming examples in BASIC and C.

* Appendix D covers error handling and lists error numbers with mes-
sages and explanations.

Note: Those who are interested primarily in the command set should read
Section 1.4 and all of Section 3 for background information before proceeding
to the command sections.

April 15,1990 Release R 1.0 1-3

Recommended Practices for Interactive Video Portability

1.4 Document conventions

Familiarity with the conventions used in this document will aid understand-
ing. These conventions are discussed below.

Figures and tables are referenced in the text by number. Each number con-
sists of the major section number followed by a sequential figure or table
number starting with one for each major section. For example, Table 2-3 re-
fers to the third table in Section 2. Typically, figures and tables immediately
follow the first paragraph in which they are referenced.

The term "MS-DOS" is used in a generic sense for Microsoft MS-DOS ver-
sions 2.0 and higher and compatible operating systems such as IBM PC DOS
versions 2.0 and higher.

Numbers are given either in hexadecimal, binary, or decimal format. Hexa-
decimal numbers have an "H" suffix, for example 006FH. Similarly, binary
numbers have a "B" suffix, for example 0001011B. Decimal numbers are writ-
ten without a suffix.

Command names and parameters in the text are in bold face. In the example •
vdPlay from=1000, vdPlay is a command and from is a parameter. Com-
mand names use mixed lower and upper case for clarity, while parameters
use lower case only. However, case is not significant.

Examples of ASCII interface commands include calling strings and return 0
strings. In the examples semicolons separate commands from explanatory
comments. This is strictly a convention of convenience and does not imply
that the semicolon is a syntactic comment delimiter.

Examples of binary interface commands include microprocessor register con-
tents when the interface is called and after it returns control to the applica-
tion. Again, semicolons separate commands from explanatory comments.

The binary examples use memory addresses based on the Intel 80x86 micro-
processor ES and DI registers. These registers are used for the addresses of
parameter packets that contain one or more structures each consisting of a
parameter token number and its associated value. The addresses of individ-
ual parameters and values within parameter packets are given as hexadeci-
mal offsets in bytes from the base address in ES:DI. For example, ES:DI[10]
is the area of memory 10H (16 decimal) bytes after the memory location
pointed to by the combined segment and offset address in ES:DI.

1-4 Release R 1.0 April 15,1990

Section 1. Introduction

1.5 Comment submission
To succeed, we need broad industry support and invite detailed commentary
from IV developers, manufacturers, and users. Please describe questions and
concerns fully and include alternate suggestions and options. In general, we
cannot consider blanket criticisms that do not specify the natures of concerns
or suggest alternatives. For example, we cannot consider "I don't like this
command" with no other commentary for future revisions.

Steps to follow:
1. Designate qualified technical representatives within your organization

who can ably review the various major sections of the document.
2. Ask your technical representatives to:

a. Respond to the recommendations on an item-by-item basis for your
organization.

b. Furnish a list of questions, comments, and suggestions, referencing
the commands by name.

c. Furnish a list of questions, comments, and suggestions for other sec-
tions of the documents referencing document number, section num-
ber, page number, and paragraph.

3. Comments must be submitted in writing and should include your mailing
address, telephone number, and, if available, fax number.

4. To ensure that your comments are considered and that your organization
receives further information and documents, address all correspondence
to the address or fax number given in the accompanying cover letter. (If
the cover letter is not available, contact the publisher given on the copy-
right page.)

5. Along with your comments please state specific areas of interest.
It may be useful to identify several technical representatives with different in-
terests and backgrounds, and to have each individual or group review sec-
tions in their areas of expertise. This may make in-depth responses easier
than having several individuals review the entire document.

April 15, 1990 Release R 1.0 1-5

Recommended Practices for Interactive Video Portability

0

a

0

1-6Release R 1.0 April 15, 1990

2 System overview

Figure 2-1 shows the general software architecture of a compliant system.'
The recommended practices are based on sets of high-level commands organ-
ized functionally by service group. These commands are issued by an applica-
tion and passed via an ASCII or binary application interface to the Virtual
Device Interface (VDI) Management Software. ' VDI Management, in turn,
executes the commands by calling appropriate low-level services and passes
responses back to the application via the application interface. VDI Manage-
ment is responsible for making different delivery platforms functionally com-
patible at the application interface level, thus enabling the implementation of
platform independent commands.

Figure 2-1.
The general software

architecture of a
compliant system

Issues
recommended commands

ASCII or Binary
_Application Interface

to
VDI Management Software

Executes
recommended commands

VDI Maaemn Software
Interacts with device

handlers and hoat services
to control hardware

1. In the context of this document, the term "application' includes authoring software that may have been
used to develop the application.

April 15,1990 Release R 1.0 2-1

Recommended Practices for Interactive Video Portability

2.1 Hardware and operating system assumptions
The recommended practices make several assumptions about the computer,
its operating system, and the IV hardware. These include:

" The computer is based on an Intel 80x86 processor with MS-DOS
version 2.0 or higher, PC DOS version 2.0 or higher, or a functionally
equivalent operating system.

" The computer uses an IBM PC/AT-compatible ROM BIOS

" The system has a graphics/video overlay capability using CGA, EGA, or
VGA graphics, or uses two monitors, one with video and the other with
graphics.

" One or more of several XY-input devices may be present (touch screen,
mouse, light pen, bit pad, or other).

" One or more videodisc players or functionally equivalent video sources
may be present.

Although this document describes interfaces for MS-DOS, we realize the im-
port of other platforms. IV systems based on the Apple II and the Macintosh
are widely used, and applications for OS/2 and Microsoft Windows are start-
ing to appear. Procurement policies of the U.S. Government will encourage
POSIX applications, and applications exist for UNIX, VMS, and others.

Therefore, we designed the recommended practices with the intent to adapt
them to other operating systems and non-80x86 hardware platforms. The gen-
eral structure and functionality of the commands are transferable to other en-
vironments. However, substantial portions of the current recommendations
are, of necessity, specific to MS-DOS.

2.2 Interface design criteria
The criteria used in designing the interfaces in the recommended practices
include:

1. The recommended practices should not keep application authors from
choosing appropriate languages for the tasks at hand. Compatible lan-
guages should include, but not necessarily be limited to, general pur-
pose programming languages, computer-based training (CBT) authoring
systems, artificial intelligence (A) tools, prototyping systems, and
database managers.

2. Access mechanisms should be as consistent as possible, both for a single
operating system and across different operating systems.

3. It should be possible to upgrade the recommended practices as required by
technological developments without affecting existing applications.

2-2 Release R 1.0 April 15, 1990

Section 2. System overview

4. The recommended practices should include both simple, easy-to-use
commands for doing simple tasks and sophisticated functions to support
the most demanding IV applications.

5. The commands should not depend on any one operating system, though
the interfaces must to some extent be specific to individual operating
systems.

6. Except for features that affect the application interfaces, the recom-
mended practices should not require a specific VDI Management soft-
ware architecture.

7. Hardware-specific assumptions should be defined in detail.
8. Memory requirements and performance costs should be kept to a mini-

mum. Therefore, implementation decisions should side with simplicity
when possible.

We have used these criteria to define a software platform that should furnish
a high degree of portability for a variety of IV applications while keeping im-
plementation costs and run-time resource requirements to a minimum.

2.3 The rationale for two interfaces
The goal of supporting a variety of programming languages led us to propose
that for MS-DOS one interface should include an installable device driver ca-
pable of standard, ASCII communications. Some programming systems, in-
cluding several popular interpreters, have primitive facilities for interfacing
with other software. However, almost all programming systems can access
files and, therefore, use device drivers.

More sophisticated programming systems that can issue software interrupts
should have a more efficient interface available. This is the binary interface
that accesses VDI Management through a software interrupt.

In the current recommended practices the command list is the same for both
interfaces, but additional parameters are available to binary interface pro-
grammers. For example, the binary interface can pass an entire palette as a
pointer to an array of individual palette colors. This is difficult to express
with ASCII strings and, therefore, not supported by the ASCII interface.

However, each command name in the ASCII interface has a binary interface
token number that furnishes either the same functionality or a superset
thereof. Each ASCII parameter name has a corresponding binary parameter
token number. The high degree of consistency between the two interfaces
should simplify their implementation and use.

In future versions, we would not rule out commands that are available from
the binary interface only. However, the facilities furnished by the ASCII in-
terface will remain a strict subset of those available from the binary interface.

April 15, 1990 Release R 1.0 2-3

Recommended Practices for Interactive Video Portability

2.4 Service groups and command organization
Commands that map to related services are separated into service groups.
Systems suppliers and applications developers can use only those service
groups that include functions required for a given application. This organiza-
tion also supports adding new service groups in a modular fashion as new ca-
pabilities become generally available. Examples of service groups that may 0
be considered for future addition include: windowing environments and
graphical user interfaces, audio management, digital audio, and digital video.

Currently, the recommended practices include four service groups: general
system (sy), visual management (vm), videodisc (vd), and XY-input device
(xy). The sy service group does system-level hardware and software initializa- S
tion, furnishes information about the availability of other service groups, im-
plements a command queue, and has commands to help with error handling.
The other groups address the functional areas for which they are named.
However, the groupings are for convenience of organization and do not neces-
sarily dictate which hardware must actually perform the commands.

The general system group (sy) is the only group that must be included in all1
compliant implementations.

System suppliers are responsible for ensuring correct installation of system
hardware and software and for making a list of installed service groups avail-
able to the application through the system commands. System suppliers also
must include a way for users to assign contiguous, logical numbers starting
with zero to specific devices within a service group when more than one such
device is present. Note that this lets users specify the order of devices within
each class, but does not let users assign arbitrary numbers to the devices.
(Section 4 covers these issues in detail.)

2.5 Core and extended commands and parameters
The command set includes both core and extended commands. Individual
commands, in turn, may include both core and extended parameters.

Core commands in a given service group furnish the general functionality re-
quired by IV applications. If a given service group is implemented, all core
commands for the group must be included for the implementation to be com-
pliant. Similarly, if a command is implemented, all core parameters for the
command must be included.

Extended commands and parameters are nonportable. They are provided for
developers who need to produce both portable courseware and applications
that need special, nonportable capabilities, or who want to take advantage of •

2-4 Release R 1.0 April 15, 1990

Section 2. System overview

these capabilities if present and properly handle their absence. Extended com-
mands and parameters are not required for compliancy. However, an ex-
tended command may include core parameters so that the command's
inclusion is optional, but, if it is included, the inclusion of the core parame-
ters is mandatory.

Because manufacturers must support core commands and parameters as a
prerequisite to supporting extended commands and parameters, developers can
write both portable and nonportable applications using the same tools, authoring
systems, and custom libraries.

Note: Some extended commands and parameters may be under consideration
for future inclusion in the core command set. However, we do not guarantee
that they will be included. An application that relies on these commands and
parameters is noncompliant. However, an application that uses extended com-
mands or parameters when present and still executes properly in their ab-
sence is compliant.

April 15, 1990 Release R 1.0 2-5

0

Recommended Practices for Interactive Video Portability

0

0

0

0

0

0

0

2-4 RelesseRl.O Aprill5,1990

3 Using the interfaces

The recommended practices include two interfaces for MS-DOS, the binary
interface and the ASCII interface. By providing two interfaces, the recom-
mended practices can be used with a variety of programming languages. Lan-
guages that can issue interrupts will typically use the binary interface for
speed and efficiency. Languages without this capability can use standard file
1/0 and ASCII strings with the ASCII interface. The basic characteristics of
each interface are:

" The binary interface: Applications communicate with VDI Manage-
ment by passing and receiving binary values across a software interrupt.

The binary interface uses an assignable software interrupt in the range
60H to 66H to request VDI Management software services. An applica-
tion loads the microprocessor's registers with a command code request-
ing a specific service and a pointer to a parameter packet containing
parameter codes and values.

" The ASCII interface: Applications communicate with VDI Manage-
ment through a device driver using file 1/0 and ASCII strings.

The ASCII interface uses an MS-DOS device driver for communications
between the application and VDI Management. The application writes
command strings to and reads response strings from the device driver.
A command string consists of a command name followed by parameters
and values.

The rest of this section explains how to use both interfaces. Section 4 gives de-
tailed information on implementing the interfaces.

3.1 An introduction to parameters and values

Both interfaces use labeled parameters and associated values. Parameters
may have associated calling values, return values, or both. Every parameter
value passed to VDI Management is associated with a parameter identifier.
Therefore, only those parameters that are actually required by the command
need be specified.

April 15, 1990 Release R 1.0 3-1

Recommended Practices for Interactive Video Portability

Consider the vdPlay command, binary interface token number 3081. vdPlay
instructs the player to play a video segment. Applications can accompany this 0
command with several optional parameters including from, to, and speed.

A from parameter and its associated value causes the player to search to a
specified frame before entering play mode. Without the from, the play starts
with the frame that is current when the application issues the command. A
to parameter causes the player to play to a specified frame and stop. Without
the to, the play continues until the application intervenes or the player
reaches the edge of the videodisc. With a speed parameter, the segment
plays at the specified speed. Without a speed, the segment plays at the nor-
mal speed of either 30 or 25 frames per second depending on the video stan-
dard, NTSC or PAL, respectively.

With the ASCII interface each parameter value must be preceded by a param-
eter name so that a parser can decipher the supplied arguments. However,
each parameter name does not necessarily require an associated value. Some
parameters used to query the system do not have associated values. A com-
mand string is variable in length with its length determined by the number
of parameters and values.

With the binary interface the parameter packet is an array of parameter
structures. Each structure contains a parameter's numeric identifier and the
parameter's value or, for parameters without associated calling values, the
space for a return value. The minimum parameter packet size depends on the
number of parameters.

Continuing the vdPlay example, to use the ASCII interface to play from the
current frame to the edge of the disk or until a vdStill command is issued re-
quires simply:

vdPlay

To search to frame 1000, then play to frame 1500 use:

vdPlay from=1 000, to=1 5001 0

In the first case above, the binary interface does not pass a parameter packet
with vdPlay. In the second case, it passes a packet containing four 32-bit
memory blocks. The first block contains the 24 decimal, the token number for
the from parameter. The second block contains 1000, the value of from. The
third block contains 48, the token number for the to parameter, and the
fourth contains 1500, the value of to.

1. Or vdPlay from 1000 to 1500; vdPlay from, 1000, to, 1500; or VDPLAY TO 1500 FROM 1000. All are
equivalent, case and parameter order are not significant, and equals signs and commas are optional.

3-2 Release R 1.0 April 15, 1990

Section 3. Using the Interfaces

With both the binary and ASCII interfaces, the order of parameters is insig-
nificant. For example:

vdPlay from=1 000, to=2000

and:

vdPlay to=2000, from=1000

execute identically.

Note: Because order is insignificant, supplying a parameter more than once
in a command string or parameter block is an error. This simplifies designing
VDI Management parsers and indirectly establishes the maximum number of
parameters that can be passed to either interface in a single call. This maxi-
mum is equal to the number of parameters for the single command with the
largest number of defined parameters.

3.2 Using the binary interface

This section explains how to use the binary interface under MS-DOS and
gives detailed information on parameter packets and processor registers.

3.2.1 General procedure

Applications will typically take the following steps to call VDI Management
through the binary interface:

1. Build in application memory a packet containing parameter token num-

bers and values to pass to VDI Management with the command.

2. Load the token number for the command into the AX register.

3. Load the number of parameters contained in the packet into the BX
register.

4. Load the segment and offset address of the parameter packet into the
ES:DI register pair. (The segment address goes in ES and the offset rela-
tive to that segment goes in DI.)

5. Issue the appropriate software interrupt.

6. On return from the software interrupt, check the value of AX. If AX is non-
zero, it contains an error code (see Section D), and the application
should take appropriate action to recover.

The software interrupt used depends on the contents of the environment
space. (See Section 4.4.1 for details.)

April 15,1990 Release R 1.0 3-3

Recommended Practices for Interactive Video Portability

3.2.2 Confirming that the binary interface exists
Calling the binary interface through its interrupt vector could have dire re-
suits if the interface is not installed. Therefore, applications that use this
interface need a way to confirm its existence without calling it with a com-
mand such as sylnit. To this end, the binary interface includes a 16-byte sig-
nature of the form:

IWERnnn...

where "nnn..." is restricted to ASCII decimal digits (ASCII 30H-39H), the de-
cimal point (ASCII 2EH), and terminal NUL (ASCII 00H) characters to pad
to 16 bytes if necessary. This is the official version number for the recom-
mended practices implemented by VDI Management as it would be returned
by the command syGetState ivver (see Section 6). The version number for
the current recommendations is "1.0", which yields a signature of:

IWER1.0

followed by eight NULL characters.

This signature resides at the address pointed to by the IVINT interrupt vec-
tor minus 10H. (See Section 4.4.1 for more information on IVINT.)

Note: To confirm that the binary interface is installed, an application must
determine the address pointed to by IVINT, then retrieve the information
stored in the 16-byte paragraph immediately preceding that address. (We as-
sume that languages that use the binary interface have this capability.)

3.2.3 Parameter packets
A parameter packet contains 8 bytes of memory for each parameter. The
8-bytes are divided into two 32-bit blocks. The first 32-bits contain the
parameter token number; the second 32-bits contain the parameter value.
(Section 4.4.2 gives detailed information on parameter value formats.)

Parameter token numbers are constants, as defined in Section 5.2. VDI Man-
agement uses them to determine which parameters the application is pass-
ing. Parameter values may take different types depending on the information
being passed. Valid types include signed and unsigned 32-bit integers, point-
ers consisting of a 16-bit segment and a 16-bit offset, and signed 32-bit frac-
tional numbers.

For example, assume an application has initialized VDI Management and dis-
played video on the monitor, and now decides to play a video segment start-
ing at frame 1000 and ending at frame 2000. The application sets up the
registers and parameter packet as follows:

AX 3081 ; token number of vdPlay command
BX 2 ; packet contains two parameters

3-4 Release R 1.0 April 15, 1990

. "! I0

Section 3. Using the Interfaces

ES:DI is a pointer to a packet containing:

Block 1 24 ; token number of from parameter
Block 2 1000 ; value of from parameter
Block 3 48 ; token number of to parameter
Block 4 2000 ; value of to parameter

(Note: All values in the above example use decimal notation.)

The length of the parameter packet varies with the number of parameters. A
packet with five parameters is laid out as shown in Table 3-1. Longer pack-
ets are possible by simply adding the extra parameters at the end.

Table 3-1. Address Contents
Example parameter ES:DI[O] Parameter I token number

block layout.
ES:DI[4] Parameter 1 value

ES:DI[81 Parameter 2 token number

ES:DI[C] Parameter 2 value

ES:DI[101 Parameter 3 token number
ES:DI[1 4] Parameter 3 value
ES:DI[18J Parameter 4 token number

ES:DI[1 C] Parameter 4 value
ES:DI[20J Parameter 5 token number

ES:DI[24] Parameter 5 value

To determine how much memory to allocate for a parameter block that can
handle any command for the binary interface, multiply the maximum num-
ber of parameters that can be passed by any command by the memory re-
quired for one parameter. For example, assume that syBigCommand has
the longest parameter list at 22 parameters. Each parameter uses 4 bytes for
its token number and 4 for its value. Therefore, allocate 8 x 22 bytes or a 176-
byte block.

Registers other than AX, BX and ES:DI are insignificant and may contain
any value. If a command has no parameters, BX is zero and ES:DI are insig-
nificant. On return, all registers are unchanged except AX AX contains zero
if the command was successful, or an error code indicating a problem. When
VDI Management rounds values, it changes the values in the parameter
packet in application memory to the rounded values. (See the service group
command sections for more information on rounding.)

2. Note that addresses of parameter tokens and value within a packet are described as hexadecimal offsets in
bytes from the base address in ES:DI. For example, ES'DI[20] is the area of memory 20H (32 decimal) bytes
after the location pointed to by ES:DI. Each 32-bit block uses 4 bytes, so this is the fifth block in the packet.

April 15, 1990 Release R 1.0 3-5

Recommended Practices for interactive Video Portability

3.2.4 Return values to parameters 0

The contents of a parameter packet change depending on the nature of the
command. Some commands, such as vdGetState, return information to the
application. When such a command executes, the application passes a param-
eter packet with sufficient space for the requested information. The space is
allocated using the format described in Section 3.2.3. 0

A parameter/value structure both defines the requested information and fur-
nishes a return location. On entry into VDI Management, the parameter
value is insignificant and can be any value. When VDI Management has
derived the requested value, either by calculation or by interrogating the
hardware, it puts the value into the appropriate parameter value block.

For vdGetState frame, the application might pass:

0
AX 3078 ; token number of vdGetState command
BX 1 ; packet contains one parameter
ES:DI[0] 23 ; token number of frame parameter
ES:DI[4] Can be any value

On return, the values might be:

AX 0 ; command executed correctly
BX 1 ; packet contains one parameter
ES:DI[0j 23 ; token number of frame parameter
ES:DI[4] 12345 ;frame number 12345 is currently displayed •

(Note: All values in the above example use decimal notation.)

Applications should check AX and assume that if an error has occurred
(AX * 0), any values returned in the packet are meaningless.

Note 1: If the binary interface returns a pointer to a string, the string is in
upper case. This is an arbitrary decision to make return strings easier to
parse and to make binary and ASCII return strings consistent.

Note 2: VDI Management may round parameters such as play speeds. If so,
VDI Management changes the values in the parameter packet to the actual
values used after rounding and subsequent queries return actual values in-
stead of requested values.

3-6 Release R 1.0 April 15,1990

Section 3. Using the Interfaces

3.3 Using the ASCII interface
This section explains how to use the ASCII interface under MS-DOS and in-
cludes an explanation of command and response strings.

3.3.1 General procedure
To issue commands to VDI Management via the ASCII interface, applications
use standard file I/O to communicate with a device driver named IVDEV. Ap-
plications will typically take the following steps to call VDI Management
through the ASCII interface:

1. Format a command string specifying the required function.

2. Open the device driver for writing.

3. Write the command string to the device driver.

4. Close the device driver.

5. Open the device driver for reading.
6. Read the response string from the device driver.

7. Close the device driver.

8. Parse the response string. If the string is "OiK' or contains expected re-
turn values, continue processing normally. If the string is "ERROR n..."
where "n..." is an error number, take action to recover from the error.

The exact method of communicating with the driver depends on the program-
ming system.

3.3.2 Confirming that the ASCII interface exists
Applications that use the ASCII interface must be able to confirm that the
interface and its associated device driver, IVDEV, are properly installed. Sim-
ply verifying that IVDEV can be opened is insufficient because some lan-
guages may automatically create IVDEV if it does not exist. Therefore, an
application should open the file, write an sylnit command to it (see Sec-
tion 6), and read the response string.

* If the response string consists of the ASCII characters "OK" followed by
CRILF, sylnit was successful. The application should continue normally.

" If the response string consists of "ERROR n..." where Un..." is an error
number followed by CR/LF, then the ASCII interface is installed, but
VDI Management could not be initialized, indicating improper installa-
tion or improper use of sylnit. The application should handle the error,
probably by displaying an error message and exiting.

" If the function used to read IVDEV returns a read error or the response
string consists of anything other than "OKr or "ERROR n..." either the
device driver is not installed or serious problems exist with VDI Manage-

April 15, 1990 Release R 1.0 3-7

Recommended Practices for Interactive Video Portability

ment. Some languages may automatically create a file named IVDEV if
the driver is not installed. The application should politely exit with an
error message and, if necessary, delete the bogus file (preferred) or at
least tell the user that a bogus IVDEV file may have been created.

Note: If IVDEV is not installed and a file of the same name is automatically
created, it will contain the string the application tried to write to the driver.
If this happens, and IVDEV is then installed as a device driver, the bogus file
cannot be deleted from the command line because MS-DOS will assume it is
supposed to delete the device driver, which is illegal. Therefore, the file must
be deleted with the device driver unloaded.

3.3.3 Command strings

A command string is a series of printable ASCII characters terminated with
a carriage return (CR, ASCII ODH). The ASCII interface discards line feeds
(LF, ASCII 0AH) following the CR. The string starts with a command name,
typically followed by a parameter list. (Section 4.3 gives detailed information
on formal command string syntax and parameter value data types.)

Assume an application has initialized VDI Management and turned video on.
To play a videodisc segment starting at frame 1000 and ending at frame
2000, the application could issue the command string-

vdPlay from-i 000, to=2000

vdPlay is the command name. It corresponds to the token number passed in
the AX register with the binary interface. The substrings from and to are pa-
rameter labels used by VDI Management to determine which parameters are
being passed. The substrings "1000" and "2000" are parameter values. Each
value is associated with the preceding label, so 1000 is the value of from and
2000 is the value of to.

Because the string ends with CR, VDI Management can determine how many
parameters the application is passing by inspection. Unlike the binary inter-
face, the ASCII interface does not require a parameter count.

3.3.4 Response strings

Response string contents from the ASCII interface depend on the nature of •
the command string. If the command was correct and did not ask for informa-
tion, the response string is "OK". If the command asked for information, the
ASCII interface returns a series of comma-separated parameter values. If an
error occurred, the response string consists of "ERROR" followed by a space,
followed by the error number as ASCII digits. All response strings end with
CRILF.

3-8 Release R 1.0 April 15, 1990

Section 3. Using the Interfaces

For example, consider:

vdPlay from=1 000, to-2000

If this executes correctly, the ASCII interface returns "OI". However, the
command:

vdPlay from=1 000, from=2000

generates the response string "ERROR 54" (Parameter used more than once).

If an application issues the command:

vmGetState vievel glevel

which asks about graphics and video fade levels, the response might be
"255,200". This says that the video level is 255 and the graphics level is 200.

Note: All alpha characters returned by the ASCII interface are upper case.
This is an arbitrary decision to make return strings easier to parse and con-
sistent between implementations.

3.4 Mixing ASCII and binary commands

For a VDI Management module to be compliant, it must furnish both the de-
vice driver and software interrupt access methods, although both do not have
to be installed. If both methods are loaded, VDI Management should behave
correctly when an application mixes ASCII and binary commands.

For example, if an application issues syQueue on via the binary interface
then issues a series of commands to the device driver, the commands issued
via the driver should be queued correctly. Similarly, an ASCII command and
its binary counterpart should behave identically assuming both commands
have the same parameters available.

To conserve memory and enhance performance, applications that use only
one interface should clearly state whether the ASCII or binary interface
should be installed. Application vendors also should state the amount of mem-
ory required by the application after VDI management has been loaded to
alert users of any potential memory problems.

April 15,1990 Release R 1.0 3-9

Recommended Practices for Interactive Video Portability

S

3-10 Release R 1.0 April 15, 1990

4 Implementation details

This section discusses implementation details for VDI Management and the
ASCII and binary interfaces. It includes installation issues, operating system
requirements and reentrancy issues, ASCII string and parameter value for-
mats, device driver buffer behavior and communications modes, establishing
the binary software interrupt number, and binary data types and formats.

4.1 Installation issues

Installation issues include the installation of VDI Management and assigning
logical device numbers at the time of installation. The following subsections
discuss these issues.

4.1.1 VDI Management installation

Specific methods of installing VDI Management are outside the scope of the
recommended practices. VDI developers can use any appropriate method.
Two obvious possibilities are terminate-and-stay-resident (TSR) software and
software that takes an application name as a command-line parameter and
spawns the application.

For applications that use the binary interface only, the device driver need not
be loaded. Similarly, for applications that use the ASCII interface only, the bi-
nary interface need not be loaded.

Although VDI implementers must supply both interfaces for an implementation to
be compliant, both do not have to be installed in the IV system. I

April 15, 1990 Release R 1.0 4-1

Recommended Practices for Interactive Video Portability

4.1.2 Logical device numbers

Some commands accept a logical device number as a parameter. These in-
clude videodisc commands, which may be used on systems with multiple
videodisc players, and XY-input commands, which may be used on systems
with multiple XY-input devices.

Often, applications will need to know the relationship between device num-
bers and physical devices. For example, if a system includes both NTSC and
PAL videodisc players, an NTSC application should ensure that it controls
the NTSC player.

When logical device numbers are allocated, VDI Management lets users as-
sign numbers to specific devices using an appropriate setup facility. Device
numbers must be contiguous and start at zero, but VDI Management does not
make any other assumptions about logical-to-physical device mapping.

SProviding a set-up facility for users to assign logical device numbers and requiring]
contiguous device numbers starting with zero are compliance requirements.

Because of the range of available physical devices and the need to furnish on- 0
going support for existing applications, it is impossible to prescribe a general
way for applications to examine or change the device number mapping. If an
application asks for the device type and discovers a device that was not in-
vented when the application was written, it cannot possibly use this informa-
tion while executing. Therefore, application authors must clearly state any
requirements for a particular device number mapping, so that users can set
up VDI Management appropriately.

For example, assume that a system has two XY-input devices, a mouse and a
touchscreen. Also assume that the mouse is installed as device zero and the
touchscreen as device one. An application that requires the touchscreen to be 0
device zero cannot change the logical numbering at run time. Therefore, the
application author must clearly inform the user that the touchscreen must be
installed as device zero when the user installs VDI Management.

If an application needs information about the mapping, it must have a mecha-
nism for the user to provide that information. Appropriate techniques include
command-line parameters and files in application-specific formats. If neces-
sary, well written applications should use an installation program that asks
which logical device number to use for each peripheral. Well documented ap-
plications should carefully explain what kinds of physical devices are appro-
priate for each selection in the installation procedure.

4-2 Releae R 1.0 April 15,1990

Section 4. Implementation details

4.2 Operating system issues
Operating system issues include basic operating system requirements and
considerations about the lack of reentrancy under MS-DOS. The following
subsections discuss these issues.

4.2.1 Operating system requirements
To support the MS-DOS version of the recommended practices, the operating
system must be MS-DOS version 2.0 or later or a functionally equivalent op-
erating system. Versions of MS-DOS prior to 2.0 cannot use installable de-
vice drivers. Therefore, systems that cannot run MS-DOS 2.0 or later cannot
comply with the MS-DOS version of the recommended practices regardless of
the attached IV hardware.

Developers may provide VDI Management software that requires a specific
version of MS-DOS. We would describe this as either "Compliant only when
used with MS-DOS version N.nn" or, more often, "Compliant only when used
with MS-DOS version N.nn or later." Such software should test the MS-DOS
version number and decline to execute if it is not supported. Similarly, appli-
cation authors may require a specific version of MS-DOS. Therefore, users of
IV hardware and courseware should ensure that the versions of MS-DOS,
VDI Management, and courseware that they purchase are compatible.

4.2.2 MS-DOS reentrancy limitations
At certain times-specifically when MS-DOS has suspended processing a
function request to service an interrupt-programs are not allowed to call
MS-DOS. Consider the tick chain. Approximately 18 times per second, the op-
erating system calls all routines on the tick chain. Tick routines that call MS-
DOS must check the MS-DOS critical section flag to ensure that they do not
call MS-DOS at an inappropriate time.

Typically, high-level programmers need not be concerned about such issues.
Unless a program includes interrupt handlers or tick routines, it will not
have control when MS-DOS cannot be called. If a programming system links
an interrupt automatically, the system's design ensures that conflicts are
handled correctly. Also, programmers who simply call MS-DOS or BIOS func-
tions using standard methods will not encounter problems. However, those
who use the tick chain or change MS-DOS or BIOS interrupt vectors must
deal with the lack of reentrancy.

VDI Management assumes it can call MS-DOS during any call to the binary
interface. Therefore, application software must not call the binary interface
when it is unsafe to call MS-DOS or when a previous call to VDI Manage-
ment has been interrupted. If an application installs interrupt handlers, it

April 15, 1990 Release R 1.0 4-3

Recommended Practices for Interactive Video Portability

must provide mechanisms to ensure that VDI Management is called at appro-
priate times only.

If VDI Management does any background processing outside of application
calls, it must ensure that MS-DOS is called only when it is safe to do so.
Also, the device driver, which is loaded within MS-DOS, must not be called
at those times when it is unsafe to call MS-DOS or when VDI Management
has been interrupted.

VDI Management may need to do some background processing, and the de-
vice driver may have to do some work of its own to overcome reentrancy limi-
tations. For example, assume an ASCII command uses the filing system.
Within a device driver, the MS-DOS filing system is already executing and
may not be reentered. If the device driver or its support routines must call
MS-DOS, the request should be queued and issued after the driver has re-
turned. One method for doing this involves hooking interrupt 21H and execut-
ing the DOS call immediately after MS-DOS returns from the device driver.

Note: The binary interface cannot be called directly from within the device 0
driver becausr L,, e interface, in turn, calls VDI Management and VDI Man-
agement must be able to call MS-DOS.

4.3 ASCII interface issues

ASCII interface issues include ASCII text string formats, parameter value
formats, device driver buffer behavior, device driver communications modes,
and using the IOCTL function. The following subsections cover these issues.

4.3.1 ASCII string formats

Command strings are simply tokens separated by delimiters. Return strings
consist of comma-separated values. The following subsections discuss com-
mand and return strings formats.

Command string tokens
A command string is a series of tokens, separated by delimiters, and ending
with a CR. Tokens are strings of one or more printable characters. They in- 9
clude command names, parameter identifiers, and parameter values. Com-
mand names and parameter identifiers consist of characters in the ranges
"A7 to "Z" and "a" to "e. Case is not significant. Fer example, the cow.mand
name 'vdPlay' could be supplied as "vdplay", "VDPLAY", or even "vDpLaY".
Parameter values consist of characters in the ranges "a" to "z", "A" to "Z", and
"0" to "9" plus . + and - 0

4-4 Release R 1.0 April 15, 1990

Section 4. Implementation details

Command string delimiters
Delimiters are the characters equals (ASCII 3DH), space (ASCII 20H), tab
(ASCII 09H), LF (ASCII OAH) and comma (ASCII 2CH). Two adjacent delimi-
ters are treated as if they were a single delimiter. Extra delimiters at the
start or end of the string are ignored.

Command string length
Command strings can be at most 255 characters including the CR. Redun-
dant delimiters do not count towards the 255-character limit.

