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RESEARCH OVERVIEW

The terahertz frequency range offers significant potential advantages for satellite svs-

tems. These frequencies are strongly absorbed by the atmosphere, so there is no pos-

sibility of communications being intercepted by ground-based or airborne receivers.

Terahertz systems would also achieve smaller antenna beamwidtlis than lower fre-

quency microwave systems. The extention of microwave remote sensing methods to

terahertz frequencies and the possibility of spectroscopic detection of rocket plulimes

is attractive. The use of miniature hollow metal waveguide at these high frequencies

has made construction of such systems difficult and expensive.

Objectives: 3F I/

The object of this program has been to apply integrated circuit fabrication techliques 0

to increase flexibilty and reliability, and to reduce the cost of systems operating at these

frequencies. The focus of this effort has beon the thin-membrane sui',orf-d antenna

in an etched horn [1]. The horns are constructed in silicon using an anisotropic etch "o4IU
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which naturally forms pyramidal holes. The horns are built up using two or more

silicon wafers, each containing a portion of the horns, as shown in Fig. 1, and in

[1], Figs. 2 and 3. The antenna is supported within the horn on a membrane of

silicon oxynitride, typically 1 p m thick. This membrane is grown on the back side of

one wafer using plasma enhanced chemical vapor deposition. Deposition parameters

have been adjusted to produce membranes with low tensile stress. Higher tensile

or any compressive stress results in membrane failure. Antennas and detectors are

fabricated on the membrane using standard photolithographic techniques. Scale model

measurements made at microwave frequencies (4-S GHz) using an H/P 8510 vector

network analyzer have been utilized to optimize the antenna structures. Theoretical

patterns have been calculated for a single horn, assuming the horn to be part of an

infinite two-dimensional array. Measured patterns at 93 and 242 GHz agree well with

the calculated patterns.

Microbolometers have been used as detectors, as they can be calibrated to yield abso-

lute power measurements. This is important in calculating the efficiency of the horn

antennas. Difficulties arose in obtaining accurate measurements of the incident power

density-also required for efficiency calculations. A thin-film power density meter was

developed to overcome this difficulty [2]. The device consists of a thin-film bismuth

bolometer vacuum deposited on mylar membrane. The incident radiation is partially

absorbed by the bolometer, and is measurable as a change in resistance due to heating.

Radiation not absorbed by the bolometer is trapped in a beam dump to avoid standing

wave problems. The estimated accuracy of the power meter is 5% , which compares

favorably with other available techniques. Using the power meter, loss mechanisms

have been idcntified and eliminated to the extent possible. Horn antennna efficiency

has been increased from an initial 44% to 72% as a result of this effort [3].
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Imaging at 93 GHz has been demonstrated using a two-dimensional array of horn

antennnas as a focal plane array. A fixed focal length lens, whose focal ratio was varied

using aperature stops, was illuminated by plane wave radiation. System efficiency and

power distribution in the focal plane (at the horn array) were measured as a function

of focal ratio [1j. Results indicate that the horn array is well suited for diffraction

limited imaging.

RECENT RESEARCI! FINDINGS

Efforts have recently been directed toward improving the sensitivity of the horn arrays

for imaging purposes. Two approaches have been taken. For broadband imaging, the

antenna will feed a 90 GHz HEMT amplifier which in turn will drive the detector.

For narrowband imaging, a double array of horns with integral mixers will be used.

RF and LO power will be fed to separate arrays, on opposite faces of the stack of

silicon wafers (Fig. 1). The current design uses a subharmonically pumped mixer.

This reduces LO frequency, allowing the use of available mixer diode pairs. RF power

will be summed from four square horns on the opposite side of the stack (Fig. 2). One

trough-shaped horn will provide LO power for a mixer located between the loaded

dipole probe at its center (Fig. 3). The use of four RF horns with one LO horn

provides good geometric alignment which allows full utilization of the incident LO

power. It should also sharpen the effective pattern of the RF horns, providing better

coupling to systems with a more conservative focal ratio. The design for RF and LO

probes, the interconnects, and a plot of measured impedance for a 9.5 GHz model

is shown in Fig. 4. The impedance is that seen by the mixer. Measurenents were

again made using an H/P 8510 network analyzer. In the actual mixer array, the

mixer diodes would be installed at the position indicated for the SMA connector in

the figure. The RF match at 9.5 GHz leaves something to be desired, but involves a

3



trade-off between RF match, LO match, and RF-LO isolation. Extensive microwave

model work indicates the compromise design, as shown, to be a good one.

