
REPORT DOCUMEN AD- A254 893 0MB No. 0704-0188

I , -e ai necea an 'croe , ar'd.en est~rnaxe r 4n, trei . Ce '*

8), asnnctcn. DC 205C3 J
1. AENCYUSEONLY(Leae bank)2. RPO- COVERED

1 11992DISSERTATION
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Customer-Driven Reliability Models For
Multistate Coherent Syst.ems

r6. AUTHOR(S)

Ralph A. Boedigheimer, Captain

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

i
REPORT NUMBER

AFIT Student Attending: University of Oklahoma

I- AFIT/CI/CIA-92-013D

9. SPONSORING iMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY RTPO]RT NUMBER

IAFIT/CI D
Wright-Patterson AFB OH 45433-6583 E LE TE

Ill. SUPPLEMENTARY NOTES

12a. DISTRIBUTION,'AVAILAILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release IAW 190-1.-
Distributed Unlimited
ERNEST A. HAYGOOD, Captain, USAF
Executive Officer

13. ABSTRACT (Maximum 200 words)

£Y-I3920

6 2 8 02 3 ifUi~i~lj>
14. SUBJECT TERMS 15. NUMBER OF PAGES

279
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

NSN 7540-01-280-S500 Standard Form 298 (Rev 2-89)
Pmgnbod OV ANSI Sjd. M I$'
n&102

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

CUSTOMER-DRIVEN RELIABILITY MODELS

FOR MULTISTATE COHERENT SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

DTIC QUALITY MNSPECTED 8

Un qc tr Li [

By
UL4. u iw et

RALPH ALAN BOEDIGHEIMER I

Norman, Oklahoma Distribution/
Av~ilability Codes

1992 A vil andior

Dist Special

CUSTOMER-DRIVEN RELIABILITY MODELS

FOR MULTISTATE COHERENT SYSTEMS

A DISSERTATION

APPROVED FOR THE SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr. Kailash C. Kaput (Chairman)

Dr. vindran

Dr. Lawrence M. Leemis

Dr. S. Pulat

Dr. Robert E.

Dr. Kevin A. Grasse

ACKNOWLZDGMZNTS

I thank God for the many precious gifts He has given me

and dedicate this work to the glory of His name.

I would like to express my sincere appreciation to Dr.

Kailash Kapur for inspiring and motivating me throughout this

effort. This dissertation would have been impossible without

his willingness to take over as the chairman of my committee

and his profound insights into reliability. I would like to

thank Dr. Kapur, Dr. Ravindran, Dr. Leemis, and Dr. Pulat for

providing me with a strong foundation of courses. Doctors

Leemis and Schlegel deserve special recognition for their

detailed review and constructive criticism of my work. I

also thank Dr. Grasse, who graciously agreed to participate

on my committee.

Finally, I thank my family for the love and support they

provided for the past three years. Becki gave me confidence

and encouragement whenever I began to have doubts about my

ability. David and Susan were understanding of their part-

time Dad and a great source of energy and pride. No one

could be blessed with a more perfect family.

iii

TAB1LZ OF CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES x

ABSTRACT xi

Chapter

1. INTRODUCTION 1
1.1 Background 3

1.1.1 Binary Model 3
1.1.2 Multistate Model 4
1.1.3 Continuous Model 4

1.2 Objectives 4
1.3 Scope 5
1.4 Overview 6

2. THE BINARY MODEL 8
2.1 Structural Properties 8

2.1.1 Notation 8
2.1.2 Introduction 9
2.1.3 Special Structures 10
2.1.4 Coherent Structures 11
2.1.5 Equivalent Coherent Structures . . . 14
2.1.6 Dual Structure Function 18
2.1.7 Structural Importance21
2.1.8 Modules and Modular Decomposition 21

2.2 Stochastic Properties 23
2.2.1 Notation 24
2.2.2 The Reliability Function 25
2.2.3 Reliability Importance 25
2.2.4 Exact System Reliability 26

2.2.4.1 Enumeration26
2.2.4.2 Inclusion-Exclusion . . 28
2.2.4.3 Pivotal Decomposition . 30
2.2.4.4 Modular Decomposition . . . 32

2.2.5 Bounding System Reliability 34
2.2.5.1 Trivial Bounds 35
2.2.5.2 Path/Cut Bounds 35
2.2.5.3 Min/Max Bounds 36
2.2.5.4 Combining Bounds 36
2.2.5.5 Improved Path/Cut Bounds. . 37
2.2.5.6 Inclusion-Exclusion Bounds. 40

iv

Chapter Page

2.3 Dynamic Properties 40
2.3.1 Notation 40
2.3.2 Lifetime Distribution Functions 41
2.3.3 Lifetime Distribution Classes . 43
2.3.4 Distribution Class Closure 46
2.3.5 Exact System Lifetime Distribution 46
2.3.6 Bounding System Reliability . . . 48

2.4 Summary 48

3. THE MULTISTATE MODEL 50
3.1 Structural Properties 50

3.1.1 Notation 50
3.1.2 Introduction 52
3.1.3 Special Structures 54
3.1.4 Coherent Structures 57
3.1.5 Equivalent Coherent Structures . . 68
3.1.6 Dual Structure Function 74
3.1.7 Structural Importance 78
3.1.8 Modules and Modular Decomposition . 79

3.2 Stochastic Properties 80
3.2.1 Notation 81
3.2.2 The Performance Function 82
3.2.3 Performance Importance 84
3.2.4 Exact System Performance 85

3.2.4.1 Enumeration 85
3.2.4.2 Inclusion-Exclusion 87
3.2.4.3 Pivotal Decomposition . . 89
3.2.4.4 Modular Decomposition . . 94

3.2.5 Bounding System Performance 96
3.2.5.1 Trivial Bounds 97
3.2.5.2 Path/Cut Bounds 99
3.2.5.3 Min/Max Bounds 100
3.2.5.4 Combining Bounds 100
3.2.5.5 Improved Path/Cut Bounds. . 101
3.2.5.6 Inclusion-Exclusion Bounds. 101

3.3 Dynamic Properties 102
3.3.1 Notation 102
3.3.2 Distribution Representations 103
3.3.3 Distribution Classes and Closure . . 104
3.3.4 Exact System Performance 106
3.3.5 Bounding System Performance 109

3.4 Boundary Point Conversion111
3.5 Summary 117

v

Chapter Page

4. THE CONTINUOUS MODEL 118
4.1 Structural Properties 118

4.1.1 Notation 118
4.1.2 Introduction 119
4.1.3 Special Structures122
4.1.4 Coherent Structures125
4.1.5 Equivalent Coherent Structures . . 127
4.1.6 Dual Structure Function 131
4.1.7 Structural Importance 133
4.1.8 Modules and Modular Decomposition . 134

4.2 Stochastic Properties134
4.2.1 Notation 134
4.2.2 The Performance Function 135
4.2.3 Exact Performance Distribution . . 136
4.2.4 System Performance Bounds 136

4.2.4.1 Trivial Bounds 137
4.2.4.2 Path/Cut Bounds 137
4.2.4.3 Min/Max Bounds 138
4.2.4.4 Combining Bounds 139
4.2.4.5 Improved Path/Cut Bounds . 139
4.2.4.6 General Bounds 139

4.3 Dynamic Properties 140
4.3.1 Notation140
4.3.2 Distribution Representations . . . 141
4.3.3 Distribution Classes and Closure . 141
4.3.4 Exact System Performance 142

4.4 Summary142

5. CUSTOMER-DRIVEN RELIABILITY MODEL 143
5.1 Defining the Number of System and

Component States 146
5.1.1 Discrete State Classification . . . 147
5.1.2 Continuous State Classification . . 148

5.2 Estimating Component State Probabilities . 151
5.3 Defining the System 154
5.4 Estimating System State Probabilities . . 159
5.5 Determining Substitute Characteristics

for Reliability 160
5.6 Summary166

6. APPLICATIONS167
6.1 Production and Assembly Process 167
6.2 Mission Battle Planning179
6.3 Tire Tread Wear 187
6.4 Summary194

vi

Chapter Page

7. FURTHER RESEARCH, SUMMARY, AND CONCLUSIONS . . 195
7.1 Directions for Further Research 195

7.1.1 Fuzzy Sets 195
7.1.2 Reliability Polynomial 196
7.1.3 Expected Loss 201
7.1.4 Reliability Estimation 205

7.2 Summary208
7.3 Conclusions210

LITERATURE CITED211

BIBLIOGRAPHY215

APPENDIX
A. Exact System Performance Program 218
B. Bounding System Performance Program 249
C. Boundary Point Conversion Program 266
D. Expected Loss Program 276

VITA 279

vii

LIST OF TABLZS

TABLE Page

1.1 Computer System Qualities 2

2.1 Lower Bound Comparison 39

2.2 Upper Bound Comparison 39

2.3 Closure of Litetime Distribution Classes for

Various Reliability Operations 46

3.1 4(x) for Example 3.1 57

3.2 H(x) and 0(x) for Example 3.3 67

3.3 11(x) and (x) for Example 3.4 68

3.4 4(x) for Example 3.6 75

3.5 VW(x) for Example 3.6 76

3.6 4(x) for Example 3.7 86

3.7 System Performance at Various Times 109

3.8 Bounds on System Performance at Various Times . 111

3.9 Potential Lower Boundary Points114

3.10 Potential Upper Boundary Points117

5.1 System State Probability Distributions for

Two Systems144

5.2 Condensed System State Probability

Distributions for Two Systems144

5.3 4(x) for Multistate Model145

5.4 Lower and Upper Boundary Points 155

6.1 Production Component Definitions 170

6.2 Component States and Descriptions 170

6.3 System States and Descriptions171

viii

TABLE Page

6.4 Component State Probabilities172

6.5 Lower and Upper Boundary Points176

6.6 System State Probabilities177

6.7 Substitute Characteristics178

6.8 Battle Plan Component Definitions 180

6.9 Component States and Descriptions 180

6.10 System States and Descriptions181

6.11 Component State Probabilities181

6.12 Equivalence Classes 182

6.13 Lower and Upper Boundary Points184

6.14 System State Probabilities 185

6.15 Substitute Characteristics186

6.16 Tire Tread Wear Component Definitions 188

6.17 Component States and Descriptions 188

6.18 System States and Descriptions189

6.19 Brand X Component State Probabilities 189

6.20 Brand Y Component State Probabilities 190

6.21 Lower and Upper Boundary Points192

6.22 System State Probabilities By Brand 192

6.23 Substitute Characteristics By Brand 193

7.1 O,(x) for Example 7.3203

7.2 *P(x) for Example 7.4203

ix

LIST Or FIGURZS

FIGURE Page

2.1 Coherent System of 4 Components17

2.2 Structure for Example 2.3 22

2.3 Structure for Example 2.4 23

2.4 Structure for Enumeration 27

2.5 Structure for Pivotal Decomposition 30

2.6 New Structure With x3 = 1 31

2.7 New Structure With x3 = 0 32

2.8 Structure for Modular Decomposition 33

2.9 Structure for Reliability Bounds38

2.10 Structure for Bounding Reliability 48

3.1 Pivotal Decomposition Diagram 92

3.2 Seven Component Coherent Structure 95

4.1 S(0), S(2), and S(6) for Example 4.1 121

4.2 S(.5), L(.5), and U(.5) for Example 4.2 124

4.3 S(1), L(1), and U(1) for Example 4.3 125

5.1 State Classification 148

5.2 State Classification With Loss Function 149

6.1 Process Flow Diagram 167

7.1 Structure for Example 7.1198

x

ABSTRACT

The most commonly used reliability model is the binary

model. However, the continuous model better represents items

which degrade through a continuum of values. Unfortunately,

the continuous model results in an overwhelming number of

calculations. The multistate model is a sensible compromise

between the binary and continuous models. The purpose of

this dissertation is to develop multistate models based on

the voice of the customer.

Structural, stochastic, and dynamic properties are

reviewed for the binary, multistate, and continuous models.

The multistate and continuous models are generalized to allow

a different number of system and component states. Analogous

properties are shown for the general multistate model and the

general continuous model.

The general multistate model is developed and evaluated

from the viewpoint of the customer. A method for state

classification is presented that allows the customer to

define the number of system and component states. A

technique using the convolution of random variables is

devised to estimate the component state probabilities after

the customer specifies the desired system lifetime. An

algorithm is designed to determine the customer's implicit

structure function by having the customer specify a set of

boundary points. A proceiure to convert from one set of

boundary points to the other is developed and implemented

xi

with a computer program. The conversion program limits the

amount of information required from the customer. Two

additional computer programs are written to implement

existing techniques for estimating system state

probabilities. Expected loss is introduced as a substitute

characteristic for reliability.

xii

1. INTRODUCTION

The nature of a product is defined by the inherent

qualities that are particular to the product. The customer

uses qualities to establish a preference for one product over

another. Gitlow, Gitlow, Oppenheim, and Oppenheim [1989]

define quality as the extent a product surpasses the needs

and expectations of the customer.

Every quality has a desired direction for improvement.

Selecting a product is easy when all qualities are at their

best level. The trouble comes when forced to make a choice

between products with conflicting qualities (i.e. one

quality's improvement causes another quality's decline). For

this case, some attempt must be made to convert the qualities

to a common scale. Another problem occurs when the qualities

are too broad or vague. The solution to ambiguous qualities

is to replace them with substitute characteristics that are

quantitative and more easily compared. However, generating

several substitute characteristics confounds the problem of

conflicting qualities.

As an example, suppose a customer is looking for a new

home computer. He decides to use four qualities to compare

various brands: cost, hard drive capacity, clock speed, and

reliability. The other qualities are either not important

or so important that only one level of the quality is

acceptable. In general, the customer strives to decrease

cost and increase the other three qualities. After further

1

thought, the customer divides the cost quality into two

substitute characteristics: original system price and

average annual maintenance cost. Several of the qualities

conflict. For example, a price decrease results in a slower

computer with less permanent memory. Suppose the customer

can choose from the 3 computer systems listed in Table 1.1.

Table 1.1 Computer System Qualities.

Quality System A j System B System C

System Price $1500 $1600 $1400

Average Annual $120 $105 $105
Maintenance Cost

Hard Disk Capacity 40 Mega- 80 Mega- 60 Mega-
H Byte Byte Byte

Clock Speed 10 Mega- 12 Mega- 12 Mega-
Hertz Hertz Hertz

Reliability .95 .98 .97
(2 years) I

The customer would never choose System A since its qualities

are inferior to those of System C. To make a final choice,

the customer must decide whether the additional 20 Megabytes

and higher reliability of System B is worth the extra $200

in system price. If not, he should purchase System C.

The previous discussion emphasizes that the essential

element in product selection is the customer. In fact, only

the customer can decide which qualities are important and how

the qualities are weighted to discriminate between products.

Stated in different terms, the quality of a product is

defined and evaluated by the customer.

2

1.1 Background

Reliability is a quality. Therefore, reliability must

be defined and evaluated from the viewpoint of the customer.

Reliability models derived for their intuitive appeal or

mathematical simplicity fail to satisfy this logical and

important criterion.

1.1.1 Binary Model

Determining the reliability of a complex system from the

structure of the system and the reliability of the components

is a fundamental problem in reliability theory. For the

binary model, reliability is defined as the probability that

the product will perform its intended function adequately

under stated environmental conditions for a specified

interval of time [Kapur and Lamberson, 1977].

Unfortunately, a single measure of reliability does not

always provide enough information for the customer to make

an informed choice between products. The customer can often

make a better choice by simultaneously exploring several

substitute characteristics for reliability. For example, the

failure variability, the p" percentile, and the mean time to

failure could all be included in the customer's evaluation.

Each measure gives an indirect assessment of the reliability

for the system. The simultaneous consideration of several

conflicting substitute characteristics for reliability

results in a multiobjective optimization problem that can be

solved with existing techniques.

3

1.1.2 Multistate Model

The multistate model allows the customer to specify more

than two discrete states for the components and the system.

The previous definition for reliability is no longer valid

since now there are different degrees of functioning. This

forced the development of several substitute characteristics

for reliability: El-Neweihi, Proschan, and Sethuraman [1978]

suggested the expected system state; Butler [1979] divided

the set of system states into an acceptable set and an

unacceptable set; Griffith [1980] proposed the expected

utility derived from the system states.

1.1.3 Continuous Model

The continuous model allows the performance of the

system and components to be specified along some continuum.

Baxter [1984,1986], Kaleva [1986], Baxter and Kim [1986], and

Montero, Tejada, and Y~ftez [1990] concentrated on continuum

structures that map from the unit hypercube to the unit

interval. For this special case, system reliability was

defined as the expected system state or the probability that

the system state exceeded some given value between 0 and 1.

1.2 Objectives

The primary objective of this research is to develop

customer-driven reliability models for multistate coherent

systems. The models will require customer interaction at

every step. The customer will define the number of distinct

component and system states. The customer will stipulate a

4

desired system lifetime, allowing the estimation of the

probability distribution for each component. The customer

will define the system by specifying when a change in the

state of any one of the components forces a change in the

state of the system. The previous input characterizes the

customer's implicit structure function and allows the

calculation of system state probabilities. The customer will

choose one or more substitute characteristics for reliability

that summarize the system state probabilities. The best

compromise solution will be found through interaction with

the customer.

The second objective of this research is to develop a

new substitute characteristic for multistate reliability

based on expected loss to the customer. The new measure will

be sensitive to the pattern of degradation about a specified

lifetime. In other words, the measure will be a function of

not only the number of state changes, but also the time of

each state change relative to the specified lifetime.

1.3 Scope

The components and systems considered in this paper are

assumed to be nonrepairable.

Also in this paper, the random variables representing

the n component states are assumed to be mutually independent

unless specifically stated otherwise. Mutually independent

random variables are defined and described in the following

paragraphs.

5

DEFINITION. Discrete random variables X1,X2,...,Xn are

mutually independent if and only if

Pr [X1=xl, X2=x 2, ... , X=x] = P1 P2 "' Pn

where pi = Pr[Xi=xi], i=1,2,...,n. Continuous random

variables are mutually independent if and only if

f (xl, X2, ... ,x) = f (x1) f (x2) ... f (Xn)

for every (x11x2,...,x) E R and f(x,) is the marginal

probability density function of Xi.

The assumption of mutual independence is stronger than the

assumption of pairwise independence. Clark and Disney [1970]

showed that a finite set of random variables can be pairwise

independent without the whole set being mutually independent.

The independence assumption implies that the state of

one component will have no effect on the states of the other

components in the system. Obviously, independence can not

and should not be assumed for every system. However, the

case of dependent component states will not be pursued here.

1.4 Overview

Chapter 1 provided an introduction to quality and

reliability, emphasizing the role of the customer in the

definition and evaluation of reliability. The main objective

of the dissertation is to develop customer-driven reliability

models for multistate systems, including an innovative

substitute characteristic for reliability based on the voice

of the customer. The study was narrowed to systems composed

of mutually independent components. Chapter 2 gives a review

6

of the deterministic, stochastic, and dynamic properties for

the binary model. Chapter 3 presents the same properties for

the multistate model, making a distinction between the early

multistate models where the system and component states were

restricted to the same set and a new general multistate model

which allows a different number of discrete states for the

system and each component. Chapter 4 reviews the continuous

model where the system and component states degrade through

a continuum of values. For the first time, the continuous

model is generalized to allow different ranges for the system

and component states. Chapter 5 presents the customer-driven

multistate reliability model and demonstrates how to get the

customer involved at every step during the development and

evaluation of the model. Chapter 6 contains several specific

applications of the customer-driven multistate reliability

model. Chapter 7 provides conclusions and recommendations

for further research.

7

2. TE BINARY MODEL

This chapter presents a review of the structural and

stochastic properties of the binary model most commonly used

in reliability theory.

2.1 Structural Properties

Structural properties characterize the deterministic

relationship between the state of the system and the states

of the components at a fixed moment in time.

2.1.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

n number of components comprising the system.

xj state of component i; xi e {0, 1) for i=l,2,...,n.

x component state vector; x = (xl,x 2, ...,xn) .

*(x) structure function; system state for x.

0 state of the system; e {0,I).

n

Hxj Min{xjx 21 ...,xn} = x1 x2 ... xn.
il

x Max{xj, x 2 , .. , Xn} = 1- (l-xl) (l-x 2)'"'(l-xn)
i-1

0 (0,I, ..., O).

(01 ,x) (Xl, X, ...,I xi1, 0,) xi , ...,xn) o

(lI,,X) (X 1I X 2 1 •.• .,I X i_-, I , x1 , •I ...,Ix n) .

(* i, X) (XII X2, • I .,Xi-J, I ,x 1, I ..., Ixn) .

y > x yj 2 xj Vi and y 1
> x, for some i.

8

y a y± >x± Vi.

X Y y (x1 11 y11 x 2 U y2 1 .. ,x II y")

where x I II yj = Max{xi, y}.

Y X (x] I y1,x 2 1 y 21 -. ,x. I y)

where xi 1 yj = Min{x,yj}.

pj jth minimal path set; j=1,2,...,s.

CzJ(x) indicator variable; 1 if all components in Pj work.

C, jth minimal cut set; j=1, 2, ... , t.

Pj(z) indicator variable; 0 if all components in Cj fail.

D dual structure function.

1 - x (l-xl, 1-x 2 , ... , 1-x,) •

I,(i) structural importance of component i in 4.

C component set; C = {c 1 1 c 21 ... ,cn}.

Aj component set of module j; AJ c C.

Xj structure function of module j.

V organizing structure for a modular decomposition.

2.1.2 Introduction

Birnbaum, Esary, and Saunders [1961] introduced the

binary model, which has served as the basis for the

mathematical and statistical theory of reliability. For this

model, the system and n components are assumed to be in one

of two possible states: functioning or failed.

The order of a system, n, is the number of distinct

components that make up the system. Along with the order,

a system is characterized by its structure which describes

how the components are configured. The structure of the

9

system is represented by a function, known as the structure

function, which determines the system state from the states

of the components.

Suppose the state of the ith component is represented by

the binary variable xi, where

1 if component i is functioning

=10 if component i has failed

for i=1,2,...,n. The binary component states are summarized

with the vector x = (xl, x2,...,x). The structure function

*(x) determines the binary state of the system 0 from the

component state vector so that

1 if the system is functioning

0 if the system has failed.

2.1.3 Special Structures

Birnbaum et al. [1961] defined three basic structures

for the binary case: series, parallel, and k-out-of-n. A

series system is defined so that the system functions if and

only if each component functions. The structure function is

n

O(x) = lxi = Min{x1 ,x 2,...,xn} = xI x2 " Xn.
I-!

A parallel system is defined so that the system fails if and

only if all the components fail. The structure function is

n

O(X) = l x, = Max{x,x 2, . . .,xn} = l-(l-xI) (l-x 2)"...(-xn)

A k-out-of-n system is defined so that the system functions

if and only if at least k-out-of-n components function. The

10

structure function is

1 if x. >: k

0 if Ex. < k.
i-1

Series and parallel systems are special cases of the k-out-

of-n structure. A series system is an n-out-of-n structure

while a parallel system is a 1-out-of-n structure.

2.1.4 Coherent Structures

From the beginning, the founders of reliability theory

only considered the set of structures that were intuitively

appealing. Birnbaum et al. [1961] coined the term coherent

system and offered the following definition:

DEFINITION - A structure is coherent iff

i. 0(y) > *(x) for all y > z and

ii. 0(0) = 0 and 0(l) = 1.

They also defined the ith component to be essential or

relevant if *(0,,x) * *(l, x) for some (' ,x).

Esary and Proschan [1963a] modified the definition of

coherence given by Birnbaum et al. [1961] to include all

increasing' functions:

DEFINITION - A structure 0 is coherent iff

i. *(y) O(x) for all y x and

ii. 0(0) = 0 and 0(l) = 1.

'The term increasing (decreasing) is used in place of

nondecreasing (nonincreasing) in the reliability literature.

11

Barlow and Proschan [1981] combined the concepts of

component relevance and increasing structure functions to

give a commonly used definition of a binary coherent system.

DEINITION - A system or structure 4 is coherent iff

i. *(y) 2 O(x) for all y > x and

ii. Each component is relevant to the system where the

ith component is relevant iff 0(li,x) * 0(0,x) for some

(- 1,x)

Interpreting the last definition, repair of a failed

component cannot cause system deterioration and failure of

a working component cannot cause system improvement. Also,

all components in a coherent system must influence the state

of the system for at least one component state vector. All

irrelevant components should be removed from the system to

reduce cost.

ZXAMPLZ 2.1 Show that 1 (x) = 1 - X1 X2 and 2 (x) =

1 - (l-x 1) (1-x 1x 2) and are not coherent structure

functions as defined by Barlow and Proschan.

01 (x) is a decreasing function since 01(0,0) = 1 and

01(Ii) = 0. Thus *1 degrades as components are

repaired. For 02(x), component 2 is irrelevant since

02(0,0) = 02(0,1) = 0 and 4(1,0) = 02(1,1) = 1. The

system can be improved by removing component 2.

Elimination of unrealistic structures allowed Esary,

Marshall, and Proschan [1970] to present the next three

theorems for every coherent system.

12

The first theorem implies that every coherent system can

be bounded below by a series arrangement of the system's

components and bounded above by a parallel arrangement of the

system's components.

THEOREM 2.1 If * is a coherent system, then

n nHx 1:5¢(X) :5 X,.
i-i i-i

The second theorem states an important result about

redundancy. Suppose that enough components exist to build

two identical structures. The choices are to construct a

system made from:

(1) Two identical structures arranged in parallel or

(2) One structure with each component in parallel.

The next theorem states the design principle that it is

better to duplicate at the component level rather than at the

system level, so choice (2) is better. Equality holds when

is a parallel structure.

THEOREM 2.2 If 0 is a coherent system, then

*(x ly) 2t(x) l0(y)

for any state vectors x and y. x H y is defined

as (x, II y 1 ,x 2 II Y2,...,xn H yn) where xi H Y1 =

Max{x,,y,} and 0(x) H 0(y) = Max{0(x),0(y)).

The final theorem has a similar interpretation. Again,

suppose that enough components exist to build two identical

structures. The choices are to construct a system made from:

13

(1) Two identical structures arranged in series or

(2) One structure with each component in series.

The next theorem states that placing the two structures in

series is better than placing the components of the structure

in series, so choice (1) is better. Equality holds when *
is a series structure.

TEZOREZ 2.3 If * is a coherent system, then

¢(x fly) _<(x) I4(y)

for any state vectors x and y. x IT y is defined

as (x1 'T y1,x 2 II Y21 ...,x II Y) where x. IT Y =

Min{xjyj} and O(x) I 0(y) = Min{0(x),O(y)}.

2.1.5 Equivalent Coherent Structures

Birnbaum et al. [1961] showed that any coherent

structure can be represented by several alternate structures.

The subsequent discussion and notation follow mainly from

Ross (1989].

A minimal path set is a minimal set of functioning

components that guarantees that the system functions.

DEFINITIONS. A component state vector x is called a

path vector if O(x) = 1. A path vector x is a minimal

path vector if 0(y) = 0 for any y < x. If x is a

minimal path vector, then P(x) = {i I x. = 1) is called

a minimal path set.

Let P11P2, ... ,P, denote the minimal path sets for a given

system. Let a,(x) be an indicator variable of the jth minimal

14

path set defined by

a(x) I if all components of P, are functioning() =0 otherwise

= HXi°
xi.p

The system will function if and only if all the components

in at least one minimal path set are functioning. Hence,

the state of the system is given by

(1if L,(x) =1 for some j
(x) - 0 if cXj(x) = 0 for all j.

This equation is a parallel arrangement and can be rewritten

in the following equivalent forms:

W(x) = Max a (x)
j

= Max Hnx

-t (1 - H xi)
J-1 iepi

J-1 iHp,

Therefore, for the binary case, minimal path sets can be used

to represent any coherent system as a parallel arrangement

of series structures.

A minimal cut set is a minimal set of failed components

that guarantees that the system fails.

DNINITIONS. A component state vector x is called a

cut vector if O(x) - 0. A cut vector x is a minimal

cut vector if 0(y) = 1 for any y > x. If x is a

minimal cut vector, then C(x) = {i I xi = 0} is called

a minimal cut set.

15

Let C11C21 ...,Ct denote the minimal cut sets for a given

system. Let Pj(x) be an indicator variable of the jth minimal

cut set defined by

0 if all components of C1, are not functioning
'j() = I otherwise

= H xi.

The system will fail if and only if all the components in at

least one minimal cut set are not functioning. Hence,

the state of the system is given by

I if P3 (x)= 1 for all j
(x) =0 if Pj (x) = 0 for some j.

This equation is a series arrangement and can be rewritten

in the following equivalent forms:

(x) = Min Pj (x)
xI

= Min IIx,J T GCj--
t

1 a H (1 x1))
J-1 ieCC
t

V1 llx,J-1 ieCi

Therefore, for the binary case, minimal cut sets can be used

to represent any coherent system as a series arrangement of

parallel structures.

EXAMPLZ 2.2 Write the equivalent structure functions

using minimal path and cut sets for the coherent system

given in Figure 2.1 and show that they are equivalent

to the original structure function.

16

Figure 2.1 Coherent System of 4 Components.

The original structure function is given by

O(X) = X1 [1-(1-x 2X3) (l-x 4))

= x, [X2X3 + X4 -X 2X3x4]

- x1X2X3 + X1X4 -x 1X2x3x4.

The minimal path sets are {1,2,3), 11,4}. So

0zx) =1- (l-XIX2x3) (1-XlX4)

-1 - [1I - X1x2X3 - XIx 4 + X1
2X2X3x4 1

-x1X2X3 + X1X4 - xlX 2X3X4.

The minimal cut sets are (1), (2,4), 13,4). So

O X) = XI 1[1- (1 -X2) (1 -X4) I 111- (1 -X3) (1l-X 4)

= x, [X2 + X4- X2X4 1 (X3 + X4 - x3x41

= x, [X2X3+X2X4 -X2X3X4 +X3X 4+X4 2-X3X4 -X2X3X4-X2x4 2+ X2x3X4]

= xi [X2X3+X2X4-X2 x3x4+X3X4+X4-X3X4-X2x3X4 -X2x4+X2X3X4]

= x1 [x 2x3 - x2x3x4 + X41

= XIx 2x3 + xIX 4 - XIX 2x 3X4 .

Therefore, the three representations are equivalent.

As a final note, Birnbaum et al. [1961] presented the

following expansion to reduce the order of the structure

function by one:

*(xW = x~ (1 1, X) + (1 - x 0) *(O1, X) (2.1)

The structure can be expanded with respect to any component.

17

2.1.6 Dual Structure Function

Birnbaum et al. [1961) introduced the dual structure

function which has proven useful both for switching systems

and systems with two different modes of failure.

DEFINITION. Given a structure *, the dual structure OD

is defined by

OD = 1 - 0(- x).

The structure function and dual structure function have

several important relationships which have been stated and

proven by many authors.

THEOREM 2.4 The dual of a k-out-of-n system is an

(n-k+l) -out-of-n system.

Proof: * is a k-out-of-n system which is given as

1if Exi 2tk

0 if Ex. < k.

When evaluated at (1 - x),

1 if E (I x j) 2t k

(I -x) -- n:
0 if F (1 - x,) < k.

Therefore,

0 if xi 5n - k
1 if xi > n - k.

i-1

18

Changing to the form of a k-out-of-n system results in

1 if xi :n- k+l1
1 - (i- x) =1-+

0 if xi < n - k + 1
ijl

which is an (n-k+l)-out-of-n system.

Since a series system is an n-out-of-n structure and a

parallel system is a 1-out-of-n structure, the following two

corollaries are immediately apparent:

COROLL 2.1 The dual of a series system of n

components is a parallel system of n components.

COROLLARY 2.2 The dual of a parallel system of n

components is a series system of n components.

Continuing with the relationships between * and *D:

TREOREM 2.5 If x is a path vector of *, then (1 - x)

is a cut vector of *D, and vice versa.

Proof: Let x be a path vector of *. Then *(x) = 1 and

l-(x) = 0. But 1-4(x) = *D(l - x). So OD(I - x) = 0

and (1 - z) is a cut vector o f *D. Let x be a cut

vector of 4. Then 4(x) = 0 and 1-4(x) = 1. Therefore,

1(I - x) = 1 and (1 - x) is a path vector of 4 D.

THEORZM 2.6 The minimal cut sets for 4 are the minimal

path sets for *D, and vice versa.

Proof: Suppose the minimal cut sets of 4 are denoted

by C1IC 2,...,Ct. Using the alternate form with minimal

cut sets,

19

t

0(x) H11 fx'.
J-l isci

Therefore, the dual can be written as

1 - €(1 - x) = I -] I (1-xi)
Jul iqlc1

t-- 1 o l - EC,

=1 Hxi.
Jul jEC,

which is an alternate form of *D with minimal path sets.

Thus, ClIC 2 , ...,Ct are the minimal path sets of *D.

Now, suppose the minimal path sets of 0 are denoted by

PlIP2, ... ,P.. Using the form with minimal path sets,

£

(H H x.
Jul isP,

Therefore, the dual can be written as
S

(1 - X) t - II II (1 - x')
jul iepi

= 1j (1 - 11 (1 - X')
Jul iePI

Jul isP 1

which is an alternate form of 0D with minimal cut sets.

Thus, P1 ,P 2, ... ,P are the minimal cut sets of 0 .

TEZOREM 2.7 The dual of the dual structure function is

the original structure function; that is, (OD)D = O(X).

Proof: (OD) D = 1 - 0(1 - X)

20

= 1 - [1 - +(1 - (1 - x))]

= - [1 -

2.1.7 Structural Importance

Some components play a more important role than others

in determining whether or not the system will function based

on their location in the system. For example, a component

that is contained in every minimal path set is intuitively

more important than a component contained in only one minimal

path set. The number of minimal path sets that contain the

ith component can be counted by determining when the

component's failure causes the system to fail; that is, when

¢(lx) - 0(0i,x) = 1.

If the state of component i is fixed, there are 2n-1 remaining

component state vectors. Birnbaum [1969] showed that a good

measure of structural importance for component i is

I O Wi = 2 n -T i 1 l X O l X

where I scales I(i) so that 0 < Io(i) _ 1 for i=l,2, ... ,n.

Note that I,(i) is strictly positive for any coherent system.

2.1.8 Modules and Modular Decomposition

Birnbaum et al. [1961] were first to explore the

decomposition of large problems into smaller self-contained

problems. A module is a group of components that can be

treated as a single component, having only a single input and

21

output from the rest of the system. Birnbaum and Esary

[1965] formalized the definition and extended the result to

three modules.

DEFINITION - Suppose (C,4) is a coherent system where

C is the set of components. Suppose that A C C. Let

A' denote the subset of C complementary to A. The

coherent system (A,X) is a module of (C,O) if

*(x) = (xA, XA')= q[X(XA),X A']

where AV is the organizing coherent structure function.

ZXAWIZ 2.3 For the structure given in Figure

2.2, find the structure function X for the module

consisting of components 1 and 2 as well as for

the organizing structure AV.

4

Figure 2.2 Structure for Example 2.3.

X = xlx 2 and

AV = 1 - (1-X) (1-x3) (l-x4)

Barlow and Proschan [1981] generalized this result for

a discrete number of disjoint modules.

DEFINITION - A modular decomposition of a coherent

system (C,) is a set { (A,X1), (A2, X2),..., (Ak, Xk) I along

22

with the organizing structure V such that

i) {A1,A 2,...,Ak} partition C into disjoint subsets and

ii) *(x) = X1(Z'),X2(X),...,Xk(ZAk)].

EXAMPLE 2.4 For the structure given in Figure

2.3, find the structure functions for module X,

consisting of components 1,2, and 3, for module X2

consisting of components 4 and 5 as well as for

the organizing structure AV.

Figure 2.3 Structure for Example 2.4.

Xi = X 1X2X 3 ' X2 = X4X5 , and

= 1 - (1-X1) (l-X2).

In practice, a complex system is decomposed into major

subsystems. Complex subsystems are further decomposed into

assemblies. The decomposition process continues until each

module's structure function is obvious. The organizing

structure provides the means to determine the overall

structure function for the system. In summary, modular

decomposition of a system breaks up a complex problem into

several smaller, more manageable problems.

2.2 Stochastic Properties

So far, only the deterministic properties of binary

structure functions have been discussed. Stochastic

23

properties characterize the probabilistic relationship

between the state of the system and the states of the

components at a fixed moment in time.

2.2.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

n number of components comprising the system.

Xj random variable for the state of component i.

xi state of component i; x i e {0, 1) for i=I,2, ... ,n.

X random component state vector; X = (X1,X 2 , ... , Xn) .

x fixed component state vector; x = (x, X 2, . .. ,Xn)

Pi reliability of component i; p, = Pr(Xi = 1].

p component reliability vector; p = (PIP2, ... ,Pn)

(X) random variable for the state of the system.

* fixed state of the system; O = (x).

E[O(X)] the expected system state.

r(p) reliability function; r(p) =E[(X)].

Ir(i) reliability importance of component i.

p I jth minimal path set; j=1,2,...,s.

Cj jth minimal cut set; J=l,2,...,t.

Aj component set of module j.

Xj (x) indicator variable; I if all components in P, work.

P3(x) indicator variable; 0 if all components in C, fail.

Xj structure of module J.

4I organizing structure for a modular decomposition.

j jth term of the inclusion-exclusion principle.

24

2.2.2 The Reliability Function

As developed by Birnbaum et al. [1961], one of the most

important problems of reliability theory is to determine the

system reliability from the reliability of the components.

Suppose a system consists of n components. Let X. denote the

random state of component i and xi denote a specific state of

component i. The random and specific states for all

components are summarized by the random component state

vector X = (X1 X 2, . . . , X,) and the fixed component state vector

x = (x 1 ,x 2, .. . ,x) . After defining the reliability of the ith

component as p. = Pr[X, = 1] = E[Xi], the vector of component

reliabilities can be represented by p = (P11P 2, ...- "

For the system, let O(X) be the random system state and

*(x) = be a fixed system state. Suppose system reliability

is defined as the probability that the system is functioning

so that r = Pr[4(X)=I] = E[(X)]. if tht Lidom variables

X., i=l,...,n are mutually independent, then the system

reliability is a function of the component reliabilities.

The function r(p) is called the reliability function and

it is defined so that r = r(p).

2.2.3 Reliability Importance

Section 2.1.7 discussed structural importance which was

based on a component's location in the structure. This

section discusses reliability importance, also taking into

account the stochastic performance of each component in the

system.

25

Birnbaum (1969] developed a measure of component

importance which not only uses the structure * but also the
component reliabilities p. The following expansion of the

reliability function can be derived from the expected value

of Equation 2.1:

r(p) = p1 r(lp) + (1 - pi) r(01 ,p) for i=1,2,...,n.

Reliability importance is found by taking the partial

derivative of r(p) with respect to p..

ir(i) = ar(p) = r(1,p) - r(01,p)

The partial derivative determines the increase in system

reliability per unit change in the reliability of component

i. In this sense, the most important component will have the

highest partial derivative. For a series system, the most

important component has the lowest reliability, while for a

parallel system, the most important component has the highest

reliability. Prudent design engineers focus reliability

improvement programs on components with high reliability

importance.

2.2.4 Ixact System Reliability

Enumeration, inclusion-exclusion, pivoting, and modular

decomposition are four techniques used to determine the exact

system reliability from the component reliabilities. Each

technique assumes the components are mutually independent.

2.2.4.1 Enumeration

The enumeration technique delineates all possible

26

component state vectors, x e S. The system state, 4(x), and

probability, Pr[X = x], are determined for each component

state vector. Reliability is the sum of the probabilities

for all x E S with *(x) = 1.

EXAMPLZ 2.5 Suppose that pl=.9, P2=.8, p3=.7, and p4=.6

for the structure given in Figure 2.4.

Figure 2.4 Structure for Enumeration.

Assuming components are mutually independent, find r.

x 4 PrrX=x] x 6(x) Pr[X=xl
0000 0 .0024 1000 0 .0216
0001 0 .0036 1001 1 .0324
0010 0 .0056 1010 1 .0504
0011 0 .0084 l011 1 .0756
0100 0 .0096 1100 1 .0864
0101 0 .0144 1101 1 .1296
0110 0 .0224 1110 1 .2016
0111 0 .0336 1111 1 .3024

The system reliability can be found by summing the

probability of all x e S where 0(x) = 1. Thus, r =

.0324+.0504+.0756+.0864+.1296+.2016+.3024 = .8784.

Note that Pr[O(X) = 0) = .1216.

The number of component state vectors is 2n and the number of

calculations needed to enumerate all x becomes unmanageable

27

for large, complex systems. It seems more reasonable to

calculate system reliability from a subset of all component

state vectors such as the minimal path or minimal cut sets.

2.2.4.2 Inclusion-Exclusion

The inclusion-exclusion technique of Barlow and Proschan

[1981] is based on the fact that the system functions if and

only if all the components in at least one minimal path set

function. Suppose 4 is a binary coherent system with minimal

path sets P1IP 2,...,P,- Let E, be the event that all

components in Pj are functioning for j=l,...,s. Then the

S

system reliability is given by r = Pr[O(X) = 1] = Pr[UEj].
j--1

The probability of the union of a finite number of events can

be found from Feller's inclusion-exclusion principle [1968].

TEEOREM 2.8 For any s events El, ... ,E,

Pr[UEj] - Pr[E,1 - EPr[EEk] + E Pr[EEkE1]
J-1 J-i J<k J<k<l

- E Pr[EjEkEE] + ... + (-1) , + Pr[EjE2...Ej].
J<k<l<m

Exact reliability can also be derived from minimal cut

sets. Recall that the system will fail if and only if all

the components in at least one minimal cut set have failed.

Suppose 0 is a binary coherent system with minimal cut sets

CIC2, ... ,Ct . Let E, be the event that all components in Cj

have failed for j=l, ...,t. Then the system reliability is

given by

28

t

r = 1 - Pr[(X) = 0] = 1 - Pr[UEj]
J-1

where the union of events is again derived from Theorem 2.8.

EXMWLZ 2.6 For the structure given in example 2.5,

calculate the system reliability using minimal path and

minimal cut sets.

The minimal path sets for example 2.5 are {i,2}, (1,31,

and (1,4). Therefore,

r = Pr[(X11 X2=1) U (X1 1X3=1) U (X1 1X4=l)]

= Pr[X,X 2=1] + Pr[XlX 3=1] + Pr[XIX 4=I]

- Pr[XlX 2 ,X 3=1] - Pr[XlX 3 ,X 4=1] - Pr[XlX 2 ,X 4=1I

+ Pr[XlX 2,X 3, X4=1]

= (.9) (.8) + (.9) (.7) + (.9) (.6) - (.9) (.8) (.7)

- (.9) (.7) (.6) - (.9) (.8) (.6) + (.9) (.8) (.7) (.6)

= .72+.63+.54-.504-.378-.432+.3024 = .8784

which agrees with example 2.5.

The minimal cut sets for example 2.5 are {1), and

f2,3,4). Therefore,

r = 1 - Pr[(X=O) U (X2 1 X3, X4=0)]

= 1 - {Pr[X1 =O + Pr[X 2,X 3,X 4=0] - Pr[XlX 2 ,X 3 ,X 4=0]}

= 1 - {. + (.2) (.3) (.4) - (.1) (.2) (.3) (.4) }

= 1-{.1 + .024 -.0024) 1 - .1216 = .8784

which also agrees with example 2.5.

Note that the number of calculations needed to calculate

exact reliability from s minimal path sets is

29

(:)+ (:) . + 2-1

and from t minimal cut sets is

Since enumeration requires 2n calculations, inclusion-

exclusion is superior to enumeration when the number of

minimal path sets or minimal cut sets is less than the number

of components and the minimal path or minimal cut sets are

known.

