-

REPORT DOCUMEN

Trecugn [t ArSemat
ISIrOIRUNG arQ re.

D,m _camese e A czan tp g Sh g 3gtimato.

atmer r: re = arta 2ata neeceq. ang <
SOETIA Y Arteemye $ L3NG SUGSESTIONS YT T8I NG TS Dur
‘)zsn TR NS ‘:C Acnrgion, a4 22202-4300 sr‘o 1c tra Or¢

2. REPOR1
1992

1. AGENCY USE ONLY (Leave blank)

AD-A254 893
i

DISSERTATION

(\\"

A

Form Approved
OMB No. 0704-0188

‘UCTICNS. S@FFT™M~G 8y ST T 3379 4, Lo e
‘den estimate ir any trer ssce 3
Operatiors 3nq Aeperts, -
8). wasmngron, € 23503

.. COVERED

4. TITLE AND SUBTITLE

Customer-Driven Reliability Models For

Multistate Coherent Systems

5. FUNDING NUMBERS

6. AUTHOR(S)

Ralph A. Boedigheimer, Captain

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFIT Student Attending: University of

Oklahoma

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/CI/CIA-92-013D

|
1
;

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFIT/CI

Wright-Patterson AFB OH 45433-6583

11. SUPPLEMENTARY NOTES

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

!
I
'
|
[
1
H
+

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release IAW 190-1"" "7

Distributed Unlimited
ERNEST A. HAYGOOD, Captain,
Executive Officer

USAF

12b. DISTRIBUTION CODE

]
:

13. ABSTRACT (Maximum 200 words)

92 8 28 023

Of 3+

4593920
ndinnd,

17. SECURITY CLASSIFICATION

14. SUBJECT TERMS

15. NUMBER OF PAGES
279

16. PRICE CODE

OF REPORT OF THIS PAGE

18. SECURITY CLASSIFICATION

19. SECURITY CLASSIFICATION
OF ABSTRACT

T T I ——
20. LIMITATION OF ABSTRACY

NSN 7540-01-280-5500

‘d
Standard Form 298 (Rev 2-89)
Prexcnbed by ANSI Std. 239-18
298102

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

CUSTOMER-DRIVEN RELIABILITY MODELS

FOR MULTISTATE COHERENT SYSTEMS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

DTIC QUALITY INSPECTED 8

PPIC 4R
Unsiiaciarecd
Justifiention

Acesgsioa For

LTS GRAM]
]
ad

By
RALPH ALAN BOEDIGHEIMER

i

By
Norman, Oklahoma i Distributien/
i Availability Codes
1992 - Avmil and/or
Dist | Special

R |

CUSTOMER-DRIVEN RELIABILITY MODELS
FOR MULTISTATE COHERENT SYSTEMS
A DISSERTATION

APPROVED FOR THE SCHOOL OF INDUSTRIAL ENGINEERING

BY

\Cevflndﬂ\ C/u:c>47x~ﬁ/

Dr. Kailash C. Kapu®* (Chairman)

AL awiwfw\

[Rav1ndran

Dr. Lawrence M Leemls

Lol d-Adtr

Dr. Pakiz& S. Pulat

AP

Dr. Robert E. SchlegelV

AL

Dr. Kevin A. Grasse

ACKNOWLEDGEMENTS

I thank God for the many precious gifts He has given me
and dedicate this work to the glory of His name.

I would like to express my sincere appreciation to Dr.
Kailash Kapur for inspiring and motivating me throughout this
effort. This dissertation would have been impossible without
his willingness to take over as the chairman of my committee
and his profound insights into reliability. I would like to
thank Dr. Kapur, Dr. Ravindran, Dr. Leemis, and Dr. Pulat for
providing me with a strong foundation of courses. Doctors
Leemis and Schlegel deserve special recognition for their
detailed review and constructive criticism of my work. I
also thank Dr. Grasse, who graciously agreed to participate
on my committee.

Finally, I thank my family for the love and support they
provided for the past three years. Becki gave me confidence
and encouragement whenever I began to have doubts about my
ability. David and Susan were understanding of their part-
time Dad and a great source of energy and pride. No one

could be blessed with a more perfect family.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES « ¢ ¢ « ¢ o o o o o o o o o o o s o « oviii

LIST OF FIGURES . . ¢ ¢ ¢ &+ o ¢ o o o o o o o o o b 4

ABSTRACT . & v ¢ v o o o o o o o & o o o o o o« o o xi
Chapter

1. INTRODUCTION . . . &+ +v ¢ o o o o o o o o . . 1

1.1 Background ¢ . . . 3

1.1.1 Birary Model e . 3

1.1.2 Multistate Model 4

1.1.3 Continuous Model . . . e e 4

1.2 Objectives« e e . 4

1.3 SCOPE .« + ¢ ¢ v ¢ 4« e e e o 0 5

1.4 Overview e e e . 6

2. THE BINARY MODEL e s . . . 8

2.1 Structural Properties 8

2.1.1 Notation« .+ .+ . . 8

2.1.2 Introduction . . . e e . e e . 9

2.1.3 8pecial Structures e e e e e e 10

2.1.4 Coherent Structures 11

2.1.5 Equivalent Coherent Structures . . 14

2.1.6 Dual Structure Function 18

2.1.7 Structural Importance 21

2.1.8 Modules and Modular Decomposition 21

2.2 Stochastic Properties 23

2.2.1 Notation e e e 24

2.2.2 The Reliability Functlon e e e e 25

2.2.3 Reliability Importance 25

2.2.4 Exact System Reliability 26

2.2.4.1 Enumeration 26

2.2.4.2 Inclusion-Exclusion . . . 28

2.2.4.3 Pivotal Decomposition 30

2.2.4.4 Modular Decomposition . 32

2.2.5 Bounding System Reliability . . . 34

2.2.5.1 Trivial Bounds 35

2.2.5.2 Path/Cut Bounds 35

2.2.5.3 Min/Max Bounds 36

2.2.5.4 Combining Bounds . . 36

2.2.5.5 Improved Path/Cut Bounds. 37

2.2.5.6 Inclusion-Exclusion Bounds. 40

Chapter

2.3

2.4

THE MULTISTATE MODEL . . .

3.1

3.2

3.3

3.4
3.5

Dynamic Properties
2.3.1 Notation e e e e e
2.3.2 Lifetime Dlstrlbutlon Functlons .
2.3.3 Lifetime Distribution Classes .
2.3.4 Distribution Class Closure . . .
2.3.5 Exact System Lifetime Distribution
2.3.6 Bounding System Reliability . .
SUMMATLY « +¢ ¢ + o o o o o o o o o o o o =

Structural Properties
1.1 Notation . . .

. . s

3.
3.1.2 Introduction
3.1.3 Special Structures . . .
3.1.4 Coherent Structures . . .
3.1.5 Equivalent Coherent Structures . .
3.1.6 Dual Structure Function
3.1.7 Structural Importance
3.1.8 Modules and Modular Decomposition
Stochastic Properties
3.2.1 Notation+ < ¢ o o . .
3.2.2 The Performance Function
3.2.3 Performance Importance
3.2.4 Exact System Performance
3.2.4.1 Enumeration . e
3.2.4.2 Inclu31on-Exclu31on e .
3.2.4.3 Pivotal Decomposition . .
3.2.4.4 Modular Decomposition . .
3.2.5 Bounding System Performance . .
3.2.5.1 Trivial Bounds . e e
3.2.5.2 Path/Cut Bounds
3.2.5.3 Min/Max Bounds . . .
3.2.5.4 Combining Bounds
3.2.5.5 Improved Path/Cut Bounds
3.2.5.6 Inclusion-Exclusion Bounds.
Dynamic Properties
3.3.1 Notation« . . .
3.3.2 Distribution Representations . .
3.3.3 Distribution Classes and Closure .
3.3.4 Exact System Performance
3.3.5 Bounding System Performance . . .
Boundary Point Conversion
SUMMATYY « « « ¢ o o o o o o =

Page

40
40
41
43
46
46
48
48

50
50
50
52
54
g7
68
74
78
79
80
81
82
84
85
85
87
89
94
96
97
99
100
100
101
101
102
102
103
104
106
109
111
117

Chapter

4q.

THE CONTINUOUS MODEL
4.1

Structu
4.1.1

as

o o (T o
NN B Fp

[V Y N ¢ I - Y - NN - N
HBWNRE DO WN

e o o o (Yo s o s e o o

3
403.4
Summary

ral Properties . .
Notation
Introduction . . .
Special Structures . .
Coherent Structures
Equivalent Coherent Structures .
Dual Structure Function
Structural Importance
Modules and Modular Decomposition
tic Properties
Notation . . . « ¢ ¢ ¢« ¢« « « « « &
The Performance Function
Exact Performance Distribution
System Performance Bounds
4.2.4. Trivial Bounds . . .
Path/Cut Bounds
Min/Max Bounds
Combining Bounds . . .
Improved Path/Cut Bounds.
General Bounds
Properties « . .
Notation « « « . .
Distribution Representations .
Distribution Classes and Closure
Exact System Performance . . .

. - - .

e & e @
.

¢« * & e o
.
.

* e & o o

5. CUSTOMER-DRIVEN RELIABILITY MODEL

5.1

Definin
Compone
5.1.1

5.1.2

Estimat
Definin
Estimat
Determi
for Rel
Summary

LICATIONS

Product
Mission
Tire Tr
Summary

g the Number of System and

nt States
Discrete State Class1f1cat10n . .
Continuous State Classification
ing Component State Probabilities
g the System . . . e e e e e e
1ng System State Probabllltles . .
ning Substitute Characteristics
iability . . . « « + o <+ o . .

. . -

ion and Assembly Process
Battle Planning
ead Wear

vi

.

Page

118
118
118
119
122
125
127
131
133
134
134
134
135
136
136
137
137
138
139
139
139
140
140
141
141
142
142

143

146
147
148
151
154
159

160
166

167
167
179
187
194

Chapter Page

7. FURTHER RESEARCH, SUMMARY, AND CONCLUSIONS . . . 195
7.1 Directions for Further Research 195
7.1.1 Fuzzy Sets « ¢« ¢« « ¢« « « . 195
7.1.2 Reliability Polynomial . e+ o« . . 196
7.1.3 Expected Loss 201
7.1.4 Reliability Estimation
T.2 SUMMABTY .« « « « o o « o o o« o o« o o o« « « . 208
7.3 ConcCluSionNS . .+ ¢ ¢« ¢« &« « 4« o o o« o« o« « « . 210

LITERATURE CITED . . . ¢ &+ o « & ¢ 4 o o o o s o« o« « . 211
BIBLIOGRAPHY . . ¢ ¢ & ¢ ¢ o o o o o &« o o o & o« « « . 215
APPENDIX
A. Exact System Performance Program 218
B. Bounding System Performance Program 249
C. Boundary Point Conversion Program 266
D. Expected Loss Program +. « « +« « « « - o 276

VITA .+ & & ¢ v 4 o o o o o o o o o o o o o« o o o« o« « « 279

vii

LIST OF TABLES

TABLE
1.1 Computer System Qualities
2.1 Lower Bound Comparison « « « « « « &
2.2 Upper Bound Comparison ¢« « « o o « &

2.3 Closure of Litetime Distribution Classes for
Various Reliability Operations

3.1 ¢(x) for Example 3.1

3.2 H(x) and ¢(x) for Example 3.3.

3.3 II(x) and ¢(x) for Example 3.4 .

3.4 ¢(x) for Example 3.6

3.5 ¢°(x) for Example 3.6

3.6 ¢(x) for Example 3.7

3.7 System Performance at Various Times . .

3.8 Bounds on System Performance at Various Times

3.9 Potential Lower Boundary Points

3.10 Potential Upper Boundary Points

5.1 System State Probability Distributions for
Two Systems ¢ ¢ ¢« ¢ ¢« ¢« v e e .

5.2 Condensed System State Probability
Distributions for Two Systems .

5.3 ¢(x) for Multistate Model

5.4 Lower and Upper Boundary Points

6.1 Production Component Definitions . .

6.2 Component States and Descriptions . . .

6.3 System States and Descriptions

viii

.

Page

39
39

46
57
67
68
75
76
86
109
111
114

117

144

144
145
155
1790
170

171

TABLE
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18

6.21
6.22
6.23

Component State Probabilities
Lower and Upper Boundary Points . . .
System State Probabilities
Substitute Characteristics
Battle Plan Component Definitions .
Component States and Descriptions . .
System States and Descriptions . .
Component State Probabilities
Equivalence Classes
Lower and Upper Boundary Points . . .
System State Probabilities
Substitute Characteristics
Tire Tread Wear Component Definitions
Component States and Descriptions . .
System States and Descriptions . . .
Brand X Component State Probabilities
Brand Y Component State Probabilities
Lower and Upper Boundary Points . .
System State Probabilities By Brand .
Substitute Characteristics By Brand
¢,(x) for Example 7.3

¢p(x) for Example 7.4

ix

.

Page
172
176
177
178
180
180
181
181
182
184
185
186
188
188
189
189
190
192
192
193
203
203

FIGURE
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

LIST OF FIGURES

Coherent System of 4 Components
Structure for Example 2.3
Structure for Example 2.4
Structure for Enumeration
Structure for Pivotal Decomposition . .
New Structure With x, =1 ., . . ., .

New Structure With %, =0
Structure for Modular Decomposition
Structure for Keliability Bounds . . .
Structure for Bounding Reliability .
Pivotal Decomposition Diagram
Seven Component Coherent Structure
S(0), S(2), and S(6) for Example 4.1
S(.5), L(.5), and U(.5) for Example 4.2
S(1), L(1), and U(1l) for Example 4.3 .
State Classification
State Classification With Loss Function
Process Flow Diagram .

Structure for Example 7.1

Page
17
22
23
27
30
31
32
33
38
48
92
95

121
124
125
148
149
167

198

ABSTRACT

The most commonly used reliability model is the binary
model. However, the continuous model better represents items
which degrade through a continuum of values. Unfortunately,
the continuous model results in an.overwhelming number of
calculations. The multistate model is a sensible compromise
between the binary and continuous models. The purpose of
this dissertation is to develop multistate models based on
the voice of the customer,.

Structural, stochastic, and dynamic properties are
reviewed for the binary, multistate, and continuous models.
The multistate and continuous models are generalized to allow
a different number of system and component states. Analogous
properties are shown for the general multistate model and the
general continuous model.

The general multistate model is developed and evaluated
from the viewpoint of the customer. A method for state
classification 1is presented that allows the customer to
define the number of system and component states. A
technique using the convolution of random variables is
devised to estimate the component state probabilities after
the customer specifies the desired system lifetime. An
algorithm is designed to determine the customer’s implicit
structure function by having the customer specify a set of
boundary points. A proceilure to convert from one set of

boundary points to the other is developed and implemented

Xi

with a computer prooram. The conversion program limits the
amount of information required from the customer. Two
additional computer programs are written to implement
existing techniques for estimating system state
probabilities. Expected loss is introduced as a substitute

characteristic for reliability.

xii

1. INTRODUCTION

The nature of a product is defined by the inherent
qualitieé that are particular to the product. The customer
uses qualities to establish a preference for one product over
another. Gitlow, Gitlow, Oppenheim, and Oppenheim ([1989]
define quality as the extent a product surpasses the needs
and expectations of the customer.

Evefy quality has a desired direction for improvement.
Selecting a product is easy when all qualities are at their
best level. The trouble comes when forced to make a choice
between products with conflicting qualities (i.e. one
quality’s improvement causes another quality’s decline). For
this case, some attempt must be made to convert the qualities
to a common scale. Another problem occurs when the qualities
are too broad or vague. The solution to ambiguous qualities
is to replace them with substitute characteristics that are
quantitative and more easily compared. However, generating
several substitute characteristics confounds the problem of
conflicting qualities.

As an example, suppose a customer is looking for a new
home computer. He decides to use four qualities to compare
various brands: cost, hard drive capacity, clock speed, and
reliability. The other qualities are either not important
or so important that only one level of the quality is
acceptable. In general, the customer strives to decrease

cost and increase the other three qualities. After further

thought, the customer divides the cost quality into two
substitute characteristics: original system price and
average annual maintenance cost. Several of the qualities
conflict. For example, a price decrease results in a slower
computer with less permanent memory. Suppose the customer

can choose from the 3 computer systems listed in Table 1.1.

Table 1.1 Computer System Qualities.

! Quality | System A | System B System C
— — |

i System Price $1500 $1600 $1400
| ymsepwss 1wz | ows [s

“ Hard Disk Capacity ! 4OB§§ga° SOngga' 60B§§ga—
} Clock Speed ' OHebi:etgza- ' ZHGE'I retgza_ ' 2He:4 retgza—

The customer would never choose System A since its qualities
are inferior to those of System C. To make a final choice,
the customer must decide whether the additional 20 Megabytes
and higher reliability of System B is worth the extra $200
in system price. If not, he should purchase System C.

The previous discussion emphasizes that the essential
element in product selection is the customer. In fact, only
the customer can decide which qualities are important and how
the qualities are weighted to discriminate between products.
Stated in different terms, the quality of a product is

defined and evaluated by the customer.

2

1.1 Background

Reliability is a quality. Therefore, reliability must
be defined and evaluated from the viewpoint of the customer.
Reliability models derived for their intuitive appeal or
mathematical simplicity fail to satisfy this logical and
important criterion.
1.1.1 Binary Model

Determining the reliability of a complex system from the
structure of the system and the reliability of the components
is a fundamental problem in reliability theory. For the
binary model, reliability is defined as the probability that
the product will perform its intended function adequately
under stated environmental conditions for a specified
interval of time [Kapur and Lamberson, 1977].

Unfortunately, a single measure of reliability does not
always provide enough information for the customer to make
an informed choice between products. The customer can often
make a better choice by simultaneously exploring several
substitute characteristics for reliability. For example, the
failure variability, the p*" percentile, and the mean time to
failure could all be included in the customer’s evaluation.
Each measure gives an indirect assessment of the reliability
for the system. The simultaneous consideration of several
conflicting substitute characteristics for reliability
results in a multiobjective optimization problem that can be

solved with existing techniques.

1.1.2 Multistate Model

The multistate model allows the customer to specify more
than two discrete states for the components and the system.
The previous definition for reliability is no longer valid
since now there are different degrees of functioning. This
forced the development of several substitute characteristics
for reliability: El-Neweihi, Proschan, and Sethuraman [1978]
suggested the expected system state; Butler [1979] divided
the set of system states into an acceptable set and an
unacceptable set; Griffith [1980] proposed the expected
utility derived from the system states.
1.1.3 Continuous Model

The continuous model allows the performance of the
system and components to be specified along some continuum.
Baxter [1984,1986], Kaleva [1986], Baxter and Kim [1986]), and
Montero, Tejada, and Yé&fiez [1990] concentrated on continuum
structures that map from the unit hypercube to the unit
interval. For this special case, system reliability was
defined as the expected system state or the probability that
the system state exceeded some given value between 0 and 1.
1.2 Objectives

The primary objective of this research is to develop
customer-driven reliability models for multistate coherent
systems. The models will require customer interaction at
every step. The customer will define the number of distinct

component and system states. The customer will stipulate a

desired system lifetime, allowing the estimation of the
probability distribution for each component. The customer
will define the system by specifying when a change in the
state of any one of the components forces a change in the
state of the system. The previous input characterizes the
customer’s implicit structure function and allows the
calculation of system state probabilities. The customer will
choose one or more substitute characteristics for reliability
that summarize the system state probabilities. The best
compromise solution will be found through interaction with
the customer.

The second objectivé of this research is to develop a
new substitute characteristic for multistate reliability
based on expected loss to the customer. The new measure will
be sensitive to the pattern of degradation about a specified
lifetime. In other words, the measure will be a function of
not only the number of state changes, but also the time of
each state change relative to the specified lifetime.

1.3 Scope

The components and systems considered in this paper are
assumed to be nonrepairable.

Also in this paper, the random variables representing
the n component states are assumed to be mutually independent
unless specifically stated otherwise. Mutually independent

random variables are defined and described in the following

paragraphs.

DEFINITION. Discrete random variables X,,X,,...,X, are
mutually independent if and only if
PrX;=x;,X;=Xy, .. -+ X=X,] = P; P2 = Pn
where p, = Pr(X,=x,], i=1,2,...,n. Continuous random
variables are mutually independent if and only if
£(X, %y 000,X,) = £(x,) £(x,) - £(x,)

for every (%,,X,,...,%,) € R" and f(x,) is the marginal

probability density function of X,.
The assumption of mutual independence is stronger than the
assumption of pairwise independence. Clark and Disney [1970]
showed that a finite set of random variables can be pairwise
independent without the whole set being mutually independent.

The independence assumption implies that the state of
one component will have no effect on the states of the other
components in the system. Obviously, independence can not
and should not be assumed for every system. However, the
case of dependent component states will not be pursued here.
1.4 Overview

Chapter 1 provided an introduction to quality and
reliability, emphasizing the role of the customer in the
definition and evaluation of reliability. The main objective
of the dissertation is to develop customer-driven reliability
models for multistate systems, including an innovative
substitute characteristic for reliability based on the voice
of the customer. The study was narrowed to systems composed

of mutually independent components. Chapter 2 gives a review

of the deterministic, stochastic, and dynamic properties for
the binary model. Chapter 3 presents the same properties for
the multistate model, making a distinction between the early
multistate models where the system and component states were
restricted to the same set and a new general multistate model
which allows a different number of discrete states for the
system and each component. Chapter 4 reviews the continuous
model where the system and component states degrade through
a continuum of values. For the first time, the continuous
model is generalized to allow different ranges for the system
and component states. Chapter 5 presents the customer-driven
multistate reliability model and demonstrates how to get the
customer involved at every step during the development and
evaluation of the model. Chapter 6 contains several specific
applications of the customer-driven multistate reliability
model. Chapter 7 provides conclusions and recommendations

for further research.

This chapter presents a review of the structural and

stochastic properties of the binary model most commonly used

2. THE BINARY MODEL

in reliability theory.

2.1 Structural Properties

Structural properties characterize the deterministic

relationship between the state of the system and the states

of the components at a fixed moment in time.

2.1.1 Notation

The following notation is listed for the reader’s

convenience in the order of presentation:

n

(0,,x)
(1,,x)
(", %)

Yy > x

number of components comprising the system.

state of component i; x; € (0,1} for i=1,2,..

component state vector; X = (X;,X5,«..,%,) «
structure function; system state for x.

state of the system; ¢ € {(0,1}.

Min{xl,XZ, ...,Xn} = Xl XZ hadd Xn.

Max{X,, Xy, + .., %} = 1=(1-%;) (1-8,)~(1-%,) .

(0,0,...,0).
(1,1,...,1).
(1) Ry oo e s Xic1s 0, Kyiqy oo e rXp) e
5 3P0 SYINPIYS JINPE DS JICPIRIIN 5 BN
6370 JYINMPS SIFPRIMD JUCTII 5 IR

y, 2 X, Vi and y, > x, for some i.

., 0.

y2x y, 2x, Vi.

x Oy x, Oy,x, Oy,x, II vy
where x, II y, = Max{x,,vy,}.

x Iy O, Hy,x, Iy,x, IIy,

where x, Il y, = Min{x,,y,}.

P, j** minimal path set; j=1,2,...,s.

a,y (x) indicator variable; 1 if all components in P, work.
o J** minimal cut set; j=1,2,...,t.

B, (x) indicator variable; 0 if all components in C; fail.
¢° dual structure function.

l - x (1-x%,,1-%,,...,1-%,).

I, (1) structural importance of component i in ¢.

C component set; C = {c;,Cy,...,Cp}.

A, component set of module j; Ay c C.

y & structure function of module j.

LU} organizing structure for a modular decomposition.

2.1.2 Introduction

Birnbaum, Esary, and Saunders ([1961] introduced the
binary model, which has served as the basis for the
mathematical and statistical theory of reliability. For this
model, the system and n components are assumed to be in one
of two possible states: functioning or failed.

The order of a system, n, is the number of distinct
components that make up the system. Along with the order,
a system is characterized by its structure which describes

how the components are configured. The structure of the

9

system is represented by a function, known as the structure
function, which determines the system state from the states
of the components.

Suppose the state of the i** component is represented by
the binary variable x,, where

_ 1 if component i is functioning
T {0 if component i has failed

for i=1,2,...,n. The binary component states are summarized
with the vector x = (%X;,%X;,...,%,). The structure function
¢ (x) determines the binary state of the system ¢ from the
component state vector so that

¢=

1 if the system is functioning
{0 if the system has failed.
2.1.3 Special Structures

Birnbaum et al. [1961] defined three basic structures
for the binary case: series, parallel, and k-out-of-n. A
series system is defined so that the system functions if and

only if each component functions. The structure function is

n
¢(x) = Hxl = Min{xlIXZI ""Xn} = Xl X2 b xn.
is]

A parallel system is defined so that the system fails if and
only if all the components fail. The structure function is
n
o(x) = I_Ixi = Max{x,,X;,...,%X,} = 1-(1-x;) (1-%,)~(1-%,).
ie]
A k-out-of-n system is defined so that the system functions

if and only if at least k-out-of-n components function. The

10

structure function is

1 if éb)ﬁ 2k
=1

0 if 2:)q < k.

is]

o(x) =

Series and parallel systems are special cases of the k-out-
of-n structure. A series system is an n-out-of-n structure
while a parallel system is a l-out-of-n structure.
2.1.4 Coherent Structures

From the beginning, the founders of reliability theory
only considered the set of structures that were intuitively
appealing. Birnbaum et al. [1961) coined the term coherent
system and offered the following definition: '

DEFINITION - A structure ¢ is coherent iff

i. ¢é(y) 2 ¢(x) for all y > x and

ii. ¢(0) = 0 and ¢(1) = 1.

They also defined the it

component to be essential or
relevant if ¢(0,,x) # ¢(1,,x) for some (', x).

Esary and Proschan [1963a] modified the definition of
coherence given by Birnbaum et al. [1961] to include all
increasing! functions:

DEFINITION - A structure ¢ is coherent iff

i. ¢(y) 2 ¢(x) for all y 2 x and

ii. ¢(0) = 0 and ¢(1) = 1.

'The term increasing (decreasing) is used in place of
nondecreasing (nonincreasing) in the reliability literature.

11

Barlow and Proschan [1981) combined the concepts of
component relevance and increasing structure functions to
give a commonly used definition of a binary coherent system.

DEFINITION - A system or structure ¢ is coherent iff

i. ¢(y) 2 ¢(x) for all y 2 x and

ii. Each component is relevant to the system where the

i** component is relevant iff ¢(1,,x) # ¢(0,,x) for some

(*y,X) .

Interpreting the last definition, repair of a failed
component cannot cause system deterioration and failure of
a working component cannot cause system improvement. Also,
all components in a coherent system must influence the state
of the system for at least one component state vector. All
irrelevant components should be removed from the system to
reduce cost.

EXAMPLE 2.1 Show that ¢,(x) = 1 - x;x, and ¢, (x) =

1l - (1-x,) (1-x,%x,) and are not coherent structure

functions as defined by Barlow and Proschan.

¢,(x) is a decreasing function since ¢,(0,0) = 1 and

6,(1,1) = 0. Thus ¢, degrades as components are

repaired. For ¢,(x), component 2 is irrelevant since

¢,(0,0) = ¢,(0,1) = 0 and ¢,(1,0) = ¢,(1,1) = 1. The

system can be improved by removing component 2.

Elimination of unrealistic structures allowed Esary,
Marshall, and Proschan [1970] to present the next three

theorems for every coherent system.

12

The first theorem implies that every coherent system can
be bounded below by a series arrancement of the system’s
components and bounded above by a parallel arrangement of the
system’s components.

THEOREM 2.1 If ¢ is a coherent system, then

]_-Ix1 < ¢(x) SHXv

i=l i=1

The second theorem states an important result about
redundancy. Suppose that enough components exist to build
two identical structures. The choices are to construct a
system made from:

(1) Two identical structures arranged in parallel or

(2) One structure with each component in parallel.
The next theorem states the design principle that it is
better to duplicate at the component level rather than at the
system level, so choice (2) is better. Equality holds when
¢ is a parallel structure.

THEOREM 2.2 If ¢ is a coherent system, then

dxly) 26x) oy

for any state vectors x andy. x I y is defined

as (x, D y,x, Oy, ...,x, I y,) where x, II y, =

Max{x,,y;} and ¢(x) I ¢(y) = Max{d(x),d(y)}.

The final theorem has a similar interpretation. Again,
suppose that enough components exist to build two identical

structures. The choices are t» construct a system made from:

13

(1) Two identical structures arranged in series or
(2) One structure with each component in series.
The next theorem states that placing the two structures in
series is better than placing the components of the structure
in series, so choice (1) is better. Equality holds when ¢
is a series structure.

THEOREM 2.3 If ¢ is a coherent system, then

d(xIly) <¢(x) II oy

for any state vectors x andy. x Il y is defined

as (%, Il y;, 2, Il y,,...,%, II y,) where x, Il y, =

Min{x,,y,} and ¢(x) II ¢(y) = Min{¢(x),d(y)}.
2.1.5 Equivalent Coherent Structures

Birnbaum et al. {1961] showed that any c¢oherent
structure can be represented by several alternate structures.
The subsequent discussion and notation follow mainly from
Ross [1989].

A minimal path set is a minimal set of functioning
components that guarantees that the system functions.

DEFINITIONS. A component state vector x is called a

path vector if ¢(x) = 1. A path vector x is a minimal

path vector if ¢(y) = 0 for any y < x. If x is a
minimal path vector, then P(x) = {i | %, = 1} is called

a minimal path set.

Let P,,P,,...,P, denote the minimal path sets for a given

system. Let a,(x) be an indicator variable of the j*" minimal

14

path set defined by

1 if all components of P, are functioning

oy (x) = { 0 otherwise

The system will function if and only if all the components
in at least one minimal path set are functioning. Hence,

the state of the system is given by

1 if u,(x)
o (x) = {o if o (x)

1 for some j
0 for all j.

This equation is a parallel arrangement and can be rewritten

in the following equivalent forms:

o (x) Max o, (x)

3
Max [] x,
3 iep,

1—f[(1-1’[x1)

j=1 ieP,

X
j=1 1eP,

Therefore, for the binary case, minimal path sets can be used
to represent any coherent system as a parallel arrangement
of series structures.

A minimal cut set is a minimal set of failed components
that guarantees that the system fails.

DEFINITIONS. A component state vector x is called a

cut vector if ¢(x) = 0. A cut vector x is a minimal
cut vector if ¢(y) = 1 for any y > x. If x is a
minimal cut vector, then C(x) = {i | x, = 0} is called

a minimal cut set.

15

Let C;,Cy ...,C. denote the minimal cut sets for a given
system. Let B,(x) be an indicator variable of the j* minimal

cut set defined by

B.(X) = { 0 if all components of C, are not functioning
3 1 otherwise

=] x,.

iec,
The system will fail if and only if all the components in at
least‘one minimal cut set are not functioning. Hence,

the state of the system is given by

1 if P, (x)
¢ (x) = {o i B, (x)

1 for all j
0 for some j.

This equation is a series arrangement and can be rewritten

in the following equivalent forms:

¢ (x)

]
=
P
o]

P
)

[} (1]
am
—- o
=
R
o I
o
|
e
=

Therefore, for the binary case, minimal cut sets can be used
to represent any coherent system as a series arrangement of
parallel structures.
EXAMPLE 2.2 Write the equivalent structure functions
using minimal path and cut sets for the coherent system
given in Figure 2.1 and show that they are equivalent

to the original structure function.

16

Figure 2.1 Coherent System of 4 Components.

The original structure function is given by

O(x) = x, [1-(1-x,%,) (1-%,)]
= %, [X,%; + X; = X;X3¥,]
= XIX2X3 + x1X4 - XIXZX3X4-

The minimal path sets are {1,2,3}, {1,4}. So
¢ (x) = 1-(1-x,%,%;) (1-X;%,)

1 - [1 - xleX3 - XIX4 + X12X2X3X4]

xleX3 + X1X4 - X1x2X3X4.

The minimal cut sets are {1}, (2,4}, {3,4}. So

¢ (x)) [1-(1-%;) (1-%4)] [1-(1-%;) (1-%,)]
= x, [®, + x4 - X,X,] [%; + x4 - X3%X,]
= X, (XX HX,X— XXX+ X%, + X2 XX, 2= X, XX, — X, X 2+ X, X%,]
= Xy [RpRy+X R —XoX X HRaR XK 3K ~ XXX~ XX H XXX,]
= X, [X,%; - X;X3%X; + %,]
= X;X,X; + X X, - X;X,X3X,.
Therefore, the three representations are equivalent.
As a final note, Birnbaum et al. [1961] presented the
following expansion to reduce the order of the structure
function by one:
d(x) = x, $(1,x) + (1 - x,) ¢(0,,x). (2.1)

The structure can be expanded with respect to any component.

17

2.1.6 Dual Structure Function

Birnbaum et al. [1961] introduced the dual structure
function which has proven useful both for switching systems
and systems with two different modes of failure.

DEFINITION. Given a structure ¢, the dual structure ¢°

is defined by
$°(x) =1 - 61 - x).
The structure function and dual structure function have
several important relationships which have been stated and
proven by many authors.
THEOREM 2.4 The dual of a k-out-of-n system is an
(n-k+1) -out-of-n system.

Proof: ¢ is a k-out-of-n system which is given as

1 if Yy x 2k
¢ (x) = o
0 if ¥ x, <k.

is=1

When evaluated at (1 - x),

1 if Yy (1 -x) 2k
61 -x) = i=1
0 if ¥} (1 - x,) <k.

i=1

Therefore,

0 if Y x,<n-k
1-6(1-x) = =1
1 if Yy x,>n - k.

i=]1

18

Changing to the form of a k-out-of-n system results in

1 ifza:xizn-k+l
1-6(1-x) = 1~
0 if Y x,<n-k=+1
i=l

which is an (n-k+1l)-out-of-n system.
Since a series system is an n-out-of-n structure and a
parallel system is a l-out-of-n structure, the following two
corollaries are immediately apparent:

COROLLARY 2.1 The dual of a series system of n

components is a parallel system of n components.

COROLLARY 2.2 The dual of a parallel system of n

components is a series system of n components. '
Continuing with the relationships between ¢ and ¢°:

THEOREM 2.5 If x is a path vector of ¢, then (1 - x)

is a cut vector of ¢°, and vice versa.

Proof: Let x be a path vector of ¢. Then ¢(x) = 1 and

1-¢(x) = 0. But 1-¢(x) = ¢°(1 - x). So ¢°(1 - x) =0

and (1 - x) is a cut vector of ¢°. Let x be a cut

vector of ¢. Then ¢(x) = 0 and 1-¢(x) = 1. Therefore,

¢°(1 - x) =1 and (1 - x) is a path vector of ¢°.

THEOREM 2.6 The minimal cut sets for ¢ are the minimal

path sets for ¢°, and vice versa.

Proof: Suppose the minimal cut sets of ¢ are denoted

by ¢,,C,s...,C.. Using the alternate form with minimal

cut sets,

19

o(x) = fI II =..

=1 ieC,

Therefore, the dual can be written as

"
[
i
-
=
=
I
._?G

1 -6(1 - x)
=1 leC,
€ .
=1 - (1 - Xx,)
L)Y lec,
t
=11 X, .
=1 1eC,

which is an alternate form of ¢° with minimal path sets.
Thus, C,,C,,...,C, are the minimal path sets of ¢°.

Now, suppose the minimal path sets of ¢ are denoted by

P,,Py...,P,. Using the form with minimal path sets,
s
ox) =] II=x..
Jj=l ieP,

Therefore, the dual can be written as

1-11 ITI a - =%

=1 leP,

1-6(1 -x)

(1 - JI @ - %))

Jul iep,

s
= xi
=] 1l€P

[y

1

which is an alternate form of ¢° with minimal cut sets.
Thus, P,,P,,...,P, are the minimal cut sets of ¢°.

THEOREM 2.7 The dual of the dual structure function is
the original structure function; that is, (¢°)° = ¢ (x).

Proof: (¢®)° = 1 - ¢°(1 - x)

20

=1-011-¢6¢(1 - (1 -x))]
1 - {1 - ¢(x)]
= ¢(x).

2.1.7 Structural Importance

Some components play a more important role than others
in determining whether or not the system will function based
on their location in the system. For example, a component
that is contained in every minimal path set is intuitively
more important than a component contained in only one minimal
path set. The number of minimal path sets that contain the
i** component can be counted by determining when the
component’s failure causes the system to fail; that is, when

é(1,x) - ¢(0,,x) = 1.

! remaining

If the state of component i is fixed, there are 2"
component state vectors. Birnbaum [1969] showed that a good

measure of structural importance for component i is

I,(i) = —b [6(1,%) - ¢(0,x)]
2 {xf{x,=1}
where ?ﬁér scales I, (i) so that 0 < I,(i) <1 for i=1,2,...,n.

Note that I,(i) is strictly positive for any coherent system.
2.1.8 Modules and Modular Decomposition

Birnbaum et al. [1961l] were first to explore the
decomposition of large problems into smaller self-contained
problems. A module is a group of components that can be

treated as a single component, having only a single input and

21

output from the rest of the system. Birnbaum and Esary
[1965] formalized the definition and extended the result to
three modules.
DEFINITION - Suppose (C,¢) is a coherent system where
C is the set of components. Suppose that A ¢ C. Let
A’ denote the subset of C complementary to A. The
coherent system (A,%) is a module of (C,¢) if
o(x) = ¢(x*x*)= ylx(x"),x"]
where ¥ is the organizing coherent structure function.
EXAMPLE 2.3 For the structure given in Figure
2.2, find the structure function X for the module
consisting of components 1 and 2 as well as for

the organizing structure y.

Figure 2.2 Structure for Example 2.3.

X;X, and

4
v

Barlow and Proschan [1981] generalized this result for

1 - (1-)) (1-x5) (1-x%,) .

a discrete number of disjoint modules.
DEFINITION - A modular decomposition of a coherent

system (C,0) is a set { (A, %), By, X2) s ---r (A, %)} @along

22

with the organizing structure ¥ such that

i) ({Aa,,A,,...,4,) partition C into disjoint subsets and
i) ¢(x) = YIX: (x™) X2 (xP) s oe e s AnlxP)].

EXAMPLE 2.4 For the structure given in Figure

2.3, find the structure functions for module Y,
consisting of components 1,2, and 3, for module ¥,
;onsisting of components 4 and 5 as well as for

the organizing structure .

Figure 2.3 Structure for Example 2.4.

A1 = X1XX3, X2 = X4X;, and

Yy =1 - (1-%) (1-%) .

In practice, a complex system is decomposed into major
subsystems. Complex subsystems are further decomposed into
assemblies. The decomposition process continues until each
module’s structure function 1is obvious. The organizing
structure provides the means to determine the overall
structure function for the system. In summary, modular
decomposition of a system breaks up a complex problem into
several smaller, more manageable problems.

2.2 Stochastic Properties

So far, only the deterministic properties of Dbinary

structure functions have been discussed. Stochastic

23

properties characterize the probabilistic relationship
between the state of the system and the states of the
components at a fixed moment in time.
2.2.1 Notation

The following notation is 1listed for the reader’s

convenience in the order of presentation:

n number of components comprising the system.

X, random variable for the state of component i.

X, state of component i; x, € {0,1} for i=1,2,...,n.
X random component state vector; X = (X;,Xy,...,X,) .
x fixed component state vector; x = (X,,X,, ...,X%,) .
P reliability of component i; p, = Pr(X, = 1].

P component reliability vector; P = (P;,Pzs«--sPn) -
¢ (X) random variable for the state of the system.

¢ fixed state of the system; ¢ = ¢ (x).

E[¢ (X)] the expected system state.

r(p) reliability function; r(p) = E[$(X)].

I (1) reliability importance of component i.

P, j*" minimal path set; j=1,2,...,s.

C; j** minimal cut set; 3j=1,2,...,t.

A, component set of module j.

o,y (x) indicator variable; 1 if all components in P, work.
B, (x) indicator variable; 0 if all components in Cy fail.
y & structure of module j.

Y organizing structure for a modular decomposition.
z, j** term of the inclusion-exclusion principle.

24

2.2.2 The Reliability Function

As developed by Birnbaum et al. [{1961], one of the most
important problems of reliability theory is to determine the
system reliability from the reliability of the components.
Suppose a system consists of n components. Let X, denote the
random state of component i and x, denote a specific state of
component 1i. The random and specific states for all
components are summarized by the random component state
vector X = (X,,X,,...,X,) and the fixed component state vector
X = (X,,%,,...,X,). After defining the reliability of the i®"
component as p; = Pr[X, = 1] = E[X;], the vector of component
reliabilities can be represented by P = (P1s/P2s -« «sPn)-

For the system, let ¢ (X) be the random system state and
¢(x) = ¢ be a fixed system state. Suppose system reliability
is defined as the probability that the system is functioning
so that r = Pr(¢(X)=1] = E[¢(X)]. If the random variables
X,, 1i=1,...,n are mutually independent, then the system
reliability is a function of the component reliabilities.
The function r(p) is called the reliability function and
it is defined so that r = r(p).

2.2.3 Reliability Importance

Section 2.1.7 discussed structural importance which was
based on a component’s location in the structure. This
section discusses reliability importance, also taking into
account the stochastic performance of each component in the

system.

25

Birnbaum [1969] developed a measure of component
importance which not only uses the structure ¢ but also the
component reliabilities p. The following expansion of the
reliability function can be derived from the expected value
of Equation 2.1:

r(p) = p, r(1,,p) + (1 - p;) r(0,,p) for i=1,2,...,n.
Reliability importance is found by taking the partial
derivative of r(p) with respect to p;.

I (i) = %}‘)11';’ = r(1,,p) - r(0,p).

The partial derivative determines the increase in system
reliability per unit change in the reliability of component
i. In this sense, the most important component will have the
highest partial derivative. For a series system, the most
important component has the lowest reliability, while for a
parallel system, the most important component has the highest
reliability. Prudent design engineers focus reliability
improvement programs on components with high reliability
importance.

2.2.4 Exact System Reliability

Enumeration, inclusion-exclusion, pivoting, and modular
decomposition are four techniques used to determine the exact
system reliability from the component reliabilities. Each
technique assumes the components are mutually independent.
2.2.4.1 Enumeration

The enumeration technique delineates all possible

26

component state vectors, x € S. The system state, ¢(x), and
probability, Pr[X = x], are determined fcr each component
state vector. Reliability is the sum of the probabilities
for all x € S with ¢(x) = 1.

EXAMPLE 2.5 Suppose that p,=.9, p,=.8, p;=.7, and p,=.6

for the structure given in Figure 2.4.

Figure 2.4 Structure for Enumeration.

Assuming components are mutually independent, find r.

x 6(x) Pr[X=x) x b(x) Pr[X=x]
0 0

0000 .0024 1000 .0216
0001 0 .0036 1001 1 .0324
0010 0 .0056 1010 1 .0504
0011 0 .0084 1011 1 .0756
0100 0 .0096 1100 1 .0864
0101 0 .0144 1101 1 .1296
0110 0 .0224 1110 1 .2016
0111 0 .0336 1111 1 .3024

The system reliability can be found by summing the

probability of all x € S where ¢(x) = 1. Thus, r =
.0324+.0504+.0756+.0864+.1296+.2016+.3024 = .8784.
Note that Pr[¢(X) = 0] = .1216.

The number of component state vectors is 2" and the number of

calculations needed to enumerate all x becomes unmanageable

27

for large, complex systems. It seems more reasonable to
calculate system reliability from a subset of all component
state vectors such as the minimal path or minimal cut sets.
2.2.4.2 1Inclusion-Exclusion

The inclusion-exclusion technique of Barlow and Proschan
{1981] is based on the fact that the system functions if and
only if all the components in at least one minimal path set
function. Suppose ¢ is a binary coherent system with minimal
path sets P,,P,,...,P,. Let E; be the event that all

components in Py are functioning for j=1,...,s. Then the

system reliability is given by r = Pr[¢(k) =1] = Pr[C}Eﬂ.
=1
The probability of the union of a finite number of events can
be found from Feller’s inclusion-exclusion principle [1968].
THEOREM 2.8 For any s events E;,...,E,,
s s
pri{JE,] =;Pr[Ej] —;;Pr[EjEk] + Y Pr(EEE)]

=l j<k<l

- Y PriEEEFE] + - + (-1)*! Pr[EE,~E].

j<k<l<m

Exact reliability can also be derived from minimal cut
sets. Recall that the system will fail if and only if all
the components in at least one minimal cut set have failed.
Suppose ¢ is a binary coherent system with minimal cut sets
CyyCy...,C;. Let E, be the event that all components in C;

have failed for j=1,...,t. Then the system reliability is

given by

28

t
r=1-Pr{¢(X) =0) =1 - Pr[UEj]
I=1

where the union of events is again derived from Theorem 2.8.
EXAMPLE 2.6 For the structure given in example 2.5,
calculate the system reliability using minimal path and
minimal cut sets.

The minimal path sets for example 2.5 are (1,2}, (1,3},
and {1,4}. Therefore,
r = Pr[(X,,X,=1) U (X;,X;=1) U (X;,X,=1)]
= Pr[X,;,X,=11 + Pr(X,,X;=1] + Pr([X,,X,=1]
- Pr(X,,X,, X;=11 - Pr[X,,X; X,=11 - Pr[X,,X,, X,=1]
+ Pr(X,,X,,X;, X4=1]

(.9)(.8) + (.9)((.7) + (.9 (.6) - (.9 (.8)(.7)

- (.7 (.6) = (.9)(.8)(.6) + (.9)(.8)(.7)(.6)
= ,72+.63+.54-.504-.378-.432+.3024 = .8784
which agrees with example 2.5.
The minimal cut sets for example 2.5 are {1}, and

{2,3,4}. Therefore,

r=1 - Prl(X,=0) U (X, X;,X,=0)]
= 1 - {Pr[x1=0] + Pr[XZ,X3,X4=O] - Pr[Xl,Xz,X3,X4=O]}
=1-{.1+ (.2)(.3)(.4) - (.1)(.2)(.3)(.4)}

=1 - {.1 4+ .024 -.0024}) =1 - .1216 = .8784
which also agrees with example 2.5.
Note that the number of calculations needed to calculate

exact reliability from s minimal path sets is

29

()« () +-en o) =22-2

and from t minimal cut sets is

(=G e ve () m2e-n

Since enumeration requires 2° célculations, inclusion-
exclusion is superior to enumeration when the number of
minimal path sets or minimal cut sets is less than the number
of components and the minimal path or minimal cut sets are
known.
2.2.4.3 Pivotal Decomposition

The pivotal decomposition technique developed by
Birnbaum et al. [1961]' uses the following reliability
expansion formula:

r(p) = p; r(1,,p) + (1 - p,) r(0,,p) for i=1,2,...,n.

The state of any component is fixed and reliability
calculations are made from the simplified systems.

EXAMPLE 2.7 For the structure in Figure 2.5, show that

the reliability functions found from minimal path sets

and pivotal decomposition are the same.

Figure 2.5 Structure for Pivotal Decomposition.

The minimal path sets are (1,4}, {1,3,5}, {2,3,4}, and

30

{2,5}. The structure function is

O(X) = 1-(1-%,%,) (1-X;X3X%5) (1-%,X3%,) (1-X,%5)

= 1-(1-XX,~X 1 X3Xs+ X1 X3X,Xs5) (1-X,X3%, =X, X5+ X,X3X,X5)

= 1= (1=X%,X3X%, ~RoXsH R K3 X K~ R Xyt X Ko XXy H X XX g X5~ X1 XX 3K X5
=X X3 X+ R KX X X5 HX KX 3K~ X XXX K5+ X X3 X X5~ X1 XX 3K X
“X XXX Xt X XXX Xs)

= X X R yKgH R RyKsH XX K X XXX =X XX 3K~ X XX K~ XK X3 X X
=X,X3X X+ 2K X, X 3K, K .

r = Pr(¢(X)=1] = E[¢(X)] = pP1Ps+P,PstP1P3Ps+P,P3P4
~P1P2P3P4~P1P2P1Ps~P1P2P4Ps~P1P3PsPs~P2PiPsPs+ 2P 1P2P3P4Ps -

Suppose pivotal decomposition is performed on the third

component. When the third component functions, the

structure shown in Figure 2.5 changes to the structure

shown in Figure 2.6.

Figure 2.6 New Structure With x; = 1.
The new structure function is
0, (X) = [1-(1-%;) (1-%;)][1-(1-%,) (1-X;)]
and reliability is given by
r(l;,pP) = E[¢;(X)] = [1-(1-py) (1-p,)] [1-(1-p,) (1-Ps)].
When the third component fails, the structure in Figure

2.5 changes to the structure shown in Figure 2.7.

31

Figure 2.7 New Structure With x; = 0.

The new structure function is
O (X) = [1-(1-x,%,) (1-%,X;)]

and reliability is given by

r(0;,P) = E[¢o(X)] = [1-(1-p,ps) (1-P,Ps)] .
The overall system reliability can be found from the
reliability expansion about component 3.
r(p) = p; r(l;pP) + (1 ~ p;) r(0;pP)
p; [1-(1-p;) (1-p;)] [1-(1-p,) (1-Ps)]

+ (1-p3) [1-(1-p;p4) (1-pP,ps)]

P: [P1tP:~P1P2] [P4*+Ps—P4Ps)

+ (1-p3) [PiP4+tP2Ps~P1P,PsPs)

P1P4+P:P5tP1P3PstP:P3P4 ~P1P.P3P4 ~P1P2P3Ps ~P1P2P4Ps

~P1P3P4P5~P2P3P4P5+2P1P2P3P4Ps

which matches the result found using minimal path sets.
2.2.4.4 Modular Decomposition

In practical reliability analysis, systems are often
divided into disjoint subsystems (modules) and evaluated
separately [Birnbaum and Esary, 1965]. The reliability of
each subsystem is determined from the component reliabilities
using any of the previously mentioned techniques. Then the

overall system reliability is found from the subsystem

32

reliabilities. The following example demonstrates the

computational savings potential of modular decomposition:

EXAMPLE 2.8 Consider the structure of 7 binary

components given in Figqure 2.8.

2
1
3
5
4 7
6

Figure 2.8 Structure for Modular Decomposition.

With enumeration, there are 2’ or 128 possible component
state vectors that must be evaluated to determine
system reliability. Evaluate the effectiveness of the
following modular decomposition:

{cy,Ca0C3)

{c,}

{C5, Cs}
{cy).

All 4 modules will also be binary systems. Modules 24,,
A,, A;, and A, have 8, 2, 4, and 2 component state
vectors, respectively. The organizing structure must
be evaluated for 2 or 16 component state vectors.
Thus, the modular decomposition has reduced the total

number of component state vectors from 128 to 32.

33

Unfortunately, each of the 4 techniques for calculating
exact system reliability is burdensome for large, complex
systems. As an alternative, system reliability can be
approximated with lower and upper bounds.

2.2.5 Bounding System Reliability

Up to this point, the discussion has been restricted to
the case where the random variables for the n component
states are mutually independent. Esary and Proschan [1970]
were first to discuss the less restrictive case of associated
components.

DEFINITION - The vector of random component states X =

(X;,X;,...,X,) are associated if Cov[f(X),g(X)] 2 0 for

all increasing functions f and g.

Lug nuts that share a common load are a good example of
associated components.

Reliability bounds have been constructed for mutually
independent and associated random variables. The bounds are
more explicit if the random variables are independent. Each
of the bounds is based on the following commonly known
result:

THEOREM 2.9 If X,,X,,...,X, are binary associated random

variables representing the n component states, then

pr([[x, = 11 2 [Terix,

= 1]
i=1 i=]
and
Pr(]]x, =11 < [JPrix, = 11.

i=] i=]1

34

2.2.5.1 Trivial Bounds
Tri-rial bounds were obtained by comparing any coherent
system with the worst possible structure (series) and the
best possible structure (parallel) for the components.
THEOREM 2.10 Let ¢ be a coherent system composed of

associated components with reliabilities given by p =

(pll Pas sesetPn) - Then

[Ip. s @ <]Ip.-

i=1 i=1

The lower and upper bounds are derived by taking the expected
value of the bounds for ¢ given in Theorem 2.1 and applying
Theorem 2.9.
2.2.5.2 Path/Cut Bounds
Path/Cut Bounds were developed by Esary and Proschan
[1963a] from the minimal path and minimal cut sets. The
lower bound comes from the minimal cut sets while the upper
bound comes from the minimal path sets.
THEOREM 2.11 Let ¢ be a coherent system of associated
components. As before, let a,(x) be the indicator
variable of the j*™ minimal path set and P,(x) be the
indicator variable of the j*® minimal cut set. Then
t s
HPr[Bj(X) =1] € r(p) sgpr[aj(m =1].
The bounds come from the relationship between the structure
function and the indicator variables and the application of

Theorem 2.9.

