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SECTION 1

INTRODUCTION

When a strategic bomber must search for a relocatable target among a number of sites,
the mission planning must include choosing a search route. This routing problem is
closely related to the classical traveling salesman problem (TSP). However, the bomber
need not overfly each site, but must only come within sensor range of it. An overflight of
one site may provide adequate sensor coverage of nearby sites as well. Thus, the search
route planning problem is better modeled by the covering salesman problem (CSP)
formulated by Current and Schilling [1]. The CSP is a generalization of the traveling
salesman problem in which the tour need not visit every city, but every city must
be within a certain distance of some city on the tour. A previous report presented
a heuristic based on spacefilling curves for this problem [2]. The result is a two-
dimensional route which passes within a specified distance of all the sites of interest,
while approximately minimizing the total distance traveled.

When the number of potential sites is large, the bomber's time and fuel constraints
may preclude visiting all of them. The planner must then decide which of them are
to be visited. This report extends the above procedure to include the selection of an
appropriate set of sites. The new procedure also evaluates alternative routing patterns
and accounts for the finite turning radius of the aircraft.

Selection of the sites to visit is handled by imbedding the heuristic router within an
optimization program. The outer program selects an appropriate set of sites to be
visited. The heuristic router finds a search route covering those sites. The outer
program computes a score for the route. It then adjusts the sites to be visited in an
attempt to optimize the score (while satisfying time and fuel constraints) and repeats.
For this combinatorial optimization problem, a genetic algorithm is used.

Section 2 shows how a flight path which accounts for the finite turning radius of the
bomber can be constructed. Section 3 describes extensions of the fast routing algorithm
to include the "strips" and "arbitrary insertion" heuristics. Section 4 describes the
genetic algorithm and its application to the search routing problem. Section 5 displays
typical results. A concluding discussion appears in section 6.
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SECTION 2

FLIGHT PATHS

A flight plan includes a set of waypoints which a plane flies through in succession. In
this work, waypoints are two-dimensional. When the waypoints are well separated, the
flight path can be approximated by straight lines between the waypoints. However, for
closely spaced waypoints, high aircraft speeds, and/or restricted aircraft maneuverabil-
ity, the finite turn radius of the aircraft must be taken into account.

By convention, a flight path consists of straight lines and circular arcs. One planning
objective might be to find the shortest such path whic, passed through the specified
sites. It might be constructed using the following manual procedure: Start with a flat
map of the flight area. Insert a pin at each of the points to be visited. Drop over each
pin a hollow cylinder of a size corresponding to the desired turn circle. Thread a string
around the cylinders in the chosen order and draw it tight, forcing each cylinder against
its pin. (We assume the cylinders do not interfere with each other.) The string then
follows the shortest path for the chosen visitation order.

This manual procedure generates a flight path which visits each waypoint halfway
through a turn. This doubles the number of significant locations the navigator must
keep track of (search sites plus turn points). It requires accurate flying, since an incor-
rect airspeed or bank angle will lead to an incorrect turn radius and possibly a missed
search site. It also means that the aircraft will never be level when overflying the site.
For these reasons, as well as convenience, we have instead implemented the simpler
waypoint turn algorithm: The aircraft initiates each turn as it passes a waypoint. The
aircraft then flies along a turn circle, with its center at a distance R from the the way-
point and at right angles from the original flight path. Ordinarily, the aircraft turns
toward the next waypoint, as shown in figure 1. However, if this would put the next
waypoint within the turn circle, the turn can be made in the opposite direction instead,
thus adding a loop. This is shown in figure 2. These two cases suffice to handle arbi-
trarily difficult routing problems, such as the closely spaced waypoints shown in figure
3.

Appendix A presents some mathematical tools which were used to automate this pro-
cedure.
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Figure 1. Aircraft Turns Toward Next Waypoint
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Figure 2. Aircraft Turns Away from Next Waypoint
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Figure 3. Waypoint Turn Algorithm Applied to Closely Spaced Waypoints
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SECTION 3

ROUTING PATTERNS

A previous report [2] presented an algorithm based on spacefilling curves for finding
heuristic solutions to the traveling salesman problem (TSP). This section describes two
other TSP heuristics which can also be adapted to the search routing problem.