Multiple commands separated by CRs may be included in a single string and
sent to the ASCII interface with single write operation. The 255-character
limit applies to each command in the write operation, not to the write opera-
tion as a whole.

Response strings
Response strings always end with CRFLF. If a string contains multiple val-
ues, each value is separated from the next by one comma with no spaces. Re-
sponse strings contain no delimiters before the first value or between the last
value and CR/LF.

4.3.2 ASCII string formal syntax
The formal syntax description for ASCII command and response strings in
Table 4-1 uses a notation derived from the Backus Naur Form (BNF). The
syntax uses the following rules.

1. Angle brackets (<>) enclose items that are defined by the formal
descriptions.

2. Vertical bars (I) separate sets of alternatives-in deriving a valid com-
mand string, one of the alternatives should be chosen.

3. Square brackets ([]) enclose optional items or sets of items. Their pres-
ence or absence does not affect the string's validity.

4. Spaces separate sets of required items that should occur in the given order.
5. The ":=" sign means "consists of." The item on the left of ":=" consists of

the definition on the right.

6. The strings "equals", "space", "tab", "line feed", and "comma" are delimi-
ters and stand for the indicated characters.

7. The string "carriage return" is a terminator and stands for the indicated
character.

8. Items in quotes () are string literals and stand for themselves.

April 15, 1990 Release R 1.0 4-5

Recommended Practices for Interactive Video Portability

Table 4-1.
Formal BNF syntax
for ASCII command <command string> "= [<delimiter string>] <command name> [<parameter
and response strings string>] [<delimiter string>] carriage return

<response string> "= "OK" carriage return line feed I "ERROR" space <digit
string> carriage return line feed I <result string>
carriage return line feed

<parameter string> <parameter> I <parameter> <parameter string>
<parameter> "= <delimiter string> <parameter id> [<delimiter string>

<parameter value>]I

<parameter id> := <letter string> [<digit string>] 2

<command name> "= <letter string>2

<result string> <parameter value> I <parameter value> comma
<result string>

<parameter value> <letter string> I <number>l <filename>
<delimiter string> <delimiter> I <delimiter> <delimiter string>1

<letter string> <letter> I <letter> <letter string>
<digit string> <digit string> I <digit> <digit string>
<file name> <legal file name string for operating system>
<number> [<sign>] <digit string> I [<sign>] [<digit string>] H.

<digit string>
<delimiter> "= equals I space I tab I comma I line feed
<letter> "A" I "B" I"1 "D"I "EI "FIG"IH" I" I "JlK" I

L" I M -r I W I W I 0" I R" I "j"I "T" I "U" I V" I
1IN" I "" I'V I "I" I "rn I "n" I " I " I eq" I I -I "
Vr I 1" I " I "r '" "" "z"Zt

<digit> =0"0" 01" 12" I W T 1 16" 1 07" 1 "8" 1 V
<sign> :M+ Ia"*

'Redundant delimiters in a <delimiter string> are ignored and do not count
toward any length limits. For a <command string>, redundant delimiters
include all leading delimiters, all trailing delimiters after the carriage return,
and any instance of more than one <delimiter> in a <delimiter string> between
the <command name> and the carriage return.

2This is not a complete definition. The items on the left can take on a limited
range of values (see Section 5). t

The formal description above omits the 255-character limit and the equiva-
lency of lower and upper case. 4

4-6 Releae R 1.0 April 15, 1990

Section 4. Implementation details

4.3.3 ASCII parameter value formats

ASCII interface parameter values include numeric parameters and decimal
integer representations of bit fields. Their formats are discussed below.

Numbers
Numeric parameters include device numbers, mode numbers, time periods,
and error numbers. These are passed in decimal format, which is defined as:

" an optional sign ("+" or "-") followed by a string of decimal digits (for
numbers without fractional parts);

or:

" an optional sign ("+" or "-") followed by an optional string of decimal dig-
its followed by "." followed by a mandatory string of decimal digits (for
numbers with fractional parts);

Note that by these definitions "5", "0.5", and ".5" are legal but "5." is not (a
decimal point with no fractional part).

Bit fields
A bit field is represented as a decimal integer. The integer is the sum of the
bit values in the field.

For example, the support value returned by syGetState is derived by treat-
ing the Boolean supported/not supported values as elements in a bit field.
Table 4-2 lists the decimal numbers returned for the different service groups.
The value of the bit field is the sum of the values for each group. (Note that
the system (sy) group is always present if VDI Management is working.)

Table 4-2. Service group Decimal value
ASCII bit field values returned by

SyGetState
System (sy) 1
Visual management (vm) 2
Videodisc (vd) 4
XY input (xy) 8

Assume a system supports vin and vd, but not xy commands. The syGetSt-
ate return value is 1 + 2 + 4 or decimal 7. If all command groups are sup-
ported, the return value is 15.

April 15, 1990 Release R 1.0 4-7

0

Recommended Practices for Interactive Video Portability

Text
Some return strings for query parameters include values other than num-
bers. These strings consist of at most upper-case alpha characters, decimal
digits, commas, the decimal point, and a sign (+ or -).

4.3.4 Device driver buffer behavior

The way in which the device driver buffers character strings must be compati-
ble across different versions of MS-DOS. When the driver loads it allocates a
command buffer and a response buffer. At start-up, the command buffer is
empty and the response buffer contains the string "ERROR 19" (Device 0
driver read before write). If an application tries to read the driver before writ-
ing to it, the application reads this string.1

When the driver receives a character, it adds it to the command buffer and
checks to see if it is a CR. If it is not, the driver returns. If it is, the driver •
and VDI Management process the contents of the command buffer, execute
the command, and generate a response string. The response string replaces
any existing contents of the response buffer.

When MS-DOS tries to read a character from the driver, the driver checks
the response buffer. If the buffer contains characters, the driver returns the •
first character and deletes it from the buffer. If the buffer is empty, the driver
returns end of file (EOF).

Some programming languages internally buffer device driver writes and do
not furnish a way to flush the buffer other than closing the file to which it is
attached. Users of such languages must be able to force a write to the driver 9
without losing the response to the forced write. Therefore, closing and reopen-
ing the driver empties the command buffer but does not change the contents
of the response buffer.

If one application ends and a new application starts, the driver does not flush 0
the response buffer until it receives a CI Therefore, an application should
not read the driver before writing at least one command or it may read an in-
valid response left by the previous application.

If an application writes a command longer than 255 characters, the driver dis-
cards the command by clearing the buffer and ignoring additional characters
up to the next CR. The driver then issues "ERROR 17' (Command too long).

1. Note that this applies only to the first time an application accesses the driver after boot time. The response
buffer is not automatically reset to 'ERROR 19' after an application exits.

4-8 Release R 1.0 April 15, 1990

SectIon 4. Implementation details

4.3.5 Device driver IOCTL and mode options

Developers must make several choices about which functions to provide with
MS-DOS device drivers. These include support for IOCTL fun -tions, output
until busy, and generic IOCTL commands.

Although the recommended practices do not require any of these capabilities,
the device drive may furnish them and still be compliant. For example, a
driver might use IOCTL commands to switch between an compliant mode
and a dedicated, nonportable mode. However, applications that use these facil-
ities are noncompliant because the facilities are not part of the recommended
practices and may not be supported.

Another choice is whether device drivers should operate in ASCII ("cooked")
or binary ("raw") mode. 2 The driver should work properly using either mode
because applications may choose either and be compliant.

Application authors should note that MS-DOS interrupt 21H supports two
classes of file functions. One class manipulates files with file handles; the
other uses CP/M-compatible file control blocks. Only the read/write functions
that use handles work with device drivers.

This does not mean that routines within a programming system must explic-
itly pass handles to the application. However, the system should not use MS-
DOS interrupt 21H functions OF, 10-17, lA, 21-24,27, and 29H, which work
with file control blocks. This is unlikely to be an issue because using file han-
dle functions has been the method of preference since the introduction of MS-
DOS 2.0.

4.4 Binary interface issues
Binary interface issues include establishing which interrupt will be used and
parameter value formats. The following subsections cover these issues.

4.4.1 Setting the software interrupt
The binary interface software interrupt is a user interrupt in the range 60H
to 66H. The default is interrupt 60H. When VDI Management loads, it checks
the environment space for the variable IVINT. The variable value is a two-

2. In cooked mode, certain characters such as control characters and EOF are subject to MS-DOS interpreta-
tion; in raw mode, they are not. A device driver that is opened with the MS-DOS open handle function,
Int 21H function 3DH, is by default in cooked mode. However, an MS-DOS IOCTL function, Int 21H func-
tion 44H, can force a handle to raw mode.

April 15, 1990 Release R 1.0 4-9

Recommended Practices for Interactive Video Portability

character string representing a value from 60H through 66H. The variable is
set with a command line in the autoexec.bat file, for example:

set IVINT=66

If the variable is set, VDI Management loads its interrupt handler at the
specified vector. If the variable is not set, the handler is loaded at vector 60H.
If the variable value is invalid, VDI Management politely declines to execute.

When an application starts, it also checks for IVINT. If the variable is pres-
ent, the application uses the specified software interrupt. If IVINT is not
present, the application uses the default. If the variable value is invalid, the
application politoly declines to execute.

4.4.2 Binary parameter value formats

Binary parameter values include integers, real numbers, bit fields, strings,
pointers, and color arrays. These formats are discussed below.

Integers
Integer quantities are passed as 32-bit, 2's complement, signed numbers, in
the range -2,147,483,648 to +2,147,483,647. This is consistent with most high-
level programming languages. Examples of integers include device numbers,
graphics mode numbers, and error numbers.

Real numbers
Real numbers are passed by multiplying the real number by 65,536, rounding 0
towards negative infinity, and using the integer part expressed in hexadeci-
mal with 2's complement. Four bytes can represent fractional numbers in the
range -32768 (80000000H) to +32767.99998 (7FFFFFFFH) with an accuracy
of ±1/65536 (±0.000015).

In this notation, the most significant 16 bits represent the integer part of the
number in 2's complement. The least significant 16 bits represent a positive
binary fraction to be added to that integer. For example, to represent - , set
the most significant 16 bits to FFFFH or -1 decimal and the least significant
16 bits to 8000H or +V decimal.

Normal 2's complement addition and subtraction still yields correct results.
For example:

FFFF8000 (-) + FFFF4000 (-4) - FFFECOOO (-11/4)
FFFF4000 (-V4) + 00020000 (+2) - 00014000 (11/4)
00001999 (0.1) + 00003333 (0.2) - 0004CCC (0.299988) •

4-10 Release R 1.0 April 15,1990

Section 4. Implementation details

Bit fields
Bit fields are best viewed as 32 individual bits that can each take a value of 0
or 1. Specific bits in a field correspond to specific items of information that
can have only two states, on or off, true or false, or present or absent.

Table 4-3 lists bits in the bit field returned by syGetState. This function
sets bits according to which service groups are present in a VDI Management
installation. (Note that the system (sy) group is always present if VDI Man-
agement is working.)

Table 4-3. Service group Least significant byte value Is group If present
Binary bit field Binary Hexadecimal

values
System (sy) 00000001 01
Visual management (yn) 00000010 02
Videodisc (vd) 00000100 04
XY input (xy) 00001000 08

For example, if the VDI implementation supports vm and vd commands, but
not xy, the least significant byte returned by syGetState is 00000111B or
07H. (See Appendix C for a code fragment showing how to analyze bit fields.)

Strings
Strings returned via the binary interface are passed by reference. The return
value is a pointer to an ASCII string of up to 255 printable characters fol-
lowed by a null character (00H). Alphabetical characters in the return string
are upper case. The most significant 16 bits of the pointer contain the string's
segment address; the least significant 16 bits contain the offset within the
segment.

VDI Management allocates memory to hold return strings. An application should
not change this memory even though it knows the string's address or dire
consequences may result.

Color arrays
The vmGetPalette and vmSetPalette commands use arrays containing pal-
ette information. These arrays are passed by reference. The parameter
packet contains three parameters, a logical color parameter, a length parame-
ter, and a array address parameter.

April 15, 1990 Release R 1.0 4-11

*A

0

Recommended Practices for Interactive Video Portability

The array parameter value is a long pointer to a memory block containing an
array of palette colors. Each palette color value is a 32-bit structure contain- S
ing four 1-byte values:

" Byte 0, the least significant byte, represents B(lue);

" Byte 1 represents G(reen);

* Byte 2 represents R(ed); and

" Byte 3, the most significant byte is reserved and is set to zero.

The reserved byte must be set to zero-VDI Management returns error 51
(Parameter value invalid or out of range) if it is not.

The length parameter is the number of 32-bit structures in the color array.
The color parameter is the logical color number to which the first palette
color structure is assigned. The second palette color structure is assigned to
the next contiguous logical-color number; the third structure to the third logi-
cal color; and so on up to length logical colors.

Assume a parameter packet contains logical color = 4, length = 3, and
array = 3000:0820. The array memory block is interpreted as:

3000:0820 32-bit word for logical color 4
3000:0824 32-bit word for logical color 5
3000:0828 32-bit word for logical color 6

The pointer format is the same as that for a string--the most significant 16
bits contain the segment address and the least significant 16 bits contain the
offset within that segment.

4

0

4-12 Release R 1.0 April 15, 1990

5 Command set summary tables

This section includes summary tables of the commands and parameters for
both the ASCII and binary interfaces with token numbers for the binary
interface. See Section 3 for detailed information on how to use the interfaces
and Sections 4.3 and 4.4 for information on ASCII string syntax and ASCII
and binary parameter value formats. Appendixes C and D provide program-
ming examples and cover error handling, respectively.

5.1 Command names and token numbers

The binary interface uses token numbers instead of command names. These
numbers map directly to ASCII command equivalents in terms of definition
and functionality. To assign binary token numbers, each ASCII command
name is first divided into a service group prefix, such as sy or vm, and a com-
mand word, such as GetState or Init.

Table 5-1 lists the prefix value of each service group. As the table shows,
service-group prefixes have values that are multiples of 1024 (0400H). This
has the advantages of leaving room for logically grouping additional com-
mands as the recommendations evolve and allowing the determination of
which service group an token number is in with a single shift right and com-
pare operation.

Table 54. Service group prefix Value Value
Service group prefix (decimal) (hexadecimal)

values for the binary
interface. sy 1024 0400

vm 2048 0800
vd 3072 0C00

xy 4096 1000

AprIl 15,1990 Release R 1.0 5-1

* .
"

.

Recommended Practices tor Interactive Video Portability

Table 5-2 lists the value for each command word. Commands words are num-
bered 1-20 in alphabetical order. However, because the numbers must be
"cast in stone" for backwards compatibility, new words will be appended to
the list and the correspondence of alphabetical order to numeric order will
not be maintained as the recommended practices evolve. This approach offers
the advantages of the ability to determine the command word by simply sub-
tracting the service group value and looking up the word and the increased
efficiency of contiguous numbers in a lookup table.

Toble 5-2. ASCII name Value Value
Command word (decimal) (hexadecimal)

values for the binary CheckError 1 01
interface ErrorMsg 2 02

Fade 3 03
Getinput 4 04
GetPalette 5 05
GetState 6 06 0
Init 7 07
PassThru 8 08
Play 9 09
Queue 10 OA
Scan 11 OB
Search 12 OC
Set 13 0D
SetGraphics 14 OE
SetPalette 15 OF
SetTrans 16 10
SetVideo 17 11 •
Step 18 12
Still 19 13
Stop 20 14

Table 5-3 lists ASCII commands and their equivalent binary token numbers
organized by service group. Each token number is the sum of the service-
group prefix value and the command word value. For some commands, this
offers the advantage of deriving token numbers from different prefixes that
use the same command word. For example, in C a series of #define state-
ments might include:

#define SY 1024
#define VM 2048
#define INIT 7

5-2 Release R 1.0 April 15,1990 0

Section 5. Command set summary tables

Then, the token number for syInit could be derived with:

SY + INIT

The table also indicates whether the commands are core or extended. Core
commands must be implemented for a given service group to be compliant.
Extended commands are optional and should be considered nonportable un-
less an application is written to use them if present and handle their absence.

Table 5-3. ASCII name Token number Token number Type
A summary of (decimal) (hexadecimal)

command names sy service group
including binary syCheckError 1025 0401 Core

token numbers and syErrorMsg 1026 0402 Extended
types syGetState 1030 0406 Core

syInit 1031 0407 Core
syOueue 1 034 040A Core
syStop 1044 0414 Core

vm service group
vmFade 2051 0803 Core
vmGetPalette 2053 0805 Core
vmGetState 2054 0806 Core
vmlnit 2055 0807 Core
vmSetGraphics 2062 080E Core
vmSetPalette 2063 080F Core
vmSetTrans 2064 0810 Core
vmSetVideo 2065 0811 Core

vd service group
vdGetState 3078 0C06 Core
vdlnit 3079 0C07 Core
vdPassThru 3080 0C08 Core
vdPlay 3081 0C09 Core
vdScan 3083 OCOB Core
vdSearch 3084 OCOC Core
vdSet 3085 OCOD Core
vdStep 3090 0C12 Core
vdStill 3091 0C13 Core

xy service group
xyGetInput 4100 1004 Core
xyGetState 4102 1006 Core
xylnit 4103 1007 Core
xySet 4109 100D Core

April 15, 1990 Release R 1.0 5-3

Recommended Practices for Interactive Video Portability

5.2 Parameter names and token numbers
Parameter numbers are contiguous starting with one. The majority of param-
eter token numbers map to ASCII parameter names. However, some binary
parameter numbers such as array and length have no ASCII equivalents.

Table 5-4 lists parameter names and their binary token numbers. Parame-
ters are numbered 1-67 in alphabetical order. However, because the numbers
must be "cast in stone" for backwards compatibility, new parameters will be
appended to the list and the correspondence of alphabetical order to numeric
order will not be maintained as the recommended practices evolve.

The table also indicates whether the parameters are core or extended. Core
parameters for a given service group must be implemented for compliance.
Extended parameters are optional and should be considered nonportable un-
less an application is written to use them if present and handle their absence.

5-4 Release R 1.0 April 15, 1990

Section 5. Command set summary tables

Table 5-4. Parameter Token Token Parameter Token Token
A summary of name number number name number number

parameter labels (decimal) (hex) (decimal) (hex)
including binary array 1 01 motion 35 23

token numbers audiol 2 02 physcolors 36 24

audio2 3 03 pmeg 37 25
b 4 04 r 38 26

buttons 5 05 remote2 39 27

cdisplay 6 06 speed 40 28
chapter 7 07 spin 41 29

clear 8 08 state 42 2A

color 9 09 support 43 2B

command 10 OA tbuttons 44 2C

cursorl 11 OB tdevices 45 2D

defdevice 12 OC tsources 46 2E

defsource 13 OD time 47 2F

device 14 OE to 48 30

direction 15 OF transcolors 49 31

disctype 16 10 vertpb 50 32

dlevel 17 11 video 51 33

doorz 18 12 vievel 52 34

emulation 19 13 vmode 53 35

enable 20 14 wait 54 36

errno 21 15 width3 55 37
execute 22 16 xmax 56 38
frame 23 17 xmaxclip 57 39

from 24 18 xmin 58 3A

g 25 19 xminclip 59 3B
glevel 26 1 A xoffset 60 3C

gmode 27 1B xpos 61 3D
horzpix 28 1C ymax 62 3E
idxdsiplay 29 1D ymaxclip 63 3F
ivver 30 1E vmin 64 40
length 31 1F yminclip 65 41
logcolors 32 20 yoffset 66 42
mfgnarne 33 21 ypos 67 43
rmfgver 34 22 _ 1

'Currently used only as an extended parameter in the xy service group.
2Currently used only as an extended parameter in the vd service group.

3Currently used only as an extended parameter in the vm sorvice group.

April 15, 1990 Release R 1. 5-5

Recommended Practices for Interactive Video Portability

54 Rleas R 10 Apil 1,199

6 System commands (sy)

This section describes commands that relate to overall VDI software opera-
tion. These commands initialize the basic IV system (but not other service
groups); obtain specific information about system software and its configura-
tion; retrieve error information; queue commands for subsequent execution;
and free resources when the VDI software is not in use. Table 6-1 lists the
commands covered in this section, their token numbers, and their types.

Table 6-1. ASCII command Binary Interface Type2

System command name token number
names, token (decimal)

numbers, and types syCheckError 1025 Core

syErrorMsg 1026 Extended
syGetState 1030 Core
sylnit 1031 Core
syQueue 1034 Core
syStop 1044 Core

'Upper or lower case for command names is not significant.
2Compliant implementations must support "Core" commands. Supporting
"Extended" commands is optional, and these commands si',auld be considered
nonportable unless properly handled when absent.

April 15,1990 Release R 1.0 6-1

Recommended Practices for Interactive Video Portability

syCheckError Last revision: R 1.0

Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default if
extended value as value as parameter

ASCII ASCII not used

command Core None N/A Command name Text No action
I__I_ that caused error I

errno Core None N/A Last detected Integer No action
error number

At least one parameter is required or an error is returned.

Binary

Command code: 1025 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used

command Core 10 Integer Any value Command token No action
that caused error

errno Core 21 Integer Any value Last detected No action
error number

At least one parameter is required or an error is returned.

Description

Summary syCheckError returns the number of the last error detected by VDI Man-
agement, if present, and the command that caused the error. syCheckError
then clears this error information.

General VDI Management may detect errors that do not occur in immediate response
discussion to application commands. Such errors may occur, for example, after player

motion commands, fade and dissolve commands, queued commands, and oth-
ers that execute over time after being accepted. syCheckError is provided
to detect these types of errors, although it will return the last error regard-
less of the error's cause. 0

6-2 Release R 1.0 April 15,1990

Section 6. System commands (sy)

syCheckError

Assume a player accepts a valid vdPlay command without a wait modifier
(see Section 8). VDI Management will return success immediately ("OW' for
the ASCII interface, AX =0 for the binary interface). If the player then fails
during the specified motion sequence, an error state exists. syCheckError
determines if such a situation has arisen and, if so, returns the error. Simi-
larly, if a fade is successfully initiated and subsequently fails, an unreported
error results. Finally, a queued command may result in an error although
syQueue execute was successful. syCheckError returns the error result-
ing from the queued command. However, the return does not specify which
queued command generated the error.

Implementation While actual implementations may vary in the way they store and translate
notes the information needed by syCheckError, in concept VDI Management

maintains three buffers for returning error information, the response buffer,
the check error buffer, and the check command buffer. The contents of these
buffers (or the translations thereof) depends on which interface is used.

For the ASCII interface:

" the response buffer contains the return string for the most recent com-
mand, either "ERROR n... ' where "n ..." is an error number, "OW", or re-
quested information;

* the check error buffer contains the error number as "n..." of the most re-
cent error caused by any command or "0" if no error has occurred or the
buffer has been cleared; and

" the check command buffer contains the name of the command that
caused the error or "OW" if no error has occurred or the buffer has been
cleared.

For the binary interface:

" the response buffer contains the value to be returned in the AX register
for the most recent command, either an error number or zero if no error
occurred;

" the check error buffer contains the error number of the most recent
error caused by any command or zero if no error has occurred or the
buffer has been cleared; and

* the check command buffer contains the token number of the command
that caused the error or zero if no error has occurred or the buffer has
been cleared.

Command The command parameter requests the command that caused the last error,
parameter if present. Issuing syCheckError with command clears the error number

in the check number buffer as well as the command name or token in the
check command buffer.

April 15, 1990 Release R 1.0 6-3

Recommended Practices for Interactive Video Portability

syCheckError

Errno parameter The errno parameter requests the error number of the last error detected. Is-
suing syCheckError with errno clears the command name or token in the
check command buffer as well as the error number in the check number
buffer.

Notes 1. syCheckError does not queue errors. For example, if a player motion com-
mand resulting in an unreported error is followed by a fade command re-
suiting in an unreported error, the unreported error for the player motion
command is lost.

2. Only syCheckError and syInit can clear the check error and check com-
mand buffers. However, sylnit also reinitializes VDI Management, clear-
ing the queue, canceling any pending commands, and setting up
interrupts. Therefore, it should not be used simply to clear an error state.

3. If syCheckError itself causes an error because, for example, it is issued
with an invalid parameter, it does not clear the check buffers. Instead,
VDI Management loads the check error and check command buffers with
the same information it would load for any other command causing an
error. A subsequent correct call to syCheckError returns and clears this
information.

4. Trying to queue syCheckError causes error 177 (Command cannot be 0
queued) at the time of the attempt.

Returns

ASCII On success: For errno parameter, last error number as "n..." or "0" if no
error. For command parameter, name of command causing last error as an
upper-case alpha string or "OK' if no error.

On failure: "ERROR n...". 0

Binary On success: AX = 0. Value associated with the errno parameter is the last
error number as a 32-bit integer or 0 if no error. Value associated with the
command parameter is the token number of the command that caused the
error or 0 if no error.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syErrorMsg, sylnit, syQueue.

6-4 Release R 1.0 April 15, 1990

Section 6. System commands (sy)

syCheckError

Examples

ASCII
Pass non- syErrorMsg errno
syCheckError (returns) "ERROR 53" ; Missing parameter value
command that
causes an error

Now query for last syCheckError errno, command
error and related (returns) "53,SYERRORMSG" ; clears all last error information
command

Requery after syCheckError errno, command
clearing (returns) "0,OK"

Binary

Query for last AX 1025 ; syCheckError decimal ID
error and related BX 1 ; number of parameters (required for return)
command token ES:DI[0] 21 ; errno decimal ID

ES:DI[4] any value ; place holder for value on return
ES:DI[8I 10 ; command decimal ID
ES:DI[C] any value ; place holder for value on return

After return AX 0 ; returns 0 if successful (nonzero if not)
ES:DI[4] error no. ; number of most recent error, if present

; (zero if no error, undefined if AX 0)
ES:DI[C] token no. ; token number of command causing error

; (zero if no error, undefined if AX*0)

April 15, 1990 Release R 1.0 6-5

Recommended Practices for Interactive Video Portability

syErrorMsg Last revision: R 1.0

Type: extended

Parameters

ASCII •

Parameter Core or Associated calling Type Associated rotum Type Default If
extended value as value as parameter

ASCII ASCII not used

errno Core Error number Integer Error description Text Causes
I I _ I string error

Errmo must be specified or an error is returned.

Binary

Command code: 1026 decimal.

Parameter Core or Token Type Associated calling Associated return Default if
extended number value value parameter

(decimal) not used
errno Core 21 Integer Error number None Causes

________ _____error

pmsg Core 37 Pointer Any value Pointer to error Causes

_description string error
Both parameters must be specified or an error is returned.

Description 0

Summary syErrorMsg returns an ASCII string of up to 255 characters that describes
the specified error number.

General When an ASCII interface command causes an error, the error is reported as
discussion "ERROR n..." where "n... is the error number expressed in ASCII digits. The

binary interface returns the error number in the AX register. Applications
can use the error number with syErrorMsg to request a description. VDI
Management developers may opt to keep error descriptions in memory or a
separate file.

Errno parameter The errno parameter specifies the error number for which a descriptive
string will be returned.

Pmsg parameter The pmsg parameter for the binary interface has an associated return value
that points to the location of the descriptive string.

6-6 Release R 1.0 April 15,1990

Section 6. System commands (sy)

syErrorMsg

Notes 1. Appendix D lists strings for specific error numbers.

2. Trying to queue syErrorMsg causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns

ASCII On success: Error description string.

On failure: "ERROR n...".

Binary On success: AX = 0. Vailue associated with the pmsg parameter is a 32-bit
pointer to a null-terminated error description string.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syCheckError, syQueue.

Examples

ASCII
Pass an Invalid syErrorMsg error=-55
parameter (returns) "ERROR 48'

Get string syErrorMsg errno=48
describing error 48 (returns) "UNKNOWN PARAMETER"

Pass Insufficient syErrorMsg
parameters (returns) "ERROR 49"

Get string syErrorMsg errno=49
describing error 49 (returns) "INSUFFICIENT PARAMETERS"

Binary

Get string AX 1026 ; syErrorMsg decimal ID
describing BX 2 ; number of packets
error 176 ES:DI[0I 21 ; errno decimal ID

ES:DI[41 176 ; decimal error number
ES:DI[81 37 ; pmsg decimal ID
ES:DI[CI any value ; place holder for value on return

After return AX 0 ; returns 0 if successful (nonzero if not)
ES:DI[C] pointer ; pointer to message string

April 15, 1990 Release R 1.0 6-7

Recommended Practices for Interactive Video Portability

syGetState Last revision: R 1.0

Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default If

extended value as value as parameter
ASCII ASCII not used

ivver Core None N/A Recommended Real No action
practices version
number

mfgname Core None N/A MFG name' Text No action
mfgver Core None N/A MFG version I Text No action
support Core None N/A Value of bit field Integer No action

for installed
service groups

At least one parameter is required or an error is returned.
1Eight characters ma Restricted to printable characters and cannot include white

space (ASCII 20H, 09H), backspace (ASCII 08H), a comma (ASCII 2CH), CR (ASCII
ODH), or LF (ASCII OAH).

Binary

Command code: 1030 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used
Ivver Core 30 Real Any value Recommended No action

practices version
number

mfgname Core 33 Pointer Any value Pointer to MFG No action
name string1

mfgver Core 34 Pointer Any value Pointer to MFG No action
I _version string1

support Core 43 Bit Any value Bit field of No action
field installed service 9

___groups

At least one parameter is required or an error is returned.

'Eight characters max. Restricted to printable characters and cannot include white
space (ASCII 20H, 09H), backspace (ASCII 08H), a comma (ASCII 2CH), CR (ASCII
ODH), or LF (ASCII OA-I). 0

6-8 Release R 1.0 April 15, 1990

Section 6. System commands (sy)

syGetState

Description

Summary syGetState returns supported service groups for which VDI Management
was configured at installation, the version of the recommended practices sup-
ported, and manufacturer name and version information.

Ivver parameter The ivver parameter returns the version number of the recommended prac-
tices with which the VDI Management software complies. IV applications can
use this number to determine compatibility with VDI Management im-
plementations. An application that requires a given version number will also
be compatible with any higher version number.

Mfgname and The mfgname and mfgver parameters return the VDI Management
mfgver manufacturer's name and software version number respectively. This infor-
parameters mation is required to confirm compliance with the recommendations and for

software maintenance purposes to obtain the manufacturer and version num-
ber for technical support. An application may also use this information to de-
termine if a particular implementation that provides extended commands is
present.

The mfgname and mfgver return strings are eight-character strings of
printable characters. The strings cannot include white space (ASCII 20H,
09H), backspace (ASCII 08H), a comma (ASCII 2CH), CR (ASCII ODH), or
LF (ASCII OAH).

Support The support parameter returns a bit field or an ASCII representation
parameter thereof that specifies service groups that are supported and for which VDI

Management was configured during software installation. An application
should typically issue syGetState support immediately after sylnit to find
out if software support exists for required service groups. Typically, an appli-
cation will then issue the specific xxnit command for each represented ser-
vice group that the application will use. The xxlnit commands for individual
service groups initialize software support for devices within the group and
verify communications with the requisite hardware.

The following table shows return values for each service group after an
syGetState support. The actual value returned is the sum of the listed val-
ues for all installed service groups. For example, a binary status return of
00000111B means that system, visual management, and videodisc are sup-
ported, but XY input is not. An ASCII return value of 7" means the same.

AprIl 15, 1990 Release R 1.0 6-9

0
Recommended Practices for Interactive Video Portability

syGetState

Service Group Binary Interface ASCII Interface
return value return value
(low byte)

System (sy) 00000001 1
Visual management (vm) 00000010 2
Videodisc (vd) 00000100 4
XY input (xy) 00001000 8

Parameters If a parameter causes an error, syGetState returns immediately with an
resulting In errors error message. The command does not return partial responses for other

parameters that do not cause errors.

Notes 1. Values for mfgname and mfgver are not under the control of the recom-
mended practices. (In the future, mfgname may be required to be unique
and registered.)

2. Trying to queue syGetState causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns

ASCII On success: Comma-separated string with response for each specified pa-
rameter as described above.

On failure: "ERROR n...

Binary On success: AX = 0. Value associated with support parameter is a 32-bit
bit field as described above. Value associated with iwer is a 32-bit real.
Values associated with mfgname and mfgver parameters are pointers to
null-terminated strings as described above.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syQueue, vdGetState, vdlnit, vmGetState, vmlnit, xyGetState, xylniL•

6-10 Release R 1.0 April 15, 1990

Section 6. System commands (sy)

syGetState

Examples

ASCII

Get services syGetstate support
supported by In- (returns) "15" ; system, visual management, videodisc, and XY
stalled system ; commands supported

Get version syGetstate ivver
number of recom- (returns) "1.0" ; conforms with recommended practices
mendations ; standard, version 1.0

Get manufacturer syGetstate mfgname,mfgver
and version (returns) "IVMAKER,1.3" ; VDI Management written by IVMAKER,

version 1.3

Binary

Get services AX 1030 ; syGetState decimal ID
supported by BX 1 ; number of packets
Installed system ES:DI[0] 43 ; support decimal ID

ES:DI[4] any value ; no associated value

After return AX 0 ; returns 0 if successful (nonzero if not)
ES:DI[41 bit field ; support parameter bit field

April 15,1990 Release R 1.0 6-11

0

Recommended Practices for Interactive Video Portability

sylnit Last revision: R 1.0

Type: core

Parameters

ASCII No parameters.

Binary

Command code: 1031 decimal.

No parameters.

Description

Summary syInit initializes VDI Management and the sy service group and confirms
communications between VDI Management and the application.

General The specific actions taken by sylnit are highly implementation dependent.
discussion However, regardless of the implementation, sylnit does the minimum re-

quired to prepare the system for other VDI Management commands. It does
not replace the initialization commands for other service groups. For exam-
ple, sylnit does not verify communications with a videodisc player or change
the video display. However, it may need to attach proper interrupts to proper
ports, set proper software interrupts, disable non-IV operating modes, and do
other basic start-up chores. sylnit also does the following specific initializa-
tion tasks:

* Sets the default logical device or logical source for all service groups to
zero.