The broadband imaging array design consists of individual horn elements similar to

that shown in Fig. 5. By fabricating an array containing horn with and without the

amplifier ahead of the detector, it should be possible to make a direct determination

of the benefits of the amplifier. By using microb, lometer detectors and the thin-film

power density meter previously mentioned, absolute power and efficiency measure-

ments can be made. The folded monopole (hairpin) probe shown in the figure is ideal

from the standpoint of RF impedance matching. However, bias requirements for the

amplifier preclude a DC path to ground in the input ciruit. Various probe configura-

tions have been investigated using microwave models. In addition to the microwave

models, the structure has been analyzed using the H/P High Frequency Structures

Simulator, a finite element electroinagnetics solver. Fig. 6 shows the field represen-

tation for the horn with a dipole probe and coplanar transmission line. Symmetry

is invoked to split the horn, dipole, and line down the centerline to reduce compu-

tation time. The Smith Chart shows the impedance seen at the end of the coplanar

line adjacent the horn wall. The microwave models seem to provide good results in

substantially less time than the Structures Simulator.

FUTURE WORK

Recommended future work would include the fabrication of the mixer array and the

broadband array. The latter would require additional effort in the area of I)robe design

and/or biasing systems.

4
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RF horn Membrane Monopole probe

Figure 2. Proposed back-to-back horn array, RF face.



LO horn Horn trough Membrane Dipole probe Coplanar transmission line

Figure 3. Proposed back-to-back horn array. L(O face.
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Monolithic Millimeter-Wave Two-Dimensional
Horn Imaging Arrays

GABRIEL M. REBEIZ. MEMBER, IEEE, DAYALAN P. KASILINGAM. MEMBER, IEEE, YONG GUO,
PHILIP A. STIMSON, AND DAVID B. RUTLEDGE. SENIOR MEMBER, IEEE

Abstract-A monolithic two-dimensioail bor imaging assay has been from all the detectors make up the image. A monolithic
fabricated for millimeltr wavele ts. In this confguratlion a dipole is focal-plane imaging array is an attractive solution for an
suspended in an etched pyramidal cavity on a I-jam t-co -.lzyiiie imaging array. In these systems. the antennas and detectors
membrane. This approach leaves room for low-frequcucy connections
and processing electronics. The Iheaereical patter' is calculated by are integrated on dielectric substrates such as quartz, silicon
approximating the horn structure by a cascade of recltaula r-waveguide and gallium arsenide (6], [7].
sections. The boundary conditions are matched at each of the waveguide Antennas on dielectric substrates suffer from losses to
sections. and at the aperture of the born. Patterns at 93 and 242 Gliz substrate modes [8]. Researchers have attacked this problem
agree well with theory. Horn alp'nere ef s of 44 ± 4%. including in several different ways. Twin-slot [9] and twin-dipole [ 10]
mismatch and resistive losses, have been measured. A detailed break-
down of the losses is presented in the paper. The coupling eficiecy to designs reduce the substrate mode power and improve the
various f-number imaging systems is investigated, and a coupling "- patterns at the same time. Tapered-slot antennas use the
ciency of 24% for an , 0.7 imaging system, including spillover. taper, substrate mode on a relatively thin substrate effectively to
mismatch and resistive tosses. has been meanured. Posaible application control the shape of the beam [ I I]. A lens is often mounted
areas include imaging arrays for rmote sening plasma diagnosics. on he back of the substrate to eliminate the substrate modes
radiometry and superconducting lunnel-jnaction receivers for radio as-
tronomy. [6]-[8], at the expense of relatively poor patterns [12] and

dielectric absorption losses, which may be severe at submil-
limeter wavelengths [13]. Recently, however, log-periodic