The spacefiUing curve is a continuous function from the unit interval onto the unit
square. The TSP heuristic required a function f(x, y), a pseudoinverse of the space-
filling curve, which was used to order the cities to be visited. Different spacefilling
curves lead to different functions. The function for the Hilbert curve is shown in figure
4. This function preserves nearness, in that only nearby points in the plane are given
similar values.

The "strips" method described by Karp and Steele [3] is an older heuristic for the planar
TSP. For N cities, it consists of the following:

STRIPS HEURISTIC.

(i) Divide the area into vW horizontal strips.
(ii) Sort the cities along each strip

(iii) Visit the cities in the first strip from right to left, then those in the
second strip from left to right, etc.

The "strips" heuristic can be implemented in the same way as the spacefilling curve
heuristics, by defining an ordering function similar to that shown in figure 5 (for three
strips). For large numbers of sites distributed uniformly in the unit square, the strips
heuristic generates TSP solutions about 22 percent longer than optimal (vs. 25 percent
over optimal for the spacefilling curve heuristic using Sieripinski's curve). The strips
heuristic is more sensitive to local variations in site density.

The "arbitrary insertion" heuristic for the TSP described by Golden [4] has also been
adapted to the search routing problem as follows:

ARBITRARY INSERTION HEURISTIC.

(i) Start with a path directly from the start to the finish.

(ii) Repeat until all cities have been added:

7



Figure 4. Ordering Function for Hilbert Curve
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Figure 5. Ordering Function for Strips Heuristic
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(a) Arbitrarily select city k not in the path to enter the
path

(b) Find the edge (i,j) in the path which minimizes the
cost of inserting city k and insert it there.

The arbitrary insertion heuristic requires O(N 2 ) steps, while the spacefilling and strips
heuristics require only O(N In N) steps.

The arbitrary insertion method could be used in a semiautomated router in which an
operator specifies part of the route (initial and final points, and some of the intermediate
sites) and the computer adds the remaining sites. The initial route could include
multiple visits to some sites.

The spacefilling and strips heuristics require a preprocessing step: the city locations
must be rotated and scaled into the unit square. This is not necessary for the arbitrary
insertion heuristic.

10



SECTION 4

GENETIC ALGORITHMS

The traditional optimization procedures are calculus-based methods (solve for locations
where the gradient vanishes, or hill climbing: move in the direction of the local gradi-
ent), random searches (generate points at random and keep the best), and enumeration
(generate all possible points and keep the best). Calculus-based methods can be applied
only to differentiable objective functions, can be unstable, and are susceptible to the
foothill problem - getting trapped at a local optimum. The random and enumerative
methods can be hopelessly inefficient when the search space is large.

A genetic algorithm (GA) is an alternative optimization procedure inspired by Dar-
winian evolution. A conventional GA uses a bit string which encodes the problem
parameters. The GA keeps a population of ,,100 such strings and applies genetic oper-
ators to them to generate new strings. Each new string is evaluated, and better strings
are preferentially retained for the next generation.

GAs are more generally applicable and robust than calculus-based methods, and can
be much more efficient than random search and enumerative methods. GAs have
been successfully applied to pipeline control [5], structural optimization [6], recursive
adaptive filter design [7], VLSI circuit layout [81, and many other problems.

GAs were developed by John Holland and his colleagues at the University of Michigan
[9]. A short description of GAs appears in the next two subsections. A more extensive
discussion may be found in reference [10].

4.1 DESCRIPTION

The genetic algorithms in this work follow this reproductive plan:

GENETIC ALGORITHM.

(i) Create a random population of size N.

(ii) Sort the population in ascending order of fitness.
(iii) Repeat until there are N + m members in all:

(a) Choose randomly a member Ci, where 1 < i < N
(uniform distribution). Ci is almost unbiased.

11



(b) Choose randomly a member Ci, where i < j < N
(uniform distribution). Ci is biased toward more fit
members.