2.2.4.3 Pivotal Decomposition

The pivotal decomposition technique developed by

Birnbaum et al. (1961) uses the following reliability

expansion formula:

r(p) = pi r(li,p) + (1 - pi) r(01,p) for i=1,2,...,n.

The state of any component is fixed and reliability

calculations are made from the simplified systems.

EXAMPLZ 2.7 For the structure in Figure 2.5, show that

the reliability functions found from minimal path sets

and pivotal decomposition are the same.

Figure 2.5 Structure for Pivotal Decomposition.

The minimal path sets are {1,41, {1,3,5}, {2,3,4}, and

30

{2,5}. The structure function is

(X) = 1- (l-xlx 4) (1-xlx3x S) (l-x 2x 3x 4) (l-x 2x 5)

= 1-(1-xlx 4-xlx 3x 5 +xlx3x 4x5) (1-X 2X 3X 4-X 2X 5+X 2X 3X 4X5)

= 1- (l-X 2X 3 X 4 -X 2X 5 +X 2X 3X 4X 5 -XIX 4 +XIX 2X 3 X 4+XlX 2 X 4 X 5 -XIX 2 X 3X 4X 5

-XlX 3 X 5 +XlX 2 X 3X 4 X 5 +XlX 2 X 3X 5-XlX 2X 3X 4 X 5+XIX 3 X 4X 5 -XIX 2 X 3X 4 X 5

-X 1 X 2X 3X 4 Xs+X 1 X2X3X4X 5)

= XlX 4+X 2X 5 +XlX 3X 5 +X 2 X 3X 4 -X IX 2x 3x 4-xlx 2X 3X 5-xlx 2x 4x 5 -xlx 3x 4x 5

-X 2 X 3 X 4 X 5 +2X 1 X 2 X 3 X 4 X 5 .

r = Pr[(X)=1] = E[*(X)] = PlP4+P2P5+PlP3P5+P2P3P4

-P1P2P3P4-PlP2P3P 5-PP 2P4P5-PlP 3P4P5-P2P3P 4P+2p1P2PP4P5.

Suppose pivotal decomposition is performed on the third

component. When the third component functions, the

structure shown in Figure 2.5 changes to the structure

shown in Figure 2.6.

Figure 2.6 New Structure With x3 = 1.

The new structure function is

01(M)= [1- (l-x 1) (l-x 2)] [1- (l-x 4) (l-x 5)I

and reliability is given by

r(1 3,p) = E[0 1 (X)] = [l-(l-p) (l-P 2)] [l-(l-p4) (l-P 5)]

When the third component fails, the structure in Figure

2.5 changes to the structure shown in Figure 2.7.

31

Figure 2.7 New Structure With X3 = 0.

The new structure function is

ko (X = [1 - (1 -X1 X4) (1 -X2X5)3

and reliability is given by

r(0 3 1P) = E[0 0 (X) I3 ' [l(1-PIP4) (1-P2P5) 3

The overall system reliability can be found from the

reliability expansion about component 3.

r(p) =P 3 r(1 3 1 P) + (1 - P3) r(0 3 1P)

+ (-P3) [1 -(1l-PlP4) (1l-P2P5)]

= P3 [Pl+P2-PlP2] [p4+p5-p4p5]

+ (1-P3) tPlP4+P2Ps5-P1P2P4P5]

= PlP4+P2P5PP3P5+P2P3P4-PlP2P3P41PP2P3P5-PP2P4P5

-PlP 3P4P5 -P2P3P4P 5+2plP2P3P4P5

which matches the result found using minimal path sets.

2.2.4.4 Modular Decomposition

In practical reliability analysis, systems are often

divided into disjoint subsystems (modules) and evaluated

separately [Birnbaum and Esary, 1965]. The reliability of

each subsystem is determined from the component reliabilities

using any of the previously mentioned techniques. Then the

overall system reliability is found from the subsystem

32

reliabilities. The following example demonstrates the

computational savings potential of modular decomposition:

ZXMPLE 2.8 Consider the structure of 7 binary

components given in Figure 2.8.

Figure 2.8 Structure for Modular Decomposition.

With enumeration, there are 2 or 128 possible component

state vectors that must be evaluated to determine

system reliability. Evaluate the effectiveness of the

following modular decomposition:

A, = (cIc 21 c 3}
A2 = {c 4}
A3 = {c 51 c 6}
A4 = {c7}.

All 4 modules will also be binary systems. Modules A,

A2, A3, and A4 have 8, 2, 4, and 2 component state

vectors, respectively. The organizing structure must

be evaluated for 24 or 16 component state vectors.

Thus, the modular decomposition has reduced the total

number of component state vectors from 128 to 32.

33

Unfortunately, each of the 4 techniques for calculating

exact system reliability is burdensome for large, complex

systems. As an alternative, system reliability can be

approximated with lower and upper bounds.

2.2.5 Bounding System Reliability

Up to this point, the discussion has been restricted to

the case where the random variables for the n component

states are mutually independent. Esary and Proschan [1970]

were first to discuss the less restrictive case of associated

components.

DEFINITION - The vector of random component states X =

(XIIX 2,...,X,) are associated if Cov[f(X),g(X)] 0 for

all increasing functions f and g.

Lug nuts that share a common load are a good example of

associated components.

Reliability bounds have been constructed for mutually

independent and associated random variables. The bounds are

more explicit if the random variables are independent. Each

of the bounds is based on the following commonly known

result:

THEOREM 2.9 If X1,X2, ... ,Xn are binary associated random

variables representing the n component states, then

n n

Pr jlx 1 = 1] HPrX, = 1]
i.1 i-i

and

n
n

Pr[lX, =1] l5Pr xi = 1].
1.l i-

34

2.2.5.1 Trivial Bounds

Trivial bounds were obtained by comparing any coherent

system with the worst possible structure (series) and the

best possible structure (parallel) for the components.

THuOREM 2.10 Let * be a coherent system composed of

associated components with reliabilities given by p

(Pl, P2, ... ,P) Then

n n

pi:r(p) :l pi.
i-i i-i

The lower and upper bounds are derived by taking the expected

value of the bounds for * given in Theorem 2.1 and applying
Theorem 2.9.

2.2.5.2 Path/Cut Bounds

Path/Cut Bounds were developed by Esary and Proschan

[1963a] from the minimal path and minimal cut sets. The

lower bound comes from the minimal cut sets while the upper

bound comes from the minimal path sets.

TEZOERM 2.11 Let 0 be a coherent system of associated

components. As before, let aj(x) be the indicator

variable of the jth minimal path set and j,(x) be the

indicator variable of the jth minimal cut set. Then

t S

flPr[Pj(X) = 1] r(p) flPr[aj(X) =]
J-1 J-1

The bounds come from the relationship between the structure

function and the indicator variables and the application of

Theorem 2.9.

35

When the components are independent, the bounds of

Theorem 2.11 can be explicitly derived from the component

reliabilities.

THEOPEM 2.12 Let * be a coherent system of independent
components with minimal path sets P1 1 P2, • • .P' and

minimal cut sets ClC 21 ... ,C,. Then

t]I J1 p, r (p) I:5 pi.
J-l iC 2 j31 lapE

2.2.5.3 Min/Max Bounds

Min/Max Bounds were developed by Barlow and Proschan

[1981]. The lower bound comes from the minimal path sets

while the upper bound comes from the minimal cut sets.

THEOREM 2.13 Let 0 be a coherent system with minimal

path sets P11P 2,...,P. and minimal cut sets C,, C2,...,C.

Then the following bounds always hold:

Max Pr(Min X,=l] < r(p) ! Min Pr [Max X1 =l].
J-1,2,.-,S isPi J-1,2,....t ieC1

If the components are associated, then

Max H P} <- r(p) < Min {H P}-
J-1,2,..s isPj J-1,2. t iec

It has been shown that the Path/Cut Bounds of Theorems 2.11

and 2.12 are not always tighter than the trivial bounds of

Theorem 2.10. On the other hand, the Min/Max Bounds of

Theorem 2.13 are always tighter than the trivial bounds.

2.2.5.4 Combining Bounds

Unfortunately, no bound superiority can be established

36

between the Path/Cut Bounds and the Min/Max Bounds when the

components are mutually independent. However, minimal cut

sets generally provide tighter bounds for mutually

independent components with high reliabilities and minimal

path sets generally provide tighter bounds for mutually

independent components with low reliabilities. Thus, a

combination of the bounds in Theorems 2.12 and 2.13 seems

appropriate for mutually independent components.

TREOREM 2.14 Let * be a coherent system of independent

components with minimal path sets P1,P2,...,P, and

minimal cut sets ClC 2 1 ... ,Ct. Then

t sMax {Hpj}}5r(p) 5Minjlljp,,Mn {IPl
M ax(I i J --l, 2,..., Jl P Jl,2 t C

J-1 tic, j~i, 2. t IEC,

2.2.5.5 Improved Path/Cut Bounds

Bodin [1970] developed better Path/Cut Bounds with

modular decomposition. Path/Cut Bounds are determined for

each module. The bounds are then used to determine Path/Cut

Bounds for the system. Bodin (1970] showed that these bounds

were always tighter than the Path/Cut Bounds found directly

from the entire system.

EXAMPLE 2.9 Determine the trivial, Path/Cut, Min/Max,

and Improved Path/Cut Bounds for the structure in

Figure 2.9 given that all components are mutually

independent with common reliability p.

The minimal cut sets are {1}, {2}, {3,4}, and {3,5}.

The minimal path sets are {1,2,3} and {1,2,4,5}.

37

Figure 2.9 Structure for Reliability Bounds.

The trivial bounds are p5 < r(p) 5 1 - (1 - p) 5 .

The Path/Cut Bounds are

p 2[l-(l-p)212 :5 r(p) < [l (1l-p 3) (1l-p4)]

The Min/Max Bounds are

Max{p 3,p 4} 5 r(p) !5 Min{p,p,l-(l-p) 2
1

, 1-(l -p) 2}.

Consider the following modular decomposition:

A, {x 1 , x 2}, A2 = {x3}, and A3 = {x41 x5 } .

Then Xi = x, II X 2 1 = x 3, and X3 = X4 f x5 .

The organizing structure is I = X, H (X2 H X3)-

The Path/Cut Bounds for X, and X3 are p2 < r (p) < p2 .

The Path/Cut Bounds for X2 are p 5 r (p) < p.

The minimal cut sets of V are {Xi} and {X2,X3}.

The minimal path sets of AV are {X1,X2) and {XI, W}.

The Improved Path/Cut Bounds are

p 2 [l-(1-p) (1-p 2)] < r(p) 1-(1-p 2p) (1-p 2p 2)

The exact reliability function is given by

r(p) = p 2 [1-(1-p) (l-p 2)] = p 3 + p 4 - p5 .

Tables 2.1 and 2.2 compare the lower and upper

boundary points for various levels of p. Notice

the lower Improved Path/Cut Bounds give the exact

reliability. The dominance of some of the bounds

38

can be seen from the tables. Min/Max Bounds are

better than trivial bounds. As shown in Table

2.1, Path/Cut Bounds are better for high p and

Min/Max Bounds are better for low p. In Table

2.2, the opposite is true. Improved Path/Cut

Bounds are at least as good as Path/Cut Bounds.

Table 2.1 Lower Bound Comparison.

p Trivial Path/Cut Min/Max Improved

.99 .95099 .979904 .97030 .979905

.95 .77378 .89799 .85738 .89810

.90 .59049 .79388 .72900 .79461

.75 .23730 .49438 .42188 .50098

.5 .03125 .14062 .12500 .15625

.25 9.76 E -4 .01196 .01563 .01855

.1 1.00 E -5 3.61 E -4 1.00 E -3 1.09 E -3

.05 3.12 E -7 2.38 E -5 1.25 E -4 1.31 E -4

.01 1.00 E -10 3.96 E -8 1.00 E -6 1.01 E -6

Table 2.2 Upper Bound Comparison.

p Trivial Path/Cut Min/Max Improved

.99 .99999 .99883 .99000 .99883

.95 .99999 .97354 .95000 .97354

.90 .99999 .90680 .90000 .90680

.75 .99902 .60480 .75000 .60480

.5 .96875 .17969 .50000 .17969

.25 .76270 .01947 .25000 .01947

.1 .40951 1.10 E -3 .10000 1.10 E -3

.05 .22622 1.31 E -4 .05000 1.31 E -4

•01 .04901 1.01 E -6 .01000 1.01 E -6

39

2.2.5.6 Inclusion-Exclusion Bounds

Barlow and Proschan [1981] also developed bounds using

the inclusion-exclusion principle of Feller [19681. Let 1,

be the jth summation term in Theorem 2.8. The reliability

function can be bounded as follows:

r (p) : T.

r(p) 2 - - 12

r(p) = - 2 + 3- .. + (-i)B I Z*

Unfortunately, the bounds do not consistently improve as more

terms are added. In fact, Inclusion-Exclusion Bounds are not

restricted between 0 and 1. The only guarantee is that exact

reliability will be found after including every summation.

Still, only a few terms may be necessary to provide narrow

bounds for system reliability.

2.3 Dynamic Properties

The structural and stochastic properties describe the

deterministic and probabilistic relationships between the

system state and the states of the components at a fixed

moment in time. The next logical step is to consider the

relationship between the lifetime distribution of the system

and the lifetime distributions of the components. Barlow and

Proschan [1981] summarized the dynamic properties for the

binary model.

2.3.1 Notation

The following notation is listed for the reader's

40

convenience in the order of presentation:

T system lifetime.

t fixed time.

R(t) survivor function; R(t) = Pr[T > t].

F(t) cumulative distribution function; F(t) = Pr[T 5 t].

f(t) probability density function.

h(t) hazard function; h(t) = f(t)/R(t).
t

H(t) cumulative hazard function; H(t) = fh(T)dT.

X1 (t) state of component i at time t, i=1,2,...,n.

Tj lifetime for component i, i=1,2,...,n.

X(t) vector of component states at time t; X(t)

(X1 (t) ,I X2 (t) ,I . . . I , (t)) .

*(X(t)) system state at time t.

Ri(t) survivor function for component i at time t; R1 (t) =

Pr[Xi(t) = 11 = E[X.(t)] = Pr[T, > t] for i=1,2,...,n.

R(t) survivor function for the system at time t; R(t) =

Pr[W(X(t)) = 11 = E[4(X(t))] = Pr[T > t].

R(t) vector of component survivor functions at time t;

R(t) = (Rl(t),R2(t), ... ;,n(t)) .

r(R(t)) reliability function at time t; r(R(t)) =E[(X(t))].

91 mean of the lifetime distribution for component i.

2.3.2 Lifetime Distribution Functions

Suppose that the nonnegative random variable T denotes

the lifetime of the system. There are several ways to

completely specify the system's lifetime distribution. The

41

survivor function R(t) gives the probability that the

lifetime exceeds a given time t so that R(t) = Pr[T > t] for

t Z 0. Since R(t) = 1 - F(t), where F(t) is the cumulative

distribution function, R(0) = 1, lim R(t) = 0, and R(t) is
t -4-

decreasing. The probability density function f(t) indicates

the likelihood of failure during a time period At so that

t+&t

Pr[t 5 T < t+At] = fi (r) dr. As with any probability
t

density function, f f(,) dr = 1 and f(t) _> 0 for t > 0.

When the derivative exists, f(t) = -R' (t) . The hazard

function h(t) measures the degree of risk to failure at time

t. It is defined as the instantaneous failure rate given the

component or system has survived to time t so that

h(t) = lim 1 Pr[t < T < t+At I T > t]
At -+ 0 72KE

= lim R(t) - R(t+At)
At+ 0 R(t) At

= -R"(t) _ f(t) for t 2! 0.
R(t) T)

The hazard function is useful for determining how the risk

of a component or system changes with time.

Knowing any one of these representations allows the

others to be generated. If R(t) is known, then

f(t) - -R' (t) and h(t) (t)
R(t)

If f(t) is known, then

42

C~f (t)
R(t) |(T) dT and h(t) -=

t f f (T) dt

t

If h(t) is known, then

f(t) =h(t)exp [-h(T) dc] and R(t) = exp [h(t) d].

There are several other functions that can be used to

completely specify the lifetime distribution.

2.3.3 Lifetime Distribution Classes

Lifetime distributions can be classified by the shape

of R(t), f(t), or h(t). Since it is useful to study the way

risk changes with time, lifetime distributions are most often

grouped together according to the shape of h(t).

DEFINITIONS. A lifetime distribution belongs to

the increasing failure rate (IFR) class if h(t) is

an increasing function. A lifetime distribution

belongs to the decreasing failure rate (DFR) class

if h(t) is a decreasing function.

EXAMPLZ 2.10 Classify the exponential and Weibull

distributions according to the shape of h(t).

For the exponential distribution with f(t) = Xe-)t ,

and R(t) = e - xt, h(t) = X for t > 0. Therefore,

the failure rate for the exponential distribution

is constant and the distribution belongs to both

the IFR and DFR class for all X. For the Weibull

43

distribution with f(t) = aXatlexp[-(Xt)a] and R(t)

= exp[-(;t)a], h(t) = aUX"t-1 = aX (Xt)-' for t 2 0.

Therefore, the Weibull distribution belongs to the

DFR class if 0 < a < 1, the IFR class if a > 1,

and both classes if a = 1 (exponential case).

Esary and Proschan [1963b] gave an example where

independent components with lifetime distributions belonging

to the IFR class did not result in a system with a lifetime

distribution in the IFR class. This led to the definition

of a larger class of lifetime distributions known as the

increasing failure rate on the average (IFRA) class. This

class has been shown to be the smallest class where a

coherent system of IFRA components remains IFRA.

DzEINITIONS. A lifetime distribution belongs to

the increasing failure rate on the average (IFRA)

class if !jhC,)dC = is increasing in t 0.
t .~t

A lifetime distribution belongs to the decreasing

failure rate on the average (DFRA) class if
t

is decreasing in t 0.

Equivalent definitions state that a lifetime distribution

belongs to the IFRA class if -(l/t) log R(t) is increasing

in t 2 0 or [R(t)]1 t is decreasing in t 0.

The IFRA and DFRA classes of lifetime distributions can

be enlarged further. The following classes are important

44

when considering different component replacement policies.

DEFINITIONS. A lifetime distribution belongs to

the new better than used (NBU) class if R(t+x)

R(t)R(x) for any t Z 0 and x 0. A lifetime

distribution belongs to the new worse than used

(NWU) class if R(t+x) Z R(t)R(x) for any t ; 0 and

x Z 0.

The NBU (NWU) class says that the lifetime of a new component

is stochastically greater (less) than the remaining lifetime

of a component still working at time t.

DzEINITIONS. A lifetime distribution belongs to

the new better than used in expectation (NBUE-)

class if the distribution has a finite mean g and

f R(T) d g R(t) for tZ0. A lifetime distribution
t

belongs to the new worse than used in expectation

(NWUE) class if the distribution has a finite mean

and fR(T) dZ g R(t) for t 0.
t

The NBUE (NWUE) class says that the expected lifetime of a

new component is greater (less) than the expected remaining

lifetime of a component still working at time t. The

relationships between the various classes of lifetime

distributions is given below:

IFR IFRA NBU =NBUE

DFR DFRA NWU =NWUE.

45

2.3.4 Distribution Class Closure

A lifetime distribution class is said to be closed when

an operation on the lifetime distribution of the components

always results in a lifetime distribution belonging to the

same class. Closure has been studied with respect to the

following operations: forming coherent systems, the addition

of lifetimes (convolutions), and the linear combination of

lifetimes (arbitrary mixtures).

Table 2.3 summarizes the results given by Barlow and

Proschan (1981] for the eight lifetime distribution classes

and the three reliability operations given above. Closure

has not been proved or disproved for the NWUE class under the

operation of arbitrary mixtures.

Table 2.3 Closure of Lifetime Distribution Classes for
Various Reliability Operations.

Lifetime Reliability Operations
Distribution Coherent Arbitrary

Classes Systems Convolutions Mixtures

IFR Not Closed Not

IFRA Closed Closed Not

DFR Not Not Closed

DFRA Not Not Closed

NBU Closed Closed Not

NBUE Not Closed Not

NWU Not Not Not

NWUE Not Not ?

2.3.5 Exact System Lifetime Distribution

For the dynamic situation, the problem changes to

46

finding the lifetime distribution of the system from the

lifetime distributions of the n independent components that

comprise the system. Let Xi (t) be the random state of

component i at time t and let Ti be the component lifetime.

Let X(t) = (X1(t),X2 (t),...,Xn(t)) be the vector of random

component states at time t. Let *(X(t)) be the system state

at time t and let T be the system lifetime. The survivor

functions for the components and the system are given by

Ri(t) = Pr[Xi(t) = 11 = E[Xi(t)] = Pr[Ti > t] for i=1,2,...,n

and R(t) = Pr[4(X(t)) = 1] = E[4(X(t))] = Pr[T > t].

Let R(t) = (R (t) ,R 2 (t), . . .,Rn(t)). Since Xi (t),

i=1,2,...,n are mutually independent, R(t) is a funct-ion of

R(t). The relationship is given by the reliability function

r(') which is derived from *(x) so that R(t) = r(R(t)).

ZXAMPLEZ 2.11 Find R(t), f(t), and h(t) for a

series system of n independent components with

Ri(t) = exp[-Xit], i=1,2,...,n.

n n

O(X) -- 1 xi and E[O(X(t))]-H E[Xi(t)] so that
i-i i-i

n n

R(t) = H e-it = exp[- i t]

f(t) -- R'(t) X i exp kit and

n

h (t) f f(t) n

WET Ei

Of course, the lifetime distribution of the system becomes

intractable for all but the simplest structures.

47

2.3.6 Bounding System Reliability

Barlow and Proschan [1981] used the closure theorems to

develop bounds on system reliability. Let r(R(t)) be the

reliability function of a coherent system of n mutually

independent components. Suppose that Tj have unknown

lifetime distributions with known means g1 and that each of

the distributions belongs to the IFR class. Barlow and

Proschan [1981] showed that if the lifetime distribution for

component i belongs to the IFR class, then the largest lower

bound on Ri(t) is exp[-t/g.] for t < gi. Using the fact that

the reliability function is increasing in each argument,

R(t) = r(R1(t),R 2(t),..., R (t)) : r(e-t/,e-t;L,...,e -t/) for

t < Min{ gl, 92,.. ., Rn}.

ZXAMLE 2.12 Find a lower bound on R(t) for the

system of 3 mutually independent components given

in Figure 2.10. Assume the lifetime distributions

are in the IFR class and , = 10 92 = 5 and p3 = 8.

Figure 2.10 Structure for Bounding Reliability.

*(x) = x1[1-(l-x 2) (1-x3)] so

R(t) e-t/10 [- (1 - e-t/5) (1 - e-t') for t < 5.

2.4 Summary

This chapter presented a broad review of the structural,

48

stochastic, and dynamic properties for the binary reliability

model. It was designed to provide a convenient reference for

comparing the corresponding properties of the multistate and

continuous models. No original material was contributed.

49

3. THE MULTISTATE MODEL

This chapter presents the structural and stochastic

properties of the most general multistate coherent model.

The chapter makes comparisons to some of the more restrictive

multistate models developed by other authors.

3.1 Structural Properties

Structural properties characterize the deterministic

relationship between the state of the system and the states

of the components at a fixed moment in time.

3.1.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

n number of components comprising the system.

x I state of component i; x i e {0,1, ... ,Mj}, i=1,2,...,n.

Mi best state of component i; Mi e {0,1,2,...) Vi.

PL state space of component i; C = {0',I, ... ,Mj} Vi.

x component state vector; x (xlX2, .. , Xn) •

S component state space; S = (x I xi e R Vi}.

0 state of the system; 0 e {0,1,...,M}.

M best state of the system; M E {0,1,2,...).

12state space of the system; Q = {0,1,...,M}.

O(x) structure function; system state for x E S.

Sk kth equivalence class; Sk = {x e S *(x) = k).

(jj,X) (x1 Ix 2, .. .,x i_ 1 , jxi+ 1 , . .,xn) , i=l,2, ... ,n and j e

y > x yi 1 txi Vi and yj > x. for at least one i.

y > x Y1 > x, Vi.

50

14 x with all components at best state; (M,,M 2, ... M

o z with all components at worst state; (0,O,...,O).

p1 jth minimal path set; j=1,2,...,s.

J (Jj,...,j).

Lk the set of lower boundary points to level k,

k=1,2, . . .,M.

Lkj the jth lower boundary point to level k, k=1, 2,... ,M

and j=1,2,...,Sk.

Uk the set of upper boundary points to level k,

k=O,1,...,M-1.

Ukj the jth upper boundary point to level k,

k=O,1,...,M-1 and j=1,2,...,tk.

x V y (XI V YIX 2 V Y2, ... ,Xn V yn).

X A Y (xI A YI, X2 A Y2, ... , Xn A yn).

X II Y (X1 II Y1 IX2 II Y2,---,. I H1 yn)

where x, II yj = Max{xj,y 1 }.

x II Y (x1 I y1 Ix 2 II Y21 ... ,xn II yn)

where x i H y1 = Min{xi, y}.

Yjj indicator variable; yij = 1 if xi > j.

Ok(X) indicator variable; *k(x) = 1 if O(x) > k.

9k(X) minimal path set generator function.

Uk(X) minimal cut set generator function.

OD dual structure function.

C set of components; C = {clc2,...,cn}.

xjD state of component i in *D.

I,(i) structural importance of component i in 4.

51

Aj set of components in module j.

Xi structure function of module j.

V organizing structure function.

3.1.2 Introduction

Hudson [1981] introduced the most general multistate

model. For this model, each component and the system are

allowed to have a different number of discrete states.

For a multistate system with n components, the state of

the ith component is given by the discrete variable xi where

0 if component i is in the worst state

xi= 1 intermediate states of degradationMi-I

Mi if component i is in the best state

for i=I,2, ... ,n and Mi < c. The state space for component i

has Mi + 1 elements and is designated by i. The component

state vector, x = (x1,x21 ...,xn), is the vector of component

states and the component state space, S = {x I xj e l, Vi},

is the set of possible component state vectors.

The state of the system is given by the variable 0 where

0 if the system is in the worst state

= M }intermediate states of degradationM-1

M if the system is in the best state.

The state space for the system has M + 1 elements and is

52

designated byfl= {0,1,2,...,M}. The model assumes that the

state of the system is completely determined by the states

of the n components. The relationship is described by the

structure function 0(x) which can be concisely written as

0: (0,i, ...,Mi) -4 (0, I, ... ,M} or 0: n -_4 or 0: S --.>

Hudson and Kapur (1983b] noted that customers do not

always wish to make a distinction between the system states

for different component state vectors. For example, the

customer may define a multistate structure function so that

0(1,1,1) = 0(1,1,2), implying that the increase of x3 is not

significant from the customer's perspective.

The same logic is implicit in binary models. -For a

series system consisting of n binary components, 2n-1

component state vectors are equivalent, each resulting in a

failed system. Only the component state vector (Ii,...,i)

is significantly different from the others, causing the

system to function.

Component state vectors with the same system state are

said to belong to the same equivalence class.

DEFINITION. The kth equivalence class S. is given by

Sk = {x e S 1 0(x) = k}, k=O,1,...,M.

SOS1I...,SM are disjoint sets that partition S into M+l

M

equivalence classes. Therefore, S = U S,. For the binary
k-0

case, S contains the path vectors, while So contains the cut

vectors.

53

3.1.3 Special Structures

The earliest articles in multistate reliability [Barlow

and Wu, 1978; El-Neweihi, Proschan, and Sethuraman, 1978]

defined a series structure so that W(x) = Min{x 1 x, X2. ... ,xn} ,

a parallel structure so that O(x) = Max{xl,,x 2,...,x }, and a

k-out-of-n structure so that O(x) = X(nk+1) where X(1), ... ,X(n)

is an increasing sequence of x11x2, ... ,x. These definitions

have two drawbacks. First, they implicitly assume that the

component state spaces use the same scale. It seems more

reasonable to allow a series system where 0(2,3,3) < 0(3,2,3)

if the first component is more important to the customer.

Second, the definitions restrict the state space of the

system to the state space of the component with the highest

number of states. It seems more reasonable to allow the

customer to specify the number of system states based on his

interpretation of the system.

Hudson [1981) defined a series, parallel, and k-out-of-n

structure intuitively by characterizing the set of component

state vectors in the lowest and highest equivalence classes.

DEFINITION. 0 is a series structure function iff

i. So = {x e S I x = (0,,x) for some i=l,2,...,n} and

ii. Sm = {(MIM 2 ,...,Mn)} = {xM}.

DEFINITION. 0 is a parallel structure function iff

i. So = {(0,0,...,O)) = {x0} and

ii. Sm = {x e S I x = ((M,),x) for some i=l,2,...,n}.

DEFINITION. 0 is a k-out-of-n structure function iff

54

1. So = {Z e S I n-k+l or more of the components of x

are at their minimum value 0} and

ii. S4 = (x e S I k or more of the components of x are

at their maximum value Mj}.

Hudson's definitions eliminate the drawbacks of the earlier

definitions. However, the definitions create a new problem

because they do not specify which vectors are contained in

the equivalence classes between So and SM. Therefore,

several structure functions exist for each category. This

leads to problems interpreting theorems that involve the

concepts of series and parallel systems.

For the binary case, a series system of n components has

one minimal path vector and n minimal cut vectors. Parallel

systems of n components have n minimal path vectors and one

minimal cut vector. A k-out-of-n system has () minimal path

vectors and minimal cut vectors.vectors n -k 1)

Many authors have generalized the concepts of minimal

path and minimal cut vectors for multistate systems. Hudson

[1981] referred to the minimal path (cut) vectors as the

lower (upper) boundary points to level k. Janan [1985] gave

definitions closely resembling the following:

DIFINITION. x is a lower boundary point to level k if

*(x) > k and y < x implies that *(y) < k, k=l,2,...,M.

DEFINITION. x is an upper boundary point to level k if

*(x) k and y > x implies that 0(y) > k, k=O,...,M-l.

55

For the binary model, the lower boundary points to level 1

are the minimal path vectors, while the upper boundary points

to level 0 are the minimal cut vectors.

Using the logic of the binary model, the following new

definitions are offered for series, parallel, and k-out-of-n

structure functions:

DEIINITION. * is a series structure function iff 0 has

one lower boundary point to level j, j=I,2,...,M and n

upper boundary points to level j, j=0,1,...,M-l.

DEFINITION. 0 is a parallel structure function iff

has n lower boundary points to level j, j=l,2, . . .,M and

one upper boundary point to level j, j=0,1,...,M-I.

DEFINITION. 0 is a k-out-of-n structure function iff

o has (-) lower boundary points to level j, j=l,2, . .. M

and (_) upper boundary points to level j, j=O, . . . M-1.

Series and parallel systems are special cases of the k-out-

of-n structure. A series system is an n-out-of-n structure

while a parallel system is a 1-out-of-n structure. The

definitions reduce to the binary concepts of series,

parallel, and k-out-of-n when M = 1.

EXAMPLE 3.1 Suppose that n=2, M1=3, M2=2, M=2, and

O(x) is enumerated by the customer in Table 3.1.

Show that (x) does not meet the early definitions

for a parallel structure, but that it does meet

the new definition.

56

Table 3.1 *(x) for Example 3.1.

X2

*(x) 0 1 2

0 0 1 2
x, 1 0 1 2

2 1 1 2
3 2 2 2

*(x) * Max{x,x 2}, V x. For example, *(2,1) = 1.

Using Hudson's definition, So * { (0,0) }. For

example, z = (1,0) is also an element of So.

The lower boundary points to level 1 are (2,0) and

(0,1). The lower boundary points to level 2 are

(3,0) and (0,2). The upper boundary points to

levels 0 and 1 are (1,0) and (2,1), respectively.

Therefore, 0(x) meets the new definition for a

parallel structure function.

3.1.4 Coherent Structures

The authors who extended reliability theory to the

multistate model wished to eliminate unrealistic structure

functions. As in the binary model, the term "coherent

system" was used. However, there is no generally accepted

definition of coherence for a multistate system. Ohi and

Nishida [1984] presented a summary of the definitions from

many authors. Let R represent the state space of the ith

component, 0 represent the state space of the system, and

represent the structure function.

DZFINITION [Barlow and Wu, 1978]. * is BW-coherent if f

57

i. Ic = Q = 0, I,. ., } i=i,2, ... ,n and

ii. O(x) = Max Min x where Pj is the jP minimal
J)=1, 2,... s isPi

path set defined as if the components were binary.

In words, * is defined as the maximum of the worst

component in each minimal path set.

DIFINITION [Zl-Neweihi, Proschan, Sethuraman, 1978].

* is EPS-coherent iff

i. Qj = Q = {o, 1, ... ,M}, i=1,2, ... ,n,

ii. O(x) is increasing,

iii. For every state j of every component i, there

exists a vector ('i,x) such that O(j 1 ,x) = j while

0(ki,x) * j for all states k * j, and

vi. *(J) = j for j=0,1,...,M.

Griffith [1980] gave definitions for a multistate

monotone system (MMS) and for three types of coherence:

strongly coherent, coherent, and weakly coherent.

DEFINITION [Griffith, 1980]. 4 is a multistate

monotone system (MMS) iff

i. Ql = = {0,1,...,M}, i=l,2,...,n,

ii. O(x) is increasing, and

iii. Min x i <5 (x) < Max x i .
i-l,2,...,n i-1 ,2,...,n

DEFINITION [Griffith, 1980]. 0 is G-strongly coherent

iff 4 is a MMS and for any component i and any state j,

there exists a vector (-,,x) such that 0(j 1 ,x) = j while

0(k 1 ,x) * j for all states k * j.

58

DEFINITION [Griffith, 1980]. * is G-coherent iff 0 is
a MMS and for any component i and state jk1, there

exists a vector (' ,x) such that *((j-1) ,x) < Oil x).

DEFINITION [Griffith, 1980]. 0 is G-weakly coherent

if f * is a MMS and for any component i and any state j,

there exists a vector (-ix) such that 0(j,x) * 0(ki,x)

for some state k * j.

As interpreted by Block and Savits [1982], G-strong coherence

implies that every state of each component is relevant to the

same system state. G-coherence implies that every state of

each component is relevant to the system. G-weak coherence

implies that each component is relevant to the system. Each

of Griffith's definitions is progressively less restrictive.

Butler [1982] gave a definition that was similar to the

G-weakly coherent system proposed by Griffith.

DEFINITION [Butler, 1982]. 0 is B-coherent iff

i. R = Q = {0,1,...,M}, i=l,2,...,n,

ii. O(x) is increasing,

iii. For every component i, there exists a vector

(- ,x) such that *(M1,x) > *(0,x), and

iv. *(xO) = 0 and O(xM) = M.

Natvig [1982] gave definitions for two categories of

coherence which he called type 1 and type 2:

DEFINITION (Natvig, 1982]. * is N-typel coherent iff
i. R = Q = {0,1,...,M), i=1,2,...,n,

ii. O(x) is increasing,

59

iii. For every state j of every component i, there

exists a vector ('i,x) such that *(jj,x) ? j and

*((j-l)i,x) . j-1, and

iv. *(J) = j for j=0,l,...,M.

DEFINITION [Natvig, 1982]. * is N-type2 coherent iff
i. k = Q = 10,1,...,M), i=l,2,...,n, and

ii. There exist binary coherent structures

J=1,...,M such that * satisfies
*(x) j €t (I) = 1

for any vector x and any state j 1. The indicator

vector is given by

I,(x) = (Ij(xj),...,I,(x.)), for j=1,2,...,M where

{ if xi > j
I (xI) =0 if xi < j.

The N-type2 model and the BW model transform the multistate

system into several binary systems. Natvig [1982] showed

that N-type2 coherent systems are BW-coherent when the binary

structures are the minimal path sets.

Ohi and Nishida [1984] gave definitions for five types

of coherence: strongly-coherent, coherent, sub-coherent,

pseudo-coherent, and weakly-coherent. As with the definition

first given by Hudson [1981], a distinction was made between

the state spaces of each component and the system. Let s and

t be distinct states in Q. Let j and k be distinct states

in Q.

60

DEFINITION [Ohi and Nishida, 1984]. * is a multistate
monotone system (MMS) iff

i. f = (0,1,...,Mi}, i=1,2, ... n,

ii. (= {0,1,...,M}, and

iii. *(x) is increasing.

DEFINITION [Ohi and Nishida, 1984]. * is ON-strongly

coherent iff

i. 0 is a MMS and
ii. For every component i and all system states s and

t, there exist vectors (j,,x) and (k i ,x) such that

*(j±,x) = s and O(k1,x) = t.

DEFINITION [Ohi and Nishida, 1984]. * is ON-coherent
iff

i. 0 is a MMS and

ii. For every component i and all system states s,

there exist vectors (jj,x) and (k,x) such that 0(j,x)

= s-i and 0(ki,x) = s.

DEFINITION [Ohi and Nishida, 1984]. 0 is ON-sub-

coherent iff

i. * is a MMS and

ii. For every component i and all system states s,

there exist vectors (j,,x) and (k,x) such that 0(j 1 ,x)

* s and *(k1 , x) = s.

DEFINITION [Ohi and Nishida, 1984]. 0 is ON-pseudo-

coherent iff

i. 0 is a MMS and

61

ii. For every component i and all system states s,

there exist vectors (ji,x) and (k,,x) such that *(j1 ,x)

: s-i and *(k±,x) s.

DEFINITION [Ohi and Nishida, 1984]. * is ON-weakly-

coherent iff

i. * is a MMS and

ii. For every component i, there exist vectors (jj,x)

and (ki,x) such that *(jjx) ;#(kjx).

Ohi and Nishida [19841 and Abouammoh and Al-Kadi [1991] have

shown the relationships between the various definitions.

There are two aspects of the previous definitions for

coherence that are too restrictive. First, the state-spaces

of the components and system should not be restricted to the

same set. For example, most of the previous definitions

require that = , i=1,2, . . .,n. Instead, the model should

permit 0 * * ~ * ... * 4. Second, the system state

should not be restricted for specific x e S. For example,

an EPS-coherent system requires that *(J) = j. Instead, the

model should only require that at least one component state

vector belong to the lowest and highest equivalence classes.

The previous definitions for coherence contain two

desired aspects. First, the system should not improve with

the deterioration of a component and the system should not

deteriorate with the improvement of a component. Therefore,

O(x) must be an increasing function. Second, the system

should only contain relevant components. The component

62

relevance condition is the main difference in the previous

definitions. An equivalent form of the least restrictive

component relevance condition that uses information readily

supplied by the customer is developed next.

The least restrictive relevance condition was given in

the definition for G-weakly coherent. Griffith [1980] proved

that this condition can be replaced with another equivalent

condition that is much easier to check: for any component

i, there exists a vector ('i,x) such that *(0,x) < (Mi, x).

Extending the condition for a general multistate system: for

any component i, there exists a vector ('i,x) such that

(0,x) < ((Mi) i,x).

One serious disadvantage of all the previous relevance

conditions is that the structure function must be known to

check for component relevance. Most of the time, the

customer will not know *(x) explicitly. However, the

customer should be able to describe the structure with either

the lower or upper boundary points to level k. Therefore,

it would be best to define component relevance in terms of

either the lower or the upper boundary points to level k.

Using Griffith's equivalent condition, suppose that

component i is not relevant. Then, for every vector (' ,x),

*(0 ,x) t *((Mi) ,x). But since 4 is increasing, O(01,x)

0(lx) = ... = 0((Mi)i,x). By definition, only (0,,x) is a

potential lower boundary point to level k and only ((Mi)i,x)

is a potential upper boundary point to level k. Thus, when

63

component i is irrelevant, all lower boundary points to level

k have xi = 0 and all upper boundary points to level k have

xi = Mi. From this, a relevant component is defined.

DZIINITION. Component i is relevant if there exists a

lower boundary point to level k such that xi * 0 for

some k=1,2,...,M or an upper boundary point to level k

such that xi * Mi for some k=0,1,...,M-l.

For the binary model, this definition says that component i

is relevant if xi = 1 in some minimal path vector or xi = 0

in some minimal cut vector.

Considering the undesirable and desirable aspects of the

previous definitions and the new definition for component

relevance, this dissertation uses the following definition

for a general multistate coherent system:

DEFINITION. 4 is a qeneral multistate coherent system

(general MCS) iff

i. fl = {0,l,...,M }, i=1,2,...,n,

iii. So and S. are not empty,

iv. 4(x) is increasing, and

v. For every component i (i=l,2,...,n), there exists

a lower boundary point to level k such that xi # 0 for

some k=1,2,...,M or an upper boundary point to level k

such that x. * Mi for some k=0,1,...,M-1.

ZXA1MPI 3.2 Suppose that n=2, M1 =M2 = M = 2, and

the customer specifies the following lower and

64

upper boundary points:

Level Lower Boundary Point Level Upper Boundary Point
1 (1,0) 0 (0,2)
2 (2,0) 1 (1,2)

Determine if the components are relevant.

Component 2 in not relevant since x2 = 0 for all

lower boundary points and x2 = 2 for all upper

boundary points. This checks with the actual

general MCS of *(x) = Max{x1,Min{x,x 2}} which was

used to generate the boundary points.

The next theorem states that the worst x e S will always

be an member of the lowest equivalence class and the best Y

e S will always be a member of the highest equivalence class.

THEOREM 3.1 If * is a general MCS, then x0 e So and

XM E sm.

Proof: From condition (iii), So is not empty. Let y e

So. Clearly, x0 y. From condition (iv), *(x 0) 4(y)

= 0. But 4(x 0) 0, so 4(x 0) = 0 or x0 r So. The same

logic can be used to show that xM E Sm.

As with binary systems, the elimination of unrealistic

structures allows important results to be developed for every

general MCS. The next theorem gives bounds on the structure

function similar to the binary bounds developed from the best

and worst arrangement of the components (Theorem 2.1).

THEOREM 3.2 Suppose that 0 is a general MCS with sk

lower boundary points to level k, k=1,2,...,M given by

Lk = {Lkl,Lk2, . . ., Lk,,) and tk upper boundary points to

65

level k, k=O,1,...,M-1 given by Uk = {UklUk2,...IUkt, }.

Suppose that 0. is a general MCS with one lower boundary

point to level k, k=l,2, . . .,M given by Lk° and Lk° r Lk.

Suppose that 0, is a general MCS with one upper boundary

point to level k, k=O,1,...,M-l given by Uk° and Uk' E

Uk. Then 01 (x) < 0(x) < Ou(x) .

Proof: The proof will be delayed until after the

discussion in section 3.1.5.

Barlow and Wu (1978] proved the following results for

any increasing multistate coherent system. The theorems are

equally valid for the general MCS.

THEOREM 3.3 If 0 is a general MCS, then

0 (x v y) - 0(x) v 0 (y)

for any component state vectors x and y. x v y is

defined as (x1 V y 1,X 2 V Y2, ... ,Xn V Yn) where x i v

yj = Max{xi, yi and 0(x) v 0(y) = Max{0(x),0(y)I.

Proof: For any two component state vectors, x v y > x

and x v y > y. Since 0 is increasing, O(x v y) > O(x)

and 0(x v y) > 0(y). Thus, 0(x v y) > Max{O(x),O(y)}

and the result follows.

THEOREM 3.4 If 0 is a general MCS, then

0(x A y) ! O(X) A 0(y)

for any component state vectors x and y. X A y is

defined as (xj A Y1,X 2 A Y2, ... ,xn A Y) where x i A

Yj = Min{x,, y1 } and 0(x) A 0(y) = Min{0(x) ,0(y) }.