* Clears the error buffers used by syCheckErTor.

" Issues syQueue clearstatesO to clear the command queue and turn it
off.

Notes 1. Application programs should make no assumptions about the state of the
IV system or the presence of service groups after syInit. To determine
which service groups are present and enable the groups, an application
should:

a. Issue sylnit.

b. Issue syGetState support to determine which services are present.

c. Issue the initialization commands for the service groups to be used by the
application. S

6-12 Release R 1.0 April 15, 1990

Section 6. System commands (sy)

sylnit

d. If required, initialize non-TV devices and allocate additional memory. (At
the developer's discretion, these tasks may be dcne either before or after
issuing sylnit and other IV initialization commands.)

2. Because the specific actions taken by syInit are implementation dependent
and affect the state of VDI Management, if an application reissues syInit
after the start-up sequence given above, it should also repeat steps c and d
above to ensure that the system is in a known state.

3. Trying to queue sylnit causes error 177 (Command cannot be queued) at
the time of the attempt.

Returns

ASCII On success: "OK'.

On failure: "ERROR n...'.

Binary On success: AX = 0.

On failure: AX = error number.

See also: syCheckError, syGetState, syQueue, vdlnit, vmInit, xyInit.

Examples

ASCII

Initialize VDI sylnit
Management (returns) "OK"

Binary

Initialize VDI AX 1031 ; syInit decimal ID
Management BX 0 ; no parameters

After return AX 0 ; returns 0 if successful (nonzero if not)

April 15, 1990 Release R 1.0 6-13

Recommended Practices for Interactive Video Portability

syQueue Last revision: R 1.0

Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default If
extended value as value as parameter

ASCII ASCII not used

clear Core None N/A None N/A No action

execute Core None N/A None N/A No action
state Core 1 (on) I 0 (off) Integer None N/A No action
At least one parameter is required or an error is returned.

Binary

Command code: 1034 decimal.

Parameter Core or Token Type Associated calling Associated return Default It
xtended number value value parameter S

(decimal) not used
clear Core 8 N/A Any value None No action
execute Core e.2 N/A Any value None No action
state Core 42 Integer 1 (on) I 0 (off) None No action

At least one parameter is required or an error is returned. 0

Description

Summary syQueue manages a fixed-length internal queue with exactly 10 slots for stor-
ing at most 10 commands. The queue can be turned on and off, cleared, and
executed.

General syQueue stores commands in an internal queue for later execution. It may 0
discussion be used to collect commands that have critical timing requirements and

should be executed together. One example is a set of changes that should
occur during a vertical blanking interval to avoid screen disturbances, such
as changing the palette and setting a transparent color. Queued commands
are always executed in the order in which they were queued and, if possible,
adjacent commands are executed in the same vertical interval.

6-14 Release R 1.0 April 15, 1Z30

Section 6. System commands (sy)

syQueue

Clear parameter The clear parameter clears the queue of all commands without executing
them. Clear does not change the queue's state (on or off). If the queue is on
when cleared, subsequent commands are accumulated until the queue is ex-
plicitly turned off.

C

Clearing an empty queue has no effect and is not an error.

Execute The execute parameter instructs VDI Management to execute all commands
parameter in the queue as quickly as possible. syQueue execute does not clear the

queue or affect the queue's on or off state. A queue that has been turned off
remains executable.

Executing an empty queue has no effect and is not an error.

State parameter The state parameter turns the queue on and off. State-i instructs VDI Man-
agement to store at most 10 commands for later execution. If more than 10
commands are issued while the queue is on, the extra commands return error
176 (Queue full), and the commands in the queue are left intact.

State=O instructs 1VDI Management to resume immediate execution of com-
mands without storing them in the queue. Commands already in the queue
remain unchanged and unexecuted.

Turning a queue on that is already on, or off that is already off has no effect
and is not an error.

Combining The execute parameter always takes precedence. To execute commands and
parameters clear the queue use syQueue clear execute or syQueue execute clear.

Because execute has the higher priority, syQueue acts on execute first in
both examples. Similarly, syQueue state-l execute and syQueue state=O
execute work as expected, executing the queue then turning it on or off,
respectively.

April 15, 1990 Release R 1.0 6-15

Recommended Practices for Interactive Video Portability

syQueue

Unqueueable The following commands cannot be queued either because requested informa-
commands tion would be lost after syQueue execute or because their behavior could

disrupt the queue or the execution of subsequent queued commands.

Unqueueable commands
syCheckError syStop vmlnit
syErrorMsg vdGetState xyGetlnput
syGetState vdinit xyGetState
sylnit vmGetPalette xylnit
syQueue vmGetState

If an application tries to queue an unqueueable command except syQueue,
which executes immediately, the illegal command returns error 177 (Com-
mand cannot be queued) immediately. This error and error 176 (Queue full)
are the only errors that can be returned while the queue is on. syQueue ig-
nores the illegal command. It is not queued and does not affect the status of
the queue. Similarly, if the queue is full, syQueue ignores all attempts to
queue additional commands.

Queued If a queued command results in an error, the error is not detected until
commands syQueue execute. When the error is detected, syQueue returns im-
resulting in errors mediately without executing any remaining commands in the queue. How-

ever, syQueue does not return an error. Therefore, it is good practice to
issue syCheckError immediately after syQueue execute to determine if
an error occurred during queue execution. This is the only systematic way to
detect such errors. •

Notes 1. syQueue always executes immediately and cannot be queued.

2. If vmSetPalette is queued, the pointer information in the command's pa-
rameter block is stored with the queue (see Section 7). However, the infor- 0
mation in the palette array is not stored, but is read when the queue is
executed. Therefore, if an application changes the contents of the palette
array between issuing and executing the queued command, the modified
array will be used. An application should not deallocate the memory for
the palette array before clearing the queue. Doing so could load invalid pal-
ette information. •

6-16 Release R 1.0 April 15, 1990

Section 6. System commands (sy)

syQueue

3. Trying to queue more than 10 commands causes error 176 (Queue full).
This error can be returned for any queueable command. Trying to queue
any unqueueable command except syQueue, which executes immediately,
causes error 177 (Command cannot be queued). Error 177 takes prece-
dence over error 176.

4. An unknown command can be queued and will not return error 2 (Un-
known command) until the queue is executed.

Returns

ASCII On success: "OK'.

On failure: "ERROR n...".

Binary On success: AX = 0.

On failure: AX = error number.

See also: vmSetPalette.

Examples

ASCII

Turn on queue syQueue state=1
and store (returns) UOK'

commands (command 1)
(returns) "OK"

(command 2)
(returns) "OK"

(command 3)
(returns) "OK"

(command 4) ; commands 1-4 are stored and not executed
(returns) "OK"

Turn off queue syQueue state=0 ; subsequent commands are not queued
and execute new (returns) "OK"
commands (command 5)
Immediately (returns) "OK"

(command 6)
(returns) "OK"

(command 7) ; commands 5-7 are each executed immediately
(returns) "OK"

April 15, 1990 Release R 1.0 6-17

Recommended Practices for Interactive Video Portability

syQueue

Execute queue, syQueue execute ; commands 1-4 are rapidly executed from the queue
then unqueued (returns) "OK"
commands (command 8)

(returns) "OK"
(command 9) ; commands 8 and 9 are each executed immediately

(returns) "OK"

Reexecute queue syQueue execute,clear ; commands 1-4 are rapidly executed and cleared
and clear (returns) "OK"

Binary

Turn on syQueue AX 1034 ; syQueue decimal ID
BX 1 ; number of parameters
ES:DI[O] 42 ; state decimal ID
ES:DI[41 ; value for "on"

After return AX 0; Returns 0 if successful (nonzero if not)

Clear queue and AX 1034 ; syQueue decimal ID
stop accumulat- BX 2 ; number of parameters
Ing commands ES:DI[0] 8 ; clear decimal ID

ES:DI[41 any value ; no associated value
ES:DI[8] 42 ; state decimal ID
ES:DI[C] 0 ; value for "off" 0

After return AX 0 ; returns 0 if successful (nonzero if not)

6-18 Release R 1.0 April 15, 1990

Section 6. System commands (sy)

syStop Last revision: R 1.0
Type: Core

Parameters

ASCII No parameters.

Binary
Command code: 1044 decimal.

No parameters.

Description

Summary syStop frees all possible resources used by the interfaces and VDI Manage-
ment to make the resources available for non-IV use.

General syStop reduces the interfaces and VDI Management to their minimum possi-

discussion ble configurations without actually unloading the VDI software. The com-
mand frees resources such as file handles and interrupts for use by non-IV
applications. The command's actions are highly implementation and configu-
ration dependent. syStop does not change the graphics mode, therefore,
applications must handle the mode after exit separately. However, if VDI
Management turned mode trapping on, which it typically would, syStop
turns it off.

After an syStop, all VDI commands are undefined except sylnit. Upon re-

sumption of IV activities, an sylnit must be issued before any other IV
command.

Notes 1. An attempt to queue syStop causes error 177 (Command cannot be
queued) at the time of the attempt

Returns

ASCII On success: "OK".

On failure: "ERROR n...'.

Binary On success: AX = 0.

On failure: AX = error number.

See also: sylnit, syQueue.

April 15, 1990 Release R 1.0 6-19

Recommended Practices for Interactive Video Portability

syStop

Examples

ASCII
Place VDl systop,
Management In (returns) "OK'
Inactive state

Binary

Place VDl AX 1044 ; syStop decimal ID
Management In BX 0 ; no parameters
Inactive state

After return AX 0 ; returns 0 if successful (nonzero if not)

6-20Relese R1.0Apri 15,199

7 Visual-management commands (vm)

This section describes commands that relate to the visual management of the
display screen. The commands in this section control the graphics display,
video display, visual signal routing, video modes, and graphics modes.
Table 7-1 lists the commands covered in this section, their token numbers,
and their types.

Table 7-1. ASCII command Binary Interface Type2

Visual-management namel token number
command names, (decimal)

token numbers, and vmFade 2051 Core
types vmGetPalette 2053 Core

vmGetState 2054 Core
vmlnit 2055 Core
vmSetGraphics 2062 Core
vmSetPalette 2063 Core
vmSetTrans 2064 Core
vmSetVideo 2065 Core

Upper or lower case for command names is not significant.
2Compliant implementations must support "Core" commands.

7.1 Terms of reference

Figure 7-1 shows a basic conceptual definition of a video overlay subsystem.
It is intended to convey the overlay card's functionality, but not the hard-
ware implementation. The functionality applies to overlay boards that are
either based primarily on graphics synchronized to a video signal or have the
video corrected to match the graphics.

April 15, 1990 Release R 1.0 7-1

Recommended Practices for Interactive Video Portability

Figure 7-1.
A simplified Plane 0

functional model of a Plane 9 Leel contro Do

video overlay I Output
subsystem er-0t

Plane I R o Level control •

(Graphics) °G

0flPC0

Notes:
1. The definition includes two sources, plane 0 (video) from an external

source such as a videodisc player and plane 1 (graphics) from the
computer. Each source has an associated level control or fader

2. The palette does logical-to-physical color conversion and controls transpar-
ency. It can be described in terms of logical colors (number of colors that
can be simultaneously displayed) and physical colors (palette size).

3. The keyer is responsible for selecting either plane 0 or plane 1 at a pixel
rate for output to the display. 0

4. The dissolve unit:

a. In its simplest form is a switch between video only and graphics over
video (a graphics ON/OFF capability).

b. At the next level of complexity supports plane 04-iplane 1 cross-fades.

c. In future systems may become a pixel-rate translucency setting con- S
trolled by a palette extension (not shown).

7.2 General information and assumptions
The general information and assumptions given in this subsection were used
in the definition of the visual-management commands. The material below is
based on Intel 80x86 processor architecture, MS-DOS compatible operating
systems, and standard IBM-compatible graphics modes.

7.2.1 Overlayable graphics modes
Appendix B lists IBM-compatible graphics modes as they would be returned
by BIOS interrupt 10H, service OFH, including whether the modes are text or
graphics, resolutions, the adapters that support them, and whether they are
overlayable. •

7-2 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

I Compliance requires that graphics modes zero through three are guaranteed to
be overlayable when the selected video mode is NTSC or PAL.

This means that when the video mode is not set to "native," these modes are
restricted to 200 lines regardless of the actual number of lines that would nor-
mally be displayed by a given monitor adapter. (See the vmSetGraphics
and vmSetVideo commands.)

7.2.2 Mode trapping
The visual-management commands do not control trapping interrupt 10H.
VDI implementers may, and probably should, implement mode trapping to
protect against disruption of the graphics and background video by applica-
tions that change modes using direct interrupt 10H calls instead of using the
VDI visual-management commands. This is especially important for applica-
tions that may use separate graphics function libraries and similar tools.

7.2.3 Genlock control
The ability to turn genlock on and off is not included in the command set. The
recommended practices assume that all video inputs and graphics are syn-
chronous at all times from the application's viewpoint. Controlling genlocking
is a video device driver issue that is left to the VDI implementer.

7.2.4 Graphics registration to the background video
Appendix A gives detailed information on assumed positions of graphics rela-
tive to background video. The information in the appendix should furnish reli-
able registration within about two pixels both horizontally and vertically.

However, applications that have critical registration requirements should in-
clude a position reference frame to allow dynamic positioning of the graphics
plane at run-time. The command set provides commands for varying the
graphics origin both horizontally and verticaly. An extended feature sup-
ports setting the total width of the active graphics.

7.2.5 VGA graphics versus CGA and EGA graphics
Some graphics modes, in particular 620 x 200 and 320 x 200 resolution
modes, are displayed differently by VGA adapters versus CGA and EGA
adapters. VGA adapters display these modes so that the width of the active
graphics area is equal to the width of the background video. CGA and EGA
adapters leave right and left borders in these modes. Therefore, for CGA and
EGA applications to be portable to VGA-based systems, the VGA system

April 15, 1990 Release R 1.0 7-3

Recommended Practices for Interactive Video Portability

must have the ability to display these modes at full width and as they would
be displayed by a CGA or EGA adapter. Appendix A gives detailed informa- 9
tion on VGA emulation of CGA and EGA graphics displays.

Compliance requires VGA emulation of CGA and EGA graphics displays.

7.2.6 Logical versus physical colors
The visual-management commands distinguish between logical and physical
colors. A typical computer cannot display all available colors simultaneously.
For example, in VGA mode 19, the system can simultaneously display 256 col-
ors taken from 262,144 possible colors. The visual management commands
refer to the number of colors that can be displayed simultaneously, here 256,
as the number of available logical colors. The commands refer to the total pos-
sible colors, here 262,144, as the number of available physical colors-this is
also commonly called the palette size.

7.3 Rounding methods for fades and dissolves
The visual management vm-ade command must be supported. However,
compliant VDI Management software can be developed for IV hardware with-
out fade circuitry. For systems with fade circuitry, variations in available 9
fade levels must be treated consistently.

Applications pass fade levels to VDI Management as integers in the range 0-
255, which represent full off and full on, respectively. Intermediate values
represent a linear transition of intensity from full off to full on. Dissolve
levels are also passed as integers, where 0 represents display of video only
and 255 represents hard keying (transparent colors are full video, opaque col-
ors are full graphics).

VDI Management allocates each available hardware setting a level in the
range 0-255 and rounds passed values to the nearest possible level. For ex-
ample, if the hardware furnishes four fade levels with intensities of full off,
1S on, ? on, and full on, these are allocated the numeric values 0, 85, 170,
and 255, respectively. Passed values in the range 0-42 are rounded to full off,
43-127 to Vt intensity, 128-212 to 24 intensity, and 213-255 to full on.

If a fader is uneven, rounding ranges are adjusted accordingly. For example,
if a fader can do full off, 4 on, U on, and full on only, these are allocated the
values 0, 128, 192, and 255.

For fades that use nonzero time periods, the fade levels are calculated as:

current level = start level + (me since start x (end level - start level)
(fade durationx(edy)

7-4 Release R 1.0 April 15, 1990

.i

Section 7. Visual-management commands (vm)

The fade levels are then rounded in the usual way. Assume a fade from full
off to full on over 2.55 seconds on a system that can fade to off, 1 on, 26 on,
and full on. The fader stays off for the first 0.425 seconds, at t from 0.425 to
1.275 seconds, at 24 from 1.275 to 2.125 seconds, and at full on from 2.125 to
2.55 seconds. Note that noninteger fade levels round in the usual way.

Applications can assume that levels 0 and 255 are available. On a system
with no fade or dissolve circuitry, VDI Management switches to full off for
levels 0-127 and full on for 128-255.

Note: Application authors should not assume rounded times are exact. On
typical systems, the resolution of the tick interrupt or system clock will re-
strict the accuracy of timings.

April 15, 1990 Release R 1.0 7-5

Recommended Practices for Interactive Video Portability

vmFade Last revision: R 1.0

Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return T Type Default if
extended value as value as parameter

ASCII I-CII notused

dlevel Core Dissolve level, Integer None N/A No action
1__ _ 0-255 1

glevel Core Graphics level, Integer None N/A 1No action
0-255

vlevel Core Video level, 0-255 Integer None N/A No action

time Core Seconds for fade Real None N/A 0

1 or dissolve
wait Core None N/A None N/A No wait

Exactly one of dievel, glevel, or vlevel must be specified or an error is returned.

Binary

Command code: 2051 decimal.

Parameter Core or Token Type Associated calling Associated return Default if
extended number value value parameter

(decimal) not used

dievel Core 17 Integer Dissolve level, Actual level after No action
10-255 rounding if required 0

glevel Core 26 Integer Graphics level, Actual level after No action
0-255 rounding if required

vlevel Core 52 Integer Video level, 0-255 Actual level after No action
rounding if required

time Core 47 Real' Seconds for fade None 0 0
or dissolve

wat Core 54 N/A None None No wait

Exactly one of dlevel, glevel, or vlevel must be specified or an error is returned.

'See Section 4.4.2 for the hexadecimal representation of this value. 0

7-6 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

vmFade

Description

Summary vmFade sets tbh absolute levels of the graphics plane (glevel) and the video
plant (vievel), and the relative levels of video to graphics (dlevel) displayed
on the screen. The specified level parameter changes to the specified level
value over the specified time. The command returns immediately or after the
specified level is reached if wait is specified. (Figure 7-1 in Section 7.1 shows
the relationship of the level parameters to a video overlay subsystem.)

General Actual levels may vary from requested levels depending on system capabili-
discussion ties. If a system supports less than 256 levels for a given level parameter,

VDI Management rounds the requested level to the closest supported level.
vmGetState returns the actual level that was set after any required round-
ing when vmrnade has finished execution. Similarly, the binary version of
vmFade returns the actual level that will be set after any rounding in the pa-
rameter packet. (See Section 7.3 for more information on rounding levels.)

Dievel parameter The dIevel parameter creates transitions or dissolves between video only and
hard keying (transparent colors are full video, opaque colors are full graph-
ics). The parameter can be used to go from all video to all graphics or, when
set to middle values, to create "ghosting or highlighted effects with video
showing through graphics. If a system cannot do dissolves, it switches to all
video when dIevel is 0-127 and to hard keying when dlevel is 128-255.

With dlevel-0 the video plane only is visible. With dlevel=255 nontrans-
parent colors display graphics at full intensity and transparent colors display
video only, assuming vn SetTrans stateml has been issued. Assuming
dlevel=255, to create a transition from graphics only to video only, turn
transparency off with vmSetTrans state-O, then issue vmFade dlevel-0.

DIevel differs from glevel and vlevel (see below) in that it controls the rela-
tive mix of video and graphics. Unlike glevel and vlevel, dIevel lets graph-
ics appear mixed with video so that video and graphics are both visible in a
ratio determined by the dlevel parameter. In contrast, glevel and vlevel set
the total amount of video or graphics signal used.

Because dlevel sets the ratio of video to graphics, it is affected by glevel and
vIevel values. For example if vlevelwO, vmFade dlevel=255 will display
graphics at full intensity but will not display video because the video signal
has been turned off.

April 15,1990 Release R 1.0 7-7

Recommended Practices for Interactive Video Portability

vmFade

Glevel parameter The glevel parameter sets the absolute intensity of the graphics plane in the
range 0 to 255 (full off to full on). If a system supports graphics on and off
only, it switches graphics on if glevel is 128-255 and off if glevel is 0-127.

Vleve parameter The vIevel parameter sets the absolute intensity of the video plane in the
range 0 to 255 (full off to full on). If a system supports video on and off only, it
switches video on if vIevel is 128-255 and off if vIevel is 0-127.

Time parameter The time parameter specifies the number of seconds over which the fade or
dissolve occurs. If necessary, VDI Management rounds time to the nearest
value the system supports.

The time parameter functions the same ev.. he hardware or system soft-
ware does not support fades or dissolves. 0

Wait parameter If the wait parameter is specified, vmFade does not return until the fade or
dissolve has reached the specified level value at the end of the specified time.
If wait is not used, vmFade returns immediately and the fade or dissolve ex-
ecutes as a background task.

The wait parameter functions the same even if the system does not support
fades or dissolves.

Notes 1. vmGetState issued with the appropriate level parameter returns the cur-
rent dissolve or fade level. This command can be used to determine if a
background fade is complete. However, when a fade or dissolve is com-
plete, the value returned by vmGetState may not agree with the re-
quested level because of rounding. Therefore, programmers should test for
limits instead of exact values.

2. If a system cannot do fades or dissolves, it switches to level 255 when a
levAl parameter is set to 128-255, and to level 0 when a level is set to 0-
1'.. -. However, this does not affect the wait and time parameters. For ex-
ample, if the system is incapable of dissolves, after the commands:

vmFade dlevel=0
vmFade dlevel=255, timr=60, wait

the system will remain at level 0 for 30 seconds, then switch to level 255,
then return after another 30 seconds. (See Section 7.3 for more informa-
tion on rounding times.) •

7-8 Release R 1.0 April 15,1990

Section 7. Visual-management commands (vm)

vmFade

3. Only one level may be set with a single call to vmFade. However, vmFade
commands can be queued with syQueue to create the effect of multiple, si-
multaneous fades and dissolves.

Returns

ASCII On success: "OK".

On failure: "ERROR n...'.

Binary On success: AX = 0. Value associated with dlevel, glevel, or vlevel parame-
ter is a 32-bit integer that gives the actual level that will bc set after round-
ing if required.

On failure: AX = error number.

See also: syQueue, vmGetState, vmSetTrans.

Examples

ASCII

Dissolve to all vmFade dlevel=0,time= 1.5,wait
video over 1.5 (returns) "0"
seconds, do not

0 return until
complete

Set display to vmFade dlevel=255
hard keying (returns) "OK"
Immediately

Set video and vmFade dlevel=128
graphics to 50% (returns) UOK

relative Intensity

Fade graphics to vmFade glevel=255,time=.3
full Intensity over (returns) "255"
0.3 seconds

Fade video to zero vmFade vlevel=0,time=1,wait
over I second, do (returns) "0"
not return until
complete

Set video to zero vmFade vlevel=0
Immediately (returns) "OK"

April 15, 1990 Release R 1.0 7-9

Recommended Practices for Interactive Video Portability

vmFade

Set video to half vmFade vleve]=128
Intensity (returns) "OK"
Immediately

Binary •

Dissolve to 0 over AX 2051 ; vmFade decimal ID
2.5 seconds and BX 3 ; number of parameters
return when done ES:DI[0] 17 ; dlevel decimal ID

ES:DI[4] 0 ; dIevel value
ES:DI[8] 47 ; time decimal ID 0
ES:DI[C] 2.5 ; time value in seconds. See Section 4.4.2 for the

hexadecimal representation of this value.
ES:DI[10] 54 ; wait decimal ID
ES:DI[14] any value ; no associated value

After return AX 0 ; returns 0 if successful (nonzero if not)
ES:DI[4] 0 ; actual level that will be set after rounding if required .

40

7-10 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

vmGetPalette Last revision: R 1.0

Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default if

extended value as value as parameter
ASCII ASCII not used

color Core Logical color Integer None N/A Causes
number l error

r Core None N/A Red value, 0-255 Integer No action

g Core None N/A Green value, 0-255 Integer No action
b Core None N/A Blue value, 0-255 Integer No action

Exactly one color and at least one of r, g, and b are required or an error is returned.

Binary

Command code: 2053 decimal

Parameter Core or Token Type Associated calling Associated return Default if
extended number value value parameter

(decimal) not used

color Core 1 Integer Logical color None Causes
number error

r Core 38 Integer Any value Red value, 0-255 No action
g Core 25 Integer Any value Green value, 0-255 No action
b Core 4 Integer Any value Blue value, 0-255 No action
length Core 31 Integer Number of color Number of color No action

array entries1 array entries1

array Core 1 Pointer Pointer to color Pointer to color No action
I array array

Either exactly one color and at least one of r, g, and b are required; or color, length,
and array must be used together; or an error is returned.

1color array entry = 4 bytes comprised of 3 components + reserved byte.

April 15, 1990 Release R 1.0 7-11

Recommended Practices for Interactive Video Portability

vmGetPalette

Description

Summary vmGetPalette returns the amounts of red, green, and blue components in a
specified logical color via the ASCII interface or one or more sets of compo-
nent values for contiguous logical colors via the binary interface. 0

General vmGetpalette returns the proportions of the red, green, and blue compo-
discussion nents in a logical color as real numbers in the range 0-255 where 255 is fully

saturated for each component. Component values are returned for single col-
ors via the ASCII interface and for single or multiple colors via the binary
interface depending on the calling parameters.

vmGetState logcolors returns the number of available logical colors (colors
that can be simultaneously displayed). vmGetState physcolors returns the
number of available physical colors (palette size). vmSetPalette assigns
physical colors to logical colors, and vmGetPalette returns the component
values for the assigned colors. For example, a system might support 16 logi-
cal colors from a palette of 4096 physical colors. Logical color 3 might be
bright cyan with component values of rfiD, b=255, g=255.

Color + r, g, and These parameters apply to both the ASCII and binary interfaces. The color
b parameters parameter defines the logical color number for which r, g, and b component

values are returned. Logical color numbers range from zero to the value re-
turned by vmGetState logcolors minus one.

Exactly one color parameter must be listed. Specifying color twice causes er-
ror 54 (Parameter used more than once), and omitting color or failing to in-
clude at least one of r, g, and b causes error 49 (Insufficient parameters). •

Any or all of r, g, and b can be listed with a color. vmGetPalette returns a
comma-separated list of the requested integer values via the ASCII interface
or a 32-bit integer for each requested component via the binary interface.

Color + length The length and array parameters are available with the binary interface 0

and array only. They furnish a way to pass a pointer to an array for storing a set of pal-
parameters ette values in application memory. The value associated with array is a 32-

bit pointer to a memory block containing one or more 4-byte structures.
Array must point to memory allocated by the application The contents of
each structure in the palette array are: 0

" Byte 0, the least significant byte, represents blue.

* Byte 1 represents green.

* Byte 2 represents red.

" Byte 3 is reserved and always set to zero. 0

7-12 Release R 1.0 April 15, 1990

0

Section 7. Visual-management commands (m)

vmGetPalette

The length parameter specifies the number of 4-byte structures in the array.
The values in the first structure of the array are for the logical color number
specified by the color parameter. The second structure relates to color+1,
the third to color+2, an so on up to the number of structures specified by
length. (See Section 4.4.2 for more information about palette arrays.)

Parameters If a parameter causes an error, vmGetPalette returns immediately with an
resulting In errors error message. The command does not return partial responses for other pa-

rameters that do not cause errors.

Notes 1. Values returned by vmGetPalette may not exactly match values set with
vmSetPalette because of rounding when vmSetPalette component val-
ues do not match the component levels available on a specific system. For
example, a system with four levels per component (0, 85, 170, and 255)
will return a component value of 85 even though the value specified by
vmSetPalette was 50.

2. VDI Management does not maintain palette arrays that are directly acces-
sible by applications. Palette arrays for vmGetPalette must be allocated
by the application. To allocate memory in bytes for a palette array, use
length x 4.

3. Trying to queue vmGetPalette causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns

ASCII On success: Comma-separated list of requested r, g, and b component val-
ues in the range "0" to "255" for color.

On Failure: "ERROR n...'.

Binary On success: AX = 0. Values associated with r, g, and b parameters are 32-
bit integers in the range 0-255 for color. Value associated with length pa-
rameter is a 32-bit integer giving the number of 4-byte structures in a palette
array allocated by the application. Value associated with array parameter is
a 32-bit pointer to the palette array. With length and array, the value asso-
ciated with color is the first logical color in a contiguous series in the palette
array.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syQueue, vmGetState, vmSetPalette.

April 15, 1990 Release R 1.0 7-13

Recommended Practices for Interactive Video Portability

vmGetPalette

Examples

ASCII •

Return values for vmGetPalette color=0,r,g,b
all parameters for (returns) "255,127,0" ; logical color 0 has red=255, green=127, blue=0
logical color 0

Return red vmGetPalette color=- 1,r
component for (returns) "170" ; logical color 1 has a red component of 170
logical color 1

Binary

Get green AX 2053 ; vmGetPalette decimal ID
component value BX 2 ; number of parameters
for color number 3

ES:DI[0] 9 ; color decimal ID

ES:DI[4] 3 ; color number

ES:DI[81 25 ; g decimal ID

ES:DI[C] any value ; place holder for value on return

After return AX 0 ; returns 0 if successful (nonzero if not) •

ES:DI[C] g value ; green value for color 3

Get color values AX 2053 ; vmGetPalette decimal ID
from color 3 to 9 BX 3 number of parameters
(binary Interface
only) ES:DI[0] 9 ; color decimal ID

ES:DI[4] 3 ; first color to list in palette array

ES:DI[8] 31 ; length decimal ID

ES:DI[C] 7 ; number of color structures in palette array

ES:DI[10] 1 ; array decimal ID

ES:DI[141 pointer ; pointer to palette array in application memory

After return AX 0 ; returns 0 if successful (nonzero if not)

ES:DI[14] pointer ; pointer to same array with updated component values

7-14 Release R 1.0 April 15, 1990

0

Section 7. Visual-management commands (vm)

vmGetState Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter Core or Associated Type Associated return Type Default If

extended calling value as value as parameter
ASCII ASCII not used

color Core Logical color Integer 1 (transparent) I Integer No action
number 0 (opaque)

defsource Core None N/A Default video Integer No action
source, 0-15

dlevel Core None N/A Current level, Integer No action
0-255 1 1

emulation Core None N/A 1 (on) I 0 (off) Integer No action
enable Core None N/A 1 (on) I 0 (off) Integer No action
horzplx Core None N/A Total horizontal Integer No action

pixels in current
I gmode

glevel Core None N/A Current level, Integer No action
_ _0-255

gmode Core None N/A Current graphics Integer No action
mode

logcolors Core None N/A Total available Integer No action
physcolors Core None N/A Total available Integer No action

transcolors Core None N/A Total available Integer No action
tsources Core None N/A Total video sour- Integer No action

ces installed, 0-15
vertplx Core None N/A Total vertical pixels Integer No action

in current gmode
vlevel Core None N/A Current level, Integer No action

10-255 1
vmode Core None N/A 0 (native) I Integer No action

1 (NTSC) 12 (PAL)
width Extended None N/A Graphics width in Real No action

I_ _ _lls
xoffset Core None N/A Graphics offset in Integer No action

pixels

yoffset Core None N/A Graphics offset in Integer No action
I _pixels

At least one parameter is required or an error is returned.

April 15, 1990 Release R 1.0 7-15

Recommended Practices for Interactive Video Portability

vmGetState

Binary

Command code: 2054 decimal.

Parameter Core or Token Type Associated Associated return value Default if
extended number calling value parameter

(decimal) not used

color Core 9 Integer Logical 1 (transparent) I No action
I_ color number 0 (opaque)

defsource Core 13 Integer Any value Default video source, No action
0-15

dievel Core 17 Integer Any value Current level, 0-255 No action
emulation Core 19 integer Any value 1 (on) I 0 (off) No action
enable Core 20 Integer Any value 1 (on) I 0 (off) No action
glevel Core 26 Integer Any value Current level, 0-255 No action

gmode Core 27 Integer Any value Current graphics No action
mode

horzpix Core 28 Integer Any value Total horizontal pixels No action
in current gmode

logcolors Core 32 Integer Any value Total available No action
physcolors Core 36 Integer Any value Total available No action

transcolors Core 49 Integer Any value Total available No action
tsources Core 46 integer Any value Total video sources No action

installed, 0-15
vertpix Core 50 Integer Any value Total vertical pixeis in No action

current gmode
vlevel Core 52 Integer Any value Current level, 0-255 No action

vmode Core 53 Integer Any value 0 (native) I 1 (NTSC) No action
1 _12 (PAL)

width Extended 55 Real Any value Graphics width in gs' No action
xoffset Core 60 Integer Any value Graphics offset in No action

pixels

yoffset Core 66 Integer Any value Graphics offset in No action
I I_ I I I pixels

At least one parameter is required or an error is returned.
1See Section 4.4.2 for the hexadecimal representation of this value.

7

7-16 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

vmGetState

Description

Summary vmGetstate returns information about the state of the visual-management
service group including the current settings of variable parameters and avail-
able resources such as palette size and number of video sources.

Color parameter The color parameter requests the transparency setting for a specified logical
color number. A return value of one means that the specified color is set to
transparent; zero means the specified color is opaque. (See enable below).

Enable parameter The enable parameter returns one if logically transparent colors are cur-
rently physically transparent to the video plane. Transparent colors are those
which have been set to transparent with vmSetTrans colorf-(logical color
number),state=on. After vmSetTrans enable=l, these colors reveal the
video plane. After vmSetTrans enable=0, all graphics colors including
transparent colors are visible and entirely cover the video plane.

Defsource The defsource parameter returns the default logical video source in the
parameter range 0-15. Note that a video source is always selected, but the source num-

ber does not necessarily equal the default device number. For example, logi-
cal player zero may be logical video source one. This mapping is determined
at VDI installation/configuration time. The default video source is defined as
source zero unless vmSetVideo defsource is used to change it.