(c) Choose randomly a genetic operator gk (see below).

(d) Create a new member C +- gk(Ci, C), or C +-
gk(Ci) if gk uses only one member. Discard C if
it is the same as either parent.

(e) Determine fitness of C.
(iv) Merge the new members into the population, discarding duplicates.
(v) Remove all but the last (strongest) N members of the population.

(vi) Terminate or go to step (iii).

m was set to .20N to reduce the sorting effort without materially delaying entry of new
members into the active population. However, in a typical application, determining
the fitness of new members dominates the computational effort.

The most important genetic operator is crossover, shown in figure 6. This operator
chooses two positions along the bit string and uses the enclosed fragment from one
parent and the end fragments from the other parent. Less important is mutation,
shown in figure 7, which reverses one or more bits chosen at random from the single
parent.

The probabilities with which different genetic operators are chosen are themselves ad-
justed during the computation. Details are discussed in appendix B.

4.2 EXAMPLE

Suppose the problem is to find the value of x which maximizes

4i 2 -0.0 67 2 6- . V + 0 5
f12(X) = e4ln2(E'r- sin6 (5.lrx + 0.5)

for the range 0 < x < 1, a problem suggested by Goldberg and Deb [11].

In this case, the bit string has a single field of 16 bits. Let these bits be the Gray code
for the integer i. (The Gray code is used instead of the usual binary code so that codes
for neighboring values will differ by only one bit.) z is then simply i/65536.

12



Two crossing points are
selected at random

...................... ....... .... ... .. .......... . i iiii ~:ii i~ iiit~i: i : :
0 11 0 ' 110'10 0 1 0 1

07 , 1 01 1 0 0 1 0 0 0 0 1 0 1

Figure 6. Crossover Operator

A fraction p of the bits are
selected at random to be flipped

00 1 0 0 01.0 1 1 1 0 1 1 0 1 1 0 1 0

Figure 7. Mutation Operator
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1.0

fitness 0.5

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

X

Figure 8. Initial Population

Crossover and mutation are the only genetic operators used.

An initial population of 60 is shown in figure 8. By the 10th generation, shown in figure
9, members are clustering around the local peaks of the fitness function. By the 30th
generation, shown in figure 10, all members are clustered around the highest peak.

4.3 APPLICATION TO ROUTING

For the routing problem, a 4-bit field is used to select among 16 routing patterns
that governed the heuristic solution of the traveling salesman problem. The patterns
comprise the Sierpinski curve, the Hilbert curve, and 14 versions of the strips heuristic
with different numbers and orientations of strips.

The remainder of the bit string consists of one bit per potential site, which is set if the
site is to be visited and zero otherwise.

The "raw" fitness function is the sum of the values of the visited sites. The constraint
on flight path length is handled by adding a penalty function as suggested by Goldberg
[10]. Members satisfying the constraint are said to be feasible. Details are discussed
in appendix C.
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1.0

fitness 0.5

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

Figure 9. 10th Generation

1.0

fitness 0.5

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

Figure 10. 30th Generation
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Two genetic operators are used in addition to the crossover and mutation operators
described above.

The mutate-routing operator, shown in figure 11, replaces the routing pattern with
another chosen at random. The primary motivation for this is that changing the routing
pattern and changing the visited sites are significantly different operations, perhaps best
applied at different rates. Defining separate mutation operators allows the operator
probabilities to adapt independently (see appendix B). Early in the calculation we would
expect that changes in the routing pattern might well reduce the search route length,
so that the probability of selecting the mutate-routing operator should be moderate.
Late in the calculation we would expect that for a given member, the routing pattern
and the set of sites to be visited would be tuned to one another. A change in routing
pattern would be unlikely to decrease the search route length. However, site changes
might still improve the search (by removing a site to shorten the path length or adding
a site to increase the weight). Therefore it would be reasonable to mutate sites more
often than routing patterns.