Proof: For any two component state vectors, x A y < x

66

and x A y S y. Since * is increasing, *(x A y) 5 *(x)

and *(x A y) : *(y). Thus, *(x A y) < Min{O(x),O(y)}

and the result follows.

These two theorems were enough when a series structure

function was defined so that *(x) = Min{x,, x 2, ... ,x,} and a

parallel structure so that O(x) = Max{x 1 ,1 x 2 ,...,Xn}. The

change in the definition of series and I -allel structures

requires that these two theorems be reevaluated for the

general MCS.

Let I1 be defined as a parallel general MCS and 11 be

defined as a series general MCS. The next two examples show

that *(x 1 y) > *(x) 11 *(y) and *(x II y) < 4(x) 11 *(y) are

not true for all component state vectors x and y.

ZX WLZ 3.3 Suppose that 11 (x) and * (x) are enumerated

as shown in Table 3.2.

Table 3.2 I(x) and O(x) for Example 3.3.

X 2 X2

(x) 0 1 2 (x) 0 1 2

0 0 0 1 0 0 0 1
X, 1 0 0 1 x, 1 1 1 2

2 1 1 1 2 1 2 2

Show that I1(x) is a parallel general MCS and

*(x I y) < *(x) 11 *(y) for some x and y.

11(x) is a parallel general MCS because it has two

lower boundary points to level 1 { (2,0), (0,2)) and

one upper boundary point to level 0 {(1,1)}. Let

67

x = (1,2) andy = (1,I). Then x I y = (0,1) and

(x U y) = 0. 0(x) = 2, 0(y) = 1, and 0(x)H

0(y) = 1. Thus, *(x H y) < *(x) II *(y).

ZXMPLZ 3.4 Suppose that I (x) and (x) are enumerated

as shown in Table 3.3.

Table 3.3 rI(x) and O(x) for Example 3.4.

X 2 X 2

I(x) 0 1 2 4(x) 0 1 2

0 0 0 0 0 0 1 2
x 1 1 0 1 1 x1 1 0 2 2

2 0 1 1 2 1 2 2

Show that 11(x) is a series general MCS and

0(IH y) > 0(x) II 0(y) for some x and y.

11(x) is a series general MCS because it has one

lower boundary point to level 1 { (1,1)} and two

upper boundary points to level 0 { (2,0) (0,2) }.

Let x = (1,1) and y = (1,2). Then x [I y = (1,1)

and *(x IH y) = 2. 0(x) = 2, 4(y) = 2, and 4(x)I

0(y) = 1. Thus, O(x 11 y) > O(x) II (y).

3.1.5 Equivalent Coherent Structures

Block and Savits [1982] developed a technique for

generating an equivalent structure function by decomposing

the multistate system into several binary structures. They

based the binary structure functions for level k on either

the lower or upper boundary points to level k. Their

technique is expanded for the general MCS.

68

Suppose the customer specifies the lower boundary points

to level k, k=1,2, ...,M. Define the following two indicator

variables:

=10 if xi < j

Yij 1 if xi 2 j

for i=1,2, ... ,n and j=l,2, ... ,Mi .

{ 0 if (x) < k (3.1)
1 if 0(x) 2! k

for k=1,2,...,M. As the multistate structure function is a

function of a vector of multistate variables (XI2,.:.,X n),

the binary structure function is a function of a vector of

binary variables (yj, •• , Y 1,My 2 1, ... , Y2 ... I Yn,1 1 - I Y, m) •

Suppose the sk lower boundary points to level k are

given by Lkl,Lk2 ... , Lks u. Let the set of all lower boundary

points to level k be designated Lk. If x c Lk, then let

Sk(x) = {(i,x i) for all xi 0).

In the binary case, the ordered pairs of Sk(x) form a minimal

path set for each x E Lk. Block and Savits [1982] wrote the

binary :tructure function for level k as

Ok(y) = Max Min Yij"
--%, (i, j)C-(X)

From Equation 3.1, *(x) can be found from the sum

#(x) = 0 1 (y) + 0 2 (y) + ... + m(Y)

69

A similar derivation uses the upper boundary points to

level k. Suppose the customer specifies the upper boundary

points to level k, k=0,1,...,M-l. Define the following two

indicator variables:

y 0 if xi < j

{1 if xi > j

for i=1,2,...,n and j=0,1,...,M,-l.

0k(y) { if (x) < k (3.2)#k~) =1 if (x) > k

for k=0,1,...,M-1. As the multistate structure function is

a function of a vector of multistate variables (x,x 2, . .. Xn)

the binary structure function is a function of the binary

variables (Y 10 , .. .I Yi,M1 -I y 2 0 , .. .F Y2 ,M,-1I .. .I YnO, ...I Yn,m.-l) "

Suppose the tk upper boundary points to level k are

given by UklUk2,...,Uk,t. - Let the set of all upper boundary

points to level k be designated Uk. If x e Uk, then let

Uk(x) = {(i,x i) for all x i M1 }.

In the binary case, the ordered pairs of U(x) form a minimal

cut set for each x e Uk. Block and Savits [1982] wrote the

binary structure function for level k as

Ok(y) = Min Max Yj"
X6-U (, J) eq (Z)

From Equation 3.2, O(x) can be found from the sum

70

*(Z) = 0 (y) + 01(Y) + ... + € i(y).

The procedure is demonstrated in the following example:

ZXAMPLZ 3.5 Suppose a general MCS of 3 mutually

independent components is defined by the customer with

the following lower boundary points:

L41=(310) L42=(211)

L31= (310) L32= (120) L33= (111)

L 21= (300) L22= (201) L23= (110) L24= (020) L25= (011)

L11= (200) L12= (101) L13= (010)

Write an expression for the system structure function.

U4 (L41) = { (1,3), (2,1)} 4 (L42) { (1,2), (2,1), (3,1)}

U3 (L3 1) (1,3), (2,1) 3 (L32) = { (1,1), (2,2)

9 3 (L33) = ((1,1), (2,1), (3,1)) 9 2 (L21) = { (1,3)1

9 2 (L22) = { (1,2), (3,1)1 U2 (L23) = { (1,1), (2,1) }

U2 (L24) = {(2,2)} 9 2 (L25) = { (2,1), (3,1)} 1 t(L) = {(1,2)}

91 (L 12) = { (1,1), (3, 1) } 1 (L13) = { (2, 1) }

0 4 (y) = Max{y 1 3Y21, Y12Y21Y31 }

01 (y) = Max{Y13Y21, YiiY22, Y11Y21Y31}

02(y) = Max{Y13, Y12Y31, YIIY 21, Y22, Y21Y311

01(y) = Max{y 1 2, Y11Y31, Y21}

The system structure function can be calculated from

4(x) = 01(y) + 0 2 (y) + 0 3 (y) + 04(y).

The transformation of Block and Savits [1982] and Wood

[1985] allows the proof of Theorem 3.2.

Proof of Theorem 3.2: Using the lower boundary points

to level k, the structure function for level k is

71

*k (y) = Max Min Yj-
--4 (i, J)49L(Z)

Then it is clear that *k(y) 2 *k 1 (y) for k=1,2,...,M

since *k maximizes over all lower boundary points and

Lk° e Lk. The system structure function comes from

H

k-1

so it must be true that W(x) > 01 (x). Using the upper

boundary points to level k, the structure function is

Ok(y) =Min Max y1j.
rook (i, J)G (z)

Then it is clear that *k(y) _< Oku(y) for k=O,1,,...,M-l

since Ok minimizes over all upper boundary points and

Uk° e Uk. The system structure function comes from

M-I

k-0

so it must be true that *(x) < 0,(x).

The transformation also provides some insight into the

new definitions for parallel and series structure functions.

In the multistate case, it is no longer meaningful to

represent a series or a parallel structure in a functional

block diagram. The new definitions isolate the cases when

the alternate representation given by Block and Savits [19821

72

can be simplified. A series structure has one lower boundary

point to level k, Lkl, k=1,2, ...,M. Therefore, the alternate

representation for a series structure is given by

M M

(X) =E k(y) = E Min
ki k-i (i,)ef ()

Likewise, since a parallel structure has only one upper

boundary point to level k, Ukl, k=0,1,...,M-l, an alternate

representation for parallel structure is

M-i M-I

*(x) = *k(y) = Max Ylj
k-0 k-0 (ij)Eq(u..)

El-Neweihi et al. [1978) developed an expansion to

reduce the order of a multistate structure function by one.

The following expansion, given by Hudson and Kapur [1983],

extends the result to the general MCS:

M

O(x) = EO(j,x)Ij for i=l,2, .. .,n (3.3)
J-0

where

I if x,= jIij -- 0 if x1 j.

The expansion can be performed about any component. It is

a generalization of Equation 2.1 given for the binary model

in section 2.1.5.

73

3.1.6 Dual Structure Function

The definition of the dual structure function was first

extended to multistate systems by El-Neweihi et al. [19781

and to a general MCS by Hudson [19811.

DMINITION. Let * be a structure function of a general
MCS. The dual structure function *D is defined by

*D(X) = M - (Ml-XIM2-X 2 , ... ,M.-x.)

= M - *(xM - x).

For a general MCS (C,), the dual is (CD,OD). Note that the

sets of components (C and CD) are the same for both systems.

However, the notation CD is used to clarify that when the

primal component Ci is in state x., the corresponding dual

component CiD is in state xiD = Mi - x i .

Intuitively, the dual has the following interpretation.

For the binary case, the dual system functions iff the primal

system fails. For the general MCS, the primal system is in

state k iff the dual system is in state M - k. The boundary

points of the primal and dual have a special relationship.

TEEOREM 3.5 x is a lower boundary point to level k for

the general MCS 0 iff (xM - x) is an upper boundary

point to level (M - k) for the dual general MCS OD.

Proof: Suppose x is a lower boundary point to level k

for 4. Then 4(x) 2 k and if y < x, then 0(y) < k.

From the definition of the dual

OD(x m - x) = M - O(xM - (xM - x)) = M - O(x). Therefore,

4(x) = M - OD(X - X) ! k and OD(xM - X) < M - k. Now

74

suppose that y > H - x. Rearranging terms, XM - y < x

and (x - y) < k. So D(y) = M _ (xM _ y) > M - k.

In summary, *D(xm - x) < M - k and y > xm - x implies

that *D(y) > M - k. By definition, xm - x is an upper

boundary point to level M - k for the dual structure 0D.

Suppose (M - x) is an upper boundary point to level

(M-k) for OD. Then OD(X M - x) < M - k and if y > xm - x,

then D(y) > M - k. From the definition of the dual,

OD (M _ x) = M - *(x) 5 M - k and O(x) > k. Now suppose

that y < x. Thus, xm - y > xm - x and OD(xM _ y) > M-k.

So *(y) = M - OD(xm - y) < k. In summary, O(x) > k and

y < x implies that 0(y) < k. Therefore, x is a lower

boundary point to level k for the structure 0.

IZXMAIZ 3.6 Suppose that n=2, M1=3, M2=2, M=4, and

O(x) is enumerated as in Table 3.4. Enumerate the

dual structure, D (x), and demonstrate Theorem 3.5.

Table 3.4 O(x) for Example 3.6.

X 2

O(x) 0 1 2

0 0 0 0
x, 1 1 2 2

2 1 3 3
3 1 3 4

OD(X) = M - O(Ml - x 1 , M 2 - x 2)

= 4 - *(3 - x1 , 2 - x 2).

OD(X) is enumerated in Table 3.5.

75

Table 3.5 OD (x) for Example 3.6.

X2

OD(x) 0 1 2

0 0 1 3
x1 1 1 1 3

2 2 2 3
3 4 4 4

The lower boundary point to level 1 for 0 is

(1,0). By Theorem 3.5, the upper boundary point

to level 3 for 0D is (2,2) which can be seen from

Table 3.5. The upper boundary points to level 3

for 0 are (3,1) and (2,2). By Theorem 3.5, the

lower boundary points to level 1 for *D are (0,1)

and (1,0) which checks with Table 3.5.

The remainder of this section is dedicated to stating

and proving some of the more common theorems that relate to

the dual structure function. The proofs are necessary

because different definitions have been used for a general

MCS and for k-out-of-n structures.

THEOREM 3.6 If the primal is a general MCS, then the

dual is also a general MCS.

Proof:

i. Suppose that R = {0,1,...,Mi}, i=1,2, ... ,n for 4.

When the state of component i in 0 is x,, then the state

of component i in 0D is x1D = Mi - Xi. Thus, QD

(0,1,...,M}, i=1,2,...,n for OD.

ii. Suppose that = {0,1,...,M} for 4. When the

76

system state of * is if, then the system state of OD is

M- -f. Thus, fo = {0,1,...,M} for 0 .

iii. Suppose So and SM are not empty. Then the vectors

y and z exist such that *(y) = 0 and *(z) = M. From

the definition of the dual,

OD(x M - x) = M - *(XM - (x M - x)) = M -(X)

Substituting, OD(xM - y) = M and OD(x M - z) = 0. Thus,

z m - y e SDM and XM - z e SDo.

iv. Let x, y e S such that x 5 y. Then x m - x >

zm - y. Since 0 satisfies (vi), *(xM - x) > $(xM - y).

Thus, M -$(x m - x) < M - (xm y). From the

definition of the dual, OD(x) < OD (y). Thus 0D is

increasing.

v. Suppose OD does not satisfy (v). Then there exists

an i such that x1D = 0 for all lower boundary points of

OD and xiD = M for all upper boundary points of 0'. By

the previous theorem, xi = M - 0 for all upper boundary

points of 0 and x i = M - M for all lower boundary points

of 0. But this contradicts the fact that 0 satisfies

(v). Thus OD satisfies (v).

THEOREM 3.7 The dual of a k-out-of-n general MCS is an

(n-k+l)-out-of-n general MCS.

Proof: Suppose that $ is a k-out-of-n general MCS. By

definition, $ has (k) lower boundary points to level j,

j=1, 2, .. M and n) upper boundary points to level j,

77

j=ol,...,M-1. By theorem 3.7, *D has N upper

boundary points to level M-j, j=I,2,...,M and (n+,1

lower boundary points to level M-j, j=0,...,M-l. By

letting j' = M-j, OD has (k) upper boundary points to

level j', J'=0,1, ...,M- and(n) lower boundary pointsI ""•n-k ,1)

to level j', j'=I,2,...,M. Therefore, 0D is an (n-k+l)-

out-of-n general MCS.

Since a series system is an n-out-of-n structure and a

parallel system is a 1-out-of-n structure, the following two

corollaries are immediately apparent.

COROLLARY 3.1 The dual of a series general MCS of n

components is a parallel general MCS of n components.

COROLLARY 3.2 The dual of a parallel general MCS of n

components is a series general MCS of n components.

Finally, Janan [1985] showed that the dual is idempotent.

THEZOREM 3.8 The dual of the dual is the primal.

Proof: [OD]D = M - D(XM - X)

= M - [M - #(XM - (XM - x))]

= M - [M - O(X OX).

3.1.7 Structural Importance

Block and Savits [1982] discussed a connection between

the concepts of component relevance, system coherence, and

structural importance. In general, component i is relevant

if there exists a component state vector that satisfies the

78

model's relevancy condition. For the binary model, component

i is relevant if there is an x such that *(ll,x) *0 (01 ,x).

For the G-weakly-coherent multistate model, component i is

relevant if there is an x such that *(0j,x) < 4(M.,x). For

the general MCS, component i is relevant if there is an x

such that *(0,x) < O((Mi) j,x). The system is coherent if,

among other conditions, all components are relevant.

Finally, the structural importance of component i can

be defined as the proportion of the component state vectors

where the relevance condition holds. For the binary model,

the structural importance for component i was given in

section 2.1.7. For the G-weakly-coherent system, the

structural importance for component i can be generated by

1,0.) = 1 N(x) where

1 if *(0J,x) < 4(Mi,x)
N(x) 0 if (01 ,x) = (Mi,x)•

Extending to the general MCS, the structural importance for

component i can be calculated from

IOW= 1 E N(x) where
I i (Ml+I) {zI-MJ
J~i

i if *(0 1 ,X) < (Mj) ,X)
N() = I o if 4(01,x) = *((M 1) ,x)

3.1.8 Modules and Modular Decomposition

Fardis and Cornell [1981] used modular decomposition to

79

simplify the calculation of reliability for multistate

systems composed of duplicate components. Butler (19823

developed bounds on system reliability with modular

decomposition for the multistate case. Hudson and Kapur

[1983a] extended the definitions for modules and modular

decomposition to the general MCS.

DEFINITION - Suppose (C,) is a general MCS where C is

the set of components. Suppose that A C C. Let A'

denote the subset of C complementary to A. The general

MCS (A,x) is a module of (C,O) if

*(x) = *(xA,xA') = V[X (x),xA ']

where 41 is a MCS called the organizing structure.

DZFINITION - A modular decomposition of a general MCS

(C,) is a set { (A,,X1), (A21X2), . .. , (Ak, Xk) I of general

MCSs along with the organizing structure XV such that

i) {A1,A2, ... ,Ak) partition C into disjoint subsets and

ii) *(z) = [X1(xA),X 2 (x),...,Xk(XAk)] .

Using modules for a multistate system is especially valuable

when modeling a physical system that can be divided into

distinct subsystems. In essence, several smaller multistate

models are generated and solved separately. The results of

each of the smaller problems are combined with the organizing

structure to analyze the entire system.

3.2 Stochastic Properties

So far, only the deterministic properties of the qeneral

multistate model have been discussed. Stochastic properties

80

characterize the probabilistic relationship between the state

of the system and the states of the components at a fixed

moment in time.

3.2.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

n number of components.

Xi random variable for the state of component i.

x i fixed state of component i; xi R.

X random component state vector; X = (X1 ,X 2, ... ,X n)

x fixed component state vector; x = (x 1, x2 ,...,x n) .

*(X) random variable for the state of the system.

fixed state of the system; = (x).

Pk Pr[O(X) = k), k=0,1,...,M.

Pjj Pr[X1 = J], i=1,2,...,n and j=0,1,...,Mi .

Qk Pr[O(X) >k], k=l,2,...,M.

Qjj Pr[X, > J], i=l,2,...,n and j=I,2,...,M i .

q j (Qil,1 Q 2, • • , .M)•

q (Q1 ,Q 2, . .IQM)•

r(q) performance function.

Lkj jth lower boundary point to level k, k=1,2,...,M and

j=l, 2, ... ,-Isk.

Ekj event that X > Lkj, k=l,2, ... ,M and j=l,2, .. ,sk .

MIJ best state of the i t h component in module j.

n, number of components in module j.

IV index of efficiency of modular decomposition.

81

x << y xi < y1 Vi.

3.2.2 The Performance Function

For binary systems, the main problem in reliability

theory is to determine the system reliability from the

reliability of the components. Knowing the system

reliability allows us to find the system unreliability since

only two system states are possible.

El-Neweihi et al. [1978] explored the same problem for

a multistate system and Hudson [1981] extended the problem

to the general MCS. For a system of n components, let Xi

denote the random state of component i and xi denote a

specific state of component i. The random and specific

states for all components are summarized in the random

component state vector X (XlX 2,...,X,) and the fixed

component state vector x = (XlX 2 1 ..., Xn). Let O(X) be the

random system state and O(x) or 0 be a fixed system state.

For the general MCS, the problem changes to finding the

system's probability distribution, PkI where

Pk = Pr[O(X) = k], k=0,1,...,M

from every component's probability distribution, Pj, where

Pij = Pr[X, = j], i=1,2...,n and j=0,1,...,M i.

An equivalent statement of the problem is finding the

performance distribution of the system, Qk, where

Qk = Pr[O(X) k], k=1,2,...,M

from every component's performance distribution, Qjj, where

Qjj = Pr[XI j], i=1,2,...,n and j=1,2,...,M,.

82

The second problem formulation works better for the

general MCS for several reasons. First, less calculation is

required since Q0 = 1. Second, the most efficient techniques

available make use of boundary points and naturally result

in a performance distribution. Finally, Griffith [1980]

stated that the second formulation sometimes allows for

direct comparison of the system performance of two systems.

Suppose that qj = (QjI,Qi2I... QJ,,) is the performance vector

for component i and q = (Q1,Q21 ...,QM) is the performance

vector for the system. Let q1 and q2 be the performance

vectors for two different systems. System one is superior

to system two if q' 2 q2.

For binary models, reliability was defined as the

probability that the system functions. For multistate

models, there are different degrees of functioning so a new

measure of system performance is required. El-Neweihi et al.

[1978] suggested E[0(X)] or the expected system state.

Butler [19793 promoted Pr[O(X) 2 k], especially when the

customer was willing to divide system states into two

categories (2 k or < k). E[O(X)] and Pr[O(X) 2 k] are

equivalent measures for the binary model. Griffith [1980]

used E[u(0(X))] or the expected utility of the system state.

Each of these definitions provides a measure of the

performance for multistate systems. However, it is the

customer that evaluates the system performance, so it must

be the customer that indicates the most appropriate

83

definition. If the customer wants to measure the center and

spread of the distribution, then E[O(X)] and Var[O(X)] seem

appropriate. If the customer can separate the system's

probability distribution into "good" and "bad" states, then

Pr[(O(X) > k] works well. If the customer wants to evaluate

efficient performance distributions, then E[u(O(X))] allows

the customer to weigh the different possibilities.

The second objective of this research is to develop a

new substitute characteristic for multistate reliability

based on the expected loss to the customer. The new measure

will be sensitive to the pattern of degradation about a

desired system lifetime.

If the random variables X,, i=l,,...,n are mutually

independent, then q may be expressed as a function of q,

i=1,2,...,n. Each of the given measures of performance are

defined as a function of q and therefore, they are also a

function of %j, i=l,2,...,n. The relationship between the

system's measure of performance and the component performance

vectors is given by the performance function:

r = r(q11 q 2, . .. ,q)

3.2.3 Performance Importance

The definition for performance importance depends on the

definition chosen for the performance function. Suppose that

E ((X)] is used. The following expansion of the performance

function can be derived using the assumption of mutual

independence and taking the expected value of Equation 3.3:

84

M$

r (q, q2,...,I%) = Pjj E[0(ji,X)].

Proceeding in a manner similar to El-Neweihi et al. [1978],

M,

r(q 1 ,q 2,...,qr) = E Pj E[(ji,X-)] + P10 E[((0 1 , X)].
J.1

Since P 0 = 1 - Pij,
J. 1

M,

r(qj,q 2 ,...,q,) = E Pil {E[0(j 1 ,X)j-E[(01 ,X)]} + E[(0j,X)).
J.1

The performance importance of component i at state j is

)r . E[O(ji,X) - *(0,X)

for i=l,2,...,n and j=l,2,...,Mi.

3.2.4 Exact System Performance

Enumeration, inclusion-exclusion, pivoting, and modular

decomposition are four techniques used to determine the exact

probability distribution from the probability distributions

of the components. Each technique assumes the components are

mutually independent. The computer program given in Appendix

A implements the first three techniques directly and the

fourth technique indirectly. It works well for moderately

large problems of about 10 components, each with 4 states.

Of course, the program will also work for binary systems

since they are a special case of the general MCS.

3.2.4.1 Enumeration

The enumeration technique determines the system state

85

and probability for every possible component state vector.

It tallies the probabilities for all component state vectors

in the same equivalence class.

EXAMPLE 3.7 Suppose that n=2, M1=3, M2=2, M=4, and (x)

is enumerated by the customer as shown in Table 3.6.

Table 3.6 0(x) for Example 3.7.

X2

0 1 2

0 0 1 2
xI 1 0 1 3

2 1 2 3
3 2 4 4

Suppose that the probability distributions for the

components are determined to be:

P 10 = .05 P11 = .1 P 12 = .15 P13 = .7

P20 = .I P21 = .3 P22 = .6

Assuming components are mutually independent, find Pk,

k=0,1,2,3,4. The probability of each component state

vector is found by enumeration:

x C_) PrrX=xl x 6(x) Pr[X=x]
00 0 .005 20 1 .015
01 1 .015 21 2 .045
02 2 .030 22 3 .090
10 0 .010 30 2 .070
11 1 .030 31 4 .210
12 3 .060 32 4 .420

The system probability distribution, Pk, is found by

summing the probability of all component states where

*(x) = k, k=0,1,2,3,4. Therefore, P0 = .015, P, = .06,

P2= 145, P 3 .15, and P 4 = .63.

86

Note that the number of component state vectors is

H(M' + i)
i-i

and the number of calculations needed to enumerate all

component state vectors becomes unmanageable for large

systems. It seems more reasonable to calculate probability

distribution from a subset of x e S.

3.2.4.2 Inclusion-Ixclusion

Lower boundary points to level k can be used to

calculate Pk, k=0,1,...,M given Pil, i=l,2,...,n and

j=0,1,...,M i [Natvig, 1982]. The method is based on the

following theorem proven by Borges and Rodrigues [1983]:

THEOREM 3.9 *(x) > k if and only if x y for

some y e Lk.

Proof: Suppose x t y for some y e Lk. Since y e Lk,

*(y) k. Since 0 is increasing, W(x) 2 *(y) k. For

necessity, suppose that 0(x) k. Consider the

procedure of decreasing the values of the elements of

x while keeping 0(x) 2 k. Eventually, it will no

longer be possible to continue without decreasing the

system state. Let this vector be denoted by y. At

this point in the procedure, y e Lk by definition.

Since the procedure only decreased the elements of x,

then x 2 y for some y e Lk.

Suppose 0 is a multistate coherent system with Sk lower

boundary points to level k, designated Lk1,Lk2,...,Lks. Let

87

Ekj be the event that x > Lkj for j=l,...,Sk. Then

Pr UEkj k=1,2, ...,M
Pr [0(M)> k]=I J1

1 k=O.

The union of events is evaluated with Theorem 2.8. The

system probability distribution can be found from

Pk = Pr[0(X) > k] - Pr[0(X) > k+l] = Qk - Qk+1I k=0,1, ... ,M

and the fact that QM+1 = 0. The next example demonstrates the

technique using lower boundary points.

ZXAMPLZ 3.8 Determine the lower boundary points for

the MCS given in example 3.7 and calculate the exact

system probability distribution.

Pr(O(X) ! 0] = 1.0

The lower boundary points to level 1 are (0,1) and

(2,0). Therefore,

Pr[O(X) > 1] = Pr[X1>0, X2>I] + Pr[XI>2, X2>0]

- Pr[X1 >2, X2>I]

= (1) (.9) + (.85) (1) - (.85) (.9) = .985

The lower boundary points to level 2 are (0,2), (2,1),

and (3,0). Therefore,

Pr[O(X) > 21 = Pr[X1>0, X2>2] + Pr[X,>2, X2>l]

+ Pr(X1>3, X220] - Pr[X1>2, X2>2] - Pr[Xl>3, X2>2]

-Pr[X 1 3, X2 11] + Pr[X1 >3, X2>2]

= (1) (.6) + (.85) (.9) + (.7) (1) - (.85) (.6)

- (.7)(.6) - (.7)(.9) + (.7)(.6) = .925

88

The lower boundary points to level 3 are (1,2) and

(3, 1) . Therefore,

Pr[(X) > 3] = Pr[X1>l, X2>2] + Pr[X1 23, X22!]

- Pr[X1>3, X2>2]

S(.95) (.6) + (.7) (.9) - (.7) (.6) = .78

The lower boundary point to level 4 is (3,1). Thus,

Pr[4(X) Z 4] = Pr[X 3, X2>I) = (.7) (.9) .63

Therefore, P 4 = Pr[(X) -4] = .63 - 0.0 = .63,

P 3 = Pr[4(X) -3] = .78 - .63 .15,

P 2 = Pr[(X) -2 = .925 - .78 = .145,

P1 = Pr[(T) = 1] = .985 - .925 = .06, and

P0 = Pr[(X) 0) = 1.0 - .985 = .015.

The results match the solution found in Example 3.7.

Note that a similar technique can be developed using the

upper boundary points to level k, k=0,1,...,M-I.

3.2.4.3 Pivotal Decomposition

Iyer [1989] has shown that pivotal decomposition can be

used to calculate exact system reliability for the multistate

case. In contrast to the binary case, it is not likely that

the customer can completely specify the structure function

for multistate systems. However, the customer should be

capable of specifying the boundary points to each level of

the system. Once this is done, the state of one of the

components is fixed and reliability calculations are made

from the boundary points with reduced dimension.

Suppose the probability distribution, Pij = Pr[Xi = j]

89

for J=0,1,...,Mj, is known for each component in the system.

Also suppose that the customer can determine the sk lower

boundary points to each level k for k=l, ...,M or the tk upper

boundary points to each level k for k=O,...,M-1. With this

information, pivotal decomposition can be used to determine

Pr[(X) = k] for k=0,1,...M.

The following algorithm was developed to implement the

pivotal decomposition strategy to determine Pr[(X) k] from

the lower boundary points (LBPs) to level k:

Pivotal Decomposition AlQorithm

1. Determine the probability distribution for each

component in the system.

2. Let the customer specify the LBPs to level k.

3. Choose a component to pivot on. Iyer [1989] has

discussed several pivot selection rules.

4. Fix the component state at the lowest level of the

chosen component obtained by any LBP. List all LBPs

with the chosen component at this level. When only one

LBP remains, the branching is fathomed (go to step 8).

Otherwise, go to step 5.

5. Fix the component state at the next highest level.

If the highest component state is exceeded, go to 7.

Otherwise, list all LBPs with the chosen component at

this higher level. In addition, create temporary LBPs

by listing all LBPs from the previous level with the

fixed component state changed to the next highest

90

level. These temporary LBPs include the probabilities

of vectors summarized by the LBPs with the component

state at lower levels.

6. Remove any of the temporary LBPs that are greater

than the original group of LBPs. This prevents any

probabilities from being counted twice. When only one

LBP remains, the branching is fathomed (go to step 8).

Otherwise, go to step 5.

7. Determine if all branches have been fathomed. If

so, STOP. The tallied probability is Pr[0(X) ' k]. If

not, continue with step 3 for all unfathomed branches.

8. Calculate the probability of the fathomed LBP using

Pr[X, = j] for fixed components and Pr[X i j] for

components not fixed. Tally the probability of all

fathomed LBPs. Return to step 5.

The following example is given to demonstrate the

pivotal decomposition technique. Figure 3.1 shows the

solution pictorially. Removed temporary LBPs are marked with

an asterisk (*). Components fixed at a given state are

underlined. The branches are labeled to correspond with the

discussion of the solution.

ZXAMPLZ 3.9 Suppose a system of 3 mutually independent

components is defined such that

P 10 = .1 P11 = .2 P 12 = .3 P 13 = .4

P 20 = . 1 P2 1 = .3 P22 = . 6

P30 = .2 P 31 = .8

91

Let the Sk lower boundary points to level k be

designated Lkl, Lk2, . .. , Lksi. Suppose the customer is

able to specify the following lower boundary points:

L41=(310) L42=(211)

L31= (310) L32= (120) L33= (111)

L21= (300) L22= (201) L23= (110) L24= (020) L25
= (011)

L11= (200) L12= (101) L13= (010)

Determine the Pr[O(X) > 2) from the LBPs to level 2.

(3 0 0)
(2 0 1)
(1 1 0)
(0 2 0)
(0 1 1)

'II
(0 1 1) (1 1 0) (2 0 1) (3 0 0)
(0 2 0) (1 1 1)* (2 1 0) (3 0 1)*

(1 2 0)* (3 1 0)*
Fathomed Fathomed

.18 .4

0-A 0 -BI 1 2-Aj 2-B . 2-Cl

(0 1 1) (0 2 0) (2 0 1) (2 1 0) (2 2 0)
Fathomed (0 2 1)* Fathomed (2 1 1)* Fathcmed
.024 Fathomed .024 Fathomed .18

.06 .09

Figure 3.1 Pivotal Decomposition Diagram.

Suppose the pivot is on component 1. BRANCH ZERO: the

state of component 1 is fixed at level 0. The two LBPs

with x1=0 are (011) and (020) . BRANCH ONE: the state

of component 1 is fixed at level 1. The one LBP with

x1=l is (110). Temporary LBPs are established at (111)

92

and (120). Both are eliminated since they are greater

than (110). Since only one LBP remains, the branch is

fathomed and the probability is determined as Pr[X 1=l]

Pr[X 2 I] Pr[X3 t0] = (.2) (.9) (1) = .18. BRANCH TWO: the

state of component 1 is fixed at level 2. The one LBP

with xi=2 is (201). A temporary LBP is established at

(210). BRANCH THREE: the state of component 1 is

fixed at level 3. The one LBP with x1=3 is (300).

Temporary LBPs are established at (301) and (310).

Both are eliminated since they are greater that (300).

Since only one LBP remains, the branch is fathomed and

the probability is determined as Pr[XI=3] Pr[X 2 01

Pr[X 2 0] = (.4) (1) (1) = .4. Component 1 is at its

maximum state, but two branches remain unfathomed! Let

the next pivot be on component 2. BRANCH ZERO-A: the

state of component 2 is fixed at level 1. The one LBP

off branch one with x2=1 is (011). Since only one LBP

remains, the branch is fathomed and the probability is

determined as Pr[X1 =0] Pr[X 2=I] Pr[X3 1] = (.1) (.3) (.8)

= .024. BRANCH ZERO-B: the state of component 2 is

fixed at level 2. The one LBP off branch one with x2=2

is (020). A temporary LBP is established at (021). It

is eliminated since it is greater than (020). Since

only one LBP remains, the branch is fathomed and the

probability is determined as Pr[X 1=0] Pr[X 2=21 PrfX 3 0]

- (.1) (.6) (1) = .06. BRANCH TWO-A: the state of

93

component 2 is fixed at level 0. The one LBP off

branch three with x2=0 is (201). Since only one LBP

remains, the branch is fathomed and the probability is

determined as Pr[X1=2] Pr[X2=0] Pr[X3 l] = (.3) (.1) (.8)

= .024. BRANCH TWO-B: the state of component 2 is

fixed at level 1. The one LBP off branch three with

x2=1 is (210). A temporary LBP is established at (211).

It is eliminated since it is greater than (210). Since

only one LBP remains, t)e branch is fathomed and the

probability is determined as Pr[XI=2] Pr[X 2=1] Pr[X 3 0]

= (.3) (.3) (1) = .09. BRANCH TWO-C: the state of

component 2 is fixed at level 2. There are no LBPs off

branch three with x2=2. A temporary LBP is established

at (220). Since only one LBP remains, the branch is

fathomed and the probability is determined as Pr[X 1=2]

Pr[X 2=2] Pr[X 3>0] = (.3) (.6) (1) = .18. All the branches

are fathomed. The tallied probability is .18 + .4 +

.024 + .06 + .024 + .09 + .18 = .958.

3.2.4.4 Modular Decomposition

The main purpose for modular decomposition is to reduce

the number of calculations necessary to determine the

system's probability distribution. Hudson and Kapur [1983a]

developed a measure to evaluate the effectiveness of each

given decomposition. Let M11 denote the maximum value of

component i in module j and n, represent the number of

components in module j. Let MJ denote the maximum value of

94

module j and k denote the number of modules. Let

{ (A,, X), (A2 1 X2), . .. , (AkXk) },W be a modular decomposition of

(C,). Let n(*), n(1), and n(Xj, be the domains of the

original structure, the organizing structure, and the jth
n

module of the system. Then n(O) = (Mi + 1), n(4) =

k n

(M4 + 1) and n(xj) = (Mj + 1). The index of modular

efficiency is defined by the following ratio:

k

IVc

n(¢)
k k nj

1H (M~ + 1) + E JJ (M, +s 1)
= i-i J-i i-i

n

n[(M' + i)
i-i

The next example demonstrates the calculation of the

index of efficiency for a given modular decomposition.

ZXAMPLZ 3.10 Consider the system in Figure 3.2.

Figture 3.2 Seven Component Coherent Structure.

95

The numbers in each box represent the component number

and maximum state of the component. Determine the

index of modular efficiency considering the following

modular decomposition

A, { cjj M1 = 2
A2 = {c 21 c3 } M2 = 2
A 3 = (c4O M 3 = 2
A4

= {c51 c6 } M4 = 2
A5 = (c7} M5 = 3

For the original system, n(O) = 32 • 2 4 = 576. For

the decomposition, n(I) = 34 • 4 = 324, n(X1) = 3, n(X 2)

= 4, n(X 3) = 3, n(4) = 4, and n(X5) = 4. The index I.

- (324 + 3 + 4 + 3 + 4 + 4)/576 = 342/576 = .59375

The efficiency indicator estimates that finding the

probability distribution using the given modular

decomposition only requires 60% of the calculations

required using the original structure.

3.2.5 Bounding System Performance

The applicable system performance bounds will depend on

the substitute characteristics for reliability chosen by the

customer. Block and Savits [1982] developed several bounds

for Pr [0 (X) 2 k]. Bounds on E [0 (X)] can be derived using the

following relationship between the two performance measures:

THEORIM 3.10 E[(X)] = Pr[(X) 2! 1] + Pr[(X) > 2] +

+ Pr[O(X) > M].

M

Proof: E[O(X)] = k Pr[O(X) = k]
k-0

= P1 + (2) P 2 + ..- + (M) PM

96

= (P 1
+ P 2 + -- + PM) + (P 2

+ P 3 + + PM) + .. + PM

= Q1 + Q2 + .-- + QM.

Therefore, the bounds found for Pr[O(X) > k], k=1,2,...,M

allow similar bounds to be constructed for E[:(X)].

Performance bounds can be constructed for independent

and associated random variables. Of course, the bounds are

more explicit if the random variables are independent. The

bounds are based on a commonly known theorem.

THEOREM 3.11 If X11X2 1 ... ,X n are associated random

variables, then

Pr[Xi > xj, Xn '> xn] >I Pr[Xi > xi]
i.1

and

n
Pr [Xi 5 x11,. . .,Xn !S X) 2t Pr[X, <5 xi]

i-1

The next six sections describe some of the bounds on

Pr[O(X) > k] derived by other authors. For the case of

mutually independent components, the bounds are implemented

in the computer program found in Appendix B.

3.2.5.1 Trivial Bounds

Trivial bounds similar to Theorem 2.10 were developed

and proven by Hudson [1981]. These bounds are based on a

single lower boundary point to level k.

THEOREM 3.12 Let y = (Yly 2,...,Y) e Lk, k=1,2,...,M.

n n

Then T.1 Qi'Y, : Qk 1- (- QY) •

97

Proof: Suppose y e Lk. Then 0(y) > k by definition.

Since * is increasing, if x > y, then 0(x) > *(y).

Thus, Pr[X 2 y] < Pr[(X) > 4(y) > k], or

Pr[X Y1,X2 2! y2 1...,X,n 2 yJ < Pr[0(X) _> k], or

Pr[X, 2 yl] Pr[X 2 Y2] "" Pr[Xn > yJ Pr[O(X) 2 k], or

n nJ- Pr [Xi 2 y] - Pr[0(X) > k]. Therefore, JJI Q < Qk-

Since Y e Lk, if x < y, then 0(x) < k. Thus,

Pr[X < y] < Pr[0(X) < k]. By definition,

Pr[X << y] : Pr[X < y] < Pr[O(X) < k], or

I Pr[X i < yj :< Pr[O(X) < k], or

n

A i - Pr[X, 2 yl} {1 - Pr[0(X) > k] }, or

n n

- Q±.y,) < 1 - Qk. Thus , Qk < 1 - (1 -

EXAWLZ 3.11 Suppose that M, = 3 and M2 = 2 for a two-

component structure with M = 4. Suppose the component

probability distributions for the two components are:

P10 = .1 P11 = .1 P12 = .1 P13 = .7

P20 = .1 P21 = .3 P22 = .6

Construct the bounds on Q3 if x = (2,2) is a lower

boundary point to level 3.

Q3 Pr[X 1 > 2] Pr[X 2 > 2] = (.8)(.6) = .48.

Q3 1 - (1 - Pr[Xj > 2]) (1 - Pr[X 2 > 2])

1 -(- .8)(- .6) = 1 -. 08 = .92.

98

Construct the bounds on Q, if x = (0, 1) is a lower

boundary point to level 1.

Q, 2 Pr[X 2 0] Pr[X2 > 1] = (1) (.9) = .9.

Q 1 - (1 - Pr[Xj > 0]) (1 - Pr[X2 > 1])

= 1 - (1 - 1)(1 - .9) = 1 - 0 = 1.0.

Similar bounds were derived using a single upper boundary

point to level k, k=0,1,...,M-1.

TZORZM 3.13 Let y = (Y1,Y2,...,Yn) e Uk, k=0,1,...,M-1.

n n
Then J- Q1,Y1+1

< Qk+1 < 1 - (1 - Q±.y)

Proof: Similar to Theorem 3.12.

3.2.5.2 Path/Cut Bounds

Path/Cut Bounds were developed by Block and Savits

[1982] from the lower and upper boundary points for the

structure. Suppose the sk lower boundary points to level k

are given by LklLk2, . . . , Lkf,. Let the set of all lower

boundary points to level k be Lk. If x e Lk, then let

fk(x) = { (i,x i) for all x i & 0}.

Suppose the tk upper boundary points to level k are given by

Ukl,Uk2, . . ., Ukt , . Let the set of all upper boundary points to

level k be designated Uk- If X e Uk, then let

Uk(x) = {(i,x i) for all xi Mj}.

TZORZN 3.14 Let 0 be a general MCS with associated

components. Then

99

11LPr xij 1:5 k : H r[n {X1>j-1}]

for k=1,2,...,M.

The lower bound comes from the upper boundary points while

the upper bound comes from the lower boundary points.

When the components are independent, the bounds of

Theorem 3.14 can be explicitly derived from the performance

distributions of the components.

TBZORZM 3.15 Let * be a general MCS with independent
components. Then

S.U. , (UJ) . (Z) X OL (, J)4 (z)

for k=1,2,...,M.

3.2.5.3 Kin/Max Bounds

Min/Max Bounds were developed by Block and Savits [19821

so that the lower bound comes from the minimal path sets

while the upper bound comes from the minimal cut sets.

TEZORE 3.16 Let * be a general MCS. Then the

following bounds always hold for k=1,2,...,M:

Max Pr[n {Xi>j-l}] < Qk < Min Pr[U {X'>J}]"
IEL, [(i, J) ai,(Z) I G U-, U. J) e q, (Z)

If the components are associated, then

Max Qfl 5 Qk < MinT Q, Q-1"z L. (Ia, J} K19. (Z) G U,. l ,J .(z)

3.2.5.4 Combining Bounds

The upper boundary points generally provide a tighter

100

bound for mutually independent components with large

probabilities in the higher states and the lower boundary

points generally provide a tighter bound for mutually

independent components with large probabilities in the lower

states. Thus, a combination of the bounds in Theorems 3.15

and 3.16 is appropriate for mutually independent components.

THEOREM 3.17 Let * be a coherent system of independent
components. Then use the maximum lower bound and

minimum upper bound found with Theorems 3.15 and 3.16.

3.2.5.5 Improved Path/Cut Bounds

Butler [1982] showed that improving Path/Cut Bounds with

modular decomposition was also applicable to the multistate

model. Path/Cut Bounds are determined for each module. The

bounds are then used to determine Path/Cut Bounds for the

system. Butler [1982] proved that these bounds were always

tighter than the Path/Cut Bounds found from the system.

3.2.5.6 Inclusion-Exclusion Bounds

Natvig [1982] developed bounds using the inclusion-

exclusion principle of Feller [1968]. Let 1, be the j t"

summation term in Theorem 2.8. Using Theorem 3.9, the

probability distribution can be bounded as follows:

Pr((X) 2 k] E:

Pr[4(X) a k] 2 L- - 1:2

Pr[(X) Z k] 5 2: - £2 + 1:

Pr[(X) 2 k] = I - £2 + £3 - --- + (-)+1 £s.