35

When the components are independent, the bounds of
Theorem 2.11 can be explicitly derived from the component
reliabilities.

THEOREM 2.12 Let ¢ be a coherent system of independent

components with minimal path sets P,,P, ...,P, and

minimal cut sets C,,C;,...,C.. Then

fII_Ipi < r(p) SI:IIIPP

i=1 ieC, j=1 lep,

2.2.5.3 Min/Max Bounds
Min/Max Bounds were developed by Barlow and Proschan
[1981]. The lower bound comes from the minimal path sets
while the upper bound comes from the minimal cut sets.
THEOREM 2.13 Let ¢ be a coherent system with minimal
path sets P,,P,,...,P, and minimal cut sets C;,Cp,...,C;.
Then the following bounds always hold:

Max Pr(Min X,=1] S r(p) € Min Pr([Max X;=1].

31,2, ...,8 1eP, J=1,2, ...t iec,

If the components are associated, then

Max (][] p.} S c(p) <,

i=l,2,...,8 1!?,

Min (] pu}-

=1,2,...,t 1€C’

It has been shown that the Path/Cut Bounds of Theorems 2.11
and 2.12 are not always tighter than the trivial bounds of
Theorem 2.10. On the other hand, the Min/Max Bounds of
Theorem 2.13 are always tighter than the trivial bounds.

2.2.5.4 Combining Bounds

Unfortunately, no bound superiority can be established

36

between the Path/Cut Bounds and the Min/Max Bounds when the
components are mutually independent. However, minimal cut
sets generally provide tighter bounds for mutually
independent components with high reliabilities and minimal
path sets generally provide tighter bounds for mutually
independent components with low reliabilities. Thus, a
combination of the bounds in Theorems 2.12 and 2.13 seems
appropriate for mutually independent components.

THEOREM 2.14 Let ¢ be a coherent system of independent

components with minimal path sets P,,P,,...,P, and
minimal cut sets C,,C;,...,C.. Then
t s

Max{J] [T p;» Max (J]p.}iscpysMin{]]]]p,, Min (J]p.}}.
=1 ieC, =1,2,...08 jep, =1 lep, L2,....t iet,

2.2.5.5 Improved Path/Cut Bounds

Bodin [1970] developed better Path/Cut Bounds with
modular decomposition. Path/Cut Bounds are determined for
each module. The bounds are then used to determine Path/Cut
Bounds for the system. Bodin [(1970] showed that these bounds
were always tighter than the Path/Cut Bounds found directly
from the entire system.

EXAMPLE 2.9 Determine the trivial, Path/Cut, Min/Max,

and Improved Path/Cut Bounds for the structure in

Figure 2.9 given that all components are mutually

independent with common reliability p.

The minimal cut sets are {1}, {2}, (3,4}, and {3,5).

The minimal path sets are {1,2,3}) and {1,2,4,5}.

37

Figure 2.9 Structure for Reliability Bounds.

The

The

trivial bounds are p° S r(p) £1 - (1 - p)°.

Path/Cut Bounds are

p2l1-(1-p)?1? < r(p) <€ [1-(1-p%) (1-pY].

The

Min/Max Bounds are

Max{p? p'} < r(p) < Min{p,p,1-(1-p)?,1-(1-p)?}.

Consider the following modular decomposition:

A; = {xX;,%}, A, = (%3}, and BA; = {x%,,Xs}.

Then %, = x, Il x,, %, = %5, and %; = x, II x,.

The

The

The

The

The

The

organizing structure is y = x, I (x, II %, .
Path/Cut Bounds for Y, and %, are p? £ r(p) < p’.
Path/Cut Bounds for %, are p < r(p) £ p.
minimal cut sets of y are {%;} and {X,, X3}
minimal path sets of ¥y are (%, %.} and {%,, Xs}.

Improved Path/Cut Bounds are

p?[1-(1-p) (1-p?)] £ r(p) £ 1-(1-p%p) (1-p%p?).

The

exact reliability function is given by

r(p) = p’[1-(1-p) (1-p?))] = p*® + p* - p°.

Tables 2.1 and 2.2 compare the lower and upper

boundary points for various levels of p. Notice

the

lower Improved Path/Cut Bounds give the exact

reliability. The dominance of some of the bounds

38

can be seen from the tables.
better than trivial bounds.

2.1’

Min/Max Bounds are

As shown in Table

Path/Cut Bounds are better for high p and

Min/Max Bounds are better for 1low p.

2.2,

the opposite 1is true.

In Table

Improved Path/Cut

Bounds are at least as good as Path/Cut Bounds.

V?rivial

?ab;e 2.1

Path/Cut

Lower Bound Comparison.

Improved

.95099 .979904 97030 .979905
.77378 .89799 85738 .89810
.59049 .79388 72900 .79461
.23730 .49438 .42188 .50098
.03125 .14062 12500 .15625
9.76 E -4 .01196 01563 .01855
1.00E -5 | 3.61E -4 | 1.00E -3 | 1.09 E -3
3,12 E -7 | 2.38 E -5 | 1.25 E -4 | 1.31 E -4
| 3.968-8]1.00E -6|1.01E -6
*_m?ap}e 2:? quer Bound Comparison.
rn Trl Path/Cut Min/Max Improved
| .99 | .99999 .99883 .99000 .99883
.95 .99999 .97354 .95000 .97354
.90 .99999 . 90680 .90000 .90680
.75 .99902 .60480 .75000 .60480
.5 .96875 .17969 .50000 .17969
.25 .76270 .01947 .25000 .01947
| .1 | .40951 | 1.10E-3| .10000 |1.10E -3
| os § .22622 | 1.31E-4| .05000 [1.31 E -4
[.01 .04901 | 1.01 E -6 01000 | 1.01 E -6

39

2.2.5.6 Inclusion-Exclusion Bounds
Barlow and Proschan [1981] also developed bounds using
the inclusion-exclusion principle of Feller ([1968]. Let Z,
be the 3j* summation term in Theorem 2.8. The reliability
function can be bounded as follows:
r(p) < I,
rip) 2 %, - %,

r(p) =X, -, + %, - ... + (-1)% Z_.
Unfortunately, the bounds do not consistently improve as more
terms are added. In fact, Inclusion-Exclusion Bounds are not
restricted between 0 and 1. The only guarantee is that exact
reliability will be found after including every summation.
Still, only a few terms may be necessary to provide narrow
bounds for system reliability.

2.3 Dynamic Properties

The structural and stochastic properties describe the
deterministic and probabilistic relationships between the
system state and the states of the components at a fixed
moment in time. The next logical step is to consider the
relationship between the lifetime distribution of the system
and the lifetime distributions of the components. Barlow and
Proschan {1981] summarized the dynamic properties for the
binary model.
2.3.1 Notation

The following notation is listed for the reader’s

40

convenience in the order of presertaticn:

T system lifetime.
t fixed time.
R(t) survivor function; R(t) = Pr[T > t].
F(t) cumulative distribution function; F(t) = Pr[T < t]
f(t) probability density function.
h(t) hazard function; h(t) = f(t)/R(t).
¢

H(t) cumulative hazard function; H(t) = lh(r)dt.
X, (t) state of component i at time t, i=1,2,...,n.
T, lifetime for component i, i=1,2,...,n.
X(t) vector of component states at time t; X(t) =-

(X (t) , X(E), ..., X (E)).
d(X(t)) system state at time t.
R, (t) survivor function for component i at time t; R,(t) =

Pr(X,(t) = 1] = E[X,(t)] =Pr[T, > t] for i=1,2,...,n.

R(t) survivor function for the system at time t; R(t) =
Pr(¢(X{t)) = 1] = E[¢(X(t))] = Pr(T > t].

R(t) vector of component survivor functions at time t;
R(t) = (R, (t),R(t),...,R(L)).

r(R(t)) reliability function at time t; r(R(t)) = E[®(X(t))].
[TH mean of the lifetime distribution for component 1i.
2.3.2 Lifetime Distribution Functions

Suppose that the nonnegative random variable T denotes
thhe lifetime of the system. There are several ways to

completely specify the system’s lifetime distribution. The

41

survivor function R(t) gives the probability that the

lifetime exceeds a given time t so that R(t) = Pr[T > t] for
t 2 0. Since R(t) =1 - F(t), where F(t) is the cumulative

distribution function, R(0) = 1, lim R(t) = 0, and R(t) is

t e

decreasing. The probability density function f(t) indicates
the likelihood of failure during a time period at so that

t+at

Prit £ T £ t+at] = f f(t) dt. As with any probability

density function, f(t) dt = 1 and f(t) 2 0 for t 2 0.

1

When the derivative exists, f(t) = -R’°(t). The hazard
function h(t) measures the degree of risk to failure at time
t. It is defined as the instantaneous failure rate given the

component or system has survived to time t so that

= 13 1 <
h(t) il;ncl) * Pr(t < T<t+At | T > t]
- 11 R(t) - R(t+At)
Lim R(T) AT
- “R(t) _ f(t) S
= AN RET fort 2 0.

The hazard function is useful for determining how the risk
of a component or system changes with time.

Knowing any one of these representations allows the
others to be generated. If R(t) is known, then

-R’ (t)

f(t) = -R°(t) and h(t) = AR

If £(t) is known, then

42

R(t) =ff(t) dt and h(t) = __f(t) .
t

f(t) dt

n%g

If h(t) is known, then

t t

£(t) =h(t)exp-{h(t) dt | and R(t) exp-{h(r) dt |.

There are several other functions that can be used to
completely specify the lifetime distribution.
2.3.3 Lifetime Distribution Classes

Lifetime distributions can be classified by the shape
of R(t), £(t), or h(t). Since it is useful to study the way
risk changes with time, lifetime distributions are most often
grouped together according to the shape of h(t).

DEFINITIONS. A lifetime distribution belongs to

the increasing failure rate (IFR) class if h(t) is

an increasing function. A lifetime distribution

belongs to the decreasing failure rate (DFR) class

if h(t) is a decreasing function.

EXAMPLE 2.10 Classify the exponential and Weibull
distributions according to the shape of h(t).

For the exponential distribution with f(t) = Ae™,
and R(t) = e™, h(t) = A for t 2 0. Therefore,
the failure rate for the exponential distribution

is constant and the distribution belongs to both

the IFR and DFR class for all A. For the Weibull

43

distribution with f(t) = aA*t*lexp[- (At)%] and R(t)

= exp[-(At)®], h(t) = oA%%®! = ah(At)*! for t 2 0.

Therefore, the Weibull distribution belongs to the

DFR class if 0 < a < 1, the IFR class if a > 1,

and both classes if a = 1 (exponential case).

Esary and Proschan [1963b] gave an example where
independent components with lifetime distributions belonging
to the IFR class did not result in a system with a lifetime
distribution in the IFR class. This led to the definition
of a larger class of lifetime distributions known as the
increasing failure rate on the average (IFRA) class. This
class has been shown to be the smallest class where a
coherent system of IFRA components remains IFRA.

DEFINITIONS. A lifetime distribution belongs to

the increasing failure rate on the average (IFRA)

t

class if %. h(t)dr = Hif) is increasing in t 2 0.

A lifetime distribution belongs to the decreasing

failure rate on the average (DFRA) class if

H(t)
t

is decreasing in t 2 0.
Equivalent definitions state that a lifetime distribution
belongs to the IFRA class if -(1/t) log R(t) is increasing
in t 2 0 or [R(t)]¥* is decreasing in t 2 0.

The IFRA and DFRA classes of lifetime distributions can

be enlarged further. The following classes are important

44

when considering different component replacement policies.
DEPINITIONS. A lifetime distribution belongs to
the new better than used (NBU) class if R(t+x) <
R(t)R(x) for any t 2 0 and x 2 0. A lifetime
distribution belongs to the new worse than used
(NWU) class if R(t+x) 2 R(t)R(x) for any t 2 0 and
x 2 0.
The NBU (NWU) class says that the lifetime of a new component
is stochastically greater (less) than the remaining lifetime
of a component still working at time t.
DEFINITIONS. A lifetime distribution belongs to

the new better than used in expectation (NBUE)

class if the distribution has a finite mean M and
fR('t) dt S uR(t) for t20. A lifetime distribution
t

belongs to the new worse than used in expectation
(NWUE) class if the distribution has a finite mean

@ and me dt 2 pR(t) for t20.
t

The NBUE (NWUE) class says that the expected lifetime of a
new component is greater (less) than the expected remaining
lifetime of a component still working at time t. The
relationships between the various classes of lifetime
distributions is given below:

IFR = IFRA =) NBU = NBUE

DFR = DFRA = NWU = NWUE.

45

2.3.4 Distribution Class Closure

A lifetime distribution class is said to be closed when
an operation on the lifetime distribution of the components
always results in a lifetime distribution belonging to the
same class. Closure has been studied with respect to the
following operations: forming coherent systems, the addition
of lifetimes (convolutions), and the linear combination of
lifetimes (arbitrary mixtures).

Table 2.3 summarizes the results given by Barlow and
Proschan [1981] for the eight lifetime distribution classes
and the three reliability operations given above. Closure
has not been proved or disproved for the NWUE class under the

operation of arbitrary mixtures.

Table 2.3 Closure of Lifetime Distribution Classes for
Various Reliability Operations.
= e — ==

Lifetime Reliability Operations

Distribution

Coherent . Arbitrary
Systems Convolutions Mixtures
3 e

Closed

IFRA Closed Closed Not

DFR Not Not Closed

DFRA Not Not Closed
|| NBU Closed Cliosed Not
“ Closed Not
Not

2.3.5 Exact System Lifetime Distribution

For the dynamic situation, the problem changes to

46

finding the lifetime distribution of the system from the
lifetime distributions of the n independent components that
comprise the system. Let X,;(t) be the random state of
component i at time t and let T, be the component lifetime.
Let X(t) = (X;(t),X;(t),...,X,(t)) be the vector of random
component states at time t. Let ¢(X(t)) be the system state
at time t and let T be the system lifetime. The survivor

functions for the components and the system are given by

Ry (t) = Pr(X;(t) = 1] = E[X;(t)] = Pr[T, > t] for i=1,2,...,n
and R(t) = Pr[¢(X(t)) = 1] = E[¢(X(t))] = Pr(T > t].
Let R(t) = (R(t),Ry(t),...,R(E)). Since X,;(t),

i=1,2,...,n are mutually independent, R(t) is a function of
R(t). The relationship is given by the reliability function
r(*) which is derived from ¢ (x) so that R(t) = r(R(t)).
EXAMPLE 2.11 Find R(t), f(t), and h(t) for a
series system of n independent components with
R,(t) = exp[-A,t], i=1,2,...,n.
n n

¢(x) =] %, and E(¢(X(t))1=]] ElX,(t)] so that

i=] i=]

n

11 e™ = exp[-i At]

R(t) =
i=1 i=]l
f(t) = -R’(t) = (E liJexp[-E lit] and
i=1 i=1
f£(t) _ %
h(t) = ET " A, .
(t i=1 !

Of course, the lifetime distribution of the system becomes
intractable for all but the simplest structures.

47

2.3.6 Bounding System Reliability

Barlow and Proschan [1981) used the closure theorems to
develop bounds on system reliability. Let r(R(t)) be the
reliability function of a coherent system of n mutually
independent components. Suppose that T, have unknown
lifetime distributions with known means Y, and that each of
the distributions belongs to the IFR class. Barlow and
Proschan [1981] showed that if the lifetime distribution for
component i belongs to the IFR class, then the largest lower
bound on R;(t) is exp[~t/W,] for t < 4,. Using the fact that
the reliability function is increasing in each argument,
R(t) = r(R,(t),Ry(t),...,R (t)) 2 r(e™¥h, e, . .,e ™) for
t < Min{M;,Kyr c ., Mnl}.

EXAMPLE 2.12 Find a lower bound on R(t) for the

system of 3 mutually independent components given

in Figure 2.10. Assume the lifetime distributions

are in the IFR class and }; = 10 4, = 5 and H; = 8.

Figure 2.10 Structure for Bounding Reliability.
o(x) = %X,[1-(1-%;) (1-%,)] so
R(t) 2 e™¥1%[1 - (1 -e™¥%) (1 ~e*®)] for t < 5.
2.4 Summary

This chapter presented a broad review of the structural,

48

stochastic, and dynamic properties for the binary reliability
model. It was designed to provide a convenient reference for
comparing the corresponding properties of the multistate and

continuous models. No original material was contributed.

49

3. THE MULTISTATE MODEL

This chapter presents the structural and stochastic
properties of the most general multistate coherent model.
The chapter makes comparisons to some of the more restrictive
multistate models developed by other authors.
3.1 S8tructural Properties

Structural properties characterize the deterministic
relationship between the state of the system and the states
of the components at a fixed moment in time.
3.1.1 Notation

The following notation is listed for the reader’s

convenience in the order of presentation:

n number of components comprising the system.

X, state of component i; x, € {0,1,...,M}, i=1,2,...,n.
M, best state of component i; M, € {0,1,2,...} Vi.

Q state space of component i; € = {0,1,...,M} Vi.

x component state vector; x = (X;,Xy,...,Xp) .

S component state space; S = {x | x, € Vi}.

o state of the system; ¢ € {0,1,...,M}.

M best state of the system; M€ {0,1,2,...}.

Q state space of the system; Q = {0,1,...,M}.

¢ (x) structure function; system state for x € S.

Sk k*" equivalence class; S, = {xe€ S | ¢(x) = k}.

(3., %) (1, %5y oo esXisry e Xpars e e-rX%y), i=1,2,...,n and j € Q.

y >x y, 2%, Viandy > x, for at least one i.

y 2 x y, 2 x; Vi,

50

x, x with all components at best state; (M;,M,,...,M,).

x, x with all components at worst state; (0,0,...,0).
P, 3* minimal path set; 3j=1,2,...,s.

J (3,3, 3.

Ly the set of lower boundary points to level Kk,

k=1,2,...,M.

Ly, the j*" lower boundary point to level k, k=1,2,...,M
and j=1,2, ..., 8.

U, the set of upper boundary points to level k,
k=0,1,...,M-1.

Uy the j** upper boundary point to level k,
k=0,1,...,M-1 and 3j=1,2,...,t,.

xXVy (X, V YirX2 V Yareeer X, V Yoo

XAy (Xy A YirX; A Yoreess Xy, A Yn) e

x Oy x, Oy,x, Hy,....,x, II yp)
where x, II y, = Max{x,,vy,}.

x Iy (x, Ty,x, Iy,...,x, II y,)

where x, Il y, = Min{x,,y,}.

Yij indicator variable; y,; = 1 if x; 2 J.

o* (x) indicator variable; ¢*(x) = 1 if é(x) 2 k.
g, (x) minimal path set generator function.

U, (x) minimal cut set generator function.

¢° dual structure function.

C set of components; C = {C¢;,Cyy...,Cp}.

x,° state of component i in ¢°.

I, (1) structural importance of component i in ¢.

51

A, set of components in module j.
y & structure function of module j.
v organizing structure function.
3.1.2 Introduction

Hudson [1981] introduced the most general multistate
model. For this model, each component and the system are
allowed to have a different number of discrete states.

For a multistate system with n components, the state of

the i** component is given by the discrete variable x, where

0 if component i is in the worst state
1

X, = *Mi 1 intermediate states of degradation
-
M, if component i is in the best state

for i=1,2,...,n and M, < .o, The state space for component i
has M, + 1 elements and is designated by €,. The component
state vector, x = (X,,X,,...,%X,), 1is the vector of component
states and the component state space, S = {x | x, € Q, Vi},
is the set of possible component state vectors.

The state of the system is given by the variable ¢ where

(.
0 if the system is in the worst state
- 4 1 3
¢ = i intermediate states of degradation
M-1
M if the system is in the best state.

The state space for the system has M + 1 clements and is

52

designated by Q = {0,1,2,...,M}. The model assumes that the
state of the system is completely determined by the states
of the n components. The relationship is described by the
structure function ¢ (x) which can be concisely written as

¢: (0,1,...,M}"—>{0,1,...,M} or ¢: Q">Q or ¢: S —-Q.

Hudson and Kapur [1983b] noted that customers do not
always wish to make a distinction between the system states
for different component state vectors. For example, the
customer may define a multistate structure function so that
$(1,1,1) = ¢$(1,1,2), implying that the increase of x; is not
significant from the customer’s perspective.

The same logic is implicit in binary models. -For a
series system consisting of n binary components, 2"-1
component state vectors are equivalent, each resulting in a
failed system. Only the component state vector (1,1,...,1)
is significantly different from the others, causing the
system to function.

Component state vectors with the same system state are
said to belong to the same equivalence class.

DEFINITION. The k*" equivalence class S, is given by

s, = {x€ s | ¢(x) =k}, k=0,1,...,M.

S0srSys...,S4 are disjoint sets that partition S into M+l

M
equivalence classes. Therefore, S = |J S,. For the binary
k=0

case, S, contains the path vectors, while S, contains the cut

vectors.

53

3.1.3 Special Structures
The earliest articles in multistate reliability [Barlow

and Wu, 1978; El-Neweihi, Proschan, and Sethuraman, 1978]

defined a series structure so that ¢(x) = Min{x;,X;, ..., X,},
a parallel structure so that ¢(x) = Max{x,,%X,,...,X,}, and a
k-out-of-n structure so that ¢(x) = x.,,.,;, where x,,,...,x,,
is an increasing sequence of x,,X,,...,X,. These definitions

have two drawbacks. First, they implicitly assume that the
component state spaces use the same scale. It seems more
reasonable to allow a series system where ¢(2,3,3) < ¢(3,2,3)
if the first component is more important to the customer.
Second, the definitions restrict the state space of the
system to the state space of the component with the highest
number of states. It seems more reasonable to allow the
customer to specify the number of system states based on his
interpretation of the system.

Hudson [1981} defined a series, parallel, and k-out-of-n
structure intuitively by characterizing the set of component
state vectors in the lowest and highest equivalence classes.

DEFINITION. ¢ is a series structure function iff

i. § ={xe s | x = (0,,x) for some i=1,2,...,n} and
ii. Sy = {(M,M,, ..., M)} = {x,}.

DEFINITION. ¢ is a parallel structure function iff
i. Sy = {(0,0,...,0)} = {x,} and

ii. sy = {(xe s | x = ((M),,x) for some i=1,2,...,n}.

DEFINITION. ¢ is a k-out-of-n_structure function iff

54

i. S, = {x € S | n-k+1 or more of the components of x

are at their minimum value 0} and

ii. s, = {x € S | k or more of the components of x are

at their maximum value M,;}.
Hudson’s definitions eliminate the drawbacks of the earlier
definitions. However, the definitions create a new problem
because they do not specify which vectors are contained in
the equivalence classes between S, and S,. Therefore,
several structure functions exist for each category. This
leads to problems interpreting theorems that involve the
concepts of series and parallel systems.

For the binary case, a series system of n components has
one minimal path vector and n minimal cut vectors. Parallel

systems of n components have n minimal path vectors and one

minimal cut vector. A k-out-of-n system has (ﬂ minimal path

vectors and (m:q) minimal cut vectors.

Many authors have generalized the concepts of minimal
path and minimal cut vectors for multistate systems. Hudson
[1981]) referred to the minimal path (cut) vectors as the
lower (upper) boundary points to level k. Janan [1985] gave
definitions closely resembling the following:

DEFINITION. x is a lower boundary point to level k if

¢(x) 2 k and y < x implies that ¢(y) < k, k=1,2,...,M.

DEFINITION. x is an upper boundary point to level k if
¢(x) < k and ¥y > x implies that ¢(y) > k, k=0,...,M-1.

55

For the binary model, the lower boundary points to level 1
are the minimal path vectors, while the upper boundary points
to level 0 are the minimal cut vectors.

Using the logic of the binary model, the following new
definitions are offered for series, parallel, and k-out-of-n
structure functions:

DEFINITION. ¢ is a series structure function iff ¢ has

one lower boundary point to level j, 3j=1,2,...,M and n
upper boundary points to level j, j=0,1,...,M-1.
DEFINITION. ¢ is a parallel structure function iff ¢
has n lower boundary points to level j, j=1,2,...,M and
one upper boundary point to level j, 3=0,1,...,M-1.

DEFINITION. ¢ is a k-out-of-n structure function iff

¢ has (ﬂ lower boundary points to level j, j=1,2,...,M

and LP:H) upper boundary points to level j, j=0,...,M-1.

Series and parallel systems are special cases of the k-out-
of-n structure. A series system is an n-out-of-n structure
while a parallel system is a l-out-of-n structure. The
definitions reduce to the binary concepts of series,
parallel, and k-out-of-n when M = 1.

EXAMPLE 3.1 Suppose that n=2, M,=3, M,=2, M=2, and

¢(x) is enumerated by the customer in Table 3.1.

Show that ¢ (x) does not meet the early definitions

for a parallel structure, but that it does meet

the new definition.

56

Table 3.1 ¢(x) for Example 3.1.

X2

¢ (x) 0 1 2

0 0 1 2

X, 1 0 1 2

2 1 1 2

3 2 2 2
¢ (x) # Max({x,,x,}, V x. For example, ¢(2,1) = 1.
Using Hudson’s definition, S, # {(0,0)}. For

example, x = (1,0) is also an element of S,.

The lower boundary points to level 1 are (2,0) and

(0,1). The lower boundary points to level 2 are

(3,0) and (0,2). The upper boundary points tp

levels 0 and 1 are (1,0) and (2,1), respectively.

Therefore, ¢ (x) meets the new definition for a

parallel structure function.
3.1.4 Coherent Structures

The authors who extended reliability theory to the
multistate model wished to eliminate unrealistic structure
functions. As in the binary model, the term "coherent
system"” was used. However, there 1is no generally accepted
definition of coherence for a multistate system. Ohi and
Nishida [1984] presented a summary of the definitions from
many authors. Let €, represent the state space of the i®
component, §) represent the state space of the system, and ¢
represent the structure function.

DEFINITION [Barlow and Wu, 1978]. ¢ is BW-coherent iff

57

i. =Q=1{0,1,...,M}, i=1,2,...,n and

ii. ¢(x) = Max Min x, where P, is the 3j* minimal
J=1,2,...,5 1eP,

path set defined as if the components were binary.

In words, ¢ is defined as the maximum of the worst

component in each minimal path set.

DEFINITION [El-Neweihi, Proschan, Sethuraman, 1978].

¢ is EPS-coherent iff

i. =Q=1(0,1,...,M}, i=1,2,...,n,

ii. ¢(x) is increasing,

iii. For every state 3j of every component i, there

exists a vector (:;,x) such that ¢(j,,x) = J while

¢(k,,x) # j for all states k # Jj, and

vi. ¢(J) = j for j=0,1,...,M.

Griffith [1980] gave definitions for a multistate
monotone system (MMS) and for three types of coherence:
strongly coherent, coherent, and weakly coherent.

DEFINITION [Griffith, 1980]. ¢ is a multistate

monotone system (MMS) iff
i. =Q={0,1,...,M}, i=1,2,...,n,
ii. ¢(x) is increasing, and

iii. Min x, <¢(x) £ Max X,.
ie1,2,...,n ie1,2,...,n

DEFINITION [Griffith, 1980]. ¢ is G-strongly coherent

iff ¢ is a MMS and for any component i and any state j,
there exists a vector (-,,x) such that ¢(j,,x) = j while

¢(k,,x) # j for all states k # j.

58

DEFINITION [Griffith, 1980]. ¢ is G-coherent iff ¢ is
a MMS and for any component i and state 3j2l1, there
exists a vector (',,x) such that ¢ ((j-1),,x) < ¢ (3, x).

DEFINITION [Griffith, 1980]. ¢ is G-weakly coherent

iff ¢ is a MMS and for any component i and any state j,

there exists a vector (*,,x) such that ¢ (j,,x) # ¢ (k,, x)

for some state k # j.
As interpreted by Block and Savits [1982], G-strong coherence
implies that every state of each component is relevant to the
same system state. G-coherence implies that every state of
each component is relevant to the system. G-weak coherence
implies that each component is relevant to the system. Each
of Griffith’s definitions is progressively less restrictive.

Butler [1982] gave a definition that was similar to the
G-weakly coherent system proposed by Griffith.

DEFINITION [Butler, 1982]). ¢ is B-coherent iff

i. =Q=(0,1,...,M}, i=1,2,...,n,

ii. ¢(x) is increasing,

iii. For every component i, there exists a vector

(-,,x) such that ¢(M,,x) > ¢(0,,x), and

iv. ¢0(x,) = 0 and ¢(x,) = M.

Natvig [1982] gave definitions for two categories of
coherence which he called type 1 and type 2:

DEFINITION [Natvig, 1982]. ¢ is N-typel coherent iff

i. Q =Q=(0,1,...,M}, i=1,2,...,n,

ii. ¢(x) is increasing,

59

iii. For every state j of every component i, there
exists a vector (',,x) such that ¢(j;,x) 2 j and
¢((3-1),,x) < j-1, and

iv. ¢(J) = 3 for 3=0,1,...,M.

DEFINITION ([Natwvig, 1982). ¢ is N-type2 coherent iff

i. & =Q=10,1,...,M}, i=1,2,...,n, and
ii. There exist binary coherent structures ¢y,

4=1,...,M such that ¢ satisfies

0(x) 23 & O(I,(x) =1
for any vector x and any state j 2 1. The indicator
vector is given by
I,(x) = (I,(%),...,1,(x,)), for j=1,2,...,M where

1 ifx 23
I,(xy) '{o if %, < 3.

The N-type2 model and the BW model transform the multistate
system into several binary systems. Natvig [1982] showed
that N-type2 coherent systems are BW-coherent when the binary
structures are the minimal path sets.
Ohi and Nishida [1984] gave definitions for five types

of coherence: strongly-coherent, c¢oherent, sub-coherent, ‘
pseudo-coherent, and weakly-coherent. As with the definition
first given by Hudson [1981], a distinction was made between
the state spaces of each component and the system. Let s and

t be distinct states in €. Let j and k be distinct states
in Q.

60

DEFINITION [Ohi and Nishida, 1984]. ¢ is a multistate
monotone s em (MMS) iff

i. @ = (0,1,...,M}, i=1,2,...,n,

ii. Q= {0,1,...,M}, and

iii. ¢(x) is increasing.

DEFINITION [Ohi and Nishida, 1984]. ¢ is ON-strongly

coherent iff

i. ¢ is a MMS and

ii. For every component i and all system states s and
t, there exist vectors (j,,x) and (k,,x) such that
6(j,,x) = s and ¢(k,x) = t.

DEFINITION [Ohi and Nishida, 1984]. ¢ is ON-coherent

iff

i. ¢ is a MMS and

ii. For every component i and all system states s,
there exist vectors (j,,x) and (k,,x) such that ¢ (j;, x)
= s-1 and ¢ (k,,x) = s.

DEFINITION [Ohi and Nishida, 1984]. ¢ is ON-sub-
coherent iff

i, ¢ is a MMS and

ii. For every component i and all system states s,
there exist vectors (j;,x) and (k,,x) such that ¢ (j,, x)
s and ¢ (k;, x) = s.

DEFINITION [Ohi and Nishida, 1984]. ¢ is ON-pseudo-

coherent iff

i. ¢ is a MMS and

61

ii. For every component i and all system states s,
there exist vectors (Jj,,x) and (k,,x) such that ¢ (3, x)
€ s-1 and ¢ (k;,x) 2 s.

DEFINITION [Ohi and Nishida, 1984]. ¢ is ON-weakly-

coherent iff
i. ¢ is a MMS and

ii. For every component i, there exist vectors (j;, x)
and (k,,x) such that ¢ (j;,,x) = ¢ (k,, x).
Ohi and Nishida [1984] and Abouammoh and Al-Kadi [1991] have
shown the relationships between the various definitions.
There are two aspects of the previous definitions for
coherence that are too restrictive. First, the state -spaces
of the components and system should not be restricted to the
same set. For example, most of the previous definitions
require that Q = Q, i=1,2,...,n. Instead, the model should
permit Q # Q # Q, # ... # Q. Second, the system state
should not be restricted for specific x € S. For example,
an EPS-coherent system requires that ¢ (J) = j. Instead, the
model should only require that at least one component state
vector belong to the lowest and highest equivalence classes.
The previous definitions for coherence contain two
desired aspects. First, the system should not improve with
the deterioration of a component and the system should not
deteriorate with the improvement of a component. Therefore,
¢ (x) must be an increasing function. Second, the system

should only contain relevant components. The component

62

relevance condition is the main difference in the previous
definitions. An equivalent form of the least restrictive
component relevance condition that uses information readily
supplied by the customer is developed next.

The least restrictive relevance condition was given in
the definition for G-weakly coherent. Griffith [1980] proved
that this condition can be replaced with another equivalent
condition that is much easier to check: for any component
i, there exists a vector (*,,x) such that ¢(0,,x) < ¢ (M, x).
Extending the condition for a general multistate system: for
any component i, there exists a vector (',,x) such that
¢(0,x) < o((M),,x).

One serious disadvantage of all the previous relevance
conditions is that the structure function must be known to
check for component relevance. Most of the time, the
customer will not know ¢(x) explicitly. However, the
customer should be able to describe the structure with either
the lower or upper boundary points to level k. Therefore,
it would be best to define component relevance in terms of
either the lower or the upper boundary points to level k.

Using Griffith’s equivalent condition, suppose that
component i is not relevant. Then, for every vector (',,x),
¢(0,,x) 2 ¢6((M),,x). But since ¢ is increasing, ¢ (0,,x)
é(1,,x) = ... = ¢((M),,x). By definition, only (0;,x) is a
potential lower boundary point to level k and only ((M;);,x)

is a potential upper boundary point to level k. Thus, when

63

]

component i is irrelevant, all lower boundary points to level
k have x;, = 0 and all upper boundary points to level k have
X; = M;. From this, a relevant component is defined.

DEFINITION. Component i is relevant if there exists a

lower boundary point to level k such that x, # 0 for

some k=1,2,...,M or an upper boundary point to level k

such that x;, # M; for some k=0,1,...,M-1.

For the binary model, this definition says that component i
is relevant if %, = 1 in some minimal path vector or x; = 0
in some minimal cut vector.

Considering the undesirable and desirable aspects of the
previous definitions and the new definition for component
relevance, this dissertation uses the following definition
for a general multistate coherent system:

DEFINITION. ¢ is a general multistate coherent system

(general MCS) iff

i. & = {0,1,...,M}, i=1,2,...,n,

ii. Q= {0,1,...,M},

iii. S, and S, are not empty,

iv. ¢(x) is increasing, and

v. For every component i (i=1,2,...,n), there exists

a lower boundary point to level k such that x; # 0 for

some k=1,2,...,M or an upper boundary point to level k

such that x, # M, for some k=0,1,...,M-1.

EXAMPLE 3.2 Suppose that n=2, M; = M, = M= 2, and

the customer specifies the following lower and

64

upper boundary points:

Level Lower Boundary Point Level Upper Boundary Point

1 (1,0) 0 (0,2)

2 (2,0) 1 (1,2)
Determine if the components are relevant.
Component 2 in not relevant since x, = 0 for all
lower boundary points and x, = 2 for all upper
boundary points. This checks with the actual

general MCS of ¢ (x) = Max{x,,Min{x,,%,}} which was

used to generate the boundary points.

The next theorem states that the worst x € S will always
be an member of the lowest equivalence class and the best x
€ S will always be a member of the highest equivalence class.

THEOREM 3.1 If ¢ is a general MCS, then x, € S, and

X, € Sy.

Proof: From condition (iii), Sy is not empty. Let y €

S,. Clearly, x, < y. From condition (iv), ¢(x,) < ¢(y)

= 0. But ¢(x;) 2 0, so ¢(x,) = 0 or x, € S;,. The same

logic can be used to show that x, € S,.

As with binary systems, the elimination of unrealistic
structures allows important results to be developed for every
general MCS. The next theorem gives bounds on the structure
function similar to the binary bounds developed from the best
and worst arrangement of the components (Theorem 2.1).

THEOREM 3.2 Suppose that ¢ is a general MCS with s,

lower boundary points to level k, k=1,2,...,M given by

Ly = {LasLaarever Ly) and t, upper boundary points to

65

level k, k=0,1,...,M-1 given by U, = {Ukuthz,...,Uhn}.

Suppose that ¢, is a general MCS with one lower boundary

point to level k, k=1,2,...,M given by L,° and L,° € L,.

Suppose that ¢, is a general MCS with one upper boundary

point to level k, k=0,1,...,M-1 given by U° and U’ €

Ux. Then ¢,(x) < ¢(x) < ¢,(x).

Proof: The proof will be delayed until after the

discussion in section 3.1.5.

Barlow and Wu ([1978] proved the following results for
any increasing multistate coherent system. The theorems are
equally valid for the general MCS.

THEOREM 3.3 If ¢ is a general MCS, then

d(x vy 2 ¢(x) v o(y)

for any component state vectors x andy. x v y is

defined as (X, V ¥1/X; V ¥y, +..,%, V Y,) where x; v

y, = Max{x,,y;} and ¢(x) v ¢(y) = Max{d(x),0(y)}.

Proof: For any two component state vectors, x vy 2 X

and x vy2y. Since ¢ is increasing, ¢(x v y) 2 ¢(x)

and ¢(x v y) 2 é(y). Thus, 6(x v y) 2 Max{¢(x),d(y)}
and the result follows.

TEEOREM 3.4 If ¢ is a general MCS, then

d(x A y) < O(x) A O(Y)

for any component state vectors x andy. x A Y is

defined as (X; A Y1, X, A Vo, -..,%, A ¥, where x, A

y, = Min{x,,y;} and ¢(x) A ¢(y) = Min{d(x),0(y)}.

Proof: For any two component state vectors, x Ay $ X

66

and x Ay S y. Since ¢ is increasing, ¢(x A y) < ¢ (x)
and ¢(x A y) S ¢(y). Thus, ¢(x A y) S Min{d(x),d(y)}
and the result follows.

These two theorems were enough when a series structure
function was defined so that ¢(x) = Min{x,,x,,...,X%X,} and a
parallel structure so that ¢(x) = Max{x,,X,,...,X.}. The
change in the definition of series and p -allel structures
requires that these two theorems be reevaluated for the
general MCS.

Let II be defined as a parallel general MCS and Il be
defined as a series general MCS. The next two examples show
that ¢(x M y) 2 ¢(x) II ¢(y) and ¢(x Il y) < ¢(x) IT ¢(y) are
not true for all component state vectors x and y.

EXAMPLE 3.3 Suppose that Il (x) and ¢ (x) are enumerated

as shown in Table 3.2.

Table 3.2 IH(x) and ¢(x) for Example 3.3.

X, X2
II (x) | 0 1 2 o (x) | 0 1 2
0 0 0 1 0 0 0 1
X, 1 0 0 1 x 1 1 1 2
2 1 1 1 2 1 2 2

Show that II(x) is a parallel general MCS and

6(x I y) < ¢(x) U ¢(y) for some x and y.

II(x) is a parallel general MCS because it has two
lower boundary points to level 1 {(2,0),(0,2)} and

one upper boundary point to level 0 {(1,1)}. Let

67

x = (1,2) and y = (1,1). Thenx Il ¥y = (0,1) and

o(x I y) = 0. o¢(x) =2, ¢(y) = 1, and ¢(x)1I
¢(y) = 1. Thus, ¢(x I y) < ¢(x) II ¢(y).

EXAMPLE 3.4 Suppose that II(x) and ¢ (x) are enumerated

as shown in Table 3.3.

Table 3.3 II(x) and ¢(x) for Example 3.4.

XZ x2
II (x) | 0 1 2 o (x) l 0 1 2
0 0 0 0 0 0 1 2
x, 1 0 1 1 x, 1 0 2 2
2 0 1 1 2 1 2 2

Show that II(x) is a series general MCS and

o(x IT'y) > ¢(x) II ¢(y) for some x and y.

IT(x) is a series general MCS because it has one

lower boundary point to level 1 {(1,1)} and two

upper boundary points to level 0 {(2,0)(0,2)}.

Let x = (1,1) andy = (1,2). Thenx Il y = (1,1)

and ¢(x I y) = 2. ¢o(x) =2, ¢(y) = 2, and ¢ (x)]I

o(y) = 1. Thus, ¢(x IT y) > ¢(x) IT o(y).
3.1.5 Equivalent Coherent Structures

Block and Savits [1982] developed a technique for
generating an equivalent structure function by decomposing
the multistate system into several binary structures. They
based the binary structure functions for level k on either
the lower or upper boundary points to level k. Their

technique is expanded for the general MCS.

68

Suppose the customer specifies the lower boundary points
to level k, k=1,2,...,M. Define the following two indicator

variables:

_J10 ifx, <3
Yuu =11 if x, 23

for i=1,2,...,n and j=1,2,...,M,.

0 if ¢(x) <k
1 if ¢(x) 2k

o* (y) ={ (3.1)

for k=1,2,...,M. As the multistate structure function is a
function of a vector of multistate variables (x;,X,,.:.,X%,),
the binary structure function is a function of a vector of
binary variables (yi1/ ..., YimrYorreeooYoumreeer¥Ynirener Yoy

Suppose the s, lower boundary points to level k are
given by Ly, Lyss ..., Ly, . Let the set of all lower boundary
points to level k be designated L,. If x € L,, then let

@ (x) = {(i,x;) for all x, # 0}.

In the binary case, the ordered pairs of ¥, (x) form a minimal

path set for each x € L,. Block and Savits [1982] wrote the

binary -tructure function for level k as

k(y) = Max Min .
¢ Y 2L, (1, 3)ed (x) yij

From Equation 3.1, ¢(x) can be found from the sum

d(x) = o' (y) + % (y) + ... + O"(y).

69

A similar derivation uses the upper boundary points to
level k. Suppose the customer specifies the upper boundary
points to level k, k=0,1,...,M-1. Define the following two
indicator variables:

_Jo ifx, <5
Yi3 511 if x, > 3

for i=l,2,...,n and j=0,1’-..,M1-1.

0 if ¢(x) Sk
1 if ¢(x) >k

o (y) ={ (3.2)

for k=0,1,...,M-1. As the multistate structure function is
a function of a vector of multistate variables (x,,%X,,...,X,),
the binary structure function is a function of the binary
variables (yigs -+ v Yim-17Y20r c«cr Yo, 17 cr¥nor o<y Yom-1) -

Suppose the t, upper boundary points to level k are
given by Uy, Uy« -+, Uy, - Let the set of all upper boundary
points to level k be designated U,. If x € U, then let

U (x) = {(i,x,) for all x, # M,;}.

In the binary case, the ordered pairs of U(x) form a minimal

cut set for each x € U,. Block and Savits [1982] wrote the

binary structure function for level k as

¢*(y) =Min Max vy,,.
U, (1,)eU(x)

From Equation 3.2, ¢(x) can be found from the sum

70

d(x) = ¢°%(y) + o' (y) + ... + " (y).

The procedure is demonstrated in the following example:
EXAMPLE 3.5 Suppose a general MCS of 3 mutually
independent components is defined by the customer with
the following lower boundary points:

L,=(310) ©L,,=(211)

Ly;=(310) Ly;=(120) Lj=(111)

L;=(300) L,,=(201) L,;=(110) L,=(020) L,;=(011)
L;;=(200) ©L,;,=(101) L,,=(010)

Write an expression for the system structure function.
2, (Ley) = {(1,3),(2,1)} L (Ly) = {(1,2),(2,1),(3,1)}

2, (Ls,)

{(1,3),(2,1)) €(Ly,) = {(1,1),(2,2)}

2(Ly;) = ((1,1),(2,1),(3, 1)} (L) = {(1,3))

2, (L) = {(1,2),(3,1)} P(Ln) = {(1,1),(2,1)}

2, (L) = {(2,2)) L(Lys) = {(2,1), (3, 1)} € (Lyy) = {(1,2)})
2 (L) = {(1,1),(3,1)} (L) = {(2,1)}

o' (y) = Max{y:¥.1, Y12Y21¥a1}

o’ (y) = Max{y;:¥a. Y11Y22r YuYa1¥a!l
o7 (y) = Max{¥i3, Yi:¥31r YuYair Yoo Y21¥a1}
¢! (y) = Max{yi,, ¥Y1¥sr Ya!

The system structure function can be calculated from

d(x) = ¢ (y) + 6% (y) + ¢*(y) + ¢ (¥).

The transformation of Block and Savits [1982] and Wood
[1985] allows the proof of Theorem 3.2.

Proof of Theorem 3.2: Using the lower boundary points

to level k, the structure function for level k is

71

X(y) = Max Min .
¢ Y =L, (4,))eR (x) yij

Then it is clear that ¢*(y) 2 ¢*(y) for k=1,2,...,M
since ¢* maximizes over all lower boundary points and
L,° € L,. The system structure function comes from

o(x) = EEQV(y)

kel

so it must be true that ¢(x) 2 ¢,(x). Using the upper

boundary points to level k, the structure function is

¢*(y) =Min Max vy,..
U, (1, e (x)

Then it is clear that ¢*(y) < ¢*,(y) for k=0,1,,...,M-1
since ¢* minimizes over all upper boundary points and
U° € Uy,. The system structure function comes from

M-1
o (x) =Y o%(y)

k=0

so it must be true that ¢(x) < ¢,(x).

The transformation also provides some insight into the
new definitions for parallel and series structure functions.
In the multistate case, it 1is no longer meaningful to
represent a series or a parallel structure in a functional
block diagram. The new definitions isolate the cases when

the alternate representation given by Block and Savits [1982]

72

can be simplified. A series structure has one lower boundary
point to level k, L, k=1,2,...,M. Therefore, the alternate

representation for a series structure is given by

M M
x) = (y) = Min .
¢ x) o1 oty ;;:(ij%um)y"

Likewise, since a parallel structure has only one upper
boundary point to level k, Uy, k=0,1,...,M-1, an alternate

representation for parallel structure is

M-1

M-1
d(x) =Y o(y) =) Max y, .

k=0 k=0 (L, 1eQ(y,,)

El-Neweihi et al. [1978] developed an expansion to
reduce the order of a multistate structure function by one.
The following expansion, given by Hudson and Kapur [1983],

extends the result to the general MCS:

M,

o(x) =Y 6(3j,x)1,, fori=1,2,...,n (3.3)
j=0

where
1 = 1 if x,=j
137 |0 if x#3j.
The expansion can be performed about any component. It is

a generalization of Equation 2.1 given for the binary model

in section 2.1.5.

73

3.1.6 Dual Structure Function

The definition of the dual structnure function was first
extended to multistate systems by El-Neweihi et al. [1978]
and to a general MCS by Hudson [1981].

DEFPINITION. Let ¢ be a structure function of a general

MCS. The dual structure function ¢° is defined by

O°(x) = M - O(M-%,, M=%y, ..., M ~%,)
=M- ¢(x, - x).

For a general MCS (C,¢), the dual is (C% ¢°). Note that the
sets of components (C and C°) are the same for both systems.
However, the notation C° is used to clarify that when the
primal component C, is ih state x,, the corresponding dual
component C,° is in state x,° = M, - x,.

Intuitively, the dual has the following interpretation.
For the binary case, the dual system functions iff the primal
system fails. For the general MCS, the primal system is in
state k iff the dual system is in state M - k. The boundary
points of the primal and dual have a special relationship.

THEOREM 3.5 x is a lower boundary point to level k for

the general MCS ¢ iff (x, - x) is an upper boundary

point to level (M - k) for the dual general MCS ¢°.

Proof: Suppose x is a lower boundary point to level k

for ¢. Then ¢(x) 2 k and if y < x, then ¢(y) < k.

From the definition of the dual

¢°(x, -~ x) = M- ¢(x, - (xy, - x)) = M- ¢(x). Therefore,

¢(x) = M - ¢°(x, - x) 2 k and ¢°(x, - x) S M - k. Now

74

suppose that y > x, - x. Rearranging terms, x, - y < x
and ¢(x, - y) < k. So ¢°(y) =M - ¢(x4, -~ y) > M - k.
In summary, ¢°(x, - x) €M - k andy > x, - x implies
that ¢°(y) > M - k. By definition, x, - x is an upper
boundary point to level M - k for the dual structure ¢°.
Suppose (x, - x) is an upper boundary point to level
(M-k) for ¢°. Then ¢°(x, - x) <M - k and if y > x, - x,
then ¢°(y) > M - k. From the definition of the dual,
¢°(x, - x) =M - ¢(x) <M -k and ¢(x) 2 k. Now suppose
that y < x. Thus, x, - ¥ > X, - x and ¢°(x, -~ y) > M-k.
So ¢(y) = M - ¢°(xy, - ¥) < k. In summary, ¢(x) 2 k and
Yy < x implies that ¢(y) < k. Therefore, x is a lower
boundary point to level k for the structure ¢.
EXAMPLE 3.6 Suppose that n=2, M;=3, M,=2, M=4, and

¢ (x) is enumerated as in Table 3.4. Enumerate the

dual structure, ¢°(x), and demonstrate Theorem 3.5.

Table 3.4 ¢(x) for Example 3.6.

X2
¢ (x) 0 1 2
0 0 0 0
X, 1 1 2 2
2 1 3 3
3 1 3 4

$°(x) =M - 6(M;, - x;, M, - x;)
=4 - ¢(3 - x,, 2 - x,).

¢°(x) is enumerated in Table 3.5.

75

Table 3.5 ¢°(x) for Example 3.6.

X,
P (x) { 0 1 2
0 0 1 3
X, 1 1 1 3
2 2 2 3
3 4 4 4

The lower boundary point to level 1 for ¢ is

(1,0). By Theorem 3.5, the upper boundary point

to level 3 for ¢° is (2,2) which can be seen from

Table 3.5. The upper boundary points to level 3

for ¢ are (3,1) and (2,2). By Theorem 3.5, the

lower boundary points to level 1 for ¢° are (0,1)

and (1,0) which checks with Table 3.5. .

The remainder of this section is dedicated to stating
and proving some of the more common theorems that relate to
the dual structure function. The proofs are necessary
because different definitions have been used for a general
MCS and for k-out-of-n structures.

THEOREM 3.6 If the primal is a general MCS, then the

dual is also a general MCS.

Proof:

i. Suppose that & = {0,1,...,M}, i=1,2,...,n for ¢.

When the state of component i in ¢ is x,, then the state

of component i in ¢° is x° = M, - x,. Thus, Q° =

{0,1,...,M}, i=1,2,...,n for ¢°.

ii. Suppose that Q = (0,1,...,M} for ¢. When the

76

system state of ¢ is ¥, then the system state of ¢° is
M-. Thus, & = {0,1,...,M} for ¢°.

iii. Suppose S; and S, are not empty. Then the vectors
y and 2z exist such that ¢(y) = 0 and ¢(z) = M. From
the definition of the dual,

O°(xy, - x) =M - O(xy - (x4, - %)) =M - O(x).
Substituting, ¢°(xy, - ¥y) = M and ¢°(x, - z) = 0. Thus,
x, ~ye€ S° and x, - z € S°.

iv. Let x, y € S such that x < y. Then x, - x 2

Xy, - Y. Since ¢ satisfies (vi), ¢(xy - x) 2 ¢(x, - y).

Thus, M - ¢(xy, - x) £ M - ¢(xy, ~ y). From the
definition of the dual, ¢°(x) < ¢°(y). Thus ¢° is
increasing.

v. Suppose ¢° does not satisfy (v). Then there exists

an i such that x,° = 0 for all lower boundary points of
¢° and x,° = M for all upper boundary points of ¢°. By
the previous theorem, X, = M - 0 for all upper boundary
points of ¢ and x, =M - M for all lower boundary points
of ¢. But this contradicts the fact that ¢ satisfies
(v). Thus ¢° satisfies (v).

THEOREM 3.7 The dual of a k-out-of-n general MCS is an
(n-k+1) -out-of-n general MCS.

Proof: Suppose that ¢ is a k-out-of-n general MCS. By

definition, ¢ has (ﬂ lower boundary points to level 3,

j=1,2,...,M and (m:q) upper boundary points to level j,

77

j=0,1,...,M-1, By theorem 3.7, ¢° has (:) upper

boundary points to level M-j, j=1,2,...,M and (n)

n-k+1

lower boundary points to level M-j, j=0,...,M-1. By

letting j’ = M-j, ¢° has (;) upper boundary points to

level j’, j’=0,1,...,M-1 and(nld) lower boundary points

to level j’, j’=1,2,...,M. Therefore, ¢° is an (n-k+1)-
out-of-n general MCS.
Since a series system is an n-out-of-n structure and a
parallel system is a l-out-of-n structure, the following two
corollaries are immediately apparent.
COROLLARY 3.1 The dual of a series general MCS of n
components is a parallel general MCS of n components.
COROLLARY 3.2 The dual of a parallel general MCS of n
components is a series general MCS of n components.
Finally, Janan [1985] showed that the dual is idempotent.

THEOREM 3.8 The dual of the dual is the primal.

Proof: [6°)°P = M - ¢°(x, - =x)
=M - [M - ¢(xM - (xM - x))]
=M- (M- ¢(x)] = ¢(x).