One fid I filled
with random bit

|i10 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0

I0 1 0 10 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 01

Figure 11. Mutate-Routing Operator
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The other operator was motivated by the observation that the algorithm frequently

chose routes that visited relatively low weight sites while skipping nearby sites with

higher weights. This appeared to be due to the turn radius limitation. Merely adding

the higher weight site may lead to the addition of a loop, whose length makes the path

infeasible. On the other hand, deleting the low weight site reduces the value of the

path. Thus moving the visit to the higher weight site would require two mutations

(deleting one site and adding the other) but the intermediate states have low value and

would be unlikely to survive. In GA terminology, the problem is deceptive.

The deception is overcome by combining the two mutations to form the move-bit oper-

ator. This operator, shown in figure 12, chooses a visited site at random and clears the

corresponding bit in the bit string. It then finds the preceding and following set bit

in the string and sets some different bit in the interval between them. This procedure

makes sense only because the sites are rearranged in a preprocessing step so that neigh-

boring bits represent nearby sites. (Actually, the sites are put into Sierpinski curve

order.)

One bit Is seleced at random

001011000101000

Figure 12. Move-Bit Operator
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N=200
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fitness

5

0 500 1000 1500 2000 2500 3000

birth
Figure 13. Score of Best Member

The progress of the calculation may be shown by plotting the raw fitness (sum of values
of visited sites) of the best feasible member in each generation. Typical plots are shown
in figure 13. The fitness increases rapidly at first, then more slowly. (The algorithm
makes about 80 percent of its progress toward the final value in the first 20 percent of
the time - a value which doesn't change much with different run times.)

One of the important tuning parameters is the population size. Populations of up
to several hundred members were used. Generally, large populations take longer to
converge but reach better solutions, as shown in figure 13. However, results are also
poorer for very large populations when the total number of evaluations is held fixed.
This is due to the tradeoff between population variability (i.e., presence of the building
blocks for good solutions) and the number of generations.

If the population is too small, the members won't adequately span the search space.
If the population is too large, then (for a fixed number of evaluations) not enough
generations will pass to allow the best features of the various members to be combined.
This is shown by the results for a 20 site problem shown in figure 14. Four runs were
made for each population size, with each limited to 4000 evaluations. The figure shows
the mean score and a one standard deviation range. The optimum population in this
case is apparently near 150 members. The results for a 50 site problem shown in figure
15 suggest that the optimum population may increase for larger problems.

18
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10-

9 0 , I , I , I , I , I , I , I , I * I I
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population
Figure 14. Scores as a Function of Population for 20 Site Problem

18 ' ' ' ' ' 1 ' ' * '

17
.........-.-.-....

16 .' '...

score 16 . ..
151

14

13 a I , , , , , , . I , I I ,
60 80 100 120 140 160 180 200 220 240 260 280 300

population
Figure 15. Scores as a Function of Population for 50 Site Problem
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SECTION 5

RESULTS

Figure 16 shows a sample problem with 20 sites. The path is required to start at the
point labeled 1 and end at the point labeled 2. The other sites are shown as circles
with areas proportional to their weight (that is, the expected likelihood of finding the
target there).

~~-18
0

+1 0 4  1316

Figure 16. Sample Problem with 20 Sites

Figure 17 shows the best path found through those sites with path length restricted to
3.

Figure 18 shows a second sample problem with 50 sites. The variation among paths
found by the genetic algorithm can be judged from figures 19-21, which show the three
best paths with length less than 5.
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0

0

Figure 17. Sample Path Through 12 of 20 Sites

None of the above runs used the arbitrary insertion routing procedure, relying instead on
spacefilling curves and strips routing patterns. Detailed results and genetic algorithm
parameters are listed in table 1.
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Figure 18. Sample Problem with 50 Sites
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0 00

0 00. 0

Figure 19. Path Through 20 of 50 Sites (Length 4.91, Weight 27.23)

00

°° 0

Figure 20. Path Through 19 of 50 Sites (Length 4.94, Weight 26.55)
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O0

0 00
oo 00.