101

Unfortunately, the upper and lower bounds do not consistently

improve as more terms are added. In fact, Inclusion-

Exclusion Bounds are not restricted between 0 and 1. The

only guarantee is that exact probability distribution will

be found after determining every summation. Still, only a

few terms may be needed to bound Pr[(X) k] tightly.

3.3 Dynamic Properties

In the last two sections, the structural and stochastic

properties of the general MCS were examined at a fixed moment

in time. As in Chapter 2, the next step is to consider

dynamic models, where the state of the components and the

system vary with time. Barlow and Wu [1978], El-Neweihi et

al. [1978], and Ross [1979] developed dynamic models for

multistate coherent systems. Hudson [1981] extended the

development of dynamic models for a general MCS.

3.3.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

t fixed time; t > 0.

X(t) state of stochastic process for a given t.

Xi(t) state of component i at time t, i=l,2,...,n.

X(t) vector of random component states at time t;

X (t) = (X1 (t),IX2 (t),I...,IXn (t)) .

*(X(t)) random system state at time t.

TJ at first, time for stochastic process reach or go

below state j; TJ = inf {t I X(t) 5 j);

102

later, time for stochastic process to go below

state j; T = inf {t I X(t) < j}.

R(t) survivor function for system at time t; R(t) =

Pr[(X(t)) = 1] = E[(X(t))] = Pr(T > t].

TJ time for state of component i to go below state j;

TJ = inf {t j X1 (t) < j}.

Tij length of time component i spends in state j.

Qk(t) performance distribution of the system; Qk(t) =

Pr[W(X(t)) k], k=1,2,...,M.

Q±,(t) performance distribution for component i; Q~j(t) =

Qij(t) = Pr[Xi(t) > j], i=l,2,...,n and j=I,2,...,M,.

q1 (t) performance vector for component i; q1j(t) =

(Q l (t),1 Q12 (t), I ... I i.1% (t)) .

q(t) performance vector for the system; q(t) =

(Q1 (t) IQ2 (t), I ... IQM (t)) .

r(t) system performance function; r(t) =

r(qj (t) ,q5 (t), ... , q (t)) .

9ij mean of distribution for TiM, + Timi_, + . .. +T

3.3.2 Distribution Representations

In general, a stochastic process {X(t), t e T} is a

collection of random variables X(t) representing the state

of the process for a given value of t. The state space of

a stochastic process is defined as the set of all possible

values that X(t) can assume.

Let {X (t), t 01 for i=l,2,...,n be the decreasing and

103

right continuous stochastic process representing the state

of component i at time t, where t ranges over the nonnegative

real numbers. The components and associated stochastic

processes are assumed to be mutually independent. Let the

vector of random component states at time t be designated by

X(t) = (X1(t),X2 (t),...,X,(t)). Let {(X(t)), t > 0} denote

the decreasing and right continuous stochastic process that

represents the system state at time t.

3.3.3 Distribution Classes and Closure

Recall that Barlow and Wu [1978] defined a multistate

system so that Q = = {0, 1, . . .,M}. Suppose 0 and f can be

divided into "bad" states {0,1,...,j-i} and "good" states

{j,j+1,...,M}. Essentially, this converts the multistate

problem to a binary model. Using this transformation, Barlow

and Wu (1978] applied the binary definition for IFRA.

DEFINITION. Let J be fixed at the lowest "good"

state. The distribution of time for component i

to leave the "good" states starting from state M

is an IFRA random variable if Pr[Xi(t) ! j] 11 t is

decreasing in t > 0 for some fixed j.

They proved IFRA closure with respect to the formation of

coherent systems. That is, Barlow and Wu [1978] showed that

if the length of time spent by each component in the "good"

states is an IFRA random variable, then the corresponding

length of time spent by the multistate system in the "good"

states is also an IFRA random variable.

104

Ross [1979] basically followed the same strategy, but

instead of fixing j, the length of time for a stochastic

process to reach or go below state j must be an IFRA random

variable for every possible J.

DEFINITION. The stochastic process {X(t), t 0)

is an IFRA process if TJ - inf {t I X(t) j) is an

IFRA random variable for every j.

Ross [1979] proved IFRA closure with respect to the formation

of coherent systems. That is, if {Xi(t), t ! 01, i=l,2,...,n

are increasing independent IFRA processes, then {#(X(t)),

t ; 0) is also an IFRA process whenever 0 is decreasing.

El-Neweihi et al. [1978] used the binary definition for

a NBU random variable to define a NBU stochastic process.

DEFINITION. The stochastic process {X(t), t 2 01

is a NBU stochastic process if TJ is a NBU random

variable for j=0,1,...,M-l.

El-Neweihi et al. [1978] proved NBU closure with respect to

the formation of coherent systems. So, if 0 is an MCS and

{Xi(t), t 2 0), i=1,2,...,n are independent NBU stochastic

processes, then (0(X(t)), t 0) is a NBU stochastic process.

Hudson [1981] proved IFRA and NBU closure for a general

MCS. His definitions and theorems are modified slightly so

that the random variable TI is the first time the process

goes below state J.

DEFINITIONS. T is an IFRA random variable if

(-l/t) log R(t) is increasing in t 2 0. T is an

105

NBU random variable if R(t+x) < R(t)R(x) for all

t Z 0 and x > 0.

DEFINITIONS. The stochastic process {Xi(t), t > 0}
is an IFRA (NBU) process if TJ = inf {t I X1 (t) < j}

is an IFRA (NBU) random variable for j=l,2,...,M.

DEFINITIONS. The stochastic process { (X(t)),

t 2 0} is an IFRA (NBU) process if T1 = inf {t

*(X(t)) < j} is an IFRA (NBU) random variable for

j=1,2, . . .,M.

THEOPM 3.18 Let {X,(t), t -> 0}, i=l,2,...,n be

mutually independent stochastic IFRA (NBU) processes.

If 0 is a general MCS, then {O(X(t)), t 2t 01 is a

stochastic IFRA (NBU) process.

There is one special case when it is simple to prove

that T, j=1,2, ...,M. are IFRA (NBU) random variables. Let

T., be the length of time component i spends in state j.

Then T? = TIA + TiM.1 + +.. + Ti . If Tj 1, T12 1 ..., Ti,, are

independent IFRA (NBU) random variables, then Tj,

j=l, 2, . .. , Mi are IFRA (NBU) random variables because the IFRA

(NBU) class is closed with respect to the convolution of

independent random variables.

3.3.4 Exact System Performance

For the general MCS, the problem changes to finding the

performance distribution of the system, Qk(t), where

106

Qk(t) = Pr[(X(t)) > k], k=l,2,...,M

from each component's performance distribution, Q1j(t), where

Qij(t) = Pr[Xi(t) > J], i=1,2,...,n and j=l,2,...,Mj.

In terms of previously defined variables for time, Q1j(t) =

Pr[Xi(t) 2 jJ = Pr[Ti, + Ti. + ... + Ti,1 > t] = Pr[T2 > t].

Qj0 (t) = 1.0 for i=l,2,...,n.

Let qj (t) = (Qn (t) ,Q1 2 (t), --- , M1 (t)) be the performance

vector for component i and q(t) = (Q1(t),Q 2 (t), ... ,QM(t)) be

the performance vector for the system. If the stochastic

processes {Xi(t), t > 0), i=l,2,...,n are independent, then

q(t) may be expressed as a function of q.(t), i=l,2, ... ,n.

E[(X(t))], Pr[*(X(t)) 2 k], and E[u((X(t)))] are measures

of performance that can be defined as functions of q(t) and

therefore, they may also be expressed as a function qi(t),

i=1,2,...,n. The relationship between the system's measure

of performance and the component performance vectors is given

by the performance function:

r(t) = r(q 1 (t) ,q 2 (t) , .. .,qn(t)

ZXAMPTZ 3.12 Suppose the Tlj, j=1,2,3 are mutually

independent exponential variables with X, = .2 and

T21, J=l,2 are mutually independent exponential

variables with X2 = .5. Find q(t) and E[4(X(t))]

for a system with n = 2, Mi = 3, M2 = 2, and M = 2

if the lower boundary points to level 1 are L, =

{ (2,0), (0, 1)) and the lower boundary points to

107

level 2 are L2 = { (3,1), (1,2) }.

The distribution of Ti,, + + ... + T is the

convolution of (Mi-j+1) exponential distributions

each with parameter Xi which is an Erlang

distribution with shape parameter (Mi-j+l) and

scale parameter Xi . In general, for Erlang (TI,X),

R(t) = Pr[T > t] = 1 - F(t) = E(t)kexp(-t)
k.o

Therefore, Qij(t) = t)k exp (t)

Q13(t) = e- 2t,

Q12 (t) = e - '2t + .2t e - .2t,

Q11 (t) = e - '2 t + .2t e - . 2t + (.2t) 2 e-. 2t
2!

Q10 (t) = 1.0,

Q23 (t) = e - ' 5t ,

Q2 2 (t) = e - 'St + .5t e -' t,

Q2 1 (t) = e - 'St + .5t e - '5 t + (.5t)2 e5t 'and

Q20 (t) = 1.0.

Using the lower boundary points to level 1,

Q1 (t) = Q12 (t) Q20 (t) + Q10 (t) Q21 (t) - Q12(t) Q2 1 (t)

Using the lower boundary points to level 2,

Q2 (t) = Q13 (t) Q2 1 (t) + Q11 (t) Q22 (t) - Q13(t) Q22 (t)

From Theorem 3.10, E[(X(t))] = Q,(t) + Q2 (t).

Table 3.7 summarizes the calculations for

E[(X(t))] and Pr[(X(t)) 2 k] at various times.

108

3.3.5 Bounding System Performance

For the dynamic situation, finding the exact performance

distribution of the system from the performance distributions

of the n independent components is a difficult problem. As

in Chapter 2, the closure theorems can be used to develop a

lower bound on system performance.

Table 3.7 System Performance at Various Times.

Random Variable Time

1 2 3 4

Q13 (t) .8187 .6703 .5488 .4493

Q12 (t) .9825 .9384 .8781 .8088

Q11(t) .9989 .9921 .9769 .9526

Q10 (t) 1.000 1.000 1.000 1.'000

Q23(t) .6065 .3679 .2231 .1353

Q22 (t) .9098 .7358 .5578 .4060

Q21(t) .9856 .9197 .8088 .6767

Q20 (t) 1.000 1.000 1.000 1.000

Pr[(X(t)) 1] .9997 .9951 .9767 .9382

Pr[(X(t)) Z 2] .9708 .8532 .6827 .5084

E[I(X(t))J 1.971 1.848 J 1.659 1.447

Let r(q 1 (t),q 2 (t), ... ,q,(t)) be the performance function

of a coherent system of n mutually independent components.

Generalizing a result from the binary model, suppose that

T1i, + TIM, + ... + Ti,9 have unknown IFR distributions with

known means Il. Since the exponential distribution is the

limiting distribution for the IFR class, Qij(t) > exp[-t/ L,1]

for t < 9i. Hudson [1981] was able to develop the lower

109

bound on the performance function for a general MCS:

TBZOBZD(3.19 Let si (t) =(i 1 t . jM t

for i=1,2,...,n. Let Sil(t) =exp[-t/gl±l for

i=1,2,...,n and j=1,2,...,M,. Suppose thatT2l

have unknown IFR distributions with known means

giv, i=1,2,...,n and j=l,2,...,, then r(t)

for t < Min~gy,1.

ZXMNPLZ 3.13 In the previous example, suppose

that the distributions of T,, and T2 , are unknown

but the means are gL = 5 and 9.2 = 2. Find a lower

bound for 01 (t), Q2 (t), and E[O(X(t))] given only

that Tjj, J=1,2,3 and T2 j, j=1,2 are mutually

independent IFR random variables.

The distribution of T±,, + T±,mi- + . .. +Tis IFR

and the convolution of (M.-j+1) distributions.

Therefore, 9.13 = 5, 9i12 10, and g~ =15.

P'23 =2, 9L22 = 4, and I921 =6.

From Theorem 3.19,

Q13 (t) 2! e-t/ 5, 012 (t) ; e-t/10 , and Q11 (t) 2t e-t/ 1

Q23 (t) 2t e-t 2 I0 2 2 (t) > e-t I and Q21 (t) 2t e-t/

Using the lower boundary points to level 1,

01 (t) g e-t/1O + e-t~- e-/l et/

Using the lower boundary points to level 2,

110

From Theorem 3.10, E[(X(t))] = Q1(t) + Q2(t) 2

e-.t + e - 167t _e .267t + e .367t + e .317t _e .45t.
el"t + e--E~ - e-2 l + e- 3 7 + e-3l-t -

Table 3.8 shows calculations for lower bounds on

E[(X(t))] and Pr[(X(t)) 2 k] at various times.

Table 3.8 Bounds on System Performance at Various
Times.

Time
Variable 2 3

Q13(t) .8187 .6703 .5488 .4493

Q12(t) .9048 .8187 .7408 .6703

Q11(t) .9355 .8752 .8187 .7659

Q10(t) 1.000 1.000 1.000 1.000

Q23(t) .6065 .3679 .2231 .1353

Q22(t) .7788 .6065 .4724 .3679

Q21(t) .8465 .7165 .6065 .5134

Q20 (t) 1.000 1.000 1.000 1.000

Pr[*(X(t)) 1] .9854 .9486 .8980 .8396

Pr[(X(t)) ? 2] .7840 .6046 .4604 .3472

E[(X(t))] 1.769 1.553 1.358 1.188

3.4 Boundary Point Conversion

A customer can completely describe a general MCS by

specifying when a change in the state of any one of the

components forces a change in the state of the system. Some

customers may prefer to relate system and component state

changes in terms of deterioration by specifying the lower

boundary points. Other customers may wish to describe the

system in terms of state improvement by specifying the upper

boundary points.

111

In either case, getting the boundary points from the

customer can be a long and tedious process. In fact, no

efficient method has been developed for finding all the

boundary points. To make this process easier, Wood [1985]

developed the concept of multistate block diagrams and Janan

(1985] proposed two algorithms that take advantage of the

modularity of a system. Because of the difficulties involved

with soliciting boundary points, it is not always reasonable

to obtain both the upper and lower boundary points from the

customer.

The boundary points are essential for calculating the

exact probability distribution using inclusion-exclusion or

pivotal decomposition. For large, complex systems, it is not

always possible to find the exact probability distribution.

In this case, the performance bounds given in section 3.2.5

must be used.

Almost all the performance bounds require both upper and

lower boundary points. Therefore, it would be useful to

develop a procedure to find the upper boundary points from

the lower boundary points and vice versa. The program that

accomplishes this task can be found in Appendix C. It is

based on the following two algorithms. The first algorithm

converts the upper boundary points to level k (Uk) to the

lower boundary points to level k+l (Lk l)-

Uk to Lk Conversion Algorithm

1. Set k = 0.

112

2. Stop if k = M. List all upper boundary points

to level k (x e Uk).

3. For each x E Uk, list the potential lower

boundary points to level k+1. The potential lower

boundary points to level k+l (y) for an upper

boundary point to level k (x E Uk) are defined as

all y e S such that y1 = xi + 1 for one i and

yj=0,1,. .. ,x V j * i.

4. Eliminate from the list any y dominated by

other x e Uk. y is dominated by x e Uk if y _! x.

5. Eliminate from the new list any y' overcome by

y2 where y2 overcomes y' if y1 > y 2 . If y1 = y2,

then only eliminate one vector from the list.

6. The remaining y on the list are the lower

boundary points to level k+l.

7. Clear the list, set k = k + 1, and return to

step 2.

A potential lower boundary points to level k+l cannot have

two x. increased by 1 because of the following theorem.

THEOREM 3.20 If x = (x, Ix 2 1 x 3,...,x,) E Uk, then

Z' = (x 1+lX 2+1,X 3, .. .,x.) * Lk+l.

Proof: Suppose that x' e Lk+l. Then

(x+ 1,X21,...,Ix) < k+l. Since k is discrete,

*(x+l , x 21 ..., x) k. Now since x e Uk,

(xl+l, X2,...,X,) > k. Combining the last two

inequalities results in a contradiction proving

113

that the supposition is false.

Similar theorems could be proven when more than two xi are

increased by 1 or when any number of xi are increased by 2 or

more.

ZXAMPLZ 3.14 Consider a three-component general

MCS with M=4, Mi=3, M2=2, and M3=1. Suppose the

upper boundary points to level 1 are given by the

customer as U1 = {(2,0,0), (1,0,1), (0,1,0)}.

Determine the lower boundary points to level 2.

At this point in the algorithm, k=1. The upper

boundary points to level 1 are listed across the

top of Table 3.9. The potential lower boundary

points to level 2 for each x e U1 are listed below

each upper boundary point. The potential lower

boundary points dominated by other x e U, are

marked by an asterisk (*). The potential lower

boundary points overcome by other potential lower

boundary points are marked by a check mark (/).

Table 3.9 Potential Lower Boundary Points.

200 101 010
300 201 / 110 /
210/ 200* 100*
110 111 020
010 * 110 / 011/
201 011 001 *
101 * 010 *
001 *

Therefore, L2 = {(3,0,0), (1,1,0), (2,0,1),

(0,1,1), (0,2,0)}.

114

In a similar manner, the second algorithm converts the

lower boundary points to level k (Lk) to the upper boundary

points to level k-i (Uk_1) .

Lk to Uk-1 Conversion Algorithm

1. Set k =M.

2. Stop if k = 0. List all lower boundary points

to level k (z e Lk).

3. For each x e Lk, list the potential upper

boundary points to level k-i. The potential upper

boundary points to level k-1 (z) for a lower

boundary point to level k (x = Uk) are defined as

all z e S such that z = xi - 1 for one i and

zj=xjxj+l,...,IMi V j * i.

4. Eliminate from the list any z dominated by

other x e Lk. z is dominated by x e Lk if z 2! x.

5. Eliminate from the new list any z' overcome by

z 2 where z 2 overcomes z1 if z1 < z 2 . If z' = Z ,

then only eliminate one vector from the list.

6. The remaining z on the list are the upper

boundary points to level k-1.

7. Clear the list, set k = k - 1, and return to

step 2.

A potential upper boundary points to level k-i cannot have

two xi decreased by 1 because of the following theorem.

THEOREM 3.21 If x = (xlx 2 , x 3,...,xn) e Lk, then

X' = (x 1 -1,x 2 -l,x 3, ... ,x) 9 Uk-1.

115

Proof: Suppose that x' e Ukl. Then

*(x 1-1,x 21 ... ,x) > k-i. Since k is discrete,

(X1-lIX 21, . . . , ,) 2t k. Now since x e Lk,

(xj-l'X2 1, . . . ,I x) < k. Combining the last two

inequalities results in a contradiction proving

that the supposition is false.

Similar theorems could be proven when any number of x. are

decreased by 1 or more.

ZXAMWLZ 3.15 Consider a three-component general

MCS with M=4, MI=3, M2=2, and M3=1. Suppose the

lower boundary points to level 2 are given by the

customer as L2 = {(3,0,0), (1,1,0), (2,0,1),

(0,1,1), (0,2,0)1. Determine the upper boundary

points to level 1.

At this point in the algorithm, k=2. The lower

boundary points to level 2 are listed across the

top of Table 3.10. The potential upper boundary

points to level 1 for each x e L2 are listed below

each lower boundary point. The potential upper

boundary points dominated by other x e L2 are

marked by an asterisk (*). The potential upper

boundary points overcome by other potential upper

boundary points are marked by a check mark (/).

Therefore, U1 = {(2,0,0), (0,1,0), (1,0, 1)1 which

checks with the upper boundary points to level 1

given in the previous example.

116

Table 3.10 Potential Upper Boundary Points.

300 110 201 020 0i1
200 010 101/ 010/ 001/
201 * 011 * il * 011* 101/
210 * 020 * 121 * 110 * 201 *
211 * 021 * 200 ii * 301 *
220 * 100 / 210* 210* 010/
221 * 101 220 * 211 * 020 *

200/ 300* 310 * 110*
201 * 310 * 311 * 120 *
300 * 320 * 210 *
301 * 220 *

310 *
320 *

3.4 Summary

This chapter reviewed the structural, stochastic, and

dynamic properties for the multistate model and generalized

the same properties. New definitions were given for a k-out-

of-n structure and for a general MCS in terms of lower and

upper boundary points. Some of the common duality theorems

were proven using the new definitions. Lower and upper

bounds were established for the general multistate structure

function. Counterexamples were found to disprove the general

redundancy theorems for the general multistate case. The

concepts of an alternate representation for 0(x), structural

importance, and reliability importance were generalized. A

computer program was written to find the exact probability

distribution of the system. A separate computer program was

created to calculate performance bounds for complex systems.

To limit the amount of information needed from the customer,

a third program was developed to determine the upper boundary

points from the lower boundary points and vice versa.

117

4. TRE CONTINUOUS MODEL

Chapter 2 discussed the binary mapping O:{0, 1}- {0, 1}.

Most of the previous work in reliability theory has adopted

this binary model where the system and component states are

restricted to one of two possible values. Chapter 3 explored

two multistate mappings - :(0,1,...,M)"-+ {0,1,...,M} and

*:{0,1,...,M)n -+ {0,1,...,M}. These models extended the

framework to allow the system and component states to assume

a finite number of values. The general multistate model

allowed the number of system and component states to be

different. Chapter 4 discusses the recent extension of the

reliability model where the system and component states can

degrade through a continuum of values. The continuous model

was first developed using the mapping *: A-+ [0, -) where A

is some subset of I'n, but most articles have focused on

continuum structure functions that map from the unit

hypercube to the unit interval, i.e. *: (0,1]n-4 [0,11. In

this chapter, as was done for the multistate model, the

continuous model is generalized to *: [0,Mi]n-+ [0,M].

4.1 Structural Properties

Structural properties characterize the deterministic

relationship between the state of the system and the states

of the components at a fixed moment in time.

4.1.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

118

n number of components comprising the system.

R" a vector of n real numbers.

A an arbitrary subset of Rn.

]t"n a specific subset of RI; the nonnegative orthant.

xI state of component i; x i e [0,M I] .

M1 best state of component i; Mi < -.

Cstate space of component i; Ck = [0,Mj].

x component state vector; x =(x, ... ,x n)

S component state space; {x I xi E , Vi}.

*state of the system; e (0,M].

M best state of the system; M < -.

Qstate space of the system; 11 = [0,M].

O(x) structure function; system state for x.

S(k) kth equivalence class; {x e S I *(x) = k}, k = [0,M].

x < y xi < yj V i and xi < yj for at least one i.

L(k) set of lower boundary points to level k, k e (0,M].

U(k) set of upper boundary points to level k, k e [0,M).

pj jth minimal path set; j=1,2,...,s.

Z (a,a, ... ,) .

C the set of component indices; {I,2,...,n).

(jl,x) (xI,,Xi_1, jIX 1 ,i ... ,x) , i=l,2,...,n and j r .

g(x,k) St(x,k) = {(i,x i) for all x, * 0).

U(x,k) U(x,k) = {(i,xj) for all x. M}.

4.1. 2 introduction

A natural extension of the multistate model allows the

system and component states to be described by a continuous

119

range of states. Although other authors had mentioned the

possibility of continuous structure functions as early as

1978, Block and Savits [1984] were first to devise a model.

Block and Savits defined continuum structure functions on the

nonnegative orthant I" and other subsets of Rn. They derived

results similar to those found for discrete structure

functions. Subsequent authors (Baxter [1984,1986], Kaleva

[1986], Baxter and Kim [1986], and Montero, Tejada, and YMnez

(1990]) have concentrated on continuum structure functions

that map from [0,1] n to [0, 1]. The continuous model is

generalized to allow the continuous states of the system and

each component to vary over a different range of values.

For a system with n components, the state of the ith

component is given by the continuous variable x, e [0,Mi] for

i=l,2,...,n where Mi is the best state of component i. Let

the state space for component i be designated by K. The

component state vector x = (x1, x21 ...,xn) is the vector of n

component states and the component state space S = {x I x1 e

, Vi} is the set of possible component state vectors.

The state of the system is given by the continuous

variable 0 e [0,M]. Let the state space for the system be

designated by Q. The model assumes that the state of the

system is completely determined by the states of the n

components. The relationship is described by the structure

function *(x), which is abbreviated by 0: [0,Mi]"-4 [0,M].

For the multistate case, all component state vectors

120

with the same system state were said to belong to the same

equivalence class. A parallel definition can be derived for

a general continuous structure function (general CSF).

DEFINITION. The kth ecquivalence class S(k) of a

general CSF is given by

S(k) = (e S I *(x) = k}, k e [0,M].

There are an infinite number of component state vectors and

most equivalence classes contain an infinite number of

vectors. In addition, there are an infinite number of

equivalence classes. Still, each component state vector can

belong to only one equivalence class.

ZXANPLZ 4.1 Determine S(k) for the 2-component

general CSF:

(x) = x1x2 where xl r [0,2] and x 2 e [0,3].

S(k) = {x e S I xlx 2 = k) k e [0,6]. As shown in

Figure 4.1, S(0) = {x E S I Min{xj, x 2} = 0),

S(2) = (x e S I xlx 2 = 21, and S(6) = {(2,3)}.

X2

3 + S (6)

2

S(2) (2

+S(O)

0

0 1 2 x,

Figure 4.1 S(0), S(2), and S(6) for Example 4.1.

121

4.1.3 Special Structures

Montero et al. [1990] defined the concepts of minimal

paths and minimal cuts at level k for a CSF. The definitions

are extended to a general CSF, again using the terms lower

boundary points and upper boundary points to level k. Note

that the continuous model is complicated by problems with

continuity. Specifically, lower boundary points to level k

are only defined when a general CSF is right continuous and

upper boundary points to level k are only defined when a

general CSF is left continuous.

DEFINITION. The general CSF 0 is riqht continuous

at y if for each x e S and for each e > 0, there

is a 8 > 0 such that 10(x) - 0(y)I < e whenever

y < x < Y + 8 1.

DEFINITION. The general CSF 0 is left continuous

at y if for each x e S and for each E > 0, there

is a 8 > 0 such that 1$(x) - *(y) I < e whenever

Y - 1 < x < y.

As with the general MCS, there are no lower boundary

points to level 0 and no upper boundary points to level M.

DEFINITION. If the general CSF *(x) is right

continuous, then x is a lower boundary point to

level k if O(x) Z k and y < x implies that 0(y) <

k, k e (0,M].

Let L(k) designate the set of all lower boundary points to

level k, k e (0,M].

122

DEFINITION. If the general CSF O(x) is left

continuous, then x is a upper boundary point to

level k if O(x) < k and y > x implies that f(y) >

k, ke [0,M).

Let U(k) designate the set of all upper boundary points to

level k, k e [0,M).

Like the general MCS, the general CSF definitions for

series, parallel, and k-out-of-n structures are based on the

number of lower and upper boundary points to level k.

DEFINITION. 0 is a series Qeneral CSF iff 0 has

one lower boundary point to level j, j E (0,M] and

n upper boundary points to level j, j e [0,M).

DEFINITION. 0 is a parallel general CSF iff 0 has

n lower boundary point to level j, j e (0,M] and

one upper boundary points to level j, j E [0,M).

DEFINITION. * is a k-out-of-n Qeneral CSF iff

has (k) lower boundary points to level j, j e (0,M]

and (n) upper boundary points to level j, j e

[0,M) .

Series and parallel systems are special cases of the k-out-

of-n structure. A series system is an n-out-of-n structure

while a parallel system is a 1-out-of-n structure.

EXAMPLZ 4.2 Suppose that x, e [0,1] and x2 E

[0,2]. Determine S(k), L(k), and U(k), k e [0,]

for the 2-component general. CSF:

123

O(z) = Maxfxj, 16X 2)}.

S(k) = {x e S I Max~xj, 'X2} = k} for k e [0,1).

The single upper boundary point to level k is

(k,2k), k e [0,1). The two lower boundary points

to level k are (0,2k) and (k,0), k e (0,1].

Theref ore, * (z) is a parallel general CSF. S(.5),

L(.5), and U(.5) are shown in Figure 4.2.

X2

2-

L(.5) U(.5)

S(.5) -

0 1> .-

0 1 x1

Figure 4.2 S(.5), L(.5), and U(.5) for Example 4.2.

EXAMPLZ 4. 3 Suppose that x, e [0, 4] and X2 e

(0,81. Determine S(k), L(k), and U(k), k e (0,21

and the lower and upper boundary points to level

k for the 2-component general CSF:

0 (x) = Min ('x,1 4X 2).

6 (k) = {x e S I Min{(;xj,4X2) = k) for k E [0,21.

The single lower boundary point to level k is

(2k, 4k) , k e (0, 2). The two upper boundary points

to level k are (4, 4k) and (2k, 8), k e [0,2).

124

Therefore, (x) is a series general CSF. S(1),

L(l), and U(1) are shown in Figure 4.3.

X2

8

u(1)

6

4
L(G) U(1)

2

0

0 2 4 x1

Figure 4.3 S(1), L(1), and U(l) for Example 4.3.

4.1.4 Coherent Structures

The authors who developed the CSF eliminated unrealistic

structure functions by defining coherent systems. As with

the MCS, there is no single definition for a coherent CSF.

Baxter (1984] defined a CSF to be coherent in much the

same was as Barlow and Wu [1978] did for a multistate system.

DEFINITION. A CSF * is coherent iff

i . = n = [0,1] Vi,

ii. (x) is increasing in each xi, and

iii. (x) = Max Min x i where P, is the jth
J-, 2,. .. , iAPI

minimal path set for the system's binary model.

This definition forces *(a) = a for all a E [0,1]. It is

desirable that *(x o) = 0 and *(xM) = M, but the model should

125

not restrict the state of the system for specific x e S since

one component may be more important to the customer.

Paralleling the earlier definitions of multistate

coherence by Griffith (1980], Baxter [1986] developed the

following categories of coherence for a CSF: strictly

coherent, coherent, and weakly coherent. Only the least

restrictive definition for a weakly coherent system is

repeated since it equates to the new component relevancy

condition. Suppose that C = {1,2,...,n} is the set of

component indices and S is the component state space.

DEFINITION. * is weakly coherent iff

i. f = a = [0,11] Vi,

ii. 0(x) is increasing in each xi and

iii. sup ((ljx) - 0(0±,x)] > 0 for each i e C
Ms

where (ji,x) denotes (xI, ... ,xi_1, j,xi+1,.. . ,xn)

As a final note, Baxter [1986] also developed a CSF based on

Natvig's definition of type-2 coherence [1982].

As with the general MCS, there are two aspects of the

previous definitions for coherence that are too restrictive.

First, it is not desirable to restrict the state spaces of

the components and system to the same set. Also, the state

of the system should not be restricted for specific x e S.

There are two aspects of the previous definitions for

coherence that are desired. First, the system should not

improve with the deterioration of a component. Second, the

system should only contain relevant components. The next

126

definition is used for a general coherent CSF:

DEFINITION. * is a general coherent CSF iff

i. Ck = [0,Mj], i=1,2,...,n,

ii. Q = [0,M),

iii. S(0) and S (M) are not empty,

iv. *(x) is increasing, and

v. V component i, there exists an x e L(k) such

that x i * 0 for some k = (0,M] or there exists an

x e U(k) such that x. * Mj for some k = [0,M).

4.1.5 Equivalent Coherent Structures

Block and Savits [1984] developed two alternative

representations of the CSF using the binary decomposition

techniques shown in Section 3.1.5. The representations are

expanded to the general CSF. The type of continuity

determines which representation is applicable.

Suppose the customer can specify the set of lower

boundary points to level k, k E (0,M] for a right continuous

general CSF. Define the following two indicator variables:

Yi~j) 0 if x i < j
[1 if xi >j

for i=1,2,...,n and j 6 (0,M 1].

yk) 0 if X) < k (4.1)@(y~) -1 if @(x) c? k

for k E (O,M].

127

Suppose the set of all lower boundary points to level

k is designated by L(k). If x e L(k), then let

U(x,k) = { (i,x i) for all x i * 01.

Block and Savits [1984] wrote the structure function as

*(y,k) = Max Min yi(j).
ZEL(k) (i,J)GI(X,k)

From Equation 4.1, the value of the general CSF is given by

*(x) =ft(y,k)dk.

A similar decomposition can be used when the customer

can specify the set of upper boundary points to level k, k

E [0,M) for a left continuous general CSF. Define the

following two indicator variables:

0 ifxi < j
yi(j) =1 if xi > j

for i=1,2,...,n and j e [0,Mj).

yk) 0 if (x) k (4.2)(y~k -- 1 if (x) > k

for k e [0,M).

Suppose the set of all upper boundary points to level

k is designated by U(k). If x e U(k), then let

U(x,k) = {(i,x i) for all xi * Mi}.

128

Block and Savits [1984] wrote the structure function as

0(y,k) = Min Max Yi(j)-
ze U(k) (, J) E (Z, k)

From Equation 4.2, the value of the general CSF is given by

M

O(x) -TO (y,k)dk.

The procedure is demonstrated for the case where there

are a finite number of elements in each L(k) such as the

parallel general CSF given in example 4.2.

EXAMPLZ 4.4 Suppose a continuous general CSF with

two mutually independent components is defined by

the customer with the following the sets of lower

boundary points to level k:

L(k) = {(0,2k), (k,0)}, k e (0,1].

Write an equivalent expression for O(x).

9(x 1 ,k) = {(2,2k)} and $(x 2 , k) = {(l,k)}.

(y,k) = Max{y 2 (2k),y 1 (k) } and

O(x) = f (y,k) dk.

For the specific component state vector x =

(.5,1.6),

yi(j) { if .5 < J for j e (0,]

and

129

Y2()= { 1 if 1.6 < for j e (0,2]

so that Y2 (2k) > y1 (k) V k. Thus, *(y,k) = Y2 (2k)

•.8

and W(x)= (1) dk + f (0) dk = .8 which checks
.8

with *(x) = Max{.5, 1(1.6)} = .8.

The procedure is also demonstrated for the case where

there are an infinite number of elements in L(k) such as the

general CSF given in example 4.1.

ZXAWLWZ 4.5 Suppose a continuous general CSF with

two mutually independent components is defined by

the customer so that M=6, M1=2, M2=3, and the lower

boundary points to level k are given by:

L(k) = {(r,k) for k < r < 2}, 0 < k < 6.
r

Write an equivalent expression for O (x).

The variable r in L(k) can be transformed to range

between 0 and 1 so that for 0 < k < 6:

L(k) = {(s(6-k)+k 3k for 0 : s 1)' 71(16-k) +k) o <s<I

s(k) s (6-k) +k 3k 0 < s < 1}3) (s6-k) k

and O(y,k) = Max {yl(s(6-k) +k) Y2(3k
0!9 85 3 s (6 -k)

6

Therefore, *(x) = f *(y,k) dk.

For the specific component state vector x =

130

(1.2, .8), Y ((6-k) +k 1 if 1.2 s(6-k) +k" 3) = if .2 3

and Y2(3k) = 1 if .8 3k Both are
s (6 -k) +k s (6 -k)

true only when k 5 .96 so the structure function

.96 6

(x) = f (1) dk + 16 (0) dk = .96 which checks

with (x) = (1.2) (.8) given in example 4.1.

As shown in example 4.5, even the simplest continuous

structure functions do not lend themselves well to alternate

representations. The infinite number of boundary points to

level k makes a general equation for *(y,k) unlikely and the

integral representation of 0(x) ineffective.

4.1.6 Dual Structure Function

Block and Savits [1984) discussed the concept of the

dual structure function for the continuum structure function

0(x) = Max Min x where Pj is the jth minimal path set for
1,2,..,a lPi

the system's binary model. The notion of the dual is

extended for the general CSF.

DEFINITION. Let * be a structure function of a general
CSF. The dual structure function *D is defined by

OD(x) = M - 0(M1-x1,M 2-x21...,M,-xI)

= M - 0(XM - X).

The relationship between the primal and dual general CSF can

be interpreted in the following manner. Let the primal

131

components be in state xi and the dual components be in state

XiD = M - xi. Then the primal system is in state k when the

dual system is in state M - k.

The following theorems are identical to those given in

section 3.1.6 and the proofs require only trivial changes.

THEOREM 4.1 If the primal is a general CSF, then the

dual is also a general CSF.

THEOREM 4.2 x is a lower boundary point to level k for

the general CSF * if f (KM - x) is an upper boundary

point to level (M - k) for the dual general CSF *D.

THEOREM 4.3 The dual of a k-out-of-n general CSF is an

(n-k+l)-out-of-n general CSF.

COROLLARY 4.1 The dual of a series general CSF of n

components is a parallel general CSF of n components.

COROLLARY 4.2 The dual of a parallel general CSF of n

components is a series general CSF of n components.

THEOREM 4.4 The dual of the dual is the primal.

EXAMPLZ 4.6 Write the dual structure function

*D(x) for the series structure function given in

example 4.3.

*(x) = Min{x 1 ,1 4x 2} with x, E [0,4], x 2 e [0,8] and

k e [0,2]. Therefore,

*D(x) = 2 - *(xM - x) = 2 - *(4-xj , 8-x 2)

{xi 8 -x2}
S2 - Min

which is a parallel structure function with

132

L(k) = {(0,4k), (2k,0)} for k e (0,2] and

U(k) = {(2k,4k)) for k e [0,2).

4.1.7 Structural Importance

For the general CSF, component i is relevant if

sup [*((M1)j,z) - (0j,x)] > 0. It is interesting to note that
MS

components can be irrelevant for the binary model but

relevant for the continuous model.

ZXAMPLZ 4.7 In example 2.1, it was shown that

component 2 is irrelevant for the binary structure

*(x) = 1 - (1-x 1) (1-x 1x 2) •

Show that component 2 is relevant for (x) defined

as a general CSF with xj, x2 , and * E [0, 1].

Since (.5,l) = .75 and 0(.5,0) = .5, component 2

is relevant.

The system is coherent if, among other conditions, all

components are relevant.

In Chapter 3, the structural importance of component i

was defined as the proportion of the component state vectors

where the relevance condition holds. Extending to the

general CSF, structural importance for component i is given

by

I0(i) = -fI N(x) dx where

joi

{1 if sup[((MI) 1,x) - (0j,x)] > 0
N0 otherwise.

133

4.1.8 Modules and Modular Decomposition

Definitions for modules and modular decomposition were

given by Baxter and Kim [1986] for *:[0,1]1 -* [0,1]. The

definitions can be extended for the general CSF.

DEFINITION - Suppose (C,*) is a general CSF where C is

the set of components. Suppose that A c C. Let A'

denote the subset of C complementary to A. The general

CSF (A,X) is a module of (C,O) if

*(x) = *(xA,xA') = V,[X(XA),xA ']

for all x r S. AV is a CSF called the organizing

structure.

DEFINITION - A modular decomposition of a general CSF

(C,) is a set { (A,,XI), (A21X2), ... , (AkXk) } of general

CSFs along with the organizing structure V such that

i. {A,A 2 1 ... ,Ak} is a partition of C and

ii. *(X) = I[XI(XA-),X 2 (ZXz),...,Xk(XAk)] for all x E S.

As in the binary and multistate case, modular decomposition

provides a method of breaking up a complex system into

several more manageable problems. The smaller problems are

solved and the organizing structure is used to combine the

results.

4.2 Stochastic Properties

Up to this point, only the deterministic properties of

the general CSF have been discussed. Next, the stochastic

properties of the general CSF are explored.

4.2.1 Notation

134

The following notation is listed for the reader's

convenience in the order of presentation:

n number of components.

Xj random variable for the state of component i.

xj fixed state of component i; xi 4.

X random component state vector; X = (X1 1 X2, .,Xn)

x fixed component state vector; x = (x1 ,X 2, ... I Xn)

(X) random variable for the state of the system.

0 fixed state of the system; 0 = *(x).
Q(k) Pr((X) > k], k e [0,M].

Qi(j) Pr[X, Z j], i=1,2,...,n and j e [0,Mj].

Q(k-) Pr[(X) > k], k e [0,M].

Q1 (j-) Pr[X1 > J], i=1,2,...,n and j e [0,Mj].

4.2.2 The Performance Function

For a system of n components, let X. denote the random

state of component i and xi denote a specific state of

component i. The random and specific states for all

components are summarized in the random component state

vector X = (X1 , X2, ... ,x) and the fixed component state vector

x = (x11 x2 1 ... ,x,). Let O(X) be the random system state and

0(x) or 0 be a fixed system state.

For the general CSF, the problem is to find the

performance distribution of the system, Q(k), where

Q(k) = Pr[O(X) > k], k e [0,M]

given every component's performance distribution, Qj(j),

where

135

Qj(j) = Pr[X, > j], i=1,2,...,n and j e [0,Mj].

If the random variables Xj, i=l,..., n are mutually

independent, then Q(k) may be expressed as a function of

Qj(J). Because of problems with continuity, the performance

distributions must often be written as strict inequalities

Q(k-) = Pr[(X) > k], k E [0,M]

and

Qi(j-) = Pr[Xi > j], i=1,2,...,n and j e [0,M].

4.2.3 Exact Performance Distribution

The infinite number of boundary points to level k

impedes the techniques used in Chapter 3 to find the exact

performance distribution of the system (i.e. enumeration,

inclusion-exclusion, and pivotal decomposition). For some

cases Q(k) can be found directly by integration. The

following example comes from Montero et al. [1990):

ZXAMPLZ 4.8 Suppose a general CSF is defined by

¢(x) = x 1 x 2

with mutually independent variables X, and X2 -

Uniform [0,1]. Find Q(k).

Q(k) = Pr[(x)kk =] i 1 dx 2 dx1 = (1 -__ k) dx,

- 1 - k in Ill - k + k in Iki

l - k + k In k ke (0, 1]

i1 k=0

4.2.4 System Performance Bounds

The system performance bounds depend on the substitute

136

characteristic for reliability used by the customer. Most

authors have developed bounds for Pr[(X) Z k].

Performance bounds can be constructed for independent

and associated random variables. Of course, the bounds are

more explicit if the random variables are independent. The

next five sections generalize some bounds on Pr[O(X) 2 k]

derived by other authors.

4.2.4.1 Trivial Bounds

The trivial bounds for a right continuous general CSF

are based on a single lower boundary point to level k.

THEOREM 4.5 Suppose O(x) is a right continuous CSF.

Let y = (YlY 2 1 .- ,Yn) e L(k), k e (0,M]. Then

ni n
01 (yi) :5 Q(k) 5 1 - 1.1(1 - Qj(yj))

Proof: The proof is similar to Theorem 3.14.

The trivial bounds for a left continuous general CSF are

based on a single upper boundary point to level k.

THEOREM 4.6 Suppose *(x) is a left continuous CSF.

Let y = (Y1,Y2,---,Yn) e U(k), k E [0,M). Then

n n

.1J 0Q (Yd) 9 Q(k) !5 1 - F"1 (1 - Q (yj))

Proof: The proof is similar to Theorem 3.14.

4.2.4.2 Path/Cut Bounds

Block and Savits [1984] developed the Path/Cut Bounds

for the structure function 0:(0, 1]n - [0,1]. The bounds can

137

be extended to the general CSF.

THEOREM 4.7 Let 4 be a continuous general CSF with

associated components. Then for all but a countable

number of k,

H r[U {X>j}] 0 Q(k)= Q(k-) 1 Pr f {xi±j}]ze U (k) I, J) (m, k) ze L (k) iIJ) Q (X, k)

for k = (0,M].

The lower bound comes from the upper boundary points while

the upper bound comes from the lower boundary points.

When the components are independent, the bounds can be

explicitly derived from the performance distributions of the

components.

THEOREM 4.8 Let 4 be a general CSF with independent

components. Then for all but a countable number of k,

1U(k) (i,- () Q),k) xeL(k) (iJ)I(x,k)

for k = (0,M).

