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Introduction
James T. Jenkins

This final report provides an overvA'w of the research accomplished during the
course of the grant. It also serves as access to the publications resulting from the
grant. In these publications, all aspects of the activity are elaborated upon. In this
Introduction, we provide a summary of the accomplishments and indicate where

more information can be found in the Chapters that follow.
In the research, we have attempted to characterize the anisotropy in particle

arrangement and particle interactions that develop when a granular material is de-
formed and to determine the influence of this anisotropy on the subsequent behavior
of the material. The research has dealt with the behavior of an idealized granular
material consisting of glass spheres and has involved the close interaction between
physical experiments, numerical simulations, and the development of theory.

We have focused on: (1) Understanding the relationship between the develop-
ing anisotropy of the material and the changes in volume observed in deformations
in which the mean stress is held constant. (2) Using elastic waves to probe the evo-
lution of the internal structure of the granular material as it is being deformed; and
(3) Developing constitutive relations for general stress paths in the triaxial/torsional

device through the combined efforts of theoretical modeling and numerical simula-
tion.

Volume Change

The goal of the work on volume change was to develop an understanding of
how various types of anisotropy induced in a granular material influence its vol-
ume change in subsequent deformations. Such an understanding should lead to a

quantitative measure of the liquefaction potential of a saturated material.
Much of our effort has been to understand the volume change of a hollow cylin-

drical sample held at constant pressure in a triaxial/torsion device. The sample was
found to expand when subjected to triaxial compression and contract when sub-
jected to triaxial extension. The theory predicted such behavior only if there was
anisotropy in the orientational distribution of contacts. Consequently, an effort was
made in the simulations to establish an initial anisotropy in the orientational dis-
tribution of contacts alone. However, any such initial anisotropy disappeared when
the material was loaded with an isotropic stress and the particles rearranged to ac-
commodate it. The indication was that depositional anisotropy was not responsible
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for the difference in the volume change in triaxial compression and extension.
In Chapter One, Ishibashi and Choi describe how it was determined that the

methods used to prepare the sample might have induced an anisotropy that was
impossible to reproduce in the numerical simulations. During the construction of
the sample, regions of ordered grains may form near the boundaries of the mold
resulting in a strong but localized anisotropy. Also, and perhaps more importantly,
because of the difference between the boundaries at the ends and sides of the hollow
cylindrical sample, it is likely that triaxial compression is strain controlled while tri-
axial extension is stress controlled. Consequently, there is an anisotropy associated
with the experimental device.

Strain control in triaxial compression occurs because the rigid platens at top
and bottom can exert contact forces of essentially arbitrary magnitude to impose
the specified displacement. As a consequence, they support the development of
load bearing particle chains along the axis of the sample. In contrast, the lat-
eral membranes are limited in the magnitude of the contact force that they can
support. The particle displacements must accommodate themselves to this, and,
consequently, they are not controlled. In triaxial extension, load bearing particle
chains are suppressed near the boundary. Expansion of the sample is assumed to
be associated with anisotropy aligned in the major principal direction. In triaxial
compression, this anisotropy is allowed to develop; in triaxial extension, it is not.

In Chapter Two, Cundall employs the numerical program FLAC to investigate
the response of an isotropic, linear elastic material with elastic moduli that fluctuate
in space about their average values. Holding the mean stress constant and using
combinations of stress controlled and strain controlled boundaries, he determines
the possible deformations of this isotropic but statistically inhomogeneous material.

He finds that volume changes inevitably occur.
The implications for soils testing of hollow samples confined by lateral mem-

branes and rigid end platens are rather profound. For these, stress paths between
triaxial compression and extension involve a mixture of stress control and strain con-
trol. Consequently, along such paths information about the confinement is being
confused with information about the material behavior. The solution is to employ
thick-walled samples or to provide additional stiffening to the lateral boundaries.
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Wave Propagation

The research on wave propagation has as it goal the determination of the

anisotropy of the granular material from the measurements of the speeds of shear
waves and pressure waves propagating through the material. This should lead to

the capability of predicting the anisotropy of a granular material in the field.

Experiments involving wave propagation through a granular material during
its deformation were carried out in a true triaxial/torsion device equipped as a

resonant column and in a cubical cell with bending bimorphs as transducers. In
both configurations the development of anisotropy with deformation could be de-
termined from the wave speed measurements. In the cubical cell, the evolution of

the complete set of elastic moduli could be followed. This research is described in
detail in Chapter Three. The interpretation of the experiments was facilitated by
the simultaneous development of theory and numerical simulations.

As outlined in Chapter Four, algorithms were developed for the optimal de-
termination of the elastic constants of an anisotropic material from wave speed
measurements. These are most easily implemented when the axes of anisotropy of

the material is known beforehand, but can be applied to determine these axes in
materials of the common symmetry classes. In the experiments on granular mate-
rials carried out so far, the algorithms have been employed to determine the elastic

constants of a material in which a transverse isotropy is developing.

The theoretical calculations of Chapter Five, based on the mean field assump-
tion, were used to determine the elastic constants of a random array of spheres in
which the distribution of contacts exhibited transverse isotropy. The mean field

assumption usually equates the rotation of particles and the displacement of the
centers of neighboring particles to the average strain and rotation of the sample.
However, the calculations show that when the contact distribution is anisotropic, in

order to maintain a symmetric stress, it is necessary to permit the average rotations
of the particles to differ from the average rotation of the sample. Using the resulting
theory, wave speeds could be calculated and compared with numerical simulations
and experiment.

The numerical simulation program TRUBAL was used to provide the effec-
tive moduli governing the wave propagation in an isotropic array. As discussed in

Chapter Six, these numerical simulations were in good agreement with the mod-

uli measured in the corresponding experiments, but the shear modulus was about
one third that predicted by theory. In an effort to understand this discrepancy,

the distribution of the normal component of the contact force was obtained from

the simulation and found to be exponential. However the difference between the
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measured and predicted wave speed did not have its origin in this distribution.
What did become clear during the course of the simulation was the extent to which
the detailed motions of individual particles differed from those consistent with the

mean-field assumption.

Chapter Seven describes an attempt to characterize the local strains and rota-
tions and to compare them to their average values. TRUBAL is used together with
a least-squares procedure to determine the local strain, rotation, and displacement
of the particles in a simulation. Increments in the average strain and rotation ten-
sors calculated from the local values are compared with increments in the overall
strain and rotation tensors. There is a surprisingly large difference between two
kinds of averages.

We are presently carrying out similar simulations on larger samples in an effort

to understand this discrepancy. In order to make correct quantitatively predictions
of wave speeds as the anisotropy of a deforming granular material evolves, it seems
necessary to characterize the deviations of the local particle displacements and rota-
tions from those associated with the average strain and rotation and to incorporate

measures of these deviations into the theory.

Constitutive Relations

The mean-field assumption was also used to determine the response of the ma-
terial when is was subjected to triaxial compression and extension. A simplification
of the Hertz-Mindlin contact law was assumed in which the tangential component
of the contact force was assumed to depend linearly and reversibly on the tangential
displacement of contacting spheres until frictional slip occlude. It was assumed that
the shear strains were rather modest, never exceeding by much the volume strain
associated with the isotropic part of the stress. In this case it is reasonable to sup-
pose that the particle arrangement remains unchanged, although some contacts are
effectively lost as their contact forces relax to zero.

The calculation of the stress-strain relation for triaxial compression is given in
Chapter Eight. The predicted response of the material is in qualitative agreement
with the experiments and numerical simulations, but it is again too stiff. The indi-

cation is that here, too, measures of the deviations from the mean field assumption
must be incorporated into the theory.

The theoretical model also permits the calculation of the inelastic parts of the
response such as the average plastic strain, the yield function, the plastic potential,
and the hardening function, although the utility of these in describing the material
must await our calculation of its behavior upon unloading.
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An effort was begun to formulate theory for shear strains large compared to
the volume strain associated with the pressure. Here substantial rearrangement of

particle positions were expected to accompany the particles' sliding and rotation.
In an effort to educate ourselves to the appropriate type of theory to employ, we
turned to the literature on the polycrystalline plasticity. Here the elements of the
aggregate are single crystals that deform and rotate by rate-independent slip. In
trying to understand this subject, we found that we could contribute to it.

Chapter Nine describes a micromechanical theory for the development of orien-
tational anisotropy in a simple planar polycrystalline aggregate comprised of single
crystals with two slip planes. The introduction of the appropriate form of the
mean-field assumption leads to an equation of evolution for the orientation of a
single crystal which, in turn, may be used to determine the evolution of the distri-
bution of orientations. Average properties can be calculated using the orientational

distribution. A quantity of particular interest is the average plastic spin. When this

quantity is calculated, its evolution is found to depend on only the second moment
of the distribution function, the analog of the geometric fabric tensor in granular

materials.
Similar calculations have been made in three dimensions for single crystals

with an arbitrary number of slip planes and applied to face-centered cubic crystals.
The analogous theory for frictional slip of random arrays of contacting spheres is

presently being developed.
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Chapter One

Influence of Specimen Boundary
and Shape on Volumetric Behavior

of Granular Materials

Isao Ishibashi James T.Jenkins Jong W. Choi

Abstract

Laboratory shear tests were conducted on large and small glass
bead assemblies with both stress and strain controlled lateral bound-
aries in both an ordinary solid cylinder triaxial device and in a hollow
cylinder device. The specimens were sheared in triaxial compression
and extension keeping the mean stress constant and volumetric strains
were monitored. The results showed that (1) the mold used in prepar-
ing the specimen created a strong but localized ordering of particles at
the specimen boundary and this type of initial fabric had a dominant
effect on the volumetric behavior of the hollow cylinder specimens,
and (2) the strain and the stress controlled boundaries produced sig-
nificantly different volumetric strains, particularly at the initial stage
of the shearing.

1 Introduction

During the past several years, the authors and co-researchers (Chen et al., 1988,
Ishibashi et al., 1988, Jenkins, 1988, Cundall, 1988, Jenkins et al., 1989, Ishibashi et

al., 1989, Ishibashi and Agarwal, 1991) have been investigating anisotropic behavior
of granular materials, experimentally, numerically, and theoretically. A special focus
was placed on the volumetric behavior along various stress paths. The stress paths

that we have had a particular interest in are triaxial compression and extension tests



with constant mean stress (i.e., (al + a2 + U3)/3 = constant). Typical experimental
volumetric strain data on assemblies of glass spheres from hollow cylinder tests
(Chen et al., 1988) and ordinary solid cylinder triaxial tests (Ishibashi et al., 1989)
are shown in Figure 1.

0.15-

0.10

• 0.05 ............................

a 0.00

-0.05

0
-0.10 - oe0 ollow cylinder comp. test et _ (1988)

ue..e Hollow cylinder ext. test Chen et aL (198)
Triaxial camp. test
Triaxial ext. test Ishibsh et al. (1989)

-0.15 , 1 1 1 1 1 1 1 1. 1 !---1

0.0 0.2 0.4 0.6

Maximum Shear Strain, %

Figure 1: Volumetric strains of a fine glass bead assembly in triaxial compression

and extension in hollow and solid cylinder specimens (Chen et al. (1988), Ishibashi

et al. (1989)).

Figures 2 and 3 show computer simulated results using a discrete element code
"TRUBAL" for nearly isotropic and highly anisotropic specimens (Ishibashi and
Agarwal, 1991), respectively. Two questions were asked based on these results; (1)
what is the reason for the big difference in volumetric strain between the triaxial

compression and extension tests in the hollow cylinder specimen? and (2) why do
total dilations occur at the beginning of shear in the triaxial compression tests in the
hollow specimen and in triaxial extension in the numerical simulations but not in

the solid cylinder specimens? The researchers made two hypotheses to explain the
above phenomena; (1) hollow cylindrical specimens have a peculiar inherent fabric
due to their relatively small thickness, and (2) the differences in the volumetric
strain of the specimen may be attributed to the differences between the side and end

boundary conditions. The first hypothesis was based on the observation that during
the specimen preparation an ordered arrangement of the particles around the lateral
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Figure 2: Computer simulated volumetric strain for an isotropic specimen (Ishibashi

and Agarwal, 1991).
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Figure 3: Computer simulated volumetric strain for a presheared specimen
(Ishibashi and Agarwal, 1991).
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boundaries of the molds might be created and thus the initial specimen might have
a peculiar inherent fabric. Because in the hollow device the specimen is relatively
thin in terms of particle diameters, the effect of these ordered boundary particles
might have a significant influence on the entire volumetric behavior. The second
hypothesis is based on the fact that in the triaxial specimen the top and bottom
boundaries are made of rigid plates which induce a uniform displacement (strain
controlled boundary), while the lateral confinement with thin rubber membranes
imposes a stress that is limited in magnitude.

The authors reviewed a number of papers that employed similar testing condi-

tions such as:

(a) Yamada and Ishihara, 1979,

(b) Haruyama, 1981,

(c) Hight et al., 1983,

(d) Ochiai and Lade, 1983,

(e) Miura et al., 1986,

(f) Sture et al., 1987, and

(g) Lam and Tatsuoka, 1988.

These testing devices included hollow cylindrical specimens (references (c) and (e)
above), solid cylindrical specimens (reference (g) above), and cubical specimens
(references (a), (b), (d) and (f) above). Those boundary conditions were stress
boundaries (references (a) and (b) above) and mixed boundaries (references (c),
(d), (e), (f) and (g) above). No experiments involving strain controlled boundaries
were reported relevant to this study. It should be noted, however, that the numer-
ical simulations by TRUBAL (Cundall, 1988, Ishibashi et al., 1989, Ishibashi and

Agarwal, 1991) are purely strain controlled.

From this review no clear conclusions could be drawn regarding the effect of
sample shape and the boundary conditions on the volumetric behavior, probably
because the importance of these conditions was not recognized at the time of the ex-
periments. However, some interesting and relevant observations were made. A dense
hollow cylinder specimen preloaded in the vertical direction (Hight et al., 1983) and
a loose specimen of glass beads in the cubical true triaxial device (Haruyama, 1981)
showed a very similar volumetric behavior as that in Figure 1., while Yamada and
Ishihara's cubical specimens (1979) for a loose river sand showed both contractive
volume changes. Lam and Tatsuoka's experiment (1988) showed a clear effect of
stress and strain boundaries in volumetric strain, although their tests were not
under a constant mean stress.
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2 Experimental Procedures

Two types of glass bead mixtures were used. The first mixture, called the
"small bead assembly", was composed of two sizes of glass beads with 0.215 mm
and 0.256 mm diameters in a number ratio of 1 to 1 or weight ratio of 1 to 1.688.
The second mixture, called the "large bead assembly", was composed of two larger
sizes of bead, 3 mm and 4 mm, in a number ratio of 4.728 to 1 or weight ratio of 2
to 1.

Two different specimen boundaries were created. For a lateral strain controlled
boundary relatively rigid plastic or aluminum liners were employed. The plastic
liner (126.0 mm high x 212.9 mm wide x 1.143 mm thick) is easily bent and was
preshaped to the same curvature as the surface of the specimen. The aluminum
liners consisted of eight pieces of longitudinal aluminum plates(126.0 mm high x 26.7

mm wide x 1.143 mm thick) that also had the same curvature as the surface of the
specimen. The liners were placed around the specimen just inside of the membrane
so that the confining pressure would be indirectly imposed on the specimen via
the liners. The liners were used only in the solid specimens and not in the hollow

specimens.
The majority of the experiments were conducted in a solid cylindrical triaxial

compression device, which accommodated a specimen of about 71.8 mm in diameter
and 152.4 mm in height. One series of tests was performed in a torsional simple
shear apparatus (Chen et al., 1988), which employed a specimen with a 71.12 mm
inside diameter, 101.6 mm outide diameter and about 142 mm in height.

All of the specimens were compacted (tamped) in equal layers, four for the

solid specimens and five for the hollow specimens, to an average relative density of
60%. A burette was connected to the bottom for measuring the volume change of

the fully saturated specimen.
Each specimen was isotropically consolidated from 34.5 kPa to 138 kPa prior to

being sheared along the desired stress paths. For all tests, the mean effective stress,
(al + o'2 +- a3)/3, was kept constant at 138 kPa throughout the shearing stage by
controlling the vertical stress and the radial stress (equal to the tangential stress).
The following results on volumetric strain were obtained after correcting for the
penetration of the membrane into the voids of the glass beads at the boundary. A

detailed discussion on the membrane penetration correction can be found in Choi
and Ishibashi (1992).
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3 Test Results

3.1 Vertical and Lateral Strains Under Isotropic Compression
Figures 4(a) and (b) show the relationship between the measured vertical strain

Ez and the calculated radial strain E, during isotropic compressions fo the small bead
assemblies with lateral stress and strain controlled boundaries, respectively, in the
solid triaxial device. The radial strain C, was calculated from measured volumetric

strain E, and the vertical strain ez with an assumption of tangential strain EO
was equal to the radial strain e,. It is generally accepted that this assumption is a
valid approximation for transversely anisotropic media. These figures show a nearly
isotropic behavior except at the very beginning of the compression.