3.1.7 Structural Importance

Block and Savits [1982] discussed a connection between
the concepts of component relevance, system coherence, and
structural importance. In general, component i is relevant

if there exists a component state vector that satisfies the

78

model’s relevancy condition. For the binary model, component
i is relevant if there is an x such that ¢(1,,x) # ¢ (0, x).
For the G-weakly-coherent multistate model, component i is
relevant if there is an x such that ¢(0,,x) < ¢ (M;,x). For
the general MCS, component i is relevant if there is an x
such that ¢(0,,x) < ¢((My),x). The system is coherent if,
among other conditions, all components are relevant.
Finally, the structural importance of component i can
be defined as the proportion of the component state vectors
where the relevance condition holds. For the binary model,
the structural importance for component i was given 1in
section 2.1.7. For the G-weakly-coherent system, the

structural importance for component i can be generated by

. 1
I, (1) = W(xﬁgm N (x) where

f1 if 0% < o, x)
N(x) ‘{0 if 0(0,,%) = 0 (M, %) .

Extending to the general MCS, the structural importance for

component i can be calculated from

I.(i) ____3____ N (%) where

(My+1) (xlamm)
J#i

1 if ¢(0,,x) < ¢ ((M),, x)
=0 ((

N(X) =30 if ¢(0,,x) M,),, X) .

3.1.8 Modules and Modular Decomposition

Fardis and Cornell [1981] used modular decomposition to

79

simplify the calculation of reliability for multistate
systems composed of duplicate components. Butler [1982]
developed bounds on system reliability with modular
decomposition for the multistate case. Hudson and Kapur
[1983a] extended the definitions for modules and modular
decomposition to the general MCS.

DEFINITION - Suppose (C,¢) is a general MCS where C is

the set of components. Suppose that A c C. Let A’

denote the subset of C complementary to A. The general

MCS (A,%) is a module of (C,¢) if

o(x) = ¢(x*x) = ylyx(xh,x*]
where ¥y is a MCS called the organizing structure.

DEFINITION - A modular decomposition of a general MCS

(C,9) is a set { (A, %), (Ao, X2) s ev-r (A, %)} of general
MCSs along with the organizing structure ¥y such that

i) {A,,A,,...,A)} partition C into disjoint subsets and
ii) ¢ (x) = Yix; (x™), o (xP2), oo/ X (x™)],

Using modules for a multistate system is especially valuable
when modeling a physical system that can be divided into
distinct subsystems. In essence, several smaller multistate
models are generated and solved separately. The results of
each of the smaller problems are combined with the organizing
structure to analyze the entire system.
3.2 Stochastic Properties

So far, only the deterministic properties of the general
multistate model have been discussed. Stochastic properties

80

characterize the probabilistic relationship between the state
of the system and the states of the components at a fixed
moment in time.
3.2.1 Notation

The following notation is listed for the reader’s

convenience in the order of presentation:

n number of components.

Xy random variable for the state of component i.

X, fixed state of component i; x, € Q.

X random component state vector; X = (X,,X;,...,X,).

x fixed component state vector; X = (X;, X3, ...,%p) -

¢ (X) random variable for the state of the system.

¢ fixed state of the system; ¢ = ¢ (x).

P, Pr(¢(X) = k], k=0,1,...,M.

Py, Pr(X, = jl, i=1,2,...,n and 3=0,1,...,M,.

Q Pr(¢(X) 2 k], k=1,2,...,M.

Qi Pr(X, 2 jl, i=1,2,...,n and j=1,2,...,M,.

q: (Qu17Quar e+ + 7 Q) - 1

|

q (Q1/Q2s ¢ e+ +Qu)

r{q performance function.

Ly j** lower boundary point to level k, k=1,2,...,M and
3=1,2,...,Sx.

Ey, event that X 2 L,,, k=1,2,...,M and 3j=1,2,...,s,.

M, best state of the i*" component in module j.

n, number of components in module j.

I index of efficiency of modular decomposition.

81

X <<y x, <y, Vi.
3.2.2 The Performance Function

For binary systems, the main problem in reliability
theory is to determine the system reliability from the
reliability of the components. Knowing the system
reliability allows us to find the system unreliability since
only two system states are possible.

El-Neweihi et al. [1978] explored the same problem for
a multistate system and Hudson [1981) extended the problem
to the general MCS. For a system of n components, let X;
denote the random state of component i and x; denote a
specific state of component 1i. The random and specific
states for all components are summarized in the random
component state vector X = (X,,X,,...,X,) and the fixed
component state vector x = (X,,X;,...,X,). Let ¢(X) be the
random system state and ¢(x) or ¢ be a fixed system state.

For the general MCS, the problem changes to finding the
system’s probability distribution, P,, where

P, = Pri¢(X) = k], k=0,1,...,M
from every component’s probability distribution, Py, where
P,y = Pr(X, = j}, i=1,2...,n and j=0,1,...,M,.
An equivalent statement of the problem is finding the
performance distribution of the system, Q,, where
Qx = Pr(¢(X) 2 k], k=1,2,...,M

from every component’s performance distribution, Q,,, where

Q;, = Pr(X, 2 31, i=1,2,...,n and 3=1,2,...,M,.

82

The second problem formulation works better for the
general MCS for several reasons. First, less calculation is
required since Q;, = 1. Second, the most efficient techniques
available make use of boundary points and naturally result
in a performance distribution. Finally, Griffith [1980)
stated that the second formulation sometimes allows for

direct comparison of the system performance of two systems.

Suppose that q; = (Q11/Qi5s--.+Q;,,) is the performance vector
for component i and q = (Q;,Q0,,...,Q4) 1is the performance
vector for the system. Let q and g’ be the performance

vectors for two different systems. System one is superior
to system two if q' 2 q°. -

For binary models, reliability was defined as the
probability that the system functions. For multistate
models, there are different degrees of functioning so a new
measure of system performance is required. El-Neweihi et al.
[1978] suggested E[¢(X)] or the expected system state.
Butler [1979] promoted Pr[¢(X) 2 k], especially when the
customer was willing to divide system states into two
categories (2 k or < k). E[¢(X)] and Pr(¢(X) = k] are
equivalent measures for the binary model. Griffith [1980]
used E[u(¢ (X))] or the expected utility of the system state.

Each of these definitions provides a measure of the
performance for multistate systems. However, it 1s the
customer that evaluates the system performance, so it must
be the customer that indicates the most appropriate

83

definition. If the customer wants to measure the center and
spread of the distribution, then E[¢(X)] and Var(¢(X)] seem
appropriate. If the customer can separate the system’s
probability distribution into "good" and "bad" states, then
Pr{¢(X) 2 k] works well. If the customer wants to evaluate
efficient performance distributions, then E[u($(X))] allows
the customer to weigh the different possibilities.

The second objective of this research is to develop a
new substitute characteristic for multistate reliability
based on the expected loss to the customer. The new measure
will be sensitive to the pattern of degradation about a
desired system lifetime.

If the random variables X,, i=1,...,n are mutually
independent, then q may be expressed as a function of gq,
i=1,2,...,n. Each of the given measures of performance are
defined as a function of q and therefore, they are also a
function of q,, i=1,2,...,n. The relationship between the
system’ s measure of performance and the component performance
vectors is given by the performance function:

r=r(q,9+-,9q) -
3.2.3 Performance Importance

The Jdefinition for performance importance depends on the
definition chosen for the performance function. Suppose that
E[¢(X)] is used. The following expansion of the performance
function can be derived using the assumption of mutual

independence and taking the expected value of Equation 3.3:

84

Mt
T, Qe e s D) = ;; Py, E[0(3,X)].

Proceeding in a manner similar to El-Neweihi et al. [1978],

Ml
r(QiQree-rQ) = E Py, E[¢(J:,X)] + Py E{$(0,,X)].

j=l
M,
Since P, =1 - Y P,
i=1
. M,
(9, Q---r9) = Y, Py {E[Q(I,X)I-E[$(0,X)]} + E[H(0,,X)].
=1

The performance importance of component i at state j is

or

TP—i.; = E[¢(Jilx) = ¢(Oilx)]

for i=1,2,...,n and j=1,2,...,M;.
3.2.4 Exact System Performance

Enumeration, inclusion-exclusion, pivoting, and modular
decomposition are four techniques used to determine the exact
probability distribution from the probability distributions
of the components. Each technique assumes the components are
mutually independent. The computer program given in Appendix
A implements the first three techniques directly and the
fourth technique indirectly. It works well for moderately
large problems of about 10 components, each with 4 states.
Of course, the program will also work for binary systems
since they are a special case of the general MCS.
3.2.4.1 Enumeration

The enumeration technique determines the system state

85

and probability for every possible component state vector.
It tallies the probabilities for all component state vectors
in the same equivalence class.

EXAMPLE 3.7 Suppose that n=2, M;=3, M,=2, M=4, and ¢ (x)

is enumerated by the customer as shown in Table 3.6.

Table 3.6 ¢(x) for Example 3.7.

X,
i 0 1 2
0 0 1 2
% 1 0 1 3
2 1 2 3
3 2 4 4

Suppose that the probability distributions for the

components are determined to be:

Py = .05 P;; = .1 Py, .15 Py, = .7

Py = .1 P,y =.3 P,,=.6
Assuming components are mutually independent, find P,,
k=0,1,2,3,4. The probability of each component state

vector is found by enumeration:

x ¢ (x) Pr(X=x] x o (x) Pr[X=x]
.005 20

00 0 1 .015
01 1 .015 21 2 .045
02 2 .030 22 3 .090
10 0 .010 30 2 .070
11 1 .030 31 4 .210
12 3 .060 32 4 .420

The system probability distribution, P,, is found by
summing the probability of all component states where
¢(x) = k, k=0,1,2,3,4. Therefore, P, = .015, P, = .06,

P, = .45, P; = .15, and P, = .63.

86

Note that the number of component state vectors is

n

II ™+ 1

is=]
and the number of calculations needed to enumerate all
component state vectors becomes unmanageable for large
systems. It seems more reasonable to calculate probability
distribution from a subset of x € S.
3.2.4.2 1Inclusion-Exclusion
Lower boundary points to level k can be used to
calculate Pp,, k=0,1,...,M given Py, i=1,2,...,n and
3=0,1,...,M, [Natvig, 1982]. The method is based on the
following theorem proven by Borges and Rodrigues [1983]:
THEOREM 3.9 ¢(x) 2 k if and only if x 2 y for
some y € L,.
Proof: Suppose x 2 y for some y € L,. Since y € L,,
d(y) 2 k. Since ¢ is increasing, ¢(x) =2 ¢(y) 2 k. For
necessity, suppose that ¢(x) =2 k. Consider the
procedure of decreasing the values of the elements of
x while keeping ¢(x) 2 k. Eventually, it will no
longer be possible to continue without decreasing the
system state, Let this vector be denoted by y. At
this point in the procedure, y € L, by definition.
Since the procedure only decreased the elements of x,
then x 2 y for some y € L,.
Suppose ¢ is a multistate coherent system with s, lower

boundary points to level k, designated L, ,Ly/ ..., L, . Let

87

E,y be the event that x 2 L,y for j=1,...,s,. Then

Pr E k=1,2,...,M
Pri¢(X) 2 k] = H x rer

1 k=0.

The union of events is evaluated with Theorem 2.8. The
system probability distribution can be found from
P, = Pr(¢(X) 2 k] - Pr[¢(X) 2 k+1] = Q, - Q4,, k=0,1,...,M
and the fact that Qu,;, = 0. The next example demonstrates the
technique using lower boundary points.

EXAMPLE 3.8 Determine the lower boundary points for

the MCS given in example 3.7 and calculate the exact

system probability distribution.

Pr{¢(X) 2 0] = 1.0

The lower boundary points to level 1 are (0,1) and

(2,0). Therefore,

Pr{¢(X) 2 1] = Pr[X,;20, X,21] + Pr(X,22, X,20]

= (1) (.9) + (.85)(1) - (.85)(.9) = .985
The lower boundary points to level 2 are (0,2), (2,1),
and (3,0). Therefore,

Pr{¢(X) 2 2] = Pr[X,20, X,22] + Pr[X;22, X,21]
+ Pr(X;23, X,20] - PrlX;22, X,22] - Pr[X;23, X,22]
- Pr(X,23, X,21] + Pr[X,23, X,22]

= (1)(.6) + (.85) (.2 + (.7)(1) -~ (.85)(.6)
- (.7)(.6) = (.7T)(.9) + (.7)(.6) = .925

88

The lower boundary points to level 3 are (1,2) and
{(3,1). Therefore,
Pr[(¢(X) 2 3] = Pr(X,21, X,22] + Pr([X,23, X,21]

(.95) (.6) + (.7)(.9) - (.7)(.6) = .78

The lower boundary point to level 4 is (3,1). Thus,

Pri¢(X) 2 4) = Pr[X,;23, X,21] = (.7)(.9) = .63

Therefore, P, = Pr(¢(X) = 4] = .63 - 0.0 = .63,
P, = Pr(¢(X) = 3] = .78 - .63 = .15,
P, = Pri¢(X) = 2] = .925 - .78 = .145,

P, = Pr(¢(¥) = 1] .985 - .925 = .06, and

P, = Pr[¢(X) = 0] = 1.0 - .985 = .015.

The results match the solution found in Example 3.7.
Note that a similar technique can be developed using the
upper boundary points to level k, k=0,1,...,M-1.
3.2.4.3 Pivotal Decomposition

Iyer [1989] has shown that pivotal decomposition can be
used to calculate exact system reliability for the multistate
case. In contrast to the binary case, it is not likely that
the customer can completely specify the structure function
for multistate systems. However, the customer should be
capable of specifying the boundary points to each level of
the systen. Once this is done, the state of one of the
components is fixed and reliability calculations are made
from the boundary points with reduced dimension.

Suppose the probability distribution, P,y = Pr(X, = j]

89

for j3=0,1,...,M;, is known for each component in the systemn.
Also suppose that the customer can determine the s, lower
boundary points to each level k for k=1,...,M or the t, upper
boundary points to each level k for k=0,...,M-1. With this
information, pivotal decomposition can be used to determine
Pr{¢(X) = k] for k=0,1,...M.

The following algorithm was developed to implement the
pivotal decomposition strategy to determine Pr[¢ (X) 2 k] from
the lower boundary points (LBPs) to level k:

Pivotal Decomposition Algorithm

1. Determine the probability distribution for each

component in the system.

2. Let the customer specify the LBPs to level k.

3. Choose a component to pivot on. Iyer [1989] has

discussed several pivot selection rules.

4. Fix the component state at the lowest level of the

chosen component obtained by any LBP. List all LBPs

with the chosen component at this level. When only one

LBP remains, the branching is fathomed (go to step 8).

Otherwise, go to step 5.

5. Fix the component state at the next highest level.

If the highest component state is exceeded, go to 7.

Otherwise, list all LBPs with the chosen component at

this higher level. 1In addition, create temporary LBPs

by 1listing all LBPs from the previous level with the

fixed component state changed to the next highest

90

level. These temporary LBPs include the probabilities

of vectors summarized by the LBPs with the component

state at lower levels.

6. Remove any of the temporary LBPs that are greater

than the original group of LBPs. This prevents any

probabilities from being counted twice. When only one

LBP remains, the branching is fathomed (go to step 8).

Otherwise, go to step 5.

7. Determine if all branches have been fathomed.

so, STOP. The tallied probability is Pr{¢(X) =2 k].

If

If

not, continue with step 3 for all unfathomed branches.

8. Calculate the probability of the fathomed LBP using

2

Pr[X, = Jj] for fixed components and Pr(X, 2 jl
components not fixed. Tally the probability of
fathomed LBPs. Return to step 5.

The following example is given to demonstrate

pivotal decomposition technique. Figure 3.1 shows

for

all

the

the

solution pictorially. Removed temporary LBPs are marked with

an asterisk (*). Components fixed at a given state

are

underlined. The branches are labeled to correspond with the

discussion of the solution.

EXAMPLE 3.9 Suppose a system of 3 mutually independent

components is defined such that

PIO = ,1 Pll = ,2 PIZ = 3 P13 = .4
on = .1 P21 = ,3 Pzz = .6

91

Let the s, lower boundary points to 1level k be

designated L,;, Ly, ..., Ly,s, - Suppose the customer is

able to specify the following lower boundary points:
L;y=(310) L,=(211)

L3=(310) L3=(120) L;=(111)

L;=(300) Ly;;=(201) Lp3=(110) L,=(020) L,s=(011)
L;;=(200) ©L;,=(101) ©L,3;=(010)

Determine the Pr[¢(X) 2 2] from the LBPs to level 2.

(3 0 0)
(2 0 1)
(11 0)
(0 2 0)
(01 1)
I B B
(01 1) (1L 1 0) (2 0 1) (3 0 0)
(02 0) (L 11)* (21 0) (30 1)*
(L 2 0)* (3 10)*
Fathomed Fathomed
.18 .4
o-| o] 28] 25| 2]
(01 1) (0 2 0) (2 01) (21 0) (2 2 0)
Fathomed (0 2 1)* Fathomed (21 1)* Fathomed
.024 Fathomed .024 Fathomed .18
.06 .09

Figure 3.1 Pivotal Decomposition Diagram.

Suppose the pivot is on component 1. BRANCH ZERO: the
state of component 1 is fixed at level 0. The two LBPs
with x,=0 are (011) and (020). BRANCH ONE: the state
of component 1 is fixed at level 1. The one LBP with

x,=1 is (110). Temporary LBPs are established at (111)

92

and (120). Both are eliminated since they are greater
than (110). Since only one LBP remains, the branch is
fathomed and the probability is determined as Pr[X;=1]
Pr(X,21] Pr(X;20] = (.2)(.9) (1) = .18. BRANCH TWO: the
state of component 1 is fixed at level 2. The one LBP
with x,=2 is (201). A temporary LBP is established at
(210) . BRANCH THREE: the state of component 1 is
fixed at level 3. The one LBP with x,=3 is (300).
Temporary LBPs are established at (301) and (310).
Both are eliminated since they are greater that (300).
Since only one LBP remains, the branch is fathomed and
the probability is determined as Pr(X;=3] Pr(X,20]
Pr(X,20)] = (.4)(1)(1) = .4. Component 1 is at its
maximum state, but two branches remain unfathomed! Let
the next pivot be on component 2. BRANCH ZERO-A: the
state of component 2 is fixed at level 1. The one LBP
off branch one with x,=1 is (011). Since only one LBP
remains, the branch is fathomed #nd the probability is
determined as Pr[X;=0) Pr[X,=1] Pr[X;21]) = (.1) (.3) (.8)
= .024. BRANCH ZERO-B: the state of component 2 1is
fixed at level 2. The one LBP off branch one with x,=2
is (020). A temporary LBP is established at (021). It
is eliminated since it is greater than (020). Since
only one LBP remains, the branch is fathomed and the
probability is determined as Pr({X;,=0] Pr([X,=2] Pr(X;20]

= (.1)(.6) (1) = .06. BRANCH TWO-A: the state of

93

component 2 is fixed at 1level 0. he one LBP off
branch three with x,=0 is (201). Since only one LBP
remains, the branch is fathomed and the probability is
determined as Pr(X,=2] Pr(X,=0] Pr(X;21]) = (.3)(.1) (.8)
= .024. BRANCH TWO-B: the state of component 2 is
fixed at level 1. The one LBP off branch three with
X,=1 is (210). A temporary LBP is established at (211).
It is eliminated since it is greater than (210). Since
only one LBP remains, tlre branch is fathomed and the
probability is determined as Pr(X,=2] Pr([X,=1] Pr[X,;20]
= (.3)(.3)(1) = .09. BRANCH TWO-C: the state of
component 2 is fixed at level 2. There are no LBPs off
branch three with x,=2. A temporary LBP is established
at (220). Since only one LBP remains, the branch is
fathomed and the probability is determined as Pr([X,=2]
Pr{X,=2] Pr(X;20] = (.3)(.6) (1) = .18. All the branches
are fathomed. The tallied probability is .18 + .4 +
.024 + .06 + .024 + .09 + .18 = .958.
3.2.4.4 Modular Decomposition
The main purpose for modular decomposition is to reduce
the number of calculations necessary to determine the
system’s probability distribution. Hudson and Kapur [1983a]
developed a measure to evaluate the effectiveness of each
given decomposition. Let M,, denote the maximum value of
component i in module j and n, represent the number of

components in module j. Let M} denote the maximum value of

94

module Jj and k denote the number of modules. Let
{ (A X)) s (Bo,X2) s oo o (A %) } W be a modular decomposition of
(C,¢) . Let n(¢), n(y), and n(Xy;, be the domains of the
original structure, the organizing structure, and the i

n

module of the system. Then n(¢) = J] (M, + 1), n(y) =
=1

k har |
JI (M' + 1) and n(yy) = JI (Mj; + 1). The index of modular
=] =1

efficiency is defined by the following ratio:

k

n(y) + Y n(x,
=1

v n (%)

k k N
[T+ + YT M, + 1

j-l j-l i=]

n
I+
i=1
The next example demonstrates the calculation of the

index of efficiency for a given modular decomposition.

EXAMPLE 3.10 Consider the system in Figure 3.Z.

2,1
1,2
3,1
5,1
4,2 7,3
6,1

Figure 3.2 Seven Component Coherent Structure.

95

The numbers in each box represent the component number
and maximum state of the component. Determine the
index of modular efficiency considering the following

modular decomposition

A = {q)} M = 2
Az = {Cz,C3} Mz = 2
A, = {c,} M = 2
A4 = {Cs,Cs} bd4 = 2
A5 = {C~,} Ms = 3
For the original system, n(¢) = 32 - 2* - 4 = 576. For

the decomposition, n(y) = 3* + 4 = 324, n(x,) = 3, n(X)

4, n(x3) = 3, n(X) = 4, and n(Xs) = 4. The index I,

(324 + 3 + 4 + 3 + 4 + 4)/576 = 342/576 = .59375
The efficiency indicator estimates that finding the
probability distribution wusing the given modular
decomposition only requires 60% of the calculations
required using the original structure.

3.2.5 Bounding System Performance
The applicable system performance bounds will depend on

the substitute characteristics for reliability chosen by the

customer. Block and Savits [1982] developed several bounds
for Pr(¢(X) 2 k]. Bounds on E[$(X)] can be derived using the
following relationship between the two performance measures:

THEOREM 3.10 E(¢(X)] = Pr{¢(X) 2 1] + Pri¢(X) 2 2] +

ee. + Pri¢(X) 2 M].
M

Proof: E[¢(X)] = k Pr(¢(X) = k]
k=0

=P, + (2) P, + ... + (M) P,

96

(P + P, + ... + Py + (P, + P; + ... +Py) + ... + P,
=Q, +Q, + ... + Qu.
Therefore, the bounds found for Pr(¢(X) 2 k], k=1,2,...,M
allow similar bounds to be constructed for E(¢(X)].
Performance bounds can be constructed for independent
and associated random variables. Of course, the bounds are
mere explicit if the random variables are independent. The
boundé are based on a commonly known theorem.
THEOREM 3.11 If X,,X;,...,X, are associated random

variables, then

n
PriX; > %y, ..., %, > x,1 2 [[Prix, > x,]
i=1

and

n
PriX, € x,...,X Sx) 2J][prix, £x,].

i=l

The next six sections describe some of the bounds on
Pr(¢(X) 2 k] derived by other authors. For the case of
mutually independent components, the bounds are implemented
in the computer program found in Appendix B.
3.2.5.1 Trivial Bounds

Trivial bounds similar to Theorem 2.10 were developed
and proven by Hudson [1981]. These bounds are based on a
single lower boundary point to level k.

THEOREM 3.12 Let ¥ = (Y,,Ysr---+Yn) € L, k=1,2,...,M.

n n

Then 111 Qy, SQUA <1 - l‘[(1 -Q,)-
- =1

97

Proof: Suppose y € L,. Then ¢(y) 2 k by definition.
Since ¢ is increasing, if x 2 y, then ¢(x) 2 ¢(y).
Thus, Pr(X 2 y] < Pr(¢(X) 2 ¢(y) 2 k], or

Pr(X;, 2 ¥1,X; 2 Yoy e+,%X, 2 Yol €S Pr{¢(X) 2 k], or

Pri(X, 2 y;] Pr[X, 2 y,] - Pri(X, 2 y,] € Pr{¢(X) = k], or

n n
I[Pr[X, 2 y;] < Pr{é¢(X) 2 k]. Therefore, I[Qy, < O
-] =1

Since Ye L,, if x <y, then ¢(x) < k. Thus,
Pr{X < y] S Pr[¢(X) < k]. By definition,
Pr(X << y] S Pr[X < y] £Pr[(¢(X) < k], or

n

n Pr(X, < y;] € Pr(¢(X) < k], or
=]

I[{1 - Pr(X, 2 y;]1} € {1 - Prl¢(X) 2 k]}, or
=)

ﬁ (1-0uy) $1-0. Thus, 0 S1 -] (1-0,,).
=1 i=1
EXAMPLE 3.11 Suppose that M; = 3 and M, = 2 for a two-
component structure with M = 4. Suppose the component
probability distributions for the two components are:
Po=.1 P,=.1 P,=.1 P,=.7
Py = .1 P,y =.3 P,y = .6
Construct the bounds on Q; if x = (2,2) is a lower
boundary point to level 3.
Q; 2 Pr(X; 2 2] PriX, 2 2] = (.8)(.6) = .48.
Q; €1 - (1 -Pr(X;22]) (1 - Pr(X, 2 2)])
=1-(1-.8)(1-.6)=1- .,08= .92,

98

Construct the bounds on Q, if x = (0,1) is a lower
boundary point to level 1.
Q, 2 Pr[X, 2 0] Pr[X, 2 1] = (1) (.9) = .9.
Q €1 - (1-PriX 20]) (1 - Pr[X, 2 1))
=1-(1-1)(1 - .9 =1-0=1.0.
Similar bounds were derived using a single upper boundary
point to level k, k=0,1,...,M-1.
THEEOREM 3.13 Let ¥y = (V1,¥ss--.,¥s) € Ug, k=0,1,...,M-1.

n

n
Then H Q. S QnS1- l:[l (1 -0y,,,) -

Proof: Similar to Theorem 3.12.
3.2.5.2 Path/Cut Bounds
Path/Cut Bounds were developed by Block and Savits
[1982] from the lower and upper boundary points for the
structure. Suppose the s, lower boundary points to level k
are given by LiirLias oo o Ly, - Let the set of all lower
boundary points to level k be L,. If xe€ L,, then let
2 (x) = {(i,x,) for all x, # 0}.
Suppose the t, upper boundary points to level k are given by
Ukis Ukzr oo o s Uy, - Let the set of all upper boundary points to
level k be designated U,. If x € U,, then let
O, (x) = {(i,x,) for all x, # M;}.
THEOREM 3.14 Let ¢ be a general MCS with associated

components. Then

99

Pr {X,>3}1£0Q, < Pr| {X,>3-1}
SIUI... [(l.j)%d(x) !] X xH, [(1,3)0!,(:) t

for k=1,2,...,M.
The lower bound comes from the upper boundary points while
the upper bound comes from the lower boundary points.

When the components are independent, the bounds of
Theorem 3.14 can be explicitly derived from the performance
distributions of the components.

THEOREM 3.15 Let ¢ be a general MCS with independent

components. Then

II]_l g msus<sIT II o,
xeU,, (1,1 €& (x)

x€L, (1,3)e®, (x)

for k=1,2,...,M.
3.2.5.3 Min/Max Bounds

Min/Max Bounds were developed by Block and Savits [1982]
so that the lower bound comes from the minimal path sets
while the upper bound comes from the minimal cut sets.

THEOREM 3.16 Let ¢ be a general MCS. Then the

following bounds always hold for k=1,2,...,M:

Max Pr

{X,>3-1}} £ Q, € Min Pr|
zel, (1,9) e, (x)

[{X,>3 }].
ze U, , 14, el (x)

If the components are associated, then

Max Q,,,l £, < Min]_L Qy, 4}
x€ L. {(1' j)g!.(x, ol j} x x€ U.-] {(1, i) e ,,(x) Lol

3.2.5.4 Combining Bounds

The upper boundary points generally provide a tighter

100

bound for mutually independent components with large
probabilities in the higher states and the lower boundary
points generally provide a tighter bound for mutually
independent components with large probabilities in the lower
states. Thus, a combination of the bounds in Theorems 3.15
and 3.16 is appropriate for mutually independent components.
THEOREM 3.17 Let ¢ be a coherent system of independent
components. Then use the maximum lower bound and
minimum upper bound found with Theorems 3.15 and 3.16.
3.2.5.5 1Improved Path/Cut Bounds
Butler [1982]) showed that improving Path/Cut Bounds with
modular decomposition was also applicable to the multistate
model. Path/Cut Bounds are determined for each module. The
bounds are then used to determine Path/Cut Bounds for the
system. Butler [1982] proved that these bounds were always
tighter than the Path/Cut Bounds found from the system.
3.2.5.6 1Inclusion-Exclusion Bounds
Natvig [1982] developed bounds using the inclusion-
exclusion principle of Feller [1968]. Let X, be the 3*
summation term in Theorem 2.8. Using Theorem 3.9, the
probability distribution can be bounded as follows:
Pr(¢(X) 2 k] S X,
Pri¢(xX) 2 k] 2 %, - %,
Priéd(X) 2 k) S I -3, + I,

Pri¢(X) 2 k]

21 - 22 + 23 - ... *+ (_1)84'1 zs.

101

Unfortunately, the upper and lower bounds do not consistently
improve as more terms are added. In fact, Inclusion-
Exclusion Bounds are not restricted between 0 and 1. The
only guarantee is that exact probability distribution will
be found after determining every summation. Still, only a
few terms may be needed to bound Pr{¢(X) 2 k] tightly.
3.3 Dynamic Properties

In the last two sections, the structural and stochastic
properties of the general MCS were examined at a fixed moment
in time. As in Chapter 2, the next step is to consider
dynamic models, where the state of the components and the
system vary with time. Barlow and Wu [1978], El-Neweihi et
al. [1978], and Ross [1979] developed dynamic models for
multistate coherent systems. Hudson [1981] extended the
development of dynamic models for a general MCS.
3.3.1 Notation

The following notation is 1listed for the reader’s

convenience in the order of presentation:

t fixed time; t 2 0.

X(t) state of stochastic process for a given t.

X, (t) state of component i at time t, i=1,2,...,n.

X(t) vector of random component states at time t;
X(t) = (X, (), X (), ..., X, (£)).

d(X(t)) random system state at time t.
T3 at first, time for stochastic process reach or go

below state j; T = inf {t | X(t) £ j};

102

R(t)

Qx (B)

Qyy (t)

q;(t)

q(t)

r(t)

Hiy

later, time for stochastic process to go below
state j; T! = inf {t | X(t) < jJ}.
survivor function for system at time t; R(t) =

Pr(¢(X(t)) = 1] = E[¢(X(t))] = Pr[T > t].

time for state of component i to go below state j:;

T = inf {t | X,(t) < j}.

length of time component i spends in state j.
performance distribution of the system; Q,(t) =
Pri¢(X(t)) 2 kJ, k=1,2,...,M.

performance distribution for component i; Qy(t) =
Qiyy(t) = Pr(X,(t) 2 jl, i=1,2,...,n and j=1,2,...,M;.
performance vector for component i; q(t) <
(Qu(t) s Qua(t), o e oy Qy (L))

performance vector for the system; g(t) =
(Q(t),Q(E), ..., Qu(t)).

system performance function; «r(t) =
r{q(t),q(t), ..., q,(t)).

mean of distribution for T,, + T, *+ ...+ T ;.

3.3.2 Dpistribution Representations

collection of random variables X(t)

of the process for a given value of t.

In general, a stochastic process {X(t), t € T} is a

representing the state

The state space of

a stochastic process is defined as the set of all possible

values that X(t) can assume.

Let {X,(t), t 2 0} for i=1,2,..

., be the decreasing and

103

right continuous stochastic process representing the state
of component i at time t, where t ranges over the nonnegative
real numbers. The components and associated stochastic
processes are assumed to be mutually independent. Let the
vector of random component states at time t be designated by
X(t) = (X;(8),X(8), ..., X, (t)). Let {(d(X(t)), t 2 0} denote
the decreasing and right continuous stochastic process that
repreéents the system state at time t.
3.3.3 Distribution Classes and Closure

Recall that Barlow and Wu [1978] defined a multistate
system so that Q =€ = {0,1,...,M}. Suppose Q and , can be
divided into "bad" stateé {0,1,...,3-1} and "good" states
{3,3+1,...,M}. Essentially, this converts the multistate
problem to a binary model. Using this transformation, Barlow
and Wu [1978] applied the binary definition for IFRA.

DEFINITION. Let j be fixed at the lowest "good"

state. The distribution of time for component i

to leave the "good" states starting from state M

is an IFRA random variable if Pr([X,(t) 2 3J]1¥* is

decreasing in t 2 0 for some fixed j.
They proved IFRA closure with respect to the formation of
coherent systems. That is, Barlow and Wu [1978] showed that
if the length of time spent by each component in the "“good"
states is an IFRA random variable, then the corresponding
length of time spent by the multistate system in the "good"

states is also an IFRA random variable.

104

Ross {[1979]) basically followed the same strategy, but
instead of fixing j, the length of time for a stochastic
process to reach or go below state j must be an IFRA random
variable for every possible j.

DEFINITION. The stochastic process {X(t), t 2 0}

is an IFRA process if T3 = inf {t | X(t) £ j} is an

IFRA random variable for every 3j.

Ross [1979] proved IFRA closure with respect to the formation
of coherent systems. That is, if {X,(t), t 2 0}, i=1,2,...,n
are increasing independent IFRA processes, then {¢(X(t)),
t 2 0} is also an IFRA process whenever ¢ is decreasing.

El-Neweihi et al. [1978] used the binary definition for
a NBU random variable to define a NBU stochastic process.

DEFINITION. The stochastic process {X(t), t 2 0}

is a NBU stochastic process if T! is a NBU random

variable for 3=0,1,...,M-1.

El-Neweihi et al. [1978] proved NBU closure with respect to
the formation of coherent systems. So, if ¢ is an MCS and
{X,(t), t 2 0}, i=1,2,...,n are independent NBU stochastic
processes, then {¢(X(t)), t 2 0} is a NBU stochastic process.

Hudson [1981] proved IFRA and NBU closure for a general
MCS. His definitions and theorems are modified slightly so
that the random variable T? is the first time the process
goes below state jJ.

DEFINITIONS. T is an IFRA random variable if

(-1/t) log R(t) is increasing in t 2 0. T is an

105

NBU random variable if R(t+x) € R(t)R(x) for all

t20and x 2 0.

DEFINITIONS. The stochastic process {X,(t), t 2 0}
is an IFRA (NBU) process if T/ = inf (t | X,(t) < j}

is an IFRA (NBU) random variable for j=1,2,...,M,.

DEFINITIONS. The stochastic process {$(X(t)),

t 2 0} is an IFRA (NBU) process if T? = inf {t |
¢(X(t)) < j} is an IFRA (NBU) random variable for

j=1,2,...,M.

THEOREM 3.18 Let {X,(t), t =2 0}, i=1,2,...,n be
mutually independent stochastic IFRA (NBU) processes.
If ¢ is a general MCS, then {¢(X(t)), t 2 0} 1is a
stochastic IFRA (NBU) process.

There is one special case when it is simple to prove

that T¢, 3=1,2,...,M, are IFRA (NBU) random variables. Let

T,y be the length of time component i spends in state 3j.

Then T} = Tiw * Tom, * -o0 + Ty ye If Ty Tire.., Ty, are

independent IFRA (NBU) random variables, then T/,

j=1,2,...,M, are IFRA (NBU) random variables because the IFRA
(NBU) class is closed with respect to the convolution of
independent random variables.
3.3.4 Exact System Performance

For the general MCS, the problem changes to finding the

performance distribution of the system, Q,(t), where

106

Qx(t) = Pr(d(X(t)) 2 k], k=1,2,...,M
from each component’s performance distribution, Q,,(t), where
Q;y(t) = Pr(X,(t) 2 j], i=1,2,...,n and j=1,2,...,M,.

In terms of previously defined variables for time, Q,y(t) =

Pr(X,(t) 2 j] = Pr[T,, + T +...+T, 4, >t] =Pr[T] > t].

1.4,

Qio(t) = 100 fOr i=1,2,...,n.

Let q;(t) = (Q; (t),0Q(E),...,Q,, (t)) be the performance

vector for component i and q(t) = (Q,(t),Q,(t),...,Qu(t)) be
the performance vector for the system. If the stochastic
processes {X;(t), t 2 0}, i=1,2,...,n are independent, then
q(t) may be expressed as a function of q,(t), i=1,2,...,n.
E[(¢(X(t))], Pr(¢(X(t)) 2 k], and E[u(d(X(t)))] are measures
of performance that can be defined as functions of q(t) and
therefore, they may also be expressed as a function q;(t),
i=1,2,...,n. The relationship between the system’s measure
of performance and the component performance vectors is given
by the performance function:
r(t) = r(q;(t),q(t),...,q,(t)).

EXAMPLE 3.12 Suppose the T,, j=1,2,3 are mutually

independent exponential variables with A, = .2 and

T,y J=1,2 are mutually independent exponential

variables with A, = .5. Find q(t) and E[¢ (X (t))]

for a system withn=2, M, =3, M, =2, and M = 2

if the lower boundary points to level 1 are L, =

{(2,0), (0,1)} and the lower boundary points to

107

level 2 are L, = {(3,1), (1,2)}.
The distribution of T, + T,, + ... + T,y is the

convolution of (M,-j+1) exponential -distributions
each with parameter A, which is an Erlang
distribution with shape parameter (M;-j+1) and

scale parameter A,. In general, for Erlang (n,A),

n-1

R(t) = Pr[T >t] =1 -F() = ¥ (ltf-)“iﬁp(-kt) .
k=0 H

M-) X -
Therefore, Q,(t) = Y, (A,t) ekX'P(At) .
k=0 .

Q,;(t) = e-°2tl

0,,(t) = e + .2t e™%,

Qll (t) = e‘-zt + -2t e-.z: + (.Zt;i e‘-zt '
Qe(t) = 1.0,
Q3 (t) = e,
Q,(E) = et + .5t e %%,
2 o-.5
Q, (L) = et + .5t e™5t + (.St;' e t’ and

Qp(t) = 1.0.

Using the lower boundary points to level 1,

Q, () = Qpa(t) Qup(t) + Qiolt) Qu(t) - Qp(t) Qxn(t).
Using the lower boundary points to level 2,

Q,(t) = Qua(t) Qu(t) + Qi (t) Qp(t) = Qualt) Qp(t).
From Theorem 3.10, E[¢(X(t))] = Q;(t) + Q,(t).
Table 3.7 summarizes the <calculations for

E[¢(X(t))] and Pr(¢(X(t)) 2 k] at various times.

108

3.3.5 Bounding System Performance

For the dynamic situation, finding the exact performance
distribution of the system from the performance distributions
of the n independent components is a difficult problem. As
in Chapter 2, the closure theorems can be used to develop a

lower bound on system performance.

Table 3.7 System Performance at Various Times.
= SR

{ Random Variable | Time
| I 2 2 3 4

Q3 (t) 1 8187 6703 .5488 .4493
| 0y, (t) | 9825 9384 .8781 .8088
Wﬁ Q,, (t) ? 9989 9921 .9769 .9526
“ Qy0 (t) (1.000 | 1.000 1.000 1.000

Q,3 (t) | 6065 3679 .2231 .1353
| Qs (£) | 9098 7358 .5578 L4060
N 0y (t) | o856 9197 .8088 .6767
| o) § 1.000 | 1.000 1.000 1.000
I f
[priox(t)) 211 [.9997 9951 L9767 .9382
| prioxce)) >2) | 9708 | 8532 .6827 .5084
1.971 | 1.848 1.659 l 1.447

of a coherent system of n mutually independent components.

Generalizing a result from the binary model,

Let r(q(t),q(t), ...

A

known means H,y.

limiting distribution for the IFR class, Q,(t)

+
T M TL,M,_, + ...

L 1

for t < Hyy.

Hudson

[1981)

109

2

,9,(t)) be the performance function

suppose that

+ T,,, have unknown IFR distributions with

Since the exponential distribution is the

was able to develop the lower

exp[-t/H,l

bound on the performance function for a general MCS:

THEOREM 3.19 Let 8,(t) = (Sy,(t),S;(t), ..., 5, (t))

for i=1,2,...,n. Let S;(t) = exp[-t/u,y] for

i=1,2,...,n and 3j=1,2,...,M,. Suppose thatT/

have unknown IFR distributions with known means
Wiy i=1,2,...,n and 3j=1,2,...,M,, then r(t) =
r{q(t),q(t),...,q(t)) 2 r(s,(t),s,(t),...,8,(t))
for t < Min{p,,}.

EXAMPLE 3.13 In the previous example, suppose
that the distributions of T,y and T,; are unknown
but the means are Y, = 5 and Y, = 2. Find a lower
bound for Q,(t), Q,(t), and E[¢(X(t))] given only
that T,y, Jj=1,2,3 and T,, 3Jj=1,2 are mutually
independent IFR random variables.

The distribution of T,, + T,, + ... + T, is IFR

and the convolution of (M,-j+1) distributions.
Therefore, M,; = 5, U, = 10, and y,; =15.

Has = 2, M, = 4, and Uy = 6.

From Theorem 3.19,

05;3(t) 2 e*3, Q,,(t) 2 e, and Q,,(t) 2 e¥/15,
Q,:(t) 2 e™2, Q,(t) 2 e, and Q,, (t) 2 e*/¢,
Using the lower boundary points to level 1,

Q1 (t) > e-t/lO + e-t/6 - e—t/lo e-t/G.

Using the lower boundary points to level 2,

Qz (t) > e-c/S e-t/6 + e—t/15 e—t/4 - e-t/5 e““.

110

From Theorem 3.10, E[¢(X(t))] = Q,(t) + Q,(t) 2

e—.lt + e—.167t - e—.267t + e—.367t + e—.317t - e—.45t.

Table 3.8 shows calculations for lower bounds on

E[¢(X(t))] and Pr(¢(X(t)) 2 k] at various times.

Table 3.8 Bounds on System Performance at Various
Times.

VTVM’ D -

T on) | .s1s7 | 6103 | 5488 | 4403
| Q1 (£) | 0048 .8187 .7408 .6703
% 0y, (t) ; .9355 .8752 .8187 .7659
| Q0 (t) | 1.000 1.000 1.000 1.000
* Q,;3(t) | .6065 .3679 .2231 .1353
‘ Qs (£) | 7788 .6065 .4724 .3679
| Q,, (t) | .8465 .7165 .6065 .5134
L 0ty l 1.000 | 1.000 | 1.000
| Prid(X(t)) 2 1) ; .9854 .9486 .8980 .8396
| Priox(e)) 221]| .7840 .6046 .4604 .3472_|
l 1.769 | 1.553 1.358 1.188

3.4 Boundary Point Conversion

A customer can completely describe a general MCS by

boundary points.

boundary points.

components forces a change in the state of the system.

specifying when a change in the state of any one of the

Some

customers may prefer to relate system and component state

changes in terms of deterioration by specifying the lower

Other customers may wish to describe the

system in terms of state improvement by specifying the upper

In either case, getting the boundary points from the
customer can be a long and tedious process. In fact, no
efficient method has been developed for finding all the
boundary points. To make this process easier, Wood [1985]
developed the concept of multistate block diagrams and Janan
[1985] proposed two algorithms that take advantage of the
modularity of a system. Because of the difficulties involved
with éoliciting boundary points, it is not always reasonable
to obtain both the upper and lower boundary points from the
customer.

The boundary points are essential for calculating the
exact probability distribution using inclusion-exclusion or
pivotal decomposition. For large, complex systems, it is not
always possible to find the exact probability distribution.
In this case, the performance bounds given in section 3.2.5
must be used.

Almost all the performance bounds require both upper and
lower boundary points. Therefore, it would be useful to
develop a procedure to find the upper boundary points from
the lower boundary points and vice versa. The program that
accomplishes this task can be found in Appendix C. It is
based on the following two algorithms. The first algorithm
converts the upper boundary points to level k (U,) to the
lower boundary points to level k+1 (L,,;).

U, to L,,; Conversion Algorithm

1. Set k = 0.

112

2. Stop if k = M. List all upper boundary points
to level k (x € U,).
3. For each x € U,, list the potential lower
boundary points to level k+1l. The potential lower
boundary points to level k+l1 (y) for an upper
boundary point to level k (x € U,) are defined as
all y € S such that y, = x4 + 1 for one i and
¥5=0,1,...,%, V j # 1i.
4. Eliminate from the list any y dominated by
other x € U,. y is dominated by x € U, if y < x.
5. Eliminate from the new list any y' overcome by
y’ where y’ overcomes y' if y! 2 y?’. If y' = ¥y’
then only eliminate one vector from the list.
6. The remaining y on the list are the lower
boundary points to level k+l1.
7. Clear the list, set k = k + 1, and return to
step 2.

A potential lower boundary points to level k+1 cannot have

two x, increased by 1 because of the following theorem.
THEOREM 3.20 If x = (%X,,X,,X3,...,%X,) € Uy, then
x' = (x;+1,%,+1,X3,...,X,) € Ly,.

Proof: Suppose that x’ € L,,;. Then

¢ (x,+1, %5, ...,%X,) < k+l. Since k 1is discrete,
¢(x+1, %5, ...,%X,) S k. Now since x € U,
¢ (x,+1,%,,...,%X) > k. Combining the last two

inequalities results in a contradiction proving

113

that the supposition is false.

Similar theorems could be proven when more than two x; are

increased by 1 or when any number of x, are increased by 2 or

more.

EXAMPLE 3.14 Consider a three-component general
MCS with M=4, M;=3, M,=2, and M;=1. Suppose the
upper boundary points to level 1 are given by the
customer as U, = {(2,0,0), (1,0,1), (0,1,0)}.
Determine the lower boundary points to level 2.

At this point in the algorithm, k=1. The upper
boundary points to level 1 are listed across the
top of Table 3.9. The potential lower boundary
points to level 2 for each x € U, are listed below
each upper boundary point. The potential lower
boundary points dominated by other x € U, are
marked by an asterisk (*). The potential lower
boundary points overcome by other potential lower
boundary points are marked by a check mark ().

Table 3.9 Potential Lower Boundary Points.

200 101 010
300 201 v/ 110 v
210 v 200 * 100 *
110 111 v/ 020
010 * 110 / 011 v/
201 011 001 *
101 * 010 *
001 =
Therefore, L, = ({(3,0,0), (1,1,0), (2,0,1),

(0’1’1)’ (012[0)}0

114

In a similar manner, the second algorithm converts the
lower boundary points to level k (L,) to the upper boundary
points to level k-1 (U,,).

L, to U,, Conversion Algorithm

1. Set k = M.

2. Stop if k = 0. List all lower boundary points

to level k (x € L,).

5. For each x € L,, list the potential upper

boundary points to level k-1. The potential upper

boundary points to level k-1 (z) for a lower
boundary point to level k (x € U,) are defined as

all z € S such thaﬁ zZ, = x;, - 1 for one i and

z25=Xy, X4+l, ..., My V 3§ # i,

4, Eliminate from the list any 2z dominated by

other x € L,. £ is dominated by x € L, if z 2 x.

5. Eliminate from the new list any z' overcome by

z? where 2? overcomes z' if z! € z?. If z! = z?,

then only eliminate one vector from the list.

6. The remaining z on the list are the upper

boundary points to level k-1.

7. Clear the list, set k = k - 1, and return to

step 2.

A potential upper boundary points to level k-1 cannot have
two x, decreased by 1 because of the following theoremn.

THEOREM 3.21 If x = (¥,,X,,X3,...,X,) € L,, then

x' = (XI-I, xz-l’ X3, ¢ s 0y Xn) ﬁ Uk_lo

115

Proof: Suppose that x’ € U,,. Then
¢(x,-1,%,,...,%X,) > k~1. Since k is discrete,
o(x,-1,%,,...,%,) 2 k. Now since x € L,,
O(x,-1,%5,...,%,) < k. Combining the 1last two
inequalities results in a contradiction proving
that the supposition is false.

Similar theorems could be proven when any number of x, are

decreased by 1 or more.
EXAMPLE 3.15 Consider a three-~component general
MCS with M=4, M;=3, M,=2, and M;=1. Suppose the
lower boundary points to level 2 are given by the
customer as L, = {(3,0,0), (1,1,0), (2,0,1),
(0,1,1), (0,2,0)}. Determine the upper boundary
points to level 1.
At this point in the algorithm, k=2. The lower
boundary points to level 2 are listed across the
top of Table 3.10. The potential upper boundary
points to level 1 for each x € L, are listed below
each lower boundary point. The potential upper
boundary points dominated by other x € L, are
marked by an asterisk (*). The potential upper
boundary points overcome by other potential upper
boundary points are marked by a check mark (/).
Therefore, U, = {(2,0,0), (0,1,0), (1,0,1)} which
checks with the upper boundary points to level 1

given in the previous example.

116

Table 3.10 Potential Upper Boundary Points.

300 110 = 200 020 @ 011
200 010 101 / 010 v 001 v
201 * 011 * 111 * 011 ~* 101 v/
210 * 020 * 121 * 110 * 201 *
211 * 021 * 200 /. 111 * 301 *
220 * 100 / 210 * 210 * 010 v
221 * 101 220 * 211 * 020 *
200 / 300 * 310 * 110 *
201 * 310 * 311 * 120 *
300 * 320 * 210 *
301 = 220 *
310 *
320 *

3.4 Summary

This chapter reviewed the structural, stochastic, and
dynamic properties for the multistate model and generalized
the same properties. New definitions were given for a k-out-
of-n structure and for a general MCS in terms of lower and
upper boundary points. Some of the common duality theorems
were proven using the new definitions. Lower and upper
bounds were established for the general multistate structure
function. Counterexamples were found to disprove the general
redundancy theorems for the general multistate case. The
concepts of an alternate representation for ¢(x), structural
importance, and reliability importance were generalized. A
computer program was written to find the exact probability
distribution of the system. A separate computer program was
created to calculate performance bounds for complex systems.
To limit the amount of information needed from the customer,
a third program was developed to determine the upper boundary

points from the lower boundary points and vice versa.

117

4. THE CONTINUOUS MODEL

Chapter 2 discussed the binary mapping ¢:{0,1}"— {0,1}.
Most of the previous work in reliability theory has adopted
this binary model where the system and component states are
restricted to one of two possible values. Chapter 3 explored
two multistate mappings - ¢:{(0,1,...,M}" = {(0,1,...,M} and
¢:{0,1,...,M}" = {0,1,...,M}. These models extended the
framework to allow the system and component states to assume
a finite number of values. The general multistate model
allowed the number of system and component states to be
different. Chapter 4 discusses the recent extension of the
reliability model where the system and component states can
degrade through a continuum of values. The continuous model
was first developed using the mapping ¢: A — [0,o) where A
is some subset of R°, but most articles have focused on
continuum structure functions that map from the unit
hypercube to the unit interval, i.e. ¢: [0,1]" = [0,1]. 1In
this chapter, as was done for the multistate model, the
continuous model is generalized to ¢: [0,M;]1" — [0,M].
4.1 Structural Properties

Structural properties characterize the deterministic
relationship between the state of the system and the states
of the components at a fixed moment in time.
4.1.1 Notation

The following notation is 1listed for the reader’s

convenience in the order of presentation:

118

X e w

¢ (x)

S (k)

x <y
L (k)

U (k)
P,

o

c
(31, %)
& (x, k)
U(x,k)

number of components comprising the system.

a vector of n real numbers.

an arbitrary subset of R°.

a specific subset of R"; the nonnegative orthant.
state of component i; x, € [0,M,].

best state of component i; M, < oo,

state space of component i; € = [0,M,].

component state vector; x = (X;,X,, «..,X,) .
component state space; {x | x, € Q, Vi}.

state of the system; ¢ € [0,M].

best state of the system; M < oo,

state space of the system; Q = [0,M].

structure function; system state for x.

k" equivalence class; {xe€ S | ¢(x) =k}, k€ [0,M].
X, Sy, Viand x;, <y, for at least one 1i.

set of lower boundary points to level k, k € (0,M].
set of upper boundary points to level k, k € [0,M).
j** minimal path set; j=1,2,...,s.

(a,x, ...,0Q) .

the set of component indices; {1,2,...,n}.
(Xl,.¢.,x1_1,j,xi+1,...,Xn), i=1’2,...,n and j e gli'
?(x, k) = {(i,x,) for all x, # 0}.

U(x,k) = {(i,x,) for all x, # M,}.