4.2.4.3 Kin/Max Bounds

The Min/Max Bounds for 4:[0,1]n-4 [0,1] were develo)ed

by Block and Savits [1984) so that the lower bound comes from

the lower boundary points while the upper bound comes from

the upper boundary points. Generalizing,

THEOREM 4.9 Let 4 be a continuous general CSF. Then

the following bounds always hold for k e f0,M]:

138

sup Pr (Xi. j}] 5 Q(k) and

ze L(k) (i,iJ) (k) I

Q(k-) 5k inf Pr[U {X>J"zo U (k) (1, J) * (z, k)

If the components are associated, then

sup {(iL Q(j))} Q(k) and
xe L(k) (U, DS (,k)

ze U(k (,J (z, k)

4.2.4.4 Combining Bounds

A combination of the bounds in Theorems 4.8 and 4.9 is

appropriate for mutually independent components. Let 0 be

a general CSF with mutually independent components. Combined

Bounds use the maximum lower bound and minimum upper bound

found with Theorems 4.8 and 4.9.

4.2.4.5 Improved Path/Cut Bounds

Baxter and Kim [1986] showed that the Path/Cut Bounds

can be improved with modular decomposition for the continuous

model. To do this, Path/Cut Bounds are determined for each

module. These bounds are then used to determine Path/Cut

Bounds for the system. Baxter and Kim [1986] proved that the

new bounds were always tighter than the Path/Cut Bounds found

directly from the entire system.

4.2.4.6 General Bounds

Montero et al. [1990] developed general bounds without

the need for O(x) to be continuous. These bounds are more

139

effective for the case when there are an infinite number of

boundary points to level k.

TRORUI 4.9 Let *(x) be a general CSF. Then

1 - Pr [yIy:r] Q(k) < Pr[yytq]

where the vectors r = (r 1,r 2,...,rn) and q =

(qj,q 2 1 ... ,qn) are given by

r i - sup x i and q= inf x i Vi.
zeU(k) za L(k)

4.3 Dynamic Properties

In the last two sections, the structural and stochastic

properties of the general CSF were examined at a fixed moment

in time. The next step is to consider dynamic models, where

the component and system states vary with time.

4.3.1 Notation

The following notation is listed for the reader's

convenience in the order of presentation:

t fixed time; t > 0.

X1 (t) state of component i at time t, i=1,2,...,n.

X(t) vector of random component states at time t;

X (t) = (X1 (t),IX2 (t) I--,.Xn(t)).

O(X(t)) random system state at time t.

T k time for system state to reach or go below state k;

Tk = inf {t I O(X(t)) < k).

TIJ time for state of component i to reach or go below

state j; T2 = inf {t I Xi(t) !5 j-

140

Qk(t) performance distribution of the system; Qk(t) =

Pr[*(X(t)) 2: k], k=l,2,...,M.

Qil(t) performance distribution for component i; Q1j(t) =

Qij(t) = Pr[Xi(t) 2 j], i=l,2,...,n and j=1,2, ... ,M.

4.3.2 Distribution Representations

Let {Xi(t), t > 0} for i=1,2,...,n be the decreasing and

right continuous stochastic process representing the state

of component i at time t, where t ranges over the nonnegative

real numbers. The components and associated stochastic

processes are assumed to be mutually independent. Let the

vector of random component states at time t be designated by

X(t) = (X1(t),X 2(t),...,X,(t)). Let {O(X(t)), t 2 0) denote

the decreasing and right continuous stochastic process that

represents the system state at time t.

4.3.3 Distribution Classes and Closure

Baxter [1984] discussed a dynamic stochastic model for

the first-passage-time distribution which is defined as the

first time a stochastic process enters the set of "bad"

states from the set of "good" states. The first-passage-time

distributions for the system and the components are given by

Tk = inf {t I O(X(t)) - k} and

TJ = inf {t I XI(t) J}, respectively.

Baxter [1984) used theorems given by Ross [1979] to

prove IFRA and NBU closure with respect to the formation of

coherent systems. That is, if {Xi(t), t 01, i=l,2,...,n

141

are increasing independent IFRA/NBU processes, then {o(X(t)),

t 0) is also an IFRA/NBU process whenever * is decreasing.

4.3.4 Exact System Performance

For the CSF, the problem is to find the performance

distribution of the system given by

Qk(t) = Pr[4(X(t)) Z k] = Pr[Tk 2 k] for k= [0,M]

from each component's performance distribution given by

Qi,(t) = Pr[Xi(t) Z j] = Pr[TI > t], i=1,2,...,n and j=[0,Mi].

Although this formation works well for the multistate case,

an infinite number of distributions must be specified for the

continuous case. Attempts to bound system performance result

in similar difficulties. Thus, the integration technique

demonstrated in Example 4.8 provides a more desirable method

for calculating the exact system performance.

4.4 Summary

This chapter reviewed the structural, stochastic, and

dynamic properties for the continuous model and extended the

same properties to the general CSF. New definitions were

given for k-out-of-n structures. Component relevance was

defined in terms of lower and upper boundary points. An

alternate representation for (x) was generalized along with

many other structural and stochastic properties. Although

the theory was sound, the continuous model resulted in an

infinite number of boundary points. This severely limited

the practical applications of the continuous model.

142

5. CUSTCSUR-DRXVEN MULTISTATE RELIABILITY MODEL

Binary reliability models were developed for their

mathematical simplicity. Unfortunately, they are a gross

oversimplification of reality for most systems. Continuous

reliability models represent reality better, but the amount

of computations renders the model ineffective except for the

most simple structures. As a compromise, most systems should

be analyzed with discrete multistate models.

To support this choice, an example is presented where

a customer could make a better decision by using the discrete

multistate model. Suppose the customer must choose between

two systems with the probability distributions given in Table

5.1. For System A, E[4(X)] = 2.06, Var[*(X)] = 0.7164, and

the system's performance distribution is q = (.91, .9, .2, .05) .

For System B, E[W(X)] = 3.24, Var[O(X)] = 1.5424, and the

performance distribution is q = (.99, .8, .75, .7) . The choice

between the two systems is not clear and will depend on how

the customer weighs the different performance measures.

Next, suppose that the same two system state probability

distributions are condensed into a binary model where system

states 0 through 1 are considered "bad" and states 2 through

4 are considered "good" (Table 5.2). For System A, E[O(X)]

= Pr[O(X) > 1] = .9 and Var[O(X)] = .09. For System B,

E[O(X)] = .8 and Var[O(X)] = .16. The binary model deludes

the customer by removing the customer's ambivalence for the

two systems.

143

Table 5.1 System State Probability
Distributions for Two Systems.

System State Pr[O(X) = k]
(k) System A System B

0 .09 .01

1 .01 .19

2 .7 .05

3 .15 .05

4 .05 .7

Table 5.2 Condensed System State
Probability Distributions for Two Systems.

System State Pr[O(X) = k]
(k) System A System B

0 .1 .2

1 .9 .8

Of course, the same argument can be used to promote the

continuous model over the multistate model. For example,

suppose a general CSF is defined by O(x) = xx 2 with mutually

independent components whose states are defined by the random

variables X1 and X2 - Uniform[0,3]. Then

3 3 3

Q(k) =Pr[*(x) k] = f -dx 2 dx--(3- k) dx

1 {1- k in3- k k ink k E (0,91

1 k =0.

9

E[O(X)] = fQ(k) dk =2.25 and Var[(X)] = 3.9375.

144

A logical multistate model to condense the continuous model

is shown in Table 5.3 with Pi, = Pr[Xi = j] = .25 for i=1,2

and j=0,1,2,3. When summarized in this way, the multistate

model results in E[(X)] = 2.25, Var[4(X)] = 7.1875, and q

= (.5625,.5,.375,.25,.1875,.1875,.0625,.0625,.0625). Thus,

some of the characteristics of the continuous system are lost

when the multistate model is used to represent the continuous

system.

Table 5.3 O(x) for the Multistate Model.

X2

0 1 2 3

0 0 0 0 0
x, 1 0 1 2 3

2 0 2 4 6
3 0 3 6 9

In theory, the continuous model is the best choice for

representing a continuous system; however, the continuous

model is not a viable option. When the structure function

is known explicitly (which is usually not the case), the

integration becomes unmanageable for all but the most trivial

structures. When the structure function is known implicitly,

an infinite number of boundary points are needed to describe

the system, to find the exact performance distribution, or

to derive system performance bounds. For these reasons, the

remainder of this chapter is dedicated to the development and

evaluation of the multistate model.

145

A useful model serves some practical end. The purpose

of the customer-driven multistate reliability model is to

evaluate substitute characteristics for reliability that

allow the customer to distinguish between systems. Since the

customer uses the output of the model to make a decision, the

model must be generated from the viewpoint of the customer.

Otherwise, the model will not supply the information that the

customer needs to make a choice.

Generating the model from the viewpoint of the customer

means involving the customer at every step in the development

and evaluation of the model. The following sections of this

chapter provide a detailed discussion of how the customer

participates in:

1. Defining the number of system and component states,

2. Estimating the component state probabilities,

3. Defining the system,

4. Estimating the system state probabilities, and

5. Determining the substitute characteristics for

reliability.

5.1 Defining the Number of System and Component States

Defining the number of system and component states is

referred to as state classification. The customer must

determine which performance measure will be used for state

classification. Once this is done, the procedure for state

classification depends on whether the selected performance

measure is discrete or continuous.

146

5.1.1 Discrete State Classification

State classification for a discrete performance measure

is straightforward. The discrete realizations of the chosen

performance measure are enumerated for the customer. Next,

the customer assigns a state to every realization according

to the level of detail needed for him to make a decision.

The number of distinct states specified by the customer

provides the state classification used in the multistate

model. The following example demonstrates this technique for

two different customers.

ZXAMPLZ 5.1 A fighter squadron consists of twenty

F-16 aircraft. Each aircraft can perform in three

roles: air-to-air, air-to-ground, and intercept.

Give two unique state classifications for a single

aircraft using the same performance measure.

Suppose the commander of the squadron chooses the

number of roles each aircraft currently supports

as his performance measure. The realizations of

the performance measure are 0, 1, 2, and 3 roles.

One commander could ask for the maximum amount of

detail, requiring four unique states for the

number of roles supported. A second commander

might only be interested in determining whether or

not an aircraft is capable of all three roles. In

this case, only two states are required to make

the distinction.

147

5.1.2 Continuous State Classification

State classification of a continuous performance measure

is slightly more complex. The range of possible values for

the chosen performance measure is shown to the customer. The

customer divides the continuous range into several distinct

regions as illustrated in Figure 5.1.

4- State 0 -4 - State 1 -4 - State M-+

Y1 Y2 YM y

Figure 5.1 State Classification.

Let X represent the discrete state and Y represent the

continuous performance measure. State 0 is assigned to X at

the lowest value of Y. Y is increased until the customer

reaches a threshold where a state change is desired (yj).

State 1 is assigned to X above Yl- Y is increased further

until another threshold is found (Y2), no new discrete states

are desired, or the continuous performance measure reaches

its target value. The procedure is summarized with the

following transformation:

0if -cc < Y :5Y

X 1 if YI < Y :5 Y2

if yM < Y <

148

The procedure can be discussed more technically if the

customer determines the thresholds between discrete states

(YlY2, . IY) through an economic analysis. This can be done

by comparing the cost of various countermeasures to the cost

associated with any deviation from the target value of the

continuous performance measure.

As shown in Figure 5.2, suppose that the continuous

performance measure, Y, has a target value designated by y*

and any value less than y* results in some loss to the

customer given by

L(y) = k (y* -y)2.

Suppose the customer has two countermeasures, costing L, and

L2, that return the performance measure to y*. The customer

will not execute the first countermeasure until Y results in

a loss of at least L1 , that is until y1 : y - The

customer will not take advantage of the second countermeasure

until Y2 : y -J . Assuming that L2 < L1 , then y1 < Y2-

L(Y) 4- State 0 -44- State 1 - +- State 2 -+

L2

Y1 Y2 y Y

Figure 5.2 State Classification With Loss Function.

149

Two countermeasures divide the continuous performance

measure into three distinct states and provide an economic

means to model how the customer determines the thresholds

between the discrete states (Y1, Y2)- More countermeasures

result in more discrete states. The following example

demonstrates this technique for a car battery that can be

recharged or replaced.

ZXAMPLZ 5.2 Suppose the performance measure for

a car battery is the voltage and the target value

is 12 volts. Let L(y) = 10 (12 - y) 2 . The two

countermeasures are to recharge the battery for

$10 or to replace the battery for $40. Divide the

continuous performance measure into three states.

L, = 40 and y1 12 - T4- = 10.

L 2 = 10 and Y2 : 12 - 10 = 11.

This gives the following three discrete states:

X = if 10 < Y : 10

x 1if 10 <Y :11

if 11 < Y 12.

At times, the customer may use more than one performance

measure to determine the discrete state. In this case, an

effort must be made to convert the performance measures to

some common measure. Again, this is often accomplished

through economic analysis.

150

5.2 2sti-ating Component State Probabilities

Component state probabilities can be estimated by

selecting a distribution for the time spent in each state and

estimating the parameter(s) for the distribution. The

desired system lifetime, t*, must be given by the customer.

Let T., be a random variable representing the time

component i stays in state j, i=1,2,...,n and j=1,2,...,M,.

Let t be the desired systfm lifetime provided by the

customer. Let X.(t) be the andom state of component i at

time t. Define the probability that component i is in state

j or higher at time t as

Qjj(t) = Pr[Xi(t) > i = Pr[Ti,, + T. 1 + ... + Tij > t]

Note that Q±0(t) = 1.0 and Qi,% (t) = 0.0.

Suppose that the distribution of T., is exponential with

parameter ki and that T,,, T 12, . .. , T1, are mutually independent

V i. Then the distribution of TiM' + TIM'., + + Ti, is the

convolucion of (Mi-j+l) exponential distributions each with

parameter ki which is an Erlang distribution with shape

parameter (Mi-j+l) and scale parameter k i . For Erlang (TX),
TI-1

R(t) = Pr[T > t] = 1 - F(t) = t exp(-Xt) Therefore,
k-o

Q.= (Xt')kexp(-Xi t) The probability of componentQij (t) = Ek
k-0

i being in state j at time t* can be found from

Pjj(t') = Pr[Xi(t*) = j] = Qij(t*) - Qi,j (t*)

151

for i=1,2,...,n and j=O,1,...,M i. Note that the parameter Xl

must be estimated for every component.

The same procedure can be used whenever the distribution

of the convolution is known. For example, if Til -

MI

Erlang(li,,Xj), then TiM, + Ti._ + ... + Tik - Erlang(ET jk i)
J-k

and if Til - Normal(g 1 9,aCr j) , then TiM, + TiM + ... + Tik -

Normal(I j, 1:uj) . Additional steps must be taken for the

normal case since the left-hand tail probabilities allow the

random variable for time to be negative. When the specific

distribution of the convolution is unknown, the form and

parameter(s) can be estimated by simulation.

Returning to the exponential case, the parameter X, can

be estimated by adapting a technique discussed by Kapur and

Lamberson [1977] for counting failures over a time interval.

Their technique was based on the situation with n test stands

where items are replaced as they fail and the test is stopped

at a predetermined time. Again, assume the distribution of

Tij is exponential with parameter ki for every j=l,2,...,M,.

When a component changes state, it can be replaced with a new

component at its best state or the test can be continued with

the degraded component.

Kapur and Lamberson [1977] derived the maximum

likelihood estimator for X. Their methodology is modified

to derive the maximum likelihood estimator for X,. Suppose

152

that n identical multistate components in state Mi are placed

on test. The test is stopped at a prespecified time t*.

When a component degrades from state Mi to state Mi-1, it

could be replaced with another component at its best state.

Since it was assumed that Tij are independent and identically

distributed for every j=l,2, . .. ,Mi, the degraded component is

left in place to await a state change from M.-l to M,-2. The

multistate component is replaced by a new component only when

the worst state is reached. Suppose that there are n test

stands designated by i=l,2,...,n. Let Xi be the number of

state changes on the i t h test stand and Y be the total number

of state changes observed during the test time t*. Then

nY - Xi .
i-i

If X, is distributed as a Poisson with parameter kit, then

Y is also Poisson with parameter nXit*. Assuming a constant

number of state changes Y = r, the likelihood function for

the distribution of Y can be written as

L (X,) = (n Xto) r exp (-n%,t)
r!

so that

in L = r ln (nkt ' - nXt " - n (r!)

To find the value of Xi where ln L is a maximum,

153

ln L r nts=0
dri -X t"7

so that = . As expected, the estimate of X. is thent"

number of state changes divided by the product of the number

of multistate components placed on test and the prespecified

test time.

A similar derivation can be done for the case where n

multistate components are placed on test that is stopped

after a prespecified number of state changes. In general,

the estimate of the parameter ki is given by the number of

state changes divided by the total time on test.

5.3 Defining the System

The equivalence class Sk was defined as the set of x e

S such that (x) = k, k=0,1,...,M. The boundary between Sk

and Sk l was defined by either the lower boundary points to

level k + 1 or the upper boundary points to level k. Recall

that the boundary points completely specify the system and

that they are defined by the customer.

For simple systems, the customer might be able to

provide all the required boundary points through a few

uncomplicated statements. For example, suppose the customer

wishes to model the four tires of an automobile and he

provides the following statements:

1. The system has four tires (components) with either

high tread wear (component state 0), moderate tread

154

wear (component state 1), or low tread wear (component

state 2).

2. The system state is worst (system state 0) if any

of the tires has high tread wear (component state 0).

3. Otherwise, the system state is the number of tires

(system states 0, 1, 2, 3 or 4) with low tread wear

(component state 2).

From this limited amount of information, the lower and upper

boundary points can be generated as shown in Table 5.4:

Table 5.4 Lower and Upper Boundary Points.

Equivalence Lower Boundary Upper Boundary
Class Points Points

1i1 0222 2022So 2202 2220

0222 2022 2202
$, 2111 2220 1112 1121

1211 2111

0222 2022 2202
1122 1212 1221 2220 1122 1212

S2 2112 2121 2211 1221 2112 2121

2211

2221 2212 2122 2221 2212 2122
S3 1222 1222

S4 2222

The lower (upper) boundary points are found by determining

when a decrease (increase) in the state of any one of the

components forces a decrease (increase) in the state of the

system. In practice, finding all boundary points can be a

very time consuming process.

The following algorithm was developed to help find the

155

lower boundary points. The idea is to find a single lower

boundary point to level M and to use the fact that all other

lower boundary points to level M must be efficient (not less

than or greater than) with respect to that point. Of course,

generating all efficient points (Algorithm Steps 3 and 6) is

difficult for any large problem. However, the customer's

interpretation of the system may allow the efficient points

to be found quickly. The method continues by finding a

single lower boundary point to level M-1 and stops after the

lower boundary points to level 1 have been found.

Algorithm for Finding Lower Boundary Points

1. Begin with the perfect component state vector, XM =

(M11M2 1...,M,). By Theorem 3.1, 3, e S.. So there must

be at least one lower boundary point to level M.

2. Find a lower boundary point to level M:

a. Check if xM is a lower boundary point.

b. If not, decrease the states of the components

in x. until a lower boundary point is found.

c. Label the lower boundary point to level M, Ll.

3. All other lower boundary points to level M must be

efficient with respect to L.I. Decrease the states of

some of the components in LM, and determine the minimal

increases in the states of the other components to

return the system to state M. Label these lower

boundary points consecutively, LM2, LM3, ... , LM,. where sM

is the number of lower boundary points to level M.

156

4. Set k = M - 1. The existence of at least one lower

boundary point to level k is guaranteed by the

definition of a general MCS.

5. Find a lower boundary point to level k:

a. Check if a lower boundary point from a higher

level is also a lower boundary point to level k.

b. If not, decrease the states of the components

in one of the lower boundary points to level k+l

until a lower boundary point to level k is found.

c. Label the lower boundary point to level k, Lkl.

6. All other lower boundary points to level k must be

efficient with respect to Lkl. Decrease the states of

some of the components in Lkl and determine the minimal

increases in the states of the other components to

return the system to state k. Label these lower

boundary points consecutively, Lk2, Lk3, ... , Lk,., where Sk

is the number of lower boundary points to level k.

7. Stop if k = 1. Otherwise, set k = k-i and return

to step 5.

A similar algorithm was developed to help find the upper

boundary points. Generating all efficient points (Algorithm

Steps 3 and 6) requires most of the calculations.

Algorithm for Finding Upper Boundary Points

1. Begin with the worst component state vector, x0 =

(0,0,...,0). By Theorem 3.1, z0 e So. So there must be

at least one upper boundary point to level 0.

157

2. Find an upper boundary point to level 0:

a. Check if x0 is an upper boundary point.

b. If not, increase the states of the components

in x0 until an upper boundary point is found.

c. Label the upper boundary point to level 0, U01.

3. All other upper boundary points to level 0 must be

efficient with respect to U01. Increase the states of

some of the components in U01 and determine the minimal

decreases in the states of the other components to

return the system to state 0. Label these upper

boundary points consecutively, U02, L031 ...,L0,,0 where so

is the number of upper boundary points to level 0.

4. Set k = 1. The existence of at least one upper

boundary point to level k is guaranteed by the

definition of a general MCS.

5. Find an upper boundary point to level k:

a. Check if an upper boundary point from a lower

level is also an upper boundary point to level k.

b. If not, increase the states of the components

in one of the upper boundary points to level k-i

until an upper boundary point to level k is found.

c. Label the upper boundary point to level k, Ukl.

6. All other upper boundary points to level k must be

efficient with respect to Ukl. Increase the states of

some of the components in Ukl and determine the minimal

decreases in the states of the other components to

158

return the system to state k. Label these upper

boundary points consecutively, Uk2, Uk3, . . .Uk, t where tk

is the number of upper boundary points to level k.

7. Stop if k = M. Otherwise, set k = k+l and return

to step 5.

Once generated, the lower or upper boundary points can

be used to form a structure function that is equivalent to

the structure function implicitly used by the customer to

define the system. Block and Savits [1982] generated the

structure function by decomposing the multistate system into

several binary structures, one for each level of the system.

The binary structures for level k are based on the lower or

upper boundary points to level k. Their technique was

expanded for the general MCS in section 3.1.5 and was

implemented in the computer program found in Appendix A.

The customer should not have to provide both the lower

and upper boundary points. With this in mind, the FORTRAN

computer program in Appendix C was written to convert the

lower boundary point to level k to upper boundary points to

level k-1, k=1,2,...,M and vice versa. If both sets of

boundary points are provided, the same program can be used

to make sure that no boundary points were missed. The amount

of calculations required for the conversion limits the

usefulness of the program for large problems.

5.4 Estimating System State Probabilities

Enumeration, inclusion-exclusion, pivoting, and modular

159

decomposition are four techniques commonly used to estimate

the system state probabilities. These techniques are studied

in section 3.2.4. The computer program given in Appendix A

implements the first three techniques directly and the fourth

technique indirectly. It has been tested for moderately

large problems of about 10 components, each with 4 states.

For larger problems, two options are available. If the

customer can decompose the problem into smaller problems with

an organizing structure, then one of the three techniques can

be used on each subproblem and on the organizing structure.

However, for multistate systems, modular decomposition

requires a system with some physical interpretation. This

is because functional block diagrams and fault trees cannot

be used as an aid for decomposition.

The second option for larger problems is to use the

performance bounds given in section 3.2.5. The bounds were

implemented by the FORTRAN program listed in Appendix B.

5.5 Determining Substitute Characteristics for Reliability

For binary models, reliability was defined as the

probability that the system functions. For multistate

models, there are different degrees of functioning so a new

measure of system performance is required. El-Neweihi et al.

(19781 suggested E([(X)] or the expected system state.

Butler [1979] promoted Pr[(X) > k], especially when the

customer was willing to divide system states into two

categories (k or < k). Griffith [1980] used E[u(O(X))] or

160

the expected utility of the system state.

Each of these definitions provides a measure of the

performance for multistate systems. However, it is the

customer that evaluates the system performance, so it must

be the customer that indicates the most appropriate

definition. If the customer wants to measure the center and

spread of the distribution, then E[(X)] and Var[(X)] seem

appropriate. If the customer can separate the system's

probability distribution into "good" and "bad" states, then

Pr[4(X) a k] works well. If the customer wants to evaluate

efficient performance distributions, then E[u((X))] allows

the customer to weigh the different possibilities.

The second objective of this research is to develop a

new substitute characteristic for multistate reliability

based on the expected loss to the customer. The new measure

should be sensitive to the pattern of degradation about a

desired system lifetime t*. In other words, the measure

should be a function of the number state reductions as well

as the time of each state change relative to t*.

To lend some credibility to this approach, the binary

model is discussed from this perspective. Suppose that T is

a random variable for the time to failure of the system. Let

the binary loss function be given by

L(t) J1 if 0 t ! to
L 0 if t > t.

161

Then the expected loss is

E-E[L(T)] L(tf(t)dt -(1)f(t)dt - 1 - R(t)

Therefore, for the binary model and the given loss function,

minimizing the expected loss is equivalent to maximizing the

reliability at the desired system lifetime.

For the multistate model, suppose that Tk are mutually

independent random variables for the time the system spends

in state k, k=1,2,...,M. Let the loss function with a fixed

rate of increase be given by the following:

0if tM > ti if tM+tM.l > totM < t"
L(t 1,t 2, ... t M) = if t +t M1 +tM-2 > to, tM +tM.1 < t

if tM+tM_1+... +tl < t

Using Theorem 3.10 twice, the expected loss is

U =E[L(T,,T2,...,Tm)

= Pr[L(T,T 2,...,Tm) t 1] + Pr[L(T,T 2,...,T) > 2] +

+ Pr[L(T,T 2, ... , TM) > M]

= {I - Pr[L(Tj,T 21 ... ,TM) < 0]) + [1 - Pr[L(Tj,T 21 ... ,TM) < 1])

+ ... + {1 - Pr[L(Tj,T 21 ... ,TM) < M-l]1

= {I -Pr[O(X(t')) M]} + {I - Pr[o(X(t*)) M-1]I +

+ {1 - Pr[O(X(t*)) 2t 1])

= M - QM(t') - Q 1 (t') - .- - Ql(t*)

= M - E[O(X(t'))].

162

Note that for M = 1, 9 = 1 - Q1 (t') = 1 - R(t') as was shown

for the binary model.

Next, consider the following loss function with a faster

rate of increase:

0 iftM >t
12 if tM+tM.1 > t',t M < to

L(t 1 1 t 2 , .. tM) = 2 if t +t -1+tM- 2 > tItM+tM_1< to

M, if tM+tM.1+. +tl < t

By conditional expectation, the expected loss is

= E[L(T,T 21 ... ,TM)]

M

= E[L(Tj,T2 , ... ,T,) I *(X(t*)) = k] - Pr[(X(t*)) =k
k-0

M

= E (M-k) 2 - Pr[(X(t*)) = k]
k-0

M M

M+ E k2 Pr[(X(tr)) = k]

k-0

= M2 (1) - 2M E((X(t*))] + {E[(X(t*))]} 2 + Var[#(X(t*))].

Note that for M = 1, 9 = 1 - 2R(t*) + {R(t') }2 + R(t*) {l-R(t*)

= 1 - R(t*) as was shown for the binary model.

If the system states are assigned arbitrarily, then all

substitute characteristics should be calculated with respect

to the chosen performance measure. Suppose the loss function

is given by L(y) = c(y" - y) 2 where y* is a target value and

y are discrete thresholds separating a continuous performance

163

measure. By conditional expectation, the expected loss is

= E[L(TI,T 21 ...,TM)]

= E[L(TI, T21 ... ,TM) I Y = y] " Pr(Y =y]
aly

= ay c(y*-y)2 . Pr[Y = y]

= c {(y*) 2E Pr[Y = y] - 2y*E y Pr[Y = y] + E y2 Pr[Y = y]}
all y all y all y

= c {.(y*) 2 (1) - 2 y" E[Y] + {E[Y])}2 + Var[Y]}.

For this case, the expected loss includes both the mean and

variance within a single performance measure.

The final loss function provides a new substitute

characteristic for reliability sensitive to the pattern of

degradation about a lifetime specified by the customer. It

assigns different weights to each state decrease. Suppose

that Tk are mutually independent random variables for the

time spent in system state k, k=l,2,...,M. Let the loss

function be given by

0 if t M > t"

cM(t'-tM) 2 if tM+tM_1 > t-, t M <5 t

M M

Cj(t0-E t1) 2 if tM+tM1+tM-2 > t.' t +tM_1 < t"L (t F't2' .."t) = - -1 J-j

M M

E c i(t -E t)2 if tM+tM1 +. .+tl --< t"
1-1 i-J

where ck is the cost for leaving system state k per squared

unit of time . Let Pk(t*) = Pr[0(X(t*)) = k]. Assuming that

Tk - exp(X) k=l,2,...,M, then from the convoluticon formulas

164

developed in section 5.2,

I ()t) M- k exp(-;Lt) k 1,2,. M
(M-R) !

P (t) M
1-t =Pk(t) k = 0.

k-i

By conditional expectation, the expected loss is

= E[L(T, T2,...,TM)]

M

= E E[L(TT 2, ... ,TM) I *(X(t*)) = k] • Pk(t*)
k-O

= E E C(to- TI) 21(X(t)) =k Pit)
k-0 J-k~l iJj

MM M 1
= El c4 (t*- T) 2 ET>t, TItPk(t)

k-O jak+1 i- li-k i-k+i

M M mM m= (to) 2 C9 2t" E CjE mTi Ti>t*, ETi_<t"
E cJ - 2t c

k-0 J.k+l j-k+ 1"j i-i-i i-j

M tm121 m <t+ cjE T T 1>t',T I < t" Pk(t)

J-k+i i-j i-J-I J

M

Using the fact that ETj - Erlang (M-j+l,X), the expected
i-j

loss can be determined using the computer program listed in

Appendix D. The user inputs t*, M, X, and ck for k=1, ...,M.

The program determines the theoretical expected loss and

checks the result by simulation.

If the customer chooses to use sr 3.ral conflicting

substitute characteristics for reliatility, then the problem

becomes a discrete multiobjective optimization problem. Many

165

techniques already exist for finding the best compromise

solution through interaction with the customer.

5.6 Summary

This chapter promoted the multistate model over both the

binary and continuous model. It emphasized the customer's

role in the development and evaluate of the multistate model.

The credibility and usefulness of the model are increased by

involving the customer at every step.

166

6. APPLICATIONS

This chapter demonstrates the development and evaluation

of the general multistate model for several problems. The

examples were chosen from such diverse areas as production

and assembly, military battle planning, and wearout analysis

to demonstrate the versatility and flexibility of the general

multistate model.

6.1 Production and Assembly Process

Suppose that the multistate model is used for the wire

flowshop shown in Figure 6.1 where a cable is created from

the following raw materials: red wire, blue wire, copper,

and plastic. The red wire is purchased bare and is covered

with plastic on coating machine 1. Next, the red and blue

wires are intertwined on one of two braiding machines. The

process has redundancy at this point since a single braider

causes production to backup. At the same time, copper bars

are worked to form a copper grounding wire on the expanding

machine. Next, the copper wire is covered with plastic on

Braider 1:
Red & Blue Wire

Coater 1: -
Red Wire/Plastic % Coater 3:

Braider 2: - Red, Blue, and
Red & Blue Wire - Copper Wire/

Plastic

Expander: -4 Coater 2:
Copper -4 Copper Wire/Plastic

Figure 6.1. Process Flow Diagram.

167

coating machine 2. During the final assembly, the braided

wires and the coated copper wire are covered with plastic on

coating machine 3 to form the desired cable.

The wire flowshop operates under the Just-In-Time

philosophy where the proper amount of raw materials are

delivered by each supplier every hour. The wire flowshop has

been designed so that if 100% of the raw materials needed for

an hour of production are delivered and if all machines

operate at an ideal production rate, then the system will

produce 100% of the desired amount of cable. Any deviation

in the hourly delivery of raw materials or in the production

efficiency of the expander or coaters will decrease the

flowshop's hourly output of cable. The only machines with

excess production capacity are the two braiders.

There are several measures commonly used to describe the

production rate of a system. Throughput is defined as the

number of complete assemblies that can be generated in a

fixed period of time. Average flow time is the average

length of time from the arrival of raw materials to the

completion of the finished product. Bottleneck flow rate is

the production rate at the system's bottleneck. Another

measure is the instantaneous production potential which is

a function of the percentage of raw materials delivered and

the production efficiency of the machines. The multistate

model will be used to evaluate the instantane us production

potential for the system.

168

Step 1: Define the Number of System and Component States.

Suppose that the wire flowshop operates in a cycle where

the four suppliers deliver raw materials to the plant every

hour. However, the suppliers do not consistently deliver the

entire amount of raw materials required for an hour of work.

For accounting purposes, the suppliers have agreed to adhere

to one of the following three options:

1. Deliver 100% of the materials for 1 hour of work,

2. Deliver 50% of the materials for 1 hour of work, or

3. Make no delivery.

This is an example that requires the state classification of

a discrete performance measure. As defined in Table 6.1, let

the variables xi, i=1,2,3,4 represent the percentage of red

wire, blue wire, copper, and plastic delivered for 1 hour of

work. The maximum number of states possible is 3 (Mi=2). If

the customer chooses to use the greatest amount of detail,

then the component states for the raw materials should be

described as shown in Table 6.2.

In addition, the machines do not always operate at peak

efficiency. The production rate of each machine continuously

degrades. Suppose that the customer does not want to model

the production rate as a continuous random variable. This

is an example that requires the state classification of a

continuous performance measure. Let the customer's quadratic

loss function be given by L(y) = $160(1-y)2 where y is a

percentage of the ideal production rate.

169

Table 6.1 Production Component Definitions.

Variable Definition

x, Percentage of Red Wire Delivered

X2 Percentage of Blue Wire Delivered

x3 Percentage of Copper Delivered

X 4 Percentage of Plastic Delivered

x's Coater 1 Percentage of Ideal Prod. Rate

X6 Coater 2 Percentage of Ideal Prod. Rate

X7 Coater 3 Percentage of Ideal Prod. Rate

xe Braider 1 Percentage of Ideal Prod. Rate

xg Braider 2 Percentage of Ideal Prod. Rate

x10 Expander Percentage of Ideal Prod. Rate

Table 6.2 Component States and Descriptions.
Variable L State Description

0 None of Order Delivered

X1I X2 X31 X4 1 50% of Order Delivered

2 100% of Order Delivered

0 0% of Ideal Production Rate

1 50% of Ideal Production Rate

X 5 , X 6 1 X 7 ,X 8 , X 91 X 1 0 2 75% of Ideal Production Rate

3 100% of Ideal Production Rate

Assume that the three countermeasures for restoring a

machine to the ideal production rate cost $10, $40, and $160.

The customer will never choose the $10 countermeasure until

y = .75 because L(y) < 10 for .75 < y 1.0. Therefore, the

customer makes no distinction for production rates in the

range (.75,1.00]. Likewise, the customer will not choose the

170

$40 countermeasure until y = .5 because L(y) < 40 for .5 <

y - 1.0. The $160 countermeasure is not implemented until

y - 0.0. In summary, 4 states (Mi=3) are needed to describe

production rates in the following ranges: [0.0,0.01,

(0.0,.50], (.50,.75], and (.75,1.0]. As defined in Table

6.1, the variables x5, x6, x7, x8 , xg, and x10 denote the

states of the three coaters, the two braiders, and the

expander, respectively. Table 6.2 gives the state

classification for each machine's percentage of the ideal

production rate.

The purpose of the model is to measure the distribution

for the instantaneous production potential of the system.

Now that the number of states are known for each of the

components, the largest number of system states can be found.

The system production rate will be affected by both the

percentage of raw materials delivered and the percentage of

the ideal production rate for each machine. The system can

only assume the states shown in Table 6.3 given the component

states listed in Table 6.2.

Table 6.3 System States and Descriptions.

State Description

0 0% of Ideal Production Potential

1 50% of Ideal Production Potential

2 75% of Ideal Production Potential

3 100% of Ideal Production Potential

171

Step 2: Estimate Component State Probabilities.

It is fairly simple to see how the component state

probabilities for xi, i=1,2,3,4 can be estimated from

previous experience with the suppliers. Data should be

collected on the percentage of the order received each hour

from each supplier. Suppose that this technique results in

the component state probabilities which are summarized in

Table 6.4.

Table 6.4 Component State Probabilities.

State
Variable

1 0 1 2

x_ .0100 .0400 .9500

X 2 .0100 .0300 .9600

X 3 .0100 .0100 .9800

X4 .0100 .0200 .9700 -

X 5 .0002 .0045 .0905 .9048

X 6 .0002 .0045 .0905 .9048

X7 .0002 .0045 .0905 .9048

Xe .0474 .1438 .3595 .4493

x_ .0474 .1438 .3595 .4493

'10 .0011 .0164 .1638 .8187

The component state probabilities for xi, i=5, 6, 7, 8, 9,10

can be estimated with the convolution technique introduced

in section 5.2. Let Til be a random variable representing

the time component i stays in state j, i=5,6,7,8,9,10 and

j=1,2,3. Suppose that Tij, i=5,6,7 and j=1,2,3 are mutually

independent exponential variables with X1 = .1. The

172

distribution of TiN1 + T i,%. + ... + Ti is the convolution of

(Mi-J+1) exponential distributions each with parameter Xi

which is an Erlang distribution with shape parameter (M1-j+l)

and scale parameter ki . In general, for Erlang (r,k),

R(t) = Pr[T > t] = 1 - F(t) = _(Xt) k exp(-Xt)
kkO

Therefore, Q±j(t) = k For i=5,t6,e7

k-O.Fo 5,,

Q13 (1) = e - ' = .9048,

Q2(1) = e - ' + .1 e- -' = .9953,

Q±1(1) = e-' + .1 e-' + (.1) 1 = .9998, and21

Qj0(l) = 1.0. Thus, the component state probabilities are

P10(1) = QO(1) - Qnj(1) = .0002, Pn1 (1) = Qi-(1) Q,2(1) =

.0045, P 2 (1) = Q12(1) - Q13(1) = .0905, and P1 3 (1) = Q13 (1) -

Q14 (l) = .9048.

Suppose that T,,, i=8,9 and j=1,2,3 are mutually

independent exponential variables with X. = .8. Using the

same procedure, the component state probabilities are Pj0 (1)

= .0474, Pil(1) = .1438, P12 (1) = .3595, and P, 3 (1) = .4493.

Suppose that Tij, i=10 and j=1,2,3 are mutually

independent exponential variables with X. = .2. Using the

same procedure, the component state probabilities are P10(1)

= .0011, Pil(1) = .0164, P12(1) = .1638, and P1 3 (1) = .8187.

Each of the component state probability distributions are

listed in Table 6.4.

173

Step 3: Define the System.

The customer can define the system by specifying which

component state vectors belong to each equivalence class.

This system has 34 • 46 = 331,776 different component state

vectors. Fortunately, it is not necessary to determine the

equivalence class for every x e S. The customer only needs

to specify when a decrease (increase) in the state of any one

of the n components forces a decrease (increase) in the state

of the system. For this specific problem, the customer needs

to specify when a decrease in the percentage of raw materials

delivered or in the percentage of the ideal production rates

of the machines forces a decrease in the production potential

of the system.

Suppose the customer states that any decrease in the

percentage of raw materials delivered causes a corresponding

decrease in the system's production potential. Also, assume

that the customer states that any decrease in the percentage

of the ideal production rate of the coaters or the enlarger

causes a corresponding decrease in the system's production

potential. Finally, suppose that the customer considers the

parallel operation of the two braiders to be additive. For

example, a 50% production rate on both braiders satisfies a

100% production potential for the system as will a 100%

production rate on a single braider.

Beginning with system state 3 and the perfect component

state vector, zm = (2,2,2,2,3,3,3,3,3,3). To be consistent,

174

the customer will say that xM is not a lower boundary point

to level 3 since x8 (Braider 1) and x9 (Braider 2) can be

decreased without leaving system state 3. The customer has

implied that only xe and x9 can be changed without leaving

system state 3. Since the customer considers the percentage

of the production rates of the braiders to be additive, the

lower boundary points to level 3 are (2,2,2,2,3,3,3,3,0,3),

(2,2,2,2,3,3,3,0,3,3), and (2,2,2,2,3,3,3,1,1,3).

The procedure is similar for the lower boundary points

to level 2. Start by looking for the lowest possible states

for the variables x1 ,x 2,x 3 ,x 4,x 51 x6,x 7 , and x 10 so that the

system is in state 2. From the customer's interpretation of

the system, each of the variables must be in state 2. Any

further decrease in these variables results in a decrease in

the production potential of the system. Again, using the

customer's additive sense of the variables x8 and xg, the

lower boundary points to level 2 are (2,2,2,2,2,2,2,2,0,2),

(2,2,2,2,2,2,2,0,2,2), and (2,2,2,2,2,2,2,1,1,2). Similar

logic gives the following lower boundary points to level 1:

(1, 1, 1,1, 1,1, 1,1, 0, 1), and (1,I1,I1,I1,1,1,1, 0,I1,1) . The upper

boundary points to level k can also be determined in this

manner. All the lower boundary points and the upper boundary

points to level k are given in Table 6.5. Note that the

entire system of 331,776 component state vectors is

summarized with just 8 lower boundary points and 29 upper

boundary points!

175

Table 6.5 Lower and Upper Boundary Points.

Level Lower Boundary Upper Boundary
Points Points

0222333333
2022333333
2202333333
2220333333

0 None 2222033333
2222303333
2222330333
2222333003
2222333330

1222333333
2122333333
2212333333
2221333333

1111111101 2222133333
1111111011 2222313333

2222331333
2222333103
2222333013
2222333331

1222333333
2122333333
2212333333
2221333333

2222222022 2222233333

2222222112 22223233332222332333

2222333203
2222333023
2222333332

2222333303
3 2222333033 None

2222333113

Step 4: Estimate System State Probabilities.

The FORTRAN program called MAIN in Appendix A implements

several techniques for calculating the exact probability

distribution of a general MCS. It includes routines for

enumeration, inclusion-exclusion, and pivotal decomposition

176

using either the lower or the upper boundary points. Each

technique requires the following information from the

customer to completely describe the system:

1. The customer's determination of the number of

distinctive system and component states,

2. The probability distribution of each component, and

3. The customer's definition of the system in terms of

either the lower or the upper boundary points.

This information was collected in the previous three steps.

The program outputs the exact probability distribution of the

system. For the production and assembly process, the program

produced the results given in Table 6.6.

Table 6.6 System State Probabilities.

k Pr[(X)) = k]

0 .043191

1 .130323

2 .327007

3 .499479

Step 5: Determine Substitute Characteristics for Reliability.

The final step is to evaluate substitute characteristics

for reliability that summarize the system state probabilities

for the customer. Evaluating the expected system state

results in E[(X)] = 2.282774. Does this mean that we can

interpolate to find an expected production potential for the

system of .282774(1.0-.75)+.75 = .8207? The answer is no!

Making the calculation directly, the expected production

177

potential is (.130323) (.5) + (.327007) (.75) + (.499479) (1)

= .8099. Thus, it makes no sense to evaluate E[0(X)] and

Var [0(X)] because of the arbitrary way the system states were

defined (i.e. no system state was used for a 25% production

potential because it was not possible).

One solution is to redefine the system states from 0 to

4 so that E[(X)] = 3.239597 and interpolation gives the

proper expected production potential of .239597(1.0-.75)+.75

= .8099. A better approach is to evaluate the substitute

characteristics directly in terms of the customer's real

variable of interest. In the case of the production and

assembly process, the substitute characteristics are computed

in terms of Y, the random variable for the instantaneous

production potential of the system. The customer may choose

to use one or several of the performance measures listed in

Table 6.7 for evaluating the production process.