Figures 5(a) and (b) show the same relationships as Figures 4(a) and (b) but for
the large bead assemblies. These figures show a highly anisotropic nature through-
out the entire compression.

3.2 Volumetric Behavior During Triaxial Compression and Ex-
tension Tests

Figures 6(a) and (b) show the relationship between volumetric strain and the
maximum shear strain for solid cylindrical assemblies of small beads with stress and
strain controlled boundaries during triaxial compression and extension lateral tests.
Both the triaxial compression and extension results are very similar.

Figures 7(a) and (b) show similar plots for the large beads. In contrast to
Figures 6 (a) and (b), the extension test data shows a large initial contraction while
the triaxial compression tests show very little (stress controlled lateral boundary)

or no (strain controlled lateral boundary) initial contraction of the speciman. These
specimen seem to be extremely anisotropic initially.

4 Discussion

4.1 Anisotropy Due to the Specimen Preparation Mold
The mold confinement during specimen preparation could create a strong

anisotropic fabric in the vertical direction near the boundaries and the size of this
region (the cross-hatched zones in Figure 8) will increase as the average grain size

increases.

From this point of view, the large glass beads in the solid triaxial device are
expected to provide a similar volumetric behavior to that from the hollow cylinder
specimen with the small glass beads. This is because the maximum number of the
large grains across the diameter of the solid specimen is 22 which is comparable to
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70 small beads across the 15.2 mm thick wall of the hollow specimen. Meanwhile, in
the solid specimen the maximum number of small galss beads across the diameter
is about 308 so that the mold confinement effect should be small. Figure 9, which
shows volumetric strains obtained from the hollow specimens, is consistent with the
above observation. That is, Figure 9 is very similar to Figure 7(a).

As a demonstration, one solid specimen of small beads was presheared up to
rmax = 97 kPa (or Oli03 = 3.58) in triaxial compression and unloaded to the initial
isotropic stress. A specimen with an induced fabric is expected to exhibit a strongly
anisotropic volume change during reshearing. The results of reshearing are shown in
Figure 10. The difference between two orthogonal stress paths (triaxial compression
and extension) is remarkable, and these are very similar to the ones seen in Figures

7 and 9.

4.2 Boundary Effects
When the small bead assemblies with the stress controlled lateral boundary

are compressed in the radial direction they seem to develop stronger force chains in
the radial direction within a relatively narrow region at the outer boundary (refer
to Figure 11).

Thus, the small bead specimens with both stress and strain controlled lateral
boundaries show similar behavior when they have a comparable fabric (Figures 4
and 6). On the other hand, the large bead assemblies with the stress controlled
lateral boundary showed larger strain in the radial direction as compared to the
strain controlled lateral boundary (compare Figure 5(a) and (b)). The specimens
with the two different lateral boundary conditions are supposed to have had a similar
initial fabric. Thus, any changes in the isotropic compression test should be due
to the difference in the boundary conditions. The more uniform stress distribution
in the radial direction due to its stress controlled lateral boundary is thought to
be responsible for the larger radial strain in isotropic compression (see Figure 5
(a)) and large initial contraction during the extension tests (see Figures 7 (a) and
(b)). Uniformly distributed stress and the absence force chains may cause unstable
internal structures, local mismatches, and collapse, and may lead to a radial larger
strain than the vertical strain. In a large bead assembly there are not enough
particle diameters inside the specimen to develop full force chains, in contrast to
the small bead assembly.

In the cases of the triaxial compression tests, the average volumetric behaviors
of two specimen with different particle sizes are similar to each other (compare
Figures 6(a) and 7(a)), both showing and initial small densification and a rather

high rate of dilation at a large strain. The fact that the specimens in these cases
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had rigid top and bottom platens suggests that similar force chains have developed
to carry the major principal stress across the specimens in the vertical direction
(see Figure 12).

.. .. ... .. .......
.. .. ...

(a) Solid larse bead assembly (b) Solid small bead assembly (c) Hollow small bead amembly

Figure 12: Schematic diagrams of force chains developed in various specimens during

triaxial compression tests.

It is worth noting that there is rather large scatter in the data from the large
bead assemblies (Figure 7(a)). This could be due to the insufficient number of

grains in the radial directions which might lead to a greater deviation in internal
structure. Another plausible explanation of the scatter is the variation in surface

packing, which might require a unique membrane penetration correction for each

test case.

5 Conclusions

From those experiments, the researchers' two hypotheses were found to be valid

and the following conclusions can be made:
1. The preparation mold creates an ordered arrangement of particles and hence

a strong but localized fabric around the lateral boundary. The thickness of
material influenced by the mold increases as the grain size increases. Thus,

12



consideration of the specimen thickness relative to the grain size is important;

2. The strain controlled boundary and the stress controlled boundary produce

different volumetric strains, particularly at the initial stage of the shearing.

The strain controlled boundary applies different magnitude of forces to the

particles in contact, and thus generate force chains through the specimen. The

formation of strong force chains makes the specimen more expansive from the

beginning. In contrast, the stress controlled boundary exerts a uniform forces

on the particles causing local compaction and initial contraction of the speci-

men, and

3. The volumetric behavior of the thin-wall hollow cylinder specimens showed

very similar behavior to the solid cylinder specimens with induced fabric by

preshear. From this it can be concluded that the strong anisotropy in the
hollow cylinder specimen stems mostly from a strong initial fabric created by

the specimen preparation mold.
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Chapter Two

Volume Change in
Inhomogeneous Samples

Peter A. Cundall

Abstract

Using the numerical program FLAC, we consider biaxial deforma-
tions of an isotropic linearly elastic material carried out at fixed means
stress between combinations of rigid and flexible boundaries. We show
that when the bulk and shear moduli vary in space in a quasi-random
fashion, a change in the volume of the sample inevitably occurs.

1 Discussion

Physical triaxial tests exhibit behavior that is not observed in numerical sim-

ulations with TRUBAL or in the results of simple theoretical calculations: under
constant mean stress, samples exhibit volume expansion during a compression test
and volume contraction during an extension test. An explanation is proposed in

Chapter One: in the compression test, the major principal stress is transmitted via
rigid platens, whereas it is transmitted through a flexible membrane in the exten-
sion test. Force-chains are known to break down at a flexible boundary, but are

preserved at a rigid boundary. Consequently, more "collapse"-and thereby volume
decrease--occurs in the extension test.

Although the proposed explanation is expressed in terms of discrete force

chains, a similar mechanism may occur if any type of inhomogeneity exists in a

sample. To test this, the program FLAC [Cundall and Board, 1988; Cundall, 1989]



is used to simulate biaxial tests on inhomogeneous samples, with combinations of
rigid and flexible boundaries. FLAC models a continuum, but each element may be
assigned a different set of properties. In the tests described here, an istropic, linear
elastic material is used-the bulk and shear moduli vary in space in a quasi-random
fashion. In order to avoid mesh-dependence, the distribution of moduli is generated
by a sum of spacial sine waves: the shortest wavelength is greater than the element
size, and the longest wavelength is less than the sample size (which, in all runs, is
10 units). The shear modulus at any location (x,y) is computed as

50 27_I50 { r I(Xo - X)l + (y~o - y)2)

G = Go +.A E sin n (1)
n=1 An

where (x4, y') is a random pair of numbers, chosen from a uniform random number

distribution in the range 0 < x' < 10 and 0 < y' < 10. The wavelength is
also chosen as a random number in the range Amin < An < Amax. For all tests
reported here, Amin = 2 units and Amax = 10 units. The bulk modulus was taken

to be 5G/3, corresponding to a Poisson's ratio of 0.25. Each element in the grid is
assigned K and G according to its centroid location (x, y), using the given formula.
The constants A and Go in equation 1 are chosen so that there is no element in
which G becomes zero or negative.

Figure 1 illustrates a typical distribution of shear moduli, with magnitude
denoted by intensity of shading; note that the biaxial sample is square. A histogram
of modulus values for a similar 50x50 sample is provided in Figure 2. Four tests
are done for each sample, as shown in Figure 3.

Tests (a) and (b) have rigid platens at top and bottom; constant stress is
applied to the side boundaries. The tests-extension and compression-are done by
moving the rigid platens until the average platen stresses are equal and opposite to
the applied side stresses. For a uniform sample, no net volume change is observed.
However, in a non-uniform sample there is a volume decrease for the extension

test and a volume increase for the compression test. For the case of an elastic
material, these two volume changes are exactly equal and opposite, so only one test
needs to be done, for each boundary condition. In order to eliminate the effects

of anisotropy that may exist in the sample, two further tests are done, with the
boundary conditions interchanged-these correspond to cases (c) and (d) of Figure
3. The results of all four cases are averaged, to give the final estimate of the
volume change. In order to achieve the desired average platen stresses, a numerical

servo-control is employed; this, and other special functions, are written in FLAC's
embedded language, FISH. A sample data file is provided in the Appendix.
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Figure 1. Shear modulus distribution - 30x30 sample

The total volume change is found from

V 611(a + 022 + 033) AxAy (2)AV 3K(2
all zones

where Ax and Ay are the element widths in x and y, respectively (the elements
are rectangular). This formula was checked against a direct calculation involving

displacements rather than stresses: the results were identical.
In all runs, a volume decrease was observed in the extension test, and an equal

volume increase in the compression test. Results are expressed as the ratio, R, of
volumetric strain to axial strain. The following table records the values of R for the
same pattern of inhomogeneous moduli, but different grid sizes.

Grid R

20 x 20 2.60 x 10-2

30 x 30 2.74 x 10-2

40 x 40 2.83 x 10- 2

50 x 50 2.90 x 10- 2
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Figure 2: Histogram of shear modulus values - 50x50 sample

It is seen that the volume strain is rather small - around 3% of the axial strain.
However, it is remarkable that volume strain occurs at all in a linear, elastic sample
in which moduli vary in a smooth fashion. We might expect more of a "collapse"
type of mechanism in a discrete, nonlinear material, where extreme local fluctuations
in stiffness are present (in the form of chains of particles). As expected, the results
tend towards an asymptotic value as the grid resolution is increased, suggesting that
the measured volume change is a physical effect, rather than a numerical artifact.

Although the numerical experiments were intended to represent (in a smoothed-
out way) the microscopic fluctuations in moduli of a granular material, it is possible
to view the inhomogeneities as representing real nonuniformities introduced by the
process of sample preparation. In this case, we might predict that physical samples
would exhibit large variations in volume-change behavior, unless great care were
taken in the preparation.
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APPENDIX: listing of FLAC data file for volume-change test

set log on

conf extra=5

g 30 30 ;Change this line, for different grid sizes

set echo off

gen 0,0 0,10 10,10 10,0

m e

prop dens=1000

;--- Sum of 50 spacial waves; wavelengths picked at random
;--- in the range L.min to L-max; positions are also random
def cover

gzero = 1.5e8

top jgp

right = igp

loop i (1,izones)

loop j (1,jzones)

shear-rod(i,j) = g.zero

end-loop

end-loop

loop n (1,50)

xO = urand * 10.0

yO = urand * 10.0

lambda = L-min + urand * (L-max - Lmin)
fac = 2.0 * pi / lambda

loop i (1,izones)

loop j (1,jzones)

xr = (x(i,j)+x(i+l,j)+x(i,j+l)+x(i+l,j+l))/4.0

yr = (y(i,j)+y(i+l,j)+y(i,j+l)+y(i+l,j+l))/4.0
z = sqrt((xO-xr)-2 + (yO-yr)-2)
shear-mod(i,j) = shearmod(i,j) + amp * sin(fac * z)

bulkmod(i,j) = shearmod(i,j) * 5.0 / 3.0

end-loop
end-loop

end-loop

;--- check on lower limit of G ---

gmin = g.zero
loop i (1,izones)

loop j (1,jzones)
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gmin = min(gmin,shear-mod(i,j))

end-loop

end-loop
command

-- smallest shear modulus is ...

print gmin

--- should reject run if gmin is negative or zero !!
end-command

end
;--- servo control to get mean stress to zero ---

def servo

while-stepping
sum = 0.0

nz2 = izones * jzones * 2.0

loop i (1,izones)

loop j (1,jzones)

sum = sum + sxx(i,j) + syy(i,j)
end.loop

end-loop

sum = sum / nz2

svel = min(gain*sum,0.0001)

if yplat = 1 then

loop i (1,igp)

yvel(i,l) = s.vel

yvel(i,jgp) = -s-vel

end-loop

else

loop j (1,jgp)

xvel(l,j) = svel

xvel(igp,j) = -s-vel

end-loop

end .if
end

;--- analysis function ---

def analyse

d-vol = 0.0

loop i (1,izones)

loop j (1,jzones)
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dvol = d-vol + (sxx(i,j)+syy(i,j)+szzi,j))/bulk-mod(i,j)
end-loop

end-loop
d-vol = d.vol * x(2,1) * y(1, 2 ) / 3.0
if yplat = 1 then
ax-strain = (ydisp(l,jgp)-ydisp(1,1)) / (y(l,jgp)-y(1,1))

else

ax-strain = (xdisp(igp,1)-xdisp(l1,)) / (x(igp,1)-x(1,1))

end if
v-strain = dvol / (x(igp,1) * y(1,jgp))
rat v-strain / ax-strain

end

set echo on
Fourier parameters------------------

set L-in=2 L-max=10 amp=l.Oe7

cover

set gain=le-8

save

; y-platen tests
set yplat=l
fix y j=1

fix y j=top

; extension test

tit

30*30 y=platen extension

appl p=le5 i=1
appl p=leS i=right

his yvel i=1 j=1

his sum

step 3000

analyse

print d-vol, vstrain, ax-strain, rat
save yext.sav

rest
x-platen tests
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set yplat0O

f ix x i=1
fix x iright

;extension test

tit

30*30 x-platen extension

appi p~le5 j=1

appi p~le5 jtop

his xvel i1l j1l

his sum

step 3000

analyse

print d..vol, v-.strain, ax-.strain, rat
save xext.sav

ret
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Chapter Three

Anisotropic Elastic Constants of a Granular
Assembly From Wave

Velocity Measurements

Isao Ishibashi Tarun K. Agarwal

Abstract

Isotropic compression, triaxial compression, and triaxial exten-
sion tests on cubical granular specimens (4" x 4" x 41') are performed
in the laboratory. Concurrently, P-wave and S-wave velocities are mea-
sured along several directions relative to the principal stress axis in
the specimen. Anisotropic elastic constants are recovered from those
measurements. The recovered constants clearly showed the level of
anisotropy at the different stages of the stress paths. Therefore the
directional wave velocity measurements couid be used as a useful tool
to quantitatively identify the anisotropy of the granular assembly.

1 Introduction

The elastic constants of a granular assembly and the wave speeds through the

media are fundamental macro-properties. These parameters can also be used effec-

tively for comparison and validation of numerical and theoretical micromechanics

models through experiments (Jenkins et al., 1988). A method for recovery of elastic

constants from wave speed measurements is discussed in this paper. Theory for

wave propagation in isotropic, homogeneous elastic material is readily available,

however, wave propagation theory for anisotropic media has been dealt with very
little. An effort is made to examine the existing theory, and its application to wave



velocity data obtained from granular media.

2 Elastic Theory of Wave Propagation

Elasticity and inertia are the properties of a medium essential for the trans-
mission of waves. They are described by the following equations in tensor notation:

(a) Equilibrium Equation aijj + Pfi = pfii (1)

(b) Constitutive Equation a i = CiklEkl (2)
1

(c) Strain-Displacement Equation Eij = 1 (ui, + u,i) (3)

where oij and Eij are stress and strain tensors, repectively, Cijkl is the fourth order

constitutive tensor, u, are diplacements, and fi are body forces. One solution of
the above equations is the plane wave:

Uk = Adk exp[iw(xpqp - t)] (4)

where w is the real-valued angular frequency, i is unit imaginary number, qp is
the component of the slowness vector defined as np/c, with np a unit vector along
the direction of propagation and c the velocity of propagation, xP are the coordi-
nates, and dk is the direction of particle motion. Substituting for the strains and
accelerations in terms of the displacement of a plane wave, the following solution

emerges:

(Ciklqjq - pb5ik)dk = 0 (5)
det jCijkiqqi - Pbkl = 0 (6)

where bik is the Kroneckor delta and the propagation tensor or Green-Christoffel
stiffness matrix is defined by rik = Cikaninj. Equation (6) involves a determinant
of a 3 x 3 matrix, and defines the eigenvalues that are related to three distinct wave
speeds. These are the wave speeds of bulk waves propagating through the continuous
media. The three waves are the pressure, or P, wave and two shear, or S waves.
All three have mutual orthogonal displacement vectors that are the eigenvectors
of the problem. In general, given Cik and the direction of propagation nh, the
three wave velocities and the associated directions can be evaluated by solving the

eigenvalue-eigenvector problem.
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3 Recovery of Elastic Constants from Wave Velocity

The inverse problem of obtaining elastic constants from experimental data of

wave propagation requires: (a) expanding the Equation (6) in terms of associated

elastic constants E1 ,j which are related to the elements of constitutive tensor Cjk.;
(b) obtaining wave speeds in multiple directions in experiments; (c) combining steps

(a) and (b) for each wave speed and developing the nonlinear equation involving
the direction cosines, wave speeds, elastic constants and material density; and (d)
solution of the multiple nonlinear equations for the optimal evaluation of the elastic

constants. The use of the Newton-Raphson procedure with a good initial guess gives

an optimal solution. As described in Chapter Four, Castagnede and Jenkins(1989),
and Castagnede et al. (1990) have applied this method to composites and crystals.