Dievel, glevel, The dlevel, glevel, and vlevel parameters return current levels in the
and vlevel range 0-255 for the dissolve level, graphics plane, and the video plane, respec-
parameters tively. The return values are actual values and may differ from the values re-

quested by vmFade because of rounding.

Note: The values returned by these parameters are the levels at the time of
the request, which may not equal the requested or actual target levels for dis-
solves and fades that may be in progress.

Emulation The emulation parameter returns the state of VGA emulation of CGA and
parameter EGA graphics versus VGA native mode. In some graphics modes, CGA and

EGA graphics displayed with a CGA or EGA adapter have different horizon-
tal registration relative to video compared to graphics with the same mode
number displayed wi h a VGA adapter. Implementations that support CGA
or EGA graphics only always return one (on). (See Appendix A for more infor-
mation on VGA emulation of CGA and EGA graphics.)

April 15, 1990 Release R 1.0 7-17

Recommended Practices for Interactive Video Portability

vmGetState

Gmode parameter The gmode parameter returns the current video mode exactly as it would be
returned by a request to BIOS interrupt 10H, service OFH (see Appendix B).

Horzplx and The horzpix and vertpix parameters return the current pixel resolution.
vertpix These parameters are especially useful for determining the resolution of text
parameters modes where the number of pixels displayed on the screen varies from one

graphics device to another (CGA, EGA, MCGA, VGA).

Logcolors and The logcolors parameter returns the number of logical colors (simulta-
physcolors neously displayable colors) that are available. The physcolors parameter re-
parameters turns the range of colors (palette size) that can be assigned to logical colors.

Both return values are determined by the capabilities of the graphics hard-
ware and mode.

Transcolors The transcolors parameter returns the total number of logical colors that
parameter can be made transparent with vmSetTrans.

Tsources The tsources parameter returns the total number of video sources for which
parameter VDI Management was installed.

Vmode parameter The vmode parameter returns the video mode as set by vmSetVideo. The
vmode is either 0 (native), 1 (NTSC), or 2 (PAL). Native mode is a nonover-
lay mode, but does not change overlay parameters. NTSC and PAL indicate
the system is configured for the indicated video standard.

Width parameter The width parameter returns the total graphics width in microseconds. This
parameter lets applications accurately establish the right edge of the active
graphics area relative to background video. (See Appendix A for more infor-
mation on graphics registration.) 0

Width is an extended parameter. Using an unimplemented extended parameter
causes error 48 (Unknown parameter). I

7-18 Release R 1.0 April 15, 1990
0

Section 7. Visual-management commands (vm)

vmGetState

Xoffset and The xoffset and yoffset give the offset of the graphics plane relative to the
yoffset video plane in pixels as set by vmSetGraphics. The origin of the graphics
parameters plane is the upper left corner of the graphics display area.

Parameters If a parameter causes an error, vmGetState returns immediately with an er-
resulting In errors ror message. The command does not return partial responses for other param-

eters that do not cause errors.

Notes 1. Trying to queue vmGetState causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns

ASCII On success: Comma-separated list of values for requested parameters as de-
scribed above.

On failure: "ERROR n...".

Binary On success: AX = 0. Values associated with requested parameters are 32-bit
values of the types given in the binary parameter table above.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syGetState, syQueue, vdGetState, vmFade, vmGetPalette, vmInit, vmSet-
Graphics, vmSetVideo, vmSetTrans, xyGetState.

Examples

ASCII

Get the current vmGetState glevel,gmode
graphics level and (returns) "0,14" ; graphics level currently set to 0
mode ; graphics mode is 14 (640 X 200)

Determine vmGetState color=3
whether logical (returns) "1" ; color number 3 is set for transparency
color three Is
transparent

April 15, 1990 Release R 1.0 7-19

Recommended Practices for Interactive Video Portability

vmGetState

Binary

Get current AX 2054 ; vmGetState decimal ID
graphics level, BX 3 ; number of parameters
graphics mode, ES:DI[0] 26 ; glevel decimal ID
and number of ES:DI[4] any value ; place holder for value on return
available physical ES:DI[8] 27 ; gmode decimal ID
colors ES:DI[C] any value ; place holder for value on return

ES:DI[10] 36 ; physcolors decimal ID
ES:DI[14) any value ; place holder for value on return

After return AX 0 ; returns 0 if successful (nonzero if not) S
ES:DI[4] level value ; contains current graphics level
ES:DI[C] gmode value ; contains current graphics mode number
ES:DI[14] physcolors value ; contains available physical colors

7

7-0Release R 1.0 April 15, 1990

• - I I I

Section 7. Visual-management commands (yin)

vmlnit Last revision: Ri1 .0
Type: core

Parameters

ASCII No parameters.

Binary

Command code: 2055 decimal.

No parameters.

Description

Summary vm~nit; initializps the visual management hardware and software, placing
both in a known state.

Conditions set by vmlnit; sets the parameters in the following table to the specified values.
vmlnlt

Parameter values set by vmlnlt
Parameter Value Command reference

dlevel 255 (hard keying) vmFade
emulation 1 (on) vmSetGraphics
enable 0 (Off) vmSetTrans
glevel 255 (full intensity) vmFade
gmode Current value vmSetGraphics
horzplx Current value None
logcolors System limit for gmode None
physcolors System limit for gmode None
state 0 (transparency off) vmSetTrans
transcolors System limit for grnode None
width' System default for gmode vmSetGraphics
vertplx Current value None
v evel 0 (Off) vinFade
vmode 0 (native) vmSetVideo
xoffset 0 vmSetGraphics
yoffset 0 vmSetGraphics 1

I1f supported.

April 15, 1990 Release R 1.0 7-21

Recommended Practices for Interactive Video Portability

vmlnit

Notes 1. In typi-al VDI Management implementations, vmInit turns mode trapping
on to intercept v.deo BIOS interrupt 10H calls so that applications cannot
make graphics mode change-, without VDI Management's knowledge. This
is especially important for applications that use graphics libraries and sim-
ilar tool kits. If vmlnit turns mode trapping on, syStop should turn it off.

2. The default defsource is video source zero. However, if an application uses
vmSetVideo defsource to change the source, a subsequent vmInit does
not reset the source to zero and any applicable parameters affect the
source set by vmSetVideo.

3. Trying to queue vmInit causes error 177 (Command cannot be queuedi) at
the time of the attempt.

Returns

ASCII On success: "OK".

On failure: "ERROR n...'.

Bin-, y On success: AX = 0.

On failure: AX = error number.

See also: syInit, syStop, vdInit, xyInit. •

Examples

ASCII

Initialize visual vmInit
management (returns) "OK"
services

Binary examples

Initialize visual AX 2055 ; vmLnit decimal ID
management BX 0 ; number of parameters
services

After return AX 0 ; returns 0 if successful (nonzero if not) 0

7-22 Release R 1.0 April 15, 1990

Recommended Practices for Interactive Video Portability

vmSetGraphics

Emulation The emulation parameter controls VGA emulation of CGA and EGA horizon-
parameter tal graphics positioning in common modes. If emulation=1, the default set

by vmInit, then a VGA adapter will leave the same borders on the right and
left edges of active graphics that a true CGA or EGA adapter would leave. If
emulation=O, then the graphics from a VGA adapter cover the entire width
of the background video. (See Appendix A for more information on graphics
registration and VGA emulation of CGA and EGA graphics.)

Issuing vmSetGraphics emulation=O on a true CGA or EGA-based system
returns error 194 (Unsupported graphics mode).

Gmode parameter The gmode parameter sets the graphics display mode in accordance with
IBM graphics mode numbers as returned by BIOS interrupt 10H, service
OFH (see Appendix B). This parameter places mode changes under VDI Man-
agement control to keep screen disruption to a minimum (as opposed to using
mode functions furnished separately with development systems).

Requesting an unsupported graphics mode returns error 194 (Unsupported
graphics mode).

Width parameter The width parameter sets the total graphics width in microseconds. This pa-
rameter lets applications accurately establish the right-hand edge of the ac-
tive graphics area relative to background video. An application would
typically display a videodisc position-reference frame for interactively setting
width. (See Appendix A for more information on graphics registration.)

Width is an extended parameter. Using an unimplemented extended parameter
causes error 48 (Unknown parameter). •

Xoffset and The xoffset and yoffset parameters set the offset of the upper left corner of
yoffset the graphics display area relative to video. These parameters shift the entire
parameters graphics display area up, down, left, and right within the video raster in one-

pixel increments. Positive values shift down and right; negative values shift
up and left. (See Appendix A for default offsets by graphics mode.)

Offset values are absolute, not cumulative. Issuing vmSetGraphics
yoffset=4 twice results in an offset of four, not eight. Values that exceed the
maximum that a system can shift the graphics plane result in the maximum
possible shift.

The offset values set by vmSetGraphics remain in effect until explicitly
reset by vmSetGraphics or vmlnit. They do not change to compensate for
graphics mode changes. Therefore, apparent offsets may change with graph-
ics mode changes because of differences in pixel sizes among modes. 0

7-24 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

vmSetGraphics

Notes 1. vmGetState returns the current X and Y offsets. These values will not
agree with the values set by vmSetGraphics if the specified values ex-
ceed the maximum amount the system can shift the graphics plane.

2. The xoffset and yoffset parameters are for correcting graphics registra-
tion to video. Applications should not use them for special effects such as
scrolling the screen because they may cause screen disturbances.

Returns

ASCII On success: "OK'.

On failure: "ERROR n..

Binary On success: AX = 0.

On failure: AX = error number.

See also: vmGetState, vmInit.

Examples

ASCII

Set X and Y off- vmSetGraphics xoffset=-1,yoffset=5
sets to -1 and 5 (returns) "OK"

Set graphics vmSetGraphics gmode= 16
mode 16 (EGA (returns) "OI'
640x350)

Binary

Shift graphics AX 2062 ; vmSetGraphics decimal ID
right one and BX 2 ; number of parameters
down two ES:DI[0] 60 ; xoffset decimal ID

ES:DI[4] 1 ; pixel offset value
ES:DI[8] 66 ; yoffset decimal ID
ES:DI[C] 2 ; pixel offset value

After return AX 0 ; returns 0 if successful (nonzero if not)

April15, 1990 Release R 1.0 7-25

Recommended Practices for Interactive Video Portability

vmSetPalette Last revision: R 1.0

Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default if
extended value as value as parameter

ASCII ASCII not used

color Core Logical color Integer None N/A Causes
number error

r Core Red value, 0-255 Integer None N/A No action
g Core Green value, 0-255 Integer None N/A No action
b Core Blue value, 0-255 Integer None N/A No action
Exactly one color and at least one of r, g, and b are required or an error is returned.

Binary

Command code: 2063 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter 0

(decimal) not used
color Core 9 Integer Logical color None Causes

I number error
r Core 38 Integer Red value, 0-255 None No action

g Core 25 Integer Green value, None No action 0
0-255

b Core 4 Integer Blue value, 0-255 None No action
length Core 31 Integer Number of color None No action

array entries'
array Core 1 Pointer Pointer to color None No action 9

array
Either exactly one color and at least one of r, g, and b are required; or color, length,
and array must be used together without r, g, or b; or an error is returned.

1color array entry = 4 bytes comprised of 3 components + reserved byte. 0

7-26 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

vmSetPalette

Description

Summary vmSetPalette assigns red, green, and blue component values to the speci-
fied logical color via the ASCII interface or to one or more contiguous logical
colors via the binary interface.

General vmSetPalette sets the proportions of the red, green, and blue components in
discussion a logical color as real numbers in the range 0-255 where 255 is fully satu-

rated. Component values are set for single colors via the ASCII interface and
for single or multiple colors via the binary interface depending on the calling
parameters.

vmGetState logcolors returns the number of available logical colors (colors
that can be simultaneously displayed) for a system and vmGetState
physcolors returns the number of available physical colors (palette size).
vmSetPalette assigns physical colors to logical colors and vmGetPalette re-
turns the component values for the assigned colors. For example, a system
might support 16 logical colors from a palette of 4096 physical colors. Logical
color 3 might be bright cyan with component values of r=0, b=255, g=255.

Color + r, g, and These parameters apply to both the ASCII and binary interfaces. The color
b parameters parameter defines the logical color number for which r, g, and b component

values are set. Logical color numbers range from zero to the value returned
by vmGetState logcolors minus one.

VDI Management maps the specified component levels to the color as closely
as possible given the size of the available palette. For example, if the palette
furnishes four color levels (0, 85, 170, and 255) for each component (64-color
palette), vmSetPalette colorIl,r=110 results in a mapped value of r=85.

Exactly one color parameter must be listed. Specifying color twice causes er-
ror 54 (Parameter used more than once) while omitting color entirely or fail-
ing to include at least one of r, g, and b causes error 49 (Insufficient
parameters). Any or all of r, g, and b can be specified in the same call.

April 15, 1990 Release R 1.0 7-27

Recommended Practices for Interactive Video Portability

vmSetPalette

Color + length The length and array parameters are available with the binary interface
and array only. They provide a way to pass a pointer to an array for storing a set of pal-

parameters ette values in application memory. The value associated with array is a 32-
bit pointer to a memory block containing one or more 4-byte structures.
Array must point to memory allocated by the application. The contents of
each structure in the palette array are:

" Byte 0, the least significant byte, represents blue.

" Byte 1 represents green.

" Byte 2 represents red.

" Byte 3 is reserved and must be set to zero.

The length parameter specifies the number of 4-byte structures in the array.
The values in the first structure of the array are for the logical color specified
by the color parameter. The second structure relates to color+1, the third to
color+2, an so on up to the number of structures specified by length. (See
Section 4.4.2 for more information about color arrays.)

Using the length and array with any of r, g, or b causes error 50 (Parame-
ters cannot be used together).

Notes 1. Use syQueue to set multiple logical colors in the same vertical interval via 9
the ASCII interface.

2. Component values returned by vmGetPalette may not agree exactly with
values set by vmSetPalette because of rounding. For example, a system
with 4 levels per component (0, 85, 170, 255) will return a component
value of 85 even though the value specified by vmSetPalette was 55.

3. VDI Management does not maintain palette arrays that are directly acces-
sible by applications. Palette arrays for vmSetPalette must be allocated
by the application. To allocate memory in bytes for a palette array, use
length x 4.

4. If a vmSetPalette is used with palette array and queued with syQueue,
do not deallocate the array before executing the queue.

Returns

ASCII On success: "OK".

On failure: "ERROR n...".

Binary On success: AX = 0.

On failure: AX = error number. 0

7-28 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (yin)

vmSetPalette

See also: syQueue, vmGetPalette, vmGetState.

Examples

ASCII

Set red to 63 for vmSetPalette color=0,r=-63
color 0, do not (returns) "OK"'
change other
components

Set colorl1to pure vmSetPalette color--l,r=0O,g=0,b=-255
fully saturated (retterns) "OK"
blue

Set color 2 to vmSetPalette color=2,r=-255,g=255,b=-255
bright white (returns) "OK0

Binary

Set green to 127 AX 2063 ;vmSetPalette decimal ID
for color 3, do not BX 2 ;number of parameters
change other ES:Df[O] 9 ;color decimal ID
components ES:DI[4 3 ;color number

ES:DI[81 25 ; decimal ID
ES:DI[C] 127 ; green value

After return AX 0 ; returns 0 if successful (nonzero if not)

Set component AX 2063 ;vm6etPalette decimal ID
va1ues for Colors BX 3 ;number of parameters
3-9 ES:DI[0I 9 ;color decimal ID

ES:DI[4] 3 ;first color of array list
ES:DI[8] 31 ;length decimal ID
ES:DI[C] 7 ;number of color structures in palette array
ES:DI[10I 1 ;array decimal ID
ES:DI[141 pointer ; pointer to palette array in application memory

After return AX 0 ; returns 0 if successful (nonzero if not)

April 15, 199M Release R 1.0 7-29

Recommended Practices for Interactive Video Portability

vmSetTrans Last revision: R 1.0
Type: core

Parameters

ASCII _

Parameter Core or Associated calling Type Associated return Type Default if
extended value as value as parameter

ASCII ASCII not used

clear Core None N/A None N/A No action

color Core Logical color Integer None N/A No action
number

enable Core 1 (on) I 0 (off) Integer None N/A No action

state Core 1 (on) I 0 (off) Integer None N/A No action

Either both color and state, or clear only must be used or an error is returned. Enable
can be used alone or with a color + state.

Binary

Command code: 2064 decimal.

Parameter Core or Token Type Associated calling Associated return Default If P
extended number value value parameter

(decimal) not used

clear Core 8 N/A None None No action
color Core 9 Integer Logical color None No action

number I

enable Core 20 Integer 1 (on) I 0 (off) None No action
state Core 42 Integer 1 (on) I 0 (off) None No action
Either both color and state, or clear only must be used or an error is returned. Enable
can be used alone or with a color + state.

Description

Summary vmSetTra=ns sets logical colors to transparent or opaque and turns physical
transparency on and off.

Clear The clear parameter sets the transparency state of all logical colors to zero
(off). Note that this not only turns transparency off but also changes the val-
ues of color attributes. Use the enable parameter (see below) to turn tran s-
parency off without changing the transparency settings of the colors.

7-30 Release R 1.0 April 15, 1990

Section 7. Visual-management commands (vm)

vmSetTrans

Using vmSetTrans clear when no transparent colors are set does nothing
and is not an error. Using clear with any other parameter returns error 50
(Parameters cannot be used together).

Color and state The color and state parameters work together to set logical colors to opaque
parameters or transparent. vmSetTrans color=(logica& color number), state=1

makes colors transparent; viSetTrans colorf(logical color number),
stateO makes colors opaque. To temporarily override transparent colors,
use the enable parameter (see below).

Enable parameter The enable parameter controls physical transparency on the display screen.
vmSetTrans enable=1 makes all designated transparent colors actually be-
come transparent to the video plane. Areas containing transparent colors on
the screen show the video plane only.

vmSetTrans enable=O makes all colors physically opaque regardless of
their transparency settings. None of the video plane is visible. However,
transparent colors keep their transparency settings and will again be physi-
cally transparent after a subsequent vmSetTrans enable=1.

Enable can be combined with a color and a state to specify a transparent
color and turn transparency on with the same command. The default for
enable after a vmInit is zero (transparency off).

Notes 1. vmGetState logcolors returns the total number of available logical colors.
vmGetState color returns the transparency setting for a single specified
color.

2. vmGetState transcolors returns the number of logical colors that can be
made transparent. Using vmSetTrans to try to set more than trans-
colors to transparent returns error 51 (Parameter invalid or out of range).

Compliant systems must support transparency for at least one color that can be
assigned to any logical color. Applications striving for maximum portability should
not assume more than one transparent color.

April 15, 1990 Release R 1.0 7-31

Recommended Practices for Interactive Video Portability

vmSetfrans

Returns

ASCII On success: "OK'.

On failure: "ERROR n. . .3.

Binary On success: AX = 0.

On failure: AX = error number.

See also: vmGetState.

Examples

ASCII
Set color 0 to vinSetTrans color=O0,state=1,enable=1
transparent and (returns) "OK7
enable physical
transparency
Set color 5 to vmSetTrans color=5,state=0
opaque (returns) "OK"'

Set all colors to vmSetTrans clear
opaque (returns) "OK"'

Binary

Designate color 3 AX 2064 ; vmSetTrans decimal ID
as transparent BX 3 ; number of parameters
and make it ES:DI[0] 9 ;color decimal ID
physically ES:DI[4] 3 ;color number
transparent ES:D118] 42 ;state decimal ID

ES:DI 1 ;make color 3 transparent
ES:DI[10I 20 ;enable decimal idea
ES:D1114]1 1 turn physical transparency on

After return AX 0 ;returns 0 if successful (nonzero if not)

Make all colors AX 2064 ;vmnSetTrans decimal ID
opaque BX 1 ;number of parameters

ES:DIIIOI 8 ;clear decimal ID
ES:DI[4] any value

After return AX 0 ;returns 0 if successful (nonzero if not)

7.-32 Release R 1.0 April 15,1990

Section 7. Visual-management commands (vm)

vmSetVideo Current: R 1.0
Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default If
extended value as value as parameter

ASCII ASCII not used

defsource Core Input source, 0-15 Integer None N/A No action
vmode Core 0 (native) I 1 (NTSC) Integer None N/A No action

I 2 (PAL)
At least one parameter is required or an error is returned.

Binary
Command code: 2065 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used

defsource Core 13 Integer Input source, 0-15 None No action
vmode Core 53 Integer 0 (native) 1 1 (NTSC) None No action

I_ _ _ _ I 12 (PAL)

At least one parameter is required or an error is returned.

Description

Summary vmSetVideo sets the video mode and selects the video input source if more
than one source is available.

Defsource The defsource parameter selects a video input source in the range 0 to 15
parameter when more than one video source is available. The default at start-up is

source zero.

Vmode parameter The vmode parameter tells the visual-management system which video stan-
dard incoming video and the monitor are using. This lets VDI Management
use the appropriate timing values for the standard. Vmode-l sets NTSC-
U.S.; vmode=2 sets PAL-European. vmSetVideo vmode=O (native) sets the
system to the functionality and appearance that the computer would use if it
were not an IV system. This setting also turns overlay off without affecting
any other parameters relating to overlay.

April 15, 1990 Release R 1.0 7-33

Recommended Practices for Interactive Video Portability

vmSetVideo

vmSetVideo vmode... may cause screen disturbances because of the asyn-I
chronous rates of the graphics and video signals.

Notes 1. A video source is always selected, but the source number will not neces-
sarily equal the current default player number. For example, logical
player zero may be logical video source one. This mapping is done at VDI
installation/configuration time. (See Section 4.1.2 for more information.)

2. After a player is selected with vdSet defdevice (see Section 8), it must be
activated as a video source with vmSetVideo defsource.

Returns

ASCII On success: "OK".

On failure: "ERROR n...'.

Binary On success: AX = 0.

On failure: AX = error number.

See also: vdSet, vmGetState.

Examples

ASCII

Set the standard vmSetVideo vmode= 1
to NTSC (returns) "OK"

Make video vmSetVideo defsource= 1
source one the (returns) "OK"
default

Binary

Set mode to NTSC AX 2065 ; vmSetVideo decimal command ID
BX 1 ; number of parameters
ES:D[0] 53 ; vmode decimal ID
ES:D1[41 1 ; sets mode to NTSC (1)

After return AX 0 ; returns 0 if successful (nonzero if not) 0

7-34 Release R 1.0 April 15, 1990

8 Videodisc commands (vd)

This section describes commands that control videodisc players. Use these
commands to initialize, obtain information about, and control the behavior of
videodisc players connected to the system. Table 8-1 lists the commands cov-
ered in this section, their token numbers, and their types.

Table 8-1. ASCII command Binary Interface Type2

Videodisc command name token number
names, token (decimal)

numbers, and types vdGetState 3078 Core

vdlnit 3079 Core
vdPassThru 3080 Core
vdPlay 3081 Core
vdScan 3083 Core
vdSearch 3084 Core
vdSet 3085 Core
vdStep 3090 Core
vdStill 3091 Core

IUpper or lower case for command names is not significant.
2Compliant implementations must support "Core" commands.

8.1 General information and assumptions
The general information and assumptions given in this subsection were used
in the definition of the videodisc commands.

8.1.1 CAV and CLV videodisc support
Current technology uses two types of videodiscs--constant angular velocity
(CAV) and constant liner velocity (CLV). These vary in the information sup-
plied on the videodisc and the way in which they are read. The individual

April 15, 1990 Release R 1.0 8-1

Recommended Practices for Interactive Video Portability 0

command descriptions indicate commands and parameters that apply to CLV
videodiscs only.

Current support for CLV videodiscs is a subset of CAV functions. We do not
rule out adding extended commands and parameters to provide more sophisti-
cated CLV support in future revisions of this document.

Compliant players must support both CAV and CLV videodiscs.

8.1.2 Play and scan speeds

Play speeds are expressed as a multiples of 1.0, which is defined as the nor-
mal speed of either 25 frames per second for PAL or 30 frames per second for
NTSC. For players in CAV mode, applications can assume that speed 1.0, at
least one speed slower than 1.0, and at least one speed faster than 1.0 are
available. For players in CLV mode, applications cannot assume play speeds
other than 1.0. (Section 8.2 explains how VDI Managements round speeds
when requested speeds cannot be matched exactly by a player.)

Scan speeds vary among players. All an application can assume about a scan
speed is that it is faster than normal speed.

Note: Because applications cannot assume that values other than 1.0 will be
matched exactly, they should not try to calculate videodisc position based on
timing and frame speed at any speed other than 1.0. Instead, they should use
vdGetState frame (see vdGetState command).

8.1.3 Searches and instant jumps

When searching for a specific frame or chapter, players should use instant
jumps if possible. If not, the search should always be at the fastest possible
speed. Blanking during searches is automatic and, therefore, is not under
VDI Management control.

8.1.4 Fields, frames, and chapters

All frame numbers assume a standard format of two fields per frame. The
command set does not support accessing individual fields. The command set
assumes that frame numbers are always available from CAV and never from
CLV and that chapter numbers may be available from either.

8-2 Release R 1.0 April 15,1990

Section 8. Videodisc commands (vd)

8.2 Rounding methods for player speeds
Player speeds are represented by real numbers, with 1.0 representing normal
speed. Values below 1.0 represent speeds below normal; values above 1.0 rep-
resent speeds above normal. A value other than 1.0 calls for a speed in
frames per second (fps) that equals the product of the value and the default
number of frames per second. For example, on an NTSC system, a speed of
0.5 specifies a rate of 0.5 x 30 fps or 15 fps.

Videodisc players are usually limited to a finite range of speeds. If a re-
quested speed is not 1.0, VDI Management uses a rounding algorithm to
translate from the specified speed to a player-supported speed. The algorithm
rounds to the nearest supported speed, except that values are never rounded
to 0.0 or 1.0 except for players in CLV mode (see below). This method lets ap-
plications guarantee use of the fastest fast and slowest slow speeds available.
The following tables show how speeds are rounded for the Sony 2000 and Pio-
neer 4200, respectively. Note that speed requests of 0.0 are errors.

Table 8-2. Requested Actual speed
The effects of speed as multiple of

rounding on speed normal
parameters for the 00 Error

Sony 2000 0.00001-0.99999
0.2

1.0 1.0

1.00001 and up 3

Table 8-3. Requested Actual speed
The effects of speed as multiple of

rounding on speed normal

parameters for the

Pioneer 4200 0.0 Error
0.00001-0.14999 0.1
0.15-0.34999 0.2
0.35-0.64999 0.5
0.65-0.99999 0.8
1.0 1
1.0001-2.4999 2

2.5-3.4999 3
3.5 andup 4

For players in CAV mode, applications can assume that normal speed, 1.0, at
least one speed slower than 1.0, and at least one speed faster than 1.0 are

April 15, 1990 Release R 1.0 8-3

Recommended Practices for Interactive Video Portability

available. Given this availability and the rounding algorithm, which never
rounds to 0.0 or 1.0, the following table lists speed parameter values for speci-
fying several convenient speeds without knowing the exact speeds available
from a given player.

Table 8-4. Speed parameter value Resulting player speed
Example speed

parameter values for 0.0 Error

boundary player 0.00001 Slowest available speed
speeds 0.99999 Fastest speed that is slower than normal

1.00001 Slowest speed that is faster than normal
9999 Fastest available speed

For players in CLV mode, applications cannot assume play speeds other than
normal speed. For players that support normal speed only, all speeds other
than zero are rounded to one. However, if the player supports multiple
speeds in CLV mode, VDI Management applies normal rounding rules.

Note: After requesting a play speed, a query for that speed returns the actual
speed if it differs from the requested speed because of rounding.

8-4 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdGetState Last revision: R 1.0

Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default If
extended value as value as parameter

ASCII ASCII not used
audiol Core None N/A 1 (on) 1 0 (off) Integer No action
audio2 Core None N/A 1 (on) I 0 (off) Integer No action
cdisplay Core None N/A 1 (on) 1 0 (off) Integer No action
chapter Core None N/A Current chapter Integer No action

number

defdevice Core None N/A Default player, Integer No action
1_ 0-15

device Core Logical player, Integer None N/A Default
10-15 1 player

dlisctype Core None N/A 1 (CLV) I 0 (CAV) Integer No action
door Extended None N/A 1 (open) I Integer No action

0 (closed) I
frame I Core None N/A Current frame Integer No action

number

Idxdisplay Core None N/A 1 (on) I 0 (off) Integer No action
motion Core None N/A 1 (on) 10 (off) Integer No action
remote Extended None N/A 1 (on) I 0 (off) Integer No action
speed Core None N/A Current player Real No action

speed or 999 if
scanning

spin Core None N/A 1 (up) 10 (down) Integer No action
tdevices Core None N/A Total installed for, Integer No action

0-15

video Core None N/A 1 (on) I 0 (off) Integer No action
At least one parameter must be specified or an error occurs. If device is specified, at
least one other parameter must be specified.

'Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV
videodiscs.

April 15, 1990 Release R 1.0 8-5

Recommended Practices for Interactive Video Portability 0

vdGetState

Binary

Command code: 3078 decimal.

Parameter Core or Token Type Associated calling Associated return Default if 0
extended number value value parameter

, (decimal) not used
audiol Core 2 Integer Any value 1 (on) I 0 (off) No action
audio2 Core 3 Integer Any value 1 (on) g 0 (off) Wo action
cdisplay Core 6 Integer Any value 1 (on) I 0 (off) No action
chapter Core 7 Integer Any value Current chapter No action

number
defdevice Core 12 Integer Any value Default player, No action

0-15
device Core 14 Integer Logical player, None Default

0-15 _ player
disctype Core 16 Integer Any value 1 (CLV) I 0 (CAV)
door Extended 18 Integer Any value I (open) I No action

1_ 0 (closed)
frame' Core 23 Integer Any value Current frame No action

number
idxdlsplay Core 29 Integer Any value I (on) 0 (off) No action
motion Core 35 Integer Any value 1 (on) I 0 (off) No action
remote Extended 39 Integer Any value 1 (on) I 0 (off) No action
speed Core 40 Real Any value Current player No action

speed or 999 if
scanning

spin Core 41 Integer Any value 1 (up) I 0 (down) No action
tdevices Core 45 Integer Any value Total installed No action

for, 0-15
video Core 51 Integer Any value 1 (on) I 0 (off) No action 0
At least one parameter must be specified or an error occurs. If device is specified, at
ileast one other parameter must be specified.

1Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV
videodiscs. 0

8-6 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdGetState

Description

Summary vdGetState returns information about the videodisc player specified by the
device parameter or the default player if no device number is specified.

Audlol and The audiol and audio2 parameters return one if the respective audio chan-
audio2 nel is on and zero if it is off.
parameters

Cdisplay The cdisplay parameter returns one if the player's chapter number display
parameter is on and zero if it is not. Using cdisplay with videodiscs that do not have

chapter numbers returns error 88 (Unable to return requested information).

Chapter The chapter parameter returns the current videodisc chapter number.
parameter vdGetState chapter... returns error 86 (Device not ready) if the videodisc is

not spinning normally and error 88 (Unable to return requested information)
if the videodisc does not have chapter numbers.

Defdevice The defdevice parameter returns the default logical player number as set by
parameter vdSet defdevice or vdInit. VDI Management directs all videodisc com-

mands to this player unless a command contains a device parameter (see
below) directing it to a different player.

Device parameter The device parameter directs vdGetState to the specified logical player
number regardless of the current player number as set by vdSet defdevice.
Because, in general, device affects the command with which it is associated
only, the parameter does not affect the return value for defdevice (see
above) when the two parameters are used together.

Specifying device with no other parameter returns error 49 (Insufficient pa-
rameters). Specifying a nonexistent or uninstalled player returns error 160
(Invalid device number). Specifying an uninitialized player returns error 81
(Device not initialized).

Disctype The disctype parameter returns one if the videodisc is a CLV disc and zero if
parameter it is a CAV disc.

April 15, 1990 Release R 1.0 8-7

Recommended Practices for Interactive Video Portability

vdGetState

Door parameter The door parameter returns one if the player door is open and zero if it is
closed. VDI implementers should implement door for a player that supports
reporting the door's status even if the player does not support opening and
closing the door from an application. If an implementation supports the door
parameter but a player does not support reporting its status, VDI Manage-
ment returns error 88 (Unable to return requested information).

Door is an extended parameter. Using an unimplemented extended parameter,
causes error 48 (Unknown parameter). I

Frame parameter The frame parameter returns the current frame number of the videodisc
player. vdGetState frame... returns error 86 (Device not ready) if the
videodisc is not spinning normally. Frame returns error 88 (Unable to return
requested information) for CLV discs.

Idxdisplay The idxdisplay parameter returns one if player's frame number (CAV) or
parameter time (CLV) display is on and zero if it is not.

Motion parameter The motion parameter returns the state of a background play or scan. If the
laser is reading the videodisc during a play or scan sequence either backward
or forward, motion returns one; otherwise, it returns zero.

Remote parameter The remote parameter returns one if the player's remote control unit is on
and zero if it is off. If a VDI implementation supports the remote parameter
but the player does not support a remote control unit, remote returns zero.

Remote is an extended parameter. Using an unimplemented extended parameter
causes error 48 (Unknown parameter).

Speed parameter The speed parameter returns the actual player speed after any necessary
rounding or 999 if the player is in scan mode. A return of zero indicates the
player is parked or on a still frame. (See Section 8.2 for information on
rounding speed values.)

Spin parameter The spin parameter returns zero if the player is parked or one if the 0
videodisc is spinning and the player is ready to accept motion commands.

Tdevices The tdevices parameter returns the total number of logical players for which
parameter VDI Management was configured when it was installed. If only one player is

connected, it is numbered zero, and tdevices returns one. •

84 Release R 1.0 April 15,1990

Section 8. Videodisc commands (vd)

vdGetState

Video parameter The video parameter returns one if the player's video channel is on and zero
if it is not.