4.1.2 Introduction

A natural extension of the multistate model allows the

system and component states to be described by a continuous

119

range of states. Although other authors had mentioned the
possibility of continuous structure functions as early as
1978, Block and Savits [1984] were first to devise a model.
Block and Savits defined continuum structure functions on the
nonnegative orthant R.,” and other subsets of R°. They derived
results similar to those found for discrete structure
functions. Subsequent authors (Baxter [1984,1986], Kaleva
[1986], Baxter and Kim [1986], and Montero, Tejada, and Yéafez
{1990]) have concentrated on continuum structure functions
that map from [0,1]" to [0,1]. The continuous model is
generalized to allow the continuous states of the system and
each component to vary over a different range of values.

For a system with n components, the state of the i®"
component is given by the continuous variable x, € [0,M;] for
i=1,2,...,n where M, is the best state of component i. Let
the state space for component i be designated by £,. The
component state vector x = (X,,X,,...,%,) 1is the vector of n
component states and the component state space S = {x | X; €
Q, Vi} is the set of possible component state vectors.

The state of the system is given by the continuous
variable ¢ € [0,M]. Let the state space for the system be
designated by Q. The model assumes that the state of the
system is completely determined by the states of the n
components. The relationship is described by the structure
function ¢ (x), which is abbreviated by ¢: [0,M;]" — [0,M].

For the multistate case, all component state vectors

120

with the same system state were said to belong to the same
equivalence class. A parallel definition can be derived for
a general continuous structure function (general CSF).

DEFINITION. The k'™ equivalence class S(k) of a

general CSF is given by

S(k) = {xe S| ¢(x) =k}, ke {0,M].

There are an infinite number of component state vectors and
most equivalence classes contain an infinite number of
vectors. In addition, there are an infinite number of
equivalence classes. Still, each component state vector can
belong to only one equivalence class.

EXAMPLE 4.1 Determine S(k) for the 2-component

general CSF:

¢(x) = x,x, where x, € [0,2] and x, € [0,3].
S(k) = {xe S| x,x, =k} ke [0,6)]. As shown in
Figure 4.1, S(0) = {x € S | Min{x,,x,} = 0},

S(2) = {xe S| xx, =2}, and S(6) = {(2,3)}.

X,

3 X « S(6)
2.

S(2) —
1..

« S(0)

Y
0 T —>
0 1 2 ®,

Figure 4.1 S(0), S(2), and S(6) for Example 4.1.

121

4.1.3 Special Structures

Montero et al. [1990) defined the concepts of minimal
paths and minimal cuts at level k for a CSF. The definitions
are extended to a general CSF, again using the terms lower
boundary points and upper boundary points to level k. Note
that the continuous model is complicated by problems with
continuity. Specifically, lower boundary points to level k
are only defined when a general CSF is right continuous and
upper boundary points to level k are only defined when a
general CSF is left continuous.

DEFINITION. The general CSF ¢ is right continuous

at y if for each x € S and for each &€ > 0, there

is a 8§ > 0 such that |¢(x) - ¢(y)| < € whenever

y<x<y+d1.

DEFINITION. The general CSF ¢ is left continuous

at y if for each x € S and for each € > 0, there

is a 8 > 0 such that |[¢(x) - ¢(y)| < € whenever

y-081<x«<y.

As with the general MCS, there are no lower boundary
points to level 0 and no upper boundary points to level M.

DEFINITION. If the general CSF ¢(x) is right

continuous, then x is a lower boundary point to

level k if ¢(x) 2 k and y < x implies that ¢(y) <
k, k € (0,M].
Let L(k) designate the set of all lower boundary points to

level k, k € (0,M].

122

DEFINITION. If the general CSF ¢(x) is left
continuous, then x is a upper boundary point to
level k if ¢(x) < k and y > x implies that & (y) >

k, k € [0,M).

Let U(k) designate the set of all upper boundary points to
level k, k € [0,M).

Like the general MCS, the general CSF definitions for
series, parallel, and k-out-of-n structures are based on the
number of lower and upper boundary points to level k.

DEFINITION. ¢ is a series general CSF iff ¢ has

one lower boundary point to level j, j € (0,M] and

n upper boundary points to level j, j € [0,M).

DEFINITION. ¢ is a parallel general CSF iff ¢ has

n lower boundary point to level j, j € (0,M] and

one upper boundary points to level j, j € [0,M).

DEFINITION. ¢ is a k-out-of-n general CSF iff ¢

has (ﬂ lower boundary points to level j, j € (0,M]

and (nid) upper boundary points to level j, j €

[0,M).
Series and parallel systems are special cases of the k-out-
of-n structure. A series system is an n-out-of-n structure
while a parallel system is a l-out-of-n structure.

EXAMPLE 4.2 Suppose that x;, € [(0,1] and x, €

[0,2]. Determine S(k), L(k), and U(k), k € (0,.]

for the 2-component general. CSF:

123

¢ (x) = Max{x,,%x,}.
S(k) = {x € S | Max{x,,%x,} = k} for k € [0,1].
The single upper boundary point to level k is
(k,2k), k € [0,1). The two lower boundary points
to level k are (0,2k) and (k,0), k € (0,1].
Therefore, ¢(x) is a parallel general CSF. S(.5),

L(.5), and U(.5) are shown in Figure 4.2.

X2

'y
2

L(.5) U(.5)
1

S(.5) -
L(.5)

0 >

0 1 X,

Figure 4.2 S(.5), L(.5), and U(.5) for Example 4.2.
EXAMPLE 4.3 Suppose that x, € [0,4] and x, €
(0,8]. Determine S(k), L(k), and U(k), k € [0,2]
and the lower and upper boundary points to level
k for the 2-component general CSF:

¢ (x) = Min{%x,,%x,}.
S(k) = {x € S | Min{%x,,%x,} = k} for k € [0,2].
The single lower boundary point to level k is
(2k,4k), k € (0,2]. The two upper boundary points

to level k are (4,4k) and (2k,8), k € [0,2).

124

Therefore, ¢(x) is a series general CSF. $(1),

L(1), and U(1l) are shown in Figure 4.3.

X,
n
8
u(l)
6 - « S(1)
4 -
L(1) u(1)
2 1
0 T >
0 2 4 X,

Figure 4.3 S(l1), L(1), and U(l) for Example 4.3.
4.1.4 Coherent Structures

The authors who developed the CSF eliminated unrealistic
structure functions by defining coherent systems. As with
the MCS, there is no single definition for a coherent CSF.

Baxter [1984] defined a CSF to be coherent in much the
same was as Barlow and Wu [1978] did for a multistate system.

DEFINITION. A CSF ¢ is coherent iff

i. Q =Q=[0,1] Vi,

ii. ¢(x) is increasing in each x;, and

iii. ¢(x) = Max Min x, where P, is the j3*
4=1,2,...,8 icPj

minimal path set for the system’s binary model.
This definition forces ¢(a) = o for all wa € [0,1]. It is

desirable that ¢(x,) = 0 and ¢(x,) = M, but the model should

125

not restrict the state of the system for specific x € S since
one component may be more important to the customer.

Paralleling the earlier definitions of multistate
coherence by Griffith ({1980], Baxter [1986] developed the
following categories of coherence for a CSF: strictly
coherent, coherent, and weakly coherent. Only the least
restrictive definition for a weakly coherent system is
repeated since it equates to the new component relevancy
condition. Suppose that C = {1,2,...,n} is the set of
component indices and S is the component state space.

DEFINITION. ¢ is weakly coherent iff

i. Q =Q= [0,1] Vi,

ii. ¢(x) is increasing in each x, and

iii. sup [(¢(1,,x) - ¢(0,,x)] >0 for eachieC
2ES

where (Jj,,x) denotes (X,, ..., X; 1y JsKis1reeerXp) .

As a final note, Baxter [1986] also developed a CSF based on
Natvig’s definition of type-2 coherence [1982].

As with the general MCS, there are two aspects of the
previous definitions for coherence that are too restrictive.
First, it is not desirable to restrict the state spaces of
the components and system to the same set. Also, the state
of the system should not be restricted for specific x € S.

There are two aspects of the previous definitions for
coherence that are desired. First, the system should not
improve with the deterioration of a component. Second, the
system should only contain relevant components. The next

126

definition is used for a general coherent CSF:

DEFINITION. ¢ is a general coherent CSF iff

i. Q@ = [(0,M,], i=1,2,...,n,

ii. Q= [0,M],

iii. S(0) and S(M) are not empty,

iv. ¢(x) is increasing, and

v. V component i, there exists an x € L(k) such

that X, # 0 for some k = (0,M] or there exists an

x € U(k) such that x, # M; for some k = (0,M).
4.1.5 Equivalent Coherent Structures

Block and Savits [1984) developed two alternative
representations of the CSF using the binary decomposition
techniques shown in Section 3.1.5. The representations are
expanded to the general CSF. The type of continuity
determines which representation is applicable.

Suppose the customer can specify the set of lower
boundary points to level k, k € (0,M) for a right continuous

general CSF. Define the following two indicator variables:
. 0 if x, < 3
y;:(3) = {1 if x, 2 3
for i=1,2,...,n and j € (0,M,].

(4.1)

0 if ¢(x) <k
¢(Yrk) ={ ¢

1 if d(x) 2k

for k € (0,M].

127

Suppose the set of all lower boundary points to level
k is designated by L(k). If x € L(k), then let
?(x,k) = {(i,x,) for all x, # 0}.

Block and Savits [1984] wrote the structure function as

o(y,k) = Max Min y.(3).
ze L(k) (1,))e®(x, k)

From Equation 4.1, the value of the general CSF is given by

M
¢m)=£ﬂmkmh

A similar decomposition can be used when the customer
can specify the set of upper boundary points to level k, k
€ [0,M) for a left continuous general CSF. Define the

following two indicator variables:
. 0 if x, €3

for i=1,2,...,n and j € [0O,M,).

0 if ¢(x) Sk
1 if ¢(x) > k

¢(y’k) ={ (4.2)

for k € [0,M).
Suppose the set of all upper boundary points to level
k is designated by U(k). If x e U(k), then let

O(x,k) = {(i,x,) for all x, # M}.

128

Block and Savits [1984] wrote the structure function as

¢(y,k) = Min Max yi(3) .
ze U(k) (4,3)e Uz, k)

From Equation 4.2, the value of the general CSF is given by

M
0 (x) = {q: (y, k) dk.

The procedure is demonstrated for the case where there
are a finite number of elements in each L(k) such as the
parallel general CSF given in example 4.2.

EXAMPLE 4.4 Suppose a continuous general CSF with

two mutually independent components is defined by

the customer with the following the sets of lower

boundary points to level k:

L(k) = {(0,2k), (k,0)}, k € (0,1].

Write an equivalent expression for ¢ (x).

@(x, k) = {(2,2k)} and ¥(x?,k) = {(1,k)}.

d(y, k) = Max{y,(2k),y,(k)} and

1
0 (x) = !my,k) dk.

For the specific component state vector x =

(.5,1.6),

y,(3) = {g ig :g ; % for je (0,1]

and

129

¥, (3) ={‘1’ 1£1:853 for3e (0,21

so that y,(2k) 2 y,(k) V k. Thus, ¢(y,k) = y,(2k)

1

.8 ’
and ¢ (x) = [(1) dk + f (0) dk = .8 which checks

.8

with ¢ (x) = Max{.5, %(1.6)} = .8.

The procedure is also demonstrated for the case where
there are an infinite number of elements in L(k) such as the
general CSF given in example 4.1.

EXAMPLE 4.5 Suppose a continuous general CSF with

two mutually independent components is defined by

the customer so that M=6, M;=2, M,=3, and the lower

boundary points to level k are given by:

k

< 6.
< €£r<2}, 0<k <=6

L(k) = {(r,_‘ri) for

Write an equivalent expression for ¢ (x).
The variable r in L(k) can be transformed to range
between 0 and 1 so that for 0 < k £ 6:

s(6-k) +k 3k

3 'S(G"‘k)*'k) for 0 £ s £ 1}

L(k) = {(

s(6-k) +k 3k

= <
9(x, k) {(1,-———3———-),(2,.§T€:ET:KJ, 0 £s <1}

and ¢ (y, k) = Max (y, (2R TK) oy, (I).

6
Therefore, ¢(x) = J ¢(y, k) dk.
For the specific component state vector x =

130

(1.2,.8), Y1(&:§)—+k) =1 if 1.2 2 s(6-k) +k
and Yz(m—?%m) =1if .82 's'TG%TTE Both are

true only when k £ .96 so the structure function

.96 6

o(x) = I (1) dk + ! (0) dk
.96

.96 which checks

with ¢(x) = (1.2) (.8) given in example 4.1.

As shown in example 4.5, even the simplest continuous
structure functions do not lend themselves well to alternate
representations. The infinite number of boundary points to
level k makes a general equation for ¢ (y,k) unlikely and the
integral representation of ¢ (x) ineffective.

4.1.6 Dual Structure Function

Block and Savits [1984] discussed the concept of the

dual structure function for the continuum structure function

¢(x) = Max Min x, where P, is the j*" minimal path set for
i=1,2,...,8 1ie€P,

the system’s binary model. The notion of the dual is
extended for the general CSF.
DEFINITION. Let ¢ be a structure function of a general

CSF. The dual structure function ¢° is defined by

¢D (8) =M - ¢ (Ml"xl,Mz-X2, e e ey Mn-X“)
= M = ¢(xM - x) .
The relationship between the primal and dual general CSF can

be interpreted in the following manner. Let the primal

131

components be in state x, and the dual components be in state
X" =M - x,. Then the primal system is in state k when the
dual system is in state M - k.
The following theorems are identical to those given in
section 3.1.6 and the proofs require only trivial changes.
TEEOREM 4.1 1If the primal is a general CSF, then the
dual is also a general CSF.
THEOREM 4.2 x is a lower boundary point to level k for
the general CSF ¢ iff (x, - x) is an upper boundary
point to level (M - k) for the dual general CSF ¢°.
THREOREM 4.3 The dual of a k-out-of-n general CSF is an
(n-k+1) -out-of-n general CSF,
COROLLARY 4.1 The dual of a series general CSF of n
components is a parallel general CSF of n components.
COROLLARY 4.2 The dual of a parallel general CSF of n
components is a series general CSF of n components.
THEOREM 4.4 The dual of the dual is the primal.
EXAMPLE 4.6 Write the dual structure function
¢°(x) for the series structure function given in
example 4.3.
o(x) = Min{%xl,ugz} with x, € (0,4], %, € [0,8] and
k € [0,2]. Therefore,
°(x) =2 - d(xy - x) =2 - ¢(4-%,,8-X%,)
X, 8-x
= 2 - Min{_zl.,_z_z}

which is a parallel structure function with

132

sup (¢((M),,x) -¢(0,x)] > 0.

components can be

where the relevance condition holds.

L (k) {(0,4k), (2k,0)} for k € (0,2] and

U (k)

{(2k,4k)} for k € [0,2).

4.1.7 Structural Importance

For the general CSF, component i is relevant if

relevant for the continuous model.

EXAMPLIE 4.7 In example 2.1, it was shown that
component 2 is irrelevant for the binary structure
o(x) =1 - (1-%;) (1-x,%,).

Show that component 2 is relevant for ¢ (x) defined

as a general CSF with x,, x,, and ¢ € (0,1].
Since ¢(.5,1) = .75 and ¢(.5,0) = .5, component 2

is relevant.

The system 1is coherent if, among other conditions,

components are relevant.

It is interesting to note that

irrelevant for the binary model but

all

In Chapter 3, the structural importance of component i

1

I, (i) =
¢ II Mﬂﬂi[m)

jui

v = {1 S RPE0L -4 001 >

N(x) dx where

0 otherwise.

133

was defined as the proportion of the component state vectors
Extending to the

general CSF, structural importance for component i is given

4.1.8 Modules and Modular Decomposition
Definitions for modules and modular decomposition were
given by Baxter and Kim [1986] for ¢:[0,1)" = [0,1]). The
definitions can be extended for the general CSF.
DEFINITION - Suppose (C,¢) is a general CSF where C is
the set of components. Suppose that A < C. Let A’
denote the subset of C complementary to A. The general
CSF (A,Y)) is a module of (C,¢) if
o(x) = 6(x*x¥) = yly(x?),x*]
for all x € S. Y is a CSF called the organizing
structure.
DEFINITION - A modular decomposition of a general CSF
(C,9) is a set {(A;, %), (B X2)srow-r (By,%))} of general
CSFs along with the organizing structure ¥ such that
i. {A,,A,,...,A,} is a partition of C and

ii. O(x) = YIx (x™), Xo(xP), ..., Xx(x™)] for all x € S.

As in the binary and multistate case, modular decomposition
provides a method of breaking up a complex system into
several more manageable problems. The smaller problems are
solved and the organizing structure is used to combine the
results.
4.2 Stochastic Properties

Up to this point, only the deterministic properties of
the general CSF have been discussed. Next, the stocﬂastic
properties of the general CSF are explored.
4.2.1 Notation

134

The following notation is 1listed for the reader’s

convenience in the order of presentation:

n number of components.

X, random variable for the state of component i.

X, fixed state of component i; x, € Q.

X random component state vector; X = (X;,X;,...,X,).
x fixed component state vector; X = (X;,Xy,...,Xp) .
¢ (X) random variable for the state of the system.

(1] fixed state of the system; ¢ = ¢(x).

Q (k) Pr{¢(X) 2 k], k € [0,M].

Q, (3) Pr(X, 2 j}, i=1,2,...,n and j € [0,M,].

Q(k-) Pr[é(X) > k], k € [0,M].
Q,(3-) Pr(X, > 3}, i=1,2,...,n and j € [0O,M].
4.2.2 The Performance Function

For a system of n components, let X; denote the random
state of component i and X, denote a specific state of
component 1i. The random and specific states for all
components are summarized in the random component state
vector X = (X,;,X;, ...,X,) and the fixed component state vector
X = (X;,X,,...,%). Let ¢(X) be the random system state and
¢(x) or ¢ be a fixed system state.

For the general CSF, the problem is to find the
performance distribution of the system, Q(k), where

Q(k) = Pr(¢(X) 2 k], k € [0,M]

given every component’s performance distribution, Q,(3J),

where

135

Q(3) = Pr(X, 2 Jj), i=1,2,...,n and j € [0,M,].
If the random variables X,, i=1,...,n are mutually
independent, then Q(k) may be expressed as a function of
Q;(j) . Because of problems with continuity, the performance
distributions must often be written as strict inequalities

Q(k-) = Pr(¢(X) > k], k € [0,M]

and

Q;(j-) = Pr(X, > j), i=1,2,...,n and j € [0,M,].
4.2.3 Exact Performance Distribution

The infinite number of boundary points to 1level k
impedes the techniques used in Chapter 3 to find the exact
performance distribution of the system (i.e. enumeration,
inclusion-exclusion, and pivotal decomposition). For some
cases Q(k) can be found directly by integration. The
following example comes from Montero et al. [1990]:

EXAMPLE 4.8 Suppose a general CSF is defined by

o (x) = xx,
with mutually independent variables X, and X, -~

Uniform [0,1]. Find Q(k).

41 1
Q(k) = Prié(x) 2 k] = {f 1 dx, dx, =[(- X ax,
k 1

x

1 -k 1n |1] - k + k 1n |k]|

1-k+klnk ke (0,1]
1 k=0 .

4.2.4 System Performance Bounds

The system performance bounds depend on the substitute

136

characteristic for reliability used by the customer. Most
authors have developed bounds for Pr(¢(X) 2 k].

Performance bounds can be constructed for independent
and associated random variables. Of course, the bounds are
more explicit if the random variables are independent. The
next five sections generalize some bounds on Pr[¢(X) 2 k]
derived by other authors.
4.2.4.1 Trivial Bounds

The trivial bounds for a right continuous general CSF
are based on a single lower boundary point to level k.

THEOREM 4.5 Suppose ¢(x) is a right continuous CSF.

Let ¥ = (Yy,/Y2s,---,Y,) € L(k), k&€ (0,M]. Then

n

II Q,(yy) S Q(k) S 1 - I[(1 - Q,(y,)).
»] =]

Proof: The proof is similar to Theorem 3.14.
The trivial bounds for a left continuous general CSF are
based on a single upper boundary point to level k.
THEOREM 4.6 Suppose ¢(x) is a left continuous CSF.
Let ¥ = (Yi/¥Y2s+---+Y,) € U(k), X € [0,M). Then

n n

}'[0,(yy) £0(k) <1 - I[(1 -Q(y)).
-] =1

Proof: The proof is similar to Theorem 3.14.
4.2.4.2 Path/Cut Bounds

Block and Savits [1984] developed the Path/Cut Bounds

for the structure function ¢:{0,1]" = [0,1]. The bounds can

137

be extended to the general CSF.
THEOREM 4.7 Let ¢ be a continuous general CSF with
associated components. Then for all but a countable

number of Xk,

II Pr[

x& U(k)

{Xi>j}] < 0(k) = Q(k-) < Pr[q {XiZj}]
x€ L(k) U, Ne

(4,) € U(x, k) (x, k)

for k = (0,M].

The lower bound comes from the upper boundary points while
the upper bound comes from the lower boundary points.

When the components are independent, the bounds can be
explicitly derived from the performance distributions of the
components.

THEOREM 4.8 Let ¢ be a general CSF with independent

components. Then for all but a countable number of k,

Q,(jJ-) £Q(k) =Q(k-) Q, (3)
erU!k) (i.j)g(x.k) ! xeLLIk) (i,j)g(x,k) !

for k = (0,M].
4.2.4.3 Min/Max Bounds

The Min/Max Bounds for ¢:[0,1]1" — [0,1] were developad
by Block and Savits [1984] so that the lower bound comes from
the lower boundary points while the upper bound comes from
the upper boundary points. Generalizing,

THEOREM 4.9 Let ¢ be a continuous general CSF. Then

the following bounds always hold for k € (0,M]:

138

sup Pr[rl {xizj}]s Q(k) and
{1, 3) e R(x, k)

z€ L(k)

Q(k-) € inf Pr

[(X,>3 }].
xe U(k) {1, 3) € U(x, k)

If the components are associated, then

8u Q,(3){ SQ(k) and
xGL(?t) {(1,))11(2,10 £ }

Q(k-) € inf Q, (3 }.
x€ U(k) {(1,3)];—!(:,1() ¢ }

4.2.4.4 Combining Bounds

A combination of the bounds in Theorems 4.8 and 4.9 is
appropriate for mutually'independent components. Let ¢ be
a general CSF with mutually independent components. Combined
Bounds use the maximum lower bound and minimum upper bound
found with Theorems 4.8 and 4.9.
4.2.4.5 Improved Path/Cut Bounds

Baxter and Kim [1986) showed that the Path/Cut Bounds
can be improved with modular decomposition for the continuous
model. To do this, Path/Cut Bounds are determined for each
module. These bounds are then used to determine Path/Cut
Bounds for the system. Baxter and Kim [1986] proved that the
new bounds were always tighter than the Path/Cut Bounds found
directly from the entire system.
4.2.4.6 General Bounds

Montero et al. [1990] developed general bounds without

the need for ¢(x) to be continuous. These bounds are more

139

effective for the case when there are an infinite number of
boundary points to level k.
THEOREM 4.9 Let ¢(x) be a general CSF. Then

1 - Priy|ysr] € Q(k) £ Prly|y2q]

where the vectors r = (r,r;...,r,) and q =

(31,9, ..+,9,) are given by

r, = sup x, and gq, = inf x, Vi,
x€U (k) x€L(k) '

4.3 Dynamic Properties

In the last two sections, the structural and stochastic
properties of the general CSF were examined at a fixed moment
in time. The next step is to consider dynamic models, where
the component and system states vary with time.
4.3.1 Notation

The following notation is 1listed for the reader’s

convenience in the order of presentation:

t fixed time; t 2 0.

X, (t) state of component i at time t, i=1,2,...,n.

X(t) vector of random component states at time t;
X(t) = (X (t),X,(t),...,X,(t)).

¢ (X(t)) random system state at time t.
Tk time for system state to reach or go below state k;

T" = inf {t | ¢(X(t)) < k}.

T] time for state of component i to reach or go below

state j; T¢ = inf {t | X,(t) < 3F}.

140

Q. (t) performance distribution of the system; Q,(t) =
Pr(¢(X(t)) 2 k], k=1,2,...,M.
Qi4(t) performance distribution for component i; Qg (t) =
Q,y(t) = Pr(Xx,(t) 2 jl, i=1,2,...,n and j=1,2,...,M,.

4.3.2 Distribution Representations

Let {X;(t), t 2 0} for i=1,2,...,n be the decreasing and
right continuous stochastic process representing the state
of component i at time t, where t ranges over the nonnegative
real numbers. The components and associated stochastic
processes are assumed to be mutually independent. Let the
vector of random component states at time t be designated by
X(t) = (X, (t),X,(t),..., X, (t)). Let {$(X(t)), t 2 0} denote
the decreasing and right continuous stochastic process that
represents the system state at time t.
4.3.3 Distribution Classes and Closure

Baxter [1984] discussed a dynamic stochastic model for
the first-passage-time distribution which is defined as the
first time a stochastic process enters the set of "bad"
states from the set of "good" states. The first-passage-time
distributions for the system and the components are given by

T = inf {t | ¢(X(t)) £ k} and

T = inf {t | X,(t) £ j}, respectively.

Baxter [1984] used theorems given by Ross [1979] to
prove IFRA and NBU closure with respect to the formation of

coherent systems. That is, if {X,(t), t 2 0}, i=1,2,...,n

141

are increasing independent IFRA/NBU processes, then {¢ (X(t)),
t 2 0} is also an IFRA/NBU process whenever ¢ is decreasing.
4.3.4 Exact System Performance

For the CSF, the problem is to find the performance
distribution of the system given by

Q. (t) = Pri¢(X(t)) 2 k] = Pr[T* 2 k] for k= [0,M]

from each component’s performance distribution given by

0,,(t) = PriX,(t) 2 3] = Pr(T? > t], i=1,2,...,n and 3=[0,M,].

Although this formation works well for the multistate case,
an infinite number of distributions must be specified for the
continuous case. Attempts to bound system performance result
in similar difficulties. Thus, the integration technique
demonstrated in Example 4.8 provides a more desirable method
for calculating the exact system performance.
4.4 Summary

This chapter reviewed the structural, stochastic, and
dynamic properties for the continuous model and extended the
same properties to the general CSF. New definitions were
given for k-out-of-n structures. Component relevance was
defined in terms of lower and upper boundary points. An
alternate representation for ¢ (x) was generalized along with
many other structural and stochastic properties. Although
the theory was sound, the continuous model resulted in an
infinite number of boundary points. This severely limited

the practical applications of the continuous model.

142

5. CUSTOMER-DRIVEN MULTISTATE RELIABILITY MODEL

Binary reliability models were developed for their
mathematical simplicity. Unfortunately, they are a gross
oversimplification of reality for most systems. Continuous
reliability models represent reality better, but the amount
of computations renders the model ineffective except for the
most simple structures. As a compromise, most systems should
be analyzed with discrete multistate models.

To support this choice, an example is presented where
a customer could make a better decision by using the discrete
multistate model. Suppose the customer must choose between

two systems with the probability distributions given in Table

5.1. For System A, E[¢(X)] = 2.06, Var[¢(X)] = 0.7164, and
the system’s performance distribution isgq = (.91,.9,.2,.05).
For System B, E[¢(X)] = 3.24, Var([¢(X)] = 1.5424, and the

performance distribution is @ = (.99,.8,.75,.7). The choice
between the two systems is not clear and will depend on how
the customer weighs the different performance measures.
Next, suppose that the same two system state probability
distributions are condensed into a binary model where system

states 0 through 1 are considered "bad" and states 2 through

4 are considered "good" (Table 5.2). For System A, E[¢(X)]
= Pr(¢(X) 2 1] = .9 and Var[(¢(X)] = .09. For System B,
E[¢(X)] = .8 and Var[¢(X)] = .16. The binary model deludes

the customer by removing the customer’s ambivalence for the

two systems.

143

Table 5.1 System State Probability
Distributions fo:itwo Systems.

Pr(¢ (X) = k]

System State j
W,,,,}k)ﬁﬁﬂwﬁ,h System B

t

Of course, the same argument can be used to promote the
continuous model over the multistate model. For example,
suppose a general CSF is defined by ¢(x) = x;X, with mutually
independent corhponents whose states are defined by the random

variables X, and X, ~ Uniform[0,3]. Then

3 3 3
A) 1 1 "
Q{k) Pri¢(x) 2 k]) ‘[.gdxz dx, .g_[(3 ?1.) dx,
-+ -
" k. k4 k
_ 1 _gln3 .9.+.9.ln.3. ke (0,9]
1 k=0.
9
E[¢(X)] = {Q(k) dk = 2.25 and var[¢(X)] = 3.9375.

144

A logical multistate model to condense the continuous model
is shown in Table 5.3 with P,y = Pr(X; = j] = .25 for i=1,2
and j=0,1,2,3. When summarized in this way, the multistate
model results in E[¢(X)] = 2.25, Var[¢(X)] = 7.1875, and q
= (.5625,.5,.375,.25,.1875,.1875, .0625,.0625,.0625). Thus,
some of the characteristics of the continuous system are lost
when the multistate model is used to represent the continuous

system.

Table 5.3 ¢(x) for the Multistate Model.

X,
0 1 2 3
0 0 0 0 0
X, 1 0 1 2 3
2 ¢ 2 4 6
3 0 3 6 9

In theory, the continuous model is the best choice for
representing a continuous system; however, the continuous
model is not a viable option. When the structure function
is known explicitly (which is usually not the case), the
integration becomes unmanageable for all but the most trivial
structures. When the structure function is known implicitly,
an infinite number of boundary points are needed to describe
the system, to find the exact performance distribution, or
to derive system performance bounds. For these reasons, the
remainder of this chapter is dedicated to the development and

evaluation of the multistate model.

145

A useful model serves some practical end. The purpose
of the customer-driven multistate reliability model is to
evaluate substitute characteristics for reliability that
allow the customer to distinguish between systems. Since the
customer uses the output of the modei to make a decision, the
model must be generated from the viewpoint of the customer.
Otherwise, the model will not supply the information that the
customer needs to make a choice.

Generating the model from the viewpoint of the customer
means involving the customer at every step in the development
and evaluation of the model. The following sections of this
chapter provide a detailed discussion of how the customer
participates in:

1. Defining the number of system and component states,

2. Estimating the component state probabilities,

3. Defining the systen,

4, Estimating the system state probabilities, and

5. Determining the substitute characteristics for

reliability.
5.1 Defining the Number of System and Component States

Defining the number of system and component states is
referred to as state classification. The customer must
determine which performance measure will be used for state
classification. Once this is done, the procedure for state
classification depends on whether the selected performance

measure 1is discrete or continuous.

146

5.1.1 Discrete State Classification

State classification for a discrete performance measure
is straightforward. The discrete realizations of the chosen
performance measure are enumerated for the customer. Next,
the customer assigns a state to every realization according
to the level of detail needed for him to make a decision.
The number of distinct states specified by the customer
provides the state classification used 'in the multistate
model. The following example demonstrates this technique for
two different customers,

EXAMPLE 5.1 A fighter squadron consists of twenty

F-16 aircraft. Each aircraft can perform in three

roles: air-to-air, air-to-ground, and intercept.

Give two unique state classifications for a single

aircraft using the same performance measure.

Suppose the commander of the squadron chooses the

number of roles each aircraft currently supports

as his performance measure. The realizations of

the performance measure are 0, 1, 2, and 3 roles.

One commander could ask for the maximum amount of

detail, requiring four unique states for the

number of roles supported. A second commander

might only be interested in determining whether or

not an aircraft is capable of all three roles. 1In

this case, only two states are required to make

the distinction.

147

5.1.2 Continuous State Classification

State classification of a continuous performance measure
is slightly more complex. The range of possible values for
the chosen performance measure is shown to the customer. The
customer divides the continuous range into several distinct

regions as illustrated in Figure 5.1.

¢ State 0 @ | « State 1 5 & State M —

Y: Y2 Yu Y

Figure 5.1 State Classification.

Let X represent the discrete state and Y represent the
continuous performance measure. State 0 is assigned to X at
the lowest value of Y. Y is increased until the customer
reaches a threshold where a state change is desired (y;).
State 1 is assigned to X above y,. Y is increased further
until another threshold is found (y,), no new discrete states
are desired, or the continuous performance measure reaches
its target value. The procedure is summarized with the

fnllowing transformation:

0 1if - <Y<y,
1 if y, <Y<y,

M if y, <Y <oo,

148

The procedure can be discussed more technically if the
customer determines the thresholds between discrete states
(Yir¥Y2s -+ +,¥Yy) through an economic analysis. This can be done
by comparing the cost of various countermeasures to the cost
associated with any deviation from the target value of the
continuous performance measure.

As shown in Figure 5.2, suppose that the continuous
performance measure, Y, has a target value designated by y’
and any value less than y' results in some loss to the
customer given by

L(y) = k (y' - y)2.
Suppose the customer has two countermeasures, costing L, and
L,, that return the performance measure to y . The customer

will not execute the first countermeasure until Y results in

L
a loss of at least L,, that is until y, Sy* - 1%. The

customer will not take advantage of the second countermeasure

L .
until y, Sy* - lj(i Assuming that L, < L,, then y, < y,.

L(Y) fe« State 0 & State 1 &« State 2 —

L

L,

Y1 Y2 y' Y

Figure 5.2 State Classification With Loss Function.

149

Two countermeasures divide the continuous performance
measure into three distinct states and provide an economic
means to model how the customer determines the thresholds
between the discrete states (v,;,y.). More countermeasures
result in more discrete states. The following example
demonstrates this technique for a car battery that can be
recharged or replaced.

EXAMPLE 5.2 Suppose the performance measure for

a car battery is the voltage and the target value

is 12 volts. Let L(y) = 10 (12 - y)2. The two

countermeasures are to recharge the battery for

$10 or to replace the battery for $40. Divide the

continuous performance measure into three states.

L, = 40 and y, < 12"\:}% = 10.
L, = 10 and y, S 12-\%_8 =11.

This gives the following three discrete states:

0 if 0s=Y<=<10
X=41 if 10<Y¥Y =1l
2 if 11 <Ys12.

N IA

At times, the customer may use more than one performance
measure to determine the discrete state. In this case, an
effort must be made to convert the performance measures to
some common measure. Again, this is often accomplished

through economic analysis.

150

5.2 Estimating Component State Probabilities

Component state probabilities can be estimated by
selecting a distribution for the time spent in each state and
estimating the parameter(s) for the distribution. The
desired system lifetime, t°, must beAgiven by the customer.

Let T,; be a random variable representing the time
component i stays in state j, i=1,2,...,n and j=1,2,...,M,.
Let t* be the desired system lifetime provided by the
customer. Let X,(t) be the %andom state of component i at
time t. Define the probabilify that component i is in state
j or higher at time t as

Qi3(t) = PriX,(t) 2 31 = Pr[T,, +T,, + ...+ T, > tl.
Note that Qo(t) = 1.0 and Q, ., (t) = 0.0.

Suppose that the distribution of T,; is exponential with
parameter A, and that Ty, Ty, ..., T,, are mutually independent
V i. Then the distribution of T, +T,, + ...+ T, 1is the
convolucion of (M;-j+1) exponential distributions each with

parameter A, which is an Erlang diztribution with shape

parameter (M;-j+1) and scale parameter A,. For Erlang (M,A),

n-1
R(t) = Pr(T > t] = 1 - F(t) (At)* Sxp (- -At) therefore,

k=0

M.‘1 e\ K —~ L 4
Qiy(t™) = E (A7) e;(f)(AtD) . The probability of component

k=0

i being in state j at time t’ can be found from

Pij‘t.) = Pr[xi(t.) = j] = Qij(t') - Qi,j+1 (t')

151

for i=1,2,...,n and j=0,1,...,M,. Note that the parameter A,
must be estimated for every component.

The same procedure can be used whenever the distribution
of the convolution 1is known. For example, if T, -~

n,
Erlang (Myy,A,), then T,, +T,, + ...+ T, ~ Erlang() m,,A)
=

and if T,, ~ Normal(W,,,Gl;), then T,, + T,, + ... + T, ~

M, M,
Normal(; uij,g;ofj) . Additional steps must be taken for the
normal case since the left-hand tail probabilities allow the
random variable for time to be negative. When the specific
distribution of the convolution is unknown, the form and
parameter (s) can be estimated by simulation.

Returning to the exponential case, the parameter A, can
be estimated by adapting a technique discussed by Kapur and
Lamberson [1977] for counting failures over a time interval.
Their technique was based on the situation with n test stands
where items are replaced as they fail and the test is stopped
at a predetermined time. Again, assume the distribution of
T,, is exponential with parameter A, for every 3j=1,2,...,M,.
When a component changes state, it can be replaced with a new
component at its best state or the test can be continued with
the degraded component.

Kapur and Lamberson [1977] derived the maximum
likelihood estimator for A. Their methodology is modified

to derive the maximum likelihood estimator for A,. Suppose

152

that n identical multistate components in state M; are placed
on test. The test is stopped at a prespecified time t~.
When a component degrades from state M, to state M,-1, it
could be replaced with another component at its best state.
Since it was assumed that T,, are independent and identically
distributed for every j=1,2,...,M;, the degraded component is
left in place to await a state change from M,-1 to M;-2. The
multistate component is replaced by a new component only when
the worst state is reached. Suppose that there are n test
stands designated by i=1,2,...,n. Let X, be the number of
state changes on the i*" test stand and Y be the total number

of state changes observed during the test time t*. Then

n

Y=Y x.

i=]

If X, is distributed as a Poisson with parameter A;t", then
Y is also Poisson with parameter nA,t’. Assuming a constant
number of state changes Y = r, the likelihood function for
the distribution of Y can be written as

(nA,t°)* exp(-nAt*)
r!

L(A,) =

so that

lnL =rln (nAt®) - nAt® - 1ln (r!).

To find the value of A, where 1ln L is a maximum,

153

dlnlL r
57— -nt* =0
i 1

so that 11=.;§1. As expected, the estimate of A, is the

number of state changes divided by the product of the number
of multistate components placed on test and the prespecified
test time.

A similar derivation can be done for the case where n
multistate components are placed on test that is stopped
after a prespecified number of state changes. In general,
the estimate of the parameter A, is given by the number of
state changes divided by the total time on test.

5.3 Defining the System

The equivalence class S, was defined as the set of x €
S such that ¢(x) = k, k=0,1,...,M. The boundary between S,
and S,,, was defined by either the lower boundary points to
level k + 1 or the upper boundary points to level k. Recall
that the boundary points completely specify the system and
that they are defined by the customer.

For simple systems, the customer might be able to
provide all the required boundary points through a few
uncomplicated statements. For example, suppose the customer
wishes to model the four tires of an automobile and he
provides the following statements:

1. The system has four tires (components) with either

high tread wear (component state 0), moderate tread

154

wear (component state 1), or low tread wear (component
state 2).
2. The system state is worst (system state 0) if any
of the tires has high tread wear (component state 0).
3. Otherwise, the system state is the number of tires
(system states 0, 1, 2, 3 or 4) with low tread wear
(component state 2).

From this limited amount of information, the lower and upper

boundary points can be generated as shown in Table 5.4:

Table 5 4 Lower and Upper Boundary Points.

4
Equlvalence Lower Boundary Upper Boundary
Class Points Points

5 ‘ _ 1111 0222 2022
| 0 | 2202 2220
| 0222 2022 2202
s, i1z 1lzl 1z 2220 1112 1121
‘ 1211 2111
|
| 0222 2022 2202
5 | 1122 1212 1221 2220 1122 1212
2] 2112 2121 2211 1221 2112 2121
| 2211
s | 2221 2212 2122 2221 2212 2122
3 1222 1222
Sy 2222 -

The lower (upper) boundary points are found by determining
when a decrease (increase) in the state of any one of the
components forces a decrease (increase) in the state of the
gystem. In practice, finding all boundary points can be a
very time consuming process.

The following algorithm was developed to help find the

155

lower boundary points. The idea is to find a single lower
boundary point to level M and to use the fact that all other
lower boundary points to level M must be efficient (not less
than or greater than) with respect to that point. Of course,
generating all efficient points (Algorithm Steps 3 and 6) is
difficult for any large problem. However, the customer’s
interpretation of the system may allow the efficient points
to be found quickly. The method continues by finding a
single lower boundary point to level M-1 and stops after the
lower boundary points to level 1 have been found.
Algorithm for Finding Lower Boundary Points
1. Begin with the perfect component state vector, x, =
(M;,M,,...,M)). By Theorem 3.1, x4, € Sy. So there must
be at least one lower boundary point to level M.
2. Find a lower boundary point to level M:
a. Check if x, is a lower boundary point.
b. If not, decrease the states of the components
in x. until a lower boundary point is found.
¢c. Label the lower boundary point to level M, L.
3. All other lower boundary points to level M must be
efficient with respect to l,,. Decrease the states of
some of the components in L,, and determine the minimal
increases in the states of the other components to

return the system to state M, Label these lower

boundary points consecutively, Ly, Lyss...,L,, where s,

is the number of lower boundary points to level M.

156

4, Set k = M - 1. The existence of at least one lower
boundary point to level k is gquaranteed by the
definition of a general MCS.
5. Find a lower boundary point to level k:
a. Check if a lower boundary point from a higher
level is also a lower boundary point to level k.
b. If not, decrease the states of the components
in one of the lower boundary points to level k+1
until a lower boundary point to level k is found.
c. Label the lower boundary point to level k, L,.
6. All other lower boundary points to level k must be
efficient with respect to L,,. Decrease the states of
some of the components in L,; and determine the minimal
increases in the states of the other components to
return the system to state k. Label these 1lower

boundary points consecutively, Ly, Ly, ..., Ly, where s,

is the number of lower boundary points to level k.
7. Stop if k = 1, Otherwise, set k = k-1 and return
to step 5.
A similar algorithm was developed to help find the upper
boundary points. Generating all efficient points (Algorithm
Steps 3 and 6) requires most of the calculations.
Algorithm for Finding Upper Boundary Points
1. Begin with the worst component state vector, %, =
(0,0,...,0). By Theorem 3.1, x, € S,. So there must be
at least one upper boundary point to level 0.

157

2., Find an upper boundary point to level 0:

a. Check if x, is an upper boundary point.

b. If not, increase the states of the components

in x;, until an upper boundary point is found.

c. Label the upper boundafy point to level 0, U.
3. All other upper boundary points to level 0 must be
efficient with respect to U,. 1Increase the states of
some of the components in U, and determine the minimal
decreases in the states of the other components to
return the system to state 0. Label these upper

boundary points consecutively, Ug,, Loss « « s Lg,;, Where s,

is the number of upper boundary points to level 0.

4. Set k = 1. The existence of at least one upper

boundary point to 1level k 1is guaranteed by the

definition of a general MCS.

5. Find an upper boundary point to level k:
a. Check if an upper boundary point from a lower
level is also an upper boundary point to level k.
b. If not, increase the states of the components
in one of the upper boundary points to level k-1
until an upper boundary point to level k is found.
c. Label the upper boundary point to level k, U,.

6. All other upper boundary points to level k must be

efficient with respect to U,;. Increase the states of

some of the components in U,, and determine the minimal

decreases in the states of the other components to

158

return the system to state k. Label these upper

boundary points consecutively, Ug,, Ug, ..., U, where t,

is the number of upper boundary points to level k.

7. Stop if k = M., Otherwise, set k = k+1 and return

to step 5.

Once generated, the lower or upper boundary points can
be used to form a structure function that is equivalent to
the structure function implicitly used by the customer to
define the system. Block and Savits [1982] generated the
structure function by decomposing the multistate system into
several binary structures, one for each level of the system.
The binary structures for level k are based on the lower or
upper boundary points to level k. Their technique was
expanded for the general MCS in section 3.1.5 and was
implemented in the computer program found in Appendix A.

The customer should not have to provide both the lower
and upper boundary points. With this in mind, the FORTRAN
computer program in Appendix C was written to convert the
lower boundary point to level k to upper boundary points to
level k-1, k=1,2,...,M and vice versa. If both sets of
boundary points are provided, the same program can be used
to make sure that no boundary points were missed. The amount
of calculations required for the conversion 1limits the
usefulness of the program for large problems.

5.4 Estimating System State Probabilities

Enumeration, inclusion-exclusion, pivoting, and modular

159

decomposition are four techniques commonly used to estimate
the system state probabilities. These techniques are studied
in section 3.2.4. The computer program given in Appendix A
implements the first three techniques directly and the fourth
technique indirectly. It has beeﬁ tested for moderately
large problems of about 10 components, each with 4 states.

For larger problems, two options are available. If the
customer can decompose the problem into smaller problems with
an organizing structure, then one of the three techniques can
be used on each subproblem and on the organizing structure.
However, for multistate systems, modular decomposition
requires a system with some physical interpretation. This
is because functional block diagrams and fault trees cannot
be used as an aid for decomposition.

The second option for larger problems is to use the
performance bounds given in section 3.2.5. The bounds were
implemented by the FORTRAN program listed in Appendix B.
5.5 Determining Substitute Characteristics for Reliability

For binary models, reliability was defined as the
probability that the system functions. For multistate
models, there are different degrees of functioning so a new
measure of system performance is required. El-Neweihi et al.
(1978] suggested E[¢(X)] or the expected system state.
Butler [1979] promoted Pr[¢(X) =2 k], especially when the
customer was willing to divide system states into two

categories (2 k or < k). Griffith [1980) used E[u(¢(X))] or

160

the expected utility of the system state.

Each of these definitions provides a measure of the
performance for multistate systems. However, it is the
customer that evaluates the system performance, so it must
be the customer that indicates the most appropriate
definition. If the customer wants to measure the center and
spread of the distribution, then E[¢(X)] and Var[¢(X)] seem
appropriate. If the customer can separate the system’s
probability distribution into "good" and "bad" states, then
Pr(¢(X) 2 k] works well. If the customer wants to evaluate
efficient performance distributions, then E[u(¢(X))] allows
the customer to weigh the different possibilities.

The second objective of this research is to develop a
new substitute characteristic for multistate reliability
based on the expected loss to the customer. The new measure
should be sensitive to the pattern of degradation about a
desired system lifetime t°. In other words, the measure
should be a function of the number state reductions as well
as the time of each state change relative to t'.

To lend some credibility to this approach, the binary
model is discussed from this perspective. Suppose that T is
a random variable for the time to failure of the system. Let

the binary loss function be given by

161

Then the expected loss is

.
@ =E[L(T)] = J-L(t)f(t)dt =[(l)f(t)dt =1 -R(tY).
all t

Therefore, for the binary model and the given loss function,
minimizing the expected loss is equivalent to maximizing the
reliability at the desired system lifetime.

For the multistate model, suppose that T, are mutually
independent random variables for the time the system spends
in state k, k=1,2,...,M. Let the loss function with a fixed
rate of increase be given by the following:

ifg,>t°

0
1 if t+t,, >t t, St°
2

L (tll tz, LRy 'tM, = if tM+tM‘1+tM-2 > t ., tM+tM‘1 -<- t *

M if t+t, +...+t, St° .

Using Theorem 3.10 twice, the expected loss is
e = E[L(T1IT2I°"ITM)]

Pr(L(Ty,Tys+eerTy) 2 1] + Pr{L(T,, Ty, e-.,Ty) 2 2] + ...

+ Pr(L(Ty, Ty eeerTy) 2 M]

{1 - Pr{L(T;,Tyy+e-sTy) SO)} + {1 =~ Pr[L(Ty,Tp...,Ty) <11}

+ PP + {1 “Pr[L(Tlsz,...,TM) SM—].]}

)

{1 - Prd(X(t")) 2 M]} + {1 - Pri¢(X(t")) 2 M-1]} +

+ {1 - Pri¢(X(t")) 2 11}

]

M = Qu(t’) = Qual(th) - ... = Q(t")

=M - E[¢(X(t))].

162

Note that for M =1, @ =1 ~ Q,(t") 1 - R(t") as was shown
for the binary model.
Next, consider the following loss function with a faster
rate of increase:
0 ift,>t°
12 if t+t,, > t%t, <t°
Lty tyeeoty) =922 iF t,+t, +t,, > t°, L+, St°

M2 if ttt,+...+t, SE° .

By conditional expectation, the expected loss is

2 = E[L(TIITZI"’ITM)]

M
Y EIL(T), Toree.r T | O(X(E)) = k] * Prld(X(t)) = k]

k=0

M
Y M-k)? - Prié(X(t)) = k]

k=0

M M
Mzz; Pri¢(X(t’)) = k] - 2MY k Pri¢(X(t")) = k]
k=

k=0

M
+ §k2 Pri¢(X(t’)) = k]

= M (1) - 2M E[¢(X(t"))] + {E[O(X(t"))]}? + Var[d(X(t"))].

Note that for M =1, € =1 - 2R(t") + {R(t")}? + R(t") {1-R(t")}

n

1 - R(t") as was shown for the binary model.
If the system states are assigned arbitrarily, then all
substitute characteristics should be calculated with respect

to the chosen performance measure. Suppose the loss function

is given by L(y) c(y’” - y)? where y' is a target value and

y are discrete thresholds separating a continuous performance

163

measure. By conditional expectation, the expected loss is

@ = E[L(T,, Ty ee,Ty)

E(L(T,, Ty --,Ty) | Y =yl
ally

; cly'-y)? + Pr(Y = y]
ally

c {(y" Y Priy=yl -2y'Y vy

ally ally

= ¢ {(y)?3(1) - 2y' E[Y] + {E[Y]}

Pr(Y = vyl

Pr(Y =y] +Y y®Pr[Y¥ = y]}
all y

2 + var([Y]}.

For this case, the expected loss includes both the mean and

variance within a single performance measure.

The final 1loss function

provides a new substitute

characteristic for reliability sensitive to the pattern of

degradation about a lifetime specified by the customer. It

assigns different weights to each state decrease. Suppose

that T, are mutually independen
time spent in system state Kk,

function be given by

0

cylt*-t?
M M

L(t,,t,, ...ty =1 2 cj(t.-zti)z

JaM-] i=)

M M
Y -y e

L I=1 i=4

where ¢, is the cost for leaving

unit of time . Let P, (t") = Pr[¢

t random variables for the

k=1,2,...,M. Let the loss

ift,>t*
if ty+t,, >t t, <t

1f tytty *ty, > €% T+t S t°

if tytty *+...+t, S t°

system state k per squared

(X(t")) = k]. Assuming that

T, ~ exp(A) k=1,2,...,M, then from the convolution formulas

164

developed in section 5.2,

(At)M exp (-At*) Kk

P (t*) =

il
o

1- i‘pk(t') k

k=]l

By conditicnal expectation, the expected loss is

4

E[L(Ty, TaseesTw)]

M=

E[L(T), Tos---rTw) | O(X(t")) = k] = Py(t")

x

[=)

M M M
=y EFE cy (-3 1,20 (Xt ") =k]Pk(t')
i=3

ks0 [jekel

1=k i=kel

M
STt Y TiSt':IPk(t‘)

M
Y .t Y T,< t']}Pk(t‘).
i=)

M
Using the fact that Y T, ~ Erlang (M-j+1,A), the expected
=3

loss can be determined using the computer program listed in
Appendix D. The user inputs t°, M, A, and ¢, for k=1,...,M.
The program determines the theoretical expected loss and
checks the result by simulation.

If the customer chooses to use s =ral conflicting
substitute characteristics for reliakility, then the problem

becomes a discrete multiobjective optimization problem. Many

165

techniques already exist for finding the best compromise
solution through interaction with the customer.
5.6 Summary

This chapter promoted the multistate model over both the
binary and continuous model. It emphasized the customer’s
role in the development and evaluate of the multistate model.
The credibility and usefulness of the model are increased by

involving the customer at every step.

166

6. APPLICATIONS

This chapter demonstrates the development and evaluation
of the general multistate model for several problems. The
examples were chosen from such diverse areas as production
and assembly, military battle planning, and wearout analysis
to demonstrate the versatility and flexibility of the general
multistate model.
6.1 Production and Assembly Process

Suppose that the multistate model is used for the wire
flowshop shown in Figure 6.1 where a cable is created from
the following raw materials: red wire, blue wire, copper,
and plastic. The red wire is purchased bare and is covered
with plastic on coating machine 1. Next, the red and blue
wires are intertwined on one of two braiding machines. The
process has redundancy at this point since a single braider
causes production to backup. At the same time, copper bars
are worked to form a copper grounding wire on the expanding

machine. Next, the copper wire is covered with plastic on

Braider 1: ~
Red & Blue Wire| ~
Coater 1: ,
Red Wire/Plastic| ~ Coater 3:
Braider 2: - Red, Blue, and
Red & Blue Wire| — | Copper Wire/
Plastic
Expander: - |Coater 2: ’,
Copper — |Copper Wire/Plastic| -

Figure 6.1. Process Flow Diagram.

167

coating machine 2. During the final assembly, the braided
wires and the coated copper wire are covered with plastic on
coating machine 3 to form the desired cable.