The number of elastic constants depends upon the type of symmetry in the

material and can range from two for an isotropic material to 21 for a general elastic

material without any symmetry. The number of wave speed measurements should be

greater than the number of distinct elastic constants. For example, a transversely

isotropic material described using five distinct elastic constants, will require five
or more wave speed measurements. Greater redundancy in data provides higher

accuracy in the optimized elastic constants.

The above procedure is a general approach, as wave paths can be selected

in any plane in the continuum. A more simplified procedure requires that the
measurements of the wave speeds be done in the principal material planes. For

those wave paths, the cubic equation factorizes easily avoiding the complication of

solving nonlinear equations. The three eigenvalues related to wave speeds are each

obtained in separate relations involving the elastic constants, direction cosines of

the wave paths, and the material density. The difference between the experimental

velocity and the velocity from the elastic constants provides the error function. The

summation of error functions from various wave speed directions is then minimized
to obtain an optimal solution for the elastic constants. In the following we will

discuss the theory for transversely isotropic materials.

A transversely isotropic stiffness matrix contains 5 distinct elastic constants.
The stress-strain relation for such material is given as:

611 Ell E1 2 E 12  0 0 0 El1

a22 E12 E 22 E23  0 0 0 0 E22
33 = E 12 E 23  E 22  0 0 0 0 33 (7)

O'12 0 0 0 E44  0 0 2E12
OU13 0 0 0 E 44  0 2E13
023 0 0 0 0 0 E 66  J 2e23
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where E 66 = - (E 22 - E 23 ) is a dependent elastic constant. Using the definition of

the wave propagation tensor and the wave path in the 1-2 plane, the components
of propagation tensor can be written as:

Fl= n 2E1 1 + n2E 44 ; r22 = n2E44 + n2 E22;

r33 = n2E44 + 2n2(E22 - E 23 ) (8)

F 12 = (E12 + E 44 )nln2 ; r 23 = 0; r31 = 0 (9)

When equation (6) is developed using the above stiffness matrix constants, one
eigenvalue is trivial and relates to shear wave velocity:

Shear wave: 133 = Pc2 - c, = yI[nl1E 44 + n2(E22 - E 23)]/p (8)

The other two eigenvalues are obtained from the following equation:

(pc2 )2 
- (ir. + 122)pC2 + (rr22 - r12) = 0 (9)

The solution of above equation gives the velocity of the two other waves as:

1 2 12 b74b)(0P Wave: pc = (-bi + b - 4 2 ); S wave: Pc, = 2(-bi- b2-4b2 ) (10)

where b, and b2 are given by the following:

-bl = (r.i + 1r22) = n2(Ell + e44) + n2(E 22 + E 44); (11)

b2 = (111.22 - r12) = (niEll + n2E 44 ) + (nlE4 4 n2E 22 )

(E12 + E 44 )2 nn2 (12)

In transversely isotropic materials, the 1-3 plane is similar to the 1-2 plane,
hence the wave velocity--elastic constant relations are similar. Using the above re-
lations, the least square error function can be written as the square of the difference

of the experimental velocity and the theoretical velocity given by the above equa-
tions. The summation of the errors is done for all wave paths. This least square
nonlinear problem is then solved using a modified Levenberg-Marquardt algorithm
and a finite difference Jacobian from the IMSL library. The algorithm requires a
good initial guess for the elastic constants, which is based on the expected ratio of
the various elastic constants.
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4 Wave Measurements Experiments

4.1 Cubic Shear Box
The generation and measurements of ultrasonic waves is done in a triaxial

cubical box device with bender bimorphs as transducers (Agarwal and Ishibashi,
1991) The specimen is a 4" x 4" x 4" cube. Three independent normal stresses are
applied through rubber bags installed inside three adjoining aluminum boundaries

of the box by means of regulated water pressures. The other three boundaries of
the box are made of solid lucite plates. The average axial strains are measured by

the water replaced in the pressurized rubber bags. A glass sphere mixture (two
sizes with average diameters of .215 mm and .256 mm and a weight ratio of 1.688

to 1) is used in the experiments. The dry mixture is loosely placed in the box by
a spoon and compacted with a vibrating rod to the initial density (approximately
60% of relative density, equivalent porosity = 0.367).

4.2 Wave Path Configurations
All wave paths are located at the central section of the cube on the vertical

planes as shown in Figure 1.

Acoustic Transducers

1 P-Wave

Figure_____ ~ I W t CS-Wave

AE E

!'-N C(Back)'

D B A C
10 12- - -------- -- -- -- - ----
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_ 3 4146 9

/ 2 70

-. Y- - 2 F3

Figure 1: Wave Path Configuration

Overall, six wave paths for compression and three wave paths for shear are

employed. The number of wave paths was selected based upon the five dynamic
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elastic constants required for transversely isotropic granular assemblies. The shear
waves propagate along three central axes of the cube.

4.3 Stress Paths
A specimen of granular material possess an initial anisotropy that is due to

its deposition under gravity. This anisotropy is considered here to be transversely
isotropic. This symmetry is also assumed for all applied stress paths as the paths
are irrotational. In Test one, an isotropic stress is increased from 4 psi to 20 psi
in increments of 4 psi. In Test two, after an isotropic consolidation of 20 psi, a
compression test is conducted until failure maintaining a constant mean stress (20
psi). The vertical (axis 1) normal stress is increased while the normal stresses in
two horizontal directions (axes 2 and 3) are decreased equally. In Test three, after
an isotropic consolidation of 20 psi, the specimen is sheared in extension (a decrease
in the vertical stress and equal increase in horizontal stresses), again maintaining a

constant mean stress of 20 psi.

5 Results and Discussions

Wave speed measurements for P-waves (6 paths) and S-waves (2 paths) are
presented in Tables I, II, and III. The angle/3 refers to the inclination of the wave

path from the vertical in the vertical planes of propagation. The first five wave
speed measurements are conducted in the 1-2 plane and the sixth wave path lies in
the 1-3 plane. Both shear wave paths lie in 1-2 plane.

Table I shows that in all the measurements the wave velocities increase with
increasing confining pressure. Different wave velocity measurements in the two
orthogonal directions = 0' and = 900 indicate the existence of an inherent fabric
formed during the deposition of the specimen. The strain under isotropic pressure

showed that the specimen was more compressible in the horizontal direction than
in the vertical direction as seen in Figure 2.

This is expected, since the deposition under gravity will induce a relatively
larger number of contacts in the vertical direction and thus the specimen will be
less compressible in that direction. In terms of the static elastic modulus, then,
the specimen was softer in the horizontal direction than in the vertical direction.
Similarly, wave speeds were larger in the vertical direction compared to those in

the horizontal direction. It is noted, however, that Knox et al. (1982) conducted
P-wave tests on the cubic specimens of sand that showed a higher wave velocity
in the horizontal directions. It is difficult to explain their experimental data from

consideration of the depositional fabric.
Table II shows wave velocities until near failure in the compression test. Upon
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Figure 2: Strain responses during istoropic pressure test.

the application of 12 psi maximum shear stress, the increase in the P-wave velocity in
the vertical direction is 5.4% while the decrease in P-wave velocity in the horizontal
direction is between 13.4% and 10.7%. The two shear wave measurements show very
small changes (a 5 to 6% drop). This is significantly different from the decreases in

the shear wave velocity of 15% to 20% in the hollow cylindrical experiments (Chen

et al., 1988).
Table III summarizes wave velocities for the extension test. The P-wave velocity

drops by 16.9% in the vertical direction and increases by 9.7% in the horizontal
direction during the shear. The shear wave velocity also shows greater changes
compared to the compression test.

Table IV and Figure 3 show recovered elastic constants for the transversely
isotropic specimen during the isotropic stress application.

Both dynamic elastic and shear modulus are larger in the 1-2 vertical plane
than in the 2-3 horizontal plane. The changes in elastic modulus in two directions
follow an often-used equation E = Ka*, where K and a are constants and a is the
isotropic confining stress. Values of K and a for different directions are calculated
as follows: for Ell: K - 351.0, a = .169; for E2 2 : K = 225.1, a = .255; for E44:
K = 87.7, a = .296; for E66 : K = 79.6, a = .325. Tests conducted in hollow
cylindrical samples (Chen et al., 1988) showed a = .40 for the shear modulus in the
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Table I: Wave velocity in m/sec during isotropic stress application.

Pres- P1- PI,. P12" PU- P1- P1- S12- SE-
sure Wave Wave Wave Wave Wave Wave Wave Wave
(psi) at at at at at at at at

S13=0 210 0 46" P=70 °  0=900 3,900 , =90 °  3-0o

4 432-2 425.8 451.1 425.1 415.7 435.7 246.4 240.2

8 455.5 430.9 465.6 429.4 449.7 473.0 268.7 263.7

12 481.4 461.5 489.1 487.1 500.6 503.4 291.7 279.4

16 491.7 486.6 527.6 520.0 524.5 524.6 314.4 295.9

20 510.2 500.1 544.1 538.1 556.0 538.6 298.3 323.8

Table II: Wave velocity in m/sec during compression test.

Shear P12- PU" P12  P12- Pa2  P13' S1 " S1-
Stress Wave Wave Wave Wave Wave Wave Wave Wave

(psi) at at at at at at at at
3=0 °  13=21- P=46 13 =70-0 3=900 13=90 13=901 13=00

0 510.2 500.1 544.1 538.1 556.0 538.6 298.3 323.8

1.5 517.1 503.5 540.6 528.8 537.8 533.1 298.4 325.1

3.0 512.1 497.6 539.8 517.3 525.9 520.8 292.3 318.8

4.5 525.3 504.3 524.7 490.7 547.0 530.9 274.8 322.1

6.0 535.1 498.8 521.9 530.6 530.5 510.7 290.5 324.2

7.5 540.7 505.1 543.4 497.1 508.8 493.6 274.8 I323.6
9.0 549.3 500.6 526.6 480.0 491.9 455.9 274.1 1 319.3

10.5 564.3 502.8 520.1 460.8 477.0 423.4 292.3 319.5

12.0 569.6 505.3 507.7 448.0 464.3 413.4 292.8 1 319.9

Table TIE: Wave velocity in m/sec during extension test.

Shear P1- P12 P1- P" r- P12- S1- Su.

Stress Wave Wave Wave Wave Wave Wave Wave Wave
(psi) at at at at at at at at

13-0 o  3=21 13-460 3,700 13-900 3-900 13-90" P3=0.

90 517.4 495.2 517.3 500.8 534.4 538.6 297.3 323.6

1.5 489.1 480.2 546.1 492.2 532.5 533.1 302.5 314.9

3.0 471.8 465.2 5122 541.7 550.9 552.9 306.4 310.7

4.5 465.3 448.2 522.7 565.7 617.0 619.1 311.8 311.1

6.0 439.5 422.8 509.9 575.6 637.5 634.7 312.5 300.1

7.5 410.7 400.2 499.4 585.1 652.8 652.6 308.8 290.6

8.6 383.3 366.6 496.6 533.1 652.9 653.1 309.1 293.3
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Table IV: Dynamic elastic constants in MPa during isotropic stress application.

Pressure EE12 E..=, E. E.
(psi) B f BB. 1

4 286.6 149.5 282.4 95.3 90.6

8 313.7 93.9 324.4 113.4 109.2

12 352.5 104.1 393.0 133.6 122.6

16 370.1 166.8 430.8 155.2 137.4

20 397.0 129.0 467.7 139.7 164.6

Table V: Dynamic elastic constants in MPa during compression test.

Shear El E12 E. E, E"
Stress

(psi)

0 397.0 129.0 467.7 139.7 164.6

1.5 407.4 122.5 448.4 139.8 165.8

3.0 398.0 140.2 427.3 134.1 159.5

4.5 425.1 55.9 438.6 118.5 162.8

6.0 427.0 77.8 432.3 132.5 165.0

7.5 435.9 127.5 390.6 118.5 164.4

9.0 444.2 103.9 351.6 118.0 160.1

10.5 463.8 83.2 317.2 134.2 160.3

12.0 473.3 49.7 301.4 134.6 160.7

Table VI: Dynamic elastic constants in Ma during extension test.

Shear Ell Ell EB E.,
Stress

(psi)

0 410.2 45.1 440.7 138.8 164.4

1.5 364.6 140.4 430.2 143.6 155.6

3.0 341.0 76.3 478.9 147.5 151.6

4.5 330.7 0.0 585.1 152.6 151.9

6.0 293.3 0.0 616.5 153.3 135.4

7.5 256.7 0.0 639.7 149.7 123.0

8.6 217.3 0.0 638.1 150.0 118.7
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Figure 3: Dynamic elastic constants during isotropic pressure.

horizontal plane.

The elastic modulus E 12 is found to change erratically with change in the pres-

sure. The other elastic moduli follow much more systematic chages in magnitude.
The exact identification of the shear wave arrival was difficult in some cases and

this might have created some errors in E1 2.

Table V shows elastic modulus during the compression test and Figure 4 plots

the same data with respect to the maximum shear stress.

The increase in Ell is smaller than the decrease in E22. This may indicate that

the increase in number of contact normals in the vertical direction is low compared

to the loss in number of contact normals in and around the horizontal plane. Note

that overall contacts are lost during shearing in numerical tests (Ishibashi et al.,
1989). These fabric changes are reflected only by moderate gains in elastic modulus
in vertical direction (10.6%) and significant drops in horizontal modulus (29%).

Therefore the dynamic elastic modulus is an important reflection of fabric changes

inside the granular material during shear. The changes in shear modulus are 10%

to 17%. In comparison, the tests with hollow cylindrical specimens has shown

significant drops in shear modulus during shear. The difference in the wavelengths
in the two type of tests could be a reason for this difference. In the cube specimens,

the wavelength is about 10 particle diameters while the hollow cylindrical tests use
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a wavelength of the order of specimen height (7.6 inches).

Table VI and Figure 5 show changes in elastic modulus during the extension
tests. The changes in the two directional elastic modulus Ell and E22 are relatively
large compared to the compression test. The specimen, initially has less contact
normals in the horizontal direction compared to the vertical direction due to depo-
sition under gravity. During the extension test, increases in the contact normals in
the horizontal direction are significantly larger than the increases of contact nor-
mals in the vertical direction during the compression tests. This difference probably
causes large increase in E22. Simultaneously, the contact normals decrease in the
vertical direction and thus the elastic modulus Ell reduces. The shear modulus in
the horizontal plane shows reduction similar to the compression test. It should be
noted that the initial isotropic stage of two specimens (Figures 4 and 5) are different
and thus caused slightly dissimilar E11 and E22 values.

Conclusion

A general procedure for relating dynamic elastic constants of anisotropic mate-
rials to wave speeds is presented and detailed mathematical relations for transvesely

isotropic specimens has been discussed. The approach is applied successfully to the
multi directional wave speed measurements in cubic specimens of granular assembly

of spherical particles for three different stress paths. In an isotropic stress test, the
compression wave speeds in horizontal direction were lower compared to the speeds
in the vertical direction due to depositional fabric. The recovered dynamic elas-
tic moduli also followed this pattern. This behavior is similar to the static elastic
modulus as is calculated from the three axial strain measurements. The recovered
elastic moduli showed a systematic change during compression and extension tests.
The importance of changes in internal structure as characterized by contact normals
is qualitatively associated with the recovered elastic moduli. In summary, the eval-
uation of dynamic elastic moduli for granular assembly is a useful tool for studying
internal character of granular materials.
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Chapter Four

Determination of the Principal Acoustic Axes
in Anisotropic Solids

from Wavespeed Measurements

B. Castagnede J.T. Jenkins

Abstract

We outline and provide references to procedures that are em-
ployed to determine the anisotropy of linearly elastic solids from ex-
perimental measurements of the speeds of elastic waves propagating
through them and apply one of the numerical methods to the analysis
of some data. We indicate how the procedures might be extended I
characterize the anisotropy of a granular material.