Parameters If a parameter causes an error, vdGetState returns immediately with the
resulting In errors error message. The command does not return partial responses for other pa-

rameters that did not cause errors.

Notes 1. vdGetState can be successfully issued any time VDI Management can ac-
cept commands. The current state of the player does not affect whether
the command can be issued. However, the player's state can affect the abil-
ity to return specific parameter values,and therefore cause errors. For ex-
ample, vdGetState frame returns error 88 (Unable to return requested
information) if the player is parked.

2. Trying to queue vdGetState causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns

ASCII On success: Comma-separated list of values for requested parameters as de-
scribed above.

On failure: "ERROR n...'.

Binary On success: AX = 0. Values associated with requested parameters are 32-bit
values of the types given in the binary parameter table above.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syGetState, vdInit, vdSet, vmGetState, xyGetState.

Examples

ASCII

Get status of vdGetState device=2,motion
player 2 motion (returns) "1" ; player 2 is in play or scan mode
flag

Get Information vdGetState door,spin
on door and spin (returns) "1,0" ; door is open and player is spun down
state for current
player

April 15, 1990 Release R 1.0 8-9

Recommended Practices for Interactive Video Portability

vdGetState

Get whether disc vdGetstate idxdisplay
Index display Is (returns) "1" ; videodisc index display is on
on for current
player

Get whether vdGetState device=1,video,defdevice
player 1 video Is (returns) "1,2" ; player 1 video is on,
on and currently ; default player is logical number 2
selected player

Binary

Get status of AX 3078 ; vdGetstate decimal ID
motion flag BX 1 ; number of parameters

ES:DI[O] 35 ; motion decimal ID
ES:DI[4] any value ; place holder for motion value after return

After return AX 0 ; returns 0 if successful (nonzero if not)
ES:DI[4] 1 ; value for motion, player is playing or scanning

8- Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdlnit Last Revision: R 1.0
Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default If
extended value as value as parameter

ASCII ASCII not used

device Core Logical player, Integer None N/A Default
1 10-15 1 1 1 1player

This command can be issued with no parameters.

1This parameter applies to both CAV and CLV videodiscs as does vdlnit with no
parameters.

Binary

Command code: 3079 decimal.

Parameter Core or Token Type Associated calling Associated return Default It
extended number value value parameter

(decimal) notused
devicel Core 14 Integer Logical player, None Default

1 1 10-15 player
This command can be issued with no parameters.

1This parameter applies to both CAV and CLV videodiscs as does vdlnit with no
parameters.

Description

Summary vdInit initializes videodisc hardware and the vd software service group, plac-
ing both in a known state. vd~nit must be issued for each attached player
that will be used by the application. This command interrupts any other
player motion command that did not include a wait parameter, in which
case, the application will not be able to issue vdInit until the motion com-
mand is complete.

vdInit is a synchronous command. It does not return control to the applica-
tion until it has succeeded or detected an error condition. To keep distur-
bances to a minimum, VDI Management should turn video and audio off at
the player, spin up the videodisc, then turn video and audio back on.

April 15,1990 Release R 1.0 8-11

Recommended Practices for Interactive Video Portability

vdlnit

The resulting display after vdInit varies with videodisc type. With CAV
videodiscs, video remains visible with the player frozen on the first available
frame. With most CLV videodiscs, the player automatically blanks video.

Device parameter The device parameter specifies the logical player number to be initialized. If
device is omitted, vdlnit initializes the default player as set by vdSet
defdevice. If vdSet has not been used to set a default player, the default
player is defined to be number zero. vdInit does not change the default
player if a device other than the default is specified. To change the default,
use vdSet defdevice.

Specifying a nonexistent or uninstalled player causes error 160 (Invalid de-
vice number).

Conditions set by vdInit sets the parameters in the following table to the specified values.
vdinit

Parameter values set by vdlnit

Parameter Value Command reference

audiol 1 (on) vdSet
audlo2 1 (on) vdSet
cdisplay 0 (off) or undefined vdSet
doorO 0 (closed) vdSet
frame First available on disc vdPlay, vdSet
ldxdlsplay 0 (off) vdSet
motion 0 (off) vdGetState
remoteI 0 (off) vdSet
spin 1 (up) vdSet

tdevices Total installed, 0-15 none
video 1 (on) vdSet •

1if supported by implementation-this is an extended parameter.

Notes 1. vdlnit can be successfully issued any time the specified device or, without
a specified device, the default player, either player zero or the player set by •
vdSet defdevice, can accept motion commands (except see Note 4 below).

2. vdGetState tdevices returns the total number of players for which VDI
Management was installed. This command can be used after the first vdlnit
to determine the number of additional devices that can be initialized.

3. If the player supports a character generator, vdlnit turns it off.

8-12 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdlnit

4. Trying to queue vdlnit causes error 177 (Command cannot be queued) at
the time of the attempt.

5. With systems that do not support the door parameter, VDI Management
returns error 80 (Initialization error) if an application issues vdInit with the
player door open. Therefore, it is good programming practice to prompt the
user to insert the videodisc and close the door before issuing vdlnit.

6. Spinning the videodisc up also updates the disctype parameter, and sets
edisplay to undefined for videodiscs that do not support chapter numbers.

7. If vdlnit returns an error, the parameters listed in the table above have un-
defined values.

Returns

ASCII On success: "OK".

On failure: "ERROR n..." .

Binary On success: AX = 0.

On failure: AX = error number.

See also: syInit, vdGetstate, vdSet, vmlnit, xyInit.

Examples

ASCII

Initialize player 0 vdlnit
and vd service (returns) "OK" ; first time command is issued
group

Inilalize player I vdlnit device=1
(returns) "OK"

April 15, 1990 Release R 1.0 8-13

Recommended Practices for interactive Video Portability

vdlnit

Binary

initialize player 0 AX 3079 ; vd~nit; decimal ID
and vd service BX 0 ; number of parameters
group

After return AX 0 ;returns 0 if successful (nonzero if not)

Initialize player 1 AX 3079 ;vd~nit decimal ID
BX 1 ;number of parameters
ES:DIIOI 14 ;device decimal ID
ES:DIM4 1 ;logical player number for device

After return AX 0 ;returns 0 if successful (nonzero if not)

8-14Relese 1.0Aprl 15199

Section 8. Videodisc commands (vd)

vdPassThru Last revision: R 1.0

Type: core

Parameters

ASCII No named parameters (see discussion of device and pmsg parameters
below). Applies to both CAV and CLV videodiscs.

Binary

Command code: 3080 decimal.

Parameter1 Core or Token Type Associated calling Associated return Default if
extended number value value parameter

(decimal) not used
device Core 14 Integer Logical player, None Default

I 1 1 10-15 player

pmsg Core 37 Pointer Pointer to player Player response Causes
I I message string string error

This command must be issued with the pmsg parameter or an error is returned.

1All parameters apply to both CAV and CLV videodiscs.

Description

vdPassThru is provided to allow nonportable access to special features of
Caution videodisc players. It is Included to as a convenlence to developers who want

to use the command set for portable applications and do not want to switch
to a different command environment for development efforts that require
access to nonportable player functons that are not provided by other
commands In the videodisc service group. Therefore, although It Is re-
quired, It Is supplied for convenience only and SHOULD NOT be used for
developing portable applications.

Summary vdPassThru communicates directly with a player, bypassing the standard
videodisc service group commands and parameters. It is provided to allow ac-
cess to specific player features that are not supported by other VDI videodisc
commands. vdPassThru passes an string of printable ASCII characters to
the player and waits for the player's response. This response is returned to
the application. vdPassThru does not return application control until it re-
ceives a response from the player or detects an error.

April 15, 1990 Release R 1.0 8-15

Recommended Practices for Interactive Video Portability

vdPassThru

Device parameter The device parameter directs vdPassThru to the specified logical player
number regardless of the default player number as set by vdSet defdevice.
This parameter applies to the binary interface only.

Specifying a nonexistent or uninstalled player causes error 160 (Invalid de- 0

vice number). Specifying an uninitialized player causes error 81 (Device not
initialized).

The ASCII interface does not accept a device parameter because of potential
difficulties in distinguishing the parameter label and associated value from 0
the string that should be passed to the player. Therefore, the ASCII interface
always sends the command string to the default player. (To set the default
player, see the vdSet command.)

Pmsg parameter The pmsg parameter value is a series of printable ASCII characters to be
passed through to the player without modification by VDI Management. How- •
ever, implementors may need to implement VDI Management so that it sup-
plies a specific terminator if required by a specific supported player.

The binary interface passes a pointer to a null-terminated player message
string. For the ASCII interface, all characters from the delimiter following
the "u" in vdPassThru up to the terminating CR make up the message
string. The ASCII interface does not use a pmsg parameter label.

Returns

ASCII On success: Player response + CR/LF if CR/LF is not automatically returned

by the player.

On failure: "ERROR n...'.

Binary On success: AX = 0. String pointed to by the pmsg parameter contains the 0
player response + NULL

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

Examples

ASCII Send a string to the player
vdPassThru THIS IS A COMMAND

(returns) '1HIS IS A PLAYER RESPONSE"

8-16 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdPassThru

Binary

Send a command AX 3080 ; vdPassThru decimal ID
string to player 2 BX 2 ; number of parameters

ES:DI[0] 14 ; device decimal ID
ES:DI[4] 1 ; send message to player 1
ES:DI[81 37 ; pmsg decimal ID
ES:DI[C] pointer ; pointer to player message string

After return AX 0 ; returns 0 if successful (nonzero if not)
ES:DI[C] pointer ; pointer to player response string

April 15, 1990 Release R 1.0 8-17

Recommended Practices for nteractive Video Portability

vdPlay Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter Core or Associated calling value - Type Associated return Type Default If 0

extended as value as parameter
ASCII ASCII not used

chapter Core Chapter number Integer None N/A No action
device Core Logical player, 0-15 Integer None N/A Default

I I play.r
direction1 Core 1 (fwd) I 0 (back) Integer None N/A 1
from I Core Starting frame number Integer None N/A Current

frame
speed Core Play speed, >0 Real None N/A 1.0
Tor - Core Ending frame number Integer None N/A Disc limit
wait Core None N/A None N/A No wait
This com-nand may be issued with no parameters. The text describes illegal usage.

1Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV
videodiscs as does vdPlay with no parameters.

Binary

Command code: 3081 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter 0

(decimal) not used
chapter Core 7 Integer Chapter number None No action
device Core 14 Integer Logical player, None Default

10-15 player
direction' Core 15 integer 1 (fwd) 10 (back) None 1 0
fromT Core 24 Integer Starting frame None Current

number frame
speed Core 40 Real Play speed, >0 Actual speed after 1.0

I rounding if required
to l Core 48 Integer Ending frame None Disc limit

number
waft Core 54 N/A None None No wait
This command may be issued with no parameters. The text describes illegal usage.

1Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV
videodiscs as does vdPlay with no parameters. 0

8-18 Release R 1.0 April 15,1990

0

Section 8. Videodisc commands (vd)

vdPlay

Description

Summary vdPlay executes videodisc play sequences. The sequences may include start-
ing frames, ending frames, chapters, directions, and speeds in various combi-
nations. The application can instruct VDI Management to return control
immediately or when the play sequence is complete. This command inter-
rupts any other player motion command that did not include a wait parame-
ter, in which case, the application will not be able to issue vdPlay until the
motion command is complete.

No parameters vdPlay issued with no parameters causes the player to start playing forward
from the current frame at a speed of 1.0 and continues until interrupted by a
subsequent vdlnit, vdPlay, vdScan, vdSearch, vdSet spinudown,
vdStep, or vdStill command, or until the player reaches the end of the
videodisc.

Chapter The chapter parameter specifies a chapter number to play from beginning to
parameter end. When used with a speed parameter, the chapter plays at the specified

speed. Adding wait causes VDI Management to wait to return application
control until the chapter has been played.

Specifying a chapter for a videodisc without chapter numbers causes error
208, (Action not supported by disc). Specifying an illegal chapter number
causes error 216 (Invalid chapter number).

Compatible parameters-device, speed, and wait. Other parameters
cause error 50 (Parameters cannot be used together).

Device parameter The device parameter directs vdPlay to the specified logical player number
regardless of the default player number as set by vdSet defdevice. Specify-
ing a nonexistent or uninstalled player causes error 160 (Invalid device num-
ber); specifying an uninitialized player causes error 81 (Device not initialized).

Compatible parameters-all, assuming other parameters are compatible
with each other.

Direction The direction parameter sets the direction of motion (1 = forward, 0 = back-
parameter ward) for play sequences that do not include to frames. Specifying a direc-

tion with no from frame or chapter starts a play sequence in the specified
direction from the current frame at an optional speed. If a from frame is
specified, the player searches to the specified frame, then begins play in the
specified direction. Specifying a direction with a chapter is discussed
above (see the chapter parameter above).

April 15, 1990 Relese R 1.0 8-19

Recommended Practices for Interactive Video Portability

vdPlay

Specifying a direction with a to frame causes error 50 (Parameters cannot
be used together) because the direction required to reach the to frame is pre-
determined either by the relative position of the current frame or, if specified,
the relative position of the from frame. Therefore, a direction used with a
to frame is at best redundant if it agrees with the predetermined direction, 0
and at worst conflicting if it opposes the predetermined direction.

Compatible parameters-from, device, speed, and wait. Other parame-
ters cause error 50 (Parameters cannot be used together).

From parameter The from parameter specifies the starting frame number for a play sequence.
The player immediately searches or jumps to the specified frame with video
off, turns video on, and executes the play sequence at an optional speed and
either to an optional to frame OR in an optional direction. Note that
vdPlay from=1000, to=1000 is exactly the same as vdSearch frame=1000.

A from parameter with no to parameter starts an unbounded play. The play
sequence continues until interrupted by another vdPlay, or a vdInit,
vdScan, vdSearch, vdSet spinudown, vdStep, or vdStill command, or
until the player reaches the edge of the videodisc.

Specifying a from frame for a CLV videodisc causes error 208, (Action not
supported by disc). Specifying an illegal frame number causes error 215 (In-
valid frame number).

Compatible parameters-device, direction OR to, speed, and wait.
Other parameters or illegal combinations of compatible parameters cause •
error 50 (Parameters cannot be used together).

Speed parameter The speed parameter specifies the speed of play. VDI Management maps re-
quested speeds as closely as possible to available player speeds. Because ac-
tual speeds may vary from requested speeds, the binary interface changes
the speed value passed in the parameter block to the actual speed set by VDI 0

Management and vdGetState speed returns the actual speed after any nec-
essary rounding. For CAV mode, speeds are never rounded to zero or one.
(See Section 8.2 for detailed information on rounding speed values including
boundary conditions.)

Specifying a speed less than or equal to zero causes error 51 (Parameter

value invalid or out of range).

Compatible parameters-device, direction OR to, from, chapter but
not with from or to, and wait. Other parameters or illegal combinations of
compatible parameters cause error 50 (Parameters cannot be used together). 0

8-20 Release R 1.0 April 15, 1990

0

Section 8. Videodisc commands (vd)

vdPlay

To parameter The to parameter specifies the ending frame number for a play sequence.
When the player reaches the to frame, the player automatically enters still
mode displaying the frame.

The to parameter has lower priority than the from parameter. For example,
vdPlay from=100, to=1000 and vdPlay to-1000, from=100 both search to
frame 100, then play to frame 1000.

Specifying a to frame for a CLV videodisc caused error 208, (Action not sup-
ported by disc). Specifying an illegal frame number causes error 215 (Invalid
frame number). Specifying a to frame with a direction is covered above (see
Direction parameter).

Compatible parameters-device, from, speed, and wait. Other parame-
ters cause error 50 (Parameters cannot be used together).

Wait parameter The effect of the wait parameter depends on the parameters that accompany
it. The following table lists when vdPlay wait... returns application control
based on accompanying parameters. Obviously, if the player returns an error,
the command will return when the error state is detected instead of at the
time given in the table.

Effects of walt on vdPlay
Additional parameter Returns control when?

none After the default player is playing normally
chapter After the player has played the specified chapter
device only After the specified player is playing normally
from with any other legal After the player has searched to the specified from
parameters except to frame
speed only After the player is playing normally at the specified

speed
to with any other legal After the player reached the specified to frame
parameters

Without wait, VDI Management returns control as soon as it determines
that the command is legal. No error checking is done to determine if the
player actually accepts the command or acts on it properly. Therefore,
syCheckErr must be used to determine if the player entered an error state
while either accepting or trying to execute the command.

April 15, 1990 Release R 1.0 8-21

Recommended Practices for Interactive Video Portability

vdPlay

syCheckErr may also be needed to detect certain error states that occur
after vdPlay wait. For example, vdPlay wait, from=1000 returns when
the from frame has been reached. syCheckErr is required to detect any
error state that occurs after the player has reached frame 1000.

Note that without wait, a subsequent vdPlay, vdInit, vdScan, vdSearch,
vdSet spin-down, vdStep or vdStill command immediately interrupts an
executing play sequence, even if the play sequence specifies a target-either
a to frame or the end of a chapter.

Compatible parameters-all, assuming other parameters are compatible
with each other.

Notes 1. vdPlay can be successfully issued any time spin-l (up) as set by vdSet.

2. vdGetState motion can be used to find out whether the player is cur-
rently executing a play sequence. This could be used, for example, with a
vdPlay to... with no wait parameter to determine whether the to frame
has been reached.

3. All parameters apply to the current vdPlay only. For example, vdPlay
tol000, speed=.5 does not set the speed to a default of 0.5. A subsequent
vdPlay without a speed will play at speed 1.0, not 0.5.

Returns

ASCII On success: "OK'. 0

On failure: "ERROR n...'.

Binary On success: AX = 0. Value associated with speed parameter is a 32-bit real
that gives the actual speed that will be set after rounding if required.

On failure: AX = error number. •

See also: syCheckErr, vdGetState, vdScan, vdSearch vdStep, vdStill.

Examples 0

ASCII

Play forward at vdPlay
speed 1.0 from (returns) "OK"
current frame •

8-22 Release R 1.0 April 15,1990
0

Section 8. Videodisc commands (vd)

vdPlay

Play backward vdPlay speed=.00001,direction=0,from=1000
from frame 1000 (returns) OK,
at the slowest pos-

sible speed

Play from current vdPlay to=2000,wait
frame to 2000, (returns) "OK"
don't return until
It Is reached

Play backward to vdPlay to=l,direction=O
frame I (returns) "ERROR 50"; Parameters cannot be used together

Play backward vdPlay from=200,to=100
from 200 to 100 (returns) "OK"

or

vdPlay to=100,from=200

(returns) "OK"

Play backward vdPlay direction=0
from the current (returns) "OK"
frame

Play all of chapter vdPlay chapter=2
2atspeed1.0 (returns)"OK"

Binary

Play from frame AX 3081 ; vdPlay decimal ID

200 to 500 BX 2 ; number of parameters

ES:DI[0] 24 ; from decimal ID

ES:DI[41 200 ; starting frame number

ES:DI[81 48 ; to decimal ID

ES:DI[C] 500 ; ending frame number

After return AX 0 ; returns 0 if successful (nonzero if not)

April 15, 1990 Release R 1.0 8-23

Recommended Practices for Interactive Video Portability

vdScan Last revision: R 1.0
Type: core

Parameters
ASCII_____________ __

Parameter Core or Associated calling Type Associated return Type Default if
extended value as value as parameter

ASCII ASCII not used

device Core Logical player, Integer None N/A Default
1 10-15 player

direction' Core 1 (fwd) I 0 (back) Integer None N/A 1 S
wait Core 'None N/A None N/A No wait
This command may be issued with no parameters.

'Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV
videodiscs as does vdScan with no parameters.

Binary

Command code: 3083 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used
device Core 14 Integer Logical player, None Default

I 1_ 1__0-15 1player

direction Core 15 Integer 1 (fwd) I 0 (back) None 1

wait Core 54 N/A None None No wait
This command may be issued with no parameters.

'Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV
videodiscs as does vdScan with no parameters.

Description

Summary vdScan places the default or specified player in scan mode in an optional di-
rection. The player plays at the maximum possible speed. The command con-
tinues until interrupted by a subsequent vdPlay, vdlnit, vdScan,
vdSearch, vdSet spin-down, vdStep, or vdStill command, or until the
player reaches the edge of the videodisc. This command interrupts any other
player motion command that did not include a wait parameter, in which
case, the application will not be able to issue vdScan until the motion com-
mand is complete. 0

8-24 Release R 1.0 April 15,1990

Section 8. Videodisc commands (vd)

vdScan

No parameters vdScan with no parameters starts scanning forward from the current frame.

Device parameter The device parameter directs vdScan to the specified logical player number
regardless of the default player number as set by vdSet defdevice. Specify-
ing a nonexistent or uninstalled player causes error 160 (Invalid device num-
ber). Specifying an uninitialized player causes error 81 (Device not
initialized).

Direction The direction parameter sets the direction of motion for the scan, either one
parameter (forward) or zero (backward).

Walt parameter The wait parameter causes VDI Management to wait until it has confirmed
that the player is in scan mode to return application control. Without wait,
VDI Management returns control as soon as it determines that the command
is legal. No error checking is done to determine if the player actually accepts
the command or acts on it properly. Therefore, syCheckErr must be used to
determine if the player entered an error state while either accepting or trying
to execute the command.

Notes 1. Because vdScan often results in displaying parts of frames and does not ac-
cept parameters to limit the area of the videodisc that is scanned, the com-
mand is typically used during application development only.

Returns

ASCII On success: "OK".

On failure: "ERROR n..."

Binary On success: AX = 0.

On failure: AX = error number.

See also: vdPlay, vdlnit, vdScan, vdSearch, vdSet, vdStep, vdStill.

April 15,1990 Release R 1.0 8-25

Recommended Practices for Interactive Video Portability

vdScan

Examples

ASCII
Scan forward vdScan
from the current (returns) "OK"'
frame

Scan backward on vdScan direction=O,device~l,wait
player 1, do not (returns) "OK"
return until scan
mode Is confirmed

Binary
Scan backward on AX 3083 ;vdScan decimal ID
the default player BX 2 ;number of parameters

ES:DIIO] 15 ;direction decimal ID
ES:DI[41 0 ;direction in which to play (backward)

After return AX 0 ;returns 0 if successful (nonzero if not)

8-26 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdSearch Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default If

extended value as value as parameter
ASCII ASCII not used

chapter Core Chapter number Integer None N/A No action
device Core Logical player, Integer None N/A Default

0-15 player
framel Core Frame number integer None N/A No action

wait Core None N/A None N/A No wait
This command must include a chapter or frame or an error is returned. If device or
walt is specified, at least one other parameter must be specified.

1Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV.

Binary

Command code: 3084 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used
chapter Core 7 Integer Chapter number None No action
device Core 14 Integer Logical player, None Default

1 1 1 3-15 1 player
frame' Core 23 Integer Frame number None No action
wat Core 54 N/A None None No wait
This command must include a chapter or frame or an error is returned. If device or
wait is specified, at least one other parameter must be specified.

1Supported for CAV videodiscs only. All other parameters apply to both CAV and CLV.

Description

Summary vdSearch causes the player to turn video off, immediately search for the
specified frame number or the first frame of the specified chapter number,
and freeze. This command interrupts any other player motion command that
did not include a wait parameter, in which case, the application will not be
able to issue vdSearch until the motion command is complete.

April 15, 1990 Release R 1.0 8-27

Recommended Practices for Interactive Video Portability

vdSearch

The resulting display after vdSearch varies with videodisc type. With CAV
videodiscs, video remains visible. With most CLV videodiscs, vdSearch is
equivalent to searching to the start of a chapter followed by a pause com-
mand. Typically, a CLV pause command automatically blanks video.

Chapter The chapter parameter specifies a chapter number to search to. The player
parameter displays the first frame of the specified chapter (CAV) or pauses and blanks

video (CLV).

Specifying a chapter for a videodisc without chapter numbers causes error
208, (Action not supported by disc). Specifying an illegal chapter number
causes error 216 (Invalid chapter number).

Device parameter The device parameter directs vdSearch to the specified logical player num-
ber regardless of the default player number as set by vdSet defdevice. Spec-
ifying a nonexistent or uninstalled player causes error 160 (Invalid device
number; specifying an uninitialized player causes error 81 (Device not
initialized).

Frame parameter The frame parameter specifies a frame number to search to. The player dis-
plays the specified frame.

Specifying a frame for a CLV videodisc causes error 208, (Action not sup-
ported by disc). Specifying an illegal frame number causes error 215 (Invalid
frame number).

Wait parameter The wait parameter causes VDI Management to wait until the specified
chapter or frame has been reached to return application control. Without
wait, VDI Management returns control as soon as it determines that the com-
mand is legal. No error checking is done to determine if the player actually ac-
cepts the command or acts on it properly. Therefore, syCheckErr must be
used to determine if the player entered an error state while either accepting
or trying to execute the command.

Returns

ASCII On success: "OK".

On failure: "ERROR n..."

Binary On success: AX = 0.

On failure: AX = error number.

See also: vdPlay, vdSet, vdStep, vdStill.

8-28 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdSearch

Examples

ASCII

Search for frame vdSearch frame=23476
23476 (returns) UQKW'

Search for vdSearch chapter--5,device= 1,wait
chapter 5 on (returns) "OK"'
player 1, do not
return until the
chapter has been
reached

Binary

Search for frame AX 3084 ;vdSearch decimal ID
10356 BX I number of parameters

ES:DI[O] 23 ;framne decimal ID
ES:DI[4] 10356 ;frame number for which to search

After return AX 0 ;returns 0 if successful (nonzero if not)

April 15, 1990 Release R 1.0 8-29

Recommended Practices for Interactive Video Portability

vdSet Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter' Core or Associated calling Type Associated return Type Default if

extended value as value as parameter
ASCII ASCII not used

audiol Core 1 (on) I 0 (off) Integer None N/A No action
audio2 Core 1 (on) I 0 (off) Integer None N/A No action
cdisplay Core 1 (on) I 0 (off) Integer None N/A No action
defdevlce Core Logical player, 0-15 Integer None N/A No action
device Core Logical player, 0-15 Integer None N/A Default

I_ _player

door Extended 1 (open) I 0 (closed) Integer None N/A No action
idxdisplay Core 1 (on) I 0 (off) Integer None N/A No action 0
remote Extended 1 (on) I 0 (off) Integer None N/A No action

spin Core 1 (up) J 0 (down) Integer None N/A No action
video Core 1 (on) I 0 (off) Integer None N/A No action

wait Core None N/A None N/A no wait
At least one parameter is required or an error is returned. If device or walt is specified, 9
at least one other parameter must be specified.

1All parameters apply to both CAV and CLV.

8-30 Release R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdSet

Binary

Command code: 3085 decimal.

Parameter' Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used

audiol Core 2 Integer 1 (on) I 0 (off) None No action
audlo2 Core 3 Integer I1 (on) I 0 (off) None No action
cdlsplay Core 6 Integer 1 (on) I 0 (off) None No action
defdevice Core 12 Integer Logical player, 0-15 None No action
device Core 14 Integer Logical player, 0-15 None Default

player

door Extended 18 Integer 1 (open) I 0 (closed) None No action
Idxdisplay Core 29 Real 1 (on) I 0 (off) None No action
remote Extended 39 Integer 1 (on) I 0 (off) None No action
spin Core 41 Integer I (up) I 0 (down) None No action
video *Core 51 Integer 1 (on) I 0 (off) None No action
wait Core 54 N/A None None No wait
At least one parameter is required or an error is returned. If device or wait is specified,
at least one other parameter must be specified.

1A11 parameters apply to both CAV and CLV.

Description

Summary vdSet sets the default logical player number and other player conditions in-
cluding the state of the audio and video channels, the frame and chapter num-
ber displays, the disc spin/park status, whether the door is open or closed,
and whether the user remote control is on or off.

Audiol and The audiol and audio2 parameters enable and disable the player's stereo
audio2 outputs. Setting both audiol and audio2 to zero turns off all player audio.
parameters

Note: Many players automatically route the output of an enabled audio chan-
nel to a disabled channel. For example, if audiolO and audio2=1, the
player may automatically route the output of audio2 to audiol.

Cdlsplay The cdisplay parameter enables and disables the player's chapter-number
parameter display. This display is typically a character generator within the videodisc

player that displays chapter-number information as part of the video signal.

April 15, 1990 Release R 1.0 8-31

Recommended Practices for Interactive Video Portability

vdSet

Defdevice The defdevice parameter sets the default logical player number. VDI Man-
parameter agement directs all videodisc commands to this player number unless a com-

mand contains a device parameter (see below) directing it to a different
player number.

Device parameter The device parameter directs vdSet to the specified logical player number
regardless of the default player number as set by vdSet defdevice. Specify-
ing a nonexistent or uninstalled player causes error 160 (Invalid device num-
ber); specifying an uninitialized player causes error 81 (Device not initialized).

Door parameter The door parameter opens and closes the videodisc player door. If the player
does not support this function, the parameter returns error 87 (Action not
supported by device). VDI implementers should implement door for a player
that supports reporting the door's status even if the player does not support
opening and closing the door from an application.

Door is an extended parameter. Using an unimplemented extended parameter
causes error 48 (Unknown parameter).

Idxdisplay The idxdisplay parameter enable and disable the player's position index dis-
parameter play. The resulting display is in frame numbers for CAV videodiscs and time

for CLV videodiscs. This display is typically a character generator within the
videodisc player that displays videodisc position as part of the video signal.

Remote parameter The remote parameter turns the hand held remote on and off. Remote=O
(off) gives the application software complete control over the videodisc player.
If the player does not support this function, remote returns error 87 (Action
not supported by device).

Remote is an extended parameter. Using an unimplemented extended parameter[
causes error 48 (Unknown parameter).

Spin parameter The spin parameter spins the disc up and down. Spinul (up) causes the
player to spin up and still on frame 1 (or the first available frame). Spinning
the videodisc up also updates the disctype parameter, and sets cdisplay to
undefined for videodiscs that do not support chapter numbers.

Spin-O (down) causes the player to spin down immediately, interrupting any
player motion command not accompanied by the wait parameter, in which
case, the application will not be able to issue vdSet spin-O until the motion
command is complete.

8-32 Release R 1.0 April 15,1990

Section 8. Videodisc commands (vd)

vdSet

Video parameter The video parameter enables and disables the player's video output channel.

Wait parameter With the wait parameter, vdSet does not return application control until the
specified settings have been acknowledged or a player error state is detected.
Without wait, VDI Management returns control as soon as it determines
that the command is legal. No error checking is done to determine if the
player actually accepts the command or acts on it properly. Therefore,
syCheckErr must be used to determine if the player entered an error state
while either accepting or trying to execute the command.

Specifying wait with no other parameter results in error 49 (Insufficient
parameters).

Notes 1. vdSet can be successfully issued any time the player can accept commands,
except that vdSet door-1 (open) can be issued only when spin-O (down)
and the player has actually completed the spin down sequence.

Returns

ASCII On success: "OK'.

On failure: "ERROR n...".

Binary On success: AX = 0.

On failure: Ax = error number.

See also: syCheckErr, vdGetState.

Examples

ASCII

Turn off both vdSet idxdisplay=0,cdisplay=O
number displays (returns) "OK"

Disable hand-held vdSet remote=0,device=1
remote control on (returns) "OK"
player 1

Make logical vdSet defdevice=1
player I the (returns) "OK"
default

Turn on all player vdSetvideo=1,audiol=1,audio2=1
outputS (returns) "OK"

April 15,1990 Release R 1.0 8-33

Recommended Practices for Interactive Video Portability

vdSet

Disable audio vdSet audiol=0
channel 1 (returns) "OK"

Binary

Turn on player AX 3085 ; vdSet decimal ID 0
Index display BX 1 ; number of parameters

ES:DI[0] 29 ; idxdisplay decimal ID
ES:DI[41 1 ; set value to 1 (on)

After return AX 0 ; returns 0 if successful (nonzero if not)

Set video on, AX 3085 ; vdSet decimal ID
audio channel I BX 3 ; number of parameters
on, audio ES:DI[0] 51 ; video decimal ID
channel 2 off ES:DI[4] 1 ; set value to 1 (on)

ES:DI[81 2 ; audiol decimal ID
ES:DI[CI 1 ; set value to 1 (on)
ES:DI[10] 3 ; audio2 decimal ID
ES:DI[14] 0 ; set value to 0 (off)

After return AX 0 ; returns 0 if successful (nonzero if not)

R

8-34 Relems R 1.0 April 15, 1990

Section 8. Videodisc commands (vd)

vdStep Last revision: R 1.0
Type: core

Parameters

ASCII

Parameter' Core or Associated calling Type Associated return Type Default if
extended value as value as parameter

ASCII ASCII not used

device Core Logical player, Integer None N/A Default
0-15 i i I player

direction Core 1 (fwd) I 0 (back) Real None N/A 1
This command can be issued with no parameters.

1 No parameters apply to CLV videodiscs, nor does vdStep alone.

Binary

Command code: 3090 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used

device Core 14 Integer Logical player, None Default
1 1 10-15 player

direction Core 15 IInteger 1 (fwd) I 0 (back) None 1This command can be issued with no parameters.

'No parameters apply to CLV videodiscs, nor does vdStep alone.

Description

Summary vdStep causes the videodisc player to move forward or backward one frame
at a time in a specified direction without blanking the screen. The command
does not return application control until the step is complete. This command
interrupts any other player motion command that did not include a wait pa-
rameter, in which case, the application will not be able to issue vdPlay until
the motion command is complete.

No parameters With no parameters, vdStep steps forward one frame and freezes.

Device parameter The device parameter directs vdStep to the specified logical player number
regardless of the default player number as set by vdSet defdevice. Specify-
ing a nonexistent or uninstalled player causes error 160 (Invalid device num-
ber); specifying an uninitialized player causes error 81 (Device not initialized).

April 15,1990 Release R 1.0 8-35

Recommended Practices for Interactive Video Portability

vdStep

Direction The direction parameter sets the direction of motion for the step, either one
parameter (forward) or zero (backward).