Table 6.7 Substitute Characteristics.

Substitute Calculated Value

Characteristic

ElY] 0.809896

Var[Y] 0.060070

Pr[Y 2t .5] 0.956809

Pr[Y Z .75] 0.826486

Pr[Y > 1.0] 0.499479

E[L(Y)] $153.94

The calculations for each substitute characteristic are

obvious with the exception of the expected loss, which

178

requires the customer's loss f'irction due to variation from

the system's ideal production rate. Let L(y)=$1600(1-y) 2

where y is a percentage of the ideal production rate. Then

the expected loss = E[L(Y)] = f L(y) f(y) dy. A discrete
a1 y

approximation of f(y) is given in Table 6.6. Therefore, S

- 0(.499479) + 100(.327007) + 400(.130323) + 1600(.043191)

= $153.94 every hour. Since the loss function is quadratic,

E[L(Y)] = $1600011 - 2gy + gy 2 + FY2] = $16000[1 -2(.809896)

+ (.809896)2 + .060070] = $153.94 which agrees with the

previous approximation for expected loss.

6.2 Military Battle Planning

Suppose the Army wishes to evaluate the "reliability"

of a battle plan. The plan includes two attack groups, each

supported by a separate artillery unit. Each attack group

has the 1jtential for accomplishing up to 2 out of 4 mission

objectives without effective artillery support. With

effective artillery support, the potential of each attack

group is doubled so that a single attack group can now

accomplish all 4 mission objectives. Suppose that the 4

mission objectives can be assigned to any attack group. The

goal of the multistate model is to evaluate how effectively

the battle groups accomplish the mission objectives.

Step 1: Define the Number of System and Component States.

Let the variables x, and x2 represent the effectiveness

of the artillery support for attack groups 1 and 2,

179

respectively. From the description, it is only necessary to

distinguish between two levels of artillery support:

effective and not effective. Let the variables x3 and x4

represent the number of objectives accomplished by attack

groups 1 and 2, respectively. From the description, each

attack group can accomplish 0, 1, or 2 mission objectives

without artillery support. Using the largest number of

states, x1, x2, x3, and x4 are defined in Tables 6.8 and 6.9.

Table 6.8 Battle Plan Component Definitions.

Variable Definition

x_ Artillery Effectiveness for Attack Group 1

X 2 Artillery Effectiveness for Attack Group 2

x3 Objectives Accomplished by Attack Group 1

X 4 Objectives Accomplished by Attack Group 2

Table 6.9 Component States and Descriptions.

Variable State Description

0 Artillery Not Effective
XI, X2
X1_ 1 Artillery Effective

0 No Objectives Accomplished

1 One Objective AccomplishedX3, x4

2 Two Objectives Accomplished

The model will estimate the probability distribution for

the number of mission objectives accomplished by the two

attack groups. It is possible to accomplish 0, 1, 2 , 3, or

4 mission objectives which are the system states important

to the Army (Table 6.10).

180

Table 6.10 System States and Descriptions.

State Description

0 No Objectives Accomplished

1 One Objective Accomplished

2 Two Objectives Accomplished

3 Three Objectives Accomplished

4 Four Objectives Accomplished

Step 2: Estimate Component State Probabilities.

After the distinct states are defined by the Army, the

probability distributions of the artillery units and the

attack groups must be estimated. Suppose that Table 6.11

contains estimates derived from training exercises performed

by each artillery unit and each attack group.

Table 6.11 Component State Probabilities.

State
Variable

x_ .3 .7 -

X2 .2 .8 -

X3 .01 .89 .1

X4 .05 .8 .15

Step 3: Define the System.

The battle plan example has 22 • 32 = 36 different

component state vectors. The problem size was intentionally

restricted so that the entire component state space could be

separated into equivalence classes for the reader as shown

in Table 6.12.

181

Table 6.12 Equivalence Classes.

k No. of X E Sk
Vectors

0 4 0000 0100 1000 1100

1 4 0001 0010 0110 1001

2 9 0002 0011 0020 0101 01201002 1010 1101 1110 1

3 4 0012 0021 0111 1011

4 15 0022 0102 0112 0121 0122
1012 1020 1021 1022 1102
1111 1112 1120 1121 1122

It is not necessary to determine the equivalence class

for every component state vector. As shown before, the

customer must only specify when a decrease in the state of

any one of the n components forces a decrease in the state

of the system. For this problem, the Army must specify when

a decrease in the combat effectiveness of the artillery units

or in the number of objectives accomplished by the attack

groups forces a decrease in the total number of objectives

accomplished.

Using the algorithm found in section 5.3, start with M

= 2 and the perfect component state vector, xm = (1,1,2,2) .

From the Army's description, x. is not a lower boundary point

to level 4 since x2 and x4 (artillery unit 2 and attack group

2) can be removed from the battle without leaving system

state 4. However, this change results in x' = (1,0,2,0)

which is a lower boundary point to levels 3 and 4 since

*(0,0,2,0) = 2 and *(1,0,1,0) = 2. The symmetric nature of

182

this problem implies that X2 = (0,1,0,2) is also a lower

boundary point to levels 3 and 4. All other lower boundary

points to level 4 must be efficient with respect to xI and

x2. The analysis continues by arbitrarily choosing xI.

The next step is to systematically decrease the states

of some of the components in x1 and to determine the minimal

increases in the states of the other components to return the

system to state 4. For example, if x, is decreased to state

0 in x, then two different options will return the system to

state 4 in a minimal fashion: x3 = (0,0,2,2) and x4 =

(0,1,2,1). Both vectors are lower boundary points to level

4. The symmetric nature of this problem implies that x5 =

(1,0,1,2) is also a lower boundary point.

Continuing with x 1 , if x3 is decreased to state 1, then

two different options return the system to state 4: x6 =

(1,1,1,1) and x* = (1,0,1,2). x6 is new a lower boundary

points to level 4 and x* was found earlier. At this point,

the decrease of more than one of the components in x1 needs

to be explored as well as decreasing the components by more

than one state. The remaining details of this procedure are

left to the reader.

Similar logic gives the lower boundary points to levels

3, 2, and 1 as well as the upper boundary points to levels

3, 2, 1, and 0. All the lower and upper boundary points to

level k are listed in Table 6.13. Either set of boundary

points are enough to completely describe the system.

183

Table 6.13 Lower and Upper Boundary Points.

Level Lower Boundary Upper Boundary
Points Points

0 - 1100
1 0001 0010 1100 1001 0110

0002 0011 0020 1110 1101 1002
2 0101 1010 0120 0011

1110 1101 1011
3 0012 0021 0102 1002 0120 0111

3 0111 1011 1020 0021 0012

0022 0102 0121
1012 1020 1111

Once the lower boundary points have been found, an

alternate representation of the customer's structure function

can be written. Using the formulas found in section 3.1.5:

1(y) = Max{y 41, Y31},

02(y) = Max{y 42, Y31Y41 , Y32, Y21Y41, y11y31 },

*3(y) = Maxfy 31Y42, Y32Y41, Y21Y42, Y21Y31Y41, Y11Y31Y41, Y11Y 32 },

*4(y) = Maxfy 32Y42, Y21Y42, Y21Y32Y41, Y11Y31Y42, YnIY 32, Y11Y21Y31Y41 },

and 0(x) = 0'(y) + *2 (y) + 03 (y) + 04 (y) .

Suppose x = (0,1,2,0) . Then y = (Y11,Y 21,Y 31, Y32, Y41,Y 42) =

(0,1,1,1,0,0). Therefore, 1 (y)=l, 02 (y)=l, * 3 (y)=0, *4 (y)=0,

and 0(x) = 2. This agrees with the value given in Table

6.12. It can also be quickly verified that the derived

structure function is equivalent to the supposedly unknown

structure function implicitly being used by the Army:

0(x) = Min{ 4, x 3 2x + x42x}

184

As a final check, the boundary point conversion program

found in Appendix C was run to verify that all lower and

upper boundary points were found. The lower boundary points

to level k generated the upper boundary points to level k-i

for k=1,2,3 and vice versa. Therefore, none of the boundary

points were missed.

Step 4: Estimate System State Probabilities.

For the battle plan example, the information from Tables

6.9, 6.10, 6.11, and 6.13 was supplied to the FORTRAN program

in Appendix A. The enumeration, inclusion-exclusion, and

pivotal decomposition techniques were exercised with both the

upper and lower boundary points. The program always produced

the probability distribution for the system which is listed

in Table 6.14. Note that the program results would have been

inconsistent if some of the boundary points had been missed.

Table 6.14 System State Probabilities.

k Pr[O(X) = k]

0 0.00050

1 0.01495

2 0.08207

3 0.28337

4 0.61911

Step 5: Determine Substitute Characteristics for Reliability.

Each of the substitute characteristics for "reliability"

provides a measure of the effectiveness of the attack plan.

Since the systems states correspond directly to the number

185

of objectives accomplished, the system performance can be

measured in terms of either the system state, O(X), or the

number of mission objectives accomplished, Y.

The Army can use any or all of the performance measures

listed in Table 6.15 for evaluating the effectiveness of the

battle plan. The center and spread of the distribution is

indicated by E[0(X)] = 3.50564 and Var[0(X)] = 0.50981. The

Army should attempt to increase E[O(X)] while decreasing

Var ((X)]. If the Army can label the accomplishment of 2 or

more objectives as "good", then Pr[(X) _> 2] = 0.98455 is an

appropriate measure of system performance. The Army should

attempt to increase this probability. Finally, the Army will

strive to minimize E[L(O(X))].

Table 6.15 Substitute Characteristics.

Substitute Characteristic Calculated Value

E[O(X)] = E(Y] 3.50564

Var[O(X)] = Var [Y] 0.50981

Pr[(X) > 1] = Pr[Y > 1] 0.99950

Pr[O(X) > 2] = Pr[Y > 2] 0.98455

Pr[O(X) > 3] = Pr[Y > 3] 0.90248

Pr[O(X) a 4] - Pr[Y > 4] 0.61911

E[L(O(X))] = E[L(Y)] $5322.60

The calculations for each substitute characteristic are

obvious with the exception of the expected loss. Suppose

that the Army's discrete loss function due to any deviation

from accomplishing all 4 objectives is

186

$200,000 if y=0

$50,000 if y=l

L(y) = $20,000 if y-2

$10,000 if y=3

$0 if y=4

where y is the number of objectives accomplished. Then the

4

expected loss $ = E[L(Y)] = L(y) p(y) where p(y) is the
y-0

probability mass function given in Table 6.14. Therefore,

9= 0(.61911) + 10000(.28337) + 20000(.08207) + 50000(.01495)

+ 200000(.0005) = $5322.60.

6.3 Tire Tread Wear

Suppose the manufacturer of a car tire wishes to

evaluate the wear of two newly developed tires: brand X and

brand Y. Each brand of tire is mounted on the right-front,

left-front, right-rear, and left-rear positions of identical

test vehicles. All tires start with 8/32" of tread. The

test vehicles are driven on a track and the amount of tread

left on each tire is recorded to the nearest 1/32" at the end

of a 60,000 mile test. The multistate model will be used to

compare the wear of the two brands of tire.

Step 1: Define the Number of System and Component States.

Let the variables x1, x2, x3, and x4 represent the tread

left on the right-front, left-front, right-rear, and left-

187

rear tires, respectively. Since the data was collected to

the nearest 1/32", it is possible to use 9 states for each

variable. The manufacturer does not recommend driving on

tires unless more than 2/32" of tread remains. They also

decide that a breakdown of tread wear into 2 additional equal

categories will be sufficient to compare the two brands.

These choices produce the definitions and descriptions for

x1, x2, x3, and x4 given in Tables 6.16 and 6.17.

Table 6.16 Tire Tread Wear Component Definitions.

Variable Definition

x1 Tread Remaining on Right-Front Tire

X2 Tread Remaining on Left-Front Tire-

x3 Tread Remaining on Right-Rear Tire

X4 Tread Remaining on Left-Rear Tire

Table 6.17 Component States and Descriptions.

Variable State Description

0 High Tread Wear
0/32" - 2/32" Tread Remains

1 Moderate Tread Wear
x21X31'X4 3/32" - 5/32" Tread Remains

2 Low Tread Wear
6/32" - 8/32" Tread Remains

The manufacturer insists that the car is in the worst

state (system state 0) if any of the tires has high tread

wear (component state 0). Otherwise, the manufacturer wants

to distinguish between various system states according to the

number of tires with low tread wear (component state 2). The

last condition will require an additional 5 system states,

188

producing the six system states shown in Table 6.18.

Table 6.18 System States and Descriptions.

State Description

0 Any Tire With High Tread Wear

1 No Tires With Low Tread Wear and
No Tires With High Tread Wear

(All Tires With Moderate Tread Wear)

2 One Tire With Low Tread Wear and
No Tires With High Tread Wear

Two Tires With Low Tread Wear and
No Tires With High Tread Wear

4 Three Tires With Low Tread Wear and
No Tires With High Tread Wear

5 Four Tires With Low Tread Wear and
No Tires With High Tread Wear

Step 2: Estimate Component State Probabilities.

The probability distribution of every component must be

estimated for each brand. As in the first example, this can

be done with the convolution technique. This procedure will

not be demonstrated again. Suppose that the component state

probabilities for brand X and brand Y were estimated and are

given in Tables 6.19 and 6.20.

Table 6.19 Brand X Component State Probabilities.

State
Variable !

0 1 j 2

x1 .03 .87 .1

X2 .06 .89 .05

x3 .01 .94 .05

X4 .03 .88 .09

189

Table 6.20 Brand Y Component State Probabilities.

Variable
State

0 1 2

x_ .05 .83 .12

X2 .06 .86 .08

X 3 .04 .89 .07

X4 .08 .82 .1

Step 3: Define the System.

The tire tread wear example has 34 = 81 component state

vectors. It is not necessary to determine the equivalence

class for every z e S. The manufacturer need only say when

a decrease in the state of a tire forces a decrease in the

number of tires with low tread wear. Since this is how the

manufacturer defined the system states, each x in the k"h

equivalence class will be both a lower boundary point and an

upper boundary point to level k.

Using the algorithm for finding all lower boundary

points, the highest system state is M = 5 and the perfect

component state vector is X = (2,2,2,2). xM, is a lower

boundary point to level 5. So L51 = (2,2,2,2). No other

lower boundary points to level 5 can exist since no other

component state vectors are efficient with respect to xM.

Start searching for the lower boundary points to level

4 by decreasing the states of the components of L51 until a

lower boundary point is found. Reducing x, by one in L.,

results in the first lower boundary point to level 4, L41 =

190

(1,2,2,2). Using the notion that the other lower boundary

points to level 4 must be efficient with respect to L41 gives

L42 = (2,1,2,2), L43 = (2,2,1,2), and L44 = (2,2,2,1).

Next, search for lower boundary points to level 3 by

decreasing the states of the components of L41 until a lower

boundary point is found. Reducing x2 by one in L41 results

in the first lower boundary point to level 3, L31 =

(1,1,2,2). Using the notion that the other lower boundary

points to level 3 must be efficient with respect to L31

results in L32 = (1,2,1,2), L33 = (1,2,2,1), L34 = (2,1,1,2),

L35 = (2,1,2,1), and L36 = (2,2,1,1).

The first lower boundary point to level 2 is found by

reducing x3 by one in L31 so that L21 = (1,1,1,2) . The

remaining efficient points are L22 (1,1,2,1), L23 =

(1,2,1,1), and L24 = (2,1,1,1). Reducing x4 by one in L2 ,

results in the only lower boundary point to level 1, L11 =

(1,1,1,1). The algorithm ends since lower boundary points

are not defined for level 0. Similar logic gives the upper

boundary points to levels 0, 1, 2, 3, and 4. All lower and

upper boundary points are listed in Table 6.21.

The boundary point conversion program in Appendix C was

used to make sure that no boundary points were missed. The

lower boundary points to level k generated the upper boundary

points to level k-1, k=1,2,...,M and the upper boundary

points to level k generated the lower boundary points to

level k+l, k=0,1,...,M-l.

191

Table 6.21 Lower and Upper Boundary Points.

Level Lower Boundary Upper Boundary
Points Points

0 0222 2022 2202
2220

i 0222 2022 2202
2220 1111

1112 1121 1211 0222 2022 2202
2 2111 2220 1112 11211211 2111

0222 2022 2202
1122 1212 1221 2220 1122 1212
2112 2121 2211 1221 2112 2121

2211

2221 2212 2122 2221 2212 2122
4_1222 1222

5 2222

Step 4: Estimate System State Probabilities.

For the tire wear example, the information collected for

brand X and brand Y was supplied to the FORTRAN program in

Appendix A. Each technique in the program gave the system

state probabilities listed in Table 6.22.

Table 6.22 System State Probabilities By Brand.

Pr[*(X) =k
k

Brand X Brand Y

0 .124398 .211302

1 .640501 .520931

2 .209179 .228274

3 .024660 .036832

4 .001239 .002593

5 .000023 .000067

192

Step 5: Determine Substitute Characteristics for Reliability.

The manufacturer can use any or all of the performance

measures listed in Table 6.23 for evaluating the wear of the

two brands of tires. Neither brand is superior with respect

Table 6.23 Substitute Characteristics By Brand.

Substitute Calculated Value
Characteristic

Brand X Brand Y

E[(X)] 1.137910 1.098683

Var[(X)] 0.424717 0.601575

Pr[(X) a 1] 0.875602 0.788697

Pr[O(X) a 2] 0.235101 0.267766

Pr[(X) > 3] 0.025922 0.039492

Pr[O(X) a 4] 0.001262 0.002660

Pr[(X) > 5] 0.000023 0.000067

E[L(4(X))] $153.36 $148.85

to every performance measure: Brand X has a higher expected

system state and lower variability; Brand Y has a better

performance distribution for all but Pr[(X) > 1]. The

calculation of expected loss requires the specification of

the manufacturer's loss function. Suppose that the

manufacturer gives the following loss function:

$200 if *(X(t-)) = 0

$190 if *(X(t)) =1

$30 if *(X(t)) =2
L(0(X(t)) - $20 if *(X(t)) =3

$10 if *(X(t)) =4

$0 if *(X(t)) =5

193

which reflects that most customers want to purchase new tires

once system state 1 is reached. From this loss function, the

expected losses for Brand X and Brand Y are $153.36 and

$148.85, respectively.

6.4 Summary

The customer was involved in the generation of the

multistate model. The production example described the state

classification of performance measures and the convolution

technique for estimating component state probabilities. The

battle plan example demonstrated the algorithm for finding

boundary points and the alternate representation of * (x).
The tire tread wear example explained how to use the model

for comparing two systems and how different conclusions could

be reached by considering different performance measures.

194

7. FURTHZR RESEARCH, SUNKWRY, AND CONCLUSIONS

This chapter provides several promising directions for

further research, gives a summary of the main contributions

shown in this dissertation, and presents concluding remarks

regarding the importance of these new results.

7.1 Directions for Further Research

There were several topics related to the multistate

reliability model that were not completely finalized. The

most promising directions for further research are discussed

in the next four sections.

7.1.1 Fuzzy Sets

In traditional set theory, sets are a well-defined

collection of elements. In other words, an element either

is or is not a member of the set. In fuzzy set theory, sets

are an ill-defined collection of elements. A membership

function is used to indicate the degree of membership for

each element in the fuzzy set.

Park [1987] defined a fuzzy set A in X with the set of

ordered pairs, {(x, gA(x))}. The real value in the interval

(0,1] given by the membership function, gA(x), represents the

degree of membership for each point in X. X is an explicit

support set usually taken to be Rk. For example, suppose A

is the fuzzy set of "good" students. Let X = (XL, XA,,XV, XV)

represent a student's percentile rank on language, auditory,

visual, and quantitative tests. Each student's degree of

membership in A depends on the specific membership function

195

used to determine what is meant by a "good" student. Suppose

that the school board uses the following membership function

to determine a student's potential:

gA(z) = .2XL + .3XA + .1xv + .4x,.

Larger values of gA(x) indicate a higher degree of membership

for each student in the fuzzy set of "good" students.

A fuzzy number is a fuzzy set defined on the real axis.

Kaleva [1986] described the performance of the components in

a binary model with fuzzy numbers and used some existing

properties of fuzzy numbers to determine the performance of

the system in terms of another fuzzy number.

Two ideas for introducing fuzzy sets to the multistate

reliability model are given next. Up to this point, each

component state vector was a member of a single equivalence

class based on the system state. Therefore, equivalence

classes relied on traditional set theory. Fuzzy sets could

be applied by using a membership function to determine the

degree of membership for x in each equivalence class. This

would allow the customer to be subjective about the state of

the system for each x. Second, the term "reliable" could be

thought of as a fuzzy set. A membership function derived

from the customer would be used to determine a component's

degree of membership in the set of "reliable" components by

combining substitute characteristics for reliability.

7.1.2 Reliability Polynomial

The definition of the reliability function for the

196

binary model was given in section 2.2.2. If the components

are mutually independent, r = r(p) where p = (P1,P2,-..,P,)

and pi = Pr[X1 = 1] for i=1,2,...,n. For the special case

when p, = P2 = -.. = Pn = P, the reliability function is

called the reliability polynomial and is denoted by r(p).

Barlow and Proschan [1981] wrote the reliability polynomial

for a k-out-of-n system as

n

Thus, the reliability polynomial for a series (n-out-of-n)

system is r(p) = pn and for a parallel (1-out-of-n) system is

r(p) = 1 - (1 -p)n.

A more general form of the reliability polynomial for

the binary model is shown next. Again, the independent

components have the same reliability, p. Let Cfk designate

the set of component state vectors with k components working

and (n - k) components failed. The cardinality of Cn,k,

denoted by I C,kI 'is (n (n-! " Let Ak denote the set

of component state vectors in Cn,k that cause the system to

work. Let lAkj denote the cardinality of Ak. Barlow and

Iyer [1988] wrote the general reliability polynomial as

n

r(p) = E lAk I pk (1 -p)n-k (7.1)
k-0

Yao (1991] transformed Equation (7.1) to express the

reliability polynomial directly in polynomial form:

197

r (p) ED, pk (7.2)
k.O

where Dk E Y J A± I I Cn i, k - -1 -
'sto

ZXAIWLI 7.1 For a binary system of 3 independent

components, each with reliability p, determine the

reliability polynomial for the structure given in

Figure 7.1 directly from the structure function

and using the Equations (7.1) and (7.2).

Figure 7.1 Structure for Example 7.1.

*(x) = X~ 1 -1-X 2) (1- X3))

= X, (-(1-X 2 -X 3 + X2X3))

= X, (X2 + X3 -X 2X3) =- X1x2 + X1X3 - X1X2X3.

r (p) = E [$(x)]I = 2p2 _ p3.

C3,0 = ((0,0,0) 1 A0 = 0

C3,1 = ((1, 0,0), (0, 1,0), (0, 0, 1) 1A, = 0

C3,2{=(1, 1,0), (1, 0,1), (0, 1,1)1 A2 = (11,10),1 (1, 0,1)}

C3, 3 = f (1,11) A3 = (11,11)1

Using Equation (7.1),

r(p) = 0p0(1-p)3 + Op(1-p)2 + 2p 2 (1-p) + p3 (1_p) 0

= 2p 2 2 2p3 + p3

= 2p2 p3

198

Using Equation (7.2),

Do = 0, D, = 0 + 0 = 0,

D2 = 0 + 0 + 2 () (-1)° -2, and

D3 = 0 + 0 + 2 (1)(-1) + 1 (0)(-)° =-

r(p) = 0 + Op + 2p 2 - p3.

Essentially, this method groups together the component state

vectors which have the same number of working components.

Some preliminary work has been done on an equivalent

derivation for the multistate reliability model based on the

multinomial distribution. Paralleling the binary model, the

components must be mutually independent with an identical

probability distribution, p = (p0,pl, ... PM) Thus, all

components have the same number of states. Let the random

variables XJ, J=O,1,...,M, represent the number of components

in state J. The probability of x0 components in state 0, x,

components in state 1, ... , and xM components in state M is

given by the following multinomial distribution:

/n 0 x x,

X0,fX r .. , xM Pa° Pi ..- PM

where x 0+x 1 +...+xM = n and po+pi+...+pM = 1. This method

groups together the component state vectors which have the

same number of components in each of the states.

Let C,,,,X, designate the set of component state

vectors with xi components in state i, i=l,2,...,M, and x0 =

199

n-(xl+x2+...+xM) components in state 0. The cardinality of

Cn, x,, .,...., denoted by I Cn, x, X"..., X. I , is determined from

n) n! . Let A,'denote the setX~eXjj •... XM denot the. .. setxx ...

of component state vectors in C, x. x... x, that cause the

system to be in state k. Let A XNI denote the

cardinality of Ax Then the multinomial which gives

the system's probability distribution is

K-I

r(k;p) =Ax " P Pi ... PMX,. a.. 0 P "" P X.

for system states k=0,1,2, ...,N. When M = N = 1, the

multinomial in Equation (7.3) reduces to Equation (7.1).

ZXAMPLZ 7.2 For a multistate system of 3 mutually

independent components, each with probability

distribution p = (PoP1,P2), determine the

multinomial for 4(x) = Min{x,x 2,x3} using lower

boundary points and Equation (7.3).

The lower boundary point to level 2 is (2,2,2) and

the lower boundary point to level 1 is (1,1,1).

Therefore, Q2 = Q12Q22Q32 and Q, = Q11Q21Q31.

By subtracting,

P2 = Q2 - 0 = (P2) 3,

P1 = Q1 - Q2= (P1 + P2) 3 - (P2)3

= 3(pl) (P2)2 + 3(p) 2(p2) + (p1)3

PO = 1 - (P2) 3 _ (Pl + p2)3

200

C3,0 ,0 = ((0,0,0)1

C3 ,0. 1 = {(0,0,2), (0,2,0), (2,0,0)1

C3, 0 , 2 = ((0,2,2), (2,0,2), (2,2,0)}

C 3 , 0 , 3 = ((2,2,2) }

C3, 1, 0 = (0,0,1) , (0,1 ,0) , (1,0,0)}

C3, 1, 1 = ((0,1,2) , (0,2, 1) , (1,0,2) , (1,2,0), (2,0,1), (2, 1,0)}

C3 1,2 = (1,2,2), (2,1,2), (2, 2,1))

C3 ,2 , 0 = ((0,1,1), (1,0,1), (1,1,0)1

C3 , 2 1 = (1,1,2), (1,2,1), (2,1,1)1 and

C 3 , 3 , 0 ((1, 1, 1)) .

IA431 1, IA .21 = 3, IA', 1 = 3, and IA' 0I = 1.

Using Equation (7.3),

r(2,p) = (P2) 3,

r(1,p) = 3(pl) (P 2) 2 + 3(pl) 2(P 2) + (p 1) 3, and

r(0,p) = 1 - r(2;p) - r(l:p) which agrees with the

results found with the lower boundary points.

Additional research is required to write the multinomial in

terms of the performance distribution and to use the boundary

k
points to determine X"

7.1.3 Expected Loss

In section 5.5, expected loss was used to introduce an

innovative new substitute characteristic for reliability.

A loss function was developed which was sensitive to the

pattern of degradation about the desired system lifetime, t'.

Although the expected loss was discussed with respect to the

201

system states, the expected loss can also be found for each

individual component. Additional research is required to

determine the expected loss of the system directly from the

expected loss of the components.

Some preliminary results have been derived for the

multistate model when the loss function has a fixed rate of

increase. Suppose that the loss function for the system is

given by L = M - *(x) for *(x) = 0,1,...,M and that the loss

function for component i is given by Li = Mi - xi for x i =

0, 1, ...,Mi. Let 6 and 51 represent the expected loss for the

system and component i, respectively. It can be easily shown

that 9=M - E[O(X)] and j = Mi - E[Xl].

n

Suppose a series structure is defined as *,(x) = Hxi.
i-i

n n

Then E[O.] = HE[X] = fl (Mi - (Mi-E[Xl])) = H (M-R)
i-i jim1 i-i

n

Therefore, M - = U. - M-H (Mi-9) . Suppose that a
i-i

n

parallel structure is defined as P(x) = M-H (Mi-x i) . Then
i-i

n n

E[O] = M-1 (Mi-E[X,]) = M-jH . Therefore, M -E[OP] = Sp

n

= " For the special case of the binary model, when

n n

MI = M2 = ... = M = 1, U. = 1- I (1 -9) and SP = HR.
i-I i=i

ZXAMWLZ 7.3 Suppose that n=2, M,=3, M2=2, M=6, and

202

= x1x2 as shown in Table 7.1.

Table 7.1 *.(x) for Example 7.3.

X2

0 1 2

0 0 0 0
x 1 1 0 1 2

2 0 2 4
3 0 3 6

Suppose that the probability distributions for the

mutually independent components are:

P10 = .1 P11 = .2 P 12 = .3 P13
= .4

P20 = .1 P21 = .7 P22 = .2

Show that if L i =M i - x i for i=1,2 and L, = M - (x),

then , = M - (Ml - 11) (M2 - $2)-

E(X] = 0(.l)+1(.2)+2(.3)+3(.4) = 2 and 1, = M, - E[XI)

= 3 - 2 = 1. E[X2] = 0(.1)+1(.7)+2(.2) = 1.1 and g2 =

M2 - E(X 21 = 2 - 1.1 = .9. Thus 9, = 6 - (3 - 1) (2 - .9)

= 3.8.

Checking this result directly from the system,

9, = E[L] = 6(.19)+5(.14)+4(.25)+3(.28)+2(.06) = 3.8.

ZXAMPLZ 7.4 Suppose that n=2, M1=3, M2=2, M=6, and

P(x) = 6 - (3 - xj) (2 - x 2) as shown in Table 7.2.

Table 7.2 *P(x) for Example 7.4.

X2

0 1 2

0 0 3 6
x, 1 2 4 6

2 4 5 6
3 6 6 6

203

Suppose that the probability distributions for the

mutually independent components are the same as in

the previous example. Show that if Li = Mi - xi

for i=1,2 and LP = M - *(x), then 9 = 9,51-

As before, E[XI] = 2, 1 = 1, E[X2] = 1.1, and 92 = .9.

Therefore, 9 = (1) (.9) = 0.9.

Checking this result directly from the system,

p= E(L] = 6(.01)+4(.02)+3(.07)+2(.17)+l(.21) = 0.9.

Other results have been derived for the multistate model

when the loss function has a faster rate of increase. Let

the loss function for the system be given by L = (M - O(x))
2

for O(z) = 0,1,...,M and the loss function for component i

be given by Li = (Mi - xi) 2 for xi = 0,1,...,Mi. It can be

easily shown that f = (M - E[0(X)]) 2 + Var[i(X)] and that SP

= (Mi - E[Xj]) 2 + Var[Xi].

No relationship between the expected loss of the

components and the expected loss of the system has been

n

discovered for a series structure defined by 0.(x) = fixi
i-1

using the quadratic loss functions. However, a relationship

has been found for a parallel structure defined by OP(x) =

n

M-f (Mi-xi) . Rearranging terab and squaring both sides
i-i

n

gives (M - 0P)2 __ f (Mi-x1) 2 " Taking the expected value this
i-I

n

equation results in P =]V.
i-I

204

ZXALZ 7.5 For the problem given in Example 7.4

and the probability distributions given in Example

7.3, show that if Li = (M, - xj) 2 for i=1,2 and LP

= (M - *(Z))2, then 51 = (Mi - E[Xi]) 2 + VarrX] for

i=1,2 and 9P =

E[Xl] = 1 and Var[X1] = 1. So 91 = (3 - 2)2 + 1 = 2

which checks with St = 9(.1)+4(.2)+1(.3) = 2.

E[X2] = 1.1 and Var[X2] = .29. So $2 = (2 - 1.1)2 + .29

- 1.1 which checks with S2 = 4(.l)+l(.7) = 1.1.

= 36(.01)+16(.02)+9(.07)+4(.17)+l(.21) =2.2. Thus,

9P = 2.2 = (2) (1.1) = U1 2 -

Further research is needed to find the relationship

between the expected loss of the components and the expected

loss of the system for the loss function proposed in section

5.5 that is sensitive to the pattern of degradation about the

desired system lifetime, t*.

7.1.4 Reliability Estimation

Life testing is the process of finding point estimates

or confidence intervals for the parameter(s) of a chosen

failure distribution. Kapur and Lamberson [1977] discussed

the choice of the exponential distribution,

f(t;X) = X exp(-Xt) t > 0, X > 0

as an appropriate failure model. The maximum likelihood

estimator for X is given by -r where r is the total number
-T

of failures and T is the total time on test. If n items are

205

tested for a prespecified time (t*) and failed items are

replaced, then T = nt*. For this time truncated test, the

100(1-a)% two-sided confidence interval for X is

2 2
X21W2,2r X 2,2(r+1)

Note that the 100(1-a)% one-sided upper confidence interval

for X is still valid when no failures occur.

Kapur and Lamberson [1977] used the invariance property

of maximum likelihood estimators to derive the point estimate

If(t) = exp(-Xt)

for the reliability function and the 100(1-a)% two-sided

confidence interval

exp { (-t) 2 R(t) exp t -. /2.,
ex 2T If 2T

for the reliability function when t Z 0.

Section 5.2 contained some preliminary work for testing

multistate components by counting the number of state changes

in a given time interval (t') and replacing a component upon

entering state 0. Suppose that Til is the random variable

for the time component i spends in state j, i=1,2,...,n and

J=I,2,...,M i. Suppose that Tij - exponential with parameter

X, for every j=1,2,...,Mi. For a time truncated test, the

maximum likelihood estimator for Xi was shown to be Xi = r

nt*

where r is the number of state changes and n is the number

of multistate components on test. The method is valid since

206

the memoryless property of the exponential distribution

renews each component after every state change.

Confidence intervals for Xi must still be developed.

However, the invariance property of maximum likelihood

estimators can be used to derive point estimates for the

probability distribution. Let Pij (t*) = Pr [Xi (t*) = j] .

Paralleling the work in section 5.5, when Tij - exp(X,) for

j=1,2,.. .,Mi, then

(Xt)' J exp(-Xit) - 1,2,...
(M i - j) (

P 1 ~(t) =(7.4)Pij (t) -,
1 - EPi(to) j = 0.

J-i

Substituting X in Equation (7.4) produces maximum likelihood

estimators (MLEs) for the probability distribution.

ZXAMPLZ 7.6 Suppose that 6 identical multistate

components are placed on test for 10 hours and 15

state changes are observed. Assuming T., - exp(;L)

for j=1,2,3, determine the MLEs for the

probability distribution of component i.

7 = 15/60 = .25, Mi = 3, and t" = 10.

Using Equation (7.4),

P3(10) - (2.5)0 exp(-2.5) = 0.0821,
0!

2(10)13 (2.5)1 exp(-2.5) - 0.2052,

207

3, (10) = (2.5)2 exp(-2.5) = 0.2565, and
2!

Pi0(10) = 1 - P13 (10) - P12(10) - Pil(10) = 0.4562.

The MLEs for the probability distribution produce MLEs

for the substitute characteristics for reliability.

ZXRWLZ 7.7 Use the MLEs found in Example 7.6 to

produce MLEs for E[Xi], Var[Xi], and E[L].

'[Xi] = 1(.2565)+2(.2052)+3(.0821) = .9132,

,[X'] = 1(.2565)+4(.2052)+9(.0821) = 1.8162,

O2 = 1.8162 - (.9132)2 = .9883.

Using cl = 50, c2 = 5, C 3 = 1, and the last lost

function given in section 5.5, t[L] = $573.68.

Further research is necessary to relax the assumptions

made for the distribution of Tij.

7.2 Summary

This section provides a summary of the contributions

given in the dissertation. A literature review was conducted

to study the existing structural, stochastic, and dynamic

properties of the binary, multistate, and continuous models.

Structural, stochastic, and dynamic properties were

developed for the general multistate reliability model after

the model was modified with a new definition for component

relevance. New structural properties included a definition

for a k-out-of-n structure, a definition for a general MCS,

bounds on the structure function, alternate representations

208

for *(x), proofs for many duality theorems, and a measure of

structural importance. New stochastic properties included

a generalization for reliability importance, a program that

determines the exact probability distribution for the system,

a program that calculates performance bounds for more complex

systems, and a program that converts boundary points.

The continuous model was expanded to allow a different

range of states for the components and the system. New

structural properties included a definition for a k-out-of-n

structure, a definition for a general CSF, an alternate

represeirtation for *(x), proofs for many duality theorems,

and a measure of structural importance. New stochastic and

dynamic properties were not developed because the continuous

model resulted in an infinite number of boundary points.

Next, the voice of the customer was incorporated into

the general multistate reliability model. A method for state

classification was developed to allow the customer to define

the number of system and component states. A technique using

the convolution of random variables was devised to estimate

the component state probabilities. A procedure for obtaining

boundary points from the customer was designed to determine

the customer's definition of the system. A computer program

was written to estimate the system state probabilities. The

expected loss was introduced as a substitute characteristic

for reliability and a computer program was written to find

the expected loss.

209

Several applications were given to demonstrate the

customer-driven reliability model. Finally, some preliminary

results were presented for fuzzy sets, the reliability

polynomial, expected loss, and reliability estimation.

7.3 Conclusions

The binary model is the most commonly used reliability

model. However, most components and systems do not progress

directly from a working state to a failed state. Instead,

the state degrades through a continuum of values which is

better represented by a continuous model. Unfortunately, the

continuous model results in an overwhelming number of

calculations, making the model impractical for all but the

simplest structures.

The general multistate model is a sensible compromise

between the continuous and binary models. The model provides

more information than the binary model and requires less

calculations than the continuous model. Allowing a different

number of states for each component and the system makes the

model more appealing to the customer. Involving the customer

at every step in the development and evaluation of the

multistate model increases the creaibility and usefulness of

the model.

210

LITERATURE CITED

General References:

Clarke, A. and Disney, R. (1970), Probability and Random
Processes for Engineers and Scientists, John Wiley and
Sons: New York, NY.

Gitlow, H., Gitlow, S., Oppenheim, A., and Oppenheim, R.
(1989), Tools and Methods for the Improvement of
Quality, Irwin: Boston, MA.

Binary Model:

Barlow, R. E. and Iyer, S. (1988), "Computational Complexity
of Coherent Systems and the Reliability Polynomial,"
Probability in the Engineering and Informational
Sciences, 2, 461-469.

Barlow, R. E. and Proschan, F. (1981), Statistical Theory of
Reliability and Life Testing Probability Models, TO
BEGIN WITH: Silver Spring, MD.

Birnbaum, Z. W., Esary, J. D. and Saunders, S. C. (1961),
"Multi-Component Systems and Structures and Their
Reliability," Technometrics, 3, 1, 55-77.

Birnbaum, Z. W. and Esary, J. D. (1965), "Modules of
Coherent Binary Systems," SIAM Journal on Applied
Mathematics, 13, 2, 444-462.

Birnbaum, Z. W. (1969), "On the Importance of Different
Components in a Multi-Component System," In
Multivariate Analysis II, P. R. Krishnaiah, editor,
Academic Press: New York, NY, 581-592.

Bodin, L. D. (1970), "Approximations to System Reliability
Using a Modular Decomposition," Technometrics, 12, 2,
335-344.

Esary, J. D. and Proschan, F. (1963a), "Coherent Structures
of Non-Identical Components," Technometrics, 5, 2, 191-
209.

Esary, J. D. and Proschan, F. (1963b), "Relationship
Between the System Failure Rate and Component
Failure Rate," Technometrics, 5, 2, 183-189.

211

Esary, J. D. and Proschan, F. (1970), "A Reliability Bound
for Systems of Maintained, Interdependent Components,"
Journal of the American Statistical Society, 65, 329 -
338.

Esary, J. D., Marshall, A. W., and Proschan, F. (1970),
"Some Reliability Applications of the Hazard
Transform," SIAM Journal on Applied Mathematics, 18, 4,
849-860.

Feller, W. (1968), An Introduction to Probability Theory and
Its Applications, 3rd edition, John Wiley and Sons:
New York, NY.

Kaleva, 0. (1986), "Fuzzy Performance of a Coherent System,"
Journal of Mathematical Analysis and Applications,"
117, 1, 234-246.

Kapur, K. C. and Lamberson, L. R. (1977), Reliability in
EnQineerinQ, John Wiley and Sons: New York, NY.

Park, K. S. (1987), "Fuzzy Set Apportionment of System
Reliability," IEEE Transactions on Reliability, R-36,
1, 129-132.

Ross, S. M. (1989), Introduction To Probability Models,
4th edition, Academic Press: San Diego, CA.

Yao, Z. (1991), "Introduction to the Theory of General-
System Reliability Functions," Submitted for
publication in IEEE Transactions on Reliability.

Multistate Model:

Abouammoh, A. M. and Al-Kadi, M. A. (1991), "Component
Relevancy in Multistate Reliability Models," IEEE
Transactions on Reliability, 40, 3, 370-374.

Barlow, R. E. and Wu, A. S. (1978), "Coherent Systems With
Multi-State Components," Mathematics of Operations
Research, 3, 4, 275-281.

Block, H. W. and Savits, T. H. (1982), "A Decomposition For
Multistate Monotone Systems," Journal of Applied
Probability, 19, 2, 391-402.

Borges, W. D. S. and Rodrigues, F. W. (1983), "An Axiomatic
Characterization of Multistate Coherent Structures,"
Mathematics of Operations Research, 8, 3, 435-438.

212

Butler, D. A. (1979), "A Complete Importance Ranking For
Components of Binary Coherent Systems, With Extensions
To Multi-State Systems," Naval Research Logistics
Quarterly, 26, 4, 565-578.

Butler, D. (1982), "Bounding the Reliability of Multistate
Systems," Operations Research, 30, 3, 530-544.

El-Neweihi, E., Proschan, F. and Sethuraman, J. (1978),
"Multistate Coherent Systems," Journal of Applied
Probability, 15, 4, 675-688.

Fardis, M. N. and Cornell, C. A. (1981), "Analysis of
Coherent Multistate Systems," IEEE Transactions on
Reliability, R-30, 2, 117-122.

Griffith, W. S. (1980), "Multistate Reliability Models,"
Journal of Applied Probability, 17, 3, 735-744.

Hudson, J. C. (1981), The Structure and Reliability of
Multistate Systems with Multistate Components, Ph.D.
Dissertation, Department of Industrial Engineering,
Wayne State University, Detroit, Michigan.

Hudson, J. C. and Kapur, K. C. (1983a), "Modules in Coherent
Multistate Systems," IEEE Transactions on Reliability,
R-32, 2, 183-185.

Hudson, J. C. and Kapur, K. C. (1983b), "Reliability
Analysis for Multistate Systems with Multistate
Components," IIE Transactions, 15, 2, 127-135.

Hudson, J. C. and Kapur, K. C. (1985), "Reliability Bounds
for Systems with Multistate Components," Operations
Research, 33, 1, 153-160.

Iyer, S. (1989), "Exact Reliability Computation for
Multistate Coherent Systems," For the SQC Unit, Indian
Statistical Institute, Bombay, India 400 020.

Janan, X. (1985), "On Multistate Systems Analysis," IEEE
Transactions on Reliability, R-34, 4, 329-337.

Natvig, B. (1982), "Two Suggestions of How To Define a
Multistate Coherent System," Advances in Applied
Probability, 14, 2, 434-455.

Ohi, F. and Nishida T. (1984), "On Multistate Coherent
Systems," IEEE Transactions on Reliability, R-33, 4,
284-287.

213

Ross, S. M. (1979), "Multivalued State Component Systems,"
The Annals of Probability, 7, 2, 379-383.

Wood, A. P. (1985), "Multistate Block Diagrams and Fault
Trees," IEEE Transactions on Reliability, R-34, 3, 236-
240.