1 Disscussion

Prediction of the incremental behavior of a homogeneous sample of a granu-
lar material requires information about its current state. The identification of the
variables that characterize the state of the materials is currently an area of active
research, e.g. (1). Certain to be included on any list of state variables are the
porosity and stress. Other candidates are the orientational distribution of contacts
and contact area. The hope is that measurements of wavespeed and attenuation
in relatively homogeneous samples can help to characterize the state subsequent to
some loading history. For example, Chen, et al. (2,3) measure the speed of a shear
wave propagating down the axis of a hollow cylindrical sample in a torsional/triaxial
device. They relate the observed decrease in wavespeed with increasing deviatoric
stress to a net loss of contacts associated with the development of anisotropy. Here



we wish to discuss how wavespeed measurements in classical linear elastic solids can
provide rather complete characterizations of the acoustic anisotropy. Our expecta-
tion is that similar methods can be employed to determine the evolving anisotropy
in granular materials.

An elastic solid is typically produced with a symmetry that does not change
when the material is subjected to small strains. An example is an epoxy matrix
reinforced by parallel fibers. The linear elastic behavior is governed by the stiffness
tensor Cijkl that relates the stress tij and the infinitesimal strain ek:

to- C jkek. (1)

Because of the symmetry of the stress and the strain, the stiffness tensor satisfies
the conditions Cjkl = Cjiki = Cij3 k. The existence of a strain energy provides the
additional condition Cijkl = CkLij. Other reductions in the number of independent
components of the stiffness, or the elastic constants, depend upon the symmetry of
the material (4).

If the solid is subjected to a large deformation, its symmetry is, in general,
changed. For example, if the epoxy composite is greatly compressed in a direc-
tion perpendicular to the fibers, its symmetry is transformed from hexagonal to
orthorhombic. The description of wave propagation through a material that is ex-
periencing a large deformation is complicated by the presence of the stress to, that
maintains the deformation. In this case the increment t . of stress associated with
the wave results from both the additional increment of strain eij and the increment
in the antisymmetric part wij of the displacement gradients,

t'i _ tkt 0-t eko 2
it ikwki + (1/2)(ekt 3 + tikekJ) - ekkt + Cijkek, (2)

where the stiffness tensor Cjkl depends upon the symmetry of the finitely deformed
material (5).

The situation in granular materials is complicated by the fact that a part of the
anisotropy that is induced by a history of deviatoric stress remains upon unloading.
However it is precisely this anisotropy that endows the material with the memory
of its history. The difficulty is that this anisotropy does not, in general, fall into one
of the common classes (6). Nevertheless we think that it is worthwhile to review
existing schemes for the determination of the elastic constants and the orientation of
the principal acoustic axes in crystals and in anisotropic engineering materials. This
is a very practical problem that has been studied and solved for various material
symmetries using numerous numerical methods.

When the symmetry of the material is known, the symmetry axes induce a
natural orthonormal basis. The directions parallel to these vectors are called the
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principal acoustic axes. The elastic constants are to be determined, so we need to
write down the characteristic equation associated with propagation in a direction

with cosines ni,

det IFj - pv2 bi = 0. (3)

Here F1 j is the Green-Christoffel tensor, given by

]ik = Cijkfnjn, (4)

p is the density of the material, 6ij is the Kronecker delta, and v is the wavespeed
of a bulk mode.

When the acoustic axes of the material are not known, these equations are still
valid, but the natural basis is unavailable. The direction cosines n are then given
with respect to some other basis convenient to the experiment:

ni = ai3nj, (5)

where a 3 ,the transformation matrix, is given in terms of Euler angles (7) that must
be determined as part of the solution to the problem.

Equation (3) is a cubic equation for the eigenvalues of the propagation tensor,
pv2 . These eigenvalues are measured experimentally for a number of orientations

ni. Then, in order to obtain the elastic constants of the material, equation (3) must
be inverted.

To accomplish this inversion, several methods have been proposed during the
last 40 years including:

A numerical procedure (8) and series expansion (9);

Approximations valid near the principal axes of symmetry (10);
Perturbation series expansion with an iterative numerical method (11-15);

Use of the three invariants of the Christoffel matrix (16, 17); and
Algebraic manipulations of the characteristic equation (18, 19).
In the general case, the use of this last method provides a new cubic equa-

tion (20, 21) for the determination of the column vector XA of unknown elastic
constants.

(1/3!)AABCXAXBXC + (1/2!)BABXAXB + CAXA + D'- (6)

where the dimension of XA ranges from 3 for cubic symmetry to 21 in triclinic
materials. The coefficients depend upon the density, the direction cosines, and the
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Euler angles. They are given elsewhere (21) for the hexagonal and orthohombic

symmetries.

Generally, the systems of equations (6) is overdetermined, as there is more
experimental data than unknown elastic constants. An optimal solution of the
overdetermined system is obtained using a Newton-Raphson numerical scheme. The
recovery of the Euler angles has been achieved using this method or other procedures
for various systems of symmetry. The problem has been solved for the cubic (17,
22), the hexagonal (21) and even for the more intricate monoclinic (23, 24) systems.

When the type of symmetry is not known, equation (6) may still be employed
with the dimension of XA taken to be the number of independent elastic constants
of a candidate symmetry. If the material exhibits more symmetry, the calculated
stiffness tensor will be seen to have fewer independent components than initially
expected (25). Using such a procedure, experimental data on some engineering
materials may be fit equally well by either of two symmetries. In granular materials
we expect this to be the case more often than not, but we anticipate greater difficulty
in recognizing what symmetry we may be close to.

2 An Example

The above approach is illustrated in one of the simplest cases, the recovery of a
single Euler angle for the hexagonal system of symmetry. This, for example, is the
case when considering the recovery of the alignment of the fibers in a unidirectional
composite material. Figure 1 provides the geometry for this problem when dealing
with a thin plate of the composite. We suppose that this plate was cut with an

angular parallax 023 and that this parameter is unknown. The idea is then to
propagate elastic waves in the planes (1,2') and (1,3') and assume them to be
principal planes. In fact, the principal planes are the coordinate planes of the
unprimed coordinate system.

Figure 2 shows the three dimensional mapping of the slownesses (the inverse
of the wave speeds) for the quasi-transverse (q.T.) mode of propagation in the
hexagonal symmetry. In general, there are two other bulk waves that should be

considered. These are omitted here in order to simplify the drawing. This mapping
is a surface of revolution that intersects the (1,2) plane in a circle. The 3-axis is the
true orientation of the fibers of the composite. However these fibers are believed to
be oriented along the axis 3' in the coordinate system of the experiment.

When the elastic waves are propagated in the plane (1,3), the two dimensional
slice (TE) is experimentally generated. Due to the invariance of the slownesses to
a rotation around axis 3, other slices such as (B1 E) and (B 2E) are identical to
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Figure 2: Three-dimensional mapping of the slowness for the quasi-transverse mode
in the hexagonal symmetry.
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Figure 3: Normalized slowness for a unidirectional glass/epoxy composite'material

in the istropic plane (1,2). Crosses: Experimental slownesses; Continuous lines:

Recovered slowness without angular parallax.
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Figure 4: Noramalized slowness for a unidirectional glass/epoxy composite mate-

rial in the anisotropic plane. Crosses: Experimental slowness; Continuous lines:

Recovered slowness without angular parrallax-plane (1,3); Dashed lines: Recovered

slowness with 8 degrees parallax-plane(1, 3').

segment (ET). By introducing the Euler angle 923, we determine what the situation
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is when the propagation takes place in (1, 3) plane. In this case, we have to examine
the projection of the straight line (D) onto the surface of revolution, i.e. the curve
(C). This new slowness curve crosses (CI) and (CII), indicating that it is different
from the corresponding curve in the principal plane (1,3).

Figure 3 and 4 show results for a unidirectional fiberglass/epoxy composite. In
Figure 3 there is isotropy in the plane (1,2) that is orthogonal to the fibers. In Fig-
ure 4 the slownesses in the (1,3) and (1, 3') planes are given. The crosses represent
experimental data obtained by using an advanced ultrasonic spectro-interferometer
(19). The lines are the recovered slownesses generated after optimally solving equa-
tion (6). The solid lines correspond to 023 = 0' (no angular parallax) and the dashed
lines are for the case 923 = 80 (the sample is simply rotated on its stage by 8' around
the 1-axis). The shape of the recovered slownesses with and without parallax is sim-
ilar. It is interesting to note that there is no change in the quasi-longitudinal (q.L.)
wavespeed along the 1-axis (the point labelled I in Figure 4) due to the fact that
1 =1'. For the same mode, the wavespeed along the 3-axis (the point labelled J)
is smaller when 023 = 80 compared to the case with no parallax. Again, this is not
surprising as the largest wavespeed of this mode is along the fibers. After rotating
the sample by 023, J no longer corresponds to the orientation of the fibers.

Using a double-iterative algorithm derived from the set of equations (6) in the
primed coordinate system (21), we were able to recover a value for the Euler angle of
8.3680 ± 0.3190. The elastic constants may be recovered with even greater accuracy.
The precision in the recovery was obtained using a numerical simulation in which
the parameters were selected to closely match those of the experiment (21).
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Chapter Five

Anisotropic Elasticity for Random
Arrays of Identical Spheres

James T. Jenkins

Abstract

We derive a relation between the average stress and the aver-
age strain in a homogeneous deformation of a transversely isotropic
but otherwise random array of identical spheres that interact through
noncentral contact forces. We assume that the displacement of a con-
tact relative to a center may be calculated from the average strain
of the aggregate and the average rotation of the spheres relative to
that of the sample. In a homogeneous deformation of an anisotropic
aggregate, the average rotation of the spheres is determined from the
requirement that the stress be symmetric. In general, it differs from
the average rotation of the sample. Then, having raised the issue of
the different rotations, we focus on strongly inhomogeneous deforma-
tions, derive general expressions for the stress and couple stress, and,
as an illustration, calculate the constitutive relations for small strains
and rotations of an isotropic array with elastic contacts.

1 Introduction

We are interested first in the average small strain response of random granu-

lar assemblies that, by virtue of the process by which they are formed, possess an
inherent anisotropy [1]. This interest originated in attempts to explain the volume

changes observed in triaxial extension and triaxial compression of a granular mate-
rial at a fixed pressure. These experiments were carried out on hollow cylindrical

samples of essentially identical glass spheres confined within a membrane in a true



triaxial/torsion device [2]. As Jenkins [3] shows, the observed volume changes can

be explained in the context of the anisotropic elasticity theory developed here for

homogeneous deformations. However, as described in Chapter 1, more recent ef-
forts to simulate these volume changes numerically have indicated that boundaries
probably played the dominant role in the experiments. In any case, the theory for
homogeneous deformations of an anisotropic aggregate has one important feature
with several interesting consequences. Because the contact forces are noncentral,
symmetry of the stress requires that the average rotation of the particles be differ-
ent from the average rotation of the sample. We illustrate this in the context of a
theory derived for arrays in which the geometric arrangement exhibits transverse
anisotropy and the strains are so small that the behavior is elastic.

The interest in strongly inhomogeneous deformations arises from recent at-
tempts to explain the structure of narrow regions of rather extreme inhomogeneity,
called shear bands, in granular materials. An example of this activity is the work
of Miihlhaus and Vardoulakis [4]. Such attempts involve the introduction of the ad-

ditional degrees of freedom associated with the independence of the mean rotation
of the particles. In existing treatments, energy arguments are used to obtain the
constitutive relations that link the stress and couple stress to the strain and rota-

tions. Here, we illustrate how such relations may be obtained from considerations
of force and moment alone and provide a simple example that is appropriate for the
small strain elastic response of an isotropic assembly. In these developments, the
anisotropy of the aggregate is not crucial, although in granular materials it is likely
that some form of anisotropy is always present.

For simplicity, we focus our attention on an idealized material consisting of
identical spherical grains. We suppose that the particles are in contact and that
the location of their centers is random. In reality, arrays of identical spheres often
organize themselves into domains in which their centers are arranged periodically,

but we ignore this or imagine that there is sufficient dispersion in the diameters to
prevent the formation of such crystalline regions.

2 Homogeneous Deformations

We suppose that the diameter of a sphere is and that there are n of them per
unit volume. We take a to be the unit vector from the center of a sphere to a
contact on its surface and introduce the orientational distribution of contacts A(a )
so that A(a )da is the probable number of contacts in the element da of solid angle
centered at a. In homogeneous situations, this distribution function is independent
of position and, because a contact is common to two spheres, A(-ct) = A(a ).
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When the distribution of contacts is isotropic, A(a) = k/41r, where k, called the
coordination number, is the average number of contacts per particle. When the
contact distribution is not isotropic, but there are orthogonal planes of symmetry
or an axis of symmetry, the distribution of contacts can be expressed in terms of a
symmetric, traceless tensor A [5, 6] :

A(a) = k(1 + Aijaiaj). (1)
47r

For transversely isotropic materials, A may be expressed in terms of the unit vector
h in the direction of the axis of anisotropy and the strength e (1) of the anisotropy:

Ai, = -E(ij - 3hhj), (2)

where -< E < 1. Then

A(a) = k [(1 - E) + 3E(hiai)2]. (3)

The force F1a) exerted by the sphere at a contact with orientation (3) has
components parallel and perpendicular to a:

F = Pa - T., (4)

where T-a = 0. In a homogeneous deformation, we assume that Fis independent of
position. Because the force exerted by the sphere at a contact is equal and opposite
to the force exerted on the sphere, ]t-a ) = -Fac). The normal and tangential
components depend upon the displacement of a contact relative to the center and
are, in general, functions of (4). Following Hertz [7], the normal component P is
related to the magnitude (4) of the normal component of the displacement s:

P = M(66/U) 3/ 2 , (5)

where M is given in terms of the shear modulus pi and Poissons ratio v of the
material of the spheres by

2 ,2 (6)
M=9vf3- (1 - v)" 6

Here, for the tangential component of the contact force, we are content with the
relationship between the initial increment of its magnitude T and that of the tan-
gential displacement s:

T = Ks. (7)
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The modulus K has been determined by Mindlin [81 for the initial shearing at a

contact subsequent to the application of the normal force:

K = 2 [3(1 - v)P]11/ 3 . (8)

The assumptions are that there is Coulomb friction at contacts and that either the

relative tangential displacement of the centers of contacting spheres is very small or

the coefficient of friction is very large. In either case, there is no slip at contacts and

the tangential deformation is recoverable. Following Cauchy, as outlined by Love
[7] in his Note B, an expression for the average stress tensor t associated with a

homogeneous deformation of the aggregate may be obtained by considering the force

transmitted over an arbitrary element of area by pairs of contacting spheres whose
line of centers is cut by the element. For random assemblies, the stress is naturally

expressed in terms of the orientational distribution function and the contact force:

t an/ o JLA(a)F(a)ajda, (9)

where the integration is over all solid angle. When using the theory to interpret the

results of numerical simulations and physical experiments, this and other orienta-

tional averages are identified with volume averages over sufficiently large regions of
nearly homogeneous strain and uniform rotations.

We relate the displacement u of a contact relative to the center of a sphere

to the average strain of the aggregate e and to the difference between the average

rotation of the aggregate w and the average rotation of the spheres w:

ui = j(eij + wij - Wij)aj. (10)

As usual, the strain tensor is symmetric and the rotation tensors are antisymmetric.

As we shall see, it is important to make the distinction between the two average
rotations when considering the static theory for anisotropic aggregates. In general,

they will not be equal. Schwartz, Johnson, and Feng [9] and Walton [10] made

this distinction when treating the dynamics of isotropic assemblies, but found that

in the limit of long wavelengths, the rotations are identical. In formulating static

theory for isotropic aggregates, Digby [11] and Walton [12] tacitly and correctly

assumed that the rotations were the same.

Of course, even with the incorporation of the additional degrees of freedom

associated with the average rotations of the particles, the kinematic assumption

(10) may be far from correct. For example, when used with the contact force

laws (5) and (7), it requires that contacts with the same orientation transmit the
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same force. Also, when the average strain is isotropic and compressive, it requires
that the normal components of all contact forces must be equal and all tangential
components must vanish. Numerical simulations described by Cundall, Jenkins, &
Ishibashi [13] indicate that in isotropic aggregates there are rather large variations
in the forces at contacts with the same orientation, even when the mean strain
is isotropic. Also, the speed of the shear wave through a compressed isotropic

aggregate predicted by Digby [11] and Walton [12] is about three times greater
than that measured in numerical simulations and experiments [14]. However in
order to make a quantitative evaluation of similar shortcomings of the kinematic
assumption (10) in anisotropic aggregates, we must first obtain the predictions of
the theory that is based upon it.