Notes 1. vdStep can be successfully issued any time the spin=1 (up) as set by
vdSet. However, issuing vdStep while a vdPlay sequence is in progress
is not recommended because of the difficulty in determining which frames
will be displayed.

Returns

ASCII On success: UOK"*.

On failure: "ERROR n...'.

Binary On success: AX = 0.

On failure: Ax= error number.

See also: syCheckerr, vdPlay, vdSet.

Examples

ASCII

Step forward I vdStep
frame (returns) "OK"

Step backward vdStep direction=0
one frame (returns) "OK"

Binary examples

Step forward one AX 3090 ; vdStep decimal command ID
frame BX 0 ; number of parameters

After return AX = 0 ; returns 0 if successful (non-zero if not) 0

8-M Release R 1.0 April 15,1990

Section 8. Videodisc commands (vd)

vdStill Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default It

extended value as value as parameter
ASCII ASCII not used

device' Core Logical player, Integer None N/A Default
1 0-15 1 1 1 player

This command can be issued with no parameters.

1This parameter applies to both CAV and CLV videodiscs as does vdStill with no
parameters.

Binary

Command code: 3091 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

_(decimal) not used
deviceT Core 14 Integer Logical player, None Default

I I 1 0-15 1 player
This command can be issued with no parameters.

1This parameter applies to both CAV and CLV videodiscs as does vdStIll with no
parameters.

Description

Summary vdStill causes the videodisc player to immediately stop on the current frame
and sets the motion parameter returned by vdGetState to zero. This com-
mand interrupts any other player motion command that did not include a
wait parameter, in which case, the application will not be able to issue
vdStill until the motion command is complete.

The resulting display after vdStill varies with videodisc type. With CAV
videodiscs, video remains visible. With most CLV videodiscs, vdStill is equiv-
alent to a pause command and the player automatically blanks video.

Device parameter The device parameter directs vdStill to the specified logical player number
regardless of the default player number as set by vdSet defdevice. Specify-
ing a nonexistent or uninstalled player causes error 160 (Invalid device num-
ber); specifying an uninitialized player causes error 81 (Device not initialized).

April 15, 1990 Release R 1.0 8-37

Recommended Practices for Interactive Video Portability

vdStill

Returns

ASCII On success: "OK".
On failure: "ERROR n...".

Binary On success: AX = 0.

On failure: Ax= error number.

See also: vdPlay, vdScan, vdSet.

Examples

ASCII
Stop player motion vdSti]]

(returns) "OK"

Binary

Stop player motion AX 3091 ; vdStill decimal ID
BX 0 ; number of parameters

After return AX 0 ; returns 0 if successful (nonzero if not)

8-38 Release R 1.0 April 15,1990

9 XY-input commands (xy)

This section describes commands that relate to XY-input devices such as
mice, touchscreens, and light pens. These commands provide a uniform way
to obtain information from these devices and define coordinate spaces.
Table 9-1 lists the commands covered in this section, their token numbers,
and their types.

Table 9-1. ASCII command Binary Interface Type -
XY-input command name' token number

names, token (decimal)
numbers, and types xyGetInput 4100 Core

xyGetState 4102 Core
xyinit 4103 Core
xySet 4109 Core

1 Upper or lower case for command names is not significant.
2Compliant implementations must support "Core" commands.

9.1 General information and assumptions

The general information and assumptions in this subsection were used in the
definition of the XY-input commands.

9.1.1 Device mapping
Typically, each physical XY-input device is treated independently and
mapped to a unique logical device number. However, VDI implementers may
opt to support multiple physical devices as a single logical device by mapping
the devices to a single logical device number. If so, VDI Management must
correct the raw values returned by the physical devices so that both devices
return the same value for the same screen position to the application based
on the application-coordinate space established with the xySet command.

April 15, 1990 Release R 1.0 9-1

Recommended Practices for Interactive Video Portability

All mapping must be done when VDI Management is installed. Devices can-
not be remapped at run-time and mapping is not under application control.
Mapping of multiple devices to a single logical device allows a user to use, for
examrle, a mouse and a touchscreen that both appear to be the same device
from the application's viewpoint.

Mapping the keyboard or cursor keypad to an XY-input device is optional.
How such support is provided is an implementation issue and is not con-
sidered by the recommended practices.

Note that the xy service group keeps sets of all parameters that can be re-
turned by xyGetlnput and xyGetState for each logical device.

9.1.2 Handling the graphics plane and cursor
Well behaved applications should not turn off the graphics plane when they
need selection and coordinate input. The plane must active for a device such
as a mouse to display a cursor for making menu selections and similar tasks.

Although some XY-input devices such as touchscreens allow input beyond the
limits of active graphics. applications should limit active XY-input areas to
the active graphics plane. Again, this is necessary for devices such as mice
that rely on the graphics plane for cursor display.

The application can determine if a device supports a graphics c, rsor with the
xyGetState command. If the device does support a cursor, the application
should turn it on for XY input.

9.1.3 Coordinate space mapping
The alignment of specific XY-coordinate values versus graphics is an imple-
mentation issue. However, the minimum and maximum values for X and Y al-
ways map to the edges of the active graphics area with the upper left corner
of the graphics area as the origin, which is equal to xmin and ymin.

For example, if the minimum value for X is 0 and the maximum is 10, these
map to the left and right edges of active graphics (typically 0 and 319 or 0
and 639), respectively. If the minimum and maximum values are -100 and
+100, these still map to the left and right edges of active graphics.

The clipping values for X and Y cannot lie outside of the minimum and maxi-
mum values. Trying to set clipping values outside of the minimum and maxi-
mum values causes an error.

For relative positioning devices such as mice, VDI Management ignores
changes in position which take the cursor outside of the clipping area. For ab-
solute positioning devices such as touchscreens, VDI Management ignores 0

9-2 Release R 1.0 April 15, 1990

.

Section 9. XY-Input commands

button presses outside of the clipping area. Application authors should note
that the behavior differs between the two device classes and should consider
testing applications against both.

Calibrating the XY-coordinate space to the active graphics area is an imple-
mentation and application issue. Typically, if a device such as a touchscreen
requires calibration, the device comes with software to support its calibration
at installation.

9.1.4 Buttons
In the context of the XY-command set, a button is any device that allows sig-
naling the application that a choice has been made. A button press may con-
sist of touching a finger to a touchscreen or pressing a physical button on a
mouse. The command set supports devices with multiple buttons. However,
applications should assume single-button devices for maximum portability.

The command set supports reporting only whether a button has been
pressed. It does not distinguish touchdown, liftoff, or intensity (Z dimension).
Supporting these variations is an application issue and is nonportable.

9.2 Stream-mode and point-mode devices
XY-input devices fall into two broad categories based on how they make posi-
tional information available-stream-mode and point-mode. Some devices
support one mode only, while others support both depending on configuration.

In stream mode, devices make position and selection information available on
a continuous basis. Software can ask for and receive current information at
any time. In point mode, devices make position and selection information
available only when a button is being pressed.

Stream-mode devices can be forced into point mode by restricting their func-
tionality. However, such reduced functionality would place unwarranted re-
strictions on application design. Therefore, VDI Management treats all
XY-input devices as stream-mode devices.

To treat both true stream-mode devices and point-mode devices as stream-

mode devices, the reported coordinates will be one of:

* the current coordinates from a true stream-mode device; or

, the coordinates at the time the button was last pressed for a point-mode
device; or

, the minimum X and Y values (typically 0,0) for a point-mode device for
which no button has been pressed since the device was initialized.

April 15, 1990 Release R 1.0 9-3

Recommended Practices for Interactive Video Portability

xyGetlnput Last revision: R 1.0

Type: core

Parameters

ASCII

Parameter Core or Associated calling Type Associated return Type Default if
extended value as value as parameter

ASCII ASCII not used
buttons Core None N/A Integer sum of bit Integer No action

field, 1 (closed)
110 (open)

device Core Logical input Integer None N/A Default
device, 0-15 1 device

xpos Core None N/A Current X value Integer No action
ypos Core None N/A Current Y value Integer No action
At least one parameter is required or an error is returned. If device is specified, at least
one other parameter must be specified.

Binary

Command code: 4100 decimal.

Parameter Core or Token Type Associated calling Associated return Default if
extended number value value parameter

(decimal) not used
buttons Core 5 Integer Any value Bit field, 1 (closed) No action

I__ _ I 0 (open)
device Core 14 Integer Logical input None Default

device, 0-15 device

xpos Core 61 Integer Any value Current X value No action
ypos Core 67 Integer Any value Current Y value No action
At least one parameter is required or an error is returned. If device is specified, at least
one other parameter must be specified.

Description

Summary xyGetlnput returns the current position and button status of the XY-input
device. 0

9-4 Release R 1.0 April 15, 1990

Section 9. XY-Input commands

xyGetlnput

Buttons The button parameter returns the state of all buttons as a bit field. Each bit

parameter in the bit field can have two states-zero (open) or one (closed). A device can
have up to 32 buttons numbered 0-31.

The binary interface returns a 4-byte bit field. The least significant bit ,'it 0)
of the least significant byte (byte 0) corresponds to button zero, the next bit to
button one, and so on. For example, if an input device had three buttons with
states of closed, open, closed, the binary interface would return 00000101B in
the low byte.

The ASCII interface returns the same bit field as an integer value. For the ex-
ample above, the ASCII interfaces would return "5" (4 + 0 + 1).

Device parameter The device parameter directs xyGetlnput to the specified logical XY-input
device regardless of the default device number as set by xySet defdevice.

Specifying device with no other parameter returns error 49 (Insufficient pa-
rameters). Specifying a nonexistent or uninstalled device returns error 160
(Invalid device number). Specifying an uninitialized device causes error 81
(Device not initialized).

Xpos and ypos The xpos and ypos parameters return the current XY coordinates of the in-

parameters put device according to the scale set by xySet.

Notes 1. xyGetState tbuttons returns the number of buttons available on a device.

2. Trying to queue xyGetInput causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns

ASCII On success: Comma-separated list of values for requested parameters as de-
scribed above.

On failure: "ERROR n...".

Binary On success: AX = 0. Values associated with requested parameters are 32-bit
values of the types given in the binary parameter table above.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: xyGetState, xySet.

April 15, 1990 Release R 1.0 9-5

Recommended Practices for Interactive Video Portability

xyGetlnput

Examples

ASCII

Get current X xyGetlnput xpos
position (returns) "43" ; the current X coordinate is 43

Get current XY xtyGetlnput xposyposbuttons
positions and (returns) "43,110,1" ; XY coordinates are 43,110 and button 1 is closed
state of buttons

Get XY positions xyGetlnput device=2,xpos,ypos
for Input device 2 (returns) "128,145" ;device 2 KY coordinates are 128, 145

Binary

Get current XY AX 4100 ; xyGetlnput decimal ID
and buttons BX 3 ; number of parameters
values ES:DI[Ol 61 ; xpos decimal ID 4

ES:D114] any value ; place holder for xpos value after return
ES:DI[81 67 ; ypos decimal ID
ES:DI[C] any value ; place holder for ypos value after return
ES:DI[10] 5 ;buttons decimal ID
ES:DI[14] any value ;place holder for button bit field after return

After return AX 0 ;returns 0 if successful (nonzero if not)
ES:DI[4] X position ;X position
ES:DI Y position ;Y position
ES:DI[14] bit field ;button status bit field

9-6 Release R 1.0 April 15, 1990

Section 9. XY-Input commands

xyGetState Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default If

extended value as value as parameter
ASCII ASCII not used

cursor Extended None N/A 1 (on) I 0 (off) Integer No action

defdevice Core None N/A Default input Integer No action
I _ device, 0-15

device Core Logical input Integer None N/A Default
device, 0-15 device

tbuttons Core None N/A Total available for Integer No action
device

tdevlces Core None N/A Total installed for, Integer No action
10-15

xmax Core None N/A Maximum possible Integer No action
X value

xmaxclip Core None N/A Current maximum Integer No action
X value

xmln Core None N/A Minimum possible Integer No action
X value

xmlncllp Core None N/A Current minimum Integer No action
X value

ymax Core None N/A Maximum possible Integer No action
Y value I

ymaxclip Core None N/A Current maximum Integer No action
Y value

ymin Core None N/A Minimum possible Integer No action
Y value

yminclip Core None N/A Current minimum Integer No action
Y value

At least one parameter is required or an error is returned. If device is specified, at least
one other parameter must be specified.

April 15, 1990 Release R 1.0 9-7

Recommended Practices for Interactive Video Portability

xyGetState

Binary

Command code: 4102 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used

cursor Extended 11 Integer Any value 1 (on) I 0 (off) No action
defdevice Core 12 Integer Any value Default input No action

I _device, 0-15
device Core 14 Integer Logical input None Default

device, 0-15 device

tbuttons Core 44 Integer Any value Total available for No action
device

tdevlces Core 45 Integer Any value Total installed for, No action
1 1 0-15 .r
xmax Core 56 Integer Any value Maximum possible No action

X value
xmaxclip Core 57 Integer Any value Current maximum No action

X value
xmin Core 58 Integer Any value Minimum possible No action

X value
xmlnclip Core 59 Integer Any value Current minimum No action

X value
ymax Core 62 Integer Any value Maximum possible No action

I_ I Y value

ymaxclip Core 63 Integer Any value Current maximum No action
Y value

ymin Core 64 Integer Any value Minimum possible No action
Y value

yminclip Core 65 Integer Any value Current minimum No action
V value

At least one parameter is required or an error is returned. If device is specified, at least
one other parameter must be specified.

Description 0

Summary xyGetState returns information about the current values of the coordinate
space, and available devices and capabilities. VDI Management maintains a
copy of device-specific parameters including coordinates for each logical
device. 0

9-8 Release R 1.0 April 15, 1990

0

Section 9. XY-Input commands

xyGetState

Cursor parameter The cursor parameter returns one if the graphics cursor is visible. Cursor
returns zero if the input device supports a cursor that is not visible or the de-
vice does not support a cursor, in which case, the cursor must always be off.

Cursor is an extended parameter. Using an unimplemented extended parameterI
causes error 48 (Unknown parameter). I

Defdevlce The defdevice parameter returns the logical number of the default XY-input
parameter device as by xySet defdevice. VDI management directs all XY commands to

this device unless a command includes a device parameter (see below) direct-
ing it to a different input device.

Device parameter The device parameter directs xyGetState to the specified logical device
number regardless of the default device number as set by xySet defdevice.
Because, in general, device affects the command with which it is associated
only, the parameter does not affect the return value for defdevice (see
above) when the two parameters are used together.

Specifying device with no other parameter returns error 49 (Insufficient pa-
rameters). Specifying a nonexistent or uninstalled device returns error 160
(Invalid device number). Specifying an uninitialized device causes error 81
(Device not initialized).

Tbuttons The tbuttons parameter returns the total number of buttons available for
parameter the default or specified XY-input device.

Tdevices The tdevices parameter returns the total number of logical XY-input devices
parameter for which VDI Management was configured at installation. If only one device

is installed, it is numbered zero and tdevices returns one. This parameter
alerts the application to systems that have more than one available input de-
vice, for example a mouse and touch screen.

Xmin, ymin, The xmin, ymin, xmax, ymax parameters return the current scaling of the
xmax, and ymax XY-coordinate system. The xzmin and ymin values are the coordinates corre-
parameters sponding to the physical location of the upper left corner of the active graph-

ics area. The max and ymax values correspond to the lower right corner of
the active graphics area. VDI Management scales absolute positioning infor-
mation to the space defined by these parameters.

Aprl 15,1990 Release R 1.0 9-9

Recommended Practices for Interactive Video Portability

xyGetState

Xminclip, The xminclip, ymincip, xmaxclip, and ymaxclip parameters return the
ymincllp, area within the XY-coordinate space within which changes of position are
xmaxclip, and reported.
ymaxclip 0
parameters

Parameters If a parameter causes an error, xyGetState returns immediately with the
resulting In errors error message. The command does not return partial responses for other pa-

rameters that did not cause errors.

Notes 1. Trying to queue xyGetState causes error 177 (Command cannot be
queued) at the time of the attempt.

Returns 0

ASCII On success: Comma-separated list of values for requested parameters as

described above.

On failure: "ERROR n...'.

Binary On success: AX = 0. Values associated with requested parameters are 32-bit
values of the types given in the binary parameter table above.

On failure: AX = error number. Any return values in the parameter block ad-
dressed by ES:DI are undefined and should be ignored.

See also: syGetState, vdGetState, vmGetState, xyGetlnput, xyInit, xySet.

Examples 0

ASCII

Get total devices, xyGetState tdevices,defdevice
and default device (returns) "21" ; two devices, number 1 is selected

Get current xyGetState xminymin,xmax,ymax 0
XY-coordinate (returns) "0,0,639,199" ; x values will be between 0 and 639,
space ; and y values between 0 and 199

Get available xyGetState thuttons,device=2
buttons for (returns) "3" ; three buttons available
device 2 0

9-10 Release R 1.0 April 15, 1990

Section 9. XY-Input commands

xyGetState

Binary

Determine If AX 4102 ; xyGetState decimal ID
cursor Is on BX 1 ; number of parameters

ES:DI[OJ 11 ,cursor decimal ID
ES:DI[4] any value ;place holder for cursor value after return

After return AX 0 ;returns 0 if successful (nonzero if not)
ES:DI[4] 1 ;graphics cursor is on (0= off)

April 15, 1990 Release R 1.0 9-11

Recommended Practices for Interactive Video Portability

xylnit Last revision: R 1.0

Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default if

extended value as value as parameter
ASCII ASCII not used

device Core Logical input Integer None N/A Default
_ device, 0-15 I I I device

This command can be issued with no parameters.

Binary

Command code: 4103 decimal.

Parameter Core or Token Type Associated calling Associated return Default If
extended number value value parameter

(decimal) not used
device Core 14 Integer Logical input None Default

I I I device, 0-15 device
This command can be issued with no parameters.

Description

Summary xylnit initializes XY-input hardware and the xy service group, placing both
in a known state. xylnit must be issued for each attached XY-input device
that will be used by the application. 0

Device parameter The device parameter specifies the logical number of the XY-input device to
be initialized. If device is omitted, xylnit initializes the default device as set
by xySet defdevice. If xySet has not been used to set a default input device,
the default device is defined to be number zero. xyInit does not change the •
default input device if a device other than the default is specified. To change
the default, use xySet defdevice.

Specifying a nonexistent or uninstalled device returns error 160 (Invalid de-
vice number).

9-12 Release R 1.0 April 15, 1990

Section 9. XY-input commands

xylnit

Conditions set by xylnit sets the parameters in the following table to the specified values.
xylnlt

Parameter values set by xylnlt
Parameter Value Command reference

tbuttons Total available for device none
_________________being initialized

tdevices Total instalied, 0-15 none
xmnax 639 xySet
xmnaxclip 639 xySet
xmin 0 xySet
xmlncllp 0 xySet
xpos 0 xySet
ymax 199 xySet
ymaxcllp 199 xySet
ymlin 0 xySet
ymlinclip 0 xySet

ypos 0 xySet

Notes 1. xyGetState tdevices returns the total number of XY-input devices for
which VDI Management was installed. This command can be used after
the first xy~nit; to determine the number of additional devices to initialize.

2. Trying to queue zylnit; causes error 177 (Command cannot be queued) at
the time of the attempt.

Returns

ASCII On success: "O1r.

On failure: "ERROR n. ..

Binary On success: AX = 0.

On failure: AX = error number.

See also: sylnit, vdlnit, vmlnit, xyGetState, xySet.

April 15, 1990 Release R 1.0 9-13

Recommended Practices for Interactive Video Portability

xylnit

Examples

ASCII
Initialize device 0 xyInit
and xy service (returns) "OK" ; first time command is issued
group

Initialize device 1 xylnit device=l
(returns) "OiK' ; device 1 successfully initialized

Binary 0

Initialize device 0 AX 4103 ; xylnit decimal ID
and xy service BX 0 ; number of parameters
group

After return AX 0 ; returns 0 if successful (nonzero if not)

9-14 Release R 1.0 April 15,1990

Section 9. XY-input commands

xySet Last revision: R 1.0
Type: core

Parameters

ASCII
Parameter Core or Associated calling Type Associated return Type Default If

extended value as value as parameter
ASCII ASCII not used

cursor Extended 1 (on) I 0 (off) Integer None N/A No action

defdevice Core Logical input Integer None N/A No action
I device, 0-15

device Core Logical input Integer None N/A Default
device, 0-15 device

xmax Core Maximum possible Integer None N/A No action
X value I I

xmaxclip Core Current maximum Integer None N/A No action
X value

xmin Core Minimum possible Integer None N/A No action
X value I I

xminclip Core Current minimum Integer None N/A No action
X value

xpos Core X position Integer None N/A No action
ymax Core Maximum possible Integer None N/A No action

Y value I I
ymaxclip Core Current maximum Integer None N/A No action

Y value
ymln Core Minimum possible Integer None N/A No action

Y value
ymlnclip Core Current minimum Integer None N/A No action

Y value

ypos Core Y position Integer None N/A No action
At least one parameter is required or an error is returned. If device is specified, at least
one other parameter must be specified.

April 15,1990 Release R 1.0 9-15

Recommended Practices for Interactive Video Portability

xySet

Binary

Command code: 4109 decimal.

Parameter Core or Token Type Associated calling Associated return Default if
extended number value value parameter

(decimal) not used

cursor Extended 11 Integer 1 (on) I 0 (off) None No action

defdevice Core 12 Integer Logical input None No action

I device, 0-15

device Core 14 Integer Logical input None Default
I device, 0-15 device

xmax Core 56 Integer Maximum possible None No action
X value

xmaxclip Core 57 Integer Current maximum None No action
X value

xmin Core 58 Integer Minimum possible None No action
X value

xminclip Core 59 Integer Current minimum None No action
I X value _

xpos Core 61 Integer X position None No action
ymax Core 62 Integer Maximum possible None No action

Y value
ymaxcllp Core 63 Integer Current maximum None No action

I Y value I

ymin Core 64 Integer Minimum possible None No action
Y value

yminclip Core 65 Integer Current minimum None No action
Y value

ypos Core 67 Integer Y position None No action
At least one parameter is required or an error is returned. If device is specified, at least
one other parameter must be specified.

Description •

Summary xySet defines the XY-coordinate space, sets the default input device, turns
the cursor on and off, and sets the current XY coordinates. Each parameter
stays in effect for either the current or specified device regardless of the
graphics mode until reset with zySet or xylnit. •

9-16 Release R 1.0 April 15,1990

Section 9. XY-input commands

xySet

Cursor parameter The cursor parameter enables and disables a graphics cursor if one is avail-
able. For example, if the device is a mouse, xySet cursor=1 enables the cur-
sor and makes it visible. Updating the position of such a cursor is a
background function. If the input device does not support a cursor, turning
the cursor on returns error 87 (Action not supported by device).

Cursor is an extended parameter. Using an unimplemented extended parameter
causes error 48 (Unknown parameter).

Defdevice The defdevice parameter specifies the default input device to be used when
parameter more than one input device is available. Specifying a nonexistent or unin-

stalled device returns error 160 (Invalid device number). Specifying an unini-
tialized device causes error 81 (Device not initialized).

Device parameter The device parameter directs xySet to the specified logical device number
regardless of the default input device as set by xySet defdevice (see above).

Specifying device with no other parameter returns error 49 (Insufficient pa-
rameters). Specifying a nonexistent or uninstalled device returns error 160
(Invalid device number). Specifying an uninitialized device causes error 81
(Device not initialized).

Xmin, ymin, The xmin, ymin, xmax, and ymax parameters set the scaling of the XY-co-
xmax, and ymax ordinate space to the physical screen. The values correspond to the upper left
parameters and lower right corners of the active graphics display area. Legal Values

range -32768-32767. Regardless of the values, xmin and xmax always map
to the left and right edges of the screen, respectively; ymin and ymax always
map to the top and bottom edges.

Xminclip, The xmincip, yminclip, xmaxclip, and ymaxcip parameters define a con-
ymlnclip, strained area within the coordinate space for reporting coordinate movement.
xmaxcllp, and Coordinates values are returned only within the defined clip area. The clip-
ymaxcllp ping area is initially defined to be the same as xmin, ymin, xmax, and
parameters ymax Specifying a clipping value outside the scaling of the XY-coordinate

system (see above) returns error 51 (Parameter value invalid or out of range).

Xpos and ypos The xpos and ypos parameters set the XY coordinates to a specific location.
parameters These parameters are especially useful for initially positioning the XY-input

device. An xpos or ypos value outside the clipping values (see above) sets
the coordinate to the limit of the respective clipping range.

April 15, 1990 Release R 1.0 9-17

Recommended Practices for Interactive Video Portability

xySet

Notes 1. xyGetState tdevices returns the number of input devices that can be se-
lected by xySet defdievice, assuming all devices for which VDI Manage-
ment was installed are available.

Returns

ASCII On success: "OIC.

On failure: "ERROR n.."

Binary On success: AX = 0.

On failure: AX = error number.

See also: iqGetlnput, xyGetState, xylnit.

Examples

ASCII

Set XY position xySet xpos=40,ypos=50
(returns) "OK" ; IY position is 40,50

Turn device 2 xySet device=2,cursor=1
cursor on (returns) "OK"'

Match Coordinate xySet xmin=0,ymin=0,xmax=639,ymax=479
space to VGA max (returns) "OK'

Set maximum xySet xmaxcip=200,ymaxclip=200
clipping values (returns) "OK"' ; report change if XC or Y is less than 200

Binary examples

Turn on XY cursor AX 4109 ; xySet decimal ID
BIC 1 ; number of parameters
ES:DIIIO] 11 ;cursor decimal ID
ES:D114]1 I turn cursor on

After return AX 0 ;returns 0 if successful (nonzero if not)

9-18 Release R 1.0 April 15,1990

A Default positions of
graphics relative to video

This appendix explains how to determine the size and position of graphics
relative to background video. To ensure the compatibility of hardware, VDI
Management software, and applications, the active graphics screen for a
given application should always have the same position relative to the active
video and be of the same size. However, the proper position of graphics can
vary with the video standard (NTSC versus PAL), the graphics mode, and the
adapter type (VGA versus CGA and EGA).

Although exact registration and graphics screen sizes-within one or two pix-
els or lines-may require user calibration using a position reference frame,
proper registration can be calculated with reasonable accuracy. The following
sections explain how to determine horizontal and vertical graphics positions
for both NTSC and PAL video.

Because no absolute specification exists for the size and position of the back-
ground video and because the position can vary in post-production generation of
videodiscs, the recommended positions in this appendix are guidelines for a
nominal video image. If exact positioning is critical, the videodisc for the application
should include a reference frame for user calibration at run time. This requires VDI
Management implementations to support dynamic repositioning of graphics.

Proper registration requires accurately setting the graphics width as well as the
origin. Correctly setting the origin but using the wrong width results in improper
registration on the right side of the video. Generating the graphics clock so that
exactly 912 clock cycles equal 1 horizontal period assures proper width. If an
overlay method does not guarantee this relationship, implementers must provide
a way to adjust the graphics width and the reference frame must provide both left
and right registration information.

April 15, 1990 Release R 1.0 A-1

Recommended Practices for Interactive Video Portability

A.1 Terms of reference
Figure A-1 shows a simplified display screen including video, graphics, sync
signals, and blanking intervals. For simplicity, the figure shows separate hor-
izontal and vertical sync signals. Although these signals may be thought of as
separate for determining graphics positions, they may be combined into a
composite signal in actual monitors.

Figure A-1.
A simplified

diagram of an Vertical mync Vertical

overlayed display blanking

using CGA or EGA
graphics Border

Active
Active graphics ve ovideo

SHoriz.
lankin Active video

The remaining sections of this appendix use the following terms:

1. Active graphics: The portion of the screen where graphics can appear.

2. Active video: The portion of the screen where video can appear. This is
the portion of horizontal and vertical video not blanked by horizontal
and vertical blanking.

3. Border. The portion of active video not covered by active graphics.

4. Horizontal blanking: The time period during which the display is blank
for horizontal retracement.

A-2 Release R 1.0 April 15, 1990

Appendix A. Default positions of
graphics relative to video

5. Horizontal sync: The pulse used to synchronize the horizontal scan of
the video monitor.

6. Vertical blanking: The time period during which the display is blank for
vertical retracement.

7. Vertical sync: The pulse used to synchronize the vertical scan of the
video monitor.

The values used in the figures and calculations for horizontal and vertical
positioning are based on accepted definitions for NTSC and PAL video. The
corresponding standards are EIA RS-170A and CCIR 470-1, respectively.

A.2 Special considerations for VGA graphics
VGA graphics require special consideration for two reasons. The first deals
with the differences in background video signals and vertical timing. The sec-
ond deals with differences in active graphics sizes for the same video modes
when considering VGA graphics versus CGA and EGA graphics.

A.2.1 Differences in signals and timing

CGA and EGA graphics overlay systems typically use standard 15-kHz back-
ground video. For these systems, accepted video standards dictate blanking
interval widths and the starts of horizontal and vertical sync. Therefore, CGA
and EGA systems can use the starts of horizontal and vertical sync as abso-
lute references for graphics positioning and rely on constant horizontal signal
widths and vertical timing for a given video standard, either NTSC or PAL.

However, VGA systems typically use scan-altered, non-15-kHz modes. The
background video for VGA may not include horizontal or vertical sync and
blanking interval widths may vary. Therefore, graphics positioning must use
the nominal start of active video as a reference instead of the start of sync
and positioning must be relative to the active video rather than the total
video including blanking.

A.2.2 Differences in the size of active graphics

By increasing pixel width, VGA graphics cover the entire width of active
video, leaving borders at the top and bottom of active graphics only. However,
a CGA or EGA adapter used to display graphics in the same mode leaves a
border around all edges of the active graphics.

For example, VGA mode 6 (640 x 200) graphics cover the entire width of the
active video, while mode 6 (640 x 200) graphics from a CGA or EGA adapter
leave a visible video border around all edges of the active graphics. Therefore,
compliant VDI Management implementations for VGA overlay systems must

April 15, 1990 Release R 1.0 A-3

Recommended Practices for Interactive Video Portability

support both graphics that map to the left and right edges of active video
and, for those modes that are CGA/EGA-compatible, emulations of true CGA 0
and EGA systems that leave a border around all edges of active graphics.

A.3 Horizontal positions
This section explains how to determine the start and end of active graphics
relative to a horizontal video signal. The horizontal position of graphics rela-
tive to video can be expressed as a proportion of the horizontal video signal
width, which is abbreviated H. Using proportions simplifies determining posi-
tions for scan-altered systems.

Because horizontal sync is the timing reference from which all horizontal
components are measured in 15-kHz video, true CGA and EGA graphics use
the start of horizontal sync as a reference and positions can be expressed as
proportions of total H. Because VGA video and graphics may not include a
horizontal sync signal and the width of the blanking intervals may vary, VGA
graphics modes that emulate CGA and EGA modes are measured from the •
nominal start of active video and expressed as a proportion of active H.

A.3.1 General assumptions

The following general assumptions are used in determining the horizontal
positions of active graphics relative to NTSC and PAL video.

1. The optimal position for active graphics is centered horizontally in the
active video.

Basis: Nominal common practice. However, variations in graphics posi-
tioning due to monitor centering adjustments cannot be accounted for in
the recommendations in this appendix.

2. One horizontal line of graphics is 912 pixels in length. The active graphics
consist of a 640-pixel window.

Basis: Apple II and IBM CGA standards define a 640-pixel active graph-
ics window in a 912-pixel horizontal line. The graphics are about 85% of
the total displayable window to allow for monitor overscan.This has be-
come a de facto standard that is also used by EGA graphics. CGA- and
EGA-based overlay systems generally follow this standard.

3. Because color graphics standards are based on a line length of 912 pixels,
11912 H or approximately 0.0011 H is the finest positioning resolution
available

Basis: Original IBM CGA implementation.

3. Graphics with 320-pixel active areas cover exactly the same horizontal
area as graphics with 640-pixel active areas. Therefore, starting and •

A-4 Release R 1.0 April 15, 1990 e0

Appendix A. Default positions of
graphics relative to video

ending positions based on calculations using 640 pixels are valid for 320-
pixel graphics.

Basis: The pixel width for 320-pixel graphics modes is exactly twice the
width for 640-pixel graphics and the number of pixels for 320-pixel
graphics is exactly one half the number of pixels for 640-pixel modes.

A.3.2 NTSC
Figure A-2 shows the timing for one line of 15-kHz NTSC video including the
position of CGA and EGA 640- or 320-pixel graphics. The timing values in
the figure are either taken directly from or derived from the accepted stan-
dard for NTSC video. The calculations in this section are based on the values
shown in the figure.

Figure A-2.
One horizontal line I- 10.9±0.2 52.656±0.2

of NTSC video with
640- or 320-pixel I 4

overlayed graphics / 9.4±0.1

Active graphics
(640- or 320-pixe] C GAGA)

SSynCj 4.042
4.042

Blankig t Active video

All values in microseconds.

Position of true CGA and EGA graphics

To determine the correct position of true CGA and EGA graphics over video
as a fraction of a horizontal, 15.734-kHz, NTSC, video signal given the timing
shown in Figure A-2, use the following equations and assumptions for 640-
pixel graphics. Note that the resulting positions hold for 320-pixel graphics.

The general equation for the starting position of true CGA and EGA graphics
centered in active video as a proportion of total H using the start of sync as a
reference can be expressed as:

AVatart + (Pac ve - PdispXayed) x Pwidh

(1) GHstar = 2

April 15, 1990 Release R 1.0 A-5

Recommended Practices for Interactive Video Portability

Similarly, the general equation for determining the ending position of true
CGA and EGA graphics as a proportion of total H can be expressed as:

(Pactive - Pdisplayed) X PwidthA Vstart + 2 + (Pdisplayed x Pwidth)

(2) GHend = Htow

Where, GH stands for "graphics horizontal," and for NTSC video and 640-

pixel resolutions:

1. The nominal start of active video is:

AVstart = 9.4 jis

from Figure A-2.