Figure 21. Path Through 19 of 50 Sites (Length 4.99, Weight 26.31)

Table 1. Parameters for Sample Results

Cities Visited Weight Length Population Evaluations Figure
20 12 11.14 2.78 120 4000 17
50 20 27.23 4.91 200 3000 19
50 19 26.56 4.94 200 3000 20
50 19 26.31 4.99 200 3000 21

25
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SECTION 6

DISCUSSION

A previous report presented a fast heuristic based on spacefilling curves for the covering
salesman problem. It finds a two-dimensional route which passes within a specified
distance (corresponding to sensor range) of all the sites of interest, while approximately
minimizing the total distance traveled. This report extends that procedure to include
the selection of an appropriate subset of sites when their number is large, so that time
and fuel constraints preclude visiting all of them. The finite turn radius is also taken
into account.

This work disregards sensor range, but only for simplicity. A previous report described
procedures for eliminating some visits because those cities are within sensor range of
cities which are visited [2]. Those procedures could be applied with no significant
changes.

A bigger effort would be needed to permit revisits of sites, and to properly accumulate
credit for multiple visits. Neither the spacefilling curve heuristic nor the strips heuristic
easily allows multiple visits. The arbitrary insertion heuristic could accommodate a
starting route with multiple visits, and could be adapted to generate such a route as
well.

This work still disregards defenses, terrain avoidance, area searches, waypoint offset (so
the aircraft does not pass directly over a site), and sensor pointing.

Much of the computational effort of this procedure is in accounting for the finite turn
radius of the aircraft. It might be improved by first calculating a lower bound (the
length of the piecewise straight line path) and discarding the path if it is far from
feasible.
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APPENDIX A

FLIGHT PATH ALGORITHM

A.1 BACKGROUND

Certain properties of complex arithmetic can be used to construct a flight path consist-
ing of straight lines and circular arcs.

Of course, addition of complex numbers corresponds directly to addition of two-
dimensional vectors. Multiplying a complex number by a scalar (a real number) cor-
responds to multiplying a vector by a scalar, and results in a vector with the same
direction but in general a different length.

Multiplying a complex number by a second complex number corresponds to a rotation
together with scaling. For example, multiplying by i corresponds to a counterclockwise
rotation by 900 about the origin. Multiplying by eip corresponds to a counterclockwise
rotation by an angle 0 about the origin, where 0 is in radians.

These concepts can be used to construct equations expressing the desired geometric
relationships, which can then be solved for the unknown values. This is often simpler
than using analytic geometry alone.

A.2 WAYPOINT TURN ALGORITHM

Let sl ... s,. be the points to be visited. (In the following, complex values are denoted
by lower case letters, while upper case letters denote real values.) We assume that no
three points to be visited are along a straight line, so that each point will correspond
to a turn. For now, we will assume each turn has the same radius R. A sample flight
path is shown in figure 22. It consists of a straight leg from bk to the "turn point" ek,
a circular arc centered at ck which passes through the point sk, and a second straight
leg from bk+l to ek+I.

In the waypoint turn algorithm, the turn point coincides with the visited point:

ek =8 k. (A - 1)
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Figure 22. Flight Path for Single Turn

This means the turn center ck is at a distance R from ek along a line perpendicular to
the preceding straight segment. This relationship corresponds to the equation

Ck = e + (e - R ,(A -2)

where the upper sign corresponds to a right turn and LL = lek - bkI is the length of
the kth straight segment.

The turn direction can be deduced from the direction to the next site. Specifically, we
expect a right turn if

Im Sk- - <0. (A-3)
( k - bk

The length Lk+1 of the next straight segment can be found using the Pythagorean
theorem,

k+I= 1Sk+1 - ck-R 2 . (A-4)

If the right hand side of (A-4) is negative, the next visited point is inside the turn
circle so that the flight path is infeasible. In this case it is only necessary to reverse the
direction of the turn at ek and recalculate ck. This adds a loop.
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The equation for ck in terms of the following straight segment is

Ck = bk+l + (ek+l - bk+l) R (TO. (A-5)Lk+

Solving this for bk+I, we have

bk-L - Ck d i ek+1R/Lk+l (A - 6)
1 iR/Lk+l

A.3 REMARKS

The turn radius R has been assumed constant, but allowing a different radius at every
turn would introduce no significant difficulties.