We consider a transversely isotropic aggregate that has, through the application
of the appropriate combination of isotropic and deviatoric stress, been isotropically
compressed to an initial average volume strain of magnitude A. In this initial com-
pression, both measures of the average rotation are assumed to be zero. Then, we
imagine that small increments of homogeneous strain and uniform rotation are su-

perposcd on this. In this event, when the kinematic assumption is used to calculate
the normal and tangential components of the contact force, we obtain

p = MA1 /2(A, - e~i)aaj, (11)

and

= 9M (1 - V) A/ 2 (6,4 - ei~aj)(eik -+ Wjk - Wjk)Ok. (12)
(2- v)

These, then, are used with the orientational distribution function (3) in the expres-

sion (9) for the stress and the integrals over solid angle carried out.
Integrals that facilitate this calculation are

iijkl - ] iajako da = 15 (bijbkl + 6ikbj1 + 6 i16 jk) (13)

and the more elaborate// 1
aJajiak0apaqda (biqljklp + bjjq'Ic ,I + bkq11 it3+ ,hqIpijk + bpqlijki). (14)

7

The result of the integration for the stress is

2 4 14r15
12ir (1 - ii)

+ 1 (2 - v [(5 - 2e)(ei, + wij - wij) + 6eh3 (eik + Wik - Wik)hk]5 (2- v) (15)
67ir v35 (2 - v [(7 - 4 E)(ekk6 ij + 2eij) + 6chkh1ek6ij + 3Eekkhh,

+ 12E(hiejkhk ± hjekhk]}.
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The terms in the first line of equation (15) are those associated with the initial
isotropic volume strain. Those in the second line result from the additional incre-
ments of strain and rotation and the resistance to these provided by the component
of the contact force that is tangent to the surface of the sphere. The terms in the
third and fourth lines are incremental contributions associated with both compo-
nents of the contact force. If the contact force had only a normal component with
magnitude given by (11), then the stress would be given by (15) with the first line
unchanged, the second deleted, and the factor v/(2 - v) multiplying the third and
fourth lines replaced by unity.

When body couples are absent and the deformation is homogeneous, the stress
must be symmetric. If the average rotations had been assumed to be the same from
the outset, symmetry of the stress could be achieved by discarding the antisymmet-
ric part of the last term in the second line of (15). The resulting expression would
be symmetric, but incomplete. The correct method of obtaining a symmetric stress
is to make the distinction between the rotations and to determine the average ro-
tations of the particles so that the symmetry of the stress is insured. For example,
symmetry of the stress given by (15) requires that

2(5 - 2E)(wij - w13) + 6e[(wk - wik)hj - (wjk - wk)hi]hk

+ 6E(eikhj - ejkhi)hk = O.

Solving this for w yields

Wij = wq + 3c (eikh, - ejkhi)hk. (17)

Thus, given the strength and axis of the anisotropy and the average strain and
rotation of the aggregate, equation (17) determines the average rotation of the
particles.

Upon employing (17) in (15), we obtain an explicit form for the symmetric
stress given in terms of the average strain of the aggregate alone:

= nak MA"/ 2  
' 47r - 2E)j + 6ehhj]A

2 47r 1'[(5
127r (1 - v) (4 - 2E)(hei ± hie~k)hk+ 5 (2-v) [(5 - 2e)e±j + (5)

± 18E 6 hkhekh1 h, (18)
(5+6)

35 (2 - v) [(7 - 4 e)ekkbij + 2ei3 ) + 6Ehkhjk16e5 + 3-eekhihj

+ 12e(hiejkhk + hjeikhk]}.
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This is the form of the stress for a homogeneous deformation of a transversely
isotropic but otherwise random array that has been first isotropically compressed

and then subjected to a small strain. Of course it is correct only in so far as the

characterization (3) of the anisotropy, the contact force laws (5) and (7), and the
kinematic assumption (10) are correct.

2 Inhomogeneous Deformations

When the deformation of the aggregate is strongly inhomogeneous, the calcu-

lation of the stress is slightly more complicated and a corresponding determination

of the couple stress is possible. We consider an infinitesimal plane element of area
with unit normal n and a typical pair of contacting particles with their centers on
different sides of the plane. The vector s a= a is directed from the center of the
particle in the region pierced by -n to the center in the region pierced by n. The
line joining the centers intersects the plane at the point r; and the contact is located
at r, = r - s, where -1/2 < < 1/2. The location of the area element is assumed
to be fixed by r and variations in the position of the point of intersection over the

element are ignored. The number density n, the orientational distribution A, and

the contact force F are all taken to be functions of r, and a. Then

A(r, -a ) = A(r,a ) and (rc, -a ) = -F(r , a ) (19)

Again the determination of the stress parallels that of Cauchy as outlined by

Love [7]. However, because of the strong inhomogeneity, the calculation of the force

transmitted across the plane by all pairs of particles with orientation a whose line

of centers is cut by the plane involves an integration over . The result is most
conveniently expressed in terms of

fi(r - s, a) n(r,)A(rc, a )F(rc, a). (20)

Then, at r, the components of the traction r are given in terms of the components

of n by

7i = tjnj, (21)

where

ti 3 (r) = - ff I 12fi (r - s,a )aj ddt (22)

with the double integral again taken over all solid angle.
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The corresponding expression for the couple stress c is obtained by considering
the moment of the contact force about r:

cit~r) a // 1/2

ciL(r) = .-i/k2 sjf&(r - s, a )ajd da (23)

Then the components of the couple per unit area X at r are given in terms of those
of c and n by

Xi = citni. (24)

The stress and the couple stress are related by the balance of moment. In the
absence of body couples, this is

Ocij i± ijktkj = 0. (25)

If the contact forces are assumed to be related to average strains and rotations,
then simpler, approximate forms for the stress and the couple stress may be ob-
tained. These are based on the Taylor series expansion of the contact force about

f(r - "s) f(r) - 8* Vf(r) + 2 2(s • V) 2f(r). (26)
2

When the series is used in (22) and (23) and the integrations over are carried

out, we obtain
1a1 302

tij(r) =- f fi(r, ci )dajdo - -a Ii2 fi (r, a )ajakada (27)

and

cil(r) 12 1a 3 jk r J fk(r, a )ajalamda, (28)

up to an error of order (a, L)4 , where L is the length scale over which the average
fields vary.

It should be clear from (27) and (28) that the couple stress and the antisym-
metric part of the stress depend only upon the tangential component of the contact
force. Also, because the expansions for the stress and couple stress have been car-
ried to the same order, there is an additional contribution to the stress that involves
the second spatial derivatives. It may be that this term is small in comparison to
the classical part of the stress, however the contribution of its antisymmetric part
to the balance of moment (25) is exactly the same order as the divergence of the
couple stress given by (28). In any case, it is the diameter of the particle that
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provides the length scale in terms of which the importance of the new terms may

be evaluated.
To illustrate the calculation of the couple stress and new parts of the stress, we

suppose that the aggregate is isotropic and the behavior of a contact is governed

by (4) through (8). Then, with the help of (13) and (14),

Jf/(ra)a akai da = 3 nkMA1/2 [ A(bi6kl + bik6jl + bilbjk)

(7 - 6v) (eijbkl + eikbjl ± ei1l5ik) - V (ejkb5 il ± eiv5 k ± ekib5ij)
(2 - v) (2-v)

_(1-u)
-7 v) (fQijkl + £2 ikbjl + Qilbjk), (29)

(2 -uv)

where ? = w - w. Using this, for example, in (28) an explicit form of the couple

stress may be obtained :

Cpk = 1 nk M /(1 - v) - [EpjiWik20 M6 (2- v) rl

+pi (eik + f2ik) + epki (el + 2 l)]. (30)

We note that, as a consequence of the assumptions made concerning the contact

forces and the kinematics, the gradient of the difference between the two rotations

appears in the couple stress, often accompanied by spatial derivatives of the strain.

This is in contrast to the classical Cosserat theory for isotropic materials as out-

lined, for example, by Toupin [15], in which the gradients of the average particle

rotations alone appear. Also, in this classical couple stress theory, the antisymmet-

ric part of the stress is associated with the difference in the average rotations alone,

not with the spatial gradients of the difference or those of the strain. However, the

structure of the theory that results from the approach outlined above does depend

rather strongly on the nature of the contact. For example, if slip rather than defor-

mation were to predominate at contacts, then particle rotations might be expected

to be large relative to the classical strains and rotations. In this case, the resulting

theory for the inelastic deformations of the aggregate is likely to bear a stronger

resemblance to the Cosserat theory. In any event, given the relation of the contact

forces to the average fields of interest and a characterization of the orientational

distribution of contacts, the expressions (27) and (28) may be used to calculate the

stress and couple stress. Of course, the relationship between the results of this cal-

culation and what is measured in numerical simulations and physical experiments
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will depend upon how closely the assumptions upon which the theory is based are

realized.
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Chapter Six

Evolution of Elastic Moduli
in a Deforming Granular Assembly

Peter A.Cundall

Abstract

Numerical experiments are performed by the distinct element
method on a sample of 432 spheres in three dimensions. During ax-
isymmetric loading and unloading of the sample, measurements are
made of incremental elastic moduli. The initial elastic shear modulus
compares well with shear-wave results from similar physical tests, but
the reduction in modulus with shear straining is greater than that ob-
served physically. The evolution of confined moduli (corresponding to
p-waves) is a sensitive measure of strain-induced anisotropy.

1 Background

Chen et al. (1988) present the resulfs of physical experiments on samples consisting
of a mixture of two sizes of glass spheres. The experiments, which employed a

torsional simple shear device, produced a number of interesting results that may

be interpreted by means of similar numerical experiments. One set of numerical
experiments was performed by Cundall (1988) with the objective of reproducing

the stress/strain behavior in shear and the associated volumetric changes. These
experiments, and a related theoretical study by Jenkins (1988), suggest that the
physical samples contained considerable depositional anisotropy.

Similar numerical experiments are reported here, but the emphasis now is on
the variation of elastic wave speeds as the sample is loaded and unloaded.

The results are compared to the physical measurements, and are related to

changes in sample fabric.



2 Numerical Procedure

The distinct element method (Cundall & Strack 1979a) was used to perform the

tests, using program TRUBAL (Cundall & Strack 1979b, Strack & Cundall 1984) to

load a sample contained within a periodic volume (see Cundall 1988). A 432-sphere

sample was prepared with the following characteristics for the intact material (glass
spheres) and for the assembly. Note that the elastic and frictional properties of
glass were confirmed by direct loading on individual glass beads (Ishibashi 1989).

Shear modulus of glass G = 2.9 x 1010 Pa
Poisson's ratio of glass v = 0.2

Friction coefficient = 0.3
Number of particles: 40 of 0.1825mm rad.

392 of 0.1075mm rad.
Isotropic stress o = 1.38 x 105 Pa
Initial porosity n. = 0.368
Initial coordination number Ko = 5.37

Hertz theory applies in the normal contact direction. In the shear direction, the
stiffness depends on normal force but not on shear displacement (see Cundall 1988).

In order to achieve, simultaneously, a given isotropic stress and a given porosity,
some adjustment of the friction coefficient is necessary during compaction. The
following sequence of steps was used to create the initial isotropic sample.

1. Random placement of all particles within a cubic space of 19 mm3 ; no particle
touches any other.

2. Isotropic shrinking of the periodic volume to a porosity of n = 0.367, under a
friction coefficient of p = 0.01.

3. Isotropic compaction or expansion of the periodic volume under p = 0.05, until
a mean stress of ao = 1.38 x 105 Pa is achieved.

4. Setting of friction coefficient p to 0.15, and further isotropic volume adjustments
as necessary to keep the mean stress at 1.38x 105 Pa. The final porosity stabilized
at n = 0.368. The friction coefficient was then set to 0.3.

For comparison, the physical tests (Chen et al. 1988) were done under conditions

of a. = 138 KPa, n = 0.367.
Compression/extension shear tests are performed by applying strain rates to

the periodic space as follows
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3 3 + 3

e22 = ± (1
3 3

where 7m is the maximum shear strain plotted
in the figures that follow. Constant isotropic
stress is maintained with a numerical servo-
control that adjusts .

3 Results

Figure 1 provides three orthogonal views
of the sample after volumetric compaction: the
intensity of shading is related to the mean

stress carried by each particle. White (un-
shaded) particles carry no load - i.e. they are
"floating." It is clear that there is a wide varia-
tion in the average load carried by the particles,

even though the compaction was carried out at
a very low friction coefficient.

A histogram of normal forces is presented
in Figure 2 for the same starting state. Figure 1: Three orthogonal views

Figure 3 records the stress/strain response of the numerical assembly at its
of the sample for axisymmetric loading and un- initial state; the intensity of shad-
loading according to equations (1). ing is proportional to the mean

Figure 4 shows the corresponding volu- stress carried by each sphere.
metric response, and Figure 5 the evolution of
coordination number, K, with strain.

The maximum applied strain was about 0.45%, to correspond with the physical
tests performed by Chen et al. (1988) and Ishibashi et al. (1988).

In the physical tests of Chen et al. (1988), long wavelength shear waves of
low amplitude were propagated through the samples in order to assess the chang-
ing elastic shear modulus. For low amplitude oscillations, contact sliding does not
occur-sliding stops at the instant of unloading; upon reloading, sliding only re-
sumes again at the original point of loading.
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Figure 4: Volume changes corresponding to Figure 3.

Such "probes" are simulated numerically by making small strain increments,

Ae 12 , at infinite friction to prevent sliding. The probes were done at several points

along the loading/unloading path, and corresponding shear modulus values plotted
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Figure 5: Evolution of coordination number during loading and unloading test of
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Figure 6: Evolution of elastic shear modulus (in 12 direction) during the test of
Figure 3.

The mtiai modulus (at zero shear strain) is 127 MPa, which compares with 161
MPa derived from propagating shear waves in the physical tests (Chen et al.). The
reduction in numerical shear modulus at 0.45% strain is 32%, while the physical
tests give a reduction of around 20% for the same shear strain.

It is known that a granular material becomes elastically anisotropic when
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loaded in shear. Partly, this is due to preferential contact loss in the minor prin-

cipal strain direction: i.e. a geometric fabric develops. But when contacts obey

the Hertzian law, they become stiffer in the major direction and softer in the mi-
nor direction: this dependence on the angular force distribution may be termed
a kinetic fabric. Both geometric and kinetic effects occur in the numerical tests,
but there does not appear to be an accepted way to measure the combined fabric.
We can quantify the anisotropy by making small-strain probes that correspond to
propagating compressional waves in three orthogonal directions; recall that ii is
in the major principal direction of the axisymmetric sample. Table 1 records the

modulus values at various states of the loading/unloading test-refer to Figure 3.
The probes are applied as strain increments in the given directions; all other strain

components are zero.

State (11) (22) (33)

A 341.1 357.6 356.9
B 366.0 204.5 173.1
C 310.4 279.7 248.7
D 157.5 289.8 307.1

Table 1: Confined modulus values in MPa for probes in three orthogonal directions.

Figures 7 and 8 record the distributions of contact normal forces at states B
and C, respectively.
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Figure 8: Histogram of contact normal forces at state C (zero shear stress, after

unloading).

4 Conclusions

The agreement in initial elastic shear moduli between physical and numerical tests

is considered to be quite good, bearing in mind that the numerical simulations were

based on properties of intact glass, and incorporated no arbitrary factors. However,

the numerical tests show a 50% greater reduction in modulus with straining than
the physical tests. Table 1 suggests that p-wave measurements in tests on granular

material may be used as a sensitive measure of anisotropy, and how it evolves with

shear strain. The ratio between orthogonal modulus values is almost 2:1 at 0.45%
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shear strain.
The histograms of normal force show that force distributions are heavily biased

towards the low values; theories that assume symmetrical distributions about the
mean may be seriously in error.

The simulations were all done on an 80386-based micro-computer, and each

stage (e.g. compaction; loading) takes two to four hours to compute; each probe

takes 25 minutes.
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Chapter Seven

Measurement of Local Strainrate
in a TRUBAL Sample

Peter A. Cundall

Abstract

The numerical simulation TRUBAL is employed together with
a least-squares procedure to determine the local strain tensor expe-
rienced by a particle. The average of the straing tensor determined
from the local strain tensors is compared to the overall strain tensor
the difference between the two is calculated.

1 Discussion

Most theoretical models of a granular material contain the assumption that a

representative particle is embedded in a uniform strain field, in order to compute

the relative displacements at particle contacts. It is instructive to use TRUBAL to
measure the local strain tensor experienced by each particle, and develop statistics
that express the spacial fluctuations in strainrate.