The wire flowshop operates under the Just-In-Time
philosophy where the proper amount of raw materials are
delivered by each supplier every hour. The wire flowshop has
been designed so that if 100% of the raw materials needed for
an hour of production are delivered and if all machines
operate at an ideal production rate, then the system will
produce 100% of the desired amount of cable. Any deviation
in the hourly delivery of raw materials or in the production
efficiehcy of the expander or coaters will decrease the
flowshop’s hourly output of cable. The only machines with
excess production capacity are the two braiders.

There are several measures commonly used to describe the
production rate of a system. Throughput is defined as the
number of complete assemblies that can be generated in a
fixed period of time. Average flow time is the average
length of time from the arrival of raw materials to the
completion of the finished product. Bottleneck flow rate is
the production rate at the system’s bottleneck. Another
measure is the instantaneous production potential which is
a function of the percentage of raw materials delivered and
the production efficiency of the machines. The multistate
model will be used to evaluate the instantane:.us production

potential for the system.

168

Step 1: Define the Number of System and Component States.

Suppose that the wire flowshop operates in a cycle where
the four suppliers deliver raw materials to the plant every
hour. However, the suppliers do not consistently deliver the
entire amount of raw materials required for an hour of work.
For accounting purposes, the suppliers have agreed to adhere
to one of the following three options:

1. Deliver 100% of the materials for 1 hour of work,

2. Deliver 50% of the materials for 1 hour of work, or

3. Make no delivery.

This is an example that requires the state classification of
a discrete performance measure. As defined in Table 6.1, let
the variables x,, i=1,2,3,4 represent the percentage of red
wire, blue wire, copper, and plastic delivered for 1 hour of
work. The maximum number of states possible is 3 (M;=2). If
the customer chooses to use the greatest amount of detail,
then the component states for the raw materials should be
described as shown in Table 6.2.

In addition, the machines do not always operate at peak
efficiency. The production rate of each machine continuously
degrades. Suppose that the customer does not want to model
the production rate as a continuous random variable. This
is an example that requires the state classification of a
continuous performance measure. Let the customer’s quadratic
loss function be given by L(y) = $160(l-y)? where y is a

percentage of the ideal production rate.

169

Table 6.1 Production Component Definitions.

i Variable | Definition
e — , k

Percentage of Red Wire Delivered

Percentage of Blue Wire Delivered

Percentage of Copper Delivered

Percentage of Plastic Delivered

Coater 1 Percentage of Ideal Prod. Rate

Coater 2 Percentage of Ideal Prod. Rate

Coater 3 Percentage of Ideal Prod. Rate

Braider 1 Percentage of Ideal Prod. Rate

Braider 2 Percentage of Ideal Prod. Rate

Expander Percentage of Ideal Prod. Rate

Table 6.2 Component States and Descriptions.

!
| variable | state] Description
0

None of Order Delivered

50% of Order Delivered
100% of Order Delivered

r
|
!
' 2 SVRSTRITRY

0% of Ideal Production Rate

|
|
|
|

75% of Ideal Production Rate

1
2
0
1 | 50% of Ideal Production Rate
2
3

!
;;_4*__,._‘._,‘.__ poresad g seme—

|
|
i SR TR STRITRITR ST

100% of Ideal Production Rate

Assume that the three countermeasures for restoring a
machine to the ideal production rate cost $10, $40, and $160.
The customer will never choose the $10 countermeasure until
y = .75 because L(y) < 10 for .75 <y £1.0. Therefore, the
customer makes no distinction for production rates in the
range (.75,1.00]. Likewise, the customer will not choose the

170

$40 countermeasure until y = .5 because L(y) < 40 for .5 <
y S 1.0. The $160 countermeasure is not implemented until
y = 0.0. In summary, 4 states (M,=3) are needed to describe
production rates in the following ranges: [0.0,0.0],
(0.0,.50], (.50,.75), and (.75,1.0]. As defined in Table
6.1, the variables x;, x4, X5, Xg X4, and x,, denote the
states of the three coaters, the two braiders, and the
expander, respectively. Table 6.2 gives the state
classification for each machine’s percentage of the ideal
production rate.

The purpose of the model is to measure the distribution
for the instantaneous production potential of the systemn.
Now that the number of states are known for each of the
components, the largest number of system states can be found.
The system production réte will be affected by both the
percentage of raw materials delivered and the percentage of
the ideal production rate for each machine. The system can
only assume the states shown in Table 6.3 given the component

states listed in Table 6.2.

Table 6.3 System States and Descriptions.

Description

75% of Ideal Production Potential
100% of Ideal Production Potential

171

Step 2: Estimate Component. State Probabilities.

It is fairly simple to see how the component state
probabilities for x,, i=1,2,3,4 can be estimated from
previous experience with the suppliers. Data should be
collected on the percentage of the order received each hour
from each supplier. Suppose that this technique results in
the component state probabilities which are summarized in

Table 6.4.

The component state probabilities for x,, i=5,6,7,8,9,10
can be estimated with the convolution technique introduced
in section 5.2. Let T, be a random variable representing
the time component i stays in state 3j, i=5,6,7,8,9,10 and
j=1,2,3. Suppose that T,,, i=5,6,7 and j=1,2,3 are mutually
independent exponential variables with A, = .1. The

172

distribution of T,, + T,, + ... + T,y is the convolution of

(M;-j+1) exponential distributions each with parameter A,
which is an Erlang distribution with shape parameter (M;-j+1)

and scale parameter A,. In general, for Erlang (n,A),

-1

=

1 - F(t) = (At)* exp(—?»t) .

R(t) = Pr[T > t]

&% 13
Therefore, Q,y(t) = m: (it)*exp(lt). For i=5,6,7
=
Q;3(1) = e = ,9048,
Q0i2(1) = et + .1 e! = .,9953,
0,(1) = et + .1 et + l;i%;E;i = ,9998, and
Qio(1) = 1.0. Thus, the component state probabilities are

Pio(l) = Qu(1l) = Q4 (1) = .0002, P;;{(1) = Q,(1) - Q4 (1) =
.0045, Py, (1) = Q4(1) - Q43(1) = .0905, and Pi3(1) = Q,3(1) -
Q4 (1) = .9048.

Suppose that T,y, i=8,9 and 3Jj=1,2,3 are mutually
independent exponential variables with A, = .8. Using the
same procedure, the component state probabilities are P, (1)
= .0474, P;;(1) = .1438, Py,(1) = .3595, and P;3(1) = .4493.

Suppose that Ty, 1i=10 and 3j=1,2,3 are ﬁutually
independent exponential variables with A, = .2. Using the
same procedure, the component state probabilities are P, (1)
= .0011, P,; (1) = .0164, P,,(1) = .1638, and P,;(1l) = .8187.
Each of the component state probability distributions are

listed in Table 6.4.

173

Step 3: Define the System.

The customer can define the system by specifying which
component state vectors belong to each equivalence class.
This system has 3* - 4% = 331,776 different component state
vectors. Fortunately, it is not necessary to determine the
equivalence class for every x € S. The customer only needs
to specify when a decrease (increase) in the state of any one
of the n components forces a decrease (increase) in the state
of the system. For this specific problem, the customer needs
to specify when a decrease in the percentage of raw materials
delivered or in the percentage of the ideal production rates
of the machines forces a decrease in the production potential
of the system.

Suppose the customer states that any decrease in the
percentage of raw materials delivered causes a corresponding
decrease in the system’s production potential. Also, assume
that the customer states that any decrease in the percentage
of the ideal production rate of the coaters or the enlarger
causes a corresponding decrease in the system’s production
potential. Finally, suppose that the customer considers the
parallel operation of the two braiders to be additive. For
example, a 50% proauction rate on both braiders satisfies a
100% production potential for the system as will a 100%
production rate on a single braider.

Beginning with system state 3 and the perfect component

state vector, x, = (2,2,2,2,3,3,3,3,3,3). To be consistent,

174

the customer will say that x, is not a lower boundary point
to level 3 since x; (Braider 1) and x, (Braider 2) can be
decreased without leaving system state 3. The customer has
implied that only x; and x, can be changed without leaving
system state 3. Since the customer considers the percentage
of the production rates of the braiders to be additive, the
lower boundary points to level 3 are (2,2,2,2,3,3,3,3,0,3),
2,2,2,2,3,3,3,0,3,3), and (2,2,2,2,3,3,3,1,1,3).

The procedure is similar for the lower boundary points
to level 2. Start by looking for the lowest possible states
for the variables =x,,X,,X;, %4, X5, X¢,%X,, and x,, so that the
system is in state 2. From the customer’s interpretation of
the system, each of the variables must be in state 2. Any
further decrease in these variables results in a decrease in
the production potential of the system. Again, using the
customer’s additive sense of the variables x, and X,, the
lower boundary points to level 2 are (2,2,2,2,2,2,2,2,0,2),
(2,2,2,2,2,2,2,0,2,2), and (2,2,2,2,2,2,2,1,1,2). Similar
logic gives the following lower boundary points to level 1:
(1,1,1,1,1,1,1,1,0,1), and (,1,1,1,1,1,1,0,1,1). The upper
boundary points to level k can also be determined in this
manner. All the lower boundary points and the upper boundary
points to level k are given in Table 6.5. Note that the
entire system of 331,776 component state vectors is
summarized with just 8 lower boundary points and 29 upper

boundary points!

175

Table 6.5 Lower and Upper Boundary Points.

Lower Boundary
Points

Upper Boundary
Points

0222333333
2022333333
2202333333
2220333333
2222033333
2222303333
2222330333
2222333003
2222333330

1222333333
2122333333
2212333333
2221333333
2222133333
2222313333
2222331333
2222333103
2222333013
2222333331

1222333333
2122333333
2212333333

None

1111111101
1111111011

2222222202
2222222022
2222222112

2221333333
2222233333
2222323333

2222332333
2222333203
2222333023
2222333332

2222333303
2222333033
2222333113

o

None

Step 4: Estimate System State Probabilities.
The FORTRAN program called MAIN in Appendix A implements

several techniques for calculating the exact probability
distribution of a general MCS. It includes routines for

enumeration, inclusion-exclusion, and pivotal decomposition

176

using either the lower or the upper boundary points. Each
technique requires the following information from the
customer to completely describe the system:
1. The customer’s determination of the number of
distinctive system and component states,
2. The probability distribution of each component, and
3. The customer’s definition of the system in terms of
either the lower or the upper boundary points.
This information was collected in the previous three steps.
The program outputs the exact probability distribution of the
system. For the production and assembly process, the program

produced the results given in Table 6.6.

Table 6.6 System State Probabilities.

Pri¢ (X)) = k]
.043191
.130323
.327007
.499479

Step 5: Determine Substitute Characteristics for Reliabilitvy.

The final step is to evaluate substitute characteristics
for reliability that summarize the system state probabilities
for the customer. Evaluating the expected system state
results in E[¢(X)] = 2.282774. Does this mean that we can
interpolate to find an expected production potential for the
system of .282774(1.0-.75)+.75 = .8207? The answer is no!
Making the calculation directly, the expected production

177

potential is (.130323) (.5) + (.327007) (.75) + (.499479) (1)
= .8099. Thus, it makes no sense to evaluate E[¢(X)] and
Var[¢ (X)] because of the arbitrary way the system states were
defined (i.e. no system state was used for a 25% production
potential because it was not possible).

One solution is to redefine the system states from 0 to
4 so that E[¢(X)] = 3.239597 and interpolation gives the
proper expected production potential of .239597(1.0-.75)+.75
= ,.8099. A better approach is to evaluate the substitute
characteristics directly in terms of the customer’s real
variable of interest. In the case of the production and
assembly process, the substitute characteristics are computed
in terms of Y, the random variable for the instantaneous
production potential of the system. The customer may choose
to use one or several of the performance measures listed in

Table 6.7 for evaluating the production process.

Table 6.7 Substitute Characteristics.

Calculated Value
Characteristic

E(Y] 0.809896
| var[Y] 0.060070
| erix > .5 0.956809
I priv > .75 0.826486
Priy 2 1.0] 0.499479
E[L(Y)] $153.94

The calculations for each substitute characteristic are

obvious with the exception of the expected loss, which

178

requires the customer’s loss firction due to variation from
the system’s ideal production rate. Let L(y)=5$1600(1-y)?

where y is a percentage of the ideal production rate. Then

the expected loss @ = E[L(Y)] = rf L(y) f(y) dy. A discrete
ally

approximation of f(y) is given in Table 6.6. Therefore, ¢
= 0(.499479) + 100(.327007) + 400(.130323) + 1600(.043191)
= $153.94 every hour. Since the loss function is quadratic,
E[L(Y)] = $16000[1 - 2p, + p 2 + 0,°] = $16000[1 -2(.809896)
+ (.809896)% + .060070] = $153.94 which agrees with the
previous approximation for expected loss.
6.2 Military Battlie Planning

Suppose the Army wishes to evaluate the "reliability"
of a battle plan. The plan includes two attack groups, each
supported by a separate artillery unit. Each attack group
has the p.tential for accomplishing up to 2 out of 4 mission
objectives without effective artillery support. With
effective artillery support, the potential of each attack
group 1is doubled so that a single attack group can now
accomplish all 4 mission objectives. Suppose that the 4
mission objectives can be assigned to any attack group. The
goal of the multistate model is to evaluate how effectively
the battle groups accomplish the mission objectives.

Step 1: Define the Number of System and Component States.

Let the variables x, and x, represent the effectiveness

of the artillery support for attack groups 1 and 2,

179

respectively. From the description, it is only necessary to
distinguish between two levels of artillery support:
effective and not effective. Let the variables x, and x,
represent the number of objectives accomplished by attack
groups 1 and 2, respectively. From the description, each
attack group can accomplish 0, 1, or 2 mission objectives
without artillery support. Using the largest number of

states, Xx,, X,, X;, and x, are defined in Tables 6.8 and 6.9.

Table 6.8 Battle Plan Component Definitions.

i __—‘_.—#

| variaple | Definition

e .
| X, ; Artillery Effectiveness for Attack Group 1

1 X, i Artillery Effectiveness for Attack Group 2

‘ X3 i Objectives Accomplished by Attack Group 1
k,,gawfigwm_hL Objectives Accomplished by Attack Group 2

Artillery Not Effective

X1, X, . .
Artillery Effective

No Objectives Accomplished

One Objective Accomplished

Two Objectlves Accomplished

The model will estimate the probability distribution for
the number of mission objectives accomplished by the two
attack groups. It is possible to accomplish 0, 1, 2 , 3, or
4 mission objectives which are the system states important

to the Army (Table 6.10).

180

‘?ap;g 6{10 System States and Descriptions.

No Objectives Accomplished

One Objective Accomplished

Two Objectives Accomplished

Three Objectives Accomplished

Four Objectives Accomplished

Step 2: Fstimate Component State Probabilities.

After the distinct states are defined by the Army, the
probability distributions of the artillery units and the
attack groups must be estimated. Suppose that Table 6.11
contains estimates derived from training exercises performed

by each artillery unit and each attack group.

Table 6.11 Component State Probabilities.

Variable E
ﬁ_~—wﬂi
X,
| .8 -
| 89 1
.8 .15

Step 3: Define the System.
The battle plan example has 22 + 32 = 36 different

component state vectors. The problem size was intentionally
restricted so that the entire component state space could be
separated into equivalence classes for the reader as shown

in Table 6.12.

181

It is not necessary to determine the equivalence class
for every component state vector. As shown before, the
customer must only specify when a decrease in the state of
any one of the n components forces a decrease in the state
of the system. For this problem, the Army must specify when
a decrease in the combat effectiveness of the artillery units
or in the number of objectives accomplished by the attack
groups forces a decrease in the total number of objectives
accomplished.

Using the algorithm found in section 5.3, start with M
= 2 and the perfect component state vector, x, = (1,1,2,2).
From the Army’s description, x, is not a lower boundary point
to level 4 since x, and %, (artillery unit 2 and attack group
2) can be removed from the battle without leaving system
state 4. However, this change results in x! = (1,0,2,0)
which is a lower boundary point to levels 3 and 4 since

$(0,0,2,0) = 2 and ¢(1,0,1,0) = 2. The symmetric nature of

182

this problem implies that x* = (0,1,0,2) is also a lower
boundary point to levels 3 and 4. All other lower boundary
points to level 4 must be efficient with respect to x! and
x?. The analysis continues by arbitrarily choosing x!.

The next step is to systematically decrease the states
of some of the compornents in x! and to determine the minimai
increases in the states of the other components to return the
system to state 4. For example, if x, is decreased to state
0 in x!, then two different options will return the system to
state 4 in a minimal fashion: x} = (0,0,2,2) and x' =
(0,1,2,1). Both vectors are lower boundary points to level
4. The symmetric nature of this problem implies that x° =
(1,0,1,2) is also a lower boundary point.

Continuing with x!, if x, is decreased to state 1, then
two different options return the system to state 4: x° =
(1,1,1,1) and x* = (1,0,1,2). x°* is new a lower boundary
points to level 4 and x' was found earlier. At this point,
the decrease of more than one of the components in x' needs
to be explored as well as decreasing the components by more
than one state. The remaining details of this procedure are
left to the reader.

Similar logic gives the lower boundary points to levels
3, 2, and 1 as well as the upper boundary points to levels
3, 2, 1, and 0. All the lower and upper boundary points to
level k are listed in Table 6.13. Either set of boundary

points are enough to completely describe the system.

183

| Lower Boundary Upper Boundary

= 1100
1100 1001 0110

1110 1101 1002
0120 0011

1110 1101 1011
1002 0120 0111
0021 0012

Once the 1lower boundary points have been found, an
alternate representation of the customer’s structure function

can be written. Using the formulas found in section 3.1.5:

o' (y) = Max{ya, Yal,
02 (y) = Max{ys, YnYar Yizr YaYar YuYals
O3 (y) = Max{ysnYer Y3:Ya1r Y21Ya2r Y21¥31Ya1r Y11¥351Yarr Yu¥a2ls

' (y) = Max{¥iYi2r YarYazr Y21¥3:¥a1r Yu¥anYe2r Ynu¥sr Yu¥Ya¥aYal,
and ¢(x) = ¢'(y) + ¢ (y) + ¢*(y) + ¢*(y).

Suppose x = (0,1,2,0). Then ¥y = (Y11, Y21rYa1s ¥Y32r Ya1s Ya2) =
(0,1,1,1,0,0). Therefore, ¢'(y)=1, ¢2(y)=1, ¢*(y)=0, ¢*(y)=0,
and ¢(x) = 2. This agrees with the value given in Table
6.12. It can also be quickly verified that the derived
structure function is equivalent to the supposedly unknown

structure function implicitly being used by the Army:

¢ (x) =Min{ 4, x,2" + x,2"} .

184

As a final check, the boundary point conversion program
found in Appendix C was run to verify that all lower and
upper boundary points were found. The lower boundary points
to level k generated the upper boundary points to level k-1
for k=1,2,3 and vice versa. Therefore, none of the boundary
points were missed.

Step 4: Estimate System State Probabilities.

For the battle plan example, the information from Tables
6.9, 6.10, 6.11, and 6.13 was supplied to the FORTRAN program
in Appendix A. The enumeration, inclusion-exclusion, and
pivotal decomposition techniques were exercised with both the
upper and lower boundary points. The program always produced
the probability distribution for the system which is listed
in Table 6.14. Note that the program results would have been

inconsistent if some of the boundary points had been missed.

0.00050
0.01495
0.08207
0.28337

0.61911

Step 5: Determine Substitute Characteristics for Reliability.

Each of the substitute characteristics for "reliability"”
provides a measure of the effectiveness of the attack plan.

Since the systems states correspond directly to the number

185

of objectives accomplished, the system performance can be
measured in terms of either the system state, ¢(X), or the
number of mission objectives accomplished, Y.

The Army can use any or all of the performance measures
listed in Table 6.15 for evaluating the effectiveness of the
battle plan. The center and spread of the distribution is
indicated by E[¢(X)] = 3.50564 and Var([¢(X)] = 0.50981. The
Army should attempt to increase E[¢(X)] while decreasing
Var{¢(X)]). If the Army can label the accomplishment of 2 or
more objectives as "good", then Pr[¢(X) 2 2] = 0.98455 is an
appropriate measure of system performance. The Army should
attempt to increase this probability. Finally, the Army will

strive to minimize E[L(¢(X))].

Table 6.15 Substitute Characteristics.

1 s — . = : -
i Substitute Characteristic |

E[¢(X)] = E[Y]

3.50564

Var[¢(X)] = var [Y] 0.50981
Pr(¢(X) 2 1] = Pr[Y 2 1] 0.99950
Pr(¢(X) 2 2] = Pr[Y 2 2] 0.98455
Pri¢(X) 2 3] = Pr[Y 2 3] 0.90248
Pr(¢(X) 2 4] = Pr(Y 2 4] 0.61911

$5322.60

G S EILMI

The calculations for each substitute characteristic are
obvious with the exception of the expected loss. Suppose
that the Army’s discrete loss function due to any deviation

from accomplishing all 4 objectives is

186

r$200,000 ify=0
$50,000 if y=1
L(y) =4 $20,000 if y=2
$10,000 if y=3

$0 ify=4

where y is the number of objectives accomplished. Then the

4

expected loss @ = E[L(Y)] = Y L(y) p(y) where p(y) is the
y=0

probability mass function given in Table 6.14. Therefore,
9 =0(.61911) + 10000(.28337) + 20000(.08207) + 50000(.01495)
+ 200000(.0005) = $5322.60.
6.3 Tire Tread Wear
Suppose the manufacturer of a car tire wishes to
evaluate the wear of two newly developed tires: brand X and
brand Y. Each brand of tire is mounted on the right-front,
left-front, right-rear, and left-rear positions of identical
test vehicles. All tires start with 8/32" of tread. The
test vehicles are driven on a track and the amount of tread
left on each tire is recorded to the nearest 1/32" at the end
of a 60,000 mile test. The multistate model will be used to
compare the wear of the two brands of tire.
Step 1: Define the Number of System and Component States.
Let the variables x,, X,, X,;, and x, represent the tread

left on the right-~front, left-front, right-rear, and left-

187

rear tires, respectively. Since the data was collected to
the nearest 1/32", it is possible to use 9 states for each
variable. The manufacturer does not recommend driving on
tires unless more than 2/32" of tread remains. They also
decide that a breakdown of tread wear into 2 additional equal
categories will be sufficient to compare the two brands.
These choices produce the definitions and descriptions for

X,, X,, X3, and x, given in Tables 6.16 and 6.17.

Table 6.16 Tire Tread Wear Component Definitions.

% Variable 3 Definition

b $o et e ———————

Tread Remaining on Right-Front Tire

Tread Remaining on Left-Front Tire-

Tread Remaining on Right-Rear Tire

X4 Tread Remaining on Left-Rear Tire

Table 6.17 Component States and Descriptions.

High Tread Wear
0/32" - 2/32" Tread Remains

Moderate Tread Wear
3/32" - 5/32" Tread Remains

Low Tread Wear
6/32" - 8/32" Tread Remains

The manufacturer insists that the car is in the worst
state (system state 0) if any of the tires has high tread
wear (component state 0). Otherwise, the manufacturer wants
to distinguish between various system states according to the
number of tires with low tread wear (component state 2). The

last condition will require an additional 5 system states,

188

producing the six system states shown in Table 6.18.

Table 6.18 System States and Descriptions.

Description

Any Tire With High Tread Wear

No Tires With Low Tread Wear and
No Tires With High Tread Wear
(All Tires With Moderate Tread Wear)

One Tire With Low Tread Wear and
No Tires With High Tread Wear

Two Tires With Low Tread Wear and
No Tires With High Tread Wear

Three Tires With Low Tread Wear and
No Tires With High Tread Wear

Four Tires With Low Tread Wear and
No Tires With High Tread Wear

Step 2: Estimate Component State Probabilities.

The probability distribution of every component must be

estimated for each brand. As in the first example, this can

be done with the convolution technique. This procedure will

not be demonstrated again. Suppose that the component state

probabilities for brand X and brand Y were estimated and are

given in Tables 6.19 and 6.20.

Table 6.19 Brand X Component State Probabilities.

State
Variable
0 1 2
X, .03 .87 .1
| X, .06 .89 .05
E X3 .01 .94 .05
X, .03 .88 .09

189

Table 6.20 Brand Y Component State Probabilities.

Variable

Ste : Defin he System.

The tire tread wear example has 3! = 81 component state
vectors. It is not necessary to determine the equivalence
class for every x € S. The manufacturer need only say when
a decrease in the state of a tire forces a decrease in the
number of tires with low tread wear. Since this is how the
manufacturer defined the system states, each x in the k®"
equivalence class will be both a lower boundary point and an
upper boundary point to level k.

Using the algorithm for finding all lower boundary
points, the highest system state is M = 5 and the perfect
component state vector is x, = (2,2,2,2). x, is a lower
boundary point to level 5. So L;; = (2,2,2,2). No other
lower boundary points to level 5 can exist since no other
component state vectors are efficient with respect to x,.

Start searching for the lower boundary points to level
4 by decreasing the states of the components of Ls; until a
lower boundary point is found. Reducing x; by one in L

results in the first lower boundary point to level 4, L, =

190

(1,2,2,2). Using the notion that the other lower boundary
points to level 4 must be efficient with respect to L,; gives
L, = (2,1,2,2), L,; = (2,2,1,2), and L, = (2,2,2,1).

Next, search for lower bounda:y points to level 3 by
decreasing the states of the components of L,; until a lower
boundary point is found. Reducing x, by one in L,, results
in the first 1lower boundary point to 1level 3, L;; =
(1,1,2,2). Using the notion that the other lower boundary
points to level 3 must be efficient with respect to Lj
results in L,, = (1,2,1,2), L;y; = (1,2,2,1), Ly = (2,1,1,2),
Lys = (2,1,2,1), and Ly = (2,2,1,1).

The first lower boundary point to level 2 is found by

reducing x; by one in L; so that L,, = (1,1,1,2). The
remaining efficient points are L,, = (1,1,2,1), L, =
(1,2,1,1), and L,, = (2,1,1,1). Reducing x, by one in L,

results in the only lower boundary point to level 1, L;; =
(1,1,1,1). The algorithm ends since lower boundary points
are not defined for level 0. Similar logic gives the upper
boundary points to levels 0, 1, 2, 3, and 4. All lower and
upper boundary points are listed in Table 6.21.

The boundary point conversion program in Appendix C was
used to make sure that no boundary points were missed. The
lower boundary points to level k generated the upper boundary
points to 1level k-1, k=1,2,...,M and the upper boundary
points to level k generated the lower boundary points to

level k+1, k=0, 1,0.-'M_1.

191

Table 6.21 Lower and Upper Boundary Points.

|

é Lower Boundary Upper Boundary
‘ i Points Points

0222 2022 2202

2220
0222 2022 2202
1111 2220 1111

0222 2022 2202

1112 1121 1211 2220 1112 1121

2111 1211 2111
0222 2022 2202
1122 1212 1221 2220 1122 1212
2112 2121 2211 1221 2112 2121
2211
2221 2212 2122 2221 2212 2122

1222

Step 4: Estimate System State Probabilities.

For the tire wear example, the information collected for

brand X and brand Y was supplied to the FORTRAN program in
Appendix A. Each technique in the program gave the system

state probabilities listed in Table 6.22.

Brand Y

.124398 .211302
1 .640501 .520931
2 .209179 .228274
3 .024660 .036832
4 .001239 .002593
5 .000023 .Ogggﬁz“__~

192

Step 5: Determine Substitute Characteristics for Reliability.

The manufacturer can use any or all of the performance
measures listed in Table 6.23 for evaluating the wear of the

two brands of tires. Neither brand is superior with respect

- Calculated Value 1

Substitute

Characteristic = ——
f [oronax [oraar |
E[¢(X)] | 1.137910 1.098683
var (¢ (X)] 0.424717 0.601575 |
Prio(X) 2 1] 0.875602 0.788697 |
Pri¢(x) 2 2] 0.235101 0.267766 ﬂ
Pri¢(X) 2 3] 0.025922 0.039492
Pri¢(X) 2 4] 0.001262 0.002660
Pri¢(X) 2 5] 0.000023 0.000067
E(L(6(X))] _ $153.36 | $148.85

to every performance measure: Brand X has a higher expected

system state and lower variability; Brand Y has a better

performance distribution for all but Pr(¢(X) 2 1]. The

calculation of expected loss requires the specification of

the manufacturer’s 1loss function. Suppose that the

manufacturer gives the following loss function:

(6200 if ¢ (X(t*)) =0
$190 1f ¢(X(t")) =1
$30 if G (X(t")) =2
$20 if (X (t")) =3
$10 if ¢ (X(t")) =4
$0 if ¢(X(t%)) =5

4

L($(X(t"))

193

which reflects that most customers want to purchase new tires
once system state 1 is reached. From this loss function, the
expected losses for Brand X and Brand Y are $153.36 and
$148.85, respectively.
6.4 Summary

The customer was involved in the generation of the
multistate model. The production example described the state
classification of performance measures and the convolution
technique for estimating component state probabilities. The
battle plan example demonstrated the algorithm for finding
boundary points and the alternate representation of ¢ (x).
The tire tread wear example explained how to use the model
for comparing two systems and how different conclusions could

be reached by considering different performance measures.

194

7. TFURTHER RESEARCH, SUMMAR&, AND CONCLUSIONS

This chapter provides several promising directions for
further research, gives a summary of the main contributions
shown in this dissertation, and presents conciuding remarks
regarding the importance of these new results.

7.1 Directions for Further Research

There were several topics related to the multistate
reliéﬁility model that were not completely finalized. The
most promising directions for further research are discussed
in the next four sections.

7.1.1 Fuzzy Sets

In traditional set theory, sets are a well-defined
collection of elements. 1In other words, an element either
is or is not a member of the set. 1In fuzzy set theory, sets
are an ill-defined collection of elements. A membership
function is used to indicate the degree of membership for
each element in the fuzzy set.

Park [1987] defined a fuzzy set A in X with the set of
ordered pairs, {(x,g,(x))}. The real value in the interval
{0,1] given by the membership function, g,(x), represents the
degree of membership for each point in X. X is an explicit
support set usually taken to be R". For example, suppose A
is the fuzzy set of "good" students. Let X = (X, Xa,,XysXp)
represent a student’s percentile rank on language, auditory,
visual, and quantitative tests. Each student’s degree of

membership in A depends on the specific membership function

195

used to determine what is meant by a "good" student. Suppose
that the school board uses the following membership function
to determine a student’s potential:

gr(x) = .2x%x, + .3x%x, + .1x, + .4x,.
Larger values of g,(x) indicate a higher degree of membership
for each student in the fuzzy set of "good" studen;s.

A fuzzy number is a fuzzy set defined on the real axis.
Kaleva [1986]) described the performance of the components in
a binary model with fuzzy numbers and used some existing
properties of fuzzy numbers to determine the performance of
the system in terms of another fuzzy number.

Two ideas for introducing fuzzy sets to the multistate
reliability model are given next. Up to this point, each
component state vector was a member of a single equivalence
class based on the system state. Therefore, equivalence
classes relied on traditional set theory. Fuzzy sets could
be applied by using a membership function to determine the
degree of membership for x in each equivalence class. This
would allow the customer to be subjective about the state of
the system for each x. Second, the term "reliable" could be
thought of as a fuzzy set. A membership function derived
from the customer would be used to determine a component’s
degree of membership in the set of "reliable" components by
combining substitute characteristics for reliability.

7.1.2 Reliability Polynomial

The definition of the reliability function for the

196

binary model was given in section 2.2.2. If the components
are mutually independent, r = r(p) where P = (Py;,P2s«:+,Pn)
and p; = Pr(X, = 1] for i=1,2,...,n. For the special case
when p, = p, = ... = p, = p, the reliability function is
called the reliability polynomial and is denoted by r(p).
Barlow and Proschan [1981] wrote the reliability polynomial
for a k-out-of-n system as

r(p) =y, (f.:)pi (L-p)~-t .

i=k
Thus, the reliability polynomial for a series (n-out-of-n)
system is r(p) = p" and for a parallel (l-out-of-n) system is
r(p) =1- (1 -p)".

A more general form of the reliability polynomial for
the binary model is shown next. Again, the independent
components have the same reliability, p. Let C,, designate
the set of component state vectors with k components working

and (n - k) components failed. The cardinality of C,,,

n!

. (n
denoted by |C, .| , is (k)= XKrn-x71°

of component state vectors in C,,, that cause the system to

Let A, denote the set

work. Let |A,| denote the cardinality of A,. Barlow and

Iyer [1988) wrote the general reliability polynomial as

rp) =Y |a,] p*(1-p)nk. (7.1)

k=0

Yao [1991] transformed Equation (7.1) to express the

reliability polynomial directly in polynomial form:

197

r(p) = Y D, p* (7.2)

k=0
k
where D, = 12% A | 1Caoy os | (-1)%1
EXAMPLE 7.1 For a binary system of 3 independent
components, each with reliability p, determine the
reliability polynomial for the structure given in

Figure 7.1 directly from the structure function

and using the Equations (7.1) and (7.2).

Figure 7.1 Structure for Example 7.1.

¢(3) =%, (1 - (1 - x%;) (1 - Xx3))

X (1 - (1 - %, = %3 + X;X3))

Xl (xZ + X3 - XZX3) = XIX2 + X1X3 - XleXJ.
E[¢(x)] = 2p* - p°.
C3o = {(0,0,0)} A, = O

H
T
!

C,, = {(1,0,0),(0,1,0),(0,0,1)} A, =@

Cy, = {(,1,0),(1,0,1),(0,1,1)} A, = {(1,1,0),(1,0,1)}
Cys = {(1,1,1)} A, = {(1,1,1)}

Using Equation (7.1),

= 0p°(1-p)* + Op(1-p)? + 2p*(1-p) + p*(1l-p)°

H
3
i

2p2 - 2p3 + p3

2p? - p’.

198

Using Equation (7.2),
D=0, D, =0+ 0 =0,

o/
~
I

0+o+2(é) (-1)° = 2, and

D, =0+ 0 + 2 (1) (-1)! + 1 (g) (-1)° = -1.

r(p) =0 + Op + 2p - p°.
Essentially, this method groups together the component state
vectors which have the same number of working components.

Some preliminary work has been done on an equivalent
derivation for the multistate reliability model based on the
multinomial distribution. Paralleling the binary model, the
components must be mutually independent with an identical
probability distribution, P = (Py,Pis---sPn) -+ Thus, all
components have the same number of states. Let the random
variables X, j=0,1,...,M, represent the number of components
in state j. The probability of x, components in state 0, x,
components in state 1, ..., and x, components in state M is

given by the following multinomial distribution:

n x x x
Po'P1’ «.. Pu"
KorXyseoorX,

where X +x;+...+Xy = n and py+tp,+...+py = 1. This method
groups together the component state vectors which have the
same number of components in each of the states.

Let C, 4, x,....x, designate the set of component state

vectors with x, components in state i, i=1,2,...,M, and %X, =

199

n-(xX,+x,+...+xXy,) components in state 0. The cardinality of

n x, %, ..., x,s denoted by |C, . . .|, is determined from

n n!
R - Let AY denote the set
KorXypooorXy Xl %, 1 ... X,]

of component state vectors in C that cause the

N, Xy, Xppoeey Xy

system to be in state k. Let |AS , | denote the

cardinality of Aj ., .. x. Then the multinomial which gives

the system’s probability distribution is

N-1
x, "
n n-x, n-3" x,
e

&
= x, X, 7.
r(k;p) = 2 E | A ooon | Po 2 P1 = Pu (7-3)

x,s0 x,=0 x,s0

n

for system states k=0,1,2,...,N. When M = N = 1, the
multinomial in Equation (7.3) reduces to Equation (7.1).
EXAMPLE 7.2 For a multistate system of 3 mutually
independent components, each with probability
distribution p = (PorP1/P2) + determine the
multinomial for ¢(x) = Min{x,,x,,x;} using lower
boundary points and Equation (7.3).
The lower boundary point to level 2 is (2,2,2) and
the lower boundary point to level 1 is (1,1,1).
Therefore, Q; = Q:20,:Q;; and Q;, = 0Q,;,0,:Q;,.
By subtracting,
P, =Q, - 0 = (p,)?,
P, =Q - Q = (P + P’ - (p)?
3(py) (P2)? + 3(P)2(py) + (P))°

Po=1=- (p)° - (p, + py)°

200

Ci,0.0 = {(0,0,0)}

Cs,0.1 {(,0,2),(0,2,0),(2,0,0)}
Cs,0,2 = ((0,2,2),(2,0,2),(2,2,0)}
Ci0,3 = {(2,2,2)} .

Cs,1,0 = {(0,0,1),(0,1,0),(1,0,0)}

C3,1,1 ={(0,1,2),¢0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0)}

C3,1,2 = {(11212)1 (211;2), (2,2,1)}
Cazo = 1(0,1,1),(1,0,1),(1,1,0)}
C3,2.1 = {(1I1l2)l(1l2I1)l(2,1,1)} and

ca,ao = {(1,1,1)}.
|Ag'3| = 1' lAf'zl = 3' lA21,1| = 3, and IA31'0| = 1 .
Using Equation (7.3),

(P) 31

1

r(z2,p)

r(l,p) = 3(p) (P)? + 3(p))%(p,) + (Py)?, and
r(0,p) =1 -r(2;p) - r(l:p) which agrees with the
results found with the lower boundary peoints.
Additional research is required to write the multinomial in

terms of the performance distribution and to use the boundary

points to determine A} -

7.1.3 Expected Loss

In section 5.5, expected loss was used to introduce an
innovative new substitute characteristic for reliability.
A loss function was developed which was sensitive to the
pattern of degradation about the desired system lifetime, t’.

Although the expected loss was discussed with respect to the

201

system states, the expected loss can also be found for each
individual component. Additional research is required to
determine the expected loss of the system directly from the
expected loss of the components.

Some preliminary results have been derived for the
multistate model when the loss function has a fixed rate of
increase. Suppose that the loss function for the system is
given by L = M - ¢(x) for ¢(x) = 0,1,...,M and that the loss
function for component i is given by L, = M, - x, for x, =
0,1,...,M,. Let ¥ and 9, represent the expected loss for the
system and component i, respectively. It can be easily shown

that = M - E[¢(X)] and ¥, = M, - E[X,].

n
Suppose a series structure is defined as ¢,(x) = J]x,.
i=]

n n

Then E(¢,] = JIEIX,1 =] (M, - (M, -E(X,])) =] (M, -, .

i=] i=] i=]

n

Therefore, M - E[¢,] = &, = M-H (M, -). Suppose that a
i=1
parallel structure is defined as ¢ (x) = M-J] (M, -x,) . Then
1=l
E(¢,) = M'H (M, -E[X,]) = M"ng- Therefore, M - E[¢,] = &,

i=1 is=}
n
= JI€. For the special case of the binary model, when
1=}
n

M =M=...=M=M=1,92 =1-J[1-49 and9p=gﬁfi.

isl

EXAMPLE 7.3 Suppose that n=2, M;=3, M,=2, M=6, and

202

¢, (x) = x,x, as shown in Table 7.1.
Table 7.1 ¢,(x) for Example 7.3.

X,

WNH~O

[eNeNoNe) o
WN=O [
DB NO N

Suppose that the probability distributions for the
mutually independent components are:

]

Show that if L, = M, - x, for i=1,2 and L, M - ¢(x),
then @, =M - (M, - €)M, - &,).

E{X;] = 0(.1)+1(.2)+42(.3)+3(.4) = 2 and &, = M, - E[X;)
=3 -2=1. EI[X,] = 0(.1)+1(.7)+2(.2) = 1.1 and 9, =
M, -E[X,)] =2-1.1=.9. Thus ¥, =6 - (3 -1)(2 - .9)
= 3.8.

Checking this result directly from the system,

@, = E[L] = 6(.19)+5(.14)+4(.25)+3(.28)+2(.06) = 3.8.
EXAMPLE 7.4 Suppose that n=2, M;=3, M,=2, M=6, and
¢.(x) =6 - (3 - x;)(2 - x;) as shown in Table 7.2.

Table 7.2 ¢,(x) for Example 7.4.

X2
0 1 2
0 0 3 6
x 1 2 4 6
2 4 5 6
3 6 6 6

203

Suppose that the probability distributions for the

mutually independent components are the same as in

the previous example. Show that if L, = M, - x,

for i=1,2 and L, = M - ¢(x), then &, = &¢,¢,.

As before, E[X,] = 2, ¥ =1, E[X,) = 1.1, and ¥, = .9.

Therefore, &, = (1) (.9) = 0.9.

Checking this result directly from the system,

@ = E[L] = 6(.01)+4(.02)+3(.07)+2(.17)+1(.21) = 0.9.

Other results have been derived for the multistate model
when the loss function has a faster rate of increase. Let
the loss function for the system be given by L = (M - ¢ (x))?
for ¢(x) = 0,1,...,M and the loss function for component i
be given by L, = (M, - x,)? for x, = 0,1,...,M,. It can be
easily shown that € = (M - E[¢(X)])? + Var[¢(X)] and that ¢,
= (M, - E[X,]1)? + Var([X,].

No relationship between the expected loss of the

components and the expected loss of the system has been

n
discovered for a series structure defined by ¢,(x) = I'Ixi
i=]l

using the quadratic loss functions. However, a relationship
has been found for a parallel structure defined by ¢,(x) =

n
M—H (M, -x,) . Rearranging terius and squaring both sides
iw]

n

gives (M - ¢p)’ = II (M, -x,)?. Taking the expected value this

i=l

equation results in ¥, = J[%,.

i=]

204

EXAMPLE 7.5 For the problem given in Example 7.4
and the probability distributions given in Example
7.3, show that if L, = (M; - x,)? for i=1,2 and L,
= (M - ¢(x))? then @, = (M, - E[X,])? + Var'X,] for
i=1,2 and &, = 9.9,.

E[X;] = 1 and Var(X,] = 1. So ¥, = (3 - 2)2 + 1 = 2
which checks with &, = 9(.1)+4(.2)+1(.3) = 2.

E[X,)] = 1.1 and Var[X,] = .29. So ¥, = (2 - 1.1)2 + .29

= 1.1 which checks with @, = 4(.1)+1(.7) = 1.1.

2
g,

Further research is needed to find the relationship

36(.01)+16(.02)+9(.07)+4(.17)+1(.21) = 2.2. Thus,

2.2 =(2)(1.1) = 99,.

between the expected loss of the components and the expected
loss of the system for the loss function proposed in section
5.5 that is sensitive to the pattern of degradation about the
desired system lifetime, t'.
7.1.4 Reliability Estimation

Life testing is the process of finding point estimates
or confidence intervals for the parameter(s) of a chosen
failure distribution. Kapur and Lamberson [1977] discussed
the choice of the exponential distribution,

f(t;A) = A exp(-At) t20, A>0

as an appropriate failure model. The maximum likelihood

r

T

of failures and T is the total time on test. If n items are

estimator for A is given by A =_ where r is the total number

205

tested for a prespecified time (t°) and failed items are
replaced, then T = nt'. For this time truncated test, the

100(1-a)% two-sided confidence interval for A is

2 2
Xbo./z,zr < x < xu./z,z(nl)

- 2T - 2r

Note that the 100(1-a)% one-sided upper confidence interval
for A is still valid when no failures occur.
Kapur and Lamberson [1977] used the invariance property

of maximum likelihood estimators to derive the point estimate

R(t) = exp(-At)

for the reliability function and the 100(1-a)% two-sided

confidence interval

- 2 - 2
exp { (-t) x;;z,z(ul)} < R(t) € exp { { t)%}r-wz,zr}

for the reliability function when t 2 0.

Section 5.2 contained some preliminary work for testing
multistate components by counting the number of state changes
in a given time interval (t°) and replacing a component upon
entering state 0. Suppose that T,; is the random variable
for the time component i spends in state j, i=1,2,...,n and
j=1,2,...,M;. Suppose that T,y ~ exponential with parameter
A, for every j=1,2,...,M,. For a time truncated test, the

maximum likelihood estimator for A, was shown to be R, = _%1
n

where r is the number of state changes and n is the number

of multistate components on test. The method is valid since

206

the memoryless property of the exponential distribution
renews each component after every state change.

Confidence intervals for A, must still be developed.
However, the invariance property of maximum 1likelihood
estimators can be used to derive point estimates for the
probability distribution. Let Py(t") = PriX,(t") = j].
Paralleling the work in section 5.5, when T,; ~ exp(A,) for

3=1,2,...,M,, then
(At exp (-A,t*)
M, -3)!

1,2’...’M1

(]
(o]

M,
1-Y P,y 3
i=1

Substituting A, in Equation (7.4) produces maximum likelihood
estimators (MLEs) for the probability distribution.
EXAMPLE 7.6 Suppose that 6 identical multistate
components are placed on test for 10 hours and 15
state changes are observed. Assuming T,y - exp (A,)
for i=1,2,3, determine the MLEs for the

probability distribution of component i.

A, = 15/60 = .25, M, = 3, and t* = 10.

Using Equation (7.4),

2.5)%e -2.5) _
B,(10) = {2:3) AP(72:9) - 9.0821,

(2.5)! exp(-2.5)

B,,(10) = 0.2052,

11

£,,(10) = {2:3) SXP(*2:3) . ¢ 2565, and

P,,(10) =1 - P,,(10) - B,(10) - B,,(10) = 0.4562.

The MLEs for the probability distribution produce MLEs
for the substitute characteristics for reliability.

EXAMPLE 7.7 Use the MLEs found in Example 7.6 to

produce MLEs for E[X,;], Var[X,;], and E[L].

1(.2565)+2(.2052)+3(.0821)

E(x,] .9132,

BIx?)

1(.2565)+4(.2052)+9(.0821)

1.8162,

62 = 1.8162 - (.9132)2 = ,9883.

Using ¢; = 50, ¢, =5, ¢; = 1, and the last lost

function given in section 5.5, E[L] = $573.68.

Further research is necessary to relax the assumptions
made for the distribution of T,.
7.2 Summary

This section provides a summary of the contributions
given in the dissertation. A literature review was conducted
to study the existing structural, stochastic, and dynamic
properties of the binary, multistate, and continuous models.

Structural, stochastic, and dynamic properties were
developed for the general multistate reliability model after
the model was modified with a new definition for component
relevance. New structural properties included a definition
for a k-out-of-n structure, a definition for a general MCS,

bounds on the structure function, alternate representations

208

for ¢ (x), proofs for many duality theorems, and a measure of
structural importance. New stochastic properties included
a generalization for reliability importance, a program that
determines the exact probability dis;ribution for the systen,
a program that calculates performance bounds for more complex
systems, and a program that converts boundary points.

The continuous model was expanded to allow a different
range'of states for the components and the system. New
structural properties included a definition for a k-out-of-n
structure, a definition for a general CSF, an alternate
representation for ¢(x), proofs for many duality theorems,
and a measure of structufal importance. New stochastic and
dynamic properties were not developed because the continuous
model resulted in an infinite number of boundary points.

Next, the voice of the customer was incorporated into
the general multistate reliability model. A method for state
classification was developed to allow the customer to define
the number of system and component states. A technique using
the convolution of random variables was devised to estimate
the component state probabilities. A procedure for obtaining
boundary points from the customer was designed to determine
the customer’s definition of the system. A computer program
was written to estimate the system state probabilities. The
expected loss was introduced as a substitute characteristic
for reliability and a computer program was written to find

the expected loss.

209

Several applications were given to demonstrate the
customer-driven reliability model. Finally, some preliminary
results were presented for fuzzy sets, the reliability
polynomial, expected loss, and reliability estimation.

7.3 Conclusions

The binary model is the most commonly used reliability
model. However, most components and systems do not progress
directly from a working state to a failed state. 1Instead,
the state degrades through a continuum of values which is
better represented by a continuous model. Unfortunately, the
continuous model results in an overwhelming number of
calculations, making the model impractical for all but the
simplest structures.

The general multistate model is a sensible compromise
between the continuous and binary models. The model provides
more information than the binary model and requires less
calculations than the continuous model. Allowing a different
number of states for each component and the system makes the
model more appealing to the customer. Involving the customer
at every step in the development and evaluation of the
multistate model increases the creaibility and usefulness of

the model.

210

LITERATURE CITED

General References:

Clarke, A. and Disney, R. (1970), Probability and Random
Processes for Enqineers and Scientists, John Wiley and

sSons: New York, NY.

Gitlow, H., Gitlow, S., Oppenheim, A., and Oppenheim, R.
(1989), Tools and Methods for the Improvement of
Quality, Irwin: Boston, MA.

Binary Model:

Barlow, R. E. and Iyer, S. (1988), "Computational Complexity
of Coherent Systems and the Reliability Polynomial,"

Probability in the Engineering and Informational
Sciences, 2, 461-469.

Barlow, R. E. and Proschan, F. (1981), Statistical Theory of
Reliability and Life Testing Probability Models, TO

BEGIN WITH: Silver Spring, MD.

Birnbaum, Z. W., Esary, J. D. and Saunders, S. C. (1961),
"Multi-Component Systems and Structures and Their
Reliability," Technometrics, 3, 1, 55-77.

Birnbaum, 2. W. and Esary, J. D. (1965), "Modules of
Coherent Binary Systems," SIAM Journal on Applied

Mathematics, 13, 2, 444-462.

Birnbaum, 2. W. (1969), "On the Importance of Different
Components in a Multi-Component System, " In

Multivariate Analysis II, P. R. Krishnaiah, editor,
Academic Press: New York, NY, 581-592.

Bodin, L. D. (1970), "Approximations to System Reliability
Using a Modular Decomposition," Technometrics, 12, 2,
335-344.

Esary, J. D. and Proschan, F. (1963a), "Coherent Structures
of Non-Identical Components, " Technometrics, 5, 2, 191-
209.

Esary, J. D. and Proschan, F. (1963b), "Relationship

Between the System Failure Rate and Component
Failure Rate," Technometrics, 5, 2, 183-189.

211

Esary, J. D. and Proschan, F. (1970), "A Reliability Bound
for Systems of Maintained, Interdependent Components,"

Journal of the American Statistical Society, 65, 329 -
338.

Esary, J. D., Marshall, A. W., and Proschan, F. (1970),
"Some Reliability Applications of the Hazard

Transform, "™ SIAM Journal on Applied Mathematics, 18, 4,
849-860.

Feller, W. (1968), An Introduction to Probability Theory and
Its Applications, 3rd edition, John Wiley and Sons:
New York, NY.

Kaleva, O. (1986), "Fuzzy Performance of a Coherent System,"

Journal of Mathematical Analysis and Applications,”
117, 1, 234-246.

Kapur, K. C. and Lamberson, L. R. (1977), Reliability in
Engineering, John Wiley and Sons: New York, NY.

Park, K. S. (1987), "Fuzzy Set Apportionment of System

Reliability,"™ IEEE Transactions on Reliability, R-36,
1, 129-132¢

Ross, S. M. (1989), Introduction To Probability Models,
4th edition, Academic Press: San Diego, CA.

Yao, 2. (1991), "Introduction to the Theory of General-
System Reliability Functions, " Submitted for

publication in IEEE Transactions on Reliability.

Multistate Model:

Abouammoh, A. M. and Al-Kadi, M. A. (1991), "“Component
Relevancy in Multistate Reliability Models," IEEE

Transactions on Reliability, 40, 3, 370-374.

Barlow, R. E. and Wu, A. S. (1978), "Coherent Systems With

Multi-State Components," Mathematics of Operations
Re§§argh' 3, 4, 275-281¢

Block, H. W. and Savits, T. H. (1982), "A Decomposition For
Multistate Monotone Systems," Journal of Applied
PrObabilit!, 19, 2, 391_4020

Borges, W. D. S. and Rodrigues, F. W. (1983), "An Axiomatic
Characterization of Multistate Coherent Structures,"

Mathematics of Operations Research, 8, 3, 435-438.

212

Butler, D. A. (1979), "A Complete Importance Ranking For
Components of Binary Coherent Systems, With Extensions
To Multi-State Systems," Naval Research Logistics
Quarterly, 26, 4, 565-578.

Butler, D. (1982), "Bounding the Reliability of Multistate
Systems, " Operations Research, 30, 3, 530-544. ‘

El-Neweihi, E., Proschan, F. and Sethuraman, J. (1978),
"Multistate Coherent Systems," Journal of Applied

Probability, 15, 4, 675-688.

Fardis, M. N. and Cornell, C. A. (1981), "Analysis of
Coherent Multistate Systems,™ IEEE Transactions on
Reliability, R-30, 2, 117-122.

Griffith, W. S. (1980), "Multistate Reliability Models,"
Journal of Applied Probability, 17, 3, 735-744.

Hudson, J. C. (1981), The Structure and Reliability of
Multistate Systems with Multistate Components, Ph.D.

Dissertation, Department of Industrial Engineerlng,
Wayne State University, Detroit, Michigan.

Hudson, J. C. and Kapur, K. C. (1983a), "Modules in Coherent
Multistate Systems," IEEE Transactions on Reliability,
R-32, 2, 183-185.

Hudson, J. C. and Kapur, K. C. (1983b), "Reliability
Analysis for Multistate Systems with Multistate
Components, "™ 1IE Transactions, 15, 2, 127-135.