Continuous Model:

Baxter, L. A. (1984), "Continuum Structures I," Journal of
Applied Probability, 21, 4, 802-815.

Baxter, L. A. (1986), "Continuum Structures II,"
Mathematical Proceedings of the Cambridge
Philosophical Society," 99, 2, 331-338.

Baxter, L. A. and Kim, C. (1986), "Bounding The Stochastic
Performance Of Continuum Structure Functions. I,"
Journal of Applied Probability, 23, 3, 660-669.

Block, H. W. and Savits, T. H. (1984), "Continuous
Multistate Structure Functions," Operations Research,
32, 3, 703-714.

Montero, J., Tejada, J. and YAfez, J. (1990), "Structural
Properties of Continuum Systems," European Journal of
Operational Research, 45, 2-3, 231-240.

214

BIBLIOGRAPHY

Abraham, J. A. (1979), "An Improved Algorithm for Network
Reliability," IEEE Transactions on Reliability, R-28,
1, 58-61.

Almassy, G. (1979), "Limits of Models in Reliability
Engineering," Proceedings of the 1979 Annual
Reliability and Maintainability Symposium, 364-367.

Aven, T. (1985), "Reliability Evaluation of Multistate
Systems with Multistate Components," IEEE Transactions
On Reliability, R-34, 5, 473-479.

Bossche, A. (1987), "Calculation of Critical Importance for
Multi-State Components," IEEE Transactions On
Reliability, R-36, 2, 247-249.

Burdick, G. R., Fussell, J. B., Rasmuson, F. M. and Wilson,
J. R. (1977), "Phased Mission Analysis: A Review of New
Developments and An Application," IEEE Transactions on
Reliability, R-26, 1, 43-49.

Cafaro, G., Corsi F. and Vacca F. (1986), "Multistate Markov
Models and Structural Properties of the Transition-Rate
Matrix," IEEE Transactions On Reliability, R-35, 2,
192-200.

Doulliez, P. and Jamoulle (1972), "Transportation Networks
With Random Arc Capacities," revue francaise d'
Automaticrue Informaticrue Recherche Operationnelle, 6
anne6, v-3, Novembre, 45-59.

Ebrahimi, N. (1984), "Multistate Reliability Models," Naval
Research Logistics Quarterly, 31, 4, 671-680.

El-Neweihi, E. (1980), "Multistate Reliability Models: A
Survey," Air Force Office of Scientific Research
(AFOSR) Technical Report No. 76-30501, University of
Illinois, Department of Mathematics, Champaign-Urbana,
IL.

Elsayed, E. A. and Zebib, A. (1979), "A Reparable Multistate
Device," IEEE Transactions on Reliability, R-28, 1, 81-
82.

Esary, J. D. and Marshall, A. W. (1970), "Coherent Life
Functions," SIAM Journal on Applied Mathematics, 18, 4,
810-814.

215

Funnemark, E. and Natvig, B. (1985), "Bounds for the
Availabilities In A Fixed Interval For Multistate
Monotone Systems," Advances in Applied Probability, 17,
3, 638-665.

Garg, R. C. and Kumar, A. (1977), "A Complex System with Two
Types of Failure & Repair," IEEE Transactions on
Reliability, R-26, 4, 299-300.

Golomb, S. W. (1971), "Mathematical Models: Uses and
Limitations," IEEE Transactions on Reliability, R-20,
3, 130-131.

Gopol, K., Aggarwal, K. K. and Gupta, J. S. (1978),
"Reliability Analysis of Multistate Device Networks,"
IEEE Transactions on Reliability, R-27, 3, 233-235.

Hatoyama, Y. (1979), "Reliability Analysis of 3-State
Systems," IEEE Transactions on Reliability, R-28, 5,
386-393.

Hjort, N. L., Natvig, B. and Funnemark, E. (1985), "The
Association In Time Of A Markov Process With
Application To Multistate Reliability Theory," Journal
of Aplied Probability, 22, 2, 473-479.

Hwang, F. K. and Yao, Y. C. (1989), "Multistate
Consecutively-Connected Systems," IEEE Transactions on
Reliability, R-38, 4, 472-474.

Iyer, R. K. and Downs, T. (1978), "A Moment Approach to
Evaluation and Optimization of Complex System
Reliability," IEEE Transactions on Reliability, R-27,
3, 226-229.

Kapur, K. C. (1975), "Optimization in Design by
Reliability," AIIE Transactions, 7, 2, 185-192.

Kapur, K. C. (1988), "Product and Process Design
Optimization by Design of Experiments Using Taguchi
Methods," SAE Technical Paper Series No. 880821,
Earthmoving Industry Conference, Peoria, Illinois.

Kapur, K. C. (1991), "Quality Improvement Through Robust
Design," To be presented at the 1991 International
Industrial Engineering Conference, May 20-22, Detroit,
Michigan.

Kapur, P. K. and Kapoor, K. R. (1978), "Stochastic Behaviour
of Some 2-Unit Redundant Systems," IEEE Transactions on
Reliability, R-27, 5, 382-385.

216

Karpinski J. (1986), "A Multistate System Under an
Inspection and Review Policy," IEEE Transactions on
Reliability, R-35, 1, 76-77.

Mohamed, A. (1990), Multicriteri Optimization Applied to
Multistate Repairable Components, Ph.D. Dissertation,
School Of Industrial Engineering, The University of
Oklahoma, Norman, Oklahoma.

Montero, J. (1991), "General Reliability Bounds: Some
Comments," Submitted to the Journal of the Operational
Research Society.

Moore, E. F. and Shannon, C. E. (1956), "Reliable Circuits
Using Less Reliable Relays," Journal of the Franklin
Institute, 262, 3 & 4, 191-208 & 281-298.

Natvig, B. and Streller, A. (1984), "The Steady-State
Behaviour Of Multistate Monotone Systems," Journal of
Applied Probability, 21, 4, 826-835.

Pedar, A and Sarma, V. V. S. (1981), "Phased-Mission
Analysis for Evaluating the Effectiveness of Aerospace
Computing-Systems," IEEE Transactions on Reliability,
R-30, 5, 429-437.

Proctor, C. L. II and Proctor, C. L. (1977), "Multistate-
Time Dependent System Modeling," Proceedings of the
1977 Annual Reliability and Maintainability Symposium,
401-403.

Sakawa, M. (1978), "Muitiobjective Optimization by the
Surrogate Worth Trade-Off Method," IEEE Transactions on
Reliability, R-27, 5, 311-314.

Satyanarayana, A. and Chang, M. K. (1983), "Network
Reliability and the Factoring Theorem," Networks, 13,
107-120.

Shao, J. and Kapur, K. C. (1989), "Multilevel Modular
Decomposition for Multistate Systems", Proceedings of
the 1989 Annual Reliability and Maintainability
Symposium, 102-107.

Singh, B. and Proctor, C. L. (1976), "Reliability Analysis
of Multistate Device Networks," Proceeding of the 1976
Annual Reliability and Maintainability Symposium, 31-
35.

217

Appendix A. Ixact System Performance Program

*************************** ****** *** ****** ** * *

* WRITTEN BY: Ralph Boedigheimer *

* LAST UPDATE: 7 Oct 91 *
*** *

** ****** ********** ****************** *** ******** *** ***** ** *

* This is the main program that runs all other programs *

* and calculates reliability for a multistate system. *

program main

* VARIABLE DESCRIPTIONS: *

* answer - variable for interactive feedback *
************* ** ***

real answer

* The main menu is presented to the user. One of the *

* given options must be selected. *
********** **

5 answer=0.0
do while ((answer.lt.1.0).or.(answer.gt.10.0).or.
+(amod(answer,1.0).ne.0.0))

print *,'ENTER SELECTION FROM THE FOLLOWING MENU:'
print *,' 1. INPUT A NEW SYSTEM DESCRIPTION.'
print *,' 2. DISPLAY THE CURRENT SYSTEM.'
print *,' 3. USE ENUMERATION.'
print *,' 4. USE LOWER BOUNDARY POINTS.'
print *,' 5. USE UPPER BOUNDARY POINTS.'
print *, 6. USE DECOMPOSITION (LBPs) - AVEN.'
print *,' 7. USE DECOMPOSITION (UBPs) - AVEN.'
print *,' 8. USE DECOMPOSITION (LBPs) - IYER.'
print *' 9. USE DECOMPOSITION (UBPs) - IYER.'
print 10. EXIT THE PROGRAM.'
read *,answer
print *

enddo
** ** ***** ** **** ***********************

* The program routes to the appropriate subroutine and *
* then returns to the main menu. *

go to (10,20,30,40,50,60,70,80,90,100),answer
10 call system

go to 5
20 call display

go to 5
30 call enum

go to 5
40 call lower

go to 5

218

50 call upper
go to 5

60 call decomplow
go to 5

70 call decomphi
go to 5

80 call declower
go to 5

90 call decupper
go to 5

100 stop
end

* This program is used to enter a description of the *
* multistate system being studied. *
** ************ **

subroutine system

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t(k) - number of upper boundary points to level k *
* ubp(i,j,k) - the ith element of the jth upper *

boundary point to level k *
* prob(i,j) - probability of component i in state j *
*** ***

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100)
real prob (100,0:100)

* The required information is interactively entered. *

print *,'ENTER THE MAXIMUM SYSTEM STATE (1-100).'
read *,msys
print *
print *,'ENTER THE NUMBER OF COMPONENTS (1-100).'
read *,ncomp
print *
do 10 i=l,ncomp

print *,'ENTER THE MAXIMUM STATE OF COMPONENT',i,
+ ' (1-100) .'

read *,m(i)
10 continue

do 20 i=(ncomp+l),100

219

m (i) =0
20 continue

m(0)=0
do 40 i=1,ncomp
print *
do 30 J=0,m(i)
print *,'FOR COMPONENT',i,'ENTER THE 1,

+ 'PROBABILITY OF BEING IN STATE',j
read *, prob (i, j)

30 continue
40 continue

print *
do 60 k=1,msys

print *,'ENTER THE NUMBER OF LOWER BOUNDARY',
+ I POINTS TO LEVEL',k,'(1-l00).'

read *,s(k)
print *
do 50 j=1,s(k)

print *,'FOR LEVEL',k,'ENTER LOWER BOUNDARY',
+ I POINT #Ili

read *, (lbp (i, j,k) Ii=1, ncomp)
50 continue

print*
60 continue

do 80 k=0,msys-1
print *,'ENTER THE NUMBER OF UPPER BOUNDARY',

+ ' POINTS TO LEVEL',k,' (1-100).'
read *,t(k)
print *
do 70 j=1,t(k)

print *,'FOR LEVEL',k,'ENTER UPPER BOUNDARY',
+ I POINT #'li

read *, (ubp(i,j,k),i=1,ncomp)
70 continue

print*
80 continue

return
end

This program displays the description of the system.

subroutine display

*VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system*
* ncomp - the number of components in the system*
* m(i) - the maximum state of component i*
* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower*
* boundary point to level k*

220

* t(k) - number of upper boundary points to level k *

* ubp(i,j,k) -the ith element of the jth upper*
* boundary point to level k

* prob(i,j) -probability of component i in state j *

common msys,ncomp,m(0:100),s(100),lbp(100, 100,100),
t(0: 100),ubp (100, 100, 0: 100) ,prob (100, 0: 100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t (0: 100) ,ubp (100,100,0:100)
real prob (100,0:100)

*The current system is displayed for the user.

print *,'Maximum System State:',msys
print *
print *,'Number of Components:',ncomp
print *
print *,'Component Max State Vector: (',

+ (m(i),i=1,ncomp),')'
print *
do 10 i=1,ncomp
print 99, 'Component' ,i, 'Probabilities:',

+ (prob (i, j) ,J=0, m(i))
10 continue

print *
do 30 k=1,msys
print *,'System Level',k
do 20 j=1,s(k)'
print *,'Lower Boundary Point #',j,': (',

+ (lbp(i,j,k),i=1,ncomp),')'
20 continue

print*
30 continue

print *
do 50 k=0,msys-1
print *,'System Level',k
do 40.J=1,t(k)
print *,'Upper Boundary Point #',j,': V',

+ (ubp(i,j,k),i=1,ncomp),')'
40 continue

print*
50 continue

print *
99 format(a9,lx,i2,lx,a14,2x,100(f5.3,lx))

return
end

" This program enumerates all possible component state *
" vectors and determines the probability of the vector. *
" Then it determines the system state for the vector and*

221

* tallies the overall probability for each systerr state.*

subroutine enum
*** ***

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* philower - the system state with lower boundary pts.*
* phiupper - the system state with upper boundary pts.*
* nvec - total number of component state vectors *

* divider - variable used to change base *

* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t(k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *
* x(i) - the ith element of a component state vector *

* answer - variable for interactive feedback *
* prob(i,j) - probability of component i in state j *

* pvec - probability of a component state vector *

* plev(k) - probability of system being in state k *
********** ************************ ************************

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,I00,0:100),prob(I00,0:I00)
integer msys,ncomp,philower,phiupper,nvec,divider,

+m(0:100),s(100),lbp(100,100,l00),t(0:100),
+ubp (100, 100,0:100) ,x(100)
real answer,prob(100,0:100)
double precision pvec,plev(0:100)
external philower,phiupper

* The probability of each system state is set to zero. *
********* ***

do 10 k=0,msys
plev(k)=0.0

10 continue

* The total number of component state vectors is found. *

nvec=l
do 20 i=l,ncomp

nvec=nvec* (m(i) +1)
20 continue

* Determine whether lower or upper boundary points will *
* be used to determine the state of the system. *

***** ** **** **** * ************ ** ************ ***********

answer=0.0
do while ((answer.lt.1.0).or.(answer.gt.2.0).or.

222

+(amod(answer,1.0).ne.0.0))
print *,'ENTER SELECTION FROM THE FOLLOWING MENU:'
print *, 1. USE LOWER BOUNDARY POINTS.'
print *,' 2. USE UPPER BOUNDARY POINTS.'
read * answer
print *

enddo
********** ***************** **** ****************************

" The probability of each component state vector is *

" found. The system state is determined and the *
" probability is tallied under that state. *

do 40 k=O, (nvec-l)
divider=l
pvec=l. 0
do 30 i=l,ncomp
divider=divider* (m(i-l) +1)
x(i)=mod((int(k/divider)), (m(i)+1))
pvec=pvec*prob (i, x (i))

30 continue
if (answer.eq.l.0) then
n=philower (x)

elseif (answer.eq.2.0) then
n=phiupper (x)

endif
plev (n) =plev (n) +pvec

40 continue

* The probability of each system state is printed. *

do 50 k=0,msys
print 99,'Probability of state',k,'is',plev(k)

50 continue
print *
print *

99 format(a20,lx,i2,Ix,a2,Ix,f8.6)
return
end

* The program can evaluate the structure function for a *

• component state vector given the following: *

* 1) The maximum state of the system, *

* 2) The number of components in the system, *
* 3) The maximum state of each component, and *

* 4) The lower boundary points to level k. *

function philower(x)

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

223

* ncomp - the number of components in the system *

* prod - system state of a binary structure *

* sum - contains the subscript of the binary vector *

* philower - the system state with lower boundary pts.*
* temp - used to find the max of the binary function *

* m(i) - the maximum state of component i *

* s (k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* x(i) - the ith element of the component state vector*
* y(i) - the ith element of the binary state vector *
*** *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t (0:100),ubp(100, 100,0:100),prob(100, 0:100)
integer msys,ncomp,prod,sum,philower,temp,m(0:100),
+s(100),lbp(100,100,100),t(0:100),ubp(100,100,0:100),
+x(100) ,y(10000)

* Convert the multistate vector to a binary vector. *

k=0
do 20 i=I,ncomp

do 10 j=l,m(i)
k=k+l
if (x(i).ge.j) then

y(k)=l
else

y (k)=0
endif

10 continue
20 continue

* Evaluate the binary structure functions with the *

* binary vector for every level and sum to give the *

* desired result. *

philower=0
do 60 k=l,msys

temp=0
do 50 j=l,s(k)

prod=l
do 40 i=l,ncomp

if (lbp(i,j,k).ne.0) then
sum=0
do 30 n=l, (i-i)

sum=sum+m (n)
30 continue

sum=sum+lbp (i, J, k)

224

prod=prod*y (sum)
endif

40 continue
temp=max (temp, prod)

50 continue
philower=philower+temp

60 continue
return
end

*** ***

* The program can evaluate the structure function for a *

* component state vector given the following: *
* 1) The maximum state of the system, *

* 2) The number of components in the system, *
* 3) The maximum state of each component, and *

* 4) The upper boundary points to level k. *

function phiupper (x)

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *
* prod - used to find the max of the binary function *

* sum - contains the subscript of the binary vector *

* phiupper - the system state with upper boundary pts.*
* temp - system state of a binary structure *

* m(i) - the maximum state of component i *

* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* x(i) - the ith element of the component state vector*
* y(i) - the ith element of the binary state vector *
* ********** ****************** ***************** *********** *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,prod,sum,phiupper,temp,m(0:100),
+s(100),lbp(100,100,100),t(0:100),ubp(100,100,0:100),
+x(l00),y(10000)

* Convert the multistate vector to a binary vector. *

k=0
do 20 i=l,ncomp

do 10 j=0,m(i)-1
k=k+l
if (x(i).gt.j) then

y(k) =1

225

else
y (k) =0

endif
10 continue
20 continue

* Evaluate the binary structure functions with the *
* binary vector for every level and sum to give the *
* desired result. *

phiupper=0
do 60 k=0,msys-1
prod=l
do 50 j=l,t(k)
temp=0
do 40 i=l,ncomp

if (ubp(i,j,k).ne.m(i)) then
sum=l
do 30 n=l, (i-i)

sum=sum+m(n)
30 continue

sum=sum+ubp(i,j,k)
temp=max(temp, y(sum))

endif
40 continue

prod=prod*temp
50 continue

phiupper=phiupper+prod
60 continue

return
end

* This program determines the probability of each system*
* state directly from the lower boundary points. *

subroutine lower
***** *** *** ************************************** *********

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *

* t(k) - number of upper boundary points to leve.l k *

* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *

* cmblower - real function that find all combinations *

* prob(i,j) - probability of component i in state j *

* sum - the sum of all combinatorial summations *

226

* plev(k) - probability of a system being in state k *
* cplev(k) - probability of system in state k or more *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:i00),prob(l00,0:i00)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t (0:100) ,ubp(100,100,0:100)
real cmblower,prob(100,0:100)
double precision sum,plev(0:100),cplev(0:100)
external cmblower

*** ********** *

* The known cumulative probabilities are entered. *

cplev (0) =1. 0
cplev (msys+l) =0.0

* The cumulative probability of the system being in *

* state k or higher is found for every system state. *

do 20 k=l,msys
sum=0.0
do 10 j=l,s(k)

sum=sum+ ((-1) ** (j+l)) *cmblower (s(k), j,k)
10 continue

cplev (k) =sum
20 continue

* The probability of each system state is printed. *
******************** **************************************

do 30 k=0,msys
plev (k) =cplev (k) -cplev (k+l)
print 99,'Probability of state',k,'is',plev(k)

30 continue
print *
print *

99 format(a20,lx,i2,lx,a2,lx,f8.6)
return
end

* This program determines all possible combinations of *
* vectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *

* exclusion formula. *
* ** *********** ****** *********** **************** ***********

function cmblower(n,r,k)

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* ichange - the element that is changed *

227

* r - the number of vectors to choose *
* n - the total number of vectors *
* itop - maximum state of the intersection of vectors *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *
* vec(i) - the intersection vector *
* lrg(i) - the largest vector in position i *
* store - a temporary storage location *
* cmbupper -variable used to return probability *
* prob(i,j) - probability of component i in state j *
* prod - probability of a component state vector *
* cprob(i,j) - probability of component i in state *
* j or higher *
** **

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0: 100), ubp (100, 100, 0: 100), prob (100, 0: 100)
integer msys,ncomp,ichange,r,n,numb,itop,m(0:100),
+s(100),lbp(100,100,100),t(0:100),ubp(100,100,0:100),
+vec (0:100), lrg(0:100)
real store,cmblower,prob(100,0:100)
double precision prod, cprob(100,0:100)

*************************** *******************************

* The cumulative probability array is found from the *
* probability array entered in the system description. *

do 20 i=l,ncomp
store=0.0
do 10 j=m(i),0,-i

cprob (i, j) =store+prob (i, j)
store=cprob (i, j)

10 continue
20 continue

** * **** ** ****** *** *** **** **** ******* *** **** *********** *

* The sum of the probabilities of all combinations of *
* lower boundary points to level k taken r at a time is *
* found. *

do 30 i=0,r
vec(i)=i
lrg (i) =n-r+i

30 continue
ichange=r
cmblower=0.0
do while (ichange.gt.0)

ichange=r
do 60 numb=(vec(ichange-l)+l),n

228

vec (ichange)=numb
prod=1 .0
do 50 i=1,ncomp

itop=0
do 40 J=1,r

itop=max(lbp(i,vec(j) ,k) ,itop)
40 continue

prod=prod*cprob (i, itop)
50 continue

cmblower=cmblower+prod
60 continue

do while ((vec(ichange-1)) .eq. (lrg(iAchange-1))
+ .and. (ichange.gt.1))

ichange=i change-i
enddo
ichange=ichange- 1
vec (ichange) =vec (ichange) +1
do 70 i=(ichange+l),r

vec (i) =vec (i-i) +1
70 continue

enddo
return
end

" This program determines the probability of each system*
" state directly from the upper boundary points.*

*subroutine upper

VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system
* ncomp, - the number of components in the system*
* m(i) - the maximum state of component i*
* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower*
* boundary point to level k*

* t(k) - number of upper boundary points at level 1 *

* ubp(i,j,k) - the ith element of the jth upper
* boundary point to level k

* cmbupper - real function that find all combinations*
* prob(i,j) - probability of component i in state j *

* sum - the sum of all combinatorial summations*
* plev(k) - probability of a system being in state k *

* cplev(k) - probability of system in state k or less*

common msys,ncomp,m(0:100),s(l00),lbp(100,100,100),
+t(0:100),ubp(1Q0,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t(0:100) ,ubp(100,100,0:100)
real cmbupper,prob(100,0:lO0)

229

double precision sum,plev(0:100),cplev(-1:100)
external cmbupper

***************************** ***** ********************* ***

* The known cumulative probabilities are entered. *

cplev (msys) =1.0
cplev (-1) =0.0

* The cumulative probability of the system being in *

* state k or higher is found for every system state. *
********************* *************************************

do 20 k=0,msys-1
sum=0.0
do 10 j=l,t(k)

sum=sum+ ((-i) ** (j+l)) *cmbupper (t (k) ,j,k)
10 continue

cplev (k) =sum
20 continue

* The probability of each system state is printed. *
*****R***

do 30 k=O,msys
plev (k) =cplev (k) -cplev (k-i)
print 99,'Probability of state',k,'is',plev(k)

30 continue
print *
print *

99 format(a20,lx,i2,lx,a2,lx,f8.6)
return
end

* This program determines all possible combinations of *

* vectors to consider. It is required for calculation *

* of the intersection of events in the inclusion- *

* exclusion formula. *
* *** ****** ******* *********** ***** *** *** ****** *** ******* ***

function cmbupper (n, r, k)

* VARIABLE DESCRIPTIONS: *
* msys -the maximum state of the system *

* ncomp - the number of components in the system *

* ichange - the element that is changed *

* r - the number of vectors to choose *

* n - the total number of vectors *

* ibot - the min state of the intersection of vectors *

* m(i) - the maximum state of component i *

* s (k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of lower boundary points to level k *

230

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* vec(i) - the intersection vector *

* lrg(i) - the largest vector in position i *

* store - a temporary storage location *

* cmbupper - variable used to return probability *
* prob(i,j) - probability of component i in state j *

* prod - probability of a component state vector *
* cprob(i,j) - probability of component i in state *

* j or lower *
** **

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:l00),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,ichange,r,n,numb,itop,m(0:100),

+s(100),lbp(100,100,100),t(0:100),ubp(100,100,0:100),
+vec(0:100) ,lrg(0:100)
real store,cmbupper,prob(100,0:100)
double precision prod,cprob(100,0:100)

**** ******* ********* ************************* ** **** ***** **

* The cumulative probability array is found from the *

* probability array entered in the system description. *
*** *

do 20 i=l,ncomp
store=0.0
do 10 j=0,m(i)

cprob (i, j) =store+prob (i, j)
store=cprob (i, J)

10 continue
20 continue

* The sum of the probabilities of all combinations of *

* upper boundary points to level k taken r at a time is *

* found. *

do 30 i=0,r
vec (i)=i
lrg (i) =n-r+i

30 continue
ichange=r
cmbupper=0.0
do while (ichange.gt.0)

ichange=r
do 60 numb=(vec(ichange-l)+l),n

vec (ichange) =numb
prod=l.0
do 50 i=l,ncomp

ibot=m(i)
do 40 J=l,r

ibot=min(ubp(i,vec(j),k),ibot)
40 continue

prod=prod*cprob (i, ibot)

231

50 continue
cmbuppe r=cmbupper+prod

60 continue
do while ((vec(ichange-l)) .eq. (lrg(ichange-l))

+ .and.(ichange.gt.1))
ichange=ichange- 1

enddo
ichange=ichange-1
vec (ichange) =vec (ichange) +1
do 70 i=(ichange+l),r

vec (i) =vec (i-1) +1
70 continue

enddo
return
end

* **** ******** *** *** ***** ** ******* **** ************* ******* *

* This program determines the probability of each system*
* state by decomposition using lower boundary points. *

subroutine decomplow
****************** ***** ** ************ ******** *** * *

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* re(i) - the maximum state of component i *

* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *
* prob(i,j) - probability of component i in state j *

* cprob(i,j) - probability of component i in state *

* j or higher *
* prod - probability of a component state vector *

* plev(k) - probability of a system being in state k *

* cplev(k) - probability of system in state k or more *
** *** *** *** **************** *** ******** *********** ** *** *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t (0: 100),ubp (100,100,0:100) ,prob (100,0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100)
integer bo(100),b(100),bbo(100,1000),bb(100,1000),
+vo(i00),v(i00),ymin(I00),lo,ss,hl,h2,iter
real prob(100,0:100),cprob(100,0:100)
double precision prod,plev(0:100),cplev(0:100)

** ***** ** *

* The cumulative probability array is found from the *

* probability array entered in the system description. *

**

232

do 20 i=1,ncomp
store=0 .0
do 10 j=m(i),0,-1

cprob Ui, j) =store+prob (i, j)
store=cprob (i, j)

10 continue
20 continue

*The system is decomposed with Aven's algorithm.

**~~*Step 1
do 110 k=1,msys

iter=l
cplcv (k) =0.0
do 30 i=1,ncomp

bo (i) =m(i)
ymin (i) =bo (i)
b (i) =0

30 continue
***~*Step 2

do while (iter.ne.0)
hl=-1
10=1
do 60 j=l,s(k)

iflag=0
do 40 i=1,ncomp

if (lbp (i, j,k) .gt. bo(i)) then
iflag=1

endif
40 continue

if (iflag.eq.0) then
h2=0
do 50 i=1,ncomp

if(lbp(i,j,k) .lt.ymin(i)) then
ymin (i) =lbp (i, j, k)

endif
h2=h2+bo(i) -max(lbp(i, j,k) ,b(i))

50 continue
if (h2.gt.hl) then
hl=h2
lo=j

endif
endif

60 continue
*****Step 3 & 4

prod=1 .0
do 70 i=1,ncomp

v(i)=max(ymin(i) ,b(i))
vo (i) =rax (lbp (i, lo, k),b (i))
prod=prod* (cprob (i,vo (i))-cprob (i,bo (i) +1))

70 continue

233

cplev (k) =cplev (k) +prod
*****Step 5

ss=0
do 90 i=1,ncomp

if (v(i).lt.vo(i)) then
ss=ss+1
do 80 j=1,ncomp

if (j.ne.i) then
bbo (j,ss+iter-1)=bo (j)

else
bbo (j, ss+iter-1) =vo (j) -1

endif
if (j.lt.i) then
bb (j,ss+iter-1) =vo (j)

else
bb (j,ss+iter-1) =v(j)

endif
80 continue

endif
90 continue

iter=ss+iter-1
*****Step 6

do 100 i=1,ncomp
bo Wi =bbo (i, iter)
b (i) =bb (i, iter)
yrnin WI =bo (i.)

100 continue
enddo

1.10 continue

The probability of each system state is printed.

cplev(0)=1.0
cplev (msys+1) =0.0
do 120 k=0,msys
plev (k) =cplev (k) -cplev (k+1)
print 99,'Probability of state',k,'is',plev(k)

120 continue
print *
print *

99 format(a20,lx,i2,lx,a2,lx,f8.6)
return
end

* This program determines the probability of each system*
" state by decomposition using upper boundary points. *

subroutine decomphi

*VARIABLE DESCRIPTIONS:

234

* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *
* prob(i,j) - probability of component i in state j *
* cprob(i,j) - probability of component i in state *
* j or higher *
* prod - probability of a component state vector *
* plev(k) - probability of a system being in state k *
* cplev(k) - probability of system in state k or less *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100, 100, 0:100),prob(100, 0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t (0:100),ubp(100, 100,0:100)
integer bo(100),b(100),bbo(100,1000),bb(100,1000),

+vo(100),v(100),ymax(100),lo,ss,hl,h2,iter
real prob(100,0:100),cprob(100,0:100)
double precision prod,plev(0:100),cplev(0:100)

* The cumulative probability array is found from the *
* probability array entered in the system description. *

do 20 i=l,ncomp
store=0.0
do 10 j=m(i),0,-i

cprob(i, j)=store+prob(i, j)
store=cprob (i, j)

10 continue
20 continue

* The system is decomposed with Aven's algorithm. *

****** Step 1
do 110 k=0,msys-1

iter=l
cplev(k)=0.0
do 30 i=l,ncomp

bo (i) =0
ymax (i) =bo (i)
b(i)=m(i)

30 continue
****** Step 2

do while (iter.ne.0)
hl=-I
10=1

235

do 60 J=1,t(k)
iflag=0
do 40 i=1,ncomp

if (ubp(i,j,k).lt.bo(i)) then
iflag=1

endif
40 continue

if (iflag.eq.0) then
h2=0
do 50 i=1,ncomp

if(ubp(i,j,k) .gt.ymax(i)) then
ymax (i) =ubp (i, j,k)

endif
h2=h2-bo(i)+min(ubp(i, j,k) ,b(i))

50 continue
if (h2.gt.hl) then

h1=h2
lo=j

endif
endif

60 continue
*****Step 3 & 4

prod=1 .0
do 70 i=1,ncomp
v (i) =min (ymax (i) , b(i))
vo(i)=min(ubp(i,1o,k) ,b(i))
prod=prod* (cprob(i,bo(i))-cprob(i,vo(i)+l))

70 continue
cplev (I) =cplev (I) +prod

*****Step 5
ss=0
do 90 i=1,ncomp

if (v(i).gt.vo(i)) then

do 80 j=l,ncomp
if (j.ne.i) then

bbo (j, ss+iter-l) =bo (j)
else

bbo (j, ss+iter-1) =vo (j) +1
endif
if (j.lt.i) then
bb (j,ss+iter-1) =vo (j)

else
bb(j, ss+iter-1)=v(j)

endif
80 continue

endif
90 continue

iterss+iterl1
~ Step 6

do 100 i=1,ncomp

236

bo (i) =bbo (i, iter)
b (i) =bb (i, iter)
ymax (i) =bo (i)

100 continue
enddo

110 continue
*** ** ********* **

* The probability of each system state is printed. *

cplev(-1) =0.0
cplev (msys) =1.0
do 120 k=0,msys
plev(k) =cplev(k) -cplev (k-i)
print 99, 'Probability of state',k,'is',plev(k)

120 continue
print *
print *

99 format(a20,lx,i2,lx,a2,lx,fB.6)
return
end

* This subroutine uses decomposition and lower boundary *
* points to find the probability of each system state. *

subroutine declower
* **** ** **** *** **** *********** **** *** **** *********** ****** *

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *

* t (k) - number of upper boundary points to level k *
* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *

* wkl-4(i,j) - temporary working matrices *
* icnt(i) - used to store subproblem sizes *

* prob(i,j) - probability of component i in state j *

* cprob(i,j) - probability of component i in state *

* j or higher *

* cplev(k) - probability of system in state k or more *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(I00,100,0:100),prob(100.0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t(0:100),ubp(100,100,0:100),wkl(100,1000),
+wk2 (100, 1000),wk2 (100, 1000),wk3 (100,1000),
+wk4(100,1000),icnt (0:100)
real prob(100,0:100),cprob(100,0:100),cplev(0:100)

237

common/ralph/cprob(100,0:100) ,rel
external lexinc, caiclow, divide

" The cumulative probability array is found from the *

" probability array entered in the system description *

do 20 i=1,ncomp
store=0 .0
do 10 J=m (i) ,0, -1

cprob (i, J) =store+prob (i, j)
store=cprob(i, j)

10 continue
20 continue

" For each level k, the lower boundary points are used*
" to decompose the system into disjoint problems.*

do 120 k=1,msys
icomp=1
rel=0.0
do 40 i=l,ncomp

do 30 J=l,s(k)
wkl (i, j)=lbp(i, j,k)

30 continue
40 continue

call lexinc(wkl,ncomp,s(k))
call calclow(icomp,wkl,ncomp,s(k) ,wk2, jcnt)
do while (jcnt.ge.1)

call divide (wk2, icomp, jcnt, icnt, iter)
jcnt=0
icomp=icomp+1
do 90 isub=l,iter+l

do 60 i=l,ncomp
do 50 j=icnt(isub-l),icnt(isub)-l

wk3 (i, j-icnt (isub-1) +1)=wk2 (i, j)
50 continue
60 continue

call calclow (icomp, wk3, ncomp, icnt (isub) -
+ icnt (isub-l) ,wk4,newj)

do 80 i=l,ncomp
do 70 j=1,newj

wkl (i, jcnt+j) =wk4 (i, j)
70 continue
80 continue

jcnt=jcnt+newj
90 continue

do 110 i=1,ncomp
do 100 j=1,jcnt

wk2 (i, j) =wkl (i, J)
100 continue
110 continue

238

enddo
cplev (k) =rel

120 continue

* The probability of each system state is printed. *

cplev(0)=1.0
cplev(msys+l) =0.0
do 130 k=0,msys

rlev=cplev(k) -cplev(k+l)
print 99, 'Probability of state',k,'is',rlev

130 continue
print *
print *

99 format(a20,lx,i2,lx,a2,lx,f8.6)
return
end

* This program sorts vectors lexicographically. *

subroutine lexinc (wk, ihigh, jhigh)

* VARIABLE DESCRIPTIONS: *
* wk - array of vectors to be sorted *

* ihigh - the ith dimension of wk *

* jhigh - the jth dimension of wk *

integer wk(100,1000)

* The vectors are sorted from the last element to the *

* first in increasing order with a bubble sort routine. *

do 40 il=ihigh,l,-1
do 30 jl=l,jhigh-I
num=jhigh-j 1
do 20 j2=1,num

if (wk(il,j2) .gt.wk(il,j2+1)) then
do 10 i2=1,ihigh

itemp=wk(i2, j2)
wk (i2, j2) =wk (i2, j2+1)
wk (i2, j2+1) =itemp

10 continue
endif

20 continue
30 continue
40 continue

return
end

239

* This program is used to branch the lower boundary *

* points into disjoint subproblems. *

subroutine calclow(icomp,wkl,ihigh, jhigh,wk2, jcnt)
*************************************** **** *** ********* ** *

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *

* s (k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *
* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* wkl-2(i,j) - temporary working matrices *

* icnt(i) - array used to store subproblem sized *

* prob(i,j) - probability of component i in state j *

* cprob(i,j) - probability of component i in state *

* j or higher *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:l00),ubp(100,100,0:100),prob(i00.0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t(0:100),ubp(100,100,0:100),wkl(100,1000),
+wk2 (100, 1000),icnt (0:100)
real prob(100,0:100),cprob(100,0:100)
common/ralph/cprob (100,0:100), rel
external lexinc,divide,elim

** ********* ******** * ** ************ ******** ** ******** * **

* Temporary lower boundary points are generated. *

jwkl=l
jwk2=1
do 40 ifix=0,m(icomp)

do while ((wkl(icomp,jwkl) .eq.ifix) .and.
+ (jwkl.le.jhigh))

do 10 i=l,ihigh
wk2 (i, jwk2) =wkl (i, jwkl)

10 continue
jwkl=jwkl+l
jwk2=jwk2+1

enddo
if (ifix.lt.m(icomp)) then
do 30 j=l,jwkl-1

do 20 i=l,ihigh
if (i.eq.icomp) then

wk2 (i, jwk2) =ifix+l
else

wk2 (i, jwk2) =wkl (i, j)
endif

240

20 continue
jwk2=jwk2+1

30 continue
endif

40 continue
jcnt=jwk2-1

The problem is logically separated into subproblems.

call divide (wk2, icomp, jcnt, icnt, iter)

Dominated lower boundary points are marked.

do 80 isub=0, iter
do 70 Jl=icnt (isub) ,icnt (isub+1) -2

do 60 j2=jl+1,icnt(isub+1)-l
iflag=0
do 50 i=1,ihigh

if (wk2(i,jl).ge.wk2(i,j2)) then
iflag=iflag+l

endif
50 continue

if (iflag.eq.ihigh) then
wk2 (1, i) =-1

endif
60 contir ue
70 continue
80 continue

Dominated lower boundary points are eliminated.

call elim(wk2,ncomp, jcnt)

The problem is logically separated into subproblems.

call divide (wk2,icomp, jcnt,icnt,iter)

" Single lower boundary points are marked and the*
" probability of the lower boundary point is tallied. *

do 110 isub=0,iter
if ((icnt(isub+l)- .cnt(isub)) .eq.1) then
prod=1 .0
do 90 i=1,icomp
prod=prod*prob(i,wk2 (i, icnt (isub)))

90 continue
do 100 i=icomp+l,ihigh
prod=prod*cprob (i, wk2 (i, icnt (isub)))

100 continue
rel=rel+prod
wk2 (1,icnt (isub))=-l

241

endi f
110 continue

Single lower boundary points are eliminated.

call elim(wk2,ncomp, jcnt)

*The remaining problem is sorted lexicographically. *

call lexinc (wk2, ihigh, jcnt)
return
end

subroutine divide (wk, icomp, jcnt, icnt, iter)

VARIABLE DESCRIPTIONS:
* wk(i) - a temporary working matrix*
* icomp - the component being pivoted on*
* jcnt - the jth dimension of wk*
* icnt - an array used to store subproblem sizes*
* iter - the number of subproblems*

integer wk(100,1000),icnt(0:100)
icnt(0) =1
it e r= 0
do 20 J=2,jcnt

iflag=0
do 10 i=1,icomp

if (wk(i,j).eq.wk(i,j-1)) then
iflag=iflag+1

endif
10 continue

if (iflag.ne.icomp) then
iter=iter+l
icnt (iter) =j

endif
20 continue

icnt (iter+1) =Jcnt+1
return
end

subroutine elim (wk, ihigh, jcnt)

VARIABLE DESCRIPTIONS:
* wk - a temporary working matrix*
* ihigh - the ith dimension of wk
* jcnt - the jth dimension of wk*

integer wk(100, 1000)
do 30 J2=jcnt,1,-1

i f (wk (1, J2) .eq. -1) then

242

do 20 jl=j2,jcnt-1
do 10 i=l,ihigh

wk (i, jl) =wk (i, jl+l)
10 continue
20 continue

jcnt=jcnt-I
endif

30 continue
return
end

* This subroutine uses decomposition and upper boundary *
* points to find the probability of each system state. *

subroutine decupper

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *

* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* wkl-4(i,j) - temporary working matrices *

* icnt(i) - used to store subproblem sizes *

* prob(i,j) - probability of component i in state j *

* cprob(i,j) - probability of component i in state *

* j or lower *

* cplev(k) - probability of system in state k or less *
* ** ****** *** * *********************** *** ****** ******* *** ** *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t (0:100),ubp(100,100,0:100),prob(100.0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t(0:100),ubp(100,100,0:100),wkl(100,1000),
+wk2 (100, 1000),wk2 (100, 1000) ,wk3 (100,1000),
+wk4 (100,1000),icnt (0:100)
real prob(100,0:100),cprob(100,0:100),cplev(0:100)
common/ralph/cprob (100,0:100), rel
external lexdec, calchi, divide

** **** ********* *** ** *************** ***** ****** ***** * *

* The cumulative probability array is found from the *

* probability array entered in the system description *

do 20 i=l,ncomp
store=0.0
do 10 j=0,m(i)

cprob(i, j)=store+prob(i, j)

243

store=cprob (i, j)
10 continue
20 continue

" For each level k, the upper boundary points are used*
" to decompose the system into disjoint problems.

do 120 k=0,msys-l
icomp=1
rel=0.0
do 40 i=l,ncomp

do 30 J=l,t(k)
wkl (i, j)=ubp(i, j,k)

30 continue
40 continue

call lexdec (wkl,ncomp,t (k))
call calchi(icomp,wkl,ncomp,t(k) ,wk2, jcnt)
do while (jcnt.ge.1)

call divide (wk2, icomp, jcnt, icnt, iter)
jcnt=0
icomp=icomp+1
do 90 isub=l,iter+l

do 60 i=l,ncomp
do 50 j=icnt(isub-l),icnt(isub)-1

wk3 (i, j-icnt (isub-l) +1)=wk2 (i, i)
50 continue
60 continue

call calchi (icomp,wk3,ncomp, icnt (isub) -
+ icnt(isub-l),wk4,newj)

do 80 i=l,ncomp
do 70 j=l,newj

wkl (i, jcnt+j) =wk4 (i, j)
70 continue
80 continue

jcnt=jcnt+newj
90 continue

do 110 i=l,ncomp
do 100 j=1,jcnt

wk2 (i, J) =wkl (i, j)
100 continue
110 continue

enddo
cplev (k) =rel

120 continue

*The probability of each system state is printed.

cplev (-1) =0. 0
cplev (msys) =1.0
do 130 k=0,msys

rlev=cplev(k) -cplev(k-1)

244

print 99,'Probability of state',k,'is',rlev
130 continue

print *
print *

99 format(a20,lx,i2,lx,a2,lx,f8.6)
return
end

*** *

* This program sorts vectors lexicographically. *
*** *

subroutine lexdec (wk, ihigh, jhigh)

* VARIABLE DESCRIPTIONS: *
• wk - array of vectors to be sorted *

* ihigh - the ith dimension of wk *

• jhigh - the jth dimension of wk *

integer wk(100,1000)

• The vectors are sorted from the last element to the *
* first in decreasing order with a bubble sort routine. *

do 40 il=ihigh,l,-l
do 30 jl=l,jhigh-I

num=jhigh-j 1
do 20 j2=1,num

if (wk(il,j2).lt.wk(il,j2+1)) then
do 10 i2=1,ihigh

itemp=wk (i2, j2)
wk (i2, j2) =wk (i2, j2+1)
wk (i2, j2+1) =itemp

10 continue
endif

20 continue
30 continue
40 continue

return
end

" This program is used to branch the lower boundary *

" points into disjoint subproblems. *
*************** ***

subroutine calchi(icomp,wkl,ihigh, jhigh,wk2, jcnt)
******** *** ***

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *

245

* lbp(i,j,k) -the ith element of the jth lower*
* boundary point to level k*

* t(k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper*
* boundary point to level k*

* wkl-2(i,j) - temporary working matrices*
* icnt(i) - array used to store subproblem sized
* prob(i,j) -probability of component i in state j *

* cprob(i,j) -probability of component i in state *

* j or lower

common msys,ncomp,m(O:100),s(100),lbp(100,100,100),
+t (0:100) ,ubp(100, 100,0:100) ,prob(100.0:100)
integer msys,ncomp,m(0:100),s(l00),lbp(lOO,100,100),

+t (0:100) ,ubp (100, 100, 0:100) ,wkl (100,1000),
+wk2 (100,1000), icnt (0:100)
real prob(100,O:100),cprob(100,0:100)
cormon/ralph/cprob (100,0:100) ,rel
external lexdec, divide, elim

Temporary upper boundary points are generated.

j wkl1= 1
jwk2=1
do 40 ifix=m(icomp),0,-1

do while ((wkl(icomp,jwkl) .eq.ifix) .and.
+ (jwkl.le.jhigh))

do 10 i=1,ihigh
wk2 (i, jwk2) =wkl (i, Jwkl)

10 continue
jwkl=jwkl+1
jwk2=jwk2+1

enddo
if (ifix.gt.0) then

do 30 j=1,jwkl-1
do 20 i=1,ihigh

if (i.eq.icomp) then
wk2 (i, jwk2) =ifix-1

else
wk2 (i, jwk2) =wkl (i, i)

endif
20 continue

jwk2=jwk2+1
30 continue

endif
40 continue

jcnt=jwk2-1

*The problem is logically separated into subproblems. *

call divide (wk2, icomp, jcnt, icnt, iter)

246

Dominated lower boundary points are marked.

do 80 isub=0,iter
do 70 jl=icnt (isub) ,icnt (isub+l) -2

do 60 j2=jl+l,icnt(isub+1)-l
iflag=0
do 50 i=l,ihigh

if (wk2(i,jl).le.wk2(i,j2)) then
iflag=iflag+1

endif
50 continue

if (iflag.eq.ihigh) then
wk2 (1, i) =-1

endif
60 continue
70 continue
80 continue

Dominated lower boundary points are eliminated.

call elim(wk2,ncomp, jcnt)

*The problem is logically separated into subproblems. *

call divide (wk2, icomp, jcnt,icnt, iter)

Single lower boundary points are marked and the
*probability of the lower boundary point is tallied. *

do 110 isub=0,iter
if ((icnt(isub+1)-icnt(isub)) .eq.1) then
prod=1 .0
do 90 i=l,icomp
prod=prod*prob (i,wk2 (i, icnt (isub)))

90 continue
do 100 i=icomp+1,ihigh
prod=prod*cprob(i,wk2 (i,icnt (isub)))

100 continue
rel=rel+prod
wk2 (1,icnt (isub))=-1

endif
110 continue

Single lower boundary points are eliminated.

call elim(wk2,ncomp, jcnt)

*The remaining problem is sorted lexicographically. *

call lexdec (wk2, ihigh, jcnt)

247

return
end

248

Appendix B. Bounding System Performance Program

********************* ** ********* ** *** ** ******** * ***

* WRITTEN BY: Ralph Boedigheimer *

* LAST UPDATE: 16 Dec 91 *

* This is the main program that runs all other programs *

* and estimates reliability for a multistate system. *
********************************* ** ******* ** *

program bounds
* ******************* *********** *********** **** ** *** ***** **

* VARIABLE DESCRIPTIONS: *

* answer - variable for interactive feedback *
* ** ***** *** ******** ** **** ******* ** ****************** ***** *

real answer
*** *

* The main menu is presented to the user. One of the *

* given options must be selected. *
*** *

5 answer=0.0
do while ((answer.lt.1.0).or.(answer.gt.10.0).or.