The measurement of local strain is not as simple as the measurement of local

stress. To determine the average stress tensor of a particle we use an expression that

contains the discrete forces acting at the particle's contacts; the forces elsewhere
are zero. It is not correct to use the displacements in a similar way to find strains,
because the displacements in the voids are not zero. The method adopted here
is to find the strainrate tensor that minimizes the error between the predicted

displacements and the measured displacements. A least-squares procedure is used



to derive the tensor, given a set of displacement vectors and corresponding position
vectors. The general procedure is described first, and tested on manufactured data,
consisting of displacements at random points derived from random components of a
displacement gradient tensor. It should be noted that, in general, the displacement
vector components do not sum to zero - i.e. there is a rigid-body movement. The
least-squares procedure also determines this.

1 General Least-Squares Procedure

We wish to find the displacement gradient tensor, eij, and the rigid-body dis-
placement, u?, that represent the best fit to a set of n measured displacement values,
U:', where m = 1, n. The displacement vector U: is located at a coordinate of xi.
The predicted displacements, ul at the n points are:

u,= C 3X + u, (3)

A measure of the error is the sum of the squares of the deviations between predicted
and measured displacements:

n 3

z = - (4)

m=1 i=1

The condition for minimum z is that

O9z _z

= 0 and - = 0 (5)

Substituting (3) into (4) and differentiating, a set of twelve equations is obtained

as follows, where i = 1, 3:

xl x i x 2  xi +±ei3 x x1 -4 Zx°  
= U x (6)

eii14 xx +±ei2ZEXMXT +el3 3 XmX2 + UOZX' E ZU:'X (7)

eit1Z X' +ei2Z:X-2±ei3Z1:XM±u + U 1 ' U' (9)
m m m m
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Since the coefficients of eij and u ' on the left-hand sides are independent of i, we
need only evaluate sixteen coefficients, and then apply a solution procedure three

times, with different right-hand sides. The LU-decomposition routine LUDCMP given
in Press, et al. (1986) is applied to the 4x4 coefficient matrix, and the accompanying
back-substitution routine LUBKSB used three times; in this way, all twelve unknowns

(nine strains and three displacements) are obtained.

The scheme is tested by starting with random strain and rigid-body compo-
nents. These are used to generate displacement vectors at n random locations,
using (3). The solution process described above then produces computed strain

and rigid-body components: these are compared to the assumed starting values.
It is found that the computed and assumed values are very close for n > 4. The
program TEST, listed in Appendix, performs this comparison.

2 Least-Squares Procedure Applied to TRUBAL Data

m The above procedure is applied to sets of velocity vectors derived from a

sphere assembly undergoing continuous straining. For each sphere (the "target"

sphere) in the assembly, all contacting spheres are identified. Two separate ways of

providing velocity data are used (yielding two distinct measures of local strainrate):

1. The translational velocities of contacting spheres relative to the target

sphere are taken; there is no contribution from the spins of any particle.

The coordinates inserted into equations 6 - 9 are the relative centroid

coordinates.

2. At each contact on the target sphere, the relative velocity vector between

two coincident points on the two spheres is used in the equations. This

strain measure is affected by the spins of the target particle and all

contacting particles. The coordinates of the contact points are used,

rather than the centroids.

The procedure outlined above is implemented into subroutine JSTAT, and called

from TRUBAL. It was checked with a number of two- and five-particle simulations, in

which the spheres are given fixed velocities. Various combinations of rotations, spins

and translations pk.oduced strainrates and rigid-body motions that were compared

with predicted values. At this level, the procedure appeared to work as intended.

3 Preliminary Rresults From TRUBAL Simulations

Some preliminary tests have been done with the 54-sphere assembly used in
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previous tests (Cundall, 1988). These tests use Hertzian contact laws. An u.nex-

pected result is that significant relative rigid-body -notions are observed - i.e. the

target particle appears to have a continuous translational velocity relative to its

contacting neighbors. At first sight this does not seem to be reasonable. However

the combination of anisotropic contact distribution and a nonlinear contact law

means that overall tangent stiffnesses vary with angle around a sphere. If, say, one

principal stress is increased, the relative contact displacements on opposite sides of

a sphere must be different, if equilibrium is to be maintained. Hence the target

sphere moves relative to its neighbors.

The following results are for four stages in an axisymmetric compression test,

starting with the isotropic state produced by data file SR1.DAT. The sample is

compressed in the all direction, using a servo-control to keep the mean stress or

constant at 138 KPa. The shear stress ratio, 7/ 0 , is shown for each stage, where

=1 { 0'(22 + (733}

The applied strainrate components (of the periodic space) are shown first, in the

form

621 622 623

631 632 63/

The strainrates represent averages of computed values for all particles that have

four or more contacts: the actual number of particles is shown. The two measured

strainrate tensors are then given, in the same form, followed by the relative rigid-

body velocities for the two cases discussed previously. The velocities are given in

the form: (il,iL2,i3)-

State at cycle 29050; rcr, = 0.31.
Applied strainrates ...

-1.304e-07 0 0

0 7.956e-08 0

0 0 7.956e-08 (4j particles considered)

Strainrate measure 1 ... Strainrate measure 2 ...

-1.317E-07 -2.702E-09 -1.365E-08 -1.220E-07 -1. 166E-08

-1. 100E-07

7.851E-09 7.306E-08 -1.185E-09 7.623E-09 6.717E-08

-2. 181E-08

-9.145E-09 -3.549E-09 7.914E-08 7.862E-08 7.423E-09

5.862E-08
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Relative velocities ...

1.606E-06 1.273E-06 1.306E-06 1.265E-06 9.717E-07

9.694E-07

State at cycle 30050; r/o = 0.42.
Applied strainrates ...

-1.296e-07 0 0

0 8.042e-08 0
0 0 8.042e-08 (47 particles considered)

Strainrate measure 1 ... Strainrate measure 2 ...

-1.385E-07 4.289E-08 -7.OOOE-08 -1.153E-07 5.952E-09

-1.005E-07
1.570E-08 8.747E-08 1.317E-08 1.233E-08 5.250E-08

-4.322E-08
1.959E-08 -4.749E-08 1.065E-07 6.215E-08 3.052E-08

4.659E-08

Relative velocities ...

1.898E-06 2.127E-06 1.998E-06 1.620E-06 1.124E-06

1.248E-06

State at cycle 31050; r/o = 0.47.
Applied strainrates ...

-1.263e-07 0 0

0 8.370e-08 0

0 0 8.370e-08 (45 particles considered)

Strainrate measure I ... Strainrate measure 2 ...

-1.374E-07 1.033E-08 -3.049E-08 -1.072E-07 3.644E-09
-3.847E-08

-1.388E-08 6.290E-08 1.228E-08 -1.917E-08 3.997E-08

1.332E-08

3.278E-08 2.573E-08 8.349E-08 1.102E-07 6.303E-08

6.426E-08
Relative velocities ...

2.246E-06 2.606E-06 2.842E-06 2.233E-06 1.502E-06

1.707E-06

State at cycle 32050; r/co = 0.49.
Applied strainrates ...

-1.259e-07 0 0

0 8.408e-08 0
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0 0 8.408e-08 (44 particles considered)

Strainrate measure I ... Strai-Late measure 2 ...

-1.349E-07 2.004E-08 -3.243E-08 -2.061E-07 4.816E-08

-1.774E-09

-3.121E-08 6.634E-08 1.840E-08 -2.584E-08 6.380E-08

-1. 067E-08

2.262E-08 5.704E-08 8.106E-08 7.896E-08 9.321E-08

1.072E-07

Relative velocities ...

2.732E-06 3.337E-06 3.007E-06 2.984E-06 1.677E-06

2. 401E-06

The main observation concerning the results is that the ensemble averages do

not correspond very well with the applied strainrates; furthermore, there are large

asymmetric components. It seems pointless to try to study fluctuations in strain

(i.e. deviations from the average), when the averages are themselves exhibit such

noisy behavior. The noise may come from an error in the procedure or coding, or

it may be real. In either case, further work is needed to gain understanding.
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APPENDIX: listing of TEST program for strain calculation

program test

C

c Test of least-squares recovery of strainrate tensors from

velocities

C

logical flag

parameter (ns=4,np=1O)

dimension a(ns,ns) ,b(ns) ,indx(ns) ,etargC3,3) ,ecompC3,3)

dimension x(3,np) ,v(3,np) ,rbv(3)

10 write (*,1001)

read (*,*) num

if (num .eq. 0) stop

c--- random rigid-body motions--

rbv(1) = (uran() - 0.5) * le-5

rbv(2) = (uran() - 0.5) * 1e-5

rbv(3) = (uran() - 0.5) * 1e-5

write (*,1006)

c--- generate target strain tensor--

do 20 i = 1,3

do 15 j = 1,3
etarg(i,j) = le-6 * (uran() - 0.5)

15 continue

write (*,1002) (etarg~i,j),j=1,3),rbv(i)

20 continue

write (*,1004)

c--- generate measurement points--

do 40 n = 1,num

do 25 i = 1,3

x(i,n) = 10.0 * uran()

25 continue

do 35 i = 1,3

v(i,n) = rbv(i)

do 30 i = 1,3

v(i,n) = v(i,n) + etarg(i,j) *x(j,n)

30 continue

35 continue

write (*,1003) n,(x(i,n),i1,3), (v(i,n),i=1,3)
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40 continue

flag = .false.

c--- assemble A matrix ---

do 60 j = 1,3
do 50 i = 1,3

a(i,j) = 0.0

do 45 n = 1,num

a(i,j) = a(i,j) + x(i,n) * x(j,n)

45 continue

50 continue

60 continue
do 68 k = 1,3

a(4,k) = 0.0

a(k,4) = 0.0

do 65 n = 1,num

a(4,k) = a(4,k) + x(k,n)
a(k,4) = a(k,4) + x(k,n)

65 continue

68 continue
a(4,4) = float(num)

c--- LU decomposition ---

call ludcmp (a,ns,ns,indx,d,flag)

if (flag) then

write (*,1000)

goto 500

else

write (*,1007)

c--- assemble b vector for each axis ---

err = 0.0

do 85 irow = 1,3

do 75 i = 1,ns

b(i) = 0.0

do 70 n = 1,num

if (i .eq. 4) then

b(i) = b(i) + v(irow,n)

else

b(i) = b(i) + v(irow,n) * x(i,n)

endif
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70 continue

75 continue

call lubksb (a,ns,ns,indxb)
write (*,1005) (b(i),i=1,ns)

85 continue

endif

500 goto 10

1000 format C'**singular matrix')
1001 format C'Number of points (0 to quit) ?$
1002 format (4x,1p,3e11.3,3x,ell.3)

1003 format (lx,i3,lp,3e11.3,5x,3e11.3)

1004 format (' Random locations; computed velocities ... )

1005 format C4x,lp,3e11.3,3x,ell.3)

1006 format C Target strains & rigid-body velocities .)

1007 format C'Generated strains & rigid-body velocities ... )

end

function uran 0)

c

c Uniform random number generator, according to Wicliman & Hill,

c Byte, March 1987.

c Seed is set in data statement.

c

save ix,iy,iz

data ix,iy,iz /1,10000,3000/

j =ix/177

k = ix -177*j

ix = 171 *k - 2*

if (ix .1t. 0) ix = ix + 30269

j = iy /176
k = iy -176 *j

iy = 172 *k -35 * j
if Ciy Alt. 0) iy = iy + 30307

j = iz /178
k = iz -178*

iz = 170 *k - 63 *j

if (iz Alt. 0) iz = iz + 30323

temp = float~ix)/30269.0 + float(iy)/30307.0 +

float Ciz) /30323.0
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uran = temp - float(ifix(temp))

return

end
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Chapter Eight

Mean-field Inelastic Behavior of
Random Arrays of Identical Spheres

James T. Jenkins Otto D. L. Strack

Abstract

We consider a random array of identical spheres that interact
through noncentral contact forces. We assume that the displacement
of a contact relative to a center may be calculated from the average
strain of the aggregate. The normal component of the contact force is
assumed to be Hertzian and the tangential component is assumed to be
linearly elastic until frictional sliding occurs. We consider the response
of the material in triaxial compression. For monotone deformations, we
calculate the evolution of the contact distribution, the volume change,
the stress-strain response, the plastic strain, and the strain hardening.

1 Introduction

We are interested in the average small strain response of random granular as-

semblies that interact through contacts that may slide. This interest originated in

attempts to explain the stress-strain behavior, volume changes, and wave propaga-
tion observed in deformations of a granular material carried out at a fixed pressure.
These experiments were done on hollow cylindrical samples of essentially identical
glass spheres confined within a membrane in a true triaxial/torsion device (Chen,
Ishibashi, & Jenkins, 198). Consequently, we focus our attention on an idealized
material consisting of identical spherical grains and assume that the location of
their centers is random.

In triaxial compression and extension, we assume that the deformation of a



sphere in the neighborhood of a contact can be expressed in terms of the average
strain of the aggregate. We are aware that, because of irregularities in the ar-
rangement of the particles, differences in the number of contacts per particle, and
variations in the magnitude of the contact forces, this mean field assumption is only
approximately true. However, we feel that it is worthwhile to derive a complete a
theory based on it in order to determine its structure and to obtain its predictions.
The structure of more complicated theories can be expected to contain the elements

of the simplest theory, and the predictions of the simplest theory can be obtained
analytically.

2 Theory

We suppose that the diameter of a sphere is D and that there are n of them
per unit volume. We take a to be the unit vector from the center of a sphere to
a contact on its surface. The rectangular Cartesian components of the unit vector
a are (cos o sin 9, sin o sin 9, cos 9), where 9 is the polar angle from the axis of

symmetry.

3 Contact Displacement

As mentioned above, we assume that the displacement u of a contact point
relative to the center of its sphere is given in terms of the average strain e of the
aggregat- and the vector from the center of the sphere to the contact by

D
u= e jaj. (1)

2

In more complicated deformations involving average rotations, the corresponding

mean field assumption involves both the average rotation of the aggregate and the
average spin of the spheres (Jenkins, 1991).

In triaxial compression or extension, the volum. .train A (taken positive for a
decrease in volume) is

A = -(e33 + 2e1i) (2)

and the shear strain -y (half the maximum shear strain) is

1
-Y = -1(e33 - ell). (3)

2

The normal displacement 6 of a contact point toward a center is, from (1),

6=-D (A - 2y + 6-y cos2 9). (4)
6
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The corresponding tangential displacement s is

s = D-y sin 0 cos 8eo, (5)

where e0 is the unit vector in the direction of increasing 0.

4 Contact Force

The force F(a ) exerted by the sphere at a contact with orientation a has
components parallel and perpendicular to a :

F, =Pai - T, (6)

where T- a = 0. In a homogeneous deformation, F is independent of position.
Then, because the force exerted on the sphere at a contact is equal and opposite to
the force exerted by the sphere, F(-a ) = -F(a ). The magnitudes of the normal
and tangential components depend upon the displacement of a contact relative to
the center and are, in general, functions of a.

Following Hertz, the normal component P is related to the normal component

of the displacement (Love, 1927):

P = M(66/D)3/ 2 , (7)

where M is given in terms of the shear modulus G and Poisson's ratio v of the
material of the spheres by

2 GD 2  (8)
M=9vf3 (1 - v)" 8

Here, for the tangential component of the contact force, we employ a bilinear
relationship that incorporates elastic displacement and frictional sliding. Its form
depends on the magnitude T of the tangential component relative to the product of
the coefficient of friction p between the spheres and the normal force P. Provided
that T < IP, T is related to the magnitude s of the tangential displacement through

T= Ks, (9)

where the modulus K is that determined by Mindlin (1949) for the initial shearing
at a contact subsequent to the application of the normal force:

25/3 G2/3 3K= -[ 3 (1 - v)DP]1/3  (10)

(2-8v)
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Otherwise, T = uP. (11)

Equations (9) through (11) are an integrated bilinear approximation to the more
elaborate incremental inelastic behavior discussed by Mindlin and Deresiewicz
(1953).

5 Contact Deletion and Sliding

The results concerning contact deletion and sliding in triaxial compression (y >
0) are most compactly expressed in terms of

b - A - 2-y = -3ell and c - 6y. (12)

Also, it is convenient to restrict our attention to the range 0 < 9 < 7r/2.