Hudson, J. C. and Kapur, K. C. (1985), "Reliability Bounds
for Systems with Multistate Components," QOperations
Research, 33, 1, 153-160.

Iyer, S. (1989), "Exact Reliability Computation for
Multistate Coherent Systems,"™ For the SQC Unit, Indian
Statistical Institute, Bombay, India 400 020.

Janan, X. (1985), "On Multistate Systems Analysis,"™ IEEE
Transactions on Reliability, R-34, 4, 329-337.

Natvig, B. (1982), "Two Suggestions of How To Define a
Multistate Coherent System," Advances in Applied

Probability, 14, 2, 434-455.

ohi, F. and Nishida T. (1984), "On Multistate Coherent

Systems," IEEE Transactions on Reliability, R-33, 4,
284-287.

213

]

Ross, S. M. (1979), "Multivalued State Component Systems,"
The Annals of Probability, 7, 2, 379-383.

Wood, A. P. (1985), "Multistate Block Diagrams and Fault
Trees, " 1IEEE Transactions on Reliability, R-34, 3, 236-
240.

Continuous Model:

Baxter, L. A. (1984), "Continuum Structures I," Journal of
Applied Probability, 21, 4, 802-815.

Baxter, L. A. (1986), "Continuum Structures II,"

Mathematical Proceedings of the Cambridge
Philosophical Society,"™ 99, 2, 331-338.

Baxter, L. A. and Kim, C. (1986), "Bounding The Stochastic
Performance Of Continuum Structure Functions. I,"

Journal of Applied Probability, 23, 3, 660-669.

Block, H. W. and Savits, T. H. (1984), "Continuous
Multistate Structure Functions," QOperations Research,
32, 3, 703-714.

Montero, J., Tejada, J. and Yafiez, J. (1990), "Structural
Properties of Continuum Systems," European Journal of

QOperational Research, 45, 2-3, 231-240.

214

BIBLIOGRAPHY

Abraham, J. A. (1979), "An Improved Algorithm for Network
Reliability,"™ IEEE Transactions on Reliability, R-28,
1, 58-61.

Almassy, G. (1979), "Limits of Models in Reliability
Engineering, " Proceedings of the 1979 Annual

Reliability and Maintainability Symposium, 364-367.

Aven, T. (1985), "Reliability Evaluation of Multistate
Systems with Multistate Components," 1EEE Transactions

Bossche, A. (1987), "Calculation of Critical Importance for
Multi-State Components, " IEEE Transactions On

Burdick, G. R., Fussell, J. B., Rasmuson, F. M. and Wilson,
J. R. (1977), "Phased Mission Analysis: A Review of New
Developments and An Application," IEEE Transactions on

Reliability, R-26, 1, 43-49.

Cafaro, G., Corsi F. and Vacca F. (1986), "Multistate Markov
Models and Structural Properties of the Transition-Rate

Matrix,"™ IEEE Transactions On Reliability, R-35, 2,
192-200.

Doulliez, P. and Jamoulle (1972), "Transportation Networks
with Random Arc Capacities," revue francaise d’

Automatique Informatique Recherche Operationnelle, 6
anneé, v-3, Novembre, 45-59,.

Ebrahimi, N. (1984), "Multistate Reliability Models," Naval
Research Logistics Quarterly, 31, 4, 671-680.

El-Neweihi, E. (1980), "Multistate Reliability Models: A
Survey, " Air Force Office of Scientific Research
(AFOSR) Technical Report No. 76-30501, University of
Illinois, Department of Mathematics, Champaign-Urbana,
IL.

Elsayed, E. A. and Zebib, A. (1979), "A Reparable Multistate

Device, " 1EEE Transactions on Reliability, R-28, 1, 81-
82.

Esary, J. D. and Marshall, A. W. (1970), "Coherent Life

Functions, " SIAM Journal on Applied Mathematics, 18, 4,
810-814.

215

Funnemark, E. and Natvig, B. (1985), "Bounds for the
Availabilities In A Fixed Interval For Multistate

Monotone Systems, " Advances in Applied Probability, 17,
3, 638-665.

Garg, R. C. and Kumar, A. (1977), "A Complex System with Two
Types of Failure & Repair," IEEE Transactions on

Reliability, R-26, 4, 299-300."

Golomb, S. W. (1971), “Mathematical Models: Uses and

Limitations," IEEE Transactions on Reliability, R-20,
3, 130-131.

Gopol, K., Aggarwal, K. K. and Gupta, J. S. (1978),
"Reliability Analysis of Multistate Device Networks,"

IEEE Transactions on Reliability, R-27, 3, 233-235.

Hatoyama, Y. (1979), "“Reliability Analysis of 3-State

Systems, " IEEE Transactions on Reliability, R-28, 5,
386-393.

Hjort, N. L., Natvig, B. and Funnemark, E. (1985), "The
Association In Time Of A Markov Process With
Application To Multistate Reliability Theory," Journal

of Applied Probability, 22, 2, 473-479.

Hwang, F. K. and Yao, Y. C. (1989), "Multistate
Consecutively-Connected Systems," IEEE Transactions on
Reliability, R-38, 4, 472-474.

Iyer, R. K. and Downs, T. (1978), "A Moment Approach to
Evaluation and Optimization of Complex System
Reliability," IEEE Transactions on Reliability, R-27,
3, 226-229.

Kapur, K. c. (1975), "Optimization in Design Dby
Reliability,"™ AIIE Transactions, 7, 2, 185-192.

Kapur, K. C. (1988), "Product and Process Design
Optimization by Design of Experiments Using Taguchi

Methods," SAE Technical Paper Series No. 880821,

Earthmoving Industry Conference, Peoria, Illinois.

Kapur, K. C. (1991), "Quality Improvement Through Robust
Design,"™ To be presented at the 1991 International
Industrial Engineering Conference, May 20-22, Detroit,
Michigan.

Kapur, P. K. and Kapoor, K. R. (1978), "Stochastic Behaviour
of Some 2-Unit Redundant Systems," IEEE Transactions on

Reliability, R-27, 5, 382-385.

216

Karpinski J. (1986), "A Multistate System Under an
Inspection and Review Policy," IEEE_Transactions on
Reliability, R-35, 1, 76-77.

Mohamed, A. (1990), Multicriteri: Optimization Applied to

Multistate Repairable Components, Ph.D. Dissertation,
School Of Industrial Engineering, The University of

Oklahoma, Norman, Oklahoma.

Montero, J. (1991), "General Reliability Bounds: Some
Comments, "™ Submitted to the Journal of the Operational
Research Society.

Moore, E. F. and Shannon, C. E. (1956), "Reliable Circuits
Using Less Reliable Relays," Journal of the Franklin
Institute, 262, 3 & 4, 191-208 & 281-298.

Natvig, B. and Streller, A. (1984), "The Steady-State
Behaviour Of Multistate Monotone Systems," Journal of

Applied Probability, 21, 4, 826-835.

Pedar, A and Sarma, V. V. S. (1981), "Phased-Mission
Analysis for Evaluating the Effectiveness of Aerospace

Computing-Systems," IEEE Transactions on Reliability,
R-30, 5, 429-437.

Proctor, C. L. II and Proctor, C. L. (1977), "Multistate-
Time Dependent System Modeling," Proceedings of the

1977 Annual Reliability and Maintainability Symposium,
401-403.

Sakawa, M. (1978), "Muitiobjective Optimization by the
Surrogate Worth Trade-0Off Method, " IEEE Transactions on

Satyanarayana, A. and Chang, M. K. (1983), "Network
Reliability and the Factoring Theorem," Networks, 13,
107-120.

Shao, J. and Kapur, K. C. (1989), "Multilevel Modular
Decomposition for Multistate Systems", Proceedings of
the 1989 Annual Reliability and Maintainability
Symposium, 102-107.

Singh, B. and Proctor, C. L. (1976), "Reliability Analysis
of Multistate Device Networks," Proceeding of the 1976

Annual Reliability and Maintainability Symposium, 31-
35.

217

Appendix A. Exact System Performance Program

Je % e de gk de A vk e ok e e vk e sk d Kk A e Ak de ok sk ke vk sk gk ke ok e e de ok sk ok ok ke e sk ok ok ke ok ok ok ke A ok ok gk ok kK

* WRITTEN BY: Ralph Boedigheimer *
* LAST UPDATE: 7 Oct 91 *

Je de d K Je de g ok A ok Kk sk ok kK de kR Kk sk K ke ok e ke ok sk ok ok ok ok ke ok Jk ok sk ok ke ok e ok vk dk ok ok R ok ok ok e A ok

Je de de ke sk d g vk Kk K ok de ke ok kK Jk ke ok ok ke ok ke K sk vk dk sk ok ok ok ok dk ke K ok ik sk b ok 3k %k dk dk ok ok b dk A ok ok ok ok ke o b

* This is the main program that runs all other programs *
* and calculates reliability for a multistate system. *
s % sk ke vk Kk sk kA ok db %k b sk ke A b sk ok ok dr S dk ok b 3 o sk e ok Y b o b s Je b db vk b k% dk vk ok %k dk Jk 3k b ko ok ok

program main
Yo de Je ke v %k M dr ok dr Je sk dr vk K de de KR K vk ke e dk dt ke gk dk de de ok sk ok b ok de vk k¢ e e ke ok ok % dk dk e v dv ek ok kR ok ke ok

* VARIABLE DESCRIPTIONS: *

* answer - variable Zor interactive feedback *
* de gk Kk ok A K Kk Kk Kok oAk ok ok ok ok ok ok Kk gk d sk k% d ok k% gk gk Tk db kK ok R %k sk ok b ok kvt R b ok ke ke %k ok ke ok ke ok

real answer
I R R R R R R R R R R R R R R R 2R 2 R AR R RS R R R R SRR R SRR RERRRRRERRRERE SRS

* The main menu is presented to the user. One of the *

* given options must be selected. *
[EEREEEESEERERERERRS SRR RS2 2 R X AR R RRRRREARR RS R R R R R GRS BB &
5 answer=0.0

do while ((answer.lt.1.0).or.(answer.gt.10.0).or.

+ (amod (answer,1.0) .ne.0.0))
print *,’ENTER SELECTION FROM THE FOLLOWING MENU:’
print *,’ 1. INPUT A NEW SYSTEM DESCRIPTION.’

’

[
print *,’ 2. DISPLAY THE CURRENT SYSTEM.’
print *,’ 3. USE ENUMERATION.’
print *,’ 4. USE LOWER BOUNDARY POINTS.’
print *,’ 5. USE UPPER BOUNDARY POINTS.’
print *,’ 6. USE DECOMPOSITION (LBPs) - AVEN.’
print *,’ 7. USE DECOMPOSITION (UBPs) - AVEN.’
print *,’ 8. USE DECOMPOSITION (LBPs) - IYER.’
print *,’ 9. USE DECOMPOSITION (UBPs) - IYER.’
print *,’ 10. EXIT THE PROGRAM.’
read *,answer
print *

enddo

********k**k*****

* The program routes to the appropriate subroutine and *
* then returns to the main menu. *
I X E 2RSSR R EEEEEES R R 2RSSR R R R R R S Rt a2 a2 2 2 s R R 2 R 8 8
go to (10,20,30,40,50,60,70,80,90,100), answer
10 call system
go to 5
20 call display
go to 5
30 call enum
go to 5
40 call lower
go to 5

218

50 call upper

go to S5

60 call decomplow
go to S5

70 call decomphi
go to S

80 call declower
go to 5

90 call decupper
go to 5

100 stop
end

Je ke de ok e Kk K Je sk K vk ok sk ko Ak gk sk vk e dk ke % ke ok %k ok e ok gk sk ok kv sk %k o sk gk ok dk dk ok %k ok ok ok 3k ok ok ok sk Kk sk ok ok

* This program is used to enter a description of the *
* multistate system being studied. *
KR ARKK AR KA HA Rk ARk KKk ok Kok kA A KK K A AR kKK KK ko kok ok kk ok kKK Kk ok ok ok ok kK

.
subroutine system
s de s e v e e Kk de A dk e ok ke ok R ok dk ok ok ok A ok vk v vk sk ke de ok A sk sk gk ke ki sk e sk sk ke ke ok ok Aok ok ko ok K R K

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state j *
s de de A e ok v de ok Je vk e db K e R Yo ok Ak s ok K vk vk e vk ok vk bk A ok kR %k Kk sk ok sk sk ok ok vk ok dk ok %k ok A ok ok %k ok % k Kk

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)

real prob (100,0:100)

ARk RRA AKX R AAKEAR A A A AR AAR AR A AL A A A AA XK A KAAAAR KAk kkkk ok kkkxk

* The required information is interactively entered. *
L EE AR XSS EEERSSE SRR EREREERES R R RS RRRERRRERR R R R R R EEEREEERR,
print *,’ENTER THE MAXIMUM SYSTEM STATE (1-100).’
read *,msys
print *
print *,’ENTER THE NUMBER OF COMPONENTS (1-100).’
read *,ncomp
print *
do 10 i=1,ncomp
print *,’ENTER THE MAXIMUM STATE OF COMPONENT’, i,
+ (1-100) .’
read *,m(i)
10 continue
do 20 i=(ncomp+1),100

219

m(i)=0
20 continue
m(0)=0
do 40 i=1,ncomp
print *
do 30 j=0,m(1i)
print *,’FOR COMPONENT’,i,’ENTER THE /,

+ 'PROBABILITY OF BEING IN STATE’, j
read *,prob(i, Jj)
30 continue
40 continue
print *

do 60 k=1,msys
print *,’ENTER THE NUMBER OF LOWER BOUNDARY’,
+ ’ POINTS TO LEVEL’,k,’ (1-100).’
read *,s (k)
print *
do 50 3j=1,s (k)
print *,’FOR LEVEL’,k,’ENTER LOWER BOUNDARY’,

+ ' POINT #',7
read *, (lbp(i, j,k),i=1,ncomp)
50 continue
print *
60 continue

do 80 k=0,msys-1
print *,’ENTER THE NUMBER OF UPPER BOUNDARY’,
+ ! POINTS TO LEVEL’,k,’ (1-100).’
read *,t (k)
print *
do 70 j=1,t (k)
print *,’FOR LEVEL’,k,’ENTER UPPER BOUNDARY’,

+ * POINT #',3
read *, (ubp(i, j,k),i=1,ncomp)
70 continue
print *
80 continue
return
end

% e dr de Je ok v ok dk Kk e dk ok Sk ok A ok o ok ke ke sk vk b e e vk b ok ke ok ok ok ok ok ok ok ok sk b Kk ki ok ok sk dke b sk ok ok kR ok

* This program displays the description of the system. *
Je J %k J Je v d ok s ok koK %k %k %k kb sk ok %k ok ok e %k gt %k o sk %k sk K ok ok o gk ok dk gk ok Tk d dk ok vk vk ke ok %k ok ok ok ok ok ok ok

subroutine display
% %k de ok sk Kk Kk Kk K ok stk vk sk Jk Jb sk ok ok de dk dk ok db ok ok sk sk sk ok db ok ok sk ok vk vk %k o ok ok dk sk ok ok ki k ki k ok k&

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* *

boundary point to level k

220

* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i,]j) - probability of component i in state j *
% vk Fk ek A e o ke sk dk Kk Kok Y v A sk ok ke ok gk dk dk b v e %k Jt Jr sk vk gk ok ok ok ok kK S ok ok dk ok J d %kt ok ok ok ok ok % Kk K
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t£(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s¢100),1bp(100,100,100),
+t£(0:100) ,ubp(100,100,0:100)
real prob (100,0:100)

% &k Ak ke Ak gk sk ok ok A ok ok kA gk vk e ek 3k ok ok e ok ok ok ok ok sk sk ok ok dk ok ok ok ok K ok ok % sk ok ok ok ok ok ok %k ok %k %k

* The current system is displayed for the user. *
% vk ek %k Kk dk gk Kk Jk vk sk A ok dk gk sk ek Kk ok %k ok ok ok dk sk vk sk o dk sk Ak sk e vk gk ok ok ok sk Tk kK sk sk ok e %k ok ok sk ok ok K
print *,’Maximum System State:’,msys
print *
print *,’Number of Components:’,ncomp
print *
print *,’Component Max State Vector: (',
+ (m(i),i=1,ncomp),’)’
print *
do 10 i=1,ncomp
print 99, ‘’Component’,i,’Probabilities:’,
+ (prob(i,j)rj=0,m(i))
10 continue
print *
do 30 k=1,msys
print *,’System Level’,k
do 20 j=1,s (k)
print *,’Lower Boundary Point #’,3,’: (',

+ (lbp(i, j,k),i=1,ncomp), ')’
20 continue
print *
30 continue
print *

do 50 k=0,msys-1
print *,’System Level’,k
do 40 j=1,t (k)
print *,’Upper Boundary Point #’,3,’: (',
+ (ubp(iljlk)Ii=1lncomp)l’),
40 continue
print *
50 continue
print *
99 format (a9, 1x,1i2,1x,al4,2x,100(£f5.3,1x))
return
end

de Je A de ok ok gk kb ok dk ok sk sk K ok ke ok ok ok Ak sk ok ek ke gk sk ke ke ok vk sk ok sk Tk gk ok sk vk ok ok b K vk ok ok sk ok ok ok ok ok

* This program enumerates all possible component state *
* vectors and determines the probability of the vector. *
* Then it determines the system state for the vector and*

221

* tallies the overall probability for each system state.*
AAKKARRRKXKXN KK Khkk A ok khkk ki ks dkkdkkkkkkohokkhhkkkkokdkkkkkkkkkkikkn

subroutine enum
e J % Kk k% ko vk % ok ok % gk k% e gk ok ke dk ke sk sk Ak v dk Tk ok sk ok sk ke ok ok sk e sk ok ok sk sk Tk ke ke ok sk Kk sk ok ok ok kK ok ok
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* philower - the system state with lower boundary pts.*
* phiupper - the system state with upper boundary pts.*
* nvec - total number of component state vectors *
* divider - variable used to change base *
* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* x(i) - the ith element of a component state vector *
* answer - variable for interactive feedback *
* prob(i, j) - probability of component i in state j *
* pvec - probability of a component state vector ol
* plev(k) - probability of system being in state k *
Jedk de ok K d g gk ok Kk ok T vk dk Aok ok ek ok A Kk %k gk ke e e ok 3k ok sk K ok ok %k ok sk %k % ok %k 3k gk sk %k ok vk vk ke gk ke ke ok %k ok
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,philower,phiupper, nvec,divider,
+m(0:100),s(100),1bp(100,100,100),t(0:100),
+ubp (100,100,0:100) ,x(100)
real answer,prob(100,0:100)
double precision pvec,plev(0:100)
external philower,phiupper
v ok %k ok %k d vk ok b %k vk vk ok 3k A X ok ok ok ok b sk db ot sk sk ok 3k ok ok 9k ok bk A ok ok ok ok ok b A Jk ok sk Jk Jk sk sk b Jk b dk ok ok

* The probability of each system state is set to zero. *
% % Jc % dk ok de ko k %k gk k ok kK Kk Kk ke ok Kk A sk ok A sk sk gk %k ok vk ke ok vk ok ok sk ok %k %k %k ok de ok % ok Kk k %k ok %k ok ok K
do 10 k=0,msys
plev(k)=0.0
10 continue
% % ¢ % Je ok %k ok sk sk K dk I dr Kk ok %k dk Kk kb sk e sk ok ok dk b sk ok kK ok sk sk ok sk ke vk ok ke ke sk ok ke ke ok kR ke ok ok ok ok

* The total number of component state vectors is found. *
Je de g Kk ok Kk e gk ok Kk ok Kk gk s de de ok e de de vk sk A e ok ok ok v sk ok ok Kk vk sk ok kK ek ok ke ok ke ke ok ok ok ok ke ki k k sk ok Kk
nvec=1
do 20 i=1,ncomp
nvec=nvec* (m(i)+1)

20 continue
s v dk Kk Kk Kk % 7 sk ok e K %k J dk e ok e ok ok e dk vk ok sk b ok Kk ok %k Tk ok gk ok Ik ok % ok % vk W b Ik ok %k %k ok 3k ok sk ok ok ok ok ok ok ko

* Determine whether lower or upper boundary points will *

* be used to determine the state of the system. *
%%k gk sk ok R Ak ok sk ok ok ok ok ok ot ok sk gk b ok ok ok sk o sk ok dk ok sk ot ok ak St ok ok Jb ok Jk b ok r ok dk b sk ok sk b ok ok Sk b K ok Ok kX

answer=0.0
do while ((answer.lt.1.0).or. (answer.gt.2.0).or.

222

+ (amod (answer,1.0) .ne.0.0))
print *,’ENTER SELECTION FROM THE FOLLOWING MENU:’
print *,’ 1. USE LOWER BOUNDARY POINTS.’
print *,’ 2. USE UPPER BOUNDARY POINTS.’
read *, answer

print *
enddo
% % vk Kk % de g K % vk sk %k v dk g ok vk K dr ok %k dk v K ok ok Kk ok sk %k ke sk sk ok ok vk sk ke ok d sk Kk ok ok gk ok dk %k ok sk %k Kk ok ke
* The probability of each component state vector is *
* found. The system state is determined and the *
* probability is tallied under that state. *

% % Jk e Je b A vk K sk %k ok Kk k dk vk ke dk %k sk sk A gk kK ok vk gk sk vk ok Kk dk ok ke ke Kk ko vk %k sk ok ok ok ok ok Kk ok ko ok R ok %

do 40 k=0, (nvec-1)
divider=l
pvec=1.0
do 30 i=1,ncomp
divider=divider* (m(i-1)+1)
X (i)=mod ((int (k/divider)), (m(i)+1))
pvec=pvec*prob (i, x(i))
30 continue
if (answer.eq.1.0) then
n=philower (x)
elseif (answer.eq.2.0) then
n=phiupper (x)

endif

plev(n)=plev(n) +pvec
40 continue
Jo ok K J ook dk K ke K ok K ok ke sk ok K ok sk gk ok ok dk ok ok sk gk sk Ak ks 3k dk ok Ak vk ok vk vk ok ok Jk vk okt ke sk ok %k ke ok ok ok ok ok
* The probability of each system state is printed. *

¢ e d v sk % ok A J d %k %k gk sk db %k dk ok ok dk sk dk vk Ik sk sk %k e %k ik I Kk sk sk b dk bk dk ok ok %k %k % vk sk dk ok %k %k ke k%
do 50 k=0,msys
print 99,’Probability of state’,k,’is’,plev(k)
50 continue
print *
print *
99 format (a20,1x,1i2,1x,a2,1x,£8.6)
return
end

% dk de ok Kk Kk %k vk sk sk de %k d ok ke sk ok kK %k ke ok sk ik 3k ko vk ok ok b ok % ok gk ok ok kT ok vk ok gk itk A %k ok ok ik ok ok ok k Kk

* The program can evaluate the structure function for a *
* component state vector given the following: *
* 1) The maximum state of the system, *
* 2) The number of components in the system, *
* 3) The maximum state of each component, and *
* 4) The lower boundary points to level k. *
Fo K K ok K gk vk Je K ok K sk A Kk %k sk sk sk ok ok sk sk sk sk ok ok ok d sk ok 3t o sk sk ok ok ok ok ok ok ok sk ok Jk Jk sk ok ok dk b ok dr S de b ok ok

function philower (x)
% % % ok Je A Je K de % ok d ok de ok vk de K sk de Ak ok s ok ok %k ok sk ok sk sk gk sk Kk % ok dk ok dk ok dk sk ok ok ok % ok ok ok %k sk ok ko

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *

223

ncomp - the number of components in the system
prod - system state of a binary structure
sum - contains the subscript of the binary vector
philower -~ the system state with lower boundary pts.
temp - used to find the max of the binary function
m(i) - the maximum state of component i
s (k) - number of lower boundary points to level k
lbp(i,j,k) - the ith element of the jth lower
boundary point to levei k
t (k) - number of upper boundary points to level k
ubp (i, j, k) - the ith element of the jth upper
boundary point to level k
x(i) - the ith element of the component state vector*
y(i) - the ith element of the binary state vector *
Je ¥ dk % %k de e dk % A %k sk ok ok ok vk %k ok A ok %k gk %k ok % 3k ok ok ok dk 3k vk d ke Tk S ok %k ok sk bk kK ok ok ok ok k ko
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t (0:100) ,ubp(100,100,0:100) ,prob(100,0:100)
integer msys,ncomp,prod, sum,philower,temp,m(0:100),
+s(100),1bp(100,100,100),t(0:100) ,ubp(100,100,0:100),
+x(100),y(10000)

% g %k dk %k %k Jk % % %k Kk dk ok k ok %k %k ok ok Kk K vk ok Kk Jk %k ok %k d ok Jk sk %kt dk dk %k ok kK ok Kk Kk sk ok ko Kk ok %k ok ko ok ok

¥ % X X X X X X % X X X X X *
% % % % % %X X % X * ¥ %

* Convert the multistate vector to a binary vector. *
v % % ok d ok k% sk % %k %k o ok d %k ok e sk k% ok ok sk sk sk ok 3k ok sk %k sk dk %k ke %k sk 3k dk ok Jr ok Kk %k ok %k dk ok vk ok kK k ok ok ok
k=0

do 20 i=1,ncomp
do 10 j=1,m(i)
k=k+1
if (x(i).ge.j) then
y(k)=1
else
y (k)=0
endif
10 continue
20 continue
AAKAKAARKRAARKNKRARKAAKRAARRAAAAKRA IR A ARA R A AR khhhkhkkhkhkkhkAkkkhkkkhhk
* Evaluate the binary structure functions with the *
* binary vector for every level and sum to give the *
* desired result. *
ek de kA Kook ok ok ok Kk kR Aok ok ok ok dedk kT ok ok ok ok ok ok Tk vk ok A ok sk Tk kK ok ke ok gk Ak sk sk ke ok kb %k ok ok
philower=0
do 60 k=1,msys
temp=0
do 50 j=1r s (k)
prod=1
do 40 i=1,ncomp
if (lbp(i,j, k) .ne.0) then
sum=0
do 30 n=1, (i-1)
sum=sum+m (n)
30 continue
sum=sum+1lbp (i, 3, k)

224

prod=prod*y (sum)

endif
40 continue
temp=max (temp, prod)
50 continue
philower=philower+temp
60 continue
return

end

% Je J dk % dk do %k de % %k sk d 3k %k d sk %k dk vk %k %k ok ok sk sk kI Kk 3k ok ok dk sk sk ok ok ki bk k2 ok dk ok ok ok ko dk ok vk ok ok N K

* The program can evaluate the structure function for a *
* component state vector given the following: *
* 1) The maximum state of the system, *
* 2) The number of components in the system, *
* 3) The maximum state of each component, and *
* 4) The upper boundary points to level k. *
* *

% Je ok e d sk v v ok sk ok dk ok dk e sk sk Kk Jk K ok ok ok de vk e ok Ak dke ok sk sk dk k dk dk ok vk ok dk ak ok sk ok sk ok %k dk ok %k ok ok

function phiupper (x)
% % o Jk Jk % %k sk Jk Jk sk v sk sk Jk Jr ok 3k Jk Jr dk dk sk Jk dk db %k %k % dv vk sk v sk Jk ok Jk sk dk ok Kk k ok ok b K ko ko Kk ke

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* prod - used to find the max of the binary function *
* sum - contains the subscript of the binary vector *
* phiupper - the system state with upper boundary pts.*
* temp - system state of a binary structure *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* x(i) - the ith element of the component state vector*
* y(i) - the ith element of the binary state vector *
% K de Kk ke ook A dk ok kK Kk vk kK A ok de ok ks sk sk ook dk sk gk vk sk kK sk ke sk ok ke sk %k vk ok %k ke sk sk sk kb ok ok ke k ok k ke ok ke ok

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp, prod, sum, phiupper,temp, m(0:100),
+s(100),1bp(100,100,100),t(0:100) ,ubp(100,100,0:100),
+x(100),y(10000)

P ok g vk ok ok Kk de ok ok Kk ok ok d de J de v ok %k ok e ok e ok ok ok ok dk sk ok dk ok 3k Ak K & ok dk ok ok ke kA ok ok ok ok ok ok ok ok %k

* Convert the multistate vector to a binary vector. *
ok de ok d ok ok d v ok gk %k ok Kk sk ok e sk ke sk sk K R ok kA ok gk ok ok sk sk dk ok dk de b vk gk ok b sk vk sk %k d ok %k k ke ok
k=0

do 20 i=1,ncomp
do 10 j=0,m(i)-1
k=k+1
if (x(i).gt.j) then
y (k) =1

225

else

y (k) =0
endif
10 continue
20 continue
W %k %k Je e d de Je K de sk ok ok dk Kk A %k dk s sk ok ok ok A ke de dk ok ok sk ok ok A s sk sk ok Kk ok ke ok ok ok ok ok ok ok ok ok ok ok Xk
* Evaluate the binary structure functions with the *
* binary vector for every level and sum to give the *
* desired result. *
de d 3k Jk e de %k A de vk e gk kK %k ek kK A A % ok ak sk ok dk gk vk gk sk kR K gk ok dk ke k ok kg sk gk ok bk k ok ok
phiupper=0
do 60 k=0,msys-1
prod=1
do 50 j=1,t (k)
temp=0

do 40 i=1,ncomp
if (ubp(i,j,k).ne.m(i)) then

sum=1

do 30 n=1, (i-1)
sum=sum+m (n)

30 continue
sum=sum+ubp (i, j, k)
temp=max (temp, y (sum))

endif
40 continue
prod=prod*temp
50 continue
phiupper=phiupper+prod
60 continue
return

end

% sk d sk v de de dk de dk ke K vk sk ok sk d gk Ak ke kK %k Kk ke e e ok v sk ok ke ok sk b ok ke kK ok %k ok ok ke ok e K ok kA ok ok k%

* This program determines the probability of each system*
* state directly from the lower boundary points. *
ek ok Ak gk Kok sk ok ok ok ok kI ok Kk gk sk Kk gk ke sk ke ok e sk Ak kb Ak ok dk Ik sk sk kT sk ke sk ok ek sk %k %k ok ok ke ok ok k&

subroutine lower
% K K do F ook kK R sk A ok ok sk ok o ok ok ok 3k b ok ok sk ok %k 3k ok 9k ok sk 3k %k sk sk sk sk dk %k sk sk sk ok ok b ak ok ok d ok b d b A ok ok Ak

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* cmblower - real function that find all combinations *
* prob (i, j) - probability of component i in state jJ *
* sum - the sum of all combinatorial summations *

226

* plev(k) - probability of a system being in state k *
* cplev(k) - probability of system in state k or more *
IR 2 X2 8 F 322 X3 2322 222822222 X222 2 d 22 R 2 Rt X 2t R X R R X
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)
real cmblower,prob(100,0:100)
double precision sum,plev(0:100),cplev(0:100)
external cmblower
v % sk Jk Jt Jr d¢ v K % % Y e v e v e e ok ke vk vk sk sk dk dk dk dk g sk sk %k kbt k% %k dk dk %k vk % b %k sk %k Jk sk ok ok kb %k ok %k %k Kk ok

* The known cumulative probabilities are entered. *
e ok gk d Kk g dr e ok kA Kk kR ok ok ok ke sk vk gk Tk ok ok sk sk ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK
cplev(0)=1.0
cplev (msys+1)=0.0
Yk % Kk dk ok %ok de ke ok K K sk &k ke sk ok e ok vk ok ok ok ki sk e dk sk S ok sk dk 3k gk sk sk %k ok ok dk vk ok ke de Sk ok %k ok ok Kk k Kk K
* The cumulative probability of the system being in *
* state k or higher is found for every system state. *
% K J ok K deok kR Kk ook Kk ok ook ok Rk ok ook vk b % de Kk Rk sk sk %k ok gk vk ok Ak e ok A kb ok e ok ke e ek ok %k ok ok %k ok ok %k
do 20 k=1,msys
sum=0.0
do 10 j=1,s (k)
sum=sum+ ((-1) ** (j+1)) *cmblower (s (k), j, k)
10 continue
cplev(k)=sum

20 continue
% % Y % % % % % dr %k % dk %k % %k %k %k e %k dk %k %k dk ok sk Je de sk Je sk %k %k %k Jk ok J b %k ok %k vk %k b vk dk ok ok vk I %k ok ok Kk Kk X
* The probability of each system state is printed. *

J Jc d de Kk K do ook ok ok %k gk ok ko d ke %k sk kR %k A e ok e Ak %k ke gk ok dk dk ke ok e ok dk sk sk sk gk ke ok ok ok ok ok k%

do 30 k=0,msys
plev (k) =cplev (k) -cplev(k+1)
print 99,’Probability of state’,k,’is’,plev(k)
30 continue
print *
print *
99 format (a20,1x,1i2,1x,a2,1x,£8.6)
return
end

T2 X222 22232222 22222222 2Ryt s st ssXs sttt 8 8

* This program determines all possible combinations of *
* vyectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *
* exclusion formula. *
ok dkded Kk e d kA K ok de e sk Kk bk d ok Kk sk vk K sk dr Kk ok k& ke sk Tk %k ok ok ok dk ok ok ok sk ok b ok sk ok ok ok Ok ok

function cmblower(n, r,k)
de de de de de gk % de ok de A Kk Ik ok e vk ok A sk I %k sk vk sk ok sk Tk Ik vk sk v ok ok b skt sk ok %k ok vk e ok %k dk e ok ok ok vk kK ok kK

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* *

ichange - the element that is changed

227

* r - the number of vectors to choose *
* n - the total number of vectors *
* itop - maximum state of the intersection of vectors *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* vec (i) - the intersection vector *
* lrg(i) - the largest vector in position i *
* store - a temporary storage location *
* cmbupper -variable used to return probability *
* prob (i, j) - probability of component i in state j *
* prod - probability of a component state vector *
* cprob(i, j) - probability of component i in state *
* j or higher *
% vk % d Kk F e %k o gk sk ke ok e ok dk b vk vk 3k dk ok sk 3k ok dk ke sk kb %k sk %k dk vk gk Jk ok %k b %k 3k %k %k %k %k ok %k %k ok ok Kk ok
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100) ,prob(100,0:100)
integer msys,ncomp, ichange, r,n,numb,itop,m(0:100),
+s(100),1bp(100,100,100),t(0:100) ,ubp(100,100,0:100),
+vec(0:100),1rg(0:100)
real store,cmblower,prob(100,0:100)
double precision prod,cprob(100,0:100)
% d e dk ok K R ok Kk vk ok ek Kk ke ok de % ke e ok ok ok K vk ok vk vk %k v gk %k d vk e sk ok %k ok ok Kk ke Kk %k e ok % ek %k Kk k kK
* The cumulative probability array is found from the *
* probability array entered in the system description. *
e dc de de e g R K K ke sk I sk sk ok T ok vk de ok ke ok Yk sk e sk ok e sk ke dk sk ke sk Ak sk Kk vk gk %k de kb %k %k ok ke ok ok Kk ok ok k& %k ok
do 20 i=1,ncomp
store=0.0
do 10 3j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)
10 continue
20 continue
% %k Kk J de K ok Kk ok sk ke sk dk % vk ok sk ok bk sk sk ke e ok e ke ok ok b sk ok b ok ok %k sk vk gk ok ok gk kK ok ke ok b ok %k ok ok e ok ok Kk
* The sum of the probabilities of all combinations of *
* lower boundary points to level k taken r at a time is *

* found. *
L E SRS SRR ES RS RERERERRR RS RERSERERS R RS R RS R YRR YRR R R R R SR X
do 30 i=0,r
vec (i) =i
lrg(i)=n-r+i
30 continue
ichange=r

cmblower=0.0
do while (ichange.gt.0)
ichange=r
do 60 numb=(vec(ichange~-1l)+1l),n

228

40
50
60

70

vec (ichange) =numb
prod=1.0
do 50 i=1,ncomp
itop=0
do 40 j=1,r

itop=max (lbp (i, vec (j), k), itop)

continue

prod=prod*cprob (i, itop)

continue

cmblower=cmblower+prod

continue

do while ((vec(ichange-1)).eq. (lrg(ichange-1))

+ .and. (ichange.gt.1l))
ichange=ichange-1
enddo
ichange=ichange-1

vec {(ichange) =vec (ichange) +1

do 70 i=(ichange+l)
vec(i)=vec(i-1)+1
continue
enddo
return
end

’r

& % %k Kk ok Jk ke ok s vk ok vk sk ok e ok ke Ak ok sk sk bk e dk ok sk sk K vk dk sk ok ok ok sk vk %k ok ok ok ke Ak ok ok sk ok Kok %k ok ke %k

This program determines the probability of each system*

state directly from the upper boundary points.
ok Kk kv R de e K kg K e sk e s ke ok sk ok ok dk ok sk b ok R ok gk Ik ok ok ok sk ok dk ok %k ok Kk dk sk kR ok vk b sk %k Kk %k ok %k ok

*
*

subroutine upper

s Je Je e de ok de Je ok ke ok vk gk ok dr ok vk Ak vk e b sk e sk ok S o o ke ok ok sk ok %k gk ok dk b 3k ok dk b vk ok d 3k ok %k ok Kk ok ok

*
*
*
%*
*
*
*
*
*
*
*
*
*
*
*
*

VARIABLE DESCRIPTIONS:

msys - the maximum state of the system
ncomp - the number of components in the system
m(i) - the maximum state of component i

s(k) - number of lower

boundary points to level k

lbp(i, j,k) - the ith element of the jth lower
boundary point to level k

t (k) - number of upper

boundary

boundary points at level 1

point to level k

cmbupper - real function that find all combinations
prob(i,j) - probability of component i in state j
sum - the sum of all combinatorial summations
plev(k) - probability of a system being in state k

cplev(k) - probability

*
*
*
*
*
*
*
*
ubp (i, j, k) - the ith element of the jth upper *
*
*
*
*
*
*
*

of system in state k or less

ve vk J dk de de Kk de gk Kk de sk % A gk ok A sk ke ok dk de ke k de A g ok Kk ok ok Kk ok sk ok ok sk ok ok ok vk ok ke ok ok 3k gk ok ok ok Rk ke ok
common msys,ncomp,m(0:

100),s(100),1bp(100,100,100),

+t(0:100) ,ubp(100,100,0:100) ,prob(100,0:100)

integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t (0:100) ,ubp(100,100,0:100)

real cmbupper,prob(100,0:100)

229

double precision sum,plev(0:100),cplev(-1:100)
external cmbupper
v o dk %k Jk de dr ook Kk dk vk vk gk v vk de ke dk Kk dr vk K vk vk K ok %k Kk gk ke sk sk %k %k 3k o ok sk ok ok 3k ok %k sk ok %k ok dk vk b ok K sk Kk Kk ok ok

* The known cumulative probabilities are entered. *
e % J dk Kk Jk ok vk g ok vk A gk ok vk ok % W gk ke sk de o sk gk e ok e sk ok ok vk Ik sk sk %k dk dk %k vk kK %k dk %k gk dk ok Kk ok ok k kK
cplev(msys)=1.0
cplev(-1)=0.0
% J de e dk de de vk K de e K ok ok Kk Kk Kk ok %k %k ok ok %k vk sk %k sk k% dk sk dk sk %k sk dk dk ok dk b ok kK % b gk ok ke sk gk ok ok %k ok %k
* The cumulative probability of the system being in *
* state k or higher is found for every system state. *
% % Jr Jk %k Jk sk sk sk dk sk Je vk dk dk k3 3k e %k sk ok 3k 3k Jb %k %k %k ok vk % v %k dk sk b dk sk dk dk sk ok dk ok sk ok kK ok % K vk & ok Kk
do 20 k=0,msys-1
sum=0.0
do 10 j=1,t (k)
sum=sum+ ((-1) ** (j+1)) *cmbupper (t (k), j, k)
10 continue
cplev (k)=sum

20 continue
K kAo Aok Rk kKA de ok Kk Kk Kok %k ks ok gk ke ke kT ok sk g ok ks kK vk %k ok sk ok ke ok kK ok vk vk dk vk ok ok bk ok ok ok
* The probability of each system state is printed. *

s sk d ok x x sk bk bk vk d ok ok st dk ok s ok v sk b ok ok ok ok o b ok Sk J Sk Jt Jr 3k b b Jk dk Jk Jk ok vk dk k vk k ok % sk dk sk sk Kk Xk
do 30 k=0,msys
plev (k) =cplev (k) -cplev (k-1) .
print 99,’Probability of state’,k,’is’,plev(k)
30 continue
print *
print *
99 format (a20,1x,1i2,1x,a2,1x,£8.6)
return
end

% % J dc de de gk d Ak A de ok k ko de Kk gk sk ok ok ok ok % Je d gk %k %k sk %k sk ks ok sk ok ok %k Ik %k ok dk sk b ok ok dk ok ok K ok

* This program determines all possible combinations of *
* vyvectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *
* exclusion formula. *
v Jk e sk vk v de vk dk dk ek dkdk ek kk kot ok kR kR Ak kkkkkkdkkkkdkhkkkhkkhhAhhkhkhkhkkhkkhikikxk

function cmbupper(n,r, k)
% J¢ de de ok %k % e K Kk K %k Kk d %k %k v %k % J A ko sk sk ok dk Jk sk st ok ok k% % 9k ok % ake e %k ok 9k dk kb b ok 2k % %k %k %k %k d ok %k %k
* VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system
* ncomp - the number of components in the system
* ichange - the element that is changed
* r - the number of vectors to choose
* n - the total number of vectors
* ibot - the min state of the intersection of vectors
* m(i) - the maximum state of component i
* s (k) - number of lower boundary points to level k
* lbp(i, j,k) - the ith element of the jth lower
* boundary point to level k
* t (k) - number of lower boundary points to level k

* % X % % % % % % % ¥ *

230

ubp(i, j,k) - the ith element of the jth upper *
boundary point to level k *
vec(i) - the intersection vector *
lrg(i) - the largest vector in position i *
store - a temporary storage location *
cmbupper - variable used to return probability *
prob(i, j) - probability of component i in state j *
prod - probability of a component state vector *
cprob(i,j) - probability of component i in state *
j or lower *
e e % ft %k Jr ok sk g d ok v ok de sk gk ok vk sk sk sk sk ok I k% de % % %k & %k sk de vk dlr v vk vk ak dk ok Y A b de ok dk %k %k %k ok ok ke ok
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+£(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp, ichange, r,n,numb, itop, m(0:100),
+s(100),1bp(100,100,100),t(0:100) ,ubp(100,100,0:100),
+vec(0:100),1rg(0:100)
real store, cmbupper,prob(100,0:100)
double precision prod,cprob(100,0:100)
s dc de ok ek dk Kk gk K ok gk gk dk A gk g K v ok o de ok R sk e de sk e sk ok ok Tk sk Rk ok sk b ok ke k ok Ak K gk A ok sk gk ok ok ok ok ok ok
* The cumulative probability array is found from the *
* probability array entered in the system description. *
s v J kK de ke K dode dk d e ok %k ok vk Tt ok 3k ok sk dk ok sk b ok vk %k ok sk %k sk k ke sk ke vk Ik dk dk %k sk ok kK sk ok ok ok ok ok ok kK
do 20 i=1,ncomp
store=0.0
do 10 3j=0,m(i)
cprob (i, j)=store+prob(i, j)
store=cprob (i, j)
10 continue
20 continue
v e sk d de sk v ok vk o ok v e %k vk ok J k dk dk sk sk d Ik b gk sk Jk e gk sk ok de ok ke db dk ok Ik sk sk Xk dt Jk sk ok ok k ke ok kK ok Kk ok
* The sum of the probabilities of all combinations of *
* upper boundary points to level k taken r at a time is *

* % % % % X X ¥ X X %

* found. *
& % vk J de sk A vk % vk v %k ok dk J ok 3k %k % %k 3k o ok dk %k dk dt sk 3k sk sk %k %k b % Jk ok ok vk vk o ok ok ok b Jk %k Jk sk dk sk ok Kk Kk Kk Kk Xk
do 30 i=0,r
vec(i)=i
lrg(i)=n-r+i
30 continue

ichange=r
cmbupper=0.0
do while (ichange.gt.0)
ichange=r
do 60 numb=(vec(ichange-1)+1),n
vec (ichange) =numb
prod=1.0
do 50 i=1,ncomp
ibot=m(i)
do 40 j=1,r
ibot=min (ubp (i, vec(Jj), k), ibot)
40 continue
prod=prod*cprob (i, ibot)

231

50 continue
cmbupper=cmbupper+prod
60 continue
do while ((vec(ichange-1)) .eq. (lrg(ichange-1))
+ .and. (ichange.gt.l))
ichange=ichange-1
enddo
ichange=ichange-1
vec (ichange) =vec (ichange) +1
do 70 i=(ichange+l),r
vec(i)=vec(i-1)+1
70 continue
enddo
return
end

% e de de Jk de gk K Je K ok K vk K ok vk ok Kk %k e ok e o vk e e Ik ok 3k e sk ek dk sk sk o sk gk A d ok ok ok dk ok vk vk %k ke ok o R %

* This program determines the probability of each system*
* state by decomposition using lower boundary points. *
Je d ok d e de Kk de ok ok d e dk dk o sk ok de gk ok sk dk sk sk ke sk %k ok ok de b ok %k ke vk K vk sk ke sk ok Ak gk ok sk ok sk %k ok sk vk kK ok %

subroutine decomplow
Je J “ Jk J d gk e dk g ok dk sk vk e ok dk ok ok b sk A sk K % ok gk 3k ok ok dk gk vk db dk sk Jk ok sk vk J ok ok sk vk Jt ok ok dk sk ok sk %k ok %
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component 1i *
* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j, k) - the ith element of the jth upper *
* boundary point to level k *
* prob (i, j) - probability of component i in state j *
* cprob(i, j) - probability of component i in state *
* j or higher *
* prod - probability of a component state vector *
* plev(k) - probability of a system being in state k *
* cplev (k) - probability of system in state k or more *
Y J % ok %k dk dk J Jk J sk sk vk ok vk ok K sk dk dk dk dk sk Ik Jk dk sk Ik Tk o ok sk vk dk sk ok sk sk dk ok v dk dk ok dk sk dk sk gk ok sk %k ok K A ok ok
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)
integer bo(100),b(100),bbo(100,1000),bb(100,1000),
+vo(100),v(100),ymin(100),1l0,ss,hl,h2, iter
real prob(100,0:100),cprob(100,0:100)
double precision prod,plev(0:100),cplev(0:100)
[R E RS R R E R RS2SR EES SRR RS2 RERRRRR RS R SR 2 d R R AR R 8 0 8 R 8 8 &
* The cumulative probability array is found from the *

* probability array entered in the system description. *
Je s de Je e ok e Je ok de dook kA Rk A K Je ok de vt ok Yo sk sk A gk v gk sk A sk Ak de de Ak ok s ke g e ke e Kk e R ok sk ok b ke ke ok ok ok %

232

do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob(i, j)
store=cprob (i, j)
10 continue
20 continue
e A K ke Yo sk ok % gk Je ok Y ok sk dk Je v % dk ok %k ke gk ok b sk gk kb ok ok sk k ks ok kK ok vk dk k% vk b 3k % ok ok ok ok ok ok vk Kk ok

* The system is decomposed with Aven’s algorithm. *
s N vt d dk Jk sk s ok k% dk kv dk ok d ok %k ok sk sk sk sk b dk ok A % ok ok gk b ok %k sk sk W ok ok ok sk %k ok ok ok ok dk sk ok ok ok %k ok K
*xxk*k Step 1
do 110 k=1,msys
iter=1
cplevik)=0.0
do 30 i=1,ncomp
bo (i)=m (i)
ymin (i) =bo (1)
b(i)=0
30 continue
* k k Kk k% Step 2
do while (iter.ne.0Q)
hl=-1
lo=1
do 60 j=1,s (k)
iflag=0
do 40 i=1,ncomp
if (lbp(i, j, k) .gt.bo(i)) then
iflag=1
endif
40 continue
if (iflag.eq.0) then
h2=0
do 50 i=1,ncomp
if(lbp(i, j,k).lt.ymin(i)) then
ymin (i)=1bp (i, j, k)
endif
h2=h2+bo (i) -max (1bp (i, j, k) ,b (1))
S50 continue
if (h2.gt.hl) then
hl=h2
lo=j
endif
endif
60 continue
%k ok Kk ok Step 3 & 4
prod=1.0
do 70 i=1,ncomp
v(i)=max (ymin(i),b (1))
vo (i)=max (lbp(i, lo,k),b(i))
prod=prod* (cprob(i,vo(i))-cprob(i,bo(i)+1))
70 continue

233

cplev (k) =cplev (k) +prod

sk K Kk k Kk Step 5

80
90

%* K %k

100

110

ss=0
do 90 i=1,ncomp
if (v(i).lt.vo(i)) then
ss=ss+1
do 80 j=1,ncomp
if (j.ne.i) then
bbo (j,ss+iter~1)=bo (j)
else
bbo(j,ss+iter-1)=vo(j)~1
endif
if (j.lt.i) then
bk (j, ss+iter-1)=vo (J)
else
bb(j, ss+titer-1)=v (3j)
endif
continue
endif
continue
iter=ss+iter-1
***x Step 6
do 100 i=1,ncomp
bo (i) =bbo (i, iter)
b(i)=bb (i, iter)
ymin (i) =bo (i)
continue
enddo
continue

%k % dk ok de de sk A ek ok ko de d ok vk ok ek e dk ko ke kK vk ok sk %k ok ok ok gk K vk ok sk S ok sk ok ok ok ok ok ok sk ok gk ok ok ok k k

*

The probability of each system state is printed.

*

% ke d do ok gk ok sk ok gk ok ok A ok d dk ok sk ok dk ok sk A K ks ko ok sk sk Kk ok dk ok %k sk ok ok b % sk sk gk ok ok sk ok dk ok dk ok sk Kk Kk Kk Kk

120

99

cplev(0)=1.0

cplev (msys+1)=0.0

do 120 k=0,msys
plev(k)=cplev(k)-cplev(k+1)

print 99,’Probability of state’,k,’is’,plev(k)

continue

print *

print *

format (a20,1x,12,1x,a2,1x, £8.6)
return

end

ok de % do ok de ok ke sk ok ke ke gk ok sk ok e sk ok kK ko e ok sk A ok %k %k ok ok %k ok ok dk K %k ok sk Jk %k sk sk ok %k Kk k Kk K W ok
This program determines the probability of each system*

*
*

state by decomposition using upper boundary points.

