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Micromachining allows the formation of micrometer-sized regions of bare gold

on the surface of a gold film supporting a self-assembled monolayer (SAM) of

alkanethiolate. A second SAM forms on the micromachined surfaces on exposing the

entire system -- the remaining undisturbed gold-supported SAM and the

micromachined features of bare gold -- to a solution of dialkyldisulfide. By preparing

an initial hydrophilic SAM from HS(CH2)15COOH, micromachining features into this

SAM, and covering these features with a hydrophobic SAM formed from

[CH3(CH2)1 1 S12, it is possible to construct micrometer-scale hydrophobic lines in a

hydrophilic surface. These lines provide new structures with which to manipulate the

shapes of liquid drops.

A combination of micromachining (1) and molecular self-assembly provides

the basis for a new procedure to generate micrometer-scale patterns of contrasting

surface properties. This procedure has three steps: (i) formation of an initial self-

assembled monolayer (SAM) of alkanethiolate on gold (2); (ii) generation of regions of

bare gold in the SAM by micromachining; and (iii) formation of a second SAM on these

micromachined regions. Because the two SAMs can have different compositions and

physical properties, and because the shapes of the micromachined features (3) can

be controlled, this process controls the characteristics of a surface with micrometer

resolution without the use of photolithography. We illustrate the capability of this new

type of microfabrication by forming patterns of SAMs of contrasting wettability on gold

surfaces and by using these patterns to manipulate the shapes of drops of water.

The experimental procedure is summarized in Fig. 1. First, a hydrophilic SAM

was formed by reaction of a gold film (4) with o-mercaptohexadecanoic acid

(HS(CH2)15COOH) (5). The carboxylic acid group makes the surface hydrophilic,

with wettability dependent on the pH of the water: the contact angle [measured under

cyclooctane(5)] decreased from ea20=300 (pH 5) to <50 (pH 10). Second, 0.1 to 1 p.m-

2 Abbott et al.



Fig. 1. Schematic illustration of the formation of 0.1 to 1 gm scale hydrophobic lines

in a hydrophilic surface with micromachining and SAMs. We imply no asymmetry in

the structure of the SAMs within the micromachined groove. Au = evaporated film of

gold; Ti - evaporated film of Ti used to promote adhesion of the Au to the silicon wafer

(Si).

Abbott et al.
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scale features of bare gold were micromachined into the surface of the gold supporting

the SAM. Either a surgical scalpel blade or the cut end of a carbon fiber was used as

a tool (6). We used a 3 mN load on the tip of the scalpel to machine uniform grooves

with macroscopic lengths (>1 cm), widths of -1 lam, and depths of -0.05 lam (Fig.2).

The micromachined grooves were bordered by two lips of raised metal (-0.1 l.m high

and -0.2 g.m wide) formed by the plastic deformation of the gold during machining (7).

Each lip presents an inclined surface to the edge of a spreading drop of liquid and

influences the wetting behavior of the surface. In contrast, much smaller lips of metal

bordered the -0.1 l.m-wide grooves that were formed with the tip of a carbon fiber (8).

Third, a second, hydrophobic SAM was formed selectively on the bare gold features

by immersing the micromachined surface in a solution of [CH3(CH2)1 1S]2. We used

a dialkyldisulfide in this step because dialkyldisulfides replace surface thiolates in

SAMs approximately 102 more slowly than do the corresponding alkanethiols, and

thus minimize the modification of the properties of the original hydrophilic SAM while

forming the second hydrophobic SAM (9, 10).

Features on the 0.1 to 1 prm-scale having contrasting wettability can pin the

edges of drops of water. The extent of this pinning was influenced by the type of SAM

within the micromachined groove and by the shape of the groove (11). We have used

0.1 to 1 lam wide grooves having hydrophobic SAMs to manipulate the positions and

the shapes of drops: several features that can be controlled are illustrated in Fig. 3.

Drops can be positioned with edges straight and pinned close together: the resolution

of a side view of two drops with edges pinned by a common, 1 pim-wide line is limited

by the effects of diffraction and reflection, but the drop edges are clearly separated by

less than 30 pim (12). The drops do not appear to communicate with one another: a

dye in one compartment remains localized and does not diffuse into neighboring

compartments. The extent of wetting of the corners of the pattern depends on the

contact angle of the water on the SAM (and thus, in this system, on the pH of the

5 Abbott et al.



Fig. 2. Scanning electron micrographs of the scalpel (A and B) and the carbon fiber

(D and E). The inset in A is a low magnification image (xl0 magnification) of the tip of

the scalpel. The grooves C and F (marked by an arrow) were micromachined into a

gold film bearing a SAM formed from HS(CH2)15COOH. The samples were fractured

normal to the groove in liquid nitrogen for imaging. The sizes and shapes of the

grooves are probably determined by local features of the tip of the scalpel and fiber.

6 Abbott et al.
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Fig. 3. Top and sides views of drops of water on a SAM formed from

HS(CH2)I5COOH and patterned with micrometer-scale micromachined grooves [see

Fig. 2(c)] supporting a SAM formed from [CH3(CH2)11S]2: (A), diagram of grooves;

(B), top view of drops; (C), side view of two drops separated by hydrophobic groove.

The pH values of the buffered drops of water are shown in (A). Note also that the

hydrophobic line that forms the hypotenuse of the triangular drops of pH 10 water cuts

off the top right corner of the rectangular drop; a dust particle can be seen on a

triangular pH 10 drop; and the circular edge of a pH 5 drop is slightly pinned. The dark

regions in (C) are the two water drops which almost meet at the hydrophobic line in the

center of the photograph. The top surface of each dark region is the air-water interface

and the apparent bottom surface is caused by the reflection and diffraction of light in

the vicinity of the closely positioned edges of the two drops.

8 Abbott et al.
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water). the angle at the corner, and the volume of liquid in the drop.

Control experiments in which the initial SAM and the second SAM deposited on

the surface of the micromachined features were both formed from HS(CH2)15COOH

showed little or no pinning of a drop (pH 10, 0.05M borate) (11). Micromachined

features with hydrophobic SAMs having 0.1 pm widths showed a weaker tendency to

pin a drop than those with 1 pm widths. We have not quantified the importance of the

width of the groove and the shape of its edge in pinning the edge of the drop (13, 14).

The combination of micromachining with molecular self-assembly offers a

versatile new procedure for manipulating the structure and properties of surfaces, and

the shapes of liquids drops on thern. Micromachining provides both convenient

access to small features and control over the geometry of these features. By using

simple procedures we have generated features that are already smaller (0.1 l.lm) than

those that can be routinely generated with optical lithography (15). With the use of

improved micromachining tools (including the scanning tunneling microscope), it

should be possible to extend this technique to create features with sizes of 10 nm or

smaller. Molecular self-assembly is particularly useful as a part of this procedure

because it allows molecules to be adsorbed on very small features (<1 nm) with high

selectivity and because it permits sensitive control of the surface free energies (16).

The procedure illustrated in Fig. 3 is an uncomplicated one that uses a gold

support, one width for the grooves, and two different SAMs. The procedure can be

extended to other supports and geometries of the grooves and, through combinations

of sequential pattern formation and orthogonal self-assembly (17), to multiple

combinations of SAMs. We believe that this procedure can be readily generalized and

widely useful in controlled patterning of surfaces. It provides an alternative to optical

lithography, and should be applicable to problems where optical techniques are not

(such as, nonplanar substrates) and in laboratories where optical lithography is not

10 Abbott et al.



available. The ability to manipulate the shapes of drops should be applicable to

problems in wetting and adhesion, and to the characterization of surfaces (18).
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