At the onset of sliding, the tangential displacement s E is completely elastic.
With the help of (9), (11), (7), (8) and (10), its magnitude sE is given by

8E = T/K = P/K = Ab, (13)

where
t(14)
31 -v"

When (5) and (4) are used in (13), the condition for sliding to begin may be ex-

pressed in terms of b, c, and 9 as

csin cos 0 =A(b + ccos2 o). (15)

Sliding does not occur while the function g(9), defined as

- [c(sin 20 - Acos 2 - A) - 2ATb] (16)

is negative. The first zero for g(9) occurs in the interior of the interval at the value

0, for which dg/d = 0. We have, from (16), that

d = -(cos 20c + Asin 20,) = 0 (17)
dO 6

or

cot 20, = -A (18)

Note that 0, is independent of b and c and greater than r/4.
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Substitution of 0, for 0 in g(9c) = 0 yields the relation between b and c at the
onset of sliding:

c = -2b cos 20c (19)
1 + cos20

With (18), (16) may be written as

g(O)=Dcot20c c cos2(0 ) +1 +2b (20)

In further shearing,
c > -2b cos 20c (21)

- 1 + cos20c -

Sliding then occurs over a range of angles 0, < 0 < OM, where, when b > 0, 0m
and OM are obtained as the roots of g(0) = 0:

cos2(0 - c) = -(1 + 2-) cos 20. (22)
C

The roots are
0m = Oc- arccos [(1 + 2 ) cos2c] (23)

and
OM = Oc + -1 arccos [(1 + 2 ) cos29]. (24)

Contact is effectively lost at those contacts at which the normal component of
the contact force has relaxed to zero or, equivalently, when b, given by (4), vanishes.
In triaxial compression, contact is first lost at 0 = 7r/2 when b = 0. In order to

characterize further loss of contact, we define an angle 01 by

f7r/2, when b > 0

arccos V/'-'b/c, when b < 0.

Then, when b < 0, contact is lost over the range in angle 01 : 0 < 7r/2 and sliding
takes place over the range 0m_ 0 < OM, with OM given by (24) and OM = 01.

When sliding occurs, the magnitude sp of the part of the tangential displace-

ment associated with it is equal to the function g(9):

sP = g(0) = D[c sin 0 cos 0 - A(b + c cos2 0)], (26)

where 0,, < 0 < OM.

For glass, typical values of M and v are 0.3 and 0.2, respectively, so = 0.225.
This value of A is used when displaying the results of the calculations.
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6 Contact Distribution

Let dw = sin OdOd be the element of solid angle centered at a. The orien-

tational distribution of contacts A(at ) is defined so that A(a )d is the probable

number of contacts in this element of solid angle. Then the average number k of

contacts per particle, called the coordination number, is

k=f A( )d, (27)

where the integration is over all solid angle. In homogeneous situations, the distri-
bution function is independent of position and, because a contact is common to two

spheres, A(-a ) = A(ca).
When the distribution of contacts is isotropic, A(a) = k/47r. When the contact

distribution is not isotropic, but there are orthogonal planes of symmetry or an axis
ol symmetry, the distribution function may be approximated by the first two terms
in an expansion in terms of completely symmetric, traceless tensors ( Cowin, 1985;
Onat & Leckie, 1988):

k
A(a) - (1 + aijciaj), (28)

where
151 ff 1a13 2kJ'"1' (29)

When the distribution exhibits transverse isotropy, a may be expressed in terms

of the unit vector h in the direction of the axis of anisotropy and the strength E of
the anisotropy (Jenkins, 1988):

aij = -E(bij - 3hih3 ), (30)

where 0 < E < 1. In this event, the approximation to the distribution function is

A(a) - [(1 - E) + 3e(hiai)2 ] (31)

and E is related to the exact distribution function by

1 51 Jf A(a)(aiaj - 1 bj)dw. (32)

7 Evolution of the Contact Distribution

As grains slide at contacts, the orientational anisotropy of the granular material
will change. For example, an initially isotropic distribution will, when subjected
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to triaxial compression, develop transverse anisotropy along the axis of loading.

The magnitude of the anisotropy will increase with increasing deformation and it

will be reinforced when the average strain increases to the point where contacts are

deleted. It follows from equation (26) that the sliding displacement is of the order of

magnitude of the strains and from (25) that the contact deletion depends upon the

ratio of the strains. Consequently, when contact deletion occurs, its contribution

to the fabric is much larger than that of contact sliding. For this reason we neglect

the effect of sliding on the fabric and focus on that due to contact deletion. The

fabric associated with contact deletion influences the propagation of waves through

the aggregate (Cundall, Jenkins and Ishibashi, 1989).

There is a relatively simple relationship between the coordination number ki

of a deformed aggregate and the coordination number k of its initial, supposedly

isotropic, state. For example, in triaxial compression, we have

kj = 47r T sinOdO, (33)

= ir 4(3

where 01 is defined by (25). The integration gives

ki = k(1 - cos01). (34)

In order to obtain an analogous equation of evolution for the strength of the

anisotropy e, we employ the initial distribution function A(a) = k/47r in (32):

5 k j(Cos2  ) sinOdO (35)

In this case,the integration yields

4 = k s in 2 81 cos01 = (1 + cos 1 ) cos01. (36)

Once a relation between the volume strain and the shear strain is known, this

provides the explicit expression for the evolution of the fabric with increasing shear

strain.

We note that in our subsequent calculations of the stress, we employ the exact

distribution function based upon the deletion of contacts from the initial isotropic

distribution function rather than the approximate distribution function based on

the fabric tensor (30).
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8 Stress

Following Cauchy, an expression for the average stress tensor t associated with
a homogeneous deformation of the aggregate may be obtained by considering the
force transmitted over an arbitrary element of area by pairs of contacting spheres
whose line of centers is cut by the area element (Love, 1927, Note B). For random
assemblies, the stress is naturally expressed in terms of the orientational distribution
function and the contact force:

D2 ftD //A )Fdaol)ajdw, (37)

where the integration is taken over the entire solid angle.
When the orientational distribution of contacts is initially isotropic, the stress

may be expressed in terms of the coordination number, the solid volume fraction

v = 7rD 3n/6, and the components of the contact force (6):

tij 3 J J (Pa. - T)ajdw. (38)

where the integrals are taken over all contacts.

9 Pressure

The relation between the pressure p and the strain for an initially isotropic
contact distribution is, from (38),

1 kv (39)p- 3-ti3 = 4 r2  2 Pdw

where the integration is over all contacts. We note that the pressure does not

depend on the tangential component of the contact force. When (8) and (4) are
used in (39) and the result integrated over 0 from 0 to 27r, we obtain

kvM j (b + ccos2 9)3/2 sin OdO. (40)

If there were no shear strain, the volume strain Ao and the pressure p would
be related by

A3 / 2  7rD 2

SkvM (41)

This volume strain provides a natural scale for both the volume strain and the
shear strain in triaxial compression. Jenkins, Cundall, and Ishibashi (1989) indi-

cate how to obtain Ao in numerical simulations and physical experiments from the
incremental form of (41) applied at the initial isotropic state of the sample.
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For triaxial compression, the integral in (40) gives (Jenkins, 1988)

8A/2 = (5b+ 2c) ibA-T+ 3 I ( + v +c

When expressed in terms of A/Ao and -,/Ao,. equation (42) provides an implicit
relation between the normalized volume strain and the normalized shear strain in
triaxial compression. Because the pressure enters oiily through Ao, a single relation
between these normalized variables applies no matter what the variation of the
pressure.

In Figure 1 we plot A/AO versus -y/AO.
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Figure 1: A/Ao versus 'y/Ao.

With (42) providing the relationship between b and c, we can graph the vari-
ation of 0,m, OM, 01, and e with shear strain in triaxial compression. In Figure 2
we show the evolution of the regions of slip and lost contact with normalized shear
strain -f/Ao.

In Figure 3 we indicate how e varies with 7 /Ao as contact are deleted. Values
of E greater than one correspond to negative values of the approximate distribution

function and indicate a breakdown of the approximation.

86



90

80- Deletion

70

60
a)

N 50
C"0

a) 40
0)

30-

20- -

10-

0-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Shear Strain

Figure 2: OM and 01 bounding the region of slip from above and 0,m bounding the

region of slip from below.

1.2-

1-

Cf
0.8

w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Shear Strain

Figure 3: c versus -y/Ao.

87



10 Shear Stress

The shear stress q,

q (6--(33 - t1 1 ), (43)

contains contributions from the normal and tangential components of the contact
force. We first consider the part qN contributed by the normal component.

From (38),

qN = k JP(a' - ')&. (44)N=87r23 D2 ff 3~ _144
Upon using (7) and (4) in (44) and carrying out the integral over 0, we obtain

qN 3 kvM fo8 l

q= 3 "MD (b + c cos 20)3/2(3 cos 2 9-1) sin OdO. (45)

Upon carrying out the remaining integration and using (41), we have, for triaxial
compression,

N=3 p [ ' b2± 4  C+2) b 2  )lVC-+Vb +
q 64 A3/2 c (3b + 4bc + 4c 2) - 3\i-(b + 2c) In V ] b

(46)
Equation (46), used with (42) gives qN/p as a function of y/Ao. We note that
smooth particles can sustain a shear stress and that the angle of internal friction,

sin-l(qN/p) varies with the shear strain.

The calculation of the part qT of the shear stress associated with the tangential

component of the contact force is more complicated because its bilinear nature
requires us to employ our characterizations of the onset and extent of contact sliding.
When the forms of the bilinear relation (9) - (11) that are appropriate to the elastic

and frictional regions are employed in (43), qT may be written, after an integration

over 0, as

qT- 27p (2- .)t 01c(b + ccos2 9)1/2 sin 3 9 cos 2 OdO

- GM [csincos0 - (b + ccos 2 0)](b + ccos 2 0)1/2 sin 2 Ocos0d(

-8 (47)
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Upon carrying out the integrals using the definition (25) of 01, we obtain
qT P (1-v) 27 /W (3b2 4b 4C2)

A3/2 (2- v) 4 8c
0

6 / 2(b+ 2c) ln vt+ )
sin OM (b + ccos2 0 M) 1/ 2 [8(b + ccos2 OM) 2

48c
- 2(b + c)(b + ccos2 OM) - 3(b + c) 2]

(b + c cos 2 m)1/2 [8(b + c cos2 om)2
±Asin~m48c

- 2(b + c)(b + ccos 2 0m) - 3(b + c) 2]

+ A c) [J(sinOM) - J(sinO,.)]

(b + c cos2 GM) 2 /2 ,( os M~ CCS M
-- 48C CO M[CO 2 M b  CCO 0 )

- 6(b + 2c)(b + ccos2 OM) + 3b(b + 2c)](b + ccos 2 0m) 1/ 2 cos [8 cos2 0 ,mc(b ± ccos2 0,)
+ 48c

- 6(b+ 2c)(b+ ccos 2 ,) + 3b(b+ 2c)]

P 6(b + 2c)[I(cos OM) - I(cos0m)]j, (48)

where
1(u) = ln(uv/ V+ + 2) (49)

and andJ(u) - 7carCsin (u c (50)

with 0. given by (23) and OM given by (24) when b > 0 or OM arccos V/--/C
when b < 0. Equation (48) used with (42) determines the part of the shear stress
associated with the tangential component of the contact force as a function of the
shear strain. It corrects the corresponding exprssion for qT given by Jenkins and
Strack (1992).

In Figure 4 we plot the qT and qN, normalized by the pressure, versus the
normalized shear strain.
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Figure 4: qN/p and qT/p versus -/Ao.

The relative magnitudes of qN and qT are consistent with Cundall's (1988)
observation that in a corresponding numerical simulation qT was only about fifteen
percent of qN.

11 Plastic Strain

The average plastic strain eP associated with the sliding displacement sP has
the components p,-- 3 /

e = (sac ± s+"ai)dw (51)

where the integration is over the solid angle subtended by the region of sliding. We
note that ef = 0, so that there is no plastic volume change. This is not inconsis-
tent with the relatively small inelasticity in the volume strain in a corresponding
numerical simulation by Cundall, Jenkins, and Ishibashi (1989).

The plastic shear strain tP is

1 p 3 f_
S= (e33 - l (sc3 1- 1P1)dw (52)

or, after an integration over €,
3 em°

=y fern [csin 8 cosO - 4(b + cos2 8)] sin2 O cosOdO (53)
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So,

= -c[(2 + 3 sin 2 OM) COS 3 OM -_ (2 ± 3 sin 2 8,m) CoS3 Om]

2 0
- ,4l(b±c) (sin3 GM -sinl

3 Om) - -c(sin5 9 OM- sinSO )]. (54)

In Figure 5 we plot "yP/Ao versus -y/Ao.
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Figure 5: -yP/AO versus -y/Ao.

12 Strain Hardening

For a given value of the plastic strain, yield in the q-p plane occurs on the
family of straight lines

q/p = h(yP), (55)

where h(-yP ) is the strain hardening function. Because as a consequence of the
kinematic assumption (1) there is no plastic volume strain, curves of constant plastic
potential are straight lines parallel to the p axis. The strain hardening function
may be obtained numerically by first determining q/p from (46) and (48), then by
using (42) to express q/p and "yP/Ao as functions of -y/Ao alone, and, finally, by
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eliminating the parameter -/Ao to obtain q/p in terms of 'yp/A O. In Figure 6 we

show the normalized shear stress versus the normalized plastic strain. This shows

the initial elastic response, yield, and the subsequent strain hardening.
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Figure 6: q/p versus yP/6o.

Concluding Remarks

Although the results obtained apply most naturally to situations in which the
variation of the shear strain is prescribed and the pressure is held fixed, it is im-

portant to emphasize that they are not so restricted. For example, they also apply
when both the shear strain and the pressure are varied arbitrarily. In any case, the
relations obtained are universal in the sense that, when the stresses are normalized

by p and the strains are normalized by A0 , a single curve describes the results of
all triaxial compression experiments.

Numerical simulations are in progress to determine the ways in which the kine-

matic hypothesis (1), on which the analysis is based, might be improved.
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Chapter Nine

The Plastic Anisotropy
and Average Plastic Spin for

Planar Polycrystalline Aggregates
Vincent C. Prantil James T. Jenkins Paul R. Dawson

Abstract

Significant changes in the mechanical state of polycrystalline metals
accompany the large deformations associated with forming operations.
For example, crystallographic texture is one important source of the
developing anisotropy in the flow stress in these materials. In order to
construct a continuum description of such anisotropy, we examine the
texturing of an idealized planar assembly of two-dimensional grains.
We derive equations of evolution for the grain orientation and express
them in terms of the macroscopic deformation rate and a single mi-
crostructural parameter. An analytic expression for the plastic spin
is determined in terms of this parameter. We introduce a continuous
distribution function to describe the orientations of the grains in the
aggregate. We focus on the second moment of the distribution and
derive the differential equations governing its evolution. We derive
the equation for the average plastic spin and express it in terms of
the microstructural parameter and the second moment. This provides
a micromechanical foundation for recent phenomenological proposals
for the form of the plastic spin.

1 Introduction

Many metal alloys produced and formed commercially are inherently poly-
crystalline in nature. Each continuum point is composed of many anisotropic
grains or single crystals. When such metals undergo extensive inelastic flow
and the grains preferentially reorient, the response of the polycrystalline ag-
gregate can become anisotropic. The resulting anisotropy is often referred
to as texture. The material properties are defined by a suitable average re-
sponse of the collection of individual grains. The focus of this work involves
using a polycrystalline plasticitv model to construct analytical expressions
describing the aggregate texturing and the anisotropic macroscopic response



of the material. In the process. natural microstructural variables are identi-
fied that survive averaging and determine the macroscopic anisotropy. Here
we concentrate on obtaining such an expression for the continuum plastic
spill.

We begin with a brief description of the geometry of crystallographic slip
in a single crystal undergoing primary-conjugate multiple slip. This is fol-
lowed by an outline of the polycrystalline framework. A mean field assump-
tion is introduced to link the macroscopic and microscopic length scales. This
is followed by a relatively detailed description of the kinematics appropriate
at the microscopic level of the single crystal. For the case of the kincmatically
deterniiaed multiple slip, the slip system shearing rates are determined and a
microstructural parameter is identified that enters naturally into expressions
for the plastic spin.

The polycrystalline aggregate is incorporated by means of an orientation
distributior function (ODF). Using an expansion introduced by Onat and
Leckie (1988), a set of even order tensors that characterize the moments of
the distribution are identified. Appealing to the conservation principle gov-
erning the field of grain orientations outlined by Cl6ment (1982) and Armin-

jon (1987), evolution equations for the moment tensors based on analogous
treatments by Advani and Tucker (1987,1990) are l)resented. In planar flows,
these can be used to continually update the ODF. A continuum level expres-
sion for the plastic spin is derived by orientation averaging. We show how the
average plastic spin depends on the microstructural parameter characterizing
the single crystal anisotropy and how this spin is related to the spin of the
principal directions of the developing anisotropy.