*

s J K ok sk Kk Kk dk ok ks K d ok ko Kok b ok ok Kk ok ke ok ke kb ok ok ok sk ke K ok dk ok sk ok % ok ok ok ok ok ke Kk ok ok ok Kk

subroutine decomphi

K ode ok ke koK Ak ke ko ok ok kg gk ok gk Ak ok ok ok A K sk sk gk b sk sk ok k ok sk sk sk % vk sk ke sk ok Kk ke sk ok sk Rk Kk Kk ok Kk ok Xk

*

VARIABLE DESCRIPTIONS:

234

*

* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state j *
* cprob(i, j) - probability of component i in state *
* j or higher *
* prod - probability of a component state vector *
* plev(k) - probability of a system being in state k *
* cplev(k) - probability of system in state k or less *
% % de ok % Kk sk e deode e ke dk de ok gk ok sk Ak dk sk Kk sk ke ke sk ke ok gk ok sk %k ok sk sk sk ok sk gk sk %k ok ok Kk Kk ke ek sk k ke k ok ok

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:200) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)
integer bo(100),b(100),bbo(100,1000),bb(100,1000),
+v0(100),v(100),ymax(100),1lo,ss,hl, h2,iter
real prob(100,0:100),cprob(100,0:100)
double precision prod,plev(0:100),cplev(0:100)
% Y ok %k Jk ok J K K J %k %k % %k db kK %k ok dk ok k dk %k % %k sk K Jk dk dk %k kb dk dk sk dk ok de sk dk dk dk ok sk sk 3k %k de Kk %k sk k%
* The cumulative probability array is found from the *
* probability array entered in the system description. *
Je K % ok ok dr ok Kk K gk sk gk ok ok %k %k dk g gk ok e sk g sk R vk Kk Kk k vk ok ok sk sk sk sk %k ok gk ok dk %k ke k% ke ok ok Kk ok %k ok ok %k K
do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)

10 continue

20 continue

% d %k % % %k Kk ok d ok Kk dk d %k sk ok sk ok ok dk ok % % %k vk vk dk Jr ok o T o ok vk dk dk ok dk dk Ik ok Ik %k %k %k %k %k ik %k %k ok % sk ok %
* The system is decomposed with Aven’s algorithm. *

IS XSS SRS RS RRRRERRRERRRRRRRERRSRRRERRRRRRERRRRRRRRRRERE RS

* Kk k Kk k Kk Step 1
do 110 k=0,msys-1
iter=1
cplev(k)=0.0
do 30 i=1,ncomp
bo (i) =0
ymax (i) =bo (i)
b(i)=m(i)
30 continue
* Kk ok k ok Kk step 2
do while (iter.ne.()
hl=-1
lo=1

235

do 60 j=1,t (k)
iflag=0
do 40 i=1,ncomp
if (ubp(i,3j,k).lt.bo(i)) then
iflag=1 :
endif
40 continue
if (iflag.eq.0) then
h2=0
do 50 i=1,ncomp
if (ubp(i,j, k) .gt.ymax(i)) then
ymax (i) =ubp (i, j, k)
endif
h2=h2-bo (i) +min (ubp (i, j, k) ,b (1))
50 continue
if (h2.gt.hl) then
hl=h2
lo=j
endif
endif
60 continue
xxkxxx* Step 3 & 4
prod=1.0
do 70 i=1l,ncomp
v(i)=min(ymax(i),b(i))
vo (i) =min (ubp(i,lo,k),b(i))
prod=prod*(cprob(i,bo(i))-cprob(i,vo(i)+1))
70 continue
cplev(k)=cplev(k)+prod
xxxkkk Step 5
ss=0
do 90 i=1,ncomp
if (v(i).gt.vo(i)) then
ss=ss+1
do 80 j=1,ncomp
if (j.ne.i) then
bbo (j, ss+iter-1) =bo (J)
else
bbo (j, ss+iter-1)=vo(j) +1
endif
if (j.lt.i) then
bb (j, ss+iter-1)=vo (J)

else
bb(j, ss+iter-1)=v(])
endif
80 continue
endif
90 continue

iter=ss+iter-1
**xkkk*x Step 6
do 100 i=1,ncomp

236

bo(i)=bbo (i, iter)
b(i)=bb (i, iter)
ymax (i) =bo (i)
100 continue
enddo
110 continue
% J % g vk K %k ve de sk sk 3k sk o Jo sk e Je ok ok sk vk %k ke 3k ok de vk gk ok b %k gk sk %k ok ok vk ok %k sk K sk ok A gk ok b ok ok %k Kk Kk

* The probability of each system state is printed. *
s % %k J 3k Jk vk dk sk ok s ok dk Jk d gk dk b vk dk dk dk sk sk de ok ok kb ok gk ok % %k ok dk ok % ok gk vk dk b %k vk vk vk % ok % sk % %k K Kk Kk ok
cplev(-1)=0.0
cplev(msys)=1.0
do 120 k=0,msys
plev(k)=cplev(k)-cplev(k-1)
print 99,’Probability of state’,k,’is’,plev(k)
120 continue '
print *
print *
99 format (a20,1x,1i2,1x,a2,1x,£8.6)
return
end

% J¢ de &k de vk e K dk vk ok ks K %k de sk s de ok ok ok ok sk ok de Sk Tk vk e g sk ok ok Ik vk sk ke ke ok %k ok ok %k ok ok ok ok %k ok k Kk Kk kK %

* This subroutine uses decomposition and lower boundary *
* points to find the probability of each system state. *
s v dr Jk e de e ok %k e e J de W %k e ok ok sk dk b ok vk sk sk gk ke K %k dk gk dk sk vk v sk dir vk sk ok sk vk dk okt dk dr Kk ok ok ok kR Kk

subroutine declower
% gk ok Kk ok gk ook K gk ok %k ke sk K K vk Rk ok ok sk gk sk ok e ok K ok ok ke gk ok vk sk %k %k sk gk ok dk ok dk ok e Sk ok %k %k ke %k ok sk kK ok k
* VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system
* ncomp - the number of components in the system
* m(i) - the maximum state of component i
* s (k) - number of lower boundary points to level k
* lbp (i, j,k) - the ith element of the jth lower
* boundary point to level k
* t (k) - number of upper boundary points to level k
* ubp (i, j, k) - the ith element of the jth upper
* boundary point to level k
* wkl-4(i, j) - temporary working matrices
* icnt (i) - used to store subproblem sizes
* prob(i, j) - probability of component i in state j
* cprob (i, j) - probability of component i in state
* j or higher *
* cplev(k) - probability of system in state k or more *
gk sk de ok d ok Kk dr ok dk sk ok ok e e e Sk ok A g sk gk de sk v sk ok ok Ak Rk kg sk kK %k K sk ok Rk kg ok sk sk %k ok ok ke %k
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100.0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+£(0:100) ,ubp(100,100,0:100) ,wk1(100,1000),
+wk2(100,1000) ,wk2(100,1000),wk3(100,1000),
+wk4(100,1000),1icnt (0:100)
real prob(100,0:100),cprob(100,0:100),cplev(0:100)

* % % % % F o % O % % ¥ ¥

237

common/ralph/cprob(100,0:100), rel
external lexinc,calclow,divide
v ¢ Yo % %k % % % % %k ok ¢ %k v vk vk v d vk b ok vk vk ok sk sk Jb b S gk sk ok Jk sk %k sk ok sk dk s b ok ok e ok % Tk ok dk v e dr %k W Kk Kk
* The cumulative probability array is found from the *
* probability array entered in the system description *
% % Jo ok A d ok K d ok ok Kk d ok de de gk %k vk ok ke vk vk ok kK %k ok vk %k ke ke A ok sk ok sk Jk gk ok sk ks Kk sk gk ok kK Kk k kK ok ok
do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)
10 continue
20 continue
s Jr % ok vk v % sk e e vk ok Jk dk v sk sk vk sk ok sk sk dk sk %k vk dk dk W b %k ko sk sk Jk d %k dk ok ok ok % b dk ok db gk vk sk %k Xk ok Kk %k K
* For each level k, the lower boundary points are used *
* to decompose the system into disjoint problems. *
% Y % %k %k ok vk ok dk % K & Kk dk ok de ook sk dk Kk Kk Jk ok vk vk ok Jk %k dk ok %k %k %k %k ke k% ok sk %k ok o b ok %k gk b k% %k %k ok %k %k ok Kk k&
do 120 k=1,msys
icomp=1
rel=0.0
do 40 i=1,ncomp
do 30 j=1,s (k)
wkl (i, 3j)=1bp(i, j, k)
30 continue
40 continue
call lexinc(wkl,ncomp,s(k))
call calclow(icomp,wkl,ncomp, s(k),wk2, jcnt)
do while (jcnt.ge.l)
call divide (wk2,icomp, jcnt,icnt, iter)
jent=0
icomp=icomp+1
do 90 isub=1,iter+l
do 60 i=1,ncomp
do 50 j=icnt (isub-1),icnt (isub) -1
wk3 (i, j-icnt (isub-1)+1)=wk2 (i, j)

50 continue
60 continue .
call calclow(icomp,wk3,ncomp, icnt (isub) -
+ icnt (isub-1),wk4, newj)

do 80 i=1,ncomp
do 70 j=1,newj
wkl (i, jent+3) =wkd (i, J)

70 continue

80 continue
jent=jcnt+newj

90 continue

do 110 i=1,ncomp
do 100 j=1, jcnt
wk2 (i,) =wkl (i, 3)
100 continue
110 continue

238

enddo
cplev(k)=rel

120 continue
% % % % Jk %k sk 3k ok Jr vk sk ok sk sk dr v vk vk sk sk dk vk Je vt ok Ik dk dk sk kb st e %k %k gk)k %k sk ok ok sk dk dk dk sk ok sk sk ok ok Kk ik ok Kk %k

* The probability of each system state is printed. *
2 2R E XX 2R RS2 X2 R R R R R RS AR R R RS YRR RS EER SRR RE SRR R R SR X B8
cplev(0)=1.0

cplev(msvs+1)=0.0
do 130 k=0,msys
rlev=cplev (k) -cplev(k+1l)
print 99,’Probability of state’,k,’is’,rlev
130 continue
print *
print *
99 format (a20,1x,12,1x,a2,1x,£8.6)
return
end

Y¢ e de e Jr e o de v ok ok ok b e W ok Y dr T sk b b dr dk Ik dk dc ok b b ok Ik %k %k % b b A dk J ok ok kb % %k ok ok b ¥k ok Kk Kk K

* This program sorts vectors lexicographically. *
J¢ ¢ sk %k ¢k e Je vk e vk sk sk vk okt kv sk vk Jk ok dk dk sk sk Tk ke %k Kk %k Y ok ok vk b sk 3k b vk %k %k vk %k %k k %k %k sk Kk ok %k vk %k %k %

subroutine lexinc(wk,ihigh, jhigh)
Je dk % J ok K Je %k ¥ vk e vk sk dk gk ok vk I ok vk ke ok d sk de kR ok ok K ok ok sk %k gk ok ok gk ok ke sk %k Tk sk ke %k %k sk %k Aok ke

* VARIABLE DESCRIPTIONS: *
* wk - array of vectors to be sorted *
* ihigh - the ith dimension of wk *
* jhigh - the jth dimension of wk *

% %k %k %k d sk de %k de sk ok %k Kk Kk %k sk ok %k dk %k o ok sk Kk sk ok kK ok vk gk sk Kk vk d sk ok ok ok ok ok dk Tk ok ok kK ok ke ke ke

integer wk(100,1000)
s Je %k Jde de dr dk dk k d k %k de Je vk ok K d %k dk ok sk Jk sk Jk K e W vk o gk vk dke vk ok sk sk Ak gk ok sk dk dr de d b ke gk A de Kk ok Kk ok Kk
* The vectors are sorted from the last element to the *
* first in increasing order with a bubble sort routine. *
¢ % % % Kk v Jk % J dr %k % % %k ok dr e ok ok d sk sk dk Je sk kI Je %k vk vk v dk sk sk ok ok Jk dk sk dk ok dk ok sk dr e vk ok k ok ko k ok Kk
do 40 il=ihigh,1,-1
do 30 jl1=1, jhigh-1
num=jhigh-3jl
do 20 j2=1,num
if (wk(il, j2).gt.wk(il, j2+1)) then
do 10 i2=1,ihigh
itemp=wk (i2, §2)
wk(i2, j2)=wk(i2, j2+1)
wk(i2,j2+1)=itemp

10 continue
endif
20 continue
30 continue
40 continue
return
end

Je kK ok de ok de ok de vk ke Kk dk vk Ak ke gk ke ok sk ok ok ok A ok A ok ok ke sk Kk ok vk ok kg ok dk ok sk ok ok sk ke ok ok %k sk K ok ok ok ke ok Kk ok

239

* This program is used to branch the lower boundary *
* points into disjoint subproblems. *
s e de % %k e & gk % dk ok %k dk gk dk ok sk e I sk ok ke ok b v dk b ke ok ok k ok vk ok ok %k dk sk sk dk ok ok ok sk ok ok vk sk ok ok ok e ok

subroutine calclow(icomp,wkl,ihigh, jhigh, wk2, jcnt)

(XSS 22R 222222 RRRRRRRRRRRRRRRRSRARRERRRRARRERRRERRRRRSRRSREREE

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* wkl-2(i,j) - temporary working matrices *
* icnt (i) - array used to store subproblem sized *
* prob(i, j) - probability of component i in state j *
* cprob(i, j) - probability of component i in state *
* j or higher *
J ge vk Kk ek K A gk ok Kk kR sk ok K vk ok ok gk & ok ok kb gk d ke Kk sk ok sk sk kv gk e ok sk ok vk ok ok Kk dk ke sk ok % %k ok %k Kk

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100.0:100)

integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100) ,wk1(100,1000),
+wk2(100,1000),icnt (0:100)

real prob(100,0:100),cprob(100,0:100)
common/ralph/cprob(100,0:100), rel

external lexinc,divide,elim
o J dk de F ok sk Jk d ok vk ko A ek K % ok %k % vk %k sk ok Ik ok Jk %k %k sk %k ok K sk ok %k sk %k ke ok ok dk %k e vk ok %k d ok ok dk ok ok k%

* Temporary lower boundary points are generated. *
% J e o % d %k ok % g % Je ok g ok vk %k gk ok ok Kk Kk k% e % v ok ok vk ek ke k% %k ok ok dk A ok %k A ok ok sk ok ok ok ke ok e ok
jwkl=1
jwk2=1

do 40 ifix=0,m(icomp)
do while ((wkl (icomp, jwkl).eq.ifix) .and.
+ (jwkl.le.jhigh))
do 10 i=1,ihigh
wk2 (1, jwk2) =wk1l (i, jwkl)
10 continue
jwkl=jwkl+1
jwk2=jwk2+1
enddo
if (ifix.lt.m(icomp)) then
do 30 j=1, jwkl-1
do 20 i=1,ihigh
if (i.eq.icomp) then
wk2 (i, jwk2)=ifix+1
else
wk2 (i, jwk2) =wkl (i, J)
endif

240

20 continue
wk2=3wk2+1

30 continue
endif
40 continue
jent=jwk2-1

% J¢ %k % % Jr Y % J % de ok gk ok vk e de kg ok e de A A e e sk ok Sk %k Fe dk dk vk d vk sk ok kW %k ok ok dk ak dk ok %k ok o o A ok ok ok ke ok

* The problem is logically separated into subproblems. *
A de e de de gk ke Kk K ok ok e gk ek gk Kk ok gk de gk R sk ok Kk Ak sk ok ke gk kg ok e sk sk ok Ak ok ok ok Rk sk kR ok kK Kk K

call divide(wk2, icomp, jent, icnt,iter)
de gk J ok K A ok ke ok k Jk Kk ok A A ok Kk sk A ke %k % ok ok %k sk ok dk gk kb sk vk gk ok ok ok ok 2k Y ok dk %k k %k vk T sk gk ok ok ok Kk ok K ok

* Dominated lower boundary points are marked. *
%k de g K deok dk gk Rk d ok o gk de gk ok Kk ok kK gk ok ke sk gk ok W ok sk e 3k ok ok dk gk de sk %k de dk ok Kk ok ke ke ke ok ok ok ok ok kK
do 80 isub=0,iter
do 70 jl=icnt (isub),icnt(isub+1l)-2
do 60 j2=j1+1,icnt (isub+1l)-1
iflag=0
do 50 i=1,ihigh
if (wk2(i, jl) .ge.wk2(i, j2)) then
iflag=iflag+l
endif
50 continue
if (iflag.eq.ihigh) then
wk2(1,31)=-1

endif
60 contir ae
70 continue
80 continue
vk J %k Je Je J¢ de de ok ok sk ok Kk %k de de de A gk gk sk ok A d sk vk g de d ot o ok e sk ke ok gk ok ok dk b ok ok ek ke ke k ke kA ok ok ke ok ke
* Dominated lower boundary points are eliminated. *

% d¢ ke k de de ok Kok % e de s gk dk o de Kk ok vk sk vk gk e ok sk de sk Kk K k% ok ko 3k ok dk A ok ok %k dk Jk ok ok dk e o sk ok dk ke ok ok ok ke

call elim(wk2,ncomp, jcnt)

AKX KAk dkok kR ok ok ok ok Ak ok ok ok kK ok Kk Kk Kk gk A ok Kk %k Tk Kk sk ok %k gk 3k ok ok sk %k ok ok ok ok ok ok ok ok ok ok ok kb ok &

* The problem is logically separated into subproblems. *
s % %k ok d ok A dk gk b dk & A S sk 0k ok o sk ok o b b J dv ok dt dr ok ok ok dk Jk ok ke ok vk ok b A ok vk Ak ok ok ke k ke ke k ok ok kK

call divide(wk2, icomp, jcnt,icnt, iter)
de de Kk v K ok K dk Kk K Kk k ok ok ok sk %k ok % ok ke ok gk gk ok ke ok ke vk sk ke sk ok ok gk %k gk k& ek ok ok e sk %k %k ok ok %k ok ok
* Single lower boundary points are marked and the *
* probability of the lower boundary point is tallied. *
o gk ok odek kg ook sk de ke sk %k ok Ak ok ok Je ok dk de sk Tk kb Kk ok K ok %k e sk A gk sk % sk ok ok ke sk dk e %k ok ok Kk ok %k ok ok ok %k Kk
do 110 isub=0, iter
if ((icnt(isub+1l)-icnt(isub)).eq.l) then
prod=1.0
do 90 i=1, icomp
prod=prod*prob (i, wk2 (i, icnt (isub)))
90 continue
do 100 i=icomp+1,ihigh
prod=prod*cprob (i,wk2 (i, icnt (isub)))
100 continue
rel=rel+prod
wk2(1l,icnt (isub))=-1

241

endif
110 continue
Je Je % sk % 7 de de %k vk %k Jk de % e sk Ak %k dk ok ko dr ok gk vk b e %k sk ke %k ok ok ok ok vk dk ok dk vk ok A K sk ke ok sk %k ok %k ok %k sk Kk ok

* Single lower boundary points are eliminated. *
% % vk K Kk ok K gk ok de ok sk de sk %k ke sk sk % dk Kk sk sk 3k gk sk ok %k gk gk d dk ke sk dk A vk sk ok vk dk ok sk Kk ok %k ke sk %k ok ok %k k ok ok

call elim(wk2,ncomp, jcnt)
sk % ok K ok ke sk ok K vk & gk e A gk kI ke sk ok dk ok k% ke ok dk vk sk ke sk e vk vk ok gk vk sk ok sk gk vk sk Rk %k ok %k ok Kk ok ok Kk

* The remaining problem is sorted lexicographically. *
s Jk % dk v dr vk Je ke de e % vk %k dk dk vk dk dk T ok Kk ok b sk ke sk ok Tk sk b sk %k dk ok sk dk dk dk Jk ok vk dk gk sk dk gk Kk ok dk ok k ok
call lexinc(wk2,ihigh, jent)
return
end

subroutine divide (wk, icomp, jcnt, icnt, iter)
% ke k Kk Kk d de k& ok ok ok ok 3k s gk g 3 ok ok ok ok sk ok 3k ok o 3k ok sk sk 3k 2k sk 3k 2k ok ok b ok ot e b ok sk ok ok ok g o ok ok e J Sk Ak Kk ok
* VARIABLE DESCRIPTIONS: *
* wk(i) - a temporary working matrix *
* icomp - the component being pivoted on *
* jent - the jth dimension of wk *
* icnt - an array used to store subproblem sizes *
* iter - the number of subproblems *
KR kKK d R Kk ok Kk kK ko ok Rk kv A vk gk gk ok Ik sk A dk ok e ok ok dk 3k k ok A ok dk %k ok sk %k R vk dk k ok ok %k %k %k k%
integer wk(100,1000),icnt(0:100)
ient (0)=1
iter=0
do 20 j=2, jcnt
iflag=0
do 10 i=1,icomp
if (wk(i,j).eq.wk(i, j-1)) then
iflag=iflag+l
endif
10 continue
if (iflag.ne.icomp) then
iter=iter+l
icnt (iter) =3
endif
20 continue
icnt (iter+l)=jcnt+1l
return
end

subroutine elim(wk,ihigh, jcnt)

do do e A de ok sk s ok de ok sk ok ek ok de koK kA ok ok ok ok st vk A vk ok sk vk Kk sk vk d k ak de ke ok e ok ok ke ke ki ki k k ke ok ok ok ok ok

* VARIABLE DESCRIPTIONS: *
* wk - a temporary working matrix *
* ihigh - the ith dimension of wk *
* jent - the jth dimension of wk *

J de A ke e e de ok de ok de kK b gk Tk K sk kK K Rk ok kg e ok K gk K sk Kk ok ok ok ke ok Tk s ok ok Ak ke ok ok ok ok ok ok K ok

integer wk(100,1000)
do 30 j2=jent,1,-1
if (wk(l,32).eq.-1) then

242

do 20 3j1=3j2, jent-1
do 10 i=1,ihigh
wk (i, j1l)=wk (i, j1+1)

10 continue
20 continue
jcnt=jecnt-1
endif
30 continue
return
end

%k ¢ Kk Je de Kk ok dk %k ok de ok kK Kk ok vk dk de sk ke e ok ok vk ke gk Kk dk sk ok ok ok dr sk sk ok ok ok 3k Kk dk ok K 3k ks K ok Yk ok ok ok ke ok K

* This subroutine uses decomposition and upper boundary *
* points to find the probability of each system state. *

J 3 Jc dk d¢ g Jk de gk de Ik K sk Kk % vk %k Kk Kk ok sk %k ik ok e Ak dk dk dk ok Jk db vk ok sk ok ok %k ok Kk sk % sk k% %k %k ok dk ok K ok %k

subroutine decupper
Je gk d ok Kok ok Ak ok W sk ok de de de e vk de Ak dk ke Kk gk b ok %k dk %k sk sk ke ok %k ok gk gk ke ke ke sk sk ok kK k %k ok b ok ok kK ok ok ok
* VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system
* ncomp - the number of components in the system
* m(i) - the maximum state of component i
* s(k) - number of lower boundary points to level k
* lbp(i, j,k) - the ith element of the jth lower
* boundary point to level k
* t (k) - number of upper boundary points to level k
* ubp (i, j,k) - the ith element of the jth upper
* boundary point to level k
* wkl-4 (i, j) - temporary working matrices
* ient (i) - used to store subproblem sizes
* prob(i, j) - probability of component i in state j
* cprob(i,j) - probability of component i in state
* j or lower *
* cplev(k) - probability of system in state k or less *
R 2 R 2222222822222 2822 2822 X X22 82222 et i s S aa8 & 2 8 & 5
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100),ubp(100,100,0:100) ,prob(100.0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),wk1(100,1000),
+wk2(100,1000) ,wk2(100,1000) ,wk3(100,1000),
+wk4(100,1000),1icnt (0:100)
real prob(100,0:100),cprob(100,0:100),cplev(0:100)
common/ralph/cprob (100,0:100),rel
external lexdec,calchi,divide
K v de ke Kk A ok gk ek K sk ok dr ke ke sk ok Je ok ok ok ok sk de ok sk %k ok ok ok dk ok ok % gk ok sk vk %k ok dk ke vk ok ok g sk ki ok ke k k ke ke Ak
* The cumulative probability array is found from the *
* probability array entered in the system description *
A ks e ok e e ok ok ke kA e ok kv ok ok Kk ok e ok sk sk sk ke vk ok ke ok R ok ok b vk ok ok Kk kT ok dk %k ok sk ok &k ok ke ks ok k%
do 20 i=1,ncomp
store=0.0
do 10 j3=0,m(1i)
cprob (i, j)=store+prob (i, j)

* % % % % ¥ % % % X % F N X

243

store=cprob (i, j)
10 continue
20 continue
% sk % %k %k k % %k sk % % ok % e ok o %k dk d ok Sk vk ok sk sk sk vk %k kb vk ok dk sk db sk k dk b sk b dk vk dk b vk a ok vk db de de ok Kk Kk Xk
* For each level k, the upper boundary points are used *
* to decompose the system into disjoint problems. *
Je % ¢ % Jk Jk % vk %k k ok vk sk sk v sk gk ok sk sk J dk sk vk Ik vk k% %k vk gk %k Ik b b %k %k % ok sk k ok ok dk dk dk ok dk sk %k ok sk d K dk %k
do 120 k=0,msys-1 ‘
icomp=1
rel=0.0
do 40 i=1,ncomp
do 30 j=1,t (k)
wkl (i, j)=ubp (i, j, k)
30 . continue
40 continue
call lexdec (wkl,ncomp,t(k))
call calchi (icomp,wkl,ncomp,t (k),wk2, jcnt)
do while (jcnt.ge.l)
call divide (wk2,icomp, jcnt,icnt, iter)
jent=0
icomp=icomp+1l
do 90 isub=1,iter+l
do 60 i=1,ncomp
do 50 j=icnt (isub-1),icnt (isub) -1
wk3(i, j-icnt (isub-1) +1)=wk2 (i, j)

50 continue
60 continue
call calchi (icomp,wk3, ncomp, icnt (isub) -
+ icnt (isub-1) ;, wk4, newjj)

do 80 i=1,ncomp
do 70 j=1,newj
wkl (i, jent+3j) =wkd (1, j)

70 continue

80 continue
jent=jcnt+newj

90 continue

do 110 i=1,ncomp
do 100 j=1, jcnt
wk2 (i, j)=wkl (1, j)

100 continue
110 continue
enddo

cplev(k)=rel

120 continue
*i**

* The probability of each system state is printed. *
Je d d Je de gk dk ok dk ok de de e Kk dk ok Kk sk ok ok sk gk % sk Sk ok % vk sk ok Kk k sk sk d gk ok vk ok sk ok vk dk ok vk Kk ok ok ok ok ok X
cplev(-1)=0.0
cplev (msys)=1.0
do 130 k=0,msys
rlev=cplev (k) -cplev(k-1)

244

print 99, ’Probability of state’,k,’is’,rlev
130 continue
print *
print *
99 format (a20,1x,1i2,1x,a2,1x,£8.6)
return
end

s ¢ % de de ok kst vk e e ke ok b ke dk sk %k b %k %k ok sk ok dk kA kv v ok Jk ok ok d sk dk ok dk e sk ok sk ok gk ok e ok vk ke ok ok %k %k Xk

* This program sorts vectors lexicographically. *
¢ % % % %k Je % sk ok % sk J vk dk db 3 %k sk e ok Jk ok vk dk dk ik dk k% v dk %k % sk dr de dk ok %k ok k %k dk b dk vk ok vk Ik %k %k ok b sk k% Kk Kk

subroutine lexdec (wk,ihigh, jhigh)

(222 S REERARSRRERERRRRRRRRRRRRRRRRRRRRERRRRRRRRRSRRRRRER SRS

* VARIABLE DESCRIPTIONS: *
* wk - array of vectors to be sorted *
* ihigh - the ith dimension of wk *
* jhigh - the jth dimension of wk *

J % de sk Je dr sk o de ok de de vk db de ko ke K gk Ak ok vk sk e sk ok o ok e dk ok ke e A R sk ok gk dk ke sk ok kK K ok sk R sk ok ok ok ko

integer wk(100,1000)
J J¢ Jk % 9 J v %k dk vk ok vk ok vk b %k sk ok gk vk dk %k vk dt dk b ok ok J sk sk dk b sk ok % sk dr kv s vk sk ok db ok Jk dk sk sk sk sk ok vk sk kK
* The vectors are sorted from the last element to the x -
* first in decreasing order with a bubble sort routine. *
e d¢ & d %k sk %k ok o de sk dk s e d ok kb sk ok e dk vk sk ok dk sk sk sk dk % Yk b %k dk sk ok ok ok Jk ok dk vk db dk sk vk ok vk gk gk ok ok ok sk sk)k ke Kk
do 40 il=ihigh,1,-1
do 30 ji1=1, jhigh-1
num=jhigh-jl
do 20 j2=1,num
if (wk(il, j2) .1t.wk(il, j2+1)) then
do 10 i2=1,ihigh
itemp=wk (12, j2)
wk(i2, j2)=wk (i2, j2+1)
wk(i2, j2+1)=itemp

10 continue
endif
20 continue
30 continue
40 continue
return
end

s % de K gk ok ek s de A e ok ok sk dk de de e vk ke vk vk vk ek ko sk ek vk kb P ok ok kb dk ok ok vk vk gk % o ok ok sk sk sk ok k ok ko ok

* This program is used to branch the lower boundary *
* points into disjoint subproblems. *
A A A sk A de ek vk e dk sk e ke ke ke ok g sk sk ks Ak ok dk ok ok sk kb sk b bk ok gk Sk ok gk ok ok ok sk ok ok ik Kk ok ok Kk ke

subroutine calchi (icomp,wkl, ihigh, jhigh,wk2, jcnt)
Jo Ak Je de sk e de ok sk d ok e ok ok de ok ok Kk sk ok ok ok Kk %k ok de gt s vk %k ok sk ok ok ok ke ke sk b ok sk ok ok sk ke ik ok ok ok ok ok ok ok k ok
* VARIABLE DESCRIPTIONS: *
msys - the maximum state of the system
ncomp - the number of components in the system
m(i) - the maximum state of component i
s (k) - number of lower boundary points to level k

* % * *
* % * %

245

* l1bp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* wkl-2(i, j) - temporary working matrices *
* icnt (i) - array used to store subproblem sized *
* prob(i,j) - probability of component i in state j *
* cprob(i, j) - probability of component i in state *
* j or lower *
Je o de ok A e Kk e de sk ok de vk sk ke k% e sk ke vk ok ke vk ok e dk sk K gk B sk gk ke ok ok dke ok b ke sk Rk ke Kk sk Kk dk ok ok ok ok ok ok K
common msys,ncomp,m(0:100),s(100),1lbp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100.0:100)
integer msys,ncomp,m(0:100),s(100),1lbp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),wk1l(100,1000),
+wk2(100,1000),icnt (0:100)
real prob(100,0:100),cprob(100,0:100)
common/ralph/cprob(100,0:100), rel
external lexdec,divide,elim
s dk de ok dk K ok gk ok Kk ok e Kk k Kk Kk Ik sk ke ok ok e sk e ok ok ke gk sk sk e sk dk %k %k ok ke ok ok %k ok ok ik sk ok % ok ke %k Kk %k %k %k K

* Temporary upper boundary points are generated. *
H Ak ok ok A ok Kk ok A sk sk Tk ke dk ok st sk Sk dk sk b b o ok b dk ok b sk ok Jk ok vk dk gk ok bk ok Kk sk R %k sk ok kK vk ok %k kR ok ok Kk ok
jwkl=1
jwk2=1
do 40 ifix=m(icomp), 0, -1
do while ((wkl (icomp, jwkl).eq.ifix) .and.
+ (jwkl.le.jhigh))
do 10 i=1,ihigh
wk2 (i, jwk2) =wk1l (i, jwkl)
10 continue
jwkl=jwkl+1
jwk2=jwk2+1
enddo
if (ifix.gt.0) then
do 30 j=1, jwkl-1
do 20 i=1,ihigh
if (i.eq.icomp) then
wk2 (i, jwk2)=ifix~1

else
wk2 (i, jwk2) =wkl (i, J)

endif

20 continue
jwk2=3wk2+1
30 continue
endif

40 continue

jent=jwk2-1

A de de e s de de de de A e e e de ok kR de dk %k ok k kR Kk Kk de e sk d sk ok sk ok vk d sk ok ke Jr e de ok dk sk koK %k e K o %k Kk ok

* The problem is logically separated into subproblems. *
odr ke v de ke s de vk ke kv kv e o A e ok b e ok gk sk sk & A A T ok %k Jk Ak sk sk ok ok ok 3k % gk ok gk sk 3k ok vk ok ok sk ok ok b ok ok e K

call divide(wk2, icomp, jcnt, icnt,iter)

246

s Kk d ok ok dr ek K ok ok ko %k gk kA ok Kk sk ok ke vk ok ok dk d Jk sk vk ok gt ke ok ok ok dk ok ok dk ok b dkr ok sk ok ok ok ok ke gk kK ok ok

* Dominated lower boundary points are marked. *
Je dk % %k J % % dr % ok sk ok %k e ok vk Ik I sk kb sk ok sk %k ok ok b Ak ok sk ok dk vk 3k ok Tk ok 3k %k sk sk %k sk b ok ok dk sk ok sk ke ko
do 80 isub=0,iter
do 70 jl=icnt (isub),icnt (isub+l)-2
do 60 j2=3j1+1,icnt (isub+1l)-1

iflag=0
do 50 i=1,ihigh
if (wk2(i, jl).le.wk2(i, j2)) then
iflag=iflag+l
endif
50 continue

if (iflag.eq.ihigh) then
wk2 (1, j1)=-1

endif
60 continue
70 continue
80 continue
Yok v d Jk J %k T K de %k %k ok dk ok Je ok ok d dk sk b vk vk dk dk ke sk T ok %k ok b sk sk dk ok ok ok ok ok ok K ok vk Tk ok ok ok %k kR %k kK
* Dominated lower boundary points are eliminated. *

de sk dk dk dook e gk A ook ke sk ok de ok bk ok Ik sk vk ke sk ke ok dk K sk sk ok ok ok ok ok %k ok vk ok ok b v %k ok ok ok %k d ke ke ok sk %k

call elim(wk2, ncomp, jcnt)
kA Kk ok ko R gtk ok kK ko Rk ok kA Kk ok Kk %k ok Ak dk ok k% sk sk gk sk %k R ok sk % vk ok ok vk ok ok ok e ok ok ok ke ok ke ok ok

* The problem is logically separated into subproblems. *
K K %k ok ok gk ok ok ok ook ok K gk Rk kA ke k Kk ke ok kb sk ok ok ke k% ke ok ke vk ok vk dk e vk sk kK ok sk ok ok gk ok k ok ke ok ok ok &

call divide(wk2, icomp, jent, icnt, iter)
% Je e dr o K oA e K ok ok ke k de ook ok ok ok e sk sk ok ok e vk %k dk ok ok ke ke ke ok Kk sk gk Kk ok sk vk %k ok vk sk ok vk ok Rk gk k ko ok ok ok
* Single lower boundary points are marked and the *
* probability of the lower boundary point is tallied. *
J dk % Jr o J % v ks ok A de ke vk sk e vk dk dk dk ok sk sk sk A bk ok sk vk Jk dk dk vk dk b ok vk vk dk sk dk sk dk ok ok ok ik k k kX
do 110 isub=0, iter
if ((icnt(isub+1l)-icnt (isub)).eq.1l) then
prod=1.0
do 90 i=1,icomp
prod=prod*prob (i, wk2 (i, icnt (isub)))
90 continue
do 100 i=icomp+1l,ihigh
prod=prod*cprob (i, wk2 (i, icnt (isub)))
100 continue
rel=rel+prod
wk2(1,icnt (isub))=-1
endif
110 continue
Je ke de K ok s ke ok Je ok %k Kk d Kk sk e ok ke dk ok K ok sk ok ok dk ok ok dk ok ok sk Sk ok %k %k ok v ke ok ok sk sk ok ok ok Kk ok dk Kk ok ok ok ok

* Cfingle lower boundary points are eliminated. *
Je vk kA ok de dr gk de st ok A A K K ke A R e w k k k ok sk sk ok Kk vk gk k ok sk de gk dk ok Kk ok ok ok ok ok sk ok ok ok dk gk ok ok Kk ok ok ok ok

call elim(wk2,ncomp, jent)
J Jk Je de de K A vk ok ok de dk ok koK sk A ok ok ok ok ok b b sk ke ke o ek e gk bk ok s o ok gk vk ok %k & ok ok ok 3k sk ok ok ke ok ok ok

* The remaining problem is sorted lexicographically. *
KhkhkhkhhAAEXAKRAAXAKRAAKRAKR KRR AAR R AR AR A ARKAAKR AR Rk kkhkkkkrhkkkkkkhxkx

call lexdec (wk2,ihigh, jcnt)

247

return
end

248

Appendix B. Bounding System Performance Program

J Je vk d sk b sk gk ok ok Kk dk ok vk sk gk e dk Kk gk sk ok sk sk gk b o gk sk gk ok b sk Ak sk e ok dk sk S A ok ok %k vk ok sk ok ok A ok %k ok ok kK

* WRITTEN BY: Ralph Boedigheimer *
* LAST UPDATE: 16 Dec 91 *

K Kk e d g sk de ok ok ok ok ke ok %k kb K gk gk de sk %k % ok ok ok ok %k dk ke dk %k ok dk sk ke %k sk %k 3k dk sk % sk %k ok ok %k ke k ok ok

s % % vk de o K K de ok sk Kk d ok ke gk kK ke R sk ok ok ok ke Rk ok sk dk Kk kb Ak ok vk gk sk ok ok dk %k vk ok ok ok ok sk ke k ko %k ok %k

* This is the main program that runs all other programs *
* and estimates reliability for a multistate system. *
% % s Jr % J sk & sk e %k sk %k sk ok ok %k Jk %k dk %k vk sk vk dk Jk kK % ok %k dk %k %k %k %k dk %k %k dk dr dr %k %k %K %k d Kk dk %k d dk d Kk Kk Kk ok %k

program bounds
% Jr ¢k sk sk dk J ok ke k v ok dr b %k ok ok sk v db b sk b db dk sk ok v vk ok %k %k %k vk dk ke %k kA % %k Jk Jk sk %k ok ko ok ok

* VARIABLE DESCRIPTIONS: *

* answer - variable for interactive feedback *
% v ¥ v dr v dk Jk ok %k T ok ok %k %k ok ok Kk dk %k v %k %k ok %k b sk %k e ok % vk sk %k %k sk % ok sk d ok vk ok ok ok % ok vk % ok ok ok ok Kk d %k

real answer
J Je %k Kk %k sk % %k %k % vk sk 3k sk %k sk 3k ok %k sk dr ok sk I %k %k vk % %k %k vk Ik sk ok b sk dk ok vk %k k% ok b %k sk sk dk sk ok sk ke ok

* The main menu is presented to the user. One of the *

* given options must be selected. *
Je %k H %k %k %k Kk vk Kk %k J d ok % ok % %k % e ok % vk sk dk sk b % ok %k b ok ke ok ok kv sk %k ok ok Rk ok % ok %k ok ok kA ok ok kA ok
5 answer=0.0

do while ((answer.lt.1.0).or.(answer.gt.10.0).or.
+ (amod (answer,1.0) .ne.0.0))

’
print *,’ 1. INPUT A NEW SYSTEM DESCRIPTION.’
print *,’ 2. DISPLAY THE CURRENT SYSTEM.’
print *,’ 3. TRIVIAL BOUNDS (LBPs).’
print *,’ 4, TRIVIAL BOUNDS (UBPs) .’
print *,’ 5. PATH/CUT BOUNDS.’
print *,’ 6. MIN/MAX BOUNDS.’
print *,’ 7. COMBINED BOUNDS.’
print *,’ 8. INCLUSION-EXCLUSION BOUNDS (LBPs).’
print *,’ 9. INCLUSION-EXCLUSION BOUNDS (UBPs).’
print *,’ 10. EXIT THE PROGRAM.’
read *,answer
print *
enddo

% %k Jo de ok ke KoKk %k vk dk sk sk dk ok ok ok ok ok ok dk sk ok ok gk ok ok ok gk ok ok ok sk ok %k Jk ok ok sk ok sk dk %k ok ok ok Kk ok ok ok vk ok ok %k ok ok

* The program routes to the appropriate subroutine and *
* then returns to the main menu. *
K % ek Kk sk J ok ok %k ok sk ok Kk ok de gk ok Kk K sk sk vk sk v Jr ok ok vk sk sk Kk ok ok sk Sk vk e sk db ke dk ok Kk ok ke ke Kk ok ki ok ok ok ko
go to (10,20,30,40,50,60,70,80,90,100),answer
10 call system
go to 5
20 call display
go to 5
30 call ltrivial
go to 5
40 call utrivial
go to §

249

50 call pathcut

go to 5

60 call minmax
go to 5

70 call combined
go to 5

80 call lower
go to 5

90 call upper
go to 5

100 stop
end

de % %k d Kk Kk ok sk T %k ok Kk %k ok ok ok ok %k ks vk %k ok sk e ke ok sk ok ok ok ok %k sk vk sk ko vk bk ok Kk sk ke ok ok ok %k sk k k% K %k

* This program is used to enter a description of the *
* multistate system being studied. *
Je % %k %k dk d de ok ok sk K Kk sk Ak sk Sk sk ke sk sk gk dk %k vk ok ok sk 3k %k ok %k b ok %k ok ok gk ok vk ok %k %k vk sk ok dk %tk ok %k ok ok kK

subroutine system
Yo % % v d %k dk ok sk % %k o b e e ok b ok ok b %k %k Tk Jk sk sk Jk d dk ok dk vk ok e b ok ok dk b ok v ok % %k b ok %k Jk ok ok ok Kk Kk ko ok %
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m{i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level x *
* ubp(i, j, k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state jJ *
ek de kK & gk Kk Kk ok ok ke gk e ok ok ok Kk sk ke gk ok dk d sk ok sk vk gk dk sk ok dk bk vk ek ok sk Kk ok ok dk ke ok gk gk %k ok A ok ok ok ok
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100),ubp(100,100,0:100)
real prob (100,0:100)

%k % Kk % d ok e gk vk d ok Fe ok K ok sk ok %k dk dk ok ok sk ok Kk ok sk db ke sk ok e kK ok ok kR sk ok sk 3k ok ok ok Sk ok ok K ok ok kK ok

* The required information is interactively entered. *
% J d vk Kk K sk d K ok kA Kk Kk Kk ke Kk vk sk sk vk sk e ok kK sk sk ok sk ok sk A gk A vk sk Kk ok ok vk dk ke A e ok ek ok ok ok ke ok ok Kk
print *,’ENTER THE MAXIMUM SYSTEM STATE (1-100).’
read *,msys
print *
print *,’ENTER THE NUMBER OF COMPONENTS (1-100).’
read *,ncomp
print *
do 10 i=1,ncomp
print *,’ENTER THE MAXIMUM STATE OF COMPONENT’', i,

+ r(1-1G0) .’
read *,m(i)
print *
10 continue

250

do 20 i=(ncomp+1),100
m(i)=0
20 continue
m(0)=0
do 40 i=1,ncomp
print *
do 30 j=0,m(i)
print *,’FOR COMPONENT’,i,’ENTER THE ’/,

+ 'PROBABILITY OF BEING IN STATE’, j
read *,prob(i, J)
30 continue
40 continue

do 60 k=1,msys
print *,’ENTER THE NUMBER OF LOWER BOUNDARY’,
+ ! POINTS TO LEVEL’,k,’ (1-100).’
read *,s (k)
print *
do 50 j=1,s (k)
print *,’FOR LEVEL’,k,’ENTER LOWER BOUNDARY’,

+ ’ POINT #',73
read *, (lbp(i, j,k),i=1,ncomp)
50 continue
print *
60 continue

do 80 k=0,msys-1
print *,’ENTER THE NUMBER OF UPPER BOUNDARY',
+ * POINTS TO LEVEL’,k,’ (1-100).’
read *,t (k)
print *
do 70 j=1,t (k)
print *,’FOR LEVEL’,k,’ENTER UPPER BOUNDARY’,

+ ' POINT #',3
read *, (ubp (i, j,k),i=1,ncomp)
70 continue
print *
80 continue
return
end

ok K %k ok e vk dk d sk ok Tk sk k% gk ok ke A ok ok ok ok b ok ok kR ok ok ok Ak K Yo sk kR kb ok ok ke kA vk ok ok ke k k ke ok ok ok ok

* This program displays the description of the system.

*

% sk k% sk %k %k sk o sk ok b sk o e sk b e sk dk ok ok ok ok ok sk Sk ok ok Sk sk i dk b b ok ok ok e %k gk ok %k b e T vk vk ok ok ok ok Sk ok ok %

subroutine display

% % de d d vk sk Kk sk v sk sk sk de kg de P ok b e ok sk ke ok ok sk ke e A ok ok ok ok kol e o ke ok dk ok ok sk ok Kk k ki ko ko ok ke ok ok ok

* VYVARIABLE DESCRIPTIONS:

* msys - the maximum state of the system

* ncomp - the number of components in the system

* m(i) - the maximum state of component i

* s(k) - number of lower boundary points to level k
* lbp (i, j, k) - the ith element of the jth lower

bd

boundary point to level k

251

* ¥ * ¥ * ¥ %

* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state j *
% v %k Kk % %k % de %k Kk Kk sk sk Kk K dk b vk sk sk ok sk kv ke ok Jk %k ok A ke 3k e ok ok ok K R % dk ok ok e Ik sk b sk % gk sk %k Kk %k
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+£(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)
real prob (100,0:100)

% % d ko d Aok ok o ik e ok ok ok sk ok ok dk ok ok dk ok Sk gk ok ok e vk ok sk Kk dk ok ok sk sk sk ok ok %k Jk vk sk Kk k dk ok dk ko ok ok ke Kk

* The current system is displayed for the user. *
% Jk K % %k & vk dk v Kk Kk dr de ok kg ok ke ok dk sk %k ok sk ke ok sk e Tk dk sk A ok %k ok ok ke ok Kk ok ok 3k gk ok Kk Kk ok Kk %k %k %k Kk k Kk Kk
print *,’Maximum System State:’,msys
print *
print *,’Number of Components:’,ncomp
print *
print *,’Component Max State Vector: (’,
+ (m(i),i=1,ncomp),’)’
print *
do 10 i=1,ncomp
print 99,’Component’,i,’Probabilities:’,
+ (prob (i, j),J=0,m(i))
10 continue
print *
do 30 k=1,msys
print *,’System Level’,k
do 20 j=1,s(k)
print *,’Lower Boundary Point #/,3,’: (',
14

+ (lbp(i,j,k),i=1,ncomp),’
20 continue
print *
30 continue
print *

do 50 k=0,msys-1
print *,’System Level’,k
do 40 j=1,t (k)
print *,’Upper Boundary Point #’,3,’': (',
+ (ubp (i, j,k),i=1,ncomp),)’
40 continue
print *
50 continue
print *
99 format (a9,1x%,1i2,1x,al4,2x%,100(£5.3,1x))
return
end

kK A Kk de ok Aok kK ok gk sk kA ok ok kA vk gk ke ke ok ke ke ok ok ke sk ok sk ok sk ok ok gk sk ok %k ok ok sk ok ke ok ok % Kk ok ok ok R

* This program determines the trivial bounds using a *

* single lower boundary point. *
%k Kk Kk K Kk de ok %k kK vk sk ok de vk d A vk e ke Kk ok ke k d e ok sk ke gk ok ok ok vk ok sk ke ke ok sk ok vk sk sk gk b ok ok ok ke ke ok ok Rk

252

subroutine ltrivial
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:1200),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100),ubp(100,100,0:100)
real prob(100,0:100),cprob(100,0:100)
% Jr K % v %k dk Y %k Kk K de %k %k ko 3k ok Jk %k sk b gk dk d %k dk sk e sk ok sk sk ok %k ok Jk dk sk vk sk ok dk ok ok vk ok kb ok %k ok ok %k ok Kk
* The cumulative probability array is found from *
* probability array entered in the system description. *
e Jr % dr % % % ok % v % vk e ok v v d vk vk ok sk v 3k dk d sk Jk dk ok Jk Jk sk sk %k vk dk v ok dk sk kb ok sk ok b Tk gk sk dk ok ok ok Kk %
do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)
10 continue
20 continue
do 50 k=1,msys
print *,’System Level’, k
do 30 j=1,S(k)
print *,’Lower Boundary Point #’,3,’: (',
+ (lbp(i, j,k),i=1,ncomp),)’
30 continue
print *
answer=0.0
do while ((answer.lt.l.0).or. (answer.gt.s(k)).or.
+ (amod(answer,1.0).ne.0.0))
print *,’ENTER THE LOWER BOUNDARY POINT #.’'
read *,answer
print *
enddo
j=int (answer)
qlow=1.0
ghigh=1.0
do 40 i=1,ncomp
gqlow=gqlow*cprob (i, lbp (i, j, k))
ghigh=gqhigh* (1.0-cprob (i, 1lbp(i, j, k)))
40 continue
print *,qlow,’<= Q(’,k,’) <=’',1.0-ghigh
print *
50 continue
print *
print *
return
end

J Jc e de gk de K o vk %k de T ok b o ok ok ot ok vk ok vk vk st v de ok ok ok A %k vk ok ok o ok b ok sk kK gk ok ok gk ok ke ek ok ok ke ke ok ok ok

* This program determines the trivial bounds using a *

* single upper boundary point. *
sk de Kk % dr ok de vk e ok ke ok ok gk sk kA Kk ke sk e A ok ok ok ok ok e ok Rk ok dk ke ok ok ok dk %k ok ok ok dk sk ok ok ok ke ok ke k%

subroutine utrivial

253

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)
real prob(100,0:100),cprob(100,0:100)
v %k v vk % vk ok vk vk dk J ok dk A b vk dk dk sk dk v vk ok %k ok 9k 3k %k ok ok % ok 9k vk dk ok e b gk b ok %k kA Kk %k k% ok %k %k ok ok %k
* The cumulative probability array is found from the *
* probability array entered in the system description. *
de 3%k de ok vk dr e s e vk dk sk sk v K sk e de ok vk ok ok sk A vk vk Yo ok ok do sk ke ke vk ok ke dk %k v gk sk ok ko A Ak Rk kK ok kW K
do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)
10 continue
20 continue
do 50 k=0,msys-1
print *,’System Level’,k
do 30 j=1,t (k)
print *,’Upper Boundary Point #’,3,’: (’,
+ (ubp (i, j,k),i=1,ncomp),’)’
30 continue
print *
answer=0.0
do while ((answer.lt.1.0).or. (answer.gt.t(k)).or.
+ (amod(answer,1.0).ne.0.0))
print *,’ENTER THE UPPER BOUNDARY POINT #.’
read *,answer
print *
enddo
j=int (answer)
glow=1.0
ghigh=1.0
do 40 i=1,ncomp
glow=qlow*cprob (i, ubp(i, j, k) +1)
ghigh=qhigh* (1.0-cprob(i,ubp(i, j, k) +1))
40 continue
print *,qlow,’<= Q(’,k+1,’) <=',1.0-ghigh
print *
50 continue
print *
print *
return
end

de e e d K vk de sk de ok e ok ok ok de de de ok sk K ok sk sk s gk gk sk ok sk 3 K K % o sk ok Jk sk sk sk ok sk dr ok ok ok ok ok ok ok ke ke Kk

* This program determines the path/cut bounds for one of*

* the measures of reliability. *
Kok ok ok deok vk sk ok Tk vk Ak e sk Kk ok sk de sk sk ke sk b dk ok Kk dk ok de ok sk K gk %k sk ok ok sk ok ok ok ok vk A de ok sk A dk ok ok ok ke

subroutine pathcut
A Jr ook vk o de ok e s de A Sk N k% de ok gk e gk ek sk e e Ak sk dk b sk b dk b sk d %k sk de Y sk k& ok %k vk ok ok kK ok bk gk sk %k ok Kk

254

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state j *
* cprob(i, j) - probability of component i in state *
* j or higher *
% J 7k J% sk dk sk d sk sk Jr dc ok sk vk sk ok %k dk vk dk de sk sk ok %k Tk i e v e ok ok sk sk gk ok ok ok ok ok ok Jk dk k ok %k ok ok %k Kk ok %k Kk K %k Xk

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),

+t (0:100) ,ubp(100,100,0:100) ,prob(100,0:100)

integer msys,ncomp,philower, phiupper, nvec,divider,

+m(0:100),s(100),1bp(100,100,100),t(0:1200),

+ubp (100,100,0:100),x(100)

real prob(100,0:100),cprob(100,0:100)
s J %k vk %k sk %k vk kv e e % ok ok Ik ok vk dk dk vk dk sk %k %k ok Jk ok sk sk ok sk de dk sk b ok kb Kk o ok % ok k ok Kk ok
* The cumulative probability array is found from the *
* probability array entered in the system description. *
%k % %k d K ok %k %k Kk % sk dr ok e e dk e K ok ok ok ok dk ke sk dk vk ok sk b vk ok vk %k dk d sk ok ok sk ok ok Tk %k ok %k ok ok ok ok ok Kk

do 20 i=1,ncomp

store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)

. store=cprob (i, j)
10 continue

20 continue
% % % % % % dk sk J v d %k k % %k ok dk gk sk d vk sk sk A de %k ok ok vk %k ok dk sk sk sk ok sk sk Jt dk vk dk d dk ok ok dk ok b vk ok Sk %k ok k k k
* The path/cut bounds are determined assuming the *

* components are mutually independent. *

s v %k %k K % % % dk sk dk sk Je gk ok dk dk gk % de % ok ok sk dk %k vk gk ok db ok sk %k ok Ik Y ok dk %k % de sk sk %k %k dk ok b gk dk ok %k Kk k Kk
do 70 k=1,msys
qlow=1.0
do 40 j=1,t (k-1)
prod=1.0
do 30 i=1,ncomp
if (ubp(i, j,k-1).ne.m(i)) then
temp=1.0-cprob (i, ubp(i, j, k-1)+1)
prod=prod*temp
endif
30 continue
temp=1.0-prod
glow=qlow*temp
40 continue
ghigh=1.0
do 60 j=1,s(k)
prod=1.0

255

do 50 i=1l,ncomp
if (lbp(i, j,k) .ne.0.0) then
temp=cprob (i, lbp (i, j,k))
prod=prod*temp
endif
50 continue
temp=1.0-prod
ghigh=ghigh*temp
60 continue
print *,qlow,’<= Q(',k,’) <=',1.0-ghigh
70 continue
print *
print *
return
end

sk % K gk K % e ok ke sk sk kb %k v K e dk ok vk sk ke vk sk ok dk %k ok sk Kk % dk T ok ok sk sk gk sk kb vk vk b ok ok ok ok %k ok Kk k ok kK ok

* This program determines the min/max bounds for one of *
* the measures of reliability. *
J v Kk K dk v st dk A ok sk % b sk K sk sk 3k %k sk ak sk %k ok gk ok ok sk gk ok sk ok 3k 2k ok sk sk 3k sk ok b sk dk 3k Jk ok ok ok ak ok ok ok ok ok Kk

subroutine minmax
s % Jk J& dk sk %k e ok sk sk sk Je Jb dr sk ok ok sk b ok ok ok b Jr b d o dk g o db ok ok Jr J ok ok o S d b Y b dk Kk Jk k Jk %k dr sk dk ok ok vk Kk X
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp (i, j, k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j, k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state j *
* cprob (i, j) - probability of component i in state *
* j or higher *
e gk K K v ok & Y %k gk K A ek %k A K %k ke A ke vk ok de sk ok Jb %k K ok %k vk %k ok 3k ok sk vk vk ok ok sk ak ok %k %k ok %k %k k %k %k %k %k %k %k