These formulas can be used to generate flight paths through specified points consisting
of straight lines and circular arcs. To use the method, the centers of the turn circles
must be found. A simple method for determining these centers, under the assumption
that the turn points coincide with the points to be visited, has been implemented. A
more elaborate method of positioning these centers could generate shorter flight paths.
However, the difference would be significant only for acute turns. If the preceding and
following turn points are distant, the difference for a turn of 0 is

6L = R(sin(0/2) - sin0) = 2Rsin(0/2) (1 - cos (0/2)) = O(03) (A- 7)

This amounts to 2R for a turn of 1800, but .414R for a turn of 900 and only .058R for
a turn of 45* . Note that a good choice of visitation order (i.e., a good solution to the
traveling salesman problem) will tend to give small turn angles.
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APPENDIX B

ADAPTIVE OPERATOR PROBABILITIES

The efficiency of a genetic algorithm depends on the settings of several parameters
including population size and the probabilities of applying each genetic operator. De-
Jong found robust settings by using a test suite of function optimization problems [12].
Later, Greffenstette used a genetic algorithm to find a better set of parameter values
[13]. However, these studies used only the crossover and mutation operators.

When additional operators are used, it is necessary to set their selection probabilities.
Setting them by either of the above methods would require a very considerable effort.
It is attractive to set them adaptively instead.

The following scheme for adaptively setting operator probabilities was presented by
Davis [14]. Each new individual that is better than the current best individual acquires
a "local delta" equal to the improvement. At intervals of I evaluations, each of the
last W individuals pass back to its parent(s) P times the sum of its local delta and
the deltas inherited from its progeny (except that no delta is passed back more than
M generations). Each individual then passes its remaining delta to the operator which
created it. The operators accumulate the deltas in a vector C. The vector V of operator
probabilities is updated by shifting a fraction S, so that V +- SC/C I + (1 - S)V.

The five parameters W, I, S, P, and M effectively replace the operator probabilities
as governing parameters. Davis found the values W = 100, I = 50, S = 0.15, P = 0.15,
and M = 10 to be effective.

There are two points that seem to make implementation of this awkward. The first is
that even deleted members would have to be kept around, on the chance that one of
their progeny would pass back some delta. The other concerns the handling of M, the
limit on the number of generations that delta is passed back. If M could be disregarded,
the deltas could be propagated in one pass, starting with the most recent member, with
each step involving only the member's immediate parents. Accounting for M would seem
to require a walk of the family tree of each member having a local delta, to a depth of
M or the edge of the adaptation window (whichever came first). This procedure would
seem to grow exponentially with W/population, and would be particularly lengthy if
two-parent operators were successful (leading to large family trees).

In addition, one might want to reward operators when they created individuals that
were better than any of their parents, regardless of whether they were better than the
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previous best individual. This would give the adaptation mechanism more information
to work with.

Because of the above concerns, the following somewhat simpler scheme has been used
instead.

Each member has an associated "responsibility vector" R which indicates the relative
roll each genetic operator had in its creation. If operator 9k is used to create child c
from a single parent p, the new member gets a responsibility vector

Rc = PRp + (1 - P)Uk, (B - 1)

where Uk has a 1 in the kth position and Os elsewhere. If the operator used two parents
m and f, the child gets a responsibility vector

Rc = P(Rm + Rf)/2 + (1 - P)Uk. (B - 2)

The operators accumulate credit for improvements in a vector C. If the fitness of the
new member exceeds that of its better parent by 6, C is incremented by bRC/Rc. If
the new member is less fit than at least one parent, C is not changed. Each generation
(m births), the vector V of operator probabilities is updated by shifting a fraction S:

V +- SC/Cl + (1 - S)V, (B - 3)

and the credit vector is attenuated:

C 4- pC. (B-4)

For this work, P = 0.90, S = 0.30m/100, and p = 0.50.

This scheme follows the two principles suggested by Davis, namely that the probability
of applying an operator should be altered in proportion to the performance of the
individuals it creates, and that local measures of performance are insufficient (that is,
operators creating ancestors of successful individuals should also be rewarded).