2. The total number of pixels corresponding to the width of active video is:

= 52.656 ps x 912 pixels 756 pixels
63.556 ps

from Figure A-2 and the de facto standard (see assumption 2 in Sec-

tion A.3.1).

3. The total number of displayed pixels is:

Pdisptayed = 640 pixels

from the de facto standard (see assumption 2 in Section A.3. 1).

4. The total width of the video signal is

Htow = 63.556 ps

from Figure A-2.

5. The width of one pixel is

Pwidth = 63.556ps = 0.06969 ps

912

Solving equation 1 for the starting position of 640-pixel graphics yields:

(756 - 640) x 0.069692
GHstaH = 6355= 0.2115 HtOt63.556

Solving equation 2 for the ending position of 640-pixel graphics yields:

9.4+ (756 - 640) x 0.06969G~n = 2 + (640 x 0.06969)=0.13Hu

GHendz 2 63.556 0.9133Htow

A-6 Release R 1.0 April 15, 1990

Appendix A. Default positions of
graphics relative to video

For NTSC video these values equate to left and right border widths of 4.042
gs and a start of active graphics at approximately 13.4 gs after the start of
horizontal sync. The latter value can be reliably verified with an accurate
oscilloscope.

Position of VGA graphics emulating
CGA and EGA modes

True VGA graphics map to the edges of active video and require no calcula-
tions. However, the starting and ending positions of VGA graphics emulating
CGA and EGA graphics must be calculated. To determine the correct position
of such graphics over video as a fraction of a horizontal, 15.734-kHz, NTSC,
video signal given the timing shown in Figure A-2, use the following equa-
tions and assumption for 640-pixel graphics. Note that the resulting positions
hold for 320-pixel graphics.

The general equation for the starting position of VGA emulating CGA and
EGA graphics centered in active video as a proportion of active H using the
nominal start of video as a reference can be expressed as:

(Pactive - Pdisplayed) X Pwi&h
(3) OHstc=t 2

Similarly, the general equation for determining the ending position of VGA
graphics emulating CGA and EGA graphics as a proportion of active H can be
expressed as:

(Pactive - Pdisplayed) x Pwidth)

(4) GHed = 2 +Ppe whHactive

These equations are identical to equations 1 and 2 in the previous section
except that AVtva is now equal to zero and therefore dropped from the equa-
tions and that Htow has been changed to Hactim where:

Hactie = 52.656 Ats

from Figure A-2.

Solving equation 3 for the starting position of 640-pixel graphics yields:

(756 - 640) x 0.06969

GHt, = 2 0.0768 Hactive
52.656

April 15,1990 Release R 1.0 A-7

Recommended Practices for Interactive Video Portability

Solving equation 4 for the ending position of 640-pixel graphics yields:

(756 - 640) x 0.06969 + (640 x 0.06969)

GHend2 0.924 HactiveG~end =52.656

A.3.3 PAL
Figure A-3 shows the timing for one line of 15-kHz PAL video including the
position of CGA and EGA 640- and 320-pixel graphics. The timing values in
the figure are either taken directly from or derived from the accepted stan-
dard for PAL video. The calculations in this section are based on the values
shown in the figure.

Figure A-3.
One horizontal line 12.05 - 51.95
of PAL video with 1 .I5.2

640- and 320-pixel
overlayed graphics 10.5±.5m

Blanking - Active video

All values in microseconds.

The general equations used to calculate graphics positions for PAL are identi-
cal to those for NTSC. However, the values used for the equation variables 0
differ because of differences in horizontal timing. For convenience, all equa-
tions and variable values are repeated in the following sections.

Position of true CGA and EGA graphics

To determine the correct position of true CGA and EGA graphics over video
as a fraction of a horizontal, 15.625-kHz, PAL, video signal given the timing
shown in Figure A-3, use the following equations and assumptions for 640-
pixel graphics. Note that the resulting positions hold for 320-pixel graphics. •

A-8 Release R 1.0 April 15, 1990

Appendix A. Default positions of
graphics relative to video

The general equation for the starting position of true CGA and EGA graphics
centered in active video as a proportion of total H using the start of horizon-
tal sync as a reference can be expressed as:

(Pactive - Pdisplayed) X Pwidth

(5) GHstart =

Similarly, the general equation for determining the ending position of true
CGA and EGA graphics as a proportion total H width can be expressed as:

A Vart + (Pactive - Pdisplayed) x PwidthS+2 + (Pdispiayed)< Pwidth)

(6) GHend= Htow

Where, for PAL video and 640-pixel resolutions:

1. The nominal start of active video is:

AVstart = 10.5 Ps

from Figure A-3.

2. The total number of pixels corresponding to the width of active video is:

Pactive = 51.95 1s x 912 pixels - 740 pixels
64.0 ps

from Figure A-3 and the de facto standard (see assumption 2 in Sec-
tion A.3.1).

3. The total number of displayed pixels is:

Pdisplayed = 640 pixels

from the de facto standard (see assumption 2 in Section A.3. 1).

4. The total width of the video signal is

Htow = 64.0

from Figure A-3.

5. The width of one pixel is

Pwidth = 6 4 .0 ps = 0.07018 jis
912

FSniving equation 5 for the starting position of 640-pixel graphics yields:

10.5+ (740 - 640) x 0.07018

GHtart = 2 = 0.2189 Htowol
64.0

April 15, 1990 Release R 1.0 A-9

Recommended Practices for Interactive Video Portability

Solving equation 6 for the ending position of 640-pixel graphics yields:

10.5+ (740 - 640) x 0.07018 + (640 x 0.07018)

GHend 2 64.0 0.9207 Hotal

For PAL video these values equate to left and right border widths of 3.509 4s
and a start of active graphics at approximately 14.0 g±s after the start of hori-
zontal sync. The latter value can be reliably verified with an accurate
oscilloscope.

Position of VGA graphics emulating
CGA and EGA modes

True VGA graphics map to the edges of active video and require no calcula-
tions. However, the starting and ending positions of VGA graphics emulating
CGA and EGA graphics must be calculated. To determine the correct position
of such graphics over video as a fraction of a horizontal, 15.625-kHz, PAL, 0
video signal given the timing shown in Figure A-3, use the following equa-
tions and assumptions for 640-pixel graphics. Note that the resulting posi-
tions hold for 320-pixel graphics.

The general equation for the starting position of VGA emulating CGA and
EGA graphics centered in active video as a proportion of active H using the
nominal start of video as a reference can be expressed as:

(Pative - Pisplayed) X Pwidth
(7) GHatart = Hctwe •

Similarly, the general equation for determining the ending position of VGA
graphics emulating CGA and EGA graphics as a proportion of active video
can be expressed as:

(Pactive - Pdiaplayed) X Pwidth
(8) H~d= 2+ (Pdisplayed X Pwidth)

(8) GHend =2 atvHaetive

These equations are identical to equations 5 and 6 in the previous section ex-
cept thatAVsta rt is now equal to zero and therefore dropped from the equa-
tions and that Htotoi has been changed to Hactive where:

Hacte = 51.95 Ps

from Figure A-3. •

A-10 Release R 1.0 April 15,1990

Appendix A. Default positions of
graphics relative to video

Solving equation 7 for the starting position of 640-pixel graphics yields:

(740 - 640) x 0.07018

GHstart = 2 = 0.0675 Hactiue
51.95

Solving equation 8 for the ending position of 640-pixel graphics yields:

(740 - 640) x 0.070182 + (640 x 0.07018)
GHe2 = 51.95 = 0.9321 Hactive

A.4 Vertical positions

This section explains how to determine the start and end of active graphics
relative to vertical video timing. The vertical position of graphics can be ex-
pressed both in lines and as a proportion of vertical timing, which is abbre-
viated V. Using proportions simplifies determining positions for scan-altered
systems.

A.4.1 General assumptions

The following general assumptions are used in determining the vertical posi-
tions of active graphics relative to NTSC and PAL video.

1. The optimal position for active graphics is centered vertically in the active
video.

Basis: Nominal common practice. However, note that variations in
graphics positioning due to monitor centering adjustments cannot be
accounted for in the recommendations in this appendix.

2. Vertical resolution is expressed relative to fields, not frames. VGA 480-line
mode converts to 240 lines for single-field for computations.

Basis: Observation.

A.4.2 NTSC

Figure A-4 shows the timing for 15-kHz NTSC video including the position of
200-line graphics. The timing values in the figure are either taken directly
from or derived from the accepted standard for NTSC video. The calculations
in this section are based on the values shown in the figure.

April 15,1990 Release R 1.0 A-11

Recommended Practices for Interactive Video Portability

Figure A-4.
NTSC vertical 262.5

timing with 200-line 20-211

overlayed graphics 3 241.5-242.5
17-181 Active hics

(200 lns

20 21

sync
Active video

akg

All values in lines.

Position of graphics in lines relative to vertical sync
To determine the correct position of graphics over video as the number of
lines relative to the start of vertical sync for a 15.734-kHz, NTSC, video sig-
nal given the timing shown in Figure A-4, use the following equations and
assumptions. Note that the calculations can easily be modified for different
numbers of lines.

Note: The NTSC standard specifies a vertical blanking interval of 21 lines
with error limits of +0 and -1 lines and a total vertical field of 262.5 lines.
The calculations below assume a blanking interval of 21 lines, an active video
height of 241.5 lines, and a nominal start of active video at 18 lines from the
start of vertical sync.

The general equation for the starting position of graphics centered in active
video as the number of lines relative to the start of vertical sync can be
expressed as:

(9) GVsjart = AVsta,t + (Vacgwe - Gacgwe)
2

Similarly, the general equation for the ending position of graphics as the
number of lines relative to the start of vertical sync can be expressed as:

(10) GVend = AVsta + (2Vive - Gactiv) + Gativ

2

Where GV stands for "graphics vertical," and for NTSC video:

1. The nominal start of active video is:

AVstart = 18 lines

from Figure A-4. 0

A-12 Release R 1.0 April 15, 1990

Appendix A. Default positions of
graphics relative to video

2. The number of active video lines is:

Vactive = 241.5 lines

from Figure A-4.

3. The number of active graphics lines is either:

Gactive = 200 lines

for 640 x 200 and 320 x 200 graphics, or:

G.ctive = 240 lines

for 640 x 480 graphics (see assumption 2 in Section A.4.1.)

Starting and ending positions for 200-line graphi's
Solving equation 9 for the start of 200-line graphics yields:

GVstart = 18+ 241.5-200 39 lines

2

Solving equation 10 for the end of 200-line graphics yields

241.5 - 200
GVend = 18+ 2 + 200 - 239 lines

Starting and ending positions for 240-line (640 x 480) graphics
Solving equation 9 for the start of 240line graphics yields:

241.5 - 240
GVstar = 18+ 2 = 18.75 lines

Solving equation 10 for the end of 240-line graphics yields

241.5 - 240
GVend = 18 + 2 + 240 = 258.75 lines2

Given the derived values above, VGA 240-line modes actually leave borders
of 1 line and 0.5 lines. To avoid screen disturbance, hardware implementers
may want to blank these borders. Although this is not a compliance require-
ment, it is recommended.

Position of graphics as a proportion of total video.
To calculate the position of graphics as a proportion of total vertical timing,
simply change equations 9 and 10 to yield:

AVsagr + (V, ive - Gacve)

(11) GVstarg= 2

April 15, 1990 Release R 1.0 A-1 3

Recommended Practices for Interactive Video Portability

(12) GVed = AVstart + 2 + Gactive
(12) ~end=VtotaL

All terms are defined in the previous section except Vtota, which for NTSC

video is:

Vtotai = 262.5 lines S

from Figure A-4.

Starting and ending positions for 200-line graphics

Borrowing from the previous section, the starting and ending positions for
200-line graphics as proportions of total V are simply:

39

GVstart = 3 = 0.1486 Vgotw

GVend = 2 = 0.9105 Vtow

Starting and ending positions for 240-line (640 x 480) graphics

Borrowing from the previous section, the starting and ending positions for
240-line graphics as proportions of total V are simply:

18.75
GVstart = 18-= 0.0714 VgotW

262.5

258.75
GVtend = 258.7 0.9857 Vtow262.5

Position of graphics as a proportion of active video
To calculate the position of graphics as a proportion of active vertical timing
using the nominal start of video as a reference, simply change equations 11
and 12 to yield:

(Vactive - Gcti) •

(13) GVtart - 2
Vacaive

(Vacti m - G aciae) + G di m

(14) GV,,d= 2 •

A-1 4 Release R 1.0 April 15, 1990

Appendix A. Default positions of
graphics relative to video

All terms are defined in previous sections except Vactive, which for NTSC
video is:

Vactive = 241.5 lines

from Figure A-4.

Starting and ending positions for 200-line graphics

Borrowing from previous sections, the starting and ending positions for 200-
line graphics as proportions of active V are simply:

(241.5 - 200)

GVstart = 2 = 0.0859 Vactive
241.5

(241.5 - 200) +200
2 +0

GVend 2 2 = 0.9141 Vactive
241.5

Starting and ending positions for 240-line (640 x 480) graphics

Borrowing from previous sections, the starting and ending positions for 240-
line graphics as proportions of active V are simply:

(241.5 - 240)

GVstart = 2 = 0.0031 Vactive
241.5

(241.5 - 240)
2+ 240

GVend = = 0.9969 Vactive
241.5

A.4.3 PAL

Figure A-5 shows the timing for 15-kHz PAL video including the position of
200-line graphics. The timing values in the figure are either taken directly
from or derived from the accepted standard for PAL video. The calculations
in this section are based on the values shown in the figure.

April 15,1990 Release R 1.0 A-1 5

Recommended Practices for Interactive Video Portability

Figure A-5.
PAL vertical timing 3125

with 200-line -25
overlayed graphics 25 2

V25- 287.5
[22-5

43Active graphic4i'j43 (200 lines)

Sync
Active video

Blanking

All values in lines.

The general equations used to calculate graphics positions for PAL are identi-
cal to those for NTSC. However, the values used for the equation variables
diffei because of differences in vertical timing. For convenience, all equations
and variable values are repeated in the following section..

Position of graphics in lines relative to vertical sync
To determine the correct position of graphics over video as the number of
lines relative to vertical sync for a 15.625-kHz, PAL, video signal given the
timing shown in Figure A-5, use the following equations and assumptions.
Note that the calculations can easily be modified for different numbers of
graphics lines.

The general equation for the starting position of graphics centered in active
video as the number of lines relative to the start of vertical sync can be
expressed as:

(Vactive - Gactive)(15) GVstarg =AVaan 2
2

Similarly, the general equation for the ending position of graphics as the 0
number of lines relative to the start of vertical sync can be expressed as:

(16) GVend = AVstart + (Va2tive - Gactive) + Gactive
2

Where GV stands for "graphics vertical," and for PAL video:

1. The nominal start of active video is:

AVsgart = 22.5 lines

from Figure A-5. 0

A-16 Release R 1.0 April 15,1990

Appendix A. Default positions of
graphics relative to video

2. The number of active video lines is:

Vactive = 287-5 lines

from Figure A-5.

3. The number of active graphics lines is either:

Gactive = 200 lines

for 640 x 200 and 320 x 200 graphics, or:

Gactive = 240 lines

for 640 x 480 graphics and various special PAL modes (see assumption 2
in Section A.4.1.)

Starting and ending positions for 200-line graphics

Solving equation 15 for the start of 200-line graphics yields:

287.5 - 200
GVstart = 22.5 + - 66 lines2

Solving equation 16 for the end of 200-line graphics yields

287.5 - 200
GVend = 22.5 + 2 200 - 266 lines

Starting and ending positions for 240-line graphics

Solving equation 15 for the start of 240-line graphics yields:

287.5 - 240
GVtart = 22.5+ 2 46 lines

Solving equation 16 for the end of 240-line graphics yields

287.5 - 240
GVend = 22.5 + 2 + 240 - 286 lines2

Position of graphics as a proportion of total video.

To calculate the position of graphics as a proportion of total vertical timing,
simply change equations 15 and 16 to yield:

AVsa +(atv - Gactive)A strt+

(17) GVsaa -= 2

April 15, 1990 Release R 1.0 A-1 7

Appendix A. Default positions of
graphics relative to video

All terms are defined in previous sections except Vactive, which for PAL

video is:

Vactive = 287.5 lines

from Figure A-5.

Starting and ending positions for 200-line graphics
Borrowing from previous sections, the starting and ending positions for
240-line graphics as proportions of active V are simply:

(287.5 - 200)

GVstart 2 = 0. 1522 Vactive
287.5

(287.5 - 200) + 200
2

GVend = 2 = 0.8478 Vactiuve287.5

Starting and ending positions for 240-line graphics
Borrowing from previous sections, the starting and ending positions for
240-line graphics as proportions of active V are simply:

(287.5 - 240)

GVsta = 2 = 0.0826 Vactive
287.5

(287.5 - 240) +240
2 4

GVend = 2 = 0.9174 Vactime
287.5

April 15, 1990 Release R 1.0 A-19

Recommended Practices for interactive Video Portability

A-20 Release R 1.0 April 15,1990

B IBM PC and compatible graphics
modes

Table B-1 lists standard graphics modes returned by BIOS interrupt 10H,
service OFH for IBM and compatible personal computers. Compliant systems
need not support all listed modes and may support but not require unlisted,
nonstandard modes. However, if a system claims support for a listed mode,
the mode must be supported as listed. Supporting a standard mode in a non-
standard manner may make a system noncompliant.

Note that modes 0-3 are overlay modes for all adapter types. Therefore, they
are restricted to 200 lines in NTSC and PAL video modes regardless of how
many lines the adapter would normally use.

Table B-i. Model Type Resolution Colors Overlay Adapter
IBM-compatible (decimal) jmode
graphics modes

0,1 Text 40 x 25 16 Yes CGA, EGA, MCGA, VGA
2,3 Text 80 x 25 16 Yes CGA, EGA, MCGA, VGA

4,5 Graphics 320 x 200 4 Yes CGA, EGA, MCGA, VGA
6 Graphics 640 x 200 2 Yes CGA, EGA, MCGA, VGA
7 Text 80 x 25 Mono No EGA, VGA
13 Graphics 320 x 200 16 Yes EGA, VGA
14 Graphics 640 x 200 16 Yes EGA, VGA
15 Graphics 640 x 350 Mono No EGA, VGA
16 Graphics 640 x 350 16 No EGA, VGA
17 Graphics 640 x 480 2 Yes MCGA, VGA
18 Graphics 640 x 480 16 Yes VGA
19 Graphics 320 x 200 256 Yes MCGA, VGA

1Does not include modes exclusive to the IBM PCjr and internal BIOS modes.
2CGA = Color Graphics Adapter, EGA - Enhanced Graphics Adapter, MCGA =

Multicolor Graphics Array, VGA = Video Graphics Array

April 15, 1990 Release R 1.0 B-1

Recommended Practices for Interactive Video Portability

Note: An application written for a compliant system based on one adapter
may not be portable to a compliant system based on a different adapter. For -
example, a compliant application that uses mode 19 will not be portable to a
compliant system that is limited to EGA modes.

Any system that requires applications to use a nonstandard graphics mode is
noncompliant. Any application that uses a nonstandard mode is
noncompliant.

-

8--2 Release R 1.0 April 15, 1990

C Application programming examples

This subsection gives several brief programming examples that use the
ASCII and binary interfaces. The examples are intended only to furnish a
starting point for programmers. They are not intended to be overly sophisti-
cated or complete. Therein lies the makings of another document.

C.1 Using the ASCII interface

Even programming systems with minimal facilities for interfacing to other
languages can use an installable device driver. The two short programs below
use the Microsoft GWBASIC interpreter.

For clarity and brevity, these programs do not determine which service groups are
present or check for errors after issuing commands. However, well-behaved
applications should do both.

10 OPEN "O0,#1,8ivdev"
20 PRINT #1, IsyInit'
30 PRINT #1, "vmInit'
40 PRINT #1, "vdInit
50 PRINT #1, 'xyInit"
50 PRINT #1, vdPlay start=1000,stop=2000,wait'
60 CLOSE #1
70 OPEN "I',#1,*ivdev4
80 INPUT #1,R$
90 CLOSE #1
100 IF R$=OK" THEN PRINT -Playing' ELSE PRINT

OPROBLEMSI ";R$
110 OPEN 'O',#1,'ivdev'
120 PRINT #1, "syStop"
130 CLOSE #1
140 END

April 15, 1990 Release R 1.0 C-1

Recommended Practices for Interactive Video Portability

0
10 OPEN "O",#1,"ivdev"
20 PRINT #1, "sylnit"
30 PRINT #1, "vmlnit'
40 PRINT #1, "vdInitm

50 PRINT #1, "xylnit"
60 PRINT #1,NvmGetPalette color=5,r,g,b"
70 CLOSE #1
80 OPEN IIV,#1,ivdev"
90 INPUT #1,R$
100 CLOSE #1
110 REM The next section of code would parse R$, which is
120 REM in the form "<r value>,<g value>,<b value>"

200 REM Now shut it down
210 OPEN '-,#1 ,ivdev-
220 PRINT #1, "syStop"
230 CLOSE #1
240 END

C.2 Using software interrupt calls

Programming systems with library facilities for software interrupts can use
direct software interrupt calls for issuing commands. The following example
uses Microsoft C 5.1. It is a code fragment, not a complete program, and, as
such, is not compilable.

I*

* This example gets the values for a logical color.
* Obviously, a well-structured program would hide the 0
* interrupt call in a separate function.
* The example omits typical start-up and shut-down code
*1

#include <stdio.h>#include <dos.h> 0

#define VMGETPALETTE 2049
#define COLORPARM 9
#define RED 38
#define GREEN 25
#define BLUE 4 0

struct ivparm{
long parmjid;
long parm val;

} parms [20], far *p; •

C-2 Release 1.0 April 15,1990

Appendix C. Application programming examples

union REGS cpuregs;
struct SREGS segregs;

int iv mnt = Wx6 1* software intervupt, normally *
I* read from environment *

*The following code fragment would be included in
*function blocks

/* initialize far pointer *

p = parms;

/* Set up parameter block

parms[Ol.parm.id = COLORPARM;
parms[O].parm-val = 5;
parms[l].parm -d = RED;
parms[2].parmid = GREEN;
parms[3].parnid = BLUE;

" Set up CPU registers and call software interrupt.
" cpuregs and segregs are structures for manipulating
" CPU registers. FPOFF and FPSEG are macros that
" find the absolute address of a variable.

cpuregs.x.ax = VMGETPALETTE;
cpuregs.x.bx = 4; I' number of parameters *
cpuregs.x.di = FP..9FF(p);
segregs.es = FP..SEG(p);

" int86x() is an MSC library function that calls
" a software interrupt.

int86x(iv.int, &cpuregs, &cpuregs, &segregs);

/* Check for errors */

if (cpuregs.x.ax 1= 0)

printf('Error code: %d~n", (int) cpuregs.x.ax);
exit(1);

I' Print the color values ~

printf("Color 5 Red,Green,Blue %d,%d,%d~nm,
(int) parms[1J .parm-val, (int) parms[2] .parm-val,
(int) parms[31 .parmlval);

April 15, 1990 Release R 1.0 C-3

Recommended Practices for Interactive Video Portability

C.3 Library calls with parameter numbers

Vendors may furnish libraries for specific languages that use parameter num-
bers of the binary interface stored in a data structure appropriate to the lan-
guage. Several languages support functions that accept variable numbers of
parameters. The following example uses Microsoft C 5.1 to show how to use
variable numbers of parameters to set up a parameter block. It omits the
code that would then execute the function.

#include <stdio.h>
#include <stdarg.h> /* for ANSI compatibility */

/*
* This function might be part of a support library.
* vastart() and va arg() are macros for accessing
* variable-length argument lists.
* (See MSC 5.1 manuals for details.)
*/

iv vdplay(long parml, ...)

va..list argp;
struct ivparm
{
long parmnid;
long parm val;

} parms [20]; 5
int i;

va-start(argp, parmi);

I* Set up parameter block from variable arg list *I

for(i = 0; parmsfi].parm.id I= lilLL && i < 20; i++)
{
parms[i].parm-id = va.arg(argp, long);
parms[i].parm-val = va..arg(argp, long);

} •

/* Now insert rest of code to execute command */]

C-4 Release R 1.0 April 15, 1990

Appendix C. Application programming examples

C.4 Analyzing bit fields
It is simple to analyze bit fields with any language that supports bit-wise
"and". The following example uses the Microsoft GWBASIC interpreter.

100 REM Start by initializing the system
110 OPEN 'O',#1,'ivdev"
120 PRINT #1,'syInit"
130 CLOSE #1
140 OPEN 'I',#1,'ivdev"
150 INPUT #1,R$
160 CLOSE #1
170 IF R$ <> "OK" THEN PRINT 'Cannot initialize system"

:GOTO 300
180 REM Now request the support information
190 OPEN '0-,#1,'ivdev"
200 PRINT #1,'syGetState'
210 CLOSE #1
220 OPEN 'I',#1,'ivdev"
230 INPUT #1,R$
240 CLOSE #1
250 REM R$ now contains the decimal string which
260 represents the support bit field
2'0 R=VAL(R$)
280 REM Do the 'AND' to check whether xy is supported
290 IF R AND 8 THEN PRINT 'XY input is supported'

ELSE PRINT "XY input is not supported'
300 OPEN '0',#1,'ivdev-
310 PRINT #1,'syStop"
320 CLOSE #1
330 END

April15,1990 Release R 1.0 C-5

S
Recommended Practices for Interactive Video Portability

S

0

0

S

0

0

0

C-6 Release R 1.0 AprIl 15, 1990
0

D Error handling

When an application issues a command, VDI Management may be unable to
carry out the requested action or return the requested information. This
causes an error. This appendix describes the error codes that VDI Manage-
ment can return to an application.

D.1 General information
The ASCII interface returns errors as response strings consisting of the word

"ERROR" followed by a space and the error number. For example, "ERROR

49" signals that a command included insufficient parameters. The binary
interface returns error numbers in the microprocessor's AX register on return
from the software interrupt (AX=O indicates success).

Some VDI Management implementations may not use all the error codes. For
example, a system that does not use the MS-DOS filing system probably
would not use the filing-system error codes.' However, implementors should
try to be complete and should not omit error codes simply for convenience.

VDI Management implementations may supply textual error messages. (See
syErrorMsg in Section 6.) Although this is not a compliance requirement, if an
implementation does support textual error messages, it must use the summary
messages given in this appendix. Although this appendix presents summary
messages in mixed case for legibility, VDI Management returns summary mes-
sages (and all other return strings) in all capital letters.

VDI Management should try to recover before returning an error response to
the application. For example, if a communications error occurs, VDI Manage-
ment should return an error only after repeated retries have failed.

1 Filing-system error codes are included primarily for use by future digital audio commands.

April 15, 1990 Release R 1.0 D-1

Recommended Practices for Interactive Video Prortability

Note: VDI Management cannot handle the error of a user forgetting to in-

stall VDI Management or the correct interface used by an application. Appli- 0
cations should guard against this by confirming that VDI Management and
the proper interface are installed (see Sections 3.2.2 and 3.3.2).

D.2 Error listing-s

The following subsections list error numbers in numerical order with sum-
mary messages and brief explanations. Related errors are grouped for con-
venience and do not necessarily imply a corresponding programming
structure in VDI Management implementations. However, implementations
should use the error numbers as they are defined.

D.2.1 Command problems

1 Service group not installed

The VDI implementation supports the service group that contains the com-
mand, but the service group is not installed. For example, an application is-
sued an xy command on a system that is not configured for XY-input devices. 0

2 Unknown command

The command does not exist.

Compliant VDl implementations cannot return this error in response to any core
command for a supported service group.

3 System not initialized

The command was issued before the application issued sylnit, or syStop

was followed by a command other than syInit.

15 General command error

A command error occurred that is not listed above or about which no informa-

tion is available. 0

D-2 Release R 1.0 April 15, 1990

D Error handling

When an application is,;ues a command, VDI Management may be unable to
carry out the requested action or return the requested information. This
causes an error. This appendix describes the error codes that VDI Manage-
ment can return to an application.

D.1 General information
The ASCII interface returns errors as response strings consisting of the word
"ERROR" followed by a space and the error number. For example, "ERROR

49" signals that a command included insufficient parameters. The binary
interface returns error numbers in the microprocessor's AX register on return
from the software interrupt (AX=O indicates success).

Some VDI Management implementations may not use all the error codes. For
example, a system that does not use the MS-DOS filing system probably
would not use the filing-system error codes. 1 However, implementors should
try to be complete and should not omit error codes simply for convenience.

VDI Management implementations may supply textual error messages. (See
syErrorMsg in Section 6.) Although this is not a compliance requirement, if an
implementation does support textual error messages, it must use the summary
messages given in this appendix. Although this appendix presents summary
messages in mixed case for legibility, VDI Management returns summary mes-
sages (and all other return strings) in all capital letters.

VDI Management should try to recover before returning an error response to
the application. For example, if a communications error occurs, VDI Manage-
ment should return an error only after repeated retries have failed.

1 Filing-system error codes are included primarily for use by future digital audio commands.

April 15, 1990 Release R 1.0 D-1

Recommended Practices for Interactive Video Prortability

Note: VDI Management cannot handle the error of a user forgetting to in-
stall VDI Management or the correct interface used by an application. Appli- 0
cations should guard against this by confirming that VDI Management and
the proper interface are installed (see Sections 3.2.2 and 3.3.2).

D.2 Error listings

The following subsections list error numbers in numerical order with sum-
mary messages and brief explanations. Related errors are grouped for con-
venience and do not necessarily imply a corresponding programming
structure in VDI Management implementations. However, implementations
should use the error numbers as they are defined.

D.2.1 Command problems

1 Service group not installed
The VDI implementation supports the service group that contains the com-
mand, but the service group is not installed. For example, an application is-
sued an xy command on a system that is not configured for XY-input devices. 0

2 Unknown command

The command does not exist. 0

Compliant VDI implementations cannot return this error in response to any core

command for a supported service group.

3 System not initialized
The command was issued before the application issued syInit, or syStop
was followed by a command other than sylnit.

15 General command error
A command error occurred that is not listed above or about which no informa-
tion is available.

0-2 Release R 1.0 April 15, 1990

Appendix D. Error messages

D.2.2 ASCII interface problems

16 Bad command syntax
The parser encountered a fatal syntax error that could not be further diag-
nosed. For example, a command string contained a control code.

Error 16 should not be used in place of parameter-problems errors (see Sec-
tion D.2.4).

17 Command too long
The command was longer than 255 characters and will be ignored in its en-
tirety. (The terminal carriage return counts but redundant delimiters do not.)

18 Response too long
The response to an information request including the terminal CR/LF would
be longer than 255 characters. VDI Management does not return partially
filled information requests. For example, the application used an xxGet-
State command to request too much information.

19 Device driver read before write
The application tried to read a response from the device driver before it had
written at least one command to it. This is illegal and indicates a problem
with the application's initialization code.

This error can occur only immediately after VDI Management has been in-
stalled or after a well-behaved application has issued an syStop before
exiting.

31 General ASCII interface error
An ASCII interface error has occurred that is not listed above or about which
no information is available.

D.2.3 Binary interface problems

32 Invalid parameter count
On 80x86-based systems, the BX register contains an invalid or out of range
parameter count. For example, the application passed a negative value in BX.

April 15, 1990 Release R 1.0 D-3

Recommended Practices for Interactive Video Prortability

33 Invalid parameter packet address
On 80x86-based systems, the ES:DI register pair contains an invalid address
for a parameter packet.

34 Invalid pointer in parameter packet
The parameter packet contains a null or invalid pointer. 0

47 General binary interface error
A binary interface error occurred that is not listed above or about which no in-
formation is available.

D.2.4 Parameter problems

48 Unknown parameter
The command included a parameter label that is not valid for any command.

I Compliant VDI implementations cannot return this error in response to any core
parameter for a supported service group.

49 Insufficient parameters
The command required: a specific parameter that was missing; at least one
parameter from a specific group of parameters and was issued without the pa-
rameter; or at least one parameter that could have been any parameter in its
list and was issued with no parameters.

50 Parameters cannot be used together
The command included two or more parameters that cannot be used together.
For example, a vdPlay command included both a direction and a to
parameter.

51 Parameter value invalid or out of range
The command included an incorrect parameter value. For example, a parame- 0
ter value that must be in the range 0-255 was negative or greater than 255.

This error can result from the combined effects of two or more parameters
and from exceeding limits set by another parameter. For example, with the
vmSetPalette command the sum of the color and length parameters must
be less than or equal to logolors plus one. (Logolors is the maximum

D-4 Release R 1.0 April 15,1990

Appendix D. Error messages

number of available logical colors, which can be retrieved with the vmGet-
State command.)

52 Parameter invalid for this command
The command included a known but invalid parameter. For example, the ap-
plication issued sylnit with a color parameter.

53 Missing parameter value
The command failed to include a value for a parameter that requires one. The
parser reached either the end of the command string or another parameter
label when a parameter value was expected.

This is an ASCII interface error only.

54 Parameter used more than once
The command included the same parameter more than once. This is never
allowed.

79 General parameter error
A parameter error occurred that is not listed above or about which no infor-
mation is available.

D.2.5 Hardware problems

80 Initialization error
The system could not initialize an attached device. The application can find
out which device by examining the failed command.

81 Device not initialized
The application tried to use either an uninitialized device or an uninitialized
service group.

82 Communications timeout
A timeout occurred while VDI Management was communicating with a pe-
ripheral device. Either the device did not produce an expected message
within a predetermined timeout period, or the computer was unable to send a
mossage to the device because signal control lines were in an appropriate
state. For example, this error would result from a cable being unplugged
after a device has been initialized.

April 15, 1990 Release R 1.0 0-5

Recommended Practices for Interactive Video Prortablllty

83 Communications error
An error occurred during communications. For example, repeated parity er-
rors that cannot be cleared during asynchronous serial communications
cause this error.