2 Polycrystalline framework

We investigate the material behavior of a planar single crystal undergoing

primary-conjugate double slip. The material point is assumed to be com-
posed of a large number of grains, each characterized by its orientation
relative to some fixed reference frame. The developing texture manifests

itself in a non-uniform distribution of grain orientations, modeled here by a
continuous orientation distribution function. We proceed from the polycrys-

talline model and adopt a mean field assumption to determine the flow at
the microscopic level. We use this in conjunction with a multiplicative de-
composition of the grain deformation gradient to determine the single crystal
response. The evolving ODF is then used to compute orientation averages
for the macroscopic behavior of the crystalline aggregate.

To construct the model, we adopt several simplifyng assumptions that

allow us to capture the pertinent features of the anisotropy at the grain
level and understand how their averages deliver anisotropic descriptions on
the macroscopic level. We assume the point is undergoing fully developed
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plastic flow and neglect elasticity; suppose the plastic flow is isochoric; and
restrict our attention to planar motions.

2.1 Microstructural Geometry of a Double Slip Sin-
gle Crystal

We consider a double slip single crystal as described by Asaro (1983). In each
grain the deformation can be accommodated by slip on two independent slip
planes, each identified with their unit normal vector, q/a). Further, the
crystallographic slip occurs along a unique slip direction, V( ,) , defined in
each plane. We, thus, characterize the crystal by the set of time-dependent,
orthonormal pairs (r7(a),v(a)) imbedded in the lattice. These slip systems
are fixed relative to the lattice frame and to one another, as illustrated in
Figure 1.

For convenience, two Cartesian reference frames are employed to describe
individual grain orientations with respect to the macroscopic material point.
One is fixed in space and characterized by the time-independent orthonormal
basis, {ej, e2}. The second is fixed in the lattice frame and identified with the
time-dependent, orthonormal basis, Ic, Ca±}, where a is a vector in the plane
which bisects the acute angle formed by the pair of slip directions. This vector
can be used to uniquely describe the orientation of the lattice frame, and
therefore the crystal, in space. The initial texture of the aggregate is defined
by the distribution of initial scalar orientations, 0, for n individual grains.
To resolve the evolving texture, it is necessary to compute the reorientation
of individual grains with continuing deformation.

2.2 Mean Field Assumption

In order to resolve the response of the individual crystals, it is necessary
to understand the kinematics and constitutive response on the slip system
level. In the context of polycrystalline plasticity this is accomplished by
adopting one of several hypotheses relating the kinematics on the grain level
to those on the macroscopic level. Because we appeal to the microstruc-
ture underlying the material point to describe its anisotropy, we must make
physically motivated assumptions in traversing these length scales. Based on
the classical work of Taylor (1938), we assume a homogeneous deformation
throughout the aggregate. The deformation gradient experienced by each
grain is equal to the deformation gradient experienced by the collection of
grains underlying the material point

F = F = ax ; X = a(X, t). (1)

Therefore, each individual grain experiences the macroscopic or continuum
deformation gradient. This assumption ensures an entirely compatible de-
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Figure 1: The microstructural unit model: a planar single crystal
oriented at angle 0, the scalar measure of grain orientation corresponding
to the vector a.

formation field. It has been shown to be reasonable for moderate amounts
of deformation in single phase metals whose single crystals are characterized
by a number of slip systems sufficient to allow an arbitrary motion.

3 Kinematics

At the grain level, we adopt a multiplicative decomposition of the deforma-
tion as illustrated in Figure 2. The first portion, F p , consists solely of volume
preserving plastic slip, defining an intermediate configuration, L, in which
the lattice remains fixed. This crystallographic slip takes place by the rela-
tive shearing of neighboring close-packed planes of atoms. In the absence of
elasticity, the remainder of the deformation consists of a rigid rotation, R*,
of the lattice frame to the current configuration, S. The total deformation
experienced by the grain is given by

F9 = R-Fp  (2)

The rate form of the multiplicative decomposition is an additive decomposi-
tion of the form

L = Lg = FF - ' = ft'R "T + R'LPR "T (3)

where
=F F (4)
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Figure 2: Multiplicative decomposition describing the kinematics of
crystallographic slip in the single crystal.

is the microscopic velocity gradient in the intermediate configuration. When
crystallographic slip is the only mechanism for plastic flow in the crystal, the
velocity gradient in the current configuration can be defined in terms of the
slip system geometry

L= (5)

where Y'@) is the rate of shearing along slip system a and

T (c') = jv( ) 0 i7(c) (6)

is the slip system Schmid orientation tensor. Physically, Lp is the velocity
gradient accommodated by plastic flow through the fixed lattice. In general,
the spin associated with this plastic flow, w , will differ from the overall spin
of material in the grain, w. This occurs because the crystal has available
to it only a limited number of deformation modes to accommodate plastic
deformation. The difference between these rates of rotation then results in a
subsequent rigid rotation of the imbedded lattice

W1= ]RT (7)

necessary to enforce the mean field assumption and maintain compatibility
across grain boundaries. The grain velocity gradient can also be decomposed
into its symmetric and skew portions. It follows directly from (1) that the
Taylor assumption carries through the rate form so that from (3) the grain
rate of deformation and grain spin can be written

d = dp = R'(LP).y.RT (8)
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w w, +~ (9)

where

= R P)Tk.,R (10)

As a consequence of the slip geometry, the symmetric and skew portions of
the microscopic velocity gradient can be expressed in terms of the respective
portions of the Schmidt tensors as

= 0i( +')  0
dP E - (a) (2) 1(a) + 77(a) 0 V(

E (a)Q (a) (12)

where
T(a) P(') + Q(O) (13)

Combining (9) and (12), the lattice spin accompanying plastic straining
can be written

W = R RT= , -= (a)Q(a) (14)

So, in order to update the grain orientation, it is necessary to resolve the
partitioning of shearing rates, (a), among the available slip systems.

4 Kinematic Solution for the Slip System
Shear Distribution

The geometry of planar slip dictates that exactly two active slip systems,
whose Schmid tensors are linearly independent, are necessary to uniquely
accommodate an arbitrary deformation. In the plane, any additional slip
system will be linearly dependent upon this set. For such redundant systems,
there is no unique kinematic prescription of the slip system shearing rates.

For the planar crystal undergoing double slip, the available number of
degrees of freedom is identical to the number of independent components in
an incompressible but otherwise arbitrary rate of deformation. In this spe-
cial case there is a one-to-one correspondence between these two independent
components and the shearing rates on the two slip systems. For general iso-
choric planar flows the velocity gradient has three independent components
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that one can associate with a rate of stretching, F, a rate of shearing, A, and
a spin, .

L = F(t)(el e - e 2 e 2 )

= A(t)(el Ce 2 +e 2 CIeI)

= ! (t)(ei 0 e2 - e2 & el). (15)

Thus, there is a unique relationship between {P, A} and { (1),4(2)} in
(11). This limited number of degrees of freedom permits one to kinematically
determine the pair of shearing rates by projecting the rate of deformation
onto the set of basis tensors, P(")

d = d : = = E Pjoy(), (16)
0 0

or
= d (17)

,3

where P-1 always exists for a, 13 = 1,2 but becomes rank deficient for redun-
dant systems. Even though straightforward, this step has powerful implica-
tions for determining the grain reorientation and updating the texture. In
this limit, the slip system shearing rates are determined solely as a function of
the macroscopic rate of deformation. And this, in turn, directly determines
the plastic spin of material through the lattice in terms of d

- ZP'a -1 [Q(a) 0(3 ) d. (18)
Co

From this straightforward relation the grain reorientation is cast in a form
that explicitly represents the anisotropy inherent in the single crystal.

5 Grain Orientation Update

Recall that the mean field assumption governing the spin of the material
on the crystal level dictates the necessary grain reorientation in accordance
with (14). In the plane, we can recast this equation in a form that isolates
the anisotropy in terms of a single parameter. For planar flows, the two-
dimensional rotation tensor is simply a function of the scalar 0

[R r cosO -sinO ]
sinO cosO J
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Combining equation (14) and the solution for the shearing rates given by
(17), we obtain an evolution equation for the grain orientation in terms of
the current orientation and the macroscopic kinematic quantities

S= 1 - wa = -w Pa (19)

The plastic spin is determined explicitly by the relative slip system arrange-
ment in the lattice frame according to (18)

- aP = - E = Aoda, (20)
a=1,2

in which - is the projection operator onto the direction aj_ given by

=a± 0 a. a I- a (21)

and A is a nondimensional scalar microstructural parameter. This parameter
takes a relatively simple form when the lattice reference frame is appropri-
ately chosen so that a bisects the acute angle subtended by the slip directions

A _ . (22)
P,2

where Q12 = Q(112) (12 and P12 = 112= 12) are the components of the
Schmid orientation tensors relative to the basis {a, a.}. Equation (19) can

be rewritten as

= a-wa = Ada - A(a . da)a

- A[(d(a 0 a) - (a 0 a)d)]a. (23)

So

P A[(a ® a)d -d(a 0 a)]. (24)

Here, several features of the limit behavior of the microstructural parameter
for single crystals give a geometric interpretation consistent with single slip.

The ratio in (22) indicates A is a scalar measure of the amount of material spin
relative to the amount of shearing within a crystal subjected to an applied

deformation field. Due to the symmetry of the dual slip system arrangement,
A will vary continuously in a one-to-one correspondence with the acute angle,

2/3, between the slip directions where 1 < A < oo for 0 < /3 < ir/4 as
illustrated in Figure 3. Further, the variation of A with /# indicates that
A never vanishes. Thus, from (20), no crystal undergoing double slip can

accommodate a prescribed deformation without some plastic spin. Therefore,

there can be no inherently isotropic limit for double slip planar single crystals,

i.e. no slip system arrangement that will allow the crystal to spin with the
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Figure 3: Variation of the microstructural parameter A with slip system
separation 203

macroscopic spin of the material point for all arbitrarily applied deformation
fields.

There are then two explicit factors affecting the individual grain reorien-
tation. First, the mean field assumption which directly affects the update
relation (19) through w. Second, the geometric characteristic of the grain, A,
which dictates the degree to which the crystal will accommodate deformation
through shearing and spin. With these effects quantified and separated, pop-
ulations of grains can be considered at the material point, providing natural
measures for a continuum level description of anisotropic material proper-
ties.

6 The Orientation State

Considering a distribution of grain orientations to be representative of the
aggregate, the ODF is the most general continuous description of the crystal
orientation state underlying the continuum point. The orientation distribu-
tion A(a) is defined so that A(ot)da is the probability that a grain with
director vector ae is in the infinitesimal sector dAt centered at ca. Because the
subspace of possible orientation states is closed, the grain orientation can be
regarded as a conserved quantity. Consequently its local change is governed
by the conservation equation

A(a) + A(a) div(&) = 0. (25)
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One efficient method for tracking the induced anisotropy with a limited set of
parameters has been to expand the ODF over an appropriately chosen set of
basis functions (Advani and Tucker(1987), Onat and Leckie (1988)). What
results is an infinite series whose tensor coefficients represent progressively
higher moments of the distribution. A convenient set of basis functions is
provided by the deviatoric subspace of dyadic products of a. Such basis
functions provide a special symmetric, traceless set of corresponding orien-
tation moment tensors which recover the distribution function. Expanding
about the isotropic state and retaining only the first moment, we obtain

1 9
A(a) = + "AiJfJ(ct), (26)

where

fij(a) = ai,- .ij (27)

and

Aj= JA(a)fi(a)da. (28)

Such basis functions are appealing for several reasons. First, they are general,
depend on no particular orientation state or frane of reference, and transform
as tensors. Thus, for deformation paths leading to anisotropy whose princi-
pal directions may vary, one can follow the axes of the developing anisotropy
directly. Second, the lower moment tensors provide an approximate means
by which to characterize the fixed state anisotropy with a limited number
of independent components. Third, when properly chosen, they allow the
fully isotropic description to be lumped into a single term of the series. Fi-
nally, the evolution equations for the moment tensors follow directly from
the conservation equation and their solution provides a means to update the
material state.

6.1 Orientation Moment Evolution Equations

One of the advantages of employing the moment tensors to describe the orien-
tation distribution is our ability to evolve their components with continued
deformation. As outlined by Advani (1987) there are several methods by
which to obtain such equations. Here we start with the evolution equation
for the orientation of a single grain and combine this with the continuity
equation. Substituting (26) for the ODF and the definition (28) of the orien-
tation tensor, an objective evolution equation for the second order moment
tensor results:

=wA- Aw + A(G + d) - 2Aa : d, (29)
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where

G = dA+ Ad (30)

and

a = aijkl e2Qe 3 QekDe, (31)

aijkl = J A(a)aiajakaida. (32)

6.2 Closure Approximation

As a natural consequence of this procedure, however, the evolution equation
for the second order tensor depends on the current value of the fourth order
tensor. Therefore a closure approximation is necessary to resolve a complete
set of equations. Various types of closure approximation have been discussed
previously (Advani and Tucker (1990)). For illustrative purposes, we adopt
the simplest linear closure rule which corresponds to the deviatoric portion
of the fourth order tensor vanishing (Advani and Tucker (1987, 1990)). The
objective rate then becomes

A

.4 A wA + Aw - -d. (33)
2

This is consistent with the truncated series adopted in (26). With the rate
written in terms of a microstructural constitutive parameter and the kine-
matic field variables, we now have the means to update the developing texture
with continued deformation.

7 Continuum Plastic Spin

In discrete polycrystalline simulations, macroscopic quantities such as the
continuum stress are evaluated as a weighted average of the grain stress over
all orientations. The direct analog in a continuous model is provided by the
orientation average. For the plastic spin of the crystal this average is

WP= A(t)wP(ot)dQ (34)

Using (24) and (28)

W P = A(Ad - dA) (35)

This result has several important features. It is based on a simple and definite
model of polycrystalline slip and an equally clear and definite characteriza-
tion of the anisotropy of the aggregate. The orientation average provides
expression (35) directly and no heuristic averaging arguments are needed.
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The microstructural significance of the parameter A and the second rank
tensor A are known; A is determined purely by the geometry of slip planes
in the crystal lattice frame and the second moment tensor can be continually
updated with the evolution equation discussed in section 6.1. Questions that
remain concern the restriction to two dimensions, the accuracy of the ap-
proximation to the distribution function, and the correctness of the closure
assumption made when generating the evolution equation.

Expressions for the plastic spin that result from heuristic micromechan-
ical arguments involving single slip and dislocation substructure also have
the structure of (35) (Dafalias and Aifantis (1986), Bammann and Aifantis
(1987), Dafalias (1990)). However, because the second rank tensor quan-
tifying the internal structure is identified as a back stress, it is not clear
how these expressions for the plastic spin relate to a plastic spin based on
polycrystalline slip. Equation (35) has the same form as phenomenologi-
cal expressions proposed earlier by Dafalias (1985) and Loret (1983) using a
second order "structure tensor" and an arbitrary parameter.

One of the key features of an) anisotropic constitutive model is its ability
to determine the orientation of the principal directions of the anisotropy. This
provides one reason to focus on the average plastic spin; it enters naturally in
expressions for the relative spin of the axes of anisotropy (Zbib and Aifantis
(1988)). In fact, the orientation average of the lattice spin is the difference
between the macroscopic spin and the average plastic spin.

w - A(Ad - dA). (36)

When simple shear is initiated in an initially isotropic distribution, the aver-
age plastic spin vanishes and the eigenvectors of the second moment tensor
begin to spin with the macroscopic spin. This is also true in general for
initially textured aggregates when A and d are coaxial. With continued
shearing, the average plastic spin approaches the macroscopic spin and the
eigenvectors of the moment tensor approach stable positions in orientation
space (Prantil (1991)).

An averaging argument employed by Dafalias (1985) has been used by Ar-
avas and Aifantis (1991) to obtain an expression for this relative spin. They
assume that the spin of the eigenvectors of the "structure tensor" corresponds
to a weighted average of the spins of "material fibers" instantaneously un-
derlying the eigenvectors. When the microstructural parameter derived here
is chosen as the scaling parameter for the spin of the material fibers, the
resulting expression for the relative spin takes the form of (36).
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8 Conclusions

Using a relatively simple polycrystalline model, we link the anisotropy on the
microstructural level to that on the macroscopic level. In particular, three
features of this new approach are of interest. First, we identify a microstruc-
tural parameter for the grain. It characterizes the single crystal anisotropy

in terms of the geometry of slip systems active in plastic flow. Second, we
introduce the second moment of the orientation distribution function as the
measure of material anisotropy and use polycrystalline theory to derive its
evolution equation. Third, we calculate the average plastic spin of the poly-
crystalline aggregate and write it in terms of the moment tensor, the macro-
scopic flow and the microstructural parameter. On the continuum level, the
averaged plastic spin provides the constitutive information necessary to track
the principal directions of the developing anisotropy.
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