An example of operator probability adaptation is shown in figure 23. Each curve is an
average over four runs. The adaptive procedure confirms the importance of the crossover
operator, since its probability steadily increases. On the other hand, it suggests the
"move-bit" operator may be relatively unhelpful (or perhaps helpful only early in the
optimization process).
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Figure 23. Operator Probability Adaptation
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APPENDIX C

CONSTRAINED OPTIMIZATION

Suppose we wish to use a genetic algorithm to minimize the function

f(x) (C- 1)

while satisfying the constraint
g(x) < 0. (C - 2)

Goldberg suggests a penalty function approach so that the objective function is replaced
by a compound objective function:

f.(X) = f(x) + ap(z), (C - 3)

where z = g(x), a is a nonnegative penalty coefficient and t is a nonnegative penalty
function [10].

Richardson et al. found that a penalty function should not be too harsh because the most
direct path from a given solution to the optimal solution may require some infeasible
intermediate structures [15]. Therefore, the penalty function should be chosen to balance
the preservation of information against the pressure for feasibility.

It is necessary to penalize infeasible members, but not so much that moderately infeasi-
ble members cannot contribute information. I also want to reward moderately feasible
members for satisfying the constraint well. The penalized fitness function should have
a maximum at the feasibility boundary (where g(x) = 0). Thus, I wanted a penalty
function which is smooth at 0 and has a slope there equal to f/g'. On the other hand,
I didn't want members well inside the feasibility boundary to be either penalized or re-
warded, so the penalty function should be zero for large negative values. Members well
outside the feasibility boundary should be heavily penalized, so the penalty function
should be large for large positive values.

I chose the penalty function $ (z, w) - zez, (C - 4)

which is shown with a solid line in figure 24.

A simpler alternative which works almost as well is
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( z
1 z forz<0

40(z,,,,) = WS (C-5)

z(' +1), for z > 0,

which is shown with a dotted line in figure 24. Each function has a unit slope at z = 0, so
the compound objective function will have a local minimum at the feasibility boundary
if a = f'/g'. a then plays the role of a Lagrange multiplier. Each function also has a
second parameter w, a characteristic width, which is discussed below.
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Figure 24. Penalty Functions

Siedlecki and Sklansky introduced the concept of dominance [16]. Recall that we have
assumed a minimization problem, so that better solutions correspond to smaller values
of f. Solution xi dominates solution xi if f.(zi) < f.(z,) for any positive value of a.
Evidently, this implies both

f(xi) < f(xj) (C - 6)

and
g(X,) < g(x). (C- 7)
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If a is too large the optimal solution may be precluded, and if a is too small then
members will tend to be infeasible. It is therefore important that a be close to fl/g'. This
ratio is estimated from the current population (specifically, from dominant members on
either side of the feasibility boundary) using a single state Kalman filter as follows:

DERIVATIVE ESTIMATE.

(i) Sort the members on their constraint values.

(ii) Find a fit member near the feasibility border (the most fit member
zj with constraint -1 < g(Xf) < 0).

(iii) Find an infeasible member near the feasibility border (the most fit
member xi with constraint 0 < g(Xi) < 1).

(iv) If the moderately infeasible member was more fit (that is, f(xi) <
f(xf)), the derivative fl/g' is estimated as a' = (f(zi) -

f (xf ))/(g(x) - g(x1 )). The filtered derivative estimate is updated
according to a *- (Pa'+Ra)/(P+R), and its estimated covariance
P is updated according to P -- RP/(R + P) + Q.

(v) Otherwise, P -- P+Q.

Q, R, and P are initialized in the ratio 1 : 10.1011, so the Kalman filter gain P/(P+R)
is very high on the first iteration, drops quickly thereafter, and doesn't rise again unless
there axe several generations in a row with no improvements.

For some runs, the width w was kept constant at 2. However, there was some evidence
that decreasing w made the accurate determination of a less critical. This was done by
initially setting w to 1, and thereafter to the range of the constraint function for the
current population:

W 4- ZmaxZ zmin. (C - 8)
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