84 Device reports error
A peripheral device sent a message indicating that an error occurred that it
cannot clear.

85 Device canceled request
A peripheral device sent a message indicating that it has unilaterally can-
celed a requested service.

86 Device not ready
A peripheral device sent a message indicating that it cannot be made
operational.

87 Action not supported by device
A peripheral device sent a message indicating that it cannot do a requested
action. This error indicates either an installation problem or the inappro-
priate use of the vdPassThru command. Compliant systems should not nor-
mally generate this error.

88 Unable to return requested information
A hardware device could not generate information requested by a command. 0
For example, a CLV videodisc could not report a frame number.

111 General hardware error
A hardware error occurred that is not listed above or about which no informa-
tion is available.

D.2.6 System resources

I Some systems may not be able to return some errors in this group.

112 Insufficient memory
VDI Management could not access enough memory to perform the requested
service.

D-6 Release R 1.0 April 15,1990

Appendix D. Error messages

113 Needed hardware interrupt in use
VDI Management requires the use of a specific hardware interrupt that is al-
ready in use, or one of a range of interrupts and all are in use.

114 Needed software interrupt in use
VDI Management requires the use of a specific software interrupt that is al-
ready in use, or one of a range of interrupts and all are in use.

115 Needed DMA channel not available
VDI Management requires the use of a specific DMA channel that is already
in use, or requires the use of any DMA channel and all are in use.

116 Needed timer not available
VDI Management requires the use of a timer resource that is not available.

127 General resources error
VDI Management requires additional system resources that are not listed
above or about which no information is available.

D.2.7 Filing system problems

128 Invalid filename
The command used a filename that was invalid for the operating system. (A
legal filename that cannot be opened should return error 132.)

129 Invalid path
The command used a path name that was invalid for the operating system.

130 Invalid drive
The command specified a drive that is not recognized by the operating system.

131 Invalid file number
The command used a file number that was not recognized by the operating
system.

132 Cannot open or create file
The operating system could not open or create a requested file.

April 15, 1990 Release R 1.0 D-7

Recommended Practices for Interactive Video Prortabllity

133 Cannot close file
The operating system could not close a requested file.

134 File already open
The command tried to open a file that was already open.

135 File already exists
The command tried to create a file that aiready exists.

136 File does not exist 0

The command tried to access a file that does not exist.

137 File access denied 0
The command was denied access to a requested file. For example, a file with
a locked status on a network file server would cause this error.

138 File seek error
The command tried to use a nonexistent piece of a file. For example, a com-

mand tried to access byte 9000 of a 5-KB file.

139 Too many open files
The operating system has run out of file handles because too many files are 0
open. Either the application should open fewer files or the user should
change the operating system installation to allow more files to be open
simultaneously.

140 Disk full •

The command tried to write to a full disk. The user should delete some files
or change to a different disk before trying to run the application again.

141 Disk read error 0
A data error occurred while reading the disk.

142 Disk write error
A data error occurred while writing to the disk. •

D-8 Release R 1.0 April 15, 1990

0

Appendix D. Error messages

159 General filing-system error
A filing-system error occurred that is not !isted above or about which no infor-
mation is available.

D.2.8 Miscellaneous problems

160 Invalid device number
The command specified an invalid device or source number. This error re-
sults from using an invalid number for a device or source parameter or from
trying to change the default device or source to an invalid number.

161 Buffer overflow
An internal VDI Management buffer overflowed. This indicates an internal
VDI Management failure and should be brought to the attention of the sys-
tem vendor.

162 Internal calculation error
An error such as divide by zero occurred during a numeric calculation within
VDI Management. This indicates an internal VDI Management failure and
should be brought to the attention of the system vendor.

163 Copy protection error
A copy protected version of VDI Management has declined to run because its
protection scheme has been violated. Legitimate users should discuss this
problem with the system vendor.

173 General internal error
An internal VDI Management error occurred that is not listed above or about
which no information is available. This indicates an internal VDI Manage-
ment failure and should be brought to the attention of the system vendor.

174 General operating system error
The operating system reported an error unrelated to the filing system and
not specific to any particular aspect of VDI Management. (VDI Management
should try to recover from this error before returning it to the application.)

175 General error
An error occurred that is not listed elsewhere and about which no informa-
tion at all is available.

April 15, 1990 ReleaSe R 1.0 D-9

Recommended Practices for Interactive Video Prortablllty

This error differs from error 111 (General hardware error) in that error 111
guarantees that a hardware error has occurred while this error can be caused
by any unknown failure including unknown hardware, VDI Management,
and application failures.

JVDI implementors should not use this error number before carefully considering
whether a more informative error code could be used. This is an error of last resort.

D.2.9 System group problems

176 Queue full
The application tried to queue more than 10 commands. This indicates an ap-
plication problem such as failing to turn syQueue off at the appropriate time.

177 Command cannot be queued
The application tried to queue a command that cannot be queued. This indi-
cates an application problem such as failing to turn syQueue off at the appro-
priate time.

191 General system error
A problem occurred within the system group that is not listed above or about
which no further information is available.

D.2.1 0 Visual-management problems

192 Synchronization error
The video signal could not be genlocked to the computer's graphics because
the signal has an inappropriate scan rate. Overlay is not possible.

193 Graphics mode problem
The system could not do a requested action because the graphics mode does
not support it. For example, the application tried to turn on transparency in a
graphics mode that does not support overlays.

194 Unsupported graphics mode
The system could not switch to a requested graphics mode or emulation state
because the hardware does not support the mode. For example, issuing
vmSetGraphics emulationnO, which requires a VGA adapter, on a CGA or
EGA system, or issuing vmSetGraphics model14, which requires an EGA •

D-10 Release R 1.0 April 15, 1990

Appendix D. Error messages

graphics adapter, on a CGA system would cause this error. (See Appendix A
for more information on VGA native and emulation modes.)

207 General visual-management error

A problem occurred with the visual management functions that is not listed
above or about which no further information is available.

D.2.11 Videodisc problems

208 Action not supported by disc

The command requested an action that is not supported by the videodisc. For
example the apnlication tried to do a frame search on a CLV videodisc or a
chapter search on a videodisc that without chapter stops.

209 Disc not spun up

The application issued a command such as vdPlay that requires the video-
disc to be spun up when it has not been spun up.

210 Disc not spun down

The application issued a command such as vdSet door=i that requires the
videodisc to be spun down when it has not been spun down.

211 Door open

The application issued a videodisc motion command other than vdSet
door=O with the player door open. Typically, this is a user error that can be
corrected without exiting the application.

212 No disc in tray

The application issued a videodisc motion command other than vdSet
dooral with the player door closed but without a videodisc in the tray. Typi-
cally, this is a user error that can be corrected without exiting the application.

213 Bad disc section

It was impossible to seek to the required frame because of a physical problem
with the videodisc.

April 15, 1990 Release R 1.0 D-11

Recommended Practices for Interactive Video Prortablllty

214 Fell off disc
An attempt was made to play backward past the beginning or forward past
the end of the videodisc. This normally indicates improper use of a videodisc
motion command.

215 Invalid frame number
The command specified a frame that is not present on the videodisc.

216 Invalid chapter number
The command specified a chapter that is not present on the videodisc.

217 Invalid time code
The command specified a time code that is not present on the videodisc.

239 General videodisc player error
A videodisc error occurred that is not listed above or about which no informa-
tion is available.

D.2.12 XY-input device problems 0

240 Device not calibrated
A required, implementation-specific, calibration process has not been done.
The user should verify that the XY-input device is installed correctly.

241 Invalid coordinate
A coordinate was specified that is outside the acceptable range. This nor-
mally indicates an application problem. 0

242 Cursor problem
A problem with the graphics device caused a cursor display problem. This in-
dicates that the application requires a facility that VDI Management does
not furnish.

255 General XY-input error
An XY-input error occurred that is not listed above or about which no infor-
mation is available.

D-12 Release R 1.0 April 15, 1920

Index

formal syntax, 4-5-4-6
format of command examples, 1-4

80x86 format of comments, 1-4
See: Intel 80x86 format of strings, 4-4-4-5

formats of parameter values, 4-7-4-8
general procedure, 3-7

A multiple commands in one write operation, 4-5
parameter name summary, 5-5

active graphics, A-2 reasons for using, 3-1
active video, A-2 response strings, 3-8-3-9
addressing conventions and formats success return, 3-7

See: Intel 80x86 audio 1 parameter
See: parameter packets default, 8-12

Apple vdGetState, 8-7
II, 2-2, A-4 vdSet, 8-31
Macintosh, 2-2 audio2 parameter

application interface default, 8-12
See: ASCII interface vdGetState, 8-7
See: binary interface vdSet, 8-31
See: interfaces authoring systems, 2-1

application portability autoexec.bat, 4-10
See: compliance requirements AX register
See: portability See: Intel 80x86

array parameter
vmGetPalette, 7-12-7-13
vmSetPalette, 7-28

ASCII interface, 3-7-3-9, 4-4-4-9 B
See also: command strings b parameter
See also: commands vmGetPalette, 7-12
See also: interfaces vmSetPalette, 7-27
See also: parameters background processing, 4-4, 7-8
See also: response strings Backus Naur Form, 4-5
basic characteristics, 3-1 BASIC
buffers, 4-8, 6-3 See: programming examples
command name summary, 5-3 binary interface, 3-3-3-6, 4-9-4-12
command strings, 3-8 See also: commands
confirming existence, 3-7-3-8 See also: Intel 80x86
device driver name, 3-7 See also: interfaces
error return, 3-7 See also: parameter packets

April 15, 1990 Release R 1.0 I-1

Index

See also: parameters See: ASCII interface
80x86 register contents upon return, 3-5 See: binary interface
80x86 register contents when called, 3-3 See: errors
basic characteristics, 3-1 See: VDI Management
buffers, 6-3 buttons
calling from device driver, 4-4 See: buttons parameter
command prefix values, 5-1 See: tbuttons parameter
command token number summary, 5-3 See: XY-input devices
command word values, 5-2 buttons parameter

confirming existence, 3-4 xyGetInput, 9-5

default interrupt, 4-9 BX register

error return, 3-5 See: Intel 80x86

format of comments, 1-4
format of examples, 1-4 S
format of pointers, 4-11-4-12 C
formats of parameter values, 4-10-4-12
general procedure, 3-3 C language
parameter packets, 3-4-3-6 See: programming examples

parameter token number summary, 5-5 case significance, 1-4, 3-2
range of interrupts, 4-9 CAV
reasons for using, 3-1 See: videodiscs
requesting information, 3-6 CBT authoring systems

return strings, 3-6 See: authoring systems

signature, 3-4 cdisplay parameter

success return, 3-5 default, 8-12

token numbers, 3-2-3-6, 5-1-5-5 vdGetState, 8-7
version number, 3-4 vdSet, 8-31

binary numeric format, 1-4 CGA

BIOS See also: graphics adapter

functions, 4-3 active graphics area, A-3-A-4

interrupt 10H, 7-2, 7-18, 7-22, 7-24, B-i background video, A-3
interrupt 10H, - graphics position reference, A-3 S
rinterru ets, 4 horizontal registration to NTSC video, A-5-A-7
requirements, 2-2 horizontal registration to PAL video, A-8-A-10

bit fields line width, A-4
See also: buttons parameter pixel size, A-4
See also: parameters reference signal, A-4
See also: support parameter standard modes, B-1 0
analysis with BASIC, C-5 vertical registration to NTSC video, A-12-A-15
buttons on XY-input devices, 9-5 vertical registration to PAL video, A-16-A-19
supported service groups, 6-9-6-10 chapter

bit pad See: chapter parameter
See: XY-input devices See: vdPlay

blanking See: vdSearch 5
horizontal, A-2 See: videodiscs
vertical, A-3 chapter display

blue See: cdisplay parameter
See: b parameter See: vdSet

border, A-2 chapter parameter
buffers vdGetState, 8-7

9-2 Release R 1.0 April 15, 1990

Index

vdPlay, 8-19 mixing ASCII and binary, 3-9
vdSearch, 8-28 organization, 2-4

clear parameter prefix values, 5-1
syQueue, 6-15 system (sy) summary, 6-1
vmSetTrans, 7-30-7-31 unqueueable, 6-16

CLV videodisc (vd) summary, 8-1
See: videodiscs visual-management (vm) summary, 7-1

color arrays word values, 5-2
See: color parameter XY-input (xy) summary, 9-1
See: parameters comments

Color Graphics Adapter See also: ASCII interface
See: CGA submission procedure, 1-5

color parameter compatibility
vmGetPalette, 7-12-7-13 See: compliance requirements
vmGetState, 7-17 See: device interoperability
vmSetPalette, 7-27-7-28 See: platform independence
vmSetTrans, 7-31 See: portability

colors compliance requirements
See also: color parameter core commands, 2-4
See also: logcolors parameter core parameters, 2-4
See also: physcolors parameter device numbers, 4-2
See also: transcolors parameter dynamic repositioning of graphics, A-1
See also: vmGetPalette error messages, D-1
See also: vmSetPalette extended commands, 2-5
See also: vmSetTrans extended parameters, 2-5
logical, 4-12, 7-2, 7-4, 7-12 fade and dissolve levels, 7-4
logical-to-physical conversion, 7-2 graphics adapters, B-2
physical, 7-2, 7-4, 7-12 graphics modes zero through three, 7-3, B-1
setting multiple, 4-11-4-12 IBM graphics modes, B-1
transparent, 7-17, 7-31 interface installation, 4-1

command parameter interface provision, 3-9
syCheckError, 6-3 MS-DOS versions, 4-3

command queue service group provision, 2-4
See: syQueue system (sy) commands, 6-1

command strings, 3-8 transparent colors, 7-31
buffering, 4-8 VGA emulation of CGA/EGA, 7-4
delimiters, 4-5 VGA emulation of CGAIEGA graphics, A-3-A-4
length limits, 4-5-4-6 videodisc (vd) commands, 8-1
syntax, 4-5-4-6 videodisc types, 8-2
terminator, 4-4 visual-management (vm) commands, 7-1
tokens, 4-4 XY-input (xy) commands, 9-1

commands constant angular velocity
See also: individual command name entries See: videodiscs
ASCII name summary, 5-3 constant linear velocity
binary token number summary, 5-3 See: videodiscs
core, 2-4-2-5, 5-3 cooked mode, 4-9
deriving token numbers, 5-2 coordinate space
extended, 2-4-2-5, 5-3 See: XY-coordinate space
format of names, 1-4 See: xyGet

Apri 15,1990 Reeses R 1.0 1-3

0

Index

See: xySet mapping logical to physical, 4-2
core commands rules, 4-2 S

See: commands stating requirements, 4-2
See: compliance requirements device parameter

core parameters vdGetState, 8-7
See: compliance requirements vdInit, 8-12
See: parameters vdPassThru, 8-16

critical section flag, 4-3 vdPlay, 8-19
cursor vdScan, 8-25

See: XY-input devices vdSearch, 8-28
cursor keypad vdSet, 8-32

See: XY-input devices vdStep, 8-35
cursor parameter vdStill, 8-37

xyGetState, 9-9 x9
xySet, 9-17 xyGetState, 9-9

xyInit, 9-12
xySet, 9-17

D DI register

decimal numeric format, 1-4 See: Intel 80x86

defdevice parameter direction parameter, 8-20

vdGetState, 8-7 vdPlay, 8-19
vdSet, 8-32 vdScan, 8-25
xyGetState, 9-9 vdStep, 8-36
xySet, 9-17 disc

defsource parameter See: videodiscs
vmGetState, 7-17 disc player
vmSetVideo, 7-33 See: videodisc players

design criteria disctype parameter
See: interfaces vdGetState, 8-7

device driver, 2-3, 3-1 display screen, A-2
See also: ASCH interface display width
See also: IVDEV See: width parameter
buffer behavior, 4-8 dissolve level control
communications, 3-7 See: dlevel parameter
duplicate file names, 3-8 See: vmFade
IOCTL functions, 4-9 dissolve unit
modes, 4-9 See: video overlay subsystem
MS-DOS version requirements, 4-3 dissolves
name, 3-7 Ssolves
reentrancy issues, 4-4 See: rounding

device interoperability, 1-1 See: vmFade
device numbers, 2-4, 4-2, 9-1-9-2 dlevel parameter

See also: defdevice parameter default, 7-21 •
See also: device parameter vmnFade, 7-7
See also: source numbers vmGetState, 7-17
See also: tdevices parameter door parameter
See also: vdSet default, 8-12
See also: xySet vdGetState, 8-8
default, 6-12 vdSet, 8-32 0

Release R 1.0 April 15,1990

Index

E nonimmediate, 6-2
retrieving descriptions, 6-6

EGA retrieving most recent, 6-2
See also: graphics adapter ES register
active graphics area, A-3-A-4 See: Intel 80x86
background video, A-3 execute parameter
graphics position reference, A-3 syQueue, 6-15
horizontal registration to NTSC video, A-5-A-7 extended commands
horizontal registration to PAL video, A-8-A-10 See: commands
line width, A-4 extended parameters
pixel size, A-4 See: parameters
reference signal, A-4
standard modes, B-1
vertical registration to NTSC video, A-12-A-15 F
vertical registration to PAL video, A-16-A-19 fader

emulation parameter See: video overlay subsystem
default, 7-21 fades
vmGetState, 7-17 See: rounding
vmSetGraphics, 7-24 See: vmFade

enable parameter field
default, 7-21 See: videodiscs
vmGetState, 7-17 file
vmSetTrans, 7-31 control blocks, 4-9

Enhanced Graphics Adapter handles, 4-9
See: EGA frame

environment variable See: frame parameter
See: IVINT See: videodiscs

errno parameter frame number display
syCheckError, 6-4 See: idxdisplay parameter
syErrorMsg, 6-6 See: vdSet

error messages frame parameter
ASCII interface, D-3 default, 8-12
binary interface, D-3-D-4 vdGetState, 8-8
commands, D-2 vdSearch, 8-28
filing system, D-7-D-9 frame search
hardware, D-5-D-6 See: from parameter
miscellaneous, D-9-D-10 See: vdSearch
parameters, D-4-D-5 from parameter
system group, D-10 vdPlay, 8-20
system resources, D-6-D-7
videodisc, D-11-D-12
visual management, D-10-D-11
XY-input device, D-12 G

errors g parameter
See also: ASCII interface vmGetPalette, 7-12
See also: binary interface vmSetPalette, 7-27
See also: Intel 80x86, AX register genlock control
See also: response strings See: visual management
buffering, 6-3 glevel parameter
from queued commands, 6-16 default, 7-21

April 15, 1990 Release R 1.0 l-5

Index

vmFade, 7-8
vmGetState, 7-17

gmode parameter idxdisplay parameter
default, 7-21 default, 8-12
vmGetState, 7-18 vdGetState, 8-8
vmSetGraphics, 7-24 vdSet, 8-32

graphics adapter, 7-3-7-4 initialization
See also: CGA See: syInit
See also: EGA See: vdInit
See also: VGA See: vmInit
requirements, 2-2 See: xyInit

graphics cursor installable device driver
See: XY-input device See: device driver

graphics horizontal line length, A-4 installation
graphics level control See: VDI Management

See: glevel parameter integers
See: vmFade See: parameters

graphics modes, 7-2-7-3, B-1-B-2 Intel 80x86, 1-2
See also: gmode parameter AX register, 3-3, 3-5
See also: vmSetGraphics BX register, 3-3, 3-5 •

graphics position relative to video DI register, 1-4, 3-3, 3-5
See: graphics registration ES register, 1-4, 3-3, 3-5

graphics registration, 7-3, A-1-A-19 offset address, 3-3
See also: vmSetGraphics register for command token, 3-3
See also: width parameter register for number of parameters, 3-3
See also: xoffset parameter register for packet offset address, 3-3
See also: yoffset parameter register for packet segment address, 3-3
horizontal, A-4-A-10 register for return codes, 3-3
reference frame, A-1 segment address, 3-3
terms of reference, A-2 interfaces
vertical, A-11-A-19 See also: ASCII interface

graphics resolution, A4 See also: binary interface •
See also: horzpix parameter ASCII and binary compared, 2-3, 3-1
See also: vertpix parameter design criteria, 2-2-2-3

green reasons for two, 2-3
See: g parameter interoperability

See: device interoperability
interrupt 0

See also: software interrupts
H 1OH, 7-2, 7-18, 7-22, 7-24, B-1

handlers, 4-3-4-4, 4-10
hardware requirements, 2-2 vectors, 4-3
hexadecimal numeric format, 1-4 IOCTL, 4-9
horizontal blanking IVDEV, 3-7-3-8 0

See: blanking duplicate file name, 3-8
horizontal sync IVINT, 3-4

See: sync signals setting, 4-9-4-10
horzpix parameter ivver parameter

default, 7-21 syGetstate, 6-9
vmGetState, 7-18 IVVER signature, 3-4 •

1-6 Release R 1.0 Aprll 15,1990

Index

motion parameter
K default, 8-12
keyboard vdGetState, 8-8

See: XY-input device mouse
keyer See: XY-input devices

See: video overlay subsystem MS-DOS
See also: BIOS
See also: device driver

L See also: software interrupts
length parameter file control blocks and handles, 4-9

vmGetPalette, 7-12-7-13 generic definition, 1-4
vmSetPalette, 7-28 IOCTL functions, 4-9

light pen reentrancy, 4-3-4-4
See: XY-input devices requiring specific versions, 4-3

logcolors parameter tick routines, 4-3
default, 7-21 version requirements, 2-2, 4-3
vmGetState, 7-18 Multicolor Graphics Array

logical colors See: MCGA
See: colors
See: logcolors parameter
See: vmGetPalette N
See: vmGetState NTSC
See: vmSetPalette See also: vmode parameter

logical device numbers See also: vmSetVideo
See: device numbers active video, A-6, A-12

border widths, A-7
EIA RS-170A, A-3

M frames per second, 3-2, 8-2
Macintosh horizontal signal components, A-5

See: Apple horizontal signal width, A-5
manufacturer name vertical height, A-12

See: mfgname parameter vertical timing components, A-11-A-12
manufacturer version

See: mfgver parameter
MCGA standard modes, B-1 0
mfgname parameter offset address

syGetState, 6-9 See: Intel 80x86
mfgver parameter operating systems

syGetState, 6-9 See also: MS-DOS
microprocessor supported, 1-2, 2-2, 4-3See: Intel 80x86 O/,-
Microsoft Windows, 2-2 ov2, 2-2
mode trapping overlay bard

See: visual management See: video overlay subsystem
See: vmlnit overlay modes, 7-2-7-3, B-i

modes
See: graphics modes
See: overlay modes P
See: scan-altered modes PAL
See: video modes See also: vmode parameter

April 15, 1990 Release R 1.0 1-7

Index

See also: vmSetVideo physcolors parameter
active video, A-9, A-16 default, 7-21
border widths, A-10 vmGetState, 7-18
CCIR 470-1, A-3 physical colors
frames per second, 3-2, 8-2 See: colors
horizontal signal components, A-8 See: physcolors parameter
horizontal signal width, A-8 See: vmGetState
vertical height, A-16 See: vmSetPalette
vertical timing components, A-15 platform independence, 1-1, 2-1

palette player

See also: colors See: videodisc players

See also: video overlay subsystem pmsg parameter

See also: vmGetPalette syErrorMsg, 6-6

See also: vmSetPalette point mode

memory allocation, 7-28 See: XY-input devices
size, 7-4, 7-18 pointer format

parameter packets, 3-4-3-6 See: binary interface
See also: parameters portability
address specification, 3-3 See also: compliance requirements
addressin speifition, 3 CGA and EGA to VGA systems, 7-3
colradrsgcns, 4-11-42 extended commands, 24-2-5
color arrays, 4-11-4-12 extended parameters, 2-4-2-5
contents afer rounding, 3-6 level addressed, 1-1
contents passed, 3-6 transparent colors, 7-31
contents returned, 3-6 POSIX, 2-2

memory allocation, 3-5 possor

memory requirements, 34-3-5 See: Inte180x86

parameters, 3-1-3-3 programming examples

See also: individual parameter name entries BASIC, C-1-C-2, c-s

See also: parameter packets bit field analysis, C-5
ASCII bit fields, 4-7 C, C-2-C-4
ASCII name summary, 5-5 library calls, C-4 0
ASCII numbers, 4-7 software interrupt calls, C-2-C-3
ASCII text, 4-8 psmg parameter
binary bit fields, 4-11 vdPassThru, 8-16
binary color arrays, 4-11-4-12, 7-12-7-13
binary integers, 4-10
binary real numbers, 4-10 Q
binary strings, 4-11
binary token number summary, 5-5 queue
core, 2-4-2-5, 5-4-55 See: syQueue
extended, 2-4-2-5, 5-4-5-5
format of names, 1-4
maximum possible with one command, 3-3 R
memory requirements for binary, 3-5 r parameter
order, 3-2-3-3 vmGetPalette, 7-12
return values, 3-6 vmSetPalette, 7-27
rounding, 3-6 raw mode, 4-9

PC DOS real numbers
See: MS-DOS See: parameters 0

I-8 Release R 1.0 April 15,1990

Index

recommended practices S
See also: ASCII interface
See also: binary interface scan
See also: compliance requirements See: vdScan
See also: VDI Management See: videodisc players
basis, 1-1 scan-altered modes, A-3
benefits, 1-2 screen disturbance, 6-14, 7-24-7-25, 7-34, 8-11,
general architecture, 2-1 A- 13
goals, 1-2 search
hardware requirements, 2-2 See: vdSearch
intended audience, 1-3 See: videodisc players
IV system level addressed, 1-1 segment address
language requirements, 2-2 See: Intel 80x86

operating systems addressed, 1-2, 2-2 service groups, 2-4

portability level addressed, 1-1 See also: commands

processor architecture addressed, 1-2 determining if present, 4-7, 4-11, 6-9-6-10

scope, 1-1-1-2 token values of prefixes, 5-1

red software architecture

See: r parameter See: recommended practices

reentrancy software interrupts

See: MS-DOS See also: interrupt

registers See also: IVINT

See: Intel 80x86 21H, 4-4,4-9

registration default, 4-9

See: graphics registration numbers available, 3-1, 4-9

remote control unit programming example, C-2-C-3
user, 4-9

See: remote parameter source numbers
remote parameter See also: defsource parameter

default, 8-12 See also: source parameter
vdGetState, 8-8 See also: tsources parameter
vdSet, 8-32 See also: vmSetVideo

response strings, 3-8-3-9, 4 default, 7-17
buffering, 4-8 mapping to devices, 7-17

delimiters, 3-8, 4-5 speed parameter
"ERRORin.", 3-8 -vdGetState, 8-8
-ERROR n... , 3-8 vdPlay, 8-20
"OiK', 3-8 spin parameter
syntax, 4-5-4-6 default, 8-12
terminator, 3-8, 4-5 vdGetState, 8-8

RGB vdSet, 8-32
See: b parameter standard
See: g parameter See: NTSC
See: r parameter See: PAL

rounding state parameter
color components, 7-13, 7-27-7-28 default, 7-21
effects on parameter packets, 3-6 syQueue, 6-15
fade and dissolve levels, 7-4-7-5 vmSetTrans, 7-31
times, 7-4-7-5 still frame
videodisc player speeds, 8-3-8-4 See: vdSearch

April 15, 1990 Release R 1.0 1-9

Index

See: vdStep See: colors
See: vdStill tsources parameter

stream mode vmGetState, 7-18
See: XY-input devices

string
See: ASCII interface U
See: command strings UNIX, 2-2
See: parameters user interrupt
See: response strings See: software interrupts

support parameter
syGetState, 6-9-6-10

syCheckError, 6-2-6-5
syErrorMsg, 6-6-6-7 V
syGetState, 6-8-6-11 vdGetState, 8-5-8-10
syInit, 6-12-6-18 VDI Management, 2-1
sync signals background processing, 4-4

horizontal, A-2-A-3 blanking control, 8-2
vertical, A-2-A-3 communications, 3-1

system initialization correction of XY-input information, 9-1
See: syInit error buffers, 6-3

syStop, 6-19-6-20 error handling, D-1
genlock control, 7-3
graphics positioning requirements, A-1

T installation, 2-4, 4-1-4-2, 9-2
interrupt handle vector, 4-10

tbuttons parameter memory allocation for return strings, 4-11
default, 9-13 mode trapping, 7-3
xyGetState, 9-9 MS-DOS calls, 4-3

tdevices parameter nonimmediate error detection, 6-2-6-3
default, 8-12, 9-13 parser design, 3-3
vdGetState, 8-8 rounding, 7-4-7-5, 7-27, 8-3-8-4
xyGetState, 9-9 treatment of XY-input information, 9-3

tick chain, 4-3 user device numbering, 4-2
time display version number, 3-4

See: idxdisplay parameter vdInit, 8-11-8-14
See: vdSet vdPassThru, 8-15-8-17

time parameter vdPlay, 8-18-8-23
vmFade, 7-8 vdScan, 8-24-8-26 S

to parameter vdSearch, 8-27-8-29
vdPlay, 8-21 vdSet, 8-30-8-34

token numbers vdStep, 8-35-8-36
See: binary interface vdStill, 8-37-8-38
See: commands version number
See: parameters See: ivver parameter

touch screen See: IVVER signature
See: XY-input devices See: mfgver parameter

transcolors parameter See: VDI Management
default, 7-21 vertical blanking
vmGetState, 7-18 See: blanking

transparent colors vertical sync

1-10 Release R 1.0 April 15, 1990

Index

See: sync signals videodisc player initialization
vertpix parameter See: vdlnit

default, 7-21 videodisc players
vmGetState, 7-18 See also: individual vd command name entries

VGA See also: videodiscs
See also: emulation parameter instant jump, 8-2
See also: graphics adapter numbering, 4-2
active graphics area, A-3-A-4 Pioneer 4200, 8-3
background video, A-3 play speeds, 8-2
blanking intervals, A-3 scan speeds, 8-2
borders, A-13 search, 8-2
emulation of CGA/EGA, 7-3-7-4 Sony 2000, 8-3
horizontal registration in emulation mode, speeds, 8-3-8-4

A-7-A-8, A-10-A-11 videodiscs
horizontal sync, A-3 See also: disctype parameter
reference signal, A-4 See also: videodisc players
standard modes, B-1 CAV, 8-1-8-3
vertical registration to NTSC video, A-12-A-15 chapters, 8-2
vertical registration to PAL video, A-16-A-19 CLV, 8-1-8-4
vertical sync, A-3 fields, 8-2

video channel frames, 8-2
See: vdSet reference frame, A-1
See: video parameter Virtual Device Interface

Video Graphics Array See: VDI Management
See: VGA visual management

video level control See also: graphics registration
See: vlevel parameter See also: individual vi command name entries
See: vmFade See also: video overlay subsystem

video modes, 7-3 genlock control, 7-3
See also: vmode parameter graphics registration, 7-3
See also: vmSetVideo logical and physical colors, 7-4

video overlay subsystem mode trapping, 7-3
See also: individual vin command name entries overlay modes, 7-2-7-3
dissolve unit, 7-2 rounding fade and dissolve levels, 7-4-7-5
functionality, 7-1-7-2 visual management initialization
keyer, 7-2 See: vmlnit
palette, 7-2 vlevel parameter
sources, 7-2 default, 7-21

video parameter vmFade, 7-8
default, 8-12 vmGetState, 7-17
vdGetState, 8-9 vmFade, 7-6-7-10
vdSet, 8-33 vmGetPalette, 7-11-7-14

video position relative to graphics vmGetState, 7-15-7-20
See: graphics registration vmlnit, 7-21-7-22

video standard vmode parameter
See: NTSC default, 7-21
See: PAL vmGetState, 7-18

videodisc player door control vmSetVideo, 7-33-7-34
See: door parameter VMS, 2-2

April 15, 1990 Release R 1.0 I-11

Index

vmSetGraphics, 7-23-7-25 See also: xySet
vmSetPalette, 7-26-7-29 correcting for multiple physical devices, 9-1
vmSetTrans, 7-30-7-32 XY-input device initialization
vmSetVideo, 7-33-7-34 See: xyInit

XY-input devices
See also: individual xy command name entries

W buttons, 9-3

wait parameter calibration, 9-3

effects on vdPlay, 8-21 cursor keypad, 9-2

vdPlay, 8-21-8-22 cursor management, 9-2

vdScan, 8-25 graphics plane management, 9-2

vdSearch, 8-28 keyboard, 9-2

vdSet, 8-33 mapping, 9-1-9-2

vmFade, 7-8 multiple physical to single logical, 9-1-9-2

width parameter numbering, 4-2

default, 7-21 point mode, 9-3

vmGetState, 7-18 requirements, 2-2

vmSetGraphics, 7-24 stream mode, 9-3

Windows xyGetInput, 9-4-9-6

See: Microsoft Windows xyGetState, 9-7-9-11
xylnit, 9-12-9-14
xySet, 9-15-9-18

x
xmax parameter y

default, 9-13
xyGetState, 9-9 ymax parameter
xySet, 9-17 default, 9-13

xmaxclip parameter xyGetState, 9-9
default, 9-13 xySet, 9-17
xyGetState, 9-10 ymaxclip parameter
xySet, 9-17 default, 9-13 0

xmin parameter xyGetState, 9-10
default, 9-13 xySet, 9-17
xyGetState, 9-9 ymin parameter
xySet, 9-17 default, 9-13

xminclip parameter xyGetState, 9-9
default, 9-13 xySet, 9-17 0
xyGetState, 9-10 yminclip parameter
xySet, 9-17 default, 9-13

xoffset parameter xyGetState, 9-10
default, 7-21 xySet, 9-17
vmGetState, 7-19 yoffset parameter
vmSetGraphics, 7-24 default, 7-21 0

xpos parameter vmGetState, 7-19
default, 9-13 vmSetGraphics, 7-24
xyGetInput, 9-5 ypos parameter
xySet, 9-17 default, 9-13

XY-coordinate space, 9-2-9-3 xyGetInput, 9-5
See also: xyGetState xySet, 9-17 0

1-12 Release R 1.0 April 15, 1990