+(amod(answer,1.0) .ne.0.0))
print *,'ENTER SELECTION FROM THE FOLLOWING MENU:'
print *, . INPUT A NEW SYSTEM DESCRIPTION.'
print *,' 2. DISPLAY THE CURRENT SYSTEM.'
print *,' 3. TRIVIAL BOUNDS (LBPs).'
print *,' 4. TRIVIAL BOUNDS (UBPs).'
print 5. PATH/CUT BOUNDS.'
print *,' 6. MIN/MAX BOUNDS.'
print *,' 7. COMBINED BOUNDS.'
print *,' 8. INCLUSION-EXCLUSION BOUNDS (LBPs).'
print *,' 9. INCLUSION-EXCLUSION BOUNDS (UBPs).'
print *,' 10. EXIT THE PROGRAM.'
read *,answer
print *

enddo
***** * ** ***** ** ****** *** ************ *** **** ** *** *****

* The program routes to the appropriate subroutine and *

* then returns to the main menu. *
** **

go to (10,20,30,40,50,60,70,80,90,100),answer
10 call system

go to 5
20 call display

go to 5
30 call ltrivial

go to 5
40 call utrivial

go to 5

249

50 call pathcut
go to 5

60 call minmax
go to 5

70 call combined
go to 5

80 call lower
go to 5

90 call upper
go to 5

100 stop
end

******************* * ******** **** * ***** *** *** * *

* This program is used to enter a description of the *

* multistate system being studied. *
**************** ********* ******** ****** ****** ** * *

subroutine system

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *

* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

boundary point to level k *

* prob(i,j) - probability of component i in state j *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t (0:100) ,ubp(100,100, 0:100)
real prob (100,0:100)

* The required information is interactively entered. *
********* * *** ** ************ ******** *** ** ****** ** ** *

print *,'ENTER THE MAXIMUM SYSTEM STATE (1-100).'
read *,msys
print *
print *,'ENTER THE NUMBER OF COMPONENTS (1-100).'
read *,ncomp
print *
do 10 i=l,ncomp
print *,'ENTER THE MAXIMUM STATE OF COMPONENT',i,

+ ' (1-100) .

read *,m(i)
print *

10 continue

250

do 20 i=(ncomp+1),100
m(i)=0

20 continue
m(0)=0
do 40 i=1,ncomp
print *
do 30 j=0,m(i)
print *,'FOR COMPONENT',i,'ENTER THE '

+ 'PROBABILITY OF BEING IN STATE',j
read *, prob (i, j)

30 continue
40 continue

do 60 k=1,msys
print *,'ENTER THE NUMBER OF LOWER BOUNDARY',

+ I POINTS TO LEVEL',k,'(1-100).'
read *,s(k)
print *
do 50 j=1,s(k)
print *,'FOR LEVEL',k,'ENTER LOWER BOUNDARY',

+ ' POINT #',j
read *, (lbp(i,j,k),i=l,ncomp)

50 continue
print*

60 continue
do 80 k=0,msys-1
print *, 'ENTER THE NUMBER OF UPPER BOUNDARY',

+ ' POINTS TO LEVEL',k,' (1-100).'
read *,t(k)
print *
do 70 j=1,t(k)

print *,'FOR LEVEL',k,'ENTER UPPER BOUNDARY',
+ I POINT #Ili

read *, (ubp(i,j,k),i=1,ncomp)
70 continue

print*
80 continue

return
end

*This program displays the description of the system. *

subroutine display

VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system*
* ncomp - the number of components in the system*
* m(i) - the maximum state of component i*
* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower*
* boundary point to level k*

251

* t(k) - number of upper boundary points to level k
* ubp(i,j,k) -the ith element of the jth upper*

* boundary point to level k*
* prob(i,j) -probability of component i in state j *

common msys,ncomp,m(0:l00),s(100),lbp(100,l00,l00),
+t(0:100),ubp(100,100,0:l00),prob(l00,0:l00)
integer msys,ncomp,m(0:100),s(100),lbp(l00,l00,l0o),

+t(0:100) ,ubp(100,100,0:100)
real prob (100,0:100)

The current system is displayed for the user.

print *,'Maximum System State:',msys
print *
print *,'Number of Components:',ncomp
print *
print *,'Component Max State Vector: (',

+ (m(i),i=1,ncomp),')I
print *
do 10 i=1,ncomp
print 99,'Component' ,i, 'Probabilities:',

+ (prob (i, j) ,J=0, m(i))
10 continue

print *
do 30 k=1,msys
print *,'System Level',k
do 20 j=1,s(k)

print *,'Lower Boundary Point #',j,': (',
+ (lbp(i,j,k),i=1,ncomp),')'

20 continue
print*

30 continue
print *
do 50 k=0,msys-1

print *,'System Level',k
do 40.j=1,t(k)

print *,'Upper Boundary Point #',j,': (',
+ (ubp(i,j,k),i=1,ncomp),')'

40 continue
print*

50 continue
print *

99 forrat(a9,lx,i2,lx,al4,2x,100(f5.3,lx))
return
end

" This program determines the trivial bounds using a
* single lower boundary point.*

252

subroutine itrivial
common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
t(0:100) ,ubp(100, 100, 0:100) ,prob(100, 0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t(0:100) ,ubp(100,100,0:100)
real prob(100,0:100),cprob(100,0:100)

" The cumulative probability array is found from*
" probability array entered in the system description.*

do 20 i=1,ncomp
store=0 .0
do 10 J=m(i),0,-1

cprob (i, j) =store+prob (i, j)
store=cprob(i, j)

10 continue
20 continue

do 50 k=1,msys
print *,'System Level',k
do 30 j=1,s(k)
print *,'Lower Boundary Point #',j,': V'

+ (lbp(i,j,k),i=1,ncomp),')'
30 continue

print *

answer=0 .0
do while ((answer.1t.1.0).or.(answer.gt.s(k)).or.

+ (amod(answer,1.0).ne.0.0))
print *,'ENTER THE LOWER BOUNDARY POINT#.
read *,answer
print*

enddo
j=int (answer)
qlow=1 .0
qhigh=1 .0
do 40 i=1,ncomp
qlowqlow*cprob (i, lbp (i, j,k))
qhigh=qhigh*(1.0-cprob(i,lbp(i,j,k)))

40 continue
print *,qlow,'<=Q(',k,l) <=',1.0-qhigh
print*

50 continue
print *

print *

return
end

* This program determines the trivial bounds using a *

* single upper boundary point.*

subroutine utrivial

253

common msys,ncomp,m(0:100),s(100),lbp(l00,100,l00),
t(0: 100) ,ubp (100, 100, 0: 100) ,prob (100, 0: 100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t (0:100) ,ubp(100, 100,0:100)
real prob(100,0:100),cprob(100,0:100)

" The cumulative probability array is found from the *

" probability array entered in the system description.*

do 20 i=1,ncomp
store=0 .0
do 10 j=m(i),0,-1

cprob (i, j) =store+prob (i, j)
store=cprob (i, j)

10 continue
20 continue

do 50 k=0,msys-1
print *,'System Level',k
do 30 j=1,t(k)

print *,'Upper Boundary Point #',j,': (',
+ (ubp(i,j,k),i=1,ncomp),')'

30 continue
print *
answer=0 .0
do while ((answer.lt.1.0).or.(answer.gt.t(k)).or.

+ (amod(answer,1.0) .ne.0.0))
print *,'ENTER THE UPPER BOUNDARY POINT#'
read *,answer
print*

enddo
J=int (answer)
qlow=1 .0
qhigh=1 .0
do 40 i=1,ncomp
qlow=qlow*cprob(i,ubp(i, j,k)+1)
qhigh=qhigh* (1.0-cprob(i,ubp(i, j,k)+1))

40 continue
print *,qlow,I<= Q(',k+1,') <=',1.0-qhigh
print*

50 continue
print *
print *
return
end

" This program determines the path/cut bounds for one of*
" the measures of reliability.*

subroutine pathcut

254

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *
* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *

* prob(i,j) - probability of component i in state j *

* cprob(i,j) - probability of component i in state *

* j or higher *
*** *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,philower,phiupper, nvec, divider,

+m(0:100) ,s(100) ,lbp(100, 100, 100) ,t(0:100),
+ubp(100, 100,0:100) ,x(100)
real prob(100,0:100),cprob(100,0:100)

**** **** ***** ** ******** **** ********* ************ *** ** ***

* The cumulative probability array is found from the *
* probability array entered in the system description. *

do 20 i=1,ncomp
store=0.0
do 10 j=m(i),0,-1

cprob(i, j)=store+prob(i, j)
store=cprob(i, j)

10 continue
20 continue

* The path/cut bounds are determined assuming the *

* components are mutually independent. *
*** ***

do 70 k=l,msys
qlow=1. 0
do 40 j=l,t(k-1)
prod=l. 0
do 30 i=l,ncomp

if (ubp(i,j,k-1).ne.m(i)) then
temp=1.0-cprob(i,ubp(i, j,k-l) +1)
prod=prod*temp

endif
30 continue

temp=1. 0-prod
qlow=qlow*temp

40 continue
qhigh=1.0
do 60 j=l,s(k)

prod=1 .0

255

do 50 i=l,ncomp
if (lbp(i,j,k).ne.0.0) then
temp=cprob (i, lbp (i, j,k))
prod=prod*temp

endif
50 continue

temp=1 0-prod
qhigh=qhigh*temp

60 continue
print *,qlow,'<= Q(',k,') <=',1.0-qhigh

70 continue
print *
print *
return
end

" This program determines the min/max bounds for one of *

" the measures of reliability. *

subroutine minmax
** ************

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

• ncomp - the number of components in the system *
• m(i) - the maximum state of component i *

• s (k) - number of lower boundary points to level k *

• lbp(i,j,k) - the ith element of the jth lower *

• boundary point to level k *
* t (k) - number of upper boundary points to level k *
* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* prob(i,j) - probability of component i in state j *
* cprob(i,j) - probability of component i in state *
* j or higher *

** * *************************************** ** ********* * *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t (0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,philower,phiupper,nvec, divider,
+m(0:100),s(100),lbp(100,100,100),t (0:100),
+ubp(100, 100, 0:100),x (100)
real prob(100,0:100),cprob(100,0:100)

" The cumulative probability array is found from the *
" probability array entered in the system description. *

do 20 i=l,ncomp
store=0.0
do 10 j=m(i),0,-i

cprob (i, j) =store+prob (i, j)
store=cprob (i, j)

256

10 continue
20 continue

* The min/max bounds are determined assuming the *
* components are mutually independent. *

do 70 k=l,msys
qlow=0.0
do 40 j=l,s(k)
prod=1.0
do 30 i=l,ncomp

if (lbp(i,j,k).ne.0.0) then
temp=cprob (i, lbp (i, j,k))
prod=prod*temp

endif
30 continue

qlow=max(qlow, prod)
40 continue

qhigh=1.0
do 60 j=l,t(k-1)
prod=1.0
do 50 i=l.ncomp

if (ubp(i,j,k-1).ne.m(i)) then
temp=l.0-cprob(i,ubp(i,j,k-l)+l)
prod=prod*temp

endif
50 continue

temp=l.0-prod
qhigh=min(qhigh, temp)

60 continue
print *,qlow,'<= Q(',k,') <=',qhigh

70 continue
print *
print *
return
end

* *** ***** *** *** ********* *********************** ******** ** *

* This program determines the combined bounds for one of*
* the measures of reliability. *

*** *** * *************************************** *** *** ** *

subroutine combined

* VARIABLE DESCRIPTIONS: *

* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *

* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t(k) - number of upper boundary points to level k *

257

* ubp(i,j,k) - the ith element of the jth upper*
* boundary point to level k*

* prob(i,j) - probability of component i in state j *

* cprob(i,j) - probability of component i in state *

* j or higher

common msys,ncomp,m(0:100),s(100),lbp(l0O,100,1O0),
+t(0:100),ubp(100,100,0:100),prob(l00,0:100)
integer msys,ncomp,philower,phiupper,nvec,divider,

+m(0:100),s(100),lbp(100,100,100),t(0:100),
+ubp(100,100,0:100) ,x(100)
real prob(100,0:100),cprob(100,0:100)

" The cumulative probability array is found from the *

" probability array entered in the system description.*

do 20 i=1,ncomp
store=0. 0
do 10 j=m(i),0,-l
cprob (i, j) =store+prob (i, i)
store=cprob (i, j)

10 continue
20 continue

" The combined bounds are determined assuming the
" components are mutually independent.

do 110]=1msys
qlowl=0.0
do 40 J=1,s(k)

prod=1.0
do 30 i=l,ncomp

if (lbp(i,j,k).ne.0.0) then
temp=cprob (i, lbp (i, j,k))
prod=prod* temp

endif
30 continue

qlowl=max (qi owl, prod)
40 continue

qlow21. 0
do 60 j=1,t(k-1)

prod=1 .0
do 50 i=l,ncomp

if (ubp(i,j,k-1).ne.rn(i)) then
temp=1 .0-cprob (i,ubp (i, j,k-l) +1)
prod=prod*temp

endif
50 continue

temp=1 .0-prod
qlow2=qlow2 *temp

60 continue

258

do 80 J=1,t(k-1)
prod=1.0
do 70 i=1,ncomp

if (ubp(i,j,Jc-1).ne.m(i)) then
temp=1.0-cprob (i,ubp(i, j,k-1) +1)
prod=prod*temp

endif
70 continue

temp=1 .0-prod
qhighl=min (qhighl, temp)

80 continue
qhigh2^=l.0
do 100 j=l,s(k)

prod=1 .0
do 90 i=1,ncomp

if (lbp(i,j,k).ne.0.0) then
temp=cprob (i, lbp (i, j,k))
prodprod*temp

endif
90 continue

temp=1 .0-prod
qhigh2=qhigh2 *temp

100 continue
qhigh2=1 .0-qhigh2
qlow-max (qiowl, qlow2)
qhigh=min (qhighl, qhigh2)
print *,qlow,I<= Q(',k,') <=',qhigh

110 continue
print *
print *
return
end

" This program bounds the probability distribution*
" using the inclusion-exclusion principle and lower *

" boundary points.

subroutine lower

VARIABLE DESCRIPTIONS:
* msys - the maximum state of the system*
* ncomp - the number of components in the system*
* m(i) - the maximum state of component i*
* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower*
* boundary point to level k*

* t(k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the ith upper*
* boundary point to level k*

259

* cmblower - real function that finds all combinations*
* prob(i,j) - probability of component i in state j *

* sum - the sum of all combinatorial summations*
* plev(k) - probability of a system in state k*
* cplev(k) - probability of system in state k or more*

common msys,ncomp,m(0:100),s(100),lbp(l00,l0,l00),
+t (0:100) ,ubp (100,100,0:100) ,prob (100,0:100)
integer msys,ncomp,m(0:100),s(l00),lbp(lO0,100,l0O),

+t(0:100) ,ubp(100,100,0:100)
real cmblower,prob(l00,0:l00)
double precision sum
external crnblower

" The cumulative probability of the system being in *

" state k or higher is found for every system state. *

answer=0. 0
do while ((answer.le.O.0).or.(%answer.ge.1.0))
print *,'ENTER THE ACCEPTABLE TOLERANCE',

+ 1 (0 <TOL <l.
read *,answer
print*

enddo
tol=answer
do 10 k=1,msys

sum=O .0
J=l
diff=1.0
qlow=0.0
qhigh=l.0
diff=qhigh-qlow
do while ((J.le.s(k)).and.(tol.lt.diff))

sum=sum+ ((-1) ** (J+l))*cmblower (s(k) ,j,k)
if ((J.ne.s(k)).and.(mod(j,2).ne.0.0)) then
qhigh=sum

elseif ((j.ne.s(k)).and.(mod(j,2).eq.0.0)) then
qlow=sum

elseif (j.eq.s(k)) then
qlow= sum
qhigh=sum

endif
diff=qhigh-qlow
J=j+1

enddo
print *,qlow,'<=Q(I,k,I) <=',qhigh

10 continue
print *
print *
return
end

260

*********** *** **** **** ************ *** ********* * ***

* This program determines all possible combinations of *
* vectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *
* exclusion formula. *

***************** * ************ **** * ******** * ****

function cmblower (n, r, k)
******* **** *** ***** ******** ** **** *** **** **** ***** ***

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* ichange - the element that is changed *
* r - the number of vectors to choose *

* n - the total number of vectors *

* itop - the max state of the intersection of vectors *

* m(i) - the maximum state of component i *

* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *
* vec(i) - the intersection vector *

* lrg(i) - the largest vector in position i *

* store - a temporary storage location *
* cmbupper -variable used to return probability *

* prob(i,j) - probability of component i in state j *

* prod - probability of a component state vector *
* cprob(i,j) - probability of component i in state *
* j or higher *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,ichange,r,n,numb,itop,m(0:100),
+s(100),lbp(100,100,100),t(0:100),ubp(100,100,0:100),
+vec (0:100), lrg (0:100)
real store,cmblower,prob(100,0:100)
double precision prod,cprob(100,0:100)

* The cumulative probability array is found from the *

* probability array entered in the system description. *
* ** ***

do 2. i=l,ncomp
store=0.0
do 10 j=m(i),0,-I

cprob (i, j) =store+prob (i, j)
store=cprob (i, j)

10 continue
20 continue
** * ***** **

* The sum of the probabilities of all combinations of *

261

* lower boundary points to level k taken r at a time *
* is found. *

do 30 i=O,r
vec (i) =i
lrg (i) =n-r+i

30 continue
ichange=r
cmblower=0.0
do while (ichange.gt.0)
ichange=r
do 60 numb=(vec(ichange-l)+l),n

vec (ichange) =numb
prod=l .0
do 50 i=l,ncomp

itop=0
do 40 j=l,r

itop=max (lbp (i, vec (j),k), itop)
40 continue

prod=prod*cprob (i, itop)
50 continue

cmblower=cmblower+prod
60 continue

do while ((vec(ichange-1) .eq. (lrg(ichange-l))
+ .and. (ichange.gt.1))

ichange=ichange-i
enddo
ichange=ichange-1
vec (ichange)=vec (ichange) +1
do 70 i=(ichange+l),r

vec (i) =vec (i-l) +1
70 continue

enddo
return
end

* This program bounds the probability distribution
* using the inclusion-exclusion principle and upper
* boundary points. *

subroutine upper

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of tne jth lower *
* boundary point to level k *

* t (k) - number of upper boundary points at level 1 *

262

* ubp(i,j,k) - the ith element of the jth upper
* boundary point to level k*

* cmbupper -real function that find all combinations*
* prob(i,j) -probability of component i in state j
* sum - the sum of all combinatorial summations

common msys,ncomp,m(0:100),s(100),lbp(l00,100,100),
+t(0:100),ubp(l00,100,0:l00),prob(100,0:100)
integer msys,ncomp,m(0:l00),s(100),lbp(l00,l00,100),

+t(0:l00) ,ubp(l00,100,0:lOO)
real cmbupper,prob(100,0:100)
double precision sum
external cmbupper

" The cumulative probability of the system in state *

" k or lower is found for every system state.

answer=0. 0
do while ((answer.le.0.0).or.(answer.ge.l.0))

print *,'ENTER THE ACCEPTABLE TOLERANCE '

+ '(0 < TOL < 1).'
read *,answer
print*

enddo
tol=answer
do 10 k=O,msys-.

sum=0 .0
j=1
diff= . 0
qlow=0 .0
qhigh=1 .0
diff=qhigh-qlow
do while ((j.le.t(k)).and.(tol.lt.diff))

sum=sum+ ((-1) ** (j+l)) *-gIJupper (t (k) ,j,k)
if ((j.ne.t(k)).and.(mod(j,2).ne.0.0)) then

qlow=l .0-sum
elseif ((j.ne.t(k)).and.(mod(j,2).eq.0.0)) then

qhigh= . 0-sum
elseif (j.eq.t(k)) then

qlow=l .0-sum
qhigh=1 .0-sum

endif
diff=qhigh-qlow
j=j+1

enddo
print *,qlow,I<= Q(',k+1,') <=',qhigh

10 continue
print *
print *
return
end

263

* This program determines all possible combir'ations of *
* vectors to consider. It is required for calculation *
* of the intersection of events in the inclusion- *
* exclusion formula. *

function cmbupper (n, r, k)
******************************** ***** *** * ** *

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *
* ncomp - the number of components in the system *
* ichange - the element that is changed *

* r - the number of vectors to choose *
* n - the total number of vectors *
* ibot - the min state of the intersection of vectors *

* m(i) - the maximum state of component i *

* s(k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *

* t(k) - number of lower boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *

* vec(i) - the intersection vector *
* lrg(i) - the largest vector in position i *

* store - a temporary storage location *
* cmbupper - variable used to return probability *
* prob(i,j) - probability of component i in state j *
* prod - probability of a component state vector *

* cprob(i,j) - probability of component i in state *
* j or lower *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,ichange,r,n,numb,itop,m(0:100),

+s(100),lbp(100,100,100),t(0:100),ubp(100,100,0:100),
+vec(0:100),Irg(0:100)
real store,cmbupper,prob(100,O:100)
double precision prod,cprob(100,0:100)

* The cumulative probability array is found from the *
* probability array entered in the system description. *

do 20 i=l,ncomp
store=0.0
do 10 j=0,m(i)

cprob(i, j)=store+prob(i, j)
store=cprob (i, j)

10 continue
20 continue

* The sum of the probabilities of all combinations of *

264

" lower boundary points to level k taken r at a time *

" is found.*

do 30 i=O,r
vec(i)=i
lrg Wi =n-r+i

30 continue
ichanqe=r
crnbupper=O .0
do while (ichange.gt.0)

ichange=r
do 60 numb=(vec(ichange-l)+l),n

vec (ichange) =numb
prod=1 .0
do 50 i=1,ncomp

ibot=m (i)
do 40 jl,r

ibot=min(ubp(i,vec(j) ,k) ,ibot)
40 continue

prod=prod*cprob (i, ibot)
50 continue

cmbupper=cmbuppe r+prod
60 continue

do while ((vec(ichange-l)) .eq. (lrg(ichange-1))
+ .and.(ichange.gt.1))

ichange=ichange-1
enddo
ichange=ichange-l
vec (ichange) =vec (ichange) +1
do 70 i=(ichange+l),r

vec (i) =vec (i-1) +1
70 continue

enddo
return
end

265

Appendix C. Boundary Point Conversion Program

******************************* * ********* * ** *

* WRITTEN BY: Ralph Boedigheimer *

* LAST UPDATE: 20 Feb 92 *
****************************** **** ***** ** *** *

****** ********************** *************** **** ************

* This is the main program that runs all other programs.*
** **

program bpconv

* VARIABLE DESCRIPTIONS: *

* answer - variable for interactive feedback *
** **

real answer
*** ** *** ****** ** ************************ ***** **** *** * *

* The main menu is presented to the user. One of the *

* given options must be selected. *
*** *

5 answer=0.0
do while ((answer.lt.1.0).or.(answer.gt.5.0).or.
+(amod(answer,1.0).ne.0.0))

print *,'ENTER SELECTION FROM THE FOLLOWING MENU:'
print 1,' I. INPUT A NEW SYSTEM DESCRIPTION.'
print *,' 2. DISPLAY THE CURRENT SYSTEM.'
print *,' 3. CONVERT LBPs to UBPs.'
print *, 4. CONVERT UBPs to LBPs.'
print * 5. EXIT THE PROGRAM.'
read *,answer
print *

enddo
*** ***************

* The program routes to the appropriate subroutine and *

* then returns to the main menu. *
*** ***

go to (10,20,30,40,50),answer
10 call system

go to 5
20 call display

go to 5
30 call lbptoubp

go to 5
40 call ubptolbp

go to 5
50 stop

end

* * ****** ***** ********* *********************************** *

* This program is used to enter a description of the *

* multistate system being studied. *

266

subroutine system
** **

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *

* s (k) - number of lower boundary points to level k *
* lbp(i,j,k) - the ith element of the jth lower *
* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *

* prob(i,j) - probability of component i in state j *
****************************** * * * ***** *** ** *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:I00)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t(0:100),ubp(100,100,0:100)
real prob (100,0:100)

****************************** * **** ** *** ** ***

* The required information is interactively entered. *
*** *

print *,'ENTER THE MAXIMUM SYSTEM STATE (1-100).'
read *,msys
print *
print *,'ENTER THE NUMBER OF COMPONENTS (1-100).'
read *,ncomp
print *
do 10 i=l,ncomp
print *,'ENTER THE MAXIMUM STATE OF COMPONENT',i,

+ ' (I-100) .'

read *,m(i)
print *

10 continue
do 20 i=(ncomp+l),100
m(i)=0

20 continue
m(0)=0
do 40 i=l,ncomp
print *
do 30 j=0,m(i)

print *,'FOR COMPONENT',i,'ENTER THE',
+ ' PROBABILITY OF BEING IN STATE',j

read *,prob(i, j)
30 continue
40 continue

print *
do 60 k=l,msys
print *,'ENTER THE NUMBER OF LOWER BOUNDARY',

+ ' POINTS TO LEVEL',k,' (1-100).'

267

read *,s(k)
print *
do 50 j=l,s(k)
print *,'FOR LEVEL',k,'ENTER LOWER BOUNDARY',

+ ' POINT #',j
read *, (lbp(i,j,k),i=l,ncomp)

50 continue
print *

60 continue
do 80 k=0,msys-1

print *, 'ENTER THE NUMBER OF UPPER BOUNDARY',
+ ' POINTS TO LEVEL',k,' (1-100).'

read *,t(k)
print *
do 70 j=l,t(k)
print *,'FOR LEVEL',k,'ENTER UPPER BOUNDARY',

+ ' POINT #',j
read *, (ubp(i,j,k),i=l,ncomp)

70 continue
print *

80 continue
return
end

* This program displays the description of the system. *

subroutine display
******************************** **** *** *** * *

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *

* ncomp - the number of components in the system *

* m(i) - the maximum state of component i *
* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t(k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

• boundary point to level k *

* prob(i,j) - probability of component i in state j *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t (0: 100),ubp (100,100,0:100),prob (100,0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t (0: 100),ubp (100,100,0:100)
real prob (100,0:100)

* The current system is displayed for the user. *
* ******** ***

print *,'Maximum System State:',msys
print *

268

print *,'Number of Components:',ncomp
print *
print *, 'Component Max State Vector: ('
+ (m(i),i=l,ncomp),')'
print *
do 10 i=l,ncomp
print 99, 'Component',i,'Probabilities:',

+ (prob(i, j), j=0,m(i))
10 continue

print *
do 30 k=l,msys

print *,'System Level',k
do 20 j=l,s(k)
print *,'Lower Boundary Point #',j,': (',

+ (lbp(i,j,k),i=l,ncomp),')'
20 continue

print *

30 continue
print *
do 50 k=O,msys-i
print *,'System Level',k
do 40 j=l,t(k)
print *,'Upper Boundary Point #',j,': (',

+ (ubp(i,j,k),i=l,ncomp),')'
40 continue

print *

50 continue
print *

99 format(a9,ix,i2,lx,a14,2x,100(f5.3,Ix))
return
end

************************ * * ****** ** *** ** *** *** *

" This program converts lower boundary points to level *
" k to upper boundary points to level k-l. *

subroutine lbptoubp

* VARIABLE DESCRIPTIONS: *
• msys - the maximum state of the system *
• ncomp - the number of components in the system *
* m(i) - the maximum state of component i *

• s(k) - number of lower boundary points to level k *
• lbp(i,j,k) - the ith element of the jth lower *
• boundary point to level k *

* t(k) - number of upper boundary points to level k *
• ubp(i,j,k) - the ith element of the jth upper *
* boundary point to level k *
• vec(i) - a temporary work vector *
* perm(i) - a permanent work vector *
• list(i,j) - a storage vector for each level *

269

* jcnt - the jth dimension of list*
* prob(i,j) - probability of component i in state j *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
t(0: 100) ,ubp (100, 100, 0: 100),prob (100, 0: 100)
integer msys,ncomp,m(O:100),s(100),lbp(100, 100, 100),

+t (0:100) ,ubp(l00, 100,0:100)
integer vec(0:100),perm(100),list (100, 10000)
real prob(100,0:100)
external elim, lexdec

" A list of potential upper boundary points is generated*
" from all the lower boundary points.*

do 150 k=1,msys
jcnt=0
do 70 j=1,s(k)

do 60 i=l,ncomp
do 10 il=1,ncomp

vec (ii) =lbp (ii,j, k)
10 continue

vec (i) =lbp (i, j, k) -1
do 20 i2=1,ncomp

perm(i2) =vec (i2)
20 continue

if (vec (i) .ge. 0) then
i change=ncomp
do while (ichange.gt.0)

ichange=ncomp
do 40 i3=vec(ncomp),m(ncomp)

vec (ncomp) =i3
if (perm(i).eq.vec(i)) then

jcnt-jcnt+1
do 30 i4=1,ncomp

list (i4, jcnt) =vec (i4)
30 continue

endif
40 continue

ichange=ichange- 1
do while ((vec(ichange) .eq.m(ichange))

+ .and.(ichange.gt.0))
ichange=ichange- 1

enddo
vec (ichange) =vec (ichange) +1
do 50 i5=ichange+1,ncomp

vec (i5) =Perm (i5)
50 continue

enddo
endif

60 continue
70 continue

270

" All potential upper boundary points that are dominated*
" by other lower boundary points are marked and removed.*

do 100 jl=l,s(k)
do 90 J2=1,jcnt

iflag=0
do 80 i=1,ncomp

if (lbp(i,jl,k).le.list(i,j2)) then
iflag=iflag+1

endif
80 continue

if (iflag.eq.ncomp) then
list (1,j2) ='-

endif
90 continue
100 continue

call elim(list,ncomp, jcnt)

" The list matrix is lexicographically sorted in*
" decreasing order.*

call lexdec (list, ncomp, jcnt)

" All potential upper boundary points that are overcome*
" by other potential upper boundary points are marked *

" and removed from the list.*

do 130 j2=jcnt, 2,-1
do 120 jl=j2-1,1,-1

iflag=0
do 110 i=1,ncomp

if (list(i,j1) .ge.list(i,j2)) then
iflag=iflag+l

endif
110 continue

if (iflag.eq.ncomp) then
list (1, j2) =-l

endif
120 continue
130 continue

call elim(list,ncomp, jcnt)

" The remaining vectors on the list are upper boundary*
" points to level k-i.

print *' For level',k-1
do 140 j=1,jcnt

print *,'Upper Boundary Point #',j,': (',
+ (list(i,j),i=1,ncomp),')

140 continue

271

print *
150 continue

return
end

subroutine elim(wk, ihigh, jcnt)
** ******* *** ********* ** **** ********** ** ******** ****** **** *

* VARIABLE DESCRIPTIONS: *
• wk - a temporary working matrix *
* ihigh - the ith dimension of wk *

* jcnt - the jth dimension of wk *
***************************** * ****** * ** * ** **

integer wk(100,10000)
do 30 j2=jcnt,l,-1

if (wK(1,j2).eq.-1) then
do 20 jl=j2,jcnt-1

do 10 i=l,ihigh
wk(i, jl)=wk(i, jl+l)

10 continue
20 continue

jcnt=jcnt-1
endif

30 continue
'-eturn
end

subroutine lexdec(wk, ihigh, jhigh)

* VARIABLE DESCRIPTIONS: *

• wk - a temporary working matrix *
* ihigh - the ith dimension of wk *

• jhigh - the jth dimension of wk *
* *** **** **** *** ***** *** ***** ******** **** ******* ***** *** ** *

integer wk(100,10000)
do 40 il=ihigh,1 ,-I

do 30 jl=l,jhigh-1
num=jhigh-jl
do 20 j2=1,xium

if (wk(il,j2).lt.wk(il,j2+1)) then
do 10 i2=1,ihigh

itemp=wk (i2, j2)
wk (i2, j2) =wk (i2, j2+1)
wk(i2, j2+1)=itemp

10 continue
endif

20 continue
30 continue
40 continue

return
end

272

* This program converts upper boundary points to level *

* k to lower boundary points to level k+l. *

subroutine ubptolbp
** **

* VARIABLE DESCRIPTIONS: *
* msys - the maximum state of the system *

* ncomp - the number of components in the system *
* m(i) - the maximum state of component i *

* s(k) - number of lower boundary points to level k *

* lbp(i,j,k) - the ith element of the jth lower *

* boundary point to level k *

* t (k) - number of upper boundary points to level k *

* ubp(i,j,k) - the ith element of the jth upper *

* boundary point to level k *

* vec(i) - a temporary work vector *

* perm(i) - a permanent work vector *
* list(i,j) - a storage vector for each level *

* jcnt - the jth dimension of list *

* prob(i,j) - probability of component i in state j *

common msys,ncomp,m(0:100),s(100),lbp(100,100,100),
+t(0:100),ubp(100,100,0:100),prob(100,0:100)
integer msys,ncomp,m(0:100),s(100),lbp(100,100,100),

+t (0:100) ,ubp(100,100, 0:100)
integer vec(0:100),perm(100),list(100,10000)
real prob(100,0:100)
external elim, lexinc

* A list of potential lower boundary points is generated*
* from all the upper boundary points. *

do 150 k=0,msys-1
jcnt=0
do 70 j=l,t(k)

do 60 i=l,ncomp
do 10 il=l,ncomp
vec(il)=ubp(il, j,k)

10 continue
vec (i) =ubp (i, j, k) +1
do 20 i2=1,ncomp

perm (i2) =vec (i2)
20 continue

if (vec(i).le.m(i)) then
i change=nc omp
do while (ichange.gt.0)

ichange=ncomp
do 40 i3=vec(ncomp),0,-1

vec (ncomp) =i3
if (perm(i).eq.vec(i)) then

273

jcnt=jcnt+l
do 30 i4=l,ncomp

list (i4, jcnt) =vec (i4)
30 continue

endif
40 continue

ichange=ichange-l
do while ((vec(ichange) .eq.0) .and.

+ (ichange.gt.O))
ichange=ichange-l

enddo
vec (ichange) =vec (ichange) -l
do 50 i5=ichange+l,ncomp

ve c (i 5) =pe rm (i 5)
50 continue

enddo
endif

60 continue
70 continue

" All potential lower boundary points that are dominated*
" by other upper boundary points are marked and removed.*

do 100 jl=1,t(k)
do 90 j2=l,jcnt

aiflag=O
do 80 i=l,ncomp

if (ubp(i,jl,k) .ge.list(i,j2)) then
iflag=iflag+l

endif
80 continue

if (iflag.eq.ncomp) then
list (1, j2) =-l

endif
90 continue
100 continue

call elim(list,ncomp,jcnt)

* The list matrix is lexicographically sorted in*
* increasing order.

call lexinc (list, ncomp, jcnt)

" All potential lower boundary points that are overcome*
" by other potential lower boundary points are marked *

" and removed from the list.

do 130 j2=jcnt,2,-l
do 120 jl=j2-1,1,-l

iflag=0
do 110 i=l,ncomp

2"74

if (list (i, ji1) . le. list (i, j2)) then
iflag=iflag+1

endif
110 continue

if (if lag.eq.ncomp) then
list (1, j2) =-1

endif
120 continue
130 continue

call elim(list,ncomp, jcnt)

" The remaining vectors on the list are lower boundary
" points to level k+1.*

print *'For level',k+1
do 140 j=1,jcnt
print *,'Lower Boundary Point #',j,': (',

+ (list(i,j),i=1,ncomp),')'
140 continue

print*
150 continue

return
end

subroutine lexinc (wk, ihigh, jhigh)

VARIABLE DESCRIPTIONS:
* wk - a temporary working matrix*
~* ihigh - the ith dimension of wk*
* jhigh - the jth dimension of wk*

integer wk(100,l0000)
do 40 il=ihigh,1,-1

do 30 jl=1,jhigh-1
num=jhigh- ji
do 20 j2=1,num

if (wk(il,j2).gt.wk(il,j2+1)) then
do 10 i2=1,ihigh

itemp=wk (i2, j2)
wk (i2, j2)=wk (i2, j2+1)
wk (i2, j2+l) =itemp

10 continue
endif

20 continue
30 continue
40 continue

return
end

275

Appendix D. Expected Loss Program

* WRITTEN BY: Ralph Boedigheimer *

* LAST UPDATE: 20 Apr 92 *

* This program determines the expected loss for a *
* quadratic loss function that is sensitive to the *
* pattern of degradation about a specified lifetime. It*
* assumes that the distributions for the time spent in *
* state k are mutually independent and exponential with *
* common parameter lambda. It allows different costs *
* for leaving the various states. *

***************************** * * * ******** * * **

program loss

* VARIABLE DESCRIPTIONS: *
* c(k) - cost for leaving state k *
* lam - common parameter of exponential distributions *
* p(k) - probability of being in state k at tstar *
* tstar - desired lifetime for the customer *
* m - maximum state of system or component *
* iter - number of iterations for the simulation *
* t(j) - exponential variate for time spent in state k*
* loss - loss from one iteration of the simulation *

* avgloss - mean of the simulation losses *

real c(100),lam,p(0:100),tstar
integer m, iter
real t(0:100),loss,avgloss
external gamdf

********** ***** **************** ** ******** *** ** ******** *** *

* The system or component description is entered. *
***** ***

print *,'SYSTEM OR COMPONENT DESCRIPTION -'
print *
print *,' ENTER DESIRED LIFETIME (T*).'
read *,tstar
print *,' ENTER THE MAXIMUM STATE (M).'
read *,m
do 10 k=m,l,-1
print *,' ENTER THE COST OF LEAVING STATE',k,'.'
read *,c(k)

10 continue
print *,' ENTER THE COMMON LAMBDA.'
read *,lam

************* ***

* The state probabilities are calculated. *

276

totp=0. 0
do 30 k=m,1,-1

ifac=l
do 20 i~m-k,l,-1

ifac=ifac* j
20 continue

p (k) =(lam*tstar) **(rn-k) *exp (-1. 0*larn*tstar) /ifac
totp=totp+p (k)

30 continue
p(0)=1.0-totp
print *
print *,'State Probabilities:'
do 40 k=0,m

print *,IP(I,k,I) =',p(k)
40 continue

The theoretical expected loss is calculated.

tsum=0 .0
do 60 k=0,m-1

csum=0 .0
dsum=0 .0
esum=0 .0
do 50 j=k+1,m

csum=csum+c (j)
dsum=dsum+c (j) *(m-j+1) /1am

+ *gamdf (lam*tstar, real (m-j+2))
+ /gamdf (lam*tstar, real (m-j+l))

esum=esum+c(j) *(m-j+l) *(m-j+2)/I(lam**2.0)
+ *gamdf (lam*tstar, real (m-j+3))
+ /gamdf(lam*tstar,real(m-j+1))

50 continue
csum=csum*tstar**2 .0
dsurn=dsum* (-2.0) *tstar
tsum=tsun+ (csum+dsum+esum) *p(k)

60 continue
print *
print *,'Theoretical Expected Loss =',tsum

The expected loss is approximated with a simulation.

print *
print *
print *,**SIMULATION

print*
print *,'ENTER THE NUMBER OF ITERATIONS.'
read *,iter
cost=0 .0
do 90 ii=1,iter

icnt=0
sum=0. 0

277

do while ((sum.le.tstar) .and. (icnt.le.m))
t (m-icnt)=(-1.0/lam) *alog(1.O..rand(0.0))
sum=sum+t (m-icnt)
icnt=icnt+1

enddo
do 80 j=m-icnt+2,m

tott=0 .0
do 70 i=j,m

tott=tott+t Wi
70 continue

loss=loss+c (j) *(tstar-tott) **2
80 continue
90 continue

.avgloss=loss/iter
print *
print ;,'Estimated Expected Loss =',avgloss

end

278

VITA

Ralph Boedigheimer is a Major in the United States Air

Force with over 12 years of service. He entered the United

States Air Force Academy (USAFA) and graduated in 1980 with

a Bachelor of Science Degree in Mathematics. After

receiving his comm.ission, he served as a scientific analyst

at Nellis Air Force Base. Major Boedigheimer began graduate

work at the Air Force Institute of Technology and received

a Master of Science Degree in Operations Research with

distinction in 1983. He worked for the Air Force

Operational Test and Evaluation Center until December 1987

and instructed at USAFA until his entry into the School of

Industrial Engineering at the University of Oklahoma in

August 1989. He is a published author and a member of

several professional organizations and honor societies.

279