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),

+t£(0:100),ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp,philower, phiupper, nvec,divider,

+m(0:100),s(100),1bp(100,100,100),t(0:100),

+ubp (100,100,0:100),x(100)

real prob(100,0:100),cprob(100,0:100)
% ok Je K dk de gk sk K K ok e e s e gk ok e ek db gk ke ok e ok ke ok ok ok ke ok dk ke sk vk T ok kI kv sk ok ikt ke ok sk ok ak ok ok ok ok
* The cumulative probability array is found from the *
* probability array entered in the system description. *
* A K A s sk sk ok dk ok vk s J ok b ok ok ok ok sk d ok de o vk ok de gk sk gk ok ke ok gk Tk ok & %k sk sk Kk ok K b % ok ok sk %k ok ok ok

do 20 i=1,ncomp

store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, 3)

256

10
20

continue

continue

IZZZE 2RSSR RRRRRSRRRRERRRRRRREEXE2A R RRRRE SRR EEREEEES,

The min/max bounds are determined assuming the

components are mutually independent.
e ok Je ke dk J ok gk Kk gk ok R Kk dk gk ok sk ok sk ok ok sk sk ok T ke dk gk vk dk K ok kb A ok ok R ok 3k k ok gk Kk ok sk dk ok k% Kk ok kK ok ok K Kk

do 70 k=1,msys

*
*

30
40

50

60
70

gqlow=0.0

do 40 j=1, s (k)
prod=1.0
do 30 i=1,ncomp
if (l1bp(i,j,k).ne.0.0) then
temp=cprob (i, lbp (i, j, k))
prod=prod*temp
endif
continue
glow=max (glow, prod)

continue

ghigh=1.0
do 60 j=1,t(k-1)
prod=1.0
do 50 i=1l.ncomp
if (ubp(i, j,k~1).ne.m(i)) then
temp=1.0-cprob(i,ubp(i, j, k-1)+1)
prod=prod*temp
endif
continue
temp=1.0-prod
ghigh=min (ghigh, temp)

continue

print *,qlow,’<= Q(’,k,’) <=’,qhigh

continue
print *
print *
return
end

*

*

A AAAKRKA KRR KRR AR RAKARKRKAIIRKRKRK Ik ok kk ok ok &k & & skde & ok ok &k &k & & & d ok ok sk ok &k k %

This program determines the combined bounds for one of*

the measures of reliability.
J sk ko sk gk sk kA sk e o sk vk ok ok vk ok de kA ok ok dk e % vk sk vk ok ok vk ke dk ok sk ok ok ok gk ke ok ok %k dk ok db dk ok Kk ok ok ok Kk

subroutine combined
% Je de Kk dok ok d ok ok R Aok de gk ke vk ok de vk ek ok g e Ak ke dk Kk ok ok Kk sk gk ok ok ok ki sk %k K d d ke ok sk ok ok ke k k ke ke
VARIABLE DESCRIPTIONS:

msys - the maximum state of the system

ncomp - the number of components in the system

*
*

*
*
*
*
*
*
*
*

m(i) - the maximum state of component i
s (k) - number of lower boundary points to level k
lbp(i, j,k) - the ith element of the jth lower

boundary point to level k

t (k) - number of upper boundary points to level k

257

*

* O X ¥ H H X ¥

* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i,j) - probability of component i in state j *
* cprob (i, j) - probability of component i in state *
* j or higher *
J ok Jk dr J¢ d vk J dk d sk v dk sk g ok b dk dk dk ok dk vk dk %k Ik %k ok k% dk ok vk dk vk ok sk vk i Y %k Tk ke ok ok ok dk % ok % e % ok %k %k % %k

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100) ,prob(100,0:100)
integer msys,ncomp,philower,phiupper, nvec,divider,
+m(0:100),s(100),1bp(100,100,100),t(0:100),
+ubp (100,100,0:100) ,x(100)
real prob(100,0:100),cprob(100,0:100)
J¢ Jk v v vk dk sk dr dk vk dk vk de ok ok dk ok ok dr sk dk sk de ok sk 3k ok v dk vk ok d sk dk ok dr vk ok ok Tk kK ke Xk Kk %k ok k% %k ok
* The cumulative probability array is found from the *
* probability array entered in the system description. *
s A dr ook A Je v gk Rk de ok de gk vk gk ke vk de e ok sk sk vk vk dk sk vk ok R v ok e vk ok dk sk K d sk ke dk ek ke ok ki ki ki ko ke ok ok ok ok K
do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1
cprob (i, j) =store+prob (i, j)
store=cprob (i, j)

10 continue

20 continue

s Je ok vk ok Ak gk ok ok o Ik ok ok gk ke ok b K dk ok ok kK ke k% ok dk sk ke sk Jk ok gk ok ok dk ok %k ke ok ok k kK ok ke Rk Kk kR ok ok
* The combined bounds are determined assuming the *
* components are mutually independent. *

J d dc st de dr de dt I e ok ok e ek gk de dr d ok Kk Je de ke ke ok ek sk ke ok o o v gk ke sk de ke ke i e ok ok ok ok ok ok ok ke ok ok ok

do 110 k=1,msys
qlowl=0.0
do 40 j=1,s (k)
prod=1.0
do 30 i=1,ncomp
if (lbp(i, j,k).ne.0.0) then
temp=cprob (i, lbp (i, j, k))
prod=prod*temp
endif
30 continue
gqlowl=max (qlowl, prod)
490 continue
qlow2=1.0
do 60 j=1,t(k-1)
prod=1.0
do 50 i=1,ncomp
if (ubp(i, j,k-1).ne.m(i)) then
temp=1.0~cprob(i,ubp (i, j,k-1)+1)
prod=prod*temp
endif
50 continue
temp=1.0-prod
glow2=gqlow2*temp
60 continue

258

ghighl=1.0
do 80 j=1,t (k-1)
prod=1.0
do 70 i=1,ncomp
if (ubp(i, j,k-1).ne.m(i)) then
temp=1.0-cprob (i,ubp (i, j, k-1) +1)
prod=prod*temp
endif
70 continue
temp=1.0-prod
ghighl=min (qhighl, temp)
80 continue
ghigh2=1.0
do 100 3=1,s (k)
prod=1.0
do 90 i=1,ncomp
if (lbp(i,j,k).ne.0.0) then
temp=cprob (i, 1bp (i, j,k))
prod=prod*temp
endif
90 continue
temp=1.0-prod
ghigh2=ghigh2*temp
100 continue
ghigh2=1.0-ghigh2
qlow=max (qlowl, glow2)
ghigh=min (qhighl, ghigh2)
print *,qlow,’<= Q(’,k,’) <=’,qghigh
110 continue
print *
print *
return
end

K oJ de e ko ok deodk s A e s ok sk de vk dk de vk %k ke sk e dk I dke ok e sk vk ok sk ke vk ok ke ok ok ke sk K K ok K ok gk K Kk sk kK Kk ke ok ke
* This program bounds the probability distribution *
* using the inclusion-exclusion principle and lower *

* 4 *
boundary points.
% sk & o sk Jk ok sk vk sk sk ke sk sk de db o sk s ok b dF sk Sk ok o ok v ok 3k a Jk Jr Jk Jk dk sk ok b Jk sk sk Sk kb Sk ok dk kb k k% sk Kk Kk ok

subroutine lower
Je e J g o Yo e Yo o v K sk ek Je ok sk e Rk ok dke e gk ok b ok T de K vk sk ke o sk Kk e gk e T ok ok gk ok %k e ok sk ok kR %k %k ok ok ok ok %k

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
> t (k) - number of upper boundary points to level k *
* ubp (i, j, k) - the ith element of the jth upper *
* *

boundary point to level k

259

* cmblower - real function that finds all combinations*
* prob(i, j) - probability of component i in state j *
* sum - the sum of all combinatorial summations *
* plev(k) - probability of a system in state k *
*
*

cplev(k) - probability of system in state k or more *
P 2222333223828 22 2 2222222282222 R 2 2t st o Rt 880 R & 2 2 &
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t£(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)
real cmblower,prob(100,0:100)
double precision sum
external cmblower
A Jc e d b dr e A e e ok e dk b b sk I ok ok ok b ok o dk b ok e sk dk %k dk %k ke ok ok vk dk ok ke ok vk ke vk sk ok ke e ok ok sk %k ok ok ok
* The cumulative probability of the system being in *
* state k or higher is found for every system state. *
sk v v sk dr v ok v v i Jr vk o dk vk ok ok sk Jk sk sk db dk sk %k 3k % sk %k %k 3k ok % dk vk vk dk dk b ke Wt %k sk gk dk %k ke gk ok ke ok b %k ok %k
answer=0.0
do while ((answer.le.0.0).or. {answer.ge.l.0))
print *,’ENTER THE ACCEPTABLE TOLERANCE’,

+ ' {0 < TOL < 1).’
read *,answer
print *

enddo

tol=answer
do 10 k=1,msys
sum=0.0
i=1
diff=1.0
glow=0.0
ghigh=1.0
diff=qghigh-qlow
do while ((j.le.s(k)).and.(tol.lt.diff))
sum=sum+ ((-1) ** (§+1)) *cmblower (s (k), j, k)
if ((j.ne.s(k)).and. (mod(j,2).ne.0.0)) then

ghigh=sum
elseif ((j.ne.s(k)).and. (mod(j,2).eq.0.0)) then
glow=sum
elseif (j.eq.s(k)) then
glow=sum
ghigh=sum
endif
diff=qhigh-qlow
J=j+1
enddo
print *,qlow,’'<= Q(’,k,’) <=',qghigh
10 continue
print *
print *
return

end

260

% %k de 7k % ok e de vk ok vb ke dk sk vk %k vk K K ok sk sk %k sk gk ok ok ok ok ok 3k %k %k %k ok ok ok ok 3k ok bk ok vk ok %k ok sk Kk ok ok Kk

* This program determines all possible combinations of *
* vyectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *
* exclusion formula. *
AXNKKAKRKRAKRKAARAAKRAAARKRARKAK AKX AKX Ahkkhkkhhkkkhkhkhkhkkhkhkkhkkhkhkkkkkkkxk

function cmblower (n, r,k)
Jr %k K Jk %k K K sk ke gk sk % ok vk % Je de gk sk v ke %k dk vk sk sk ek sk ko sk dk b ok ok %k dk k dk vk ok %k ok sk ke ok ok ke sk kK %k
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* ichange - the element that is changed *
* r - the number of vectors to choose *
* n - the total number of vectors *
* itop - the max state of the intersection of vectors *
* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* vec (i) - the intersection vector *
* lrg(i) - the largest vector in position i *
* store - a temporary storage location *
* cmbupper -variable used to return probability *
* prob(i, j) - probability cf component i in sutate j *
* prod - probability of a component state vector *
* cprob(i, j) - probability of component i in state *
* j or higher *
d Je v vk de ok %k %k dk Kk de ok g ok ok vk sk K %k ok ok e ok dk Kk %k sk gk sk sk ok ke sk ke ok vk sk sk sk ok ok ok ok ok ok Kk ok ok ok %k vk ok

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),

+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp,ichange, r,n,numb,itop,m(0:100),
+s(100),1bp(100,100,100),t(0:100),ubp(100,100,0:100),
+vec(0:100),1rg(0:100)
real store,cmblower,prob(100,0:100)

double precision prod,cprob(100,0:1C0)
ok Je &k Kk K Je vk kK ok ok sk ek ok ke Jk ok Kk dk vk vk sk vk vk dk sk sk sk sk dk ok dk ok sk K ok vk ok k% K sk ok sk ok dk %k dk sk %k % sk %k k%
* The cumulative probability array is found from the *
* probability array entered in the system description. *
drode ok Joodk ok de e Kk Je gk ok K sk Kk A ke ok sk vk sk %k sk gk Sk ke ok Tk ok ok kK ok k sk dk gk ok sk sk ok sk sk % vk gk gk vk ok ok A ok ok ok

do 2. i=1,ncomp

store=0.0
do 10 j=m(i),0,-1
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)

10 continue
20 continue
Jeode ko Je J de ok dk A vk e v d ok J ok sk de ok ok sk ok ok vk Tk sk ok e ok Kk ok sk Kk de ok e ok ok e sk ok sk sk sk gk b ok ok ok ok ok ok ok ok ok Ak

* The sum of the probabilities of all combinations of *

261

* lower boundary points to level k taken r at a time *
* is found. *
s %k % ok sk sk gk vk % gk sk vk sk kA vk vk gk dk de sk v Ak Ak dk ok b sk sk ke ok e sk gk R sk ok ok sk Tk ok kK ok ke ok sk ok ok ok gk ok Kk K kK
do 30 i=0,r
vec(i)=1i
lrg(i)=n-r+i
30 continue
ichange=r

cmblower=0.0
do while (ichange.gt.0)
ichange=r
do 60 numb=(vec(ichange-1)+1l),n
vec (ichange) =numb
prod=1.0
do 50 i=1,ncomp
itop=0
do 40 j=1,r
itop=max (lbp (i, vec (j), k), itop)

40 continue
prod=prod*cprob (i, itop)
50 continue
cmblower=cmblower+prod
60 continue

do while ((vec(ichange-1)).eq. (lrg(ichange-1))
+ .and. (ichange.gt.l))
ichange=ichange-1
enddo
ichange=ichange-1
vec (ichange) =vec (ichange) +1
do 70 i=(ichange+l),r
vec (i)=vec(i-1) +1
70 continue
enddo
return
end

A EEEEEESEREEERESERERRERRRREREEEEEEEREEEEE R R R BE R R BRI B R I I I

* This program bounds the probability distribution *
* using the inclusion-exclusion principle and upper
* boundary points. *

LE RS SRR SRS REEREREREE RS R R REREERRERERR R R R R EE N EEEREE R R EREY

subroutine upper
LRSS RS S ERERRSS RS RERERERREES R REARRRRRERRR R REREREREZRSE KR BWEEY

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp (i, j, k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points at level 1 *

262

* ubp (i, j, k) - the ith element of the jth upper *
* boundary point to level k *
* cmbupper - real function that find all combinz2ticns *
* prob(i,j) - probability of component i in state j *
* sum - the sum of all combinatorial summations *
Y % v K dk & Y Je %k koo %k sk sk dk sk sk W ok e ok vk sk sk dk dk %k Tk ok ke vk ok dk sk %k dk %k %k A ok R ok ok vk ok ok ak ok dk ok ok vk ok ok kK Kk
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t£(0:100) ,ubp(100,100,0:100)
real cmbupper,prob(100,0:100)
double precision sum
external cmbupper
v J % %k % Jk %k %k % Jc dk % % %k ok sk sk ok Ik %k %k ok %k dk sk Jk dk db gk dr ok dk db o sk ok Sk %k b vk ok dk ok ok dk vk dk vk bk k ko ok K ok Kk K
* The cumulative probability of the system in state *
* k or lower is found for every system state. *
¢ % s Jc 3k %k K %k dk dr vk vk vk ok ok ok sk A ke A ok v de dk %k J d %k gk g sk sk sk ok % %k Jk Je v d dk gk dk dk b dk ok kA A ok ok k ko
answer=0.0
do while ((answer.le.0.0).or.(answer.ge.1.0))
print *,’ENTER THE ACCEPTABLE TOLERANCE /,

+ (0 < TOL < 1).’
read *,answer
print *

enddo

tol=answer
do 10 k=0,msys-1
sum=0.0
j=1
diff=1.0
qlow=0.0
ghigh=1.0
diff=gqhigh-qlow
do while ((j.le.t(k)).and. (tol.lt.diff))
sum=sum+ ((-1) ** (j+1)) *cmbupper (t (k), j, k)
if ((j.ne.t(k)).and. (mod(j,2).ne.0.0)) then
glow=1.0-sum
elseif ((j.ne.t(k)).and. (mod(j,2).eq.0.0)) then
ghigh=1.0-sum
elseif (j.eq.t(k)) then
glow=1.0-sum
ghigh=1.0-sum
endif
diff=qhigh-glow
j=3+1
enddo
print *,qlow,’<= Q(',k+1,’) <=’',qhigh
10 continue
print *
print *
return
end

263

% e %k % % sk J¢ dk %k sk ok ke ok d vk sk ok ok A ok ok vk e dk dk ek de vk Ik dk ok ok kv vk ok sk ok ke ok v ok sk A ok e sk %k Kk ok Xk %k ok

* This program determines all possible combirations of *
* vectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *
* exclusion formula. *
% J %k J %k J % v % ok ok %k %k % K ok %k %k %k k sk dr sk v ok 3k %k %k o T vk ok vk dk dk dk sk 3k ok ok vk sk dk sk dc ok dk ok ok ok %k ok ok Kk ok

function cmbupper(n, r, k)
% v %k % %k dk %k %k ¥ %k %k 7 % sk %k %k de % vk e ok d sk dk dk vk sk dk %k dk I vk dk ok sk sk dk ok db dk Jk dk de ok db sk sk sk dk ok ok Ik db ok ok ok ik
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* ichange - the element that is changed *
* r - the number of vectors to choose *
* n - the total number of vectors *
* ibot - the min state of the intersection of vectors *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of lower boundary points to level k *
* ubp (i, j, k) - the ith element of the jth upper *
* boundary point to level k *
* vec (i) - the intersection vector *
* lrg(i) - the largest vector in position i *
* store - a temporary storage location *
* cmbupper - variable used to return probability *
* prob(i,j) - probability of component i in state j *
* prod - probability of a component state vector *
* cprob (i, j) - probability of component i in state *
* j or lower *
s J % Jr %k d ok dbr J ok %k ok %k dk dk sk ok %k J K %k ok ok sk %k sk %k k% 3k %k dk ok sk dk dk dk sk e %k ok dk v Jb dk dk vk dk d kg Kk %k K ok R ok ok

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),

+£(0:100) ,ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp, ichange, r,n,numb,itop,m(0:100),
+s5(100),1bp(100,100,100),t(0:100) ,ubp(100,100,0:100),
+vec (0:100),1rg(0:100)
real store,cmbupper,prob(100,0:100)

double precision prod,cprob(100,0:100)
% Jr ok Jr ok s W ok %k vk e gk Ik K Kk ko sk b vk e o s %k sk gk gt sk ok ok k% ok ak %k vk ok dk dk vk %k 3k dk %k dk ok dk ok k dk ok ok kK
* The cumulative probability array is found from the *
* probability array entered in the system description. *
% % % K Kk sk ok k %k vk s de % b sk ok ok Jr ok ok ok %k sk sk sk dr ok dk gk sk sk %k ek vk vk 3k Yk dk sk sk sk 3k ok ok vk %k ke ok ok ok sk ok ok ok ok

do 20 i=1,ncomp

store=0.0
do 10 j:O,m(i)
cprob (i, j)=store+prob (i, j)
store=cprob (i, j)

10 continue
20 continue
I ZEEEEREEEEEEE RS SRS SRR RRE SRR Rt llll st Rt RS ERE R REE S BEE/

* The sum of the probabilities of all combinations of *

264

* lower boundary points to level k taken r at a time *
* 1is found. *
% sk sk % sk sk s ot 3k ok sk ok ok ok ok d St d b S dk sk ok ok 3k Sk Jk o ok Jk b ok kb o dr dk Jk d de dk Jk dk sk ok ok kW K e ke ke k k Kk %k
do 30 i=0,r
vec(i)=i
lrg(i)=n-r+i
30 continue
ichange=r

cmbupper=0.0
do while (ichange.gt.0)
ichange=r
do 60 numb=(vec({ichange-1)+1),n
vec (ichange) =numb
prod=1.0
do 50 i=1,ncomp
ibot=m (i)
do 40 j=1,r
ibot=min (ubp (i, vec (j), k), ibot)
40 continue
prod=prod*cprob (i, ibot)
50 continue
cmbupper=cmbupper+prod
60 continue
do while ((vec(ichange-1l)).eq. (lrg(ichange-1))
+ .and. (ichange.gt.l))
ichange=ichange-1
enddo
ichange=ichange-1
vec (ichange) =vec (ichange) +1
do 70 i=(ichange+l),r
vec(i)=vec(i-1)+1
70 continue
enddo
return
end

265

Appendix C. Boundary Point Conversion Program

s % Je ok ok do Rk K ok kK vk kK Ak ook T ok kA sk %k sk ok ke ok % ok sk e dk ke ke ok Ak Rk vk sk Kk ok ek sk %k ok dk ok sk ok ok ok sk ok

* WRITTEN BY: Ralph Boedigheimer *
* LAST UPDATE: 20 Feb 92 *

% % J % J %k sk vk de ok Ak vk de ok sk ek %k do ok g vk Ik kK sk gk v sk ok vk A vk sk gk %k ke sk sk k ok kb sk K vk de Rk k ok ok ok ok

% Jk Kk % Kk % K J ook kA Kk Kk dk ke Kk Tk ok K de sk ok vk ok K sk ok de %k sk ok ok ok dk ke sk dk ke vk dk ok vk 3. ke sk ok ok ok ok sk ok Kk k k ok

* This is the main program that runs all other programs.*
ok Kk de vk Kk Kk ook ko vk ok A sk kv e Ak ok R e Kk ok ok sk sk %k Tk ok ke 3k vk ok ok dk gk ke ok g ok %k ke ok ok ok sk X vk ok kK ok k ok

program bpconv
Y s dk d d dk ok J ok ke J d % dr e e e K sk ke ok A ke gk ok ok ok ok ko ol gk o ok ok ke ok ok ok dk ok Kk ok ko ok ok ok ok ok ok ok ok ok K
* VARIABLE DESCRIPTIONS: *
* answer - variable for interactive feedback *
S o d Je sk ok ok A gk ok o de ok o o ok g Jk ok ok ok ok sk b ke dk kK ok sk sk ke ok ok 3k ok %k %k ok ok ok vk ok ok dk Sk ok dk ok b ok ok ke ok %k ok

real answer
J% J dk %k dk J & sk ok v dk vk sk ok dk gk %k o b ok gk vk sk sk ok ke sk ke ok dk bk Jk v db sk sk dk ok b dk ok ok Jk ok K dk ok ok ok %k ko R ok X
* The main menu is presented to the user. One of the *
* given options must be selected. *
% J d Kk dk Kk dk ok kK ok sk %k %k 3k %k ok k% ok ke k sk ook %k dk sk ke dk gk Ak ke ok ok kv gk ok vk sk %k k ok ok ok ok %k de sk %k ok k ok kK
5 answer=0.0

do while ((answer.1lt.1.0).or.(answer.gt.5.0).or.

+ (amod (answer,1.0) .ne.0.0))

print *,’ENTER SELECTION FROM THE FOLLOWING MENU"
print *,’ 1. INPUT A NEW SYSTEM DESCRIPTION.
print *,’ 2. DISPLAY THE CURRENT SYSTEM.’
print *,’ 3. CONVERT LBPs to UBPs.’
print *,’ 4. CONVERT UBPs to LBPs.’
print *,’ 5. EXIT THE PROGRAM.’
read *,answer
print *
enddo

Je v e v ok Jr sk sk ok dk Kk Y ok dk ok vk Kk ke sk kA sk sk k% s ok ok %k sk ok ok %k sk ok ok ok ok ok 3k ok 3k 3k ok ok ok ok sk ok ok dk ok ok ok b ok ok

* The program routes to the appropriate subroutine and *
* then returns to the main menu. *
Kok Tk Kk &k Kok Kok ok ok ok ok ok Ak Kk Kk ok Kk ok ok ko k ok ok ok ok dk ok K ok k Kk g gk ok Kk ok k Kk Kk ok k ok ok k dkk ok ok kok ok ok k

go to (10,20,30,40,50),answer

10 call system
go to 5

20 call display
go to 5

30 call 1lbptoubp
go to 5

40 call ubptolbp
go to 5

50 stop
end

de ek Ak ok o dr Kk de ok vk ok de K gk sk ok d gk gk dk sk ok de %k ok de vk sk sk ok vk ok T Ak sk sk R ok ke ok k ok sk ok ok ok ok ok Kk ok ok ok ok Kk

* This program is used to enter a description of the *
* multistate system being studied. *

266

% v Jr ke v o o ok ok ket ok Ik sk e Tk vk A kA ok dk ok A ok sk e dk ok sk k% ok K ok dk ok K ok ok Jk %k kK ok kR ok sk ok ok K ok ok

subroutine system
s dk % % % % %k sk 3% Je 3k sk 3k ok d dk vk sk 2k dk dk sk dk dk ok b gk sk %k ok ok vk ok b %k b Ik %k sk ok o %k ke %k sk dc ok de ak b ok ok ok %k vk Kk

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j, k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i,j) - probability of component i in state j *
s % % %k sk Jk v %k k sk ok st %k d Kk %k sk k Jk Jk ok J v ok o ok vk Ik %k A Tk %k ok b sk vk ok vk ok % ok Kk kK %k A gk %k ok %k o ok %k ok %k

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100)

real prob (100,0:100)

k% Je Kk Kk K d d Kk dk sk K Kk Kk sk ok ok Kk Kk k sk ok %k sk ok ok ok ok % sk %k ke %k %k ok ok sk ok vk ok ok sk ko ok gk ok ok ok k% ok ke ok ok

* The required information is interactively entered. *
s 7 % dk Kk % e %k %k dr ok Je Ik gk % %k ok ke sk ok ok sk d ok vk sk de dk sk vk sk ok % dk vk sk ok ok ok K ok Jk k ok sk ok dk Kk ok sk ok ke k ko
print *,’ENTER THE MAXIMUM SYSTEM STATE (1-100).’
read *,msys
print *
print *,’ENTER THE NUMBER OF COMPONENTS (1-100).’
read *,ncomp
print *
do 10 i=1,ncomp
print *,’/ENTER THE MAXIMUM STATE OF COMPONENT’,1i,
+ ’(1-100) .’
read *,m(i)
print *
10 continue
do 20 i={(ncomp+1),100
m(i)=0
20 continue
m(0)=0
do 40 i=1,ncomp
print *
do 30 j=0,m(1i)
print *,’FOR COMPONENT’,i,’ENTER THE’,

+ ! PROBABILITY OF BEING IN STATE’, J
read *,prob(i, j)
30 continue
40 continue
print *

do 60 k=1,msys
print *,’ENTER THE NUMBER OF LOWER BOUNDARY',
+ * POINTS TO LEVEL’,k,’ (1-100)."

267

read *,s (k)
print *
do 50 j=1,s (k)
print *,’FOR LEVEL’,k,’ENTER LOWER BOUNDARY’,

+ * POINT #',3
read *, (lbp(i,Jj,k),i=1,ncomp)
50 continue
print *
60 continue

do 80 k=0,msys-1
print *,’ENTER THE NUMBER OF UPPER BOUNDARY’,
+ ! POINTS TO LEVEL’,k,’ (1-100).’
read *,t (k)
print *
do 70 j=1,t (k)
print *,’FOR LEVEL’,bk,’ENTER UPPER BOUNDARY’,

+ * POINT #',3
read *, (ubp(i, j,k),i=1,ncomp)
70 continue
print *
80 continue
return
end

% % ok %k Kk Jk dk de ok d d K sk ok ook ok ok sk ok Kk k k% ok vk ek dk ok sk sk %k sk dk %k %k %k vk ok ok sk ok ok ke ok ke ok ok %k ok ok sk ok ok

* This program displays the description of the system. *
d ¥ Kk % d k dr %k %k %k sk K %k b %k sk vk ok dk sk vk %k dk ok K bk gk bk vk gk sk dk ok dk vk b %k dk %k gk ok %k sk %k 3k vk dk ok %k sk %k k ok K ok

subroutine display
% %k Kk Kk %k dk Kk K k ok sk sk K sk e ok ok K % sk vk o vk vk db b gk ok e ok ok %k ke ok %k dk K kb ok dk 3k sk dk ok %k vk sk ok ok ok ko %k %k ok %k ok

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) = the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i, j) - probability of component i in state j *
% Kk dk ok Kk Kk k Kk * ok ok Rk ok Kk sk dede sk gk kv e ok K vk dk dk kK ok ok ok ok sk sk %k sk dk de ok ok ke sk ke ke ok kg ke ok ok ok ok ke

common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100),prob(100,0:100)

integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t (0:100) ,ubp(100,100,0:100)

real prob (100,0:200)

J ok kK A ode e K dk ok Kk sk K s d ode ok gk ok gk ok ko ko kK gk ok ok vk ok ok sk sk sk ok ok %k vk o dk ok sk kv i ok & ok ok ok ok ok ke ok

* The current system is displayed for the user. *
de ok % de dk sk St ok % vk dk b vt %k dk ok gt ok vk sk sk sk %k vk ok e sk %k ok st Ik dk b ok vk vk ok ok 3k ok % I 3k vk dk vk ok %k ok sk %k ok Kk ok ok ok Kk

print *,’Maximum System State:’,msys
print *

268

print *,’Number of Components:’,ncomp
print *
print *,’Component Max State Vector: (',
+ (m(i),i=1,ncomp), ")’
print *
do 10 i=1,ncomp
print 99,’Component’, i, ’Probabilities:’,
+ (prob(i, j),3=0,m(i))
10 continue
print *
do 30 k=1,msys
print *,’System Level’,k
do 20 j=1,s(k)

print *,’Lower Boundary Point #’,3,': (',

+ (lbp (i, j,k),i=1,ncomp),’)’
20 continue
print *
30 continue
print *

do 50 k=0,msys-1
print *,’System Level’,k
do 40 j=1,t (k)
print *,’Upper Boundary Point #',3j,': (',
+ (vbp (i, j,k),i=1,ncomp),’)’
40 continue
print *
50 continue
print *
99 format (a9, 1x,1i2,1x,al14,2x,100(£5.3,1x))
return
end

Yo sk de s de dr sk ek kK Kk Kk ok ks bk ok Rk ok ok ok ke ok b A ok dk sk ok dk ok ok ok ok kb ok sk ok 3k sk ok ok ok ok dk ok ok ok ok ok ok

* This program converts lower boundary points to level *
* k to upper boundary points to level k-1. *
Kk ok ok Kk Kk ok sk ok ok ok Tk sk sk ok ok Sk % sk gk gk sk ok ak sk sk sk sk sk sk sk sk gk ok ok gk vk ok b ak ok %k b sk Ak b vk ok ok ok gk ok %k ok ok ok &

subroutine lbptoubp

J dr g A K ok ok Je de sk ok Je e dk de vk sk ok de gk A ok kK vk ok ok e sk ok ke sk %k sk gk d ok %k %k ok sk ke sk %k ok ok Kk ok ok ke %k ok ok ok ok

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* vec(i) - a temporary work vector *
* perm(i) - a permanent work vector *
* *

list (i, j) - a storage vector for each level

269

* jent - the jth dimension of list *
* prob(i, j) - probability of component. i in state j *
2 X222 2222222222 RRRREERRERR RS XSRS SRS R R X X R X X X84
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100) ,ubp(100,100,0:100) ,prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+£(0:100) ,ubp(100,100,0:100)
integer vec(0:100),perm(100),1ist (100,10000)
real prob(100,0:100)
external elim, lexdec
J¢ J¢ e dk de e ek sk ok sk ok dk R Ik Jk ok sk sk Jk %k sk %k %k K % %k ok ok dk vk sk dk dr ok sk sk de vk dk dk ok ok ok %k o ok %k %k ok ok ok %k
* A list of potential upper boundary points is generated*
* from all the lower boundary points. *
******'**
do 150 k=1,msys
jent=0
do 70 3=1,s (k)
do 60 i=1,ncomp
do 10 il=1,ncomp
vec (i1)=1bp(il, j, k)
10 continue
vec (i)=1bp(i, j, k) -1
do 20 i2=1,ncomp
perm(i2)=vec (i2)
20 continue
if (vec(i).ge.0) then
ichange=ncomp
do while (ichange.gt.(0)
ichange=ncomp
do 40 i3=vec (ncomp),m(ncomp)
vec (ncomp) =13
if (perm(i).eq.vec(i)) then
jent=jent+1
do 30 i4=1,ncomp
list (i4, jcnt) =vec(i4)

30 continue
endif
40 continue

ichange=ichange-1
do while ((vec(ichange) .eq.m(ichange))
+ .and. (ichange.gt.0))
ichange=ichange-1
enddo
vec (ichange) =vec (ichange) +1
do 50 iS=ichange+1,ncomp
vec (i5) =perm(i5)

50 continue
enddo
endif
60 continue
70 continue

270

% & de vk Je A de e de vk sk ok ke dk A Ik sk e gk %k vk dk o vk ok de sk ok ok gk sk Jk v ke sk ke sk dk vk e Tk ok kA gk Yk ok %k %k ke ok ok X ok ok

* All potential upper boundary points that are dominated*
* by other lower boundary points are marked and removed. *
P v ok Je ok de kK ek K dk ok ok e K ek %k % %k ok ok vk ok vk gk Sk ok ok Kk ko ok ok vk sk ok dk ok ok A % ol ok ok ok ok ok Kk ok ok ok Kk
do 100 ji=1,s(k)
do 90 j2=1, jent
iflag=0
do 80 i=1,ncomp
if (lbp(i, jl,k).le.list(i,3j2)) then
iflag=iflag+l
endif
80 continue
if (iflag.eg.ncomp) then
list(1,3j2)=-1

endif
90 continue
100 continue

call elim(list,ncomp, jcnt)
Yo g kK % %k % vk vk vk dk %k ke k% vk sk Kk Jk sk ok %k Yk sk ok %k gk 3k K %k sk gk %k %k ok %k sk sk gk k% dk sk %k %k ok % ok sk dk %k kK ok ke k k-
* The list matrix is lexicographically sorted in *
* decreasing order. *
% % J %k ¥ %k g % sk sk sk b gk sk %k dc dk %k vk vk e sk vk dk e sk dk ok dk sk ok k sk de sk Wk sk sk %k Ak k% sk ok sk dk dk vk ok %k sk ok %k ok %k k

call lexdec(list,ncomp, jcnt)
Jo ok de de sk A ok gk gk ok vk gk T gk b vk Kk kK Kk ke kK R ok R A Kk sk Kk k ok k%% ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok A ok ok ok
* All potential upper boundary points that are overcome *
* by other potential upper boundary points are marked *
* and removed from the list. *
% %k & % %k Kk dk de ok %k Kk Kk kT kK %k ok sk ok %k ok ok ok bk ko ke ok Kk ok k ok dk ok sk ko sk vk gk ke sk ok ok ok ok vk ok ok ok ke ok
do 130 j2=jecnt,2,-1
do 120 jl=j2-1,1,-1
iflag=0
do 110 i=1,ncomp
if (list (i, jl).ge.list (i, j2)) then
iflag=iflag+l
endif
110 continue
if (iflag.eg.ncomp) then
list(1,3j2)=~1

endif
120 continue
130 continue

call elim(list,ncomp, jcnt)
**

* The remaining vectors on the list are upper boundary *

* points to level k-1. *
J ok Je dr Kk dr ke % ok sk vk %k ok kv ok ok ok sk ok K gk ok ok ok ok sk g sk ok %k sk sk gk ok dk A ok ok de dk gk vk ok ok ke b %k vk ok ok Kk ko Kk

print *’For level’, k-1
do 140 j=1, jent
print *,’Upper Boundary Point #’',3,’: (',
+ (list (i, 3j),i=1,ncomp),’)’
140 continue

271

print *
150 continue
return
end

subroutine elim(wk,ihigh, jcnt)
v sk vk vk gk sk ok ok sk ok %k 3k Kk 3k sk ab ok % b ok A dr v sk s db o ok o b ok ok Jk sk dk Jk sk sk sk sk sk dk K dk sk ke ok dk ok vk vk %k Kk ok Kk

* VARIABLE DESCRIPTIONS: *
* wk - a temporary working matrix *
* ihigh - the ith dimension of wk *
* jent - the jth dimension of wk *

v Je ok kA ok de vk kK sk ko Jr Kk gk sk % sk sk sk ok ok sk v ok dk ok ok sk ok kv gk sk vk ke sk gk ok ok ks ok vk ok dk %k ke % ok Kk ke ok ok

integer wk(100,10000)
do 30 j2=jecnt,1,-1
if (wk(l,32).eq.~-1) then
do 20 ji1=3j2,jcnt-1
do 10 i=1,ihigh
wk (i, j1)=wk (i, j1+1)

10 continue
20 continue
jent=jcnt-~1
endif
30 continue
»eturn
end

subroutine lexdec (wk,ihigh, jhigh)

¥ dk e Je % de ok e ok ke ok dr vk Kk sk Kk sk ok Kk ok ok ok ok ok ok vk ok vk sk ok ke S sk ok ko ok sk ok b gk ok ok ok 3k ok ok 3k sk ok T ok ok ok ok

* VARIABLE DESCRIPTIONS: *
* wk - a temporary working matrix *
* ihigh - the ith dimension of wk *
* jhigh - the jth dimension of wk *

K od e K Kk dkok ko Aok gk ok % e %k ok ok ko %k ok ke ok sk ke e v b dk ok o sk vk ok ok k% ke gk sk de Kk ok dk %k ke ok ok ok ok k Kk

integer wk(100,10000)
do 40 il=ihigh,1,-1
do 30 jl=1, jhigh-1
num=jhigh-jl
do 20 j2=1,num
if (wk(il, j2).1t.wk(il, j2+1)) then
do 10 i2=1,ihigh
itemp=wk (i2, j2)
wk(i2, 32)=wk (i2, j2+1)
wk(i2, j2+1)=itemp

10 continue
endif
20 continue
30 continue
40 continue
raturn
end

272

de de de ke ok de de k J de ok sk ok s d vk b ok A ok kK ok ok ok vk ok ok vk dk ok ok sk %k kb dk e sk ke ok ok ok gk ko ok Jk ok dk ok ke %k ok ok ok X

* This program converts upper boundary points to level *
* k to lower boundary points to level k+l. *
ok K ok dk A de gk K de sk dk A dk sk ek kS ke ok ke ke ok ok ok sk dk ok Sk gk dk ko vk ok e ok sk dk ok sk ke ok ok ok ok sk ok %k k ok ke Kk kA ok X

subroutine ubptolbp
sk % %k Kk K Kk ok sk ok d ok de g ook ok dk sk de dk T %k sk dk sk v ok ok k dk gk 3k ok ke gk gk ok ok sk ok ke gk vk %k ok dk gk ok ok ok ok ok kR k ok ko
* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i, j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp (i, j,k) - the ith element of the jth upper *
* boundary point to level k *
* vec (i) - a temporary work vector *
* perm(i) - a permanent work vector *
* list(i,j) - a storage vector for each level *
* jent - the jth dimension of list *
* prob(i, j) - probability of component i in state j *
e Ak ok vk sk sk ok ok k& gk ok o ek Tk e ok %k ok ok Sk ok ok e ok e sk sk ke kK ok sk sk ok %k ok sk gk sk ok ok %k kv ok ok %k %k ok sk kK
common msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+£(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),1bp(100,100,100),
+t(0:100),ubp(100,100,0:100)
integer vec(0:100),perm(100),1ist (100,10000)
real prob(100,0:100)
external elim,lexinc
¢ Jr ok vk d v d st e sk ok J sk Kk J I Kk o kA ok b vk sk Tk dk vk gk ok ok ok b ok ok ok 3k ok ok 9k 3k b ok 3k ok dk b ok ok ok %k ok ke ok X
* A list of potential lower boundary points is generated*
* from all the upper boundary points. *
J v J ok Kk dr ook k% dk sk ok ok vk de sk dk e vk gk k dk sk vk dk ok sk dk ok ke k sk ok gk Jk %k ok ok sk gk ok ok %k ok ok ok Ak dk ok ok ok ok ko
do 150 k=0,msys-1
jent=0
do 70 j=1,t (k)
do 60 i=1,ncomp
do 10 il=1,ncomp
vec (il)=ubp(il, j, k)
10 continue
vec (i)=ubp (i, j,k)+1
do 20 i2=1,ncomp
perm(i2)=vec(i2)
20 continue
if (vec(i).le.m(i)) then
ichange=ncomp
do while (ichange.gt.0)
ichange=ncomp
do 40 i3=vec(ncomp),0,-1
vec (ncomp) =13
if (perm(i) .eqg.vec(i)) then

273

jent=jcnt+1l
do 30 i4=1,ncomp
list (i4, jcnt)=vec(i4)

30 continue
endif
40 continue

ichange=ichange-1
do while ((vec(ichange).eq.0) .and.
+ (ichange.gt.0))
ichange=ichange-1
enddo
vec (ichange) =vec (ichange) -1
do 50 iS=ichange+l,ncomp
vec (i5) =perm (i5)

50 continue
enddo
endif
60 continue
70 continue

Je J &k K Kk vk stk ok Kk ok Kk sk Kk ok sk K ok ok Kk ko ok %k dk ks sk de e ok ok ke ok dk ok 3k Kk vk ok ke gk ok sk ok %k ok ok ok % %k ok ok Kk k kK

* All potential lower boundary points that are dominated*
* Dby other upper boundary points are marked and removed.*
ve e J dk sk Je de gk &k b sk K % ok ok ok kb k %k sk Kk K Kk R Kk ok e %k sk ok 3k ok %k sk ok %k sk %k gk sk ke %k %k %k %k ok sk %k %k ok ok
do 100 jl=1,t (k)
do 90 3j2=1, jent
iflag=0
do 80 i=1,ncomp
if (ubp(i, j1,k).ge.list (i, j2)) then
iflag=iflag+l
endif
80 continue
if (iflag.eqg.ncomp) then
list (1, 32)=-1

endif
90 continue
100 continue

call elim(list,ncomp, jcnt)
v v v dc sk ok sk ok de %k ok ok %k A ok kR Kk ok ok sk ok sk ok ks ok ok ok ok ok 9k ok ok ok ok 3k ok akr ok kb sk ok ok Jk ok b ok ok ok ok b ke ok
* The list matrix is lexicographically sorted in *
* increasing order. *
Y v dk dc e ok sk dk sk sk ok kK kK ke ek vk sk sk dke ok ok dk o ok e dk gk ok dk sk %k vk ok sk sk ok %k dk sk vk ok %k %k ok %k kK K Tk vk ok ok X

call lexinc(list,ncomp, jcnt)
ek K dc Ak K gk %k sk e K dk ook k% dk vk gk sk dk ok dk sk %k Tk dk Tk ok sk ok vk dk %k vk dk gk e kR sk sk dk k ok sk sk kb ok ko ok ko ok X
* All potential lower boundary points that are overcome *
* by other potential lower boundary points are marked *
* and removed from the list. *
sk % dk dk Jde Kk dk ok dr % %k v g ok b ok A dk k dk sk sk sk Jk db dk vk v sk vk sk 3k kv dk kv ke dk sk sk dt dk dk vk v ok de b ok ok Kk ok kR %
do 130 j2=jcnt,2,-1
do 120 3jl=j2-1,1,-1
iflag=0
do 110 i=1,ncomp

274

if (list(i,Jjl).le.list (i, j2)) then
iflag=iflag+l
endif
110 continue
if (iflag.eg.ncomp) then
list (1, j2)=-1

endif
120 continue
130 continue

call elim(list,ncomp, jcnt)
s v sk d Kk 7 Kk N %K Kk %k k% dk vk e %k sk k& ok sk sk vk ok %k ok sk %k b %k %k okt k ok b %k % b sk sk sk %k dk 3k dk dk dk ok ok ok dk ok %k ok &
* The remaining vectors on the list are lower boundary *
* points to level k+1. *
J % vk %k J J J dk %k J dk %k % %k %k vk sk ok sk ok dk %k v st sk sk sk sk JK Jk sk sk %k sk kb ok %k Jb dk %k %k dk dk gk vk vk gk sk ok gk ok ok ok %k

print *’For level’, k+1

do 140 j=1, jcnt

print *,’Lower Boundary Point #/,3,': (',

+ (list (i, 3),i=1,ncomp),’)’
140 continue
print *
150 continue
return
end

subroutine lexinc(wk,ihigh, jhigh)
Jk s ok dk % J dk vk Jr o e dr k% % ok K %k 3k A %k dk sk sk dk sk Jk ok %k k% dk k% ok %k ok K %k %k Jk ok dk ok ok %k b %k ok %k ke ok %k ok ok

* VARIABLE DESCRIPTIONS: *
* wk - a temporary working matrix *
* . ihigh - the ith dimension of wk *
* jhigh - the jth dimension of wk *

&k J Kk % dr ok Kk Kk vk Kk kK ok Kk ko ok Kk dk Kk de ok sk K ok k ok ok ke gk ok Kk k vk ok Kk ok %k sk ke %k ok ok ok dhe ke b ok gk ok ok ok ok sk ok ok

integer wk(100,10000)
do 40 il=ihigh,1,-1
do 30 jl1=1, jhigh-1
num=jhigh-jl
do 20 j2=1,num
if (wk(il, j2) .gt.wk(il, j2+1)) then
do 10 i2=1,ihigh
itemp=wk (i2, j2)
wk(i2, 32)=wk (i2, j2+1)
wk(i2, j2+1)=itemp

10 continue
endif
20 continue
30 continue
40 continue
return
end

275

Appendix D. Expected Loss Program

J %k Jr vk g de g k% vk de ok kK s k% K sk % vk ok ok ke gk ok W ok ok gk ke sk ko vk ok sk ok sk d ok ok ok sk ok ok s ok ok sk gk ok Sk ok ok ke

* WRITTEN BY: Ralph Boedigheimer *
* LAST UPDATE: 20 Apr 92 *

Jodk ke dk sk dk v g Kk Ktk vk sk ok ok sk K ok sk ok Sk sk sk Ak ok sk ok sk ke ok e ok gk sk sk e b sk Ak ok ok ok ke k ok ko k ok ok k ok kX

s % %k k% sk ok e ok de A A kb o b sk b ok ok ok gk dk dk gk dk ok b sk v dk dk ok dk kb ok ok ke ok ok ok dk Kk ke ke kA ok ok ok ok

* This program determines the expected loss for a *
* quadratic loss function that is sensitive to the *
* pattern of degradation about a specified lifetime. 1It*
* assumes that the distributions for the time spent in *
* state k are mutually independent and exponential with *
* common parameter lambda. It allows different costs *
* for leaving the various states. *
v % ¢ dr vk de g gk dk ok dk ok ok vk ke dk ke e ok gk Ik ok dk de gk ke kY Kk ke o sk ok vk ke ok sk ok ok ok kK ko ok %k ok ok %k vk ok ok ke %

program loss
v % % dk de v e g o gk g ok de %k %k %k ok g sk ok ok ok sk K ok b ok %k sk ok dk ke kv sk ok & ok ok ok sk ok dk ok ok ok kb dk ok ok ko ko K

* VARIABLE DESCRIPTIONS: *
* c(k) - cost for leaving state k *
* lam - common parameter of exponential distributions *
* p(k) - probability of being in state k at tstar *
* tstar - desired lifetime for the customer *
* m - maximum state of system or component *
* iter - number of iterations for the simulation *
* t (j) - exponential variate for time spent in state k*
* loss ~ loss from one iteration of the simulation *
* avgloss - mean of the simulation losses *
v d Kk Kk ok ok gk K oKk K Kk vk Kk Kk kg gk ok k k kg ok ke sk %k vk ok Kk sk kv %k ok sk sk ok ke sk ok ke ke % ok sk %k ok gk vk ok %k k ke K %k

real c¢(100),1lam,p(0:100),tstar
integer m, iter
real t£(0:100),1o0ss,avgloss
external gamdf
v de sk de ke K F gk de ok %k Y T stk % sk sk sk b ok sk sk %k ok ok dk sk 3k sk sk sk kb %k sk A de sk ok Jk sk sk dr db Jk Jk Jde e dr v dr ok %k ok Kk

* The system or component description is entered. *
s Kk K de %k de ok k % ok Rk o s vk bk ok sk A ok sk ok ok vk v ok ok dk ok ok vk dk sk b %k k% Tk % ok ok kb %k dk %k k% %k v vk %k vt dk ke ok % K
print *,’SYSTEM OR COMPONENT DESCRIPTION ~'
print *
print *,’ ENTER DESIRED LIFETIME (T*).’
read *,tstar
print *,’ ENTER THE MAXIMUM STATE (M).’
read *,m
do 10 k=m,1,-1
print *,’ ENTER THE COST OF LEAVING STATE’,k,’.’
read *,c (k)
10 continue
print *,’ ENTER THE COMMON LAMBDA.’
read *,lam
J % % ok de Je vk g sk de ke ek ok sk e sk sk Ak Kk ok Kk %k gk ok Tk ok %k sk sk ok ok st ok sk sk sk ok dk ok sk ok ok ok ok ok Ok ok e ok vk Kk ok ok Xk

* The state probabilities are calculated. *
A ode ke ek ek ok ok Kok ks ko %k gk sk sk ke sk Bk sk sk sk b g sk ok ok b de ok b ok ok 9k ok 9k e ok ok ok ok e ok sk ke ok kK kR

276

totp=0.0
do 30 k=m,1,-1
ifac=1
do 20 i=m-k,1,-1
ifac=ifac*i
20 continue
p(k)=(lam*tstar) ** (m-k) *exp(-1.0*lam*tstar) /ifac
totp=totp+p (k)
30 continue
p(0)=1.0-totp
print *
print *,’State Probabilities:’
do 40 k=0,m
Print *I,P(' Ikl’) =’ ,p(k)
40 continue
e dr Jk ek %k K Y e K e vk e d ok kK sk v dk v ok dk gk b ok % e v g 3k dk ok g dr de ke g de ok A ok kK ok vk ke Y gk ok %k dk o e v % ok ok

* The theoretical expected loss is calculated. *
J¢ 3 % ok Jk sk sk b dr ok b sk Ik db %k Ik Tk ok A ko ok %k ok ok %k 2 sk 3k ok gk ok ok ok sk ok Jb sk sk 2k dk dk sk sk dk ok sk b ok gk ok Kk ok ok ok vk %k %k
tsum=0.0
do 60 k=0,m-1
csum=0.0
dsum=0.0
esum=0.0
do 50 j=k+1,m
csum=csum+c (Jj)
dsum=dsum+c (j) * (m-3j+1) /lam

+ *gamdf (lam*tstar, real (m-j+2))
+ /gamdf (lam*tstar, real (m~j+1))
esum=esum+c (j) * (m-j+1) * (m-3j+2) / (lam**2.0)
+ *gamdf (lam*tstar, real (m~j+3))
+ /gamdf (lam*tstar, real (m-j+1))
50 continue

csum=csum*tstar**2.0
dsum=dsum* (-2.0) *tstar
tsum=t sum+ (csum+dsum+esum) *p (k)
60 continue
print *
print *,’Theoretical Expected Loss =',tsum
Je de d ok de A e de Kk ok K %k sk dk v vk e vk b e ok sk sk sk e vk ke ok e gk sk sk ok sk dk dk ke vk vk Tk vk vk gk K %k vk gk sk e ok ok Kk ok ok ok kK

* The expected loss is approximated with a simulation. *
J e J de K gk d Aok ok ok koK Kk Je v sk de vk ok vk vk ok sk dr kR R sk ke ok sk dk vk ok vk e vk dk Sk kA sk vk e e Rk ke R sk ok ok ok ok ok kK
print *
print *
print *,’ *** SIMULATION **x/
print *
print *,’ENTER THE NUMBER OF ITERATIONS.’
read *,iter
cost=0.0
do 90 ii=1,iter
icnt=0
sum=0.0

277

do while ((sum.le.tstar).and. (icnt.le.m))
t(m-icnt)=(-1.0/lam) *alog(l1.0~-rand(0.0))
sum=sum+t (m-icnt)
icnt=icnt+l
enddo
do 80 j=m-icnt+2,m
tott=0.0
do 70 i=3j,m
tott=tott+t (1)
70 continue
loss=loss+c (]j) * (tstar-tott) **2
80 continue
90 continue
avgloss=loss/iter
print *
print #,’Estimated Expected Loss =’,avgloss

end

278

VITA

Ralph Boedigheimer is a Major in the United States Air
Force with over 12 years of service. He entered the United
States Air Force Academy (USAFA) and graduated in 1980 with
a Bachelor of Science Degree in Mathematics. After
receiving his commission, he served as a scientific analyst
at Nellis Air Force Base. Major Boedigheimer began graduate
work at the Air Force Institute of Technology and received
a Master of Science Degree in Operations Research with
distinction in 1983. He worked for the Air Force
Operational Test and Evaluation Center until December 1987
and instructed at USAFA until his entry into the School of
Industrial Engineering at the University of Oklahoma in
August 1989. He is a published author and a member of

several professional organizations and honor societies.

279