I. INTRODUCTION and spiral antennas have shown good patterns with a quartz
M ILLIMETER-WAVE imaging systems are becoming substrate lens (141, and a two-element Yagi antenna has been

important in many scientific and military applications successfully demonstrated on a TPX lens [15]. Another way
[I]-[5]. They provide better resolution than microwave to solve the substrate problem is to integrate the antennas on
imaging systems and are less affected by atmospheric condi- silicon-oxynitride membranes less than a micron thick. This
tions than infrared systems. The use of a single detector in a thickness is so small compared to a wavelength that the
mechanically scanned imaging system is a well-established antenna effectively radiates in free space. This eliminates the
technique for millimeter and submillimeter-wave imaging substrate modes and the substrate lens, and allows the use of
[1), [2]. However, these scanning systems, whether elec- free-space antenna designs and techniques [161.
tronic or mechanical, are inadequate in many applications. Monolithic millimeter-wave imaging arrays have previ-
The events may be too fast, or the required integration time ously been limited to one-dimensional designs, although Yn-
too long. The way to circumvent this limitation is to image gvesson [111. [17] has made two-dimensional arrays by stack-
all points simultaneously onto multiple sensors. A ing linear arrays of tapered slot antennas. One problem in
millimeter-wave imaging array consists of a large number of two-dimensional arrays is that for efficient reception, the
antennas with detectors, placed at the focal plane of an effective area of the antenna must be comparable to the area
imaging system (Fig. i). The antennas are the feeds for of the resolution cell, but at the same time there has to be
lenses and reflectors in the focusing optics, and the outputs room for electronics and connections. We approach ths prob-

lem by fabricating a two-dimensional array of pyramidal
Manuscript received June 16, 198 revised May 18. 1989. This work was horns etched in silicon (Figs. 2. 3). Inside each horn is a

supported by the Army Research Office. Ihe Deparment of Energy. the
innovative Space Tcchnology Center at e Jt Propulsi Laboraory. the probe antenna suspended on a I-um thick silicon-oxynitride
Innovative Science and Technology Program of the Strategic Defense Initia- membrane. The horn collects the energy incident on a resolu-
ive Organization. and Aerojet Electrosysemis. tion cell, and focuses it to the probe antenna on the mem-

G. M. Rebeiz was with the Division of Engineering and Applied Science.
California Institute of Technology. Pasadena CA. He is now with the brane. All of the probe dipoles. detectors and interconnec-
Electrical Engineering and Computer Science Department. University of tions are integrated on the same silicon wafer. A major
Michigan. Ann Arbor. MI 48109-2122.

D P Kasilingam was with the Division of Engineering and Applied advantage of this approach is that the probe antennas are
Science. California Institute of Technology. Pasadena. CA. He is now with much smaller than a unit cell; typically the membrane occu-
Ocean Research and Engmneenng. La Canida. CA 91011. pies less than 25% of the wafer surface, and the rest of the
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Resolution cell
Focal-pJane

K array

/
L. Object plane Objective lens

Fig. l Perspective view of a two-dimensional horn imaging array.

Contact pods

aft MFront wafer

8ock water
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Reflecting cavity

Space for Radiated pattern

detection circuits

Fig 2. Millimeter-wave imaging system with a focal-plane imaging array.

I1. FABRICATION

The horn array is a stacked silicon-wafer structure (Fig.
3). The back wafer acts as a reflecting cavity, while the front
wafer acts as the mouth of the horn. The openings on the Fig. 3. Side view of a horn array. The 242-GHz array is a two-wafer

front wafer determine the aperture size of the horn antennas, stack, as shown here. It is also possible to stack more wafers; the 93-GHz
The thickness of the front wafer determines the position of array has four wafers The probe antenna ts integrated onto the mem-brane.
the probe antennas inside the pyramidal horns. The opening

on the back wafer is made equal to the size of the membrane, layer must be in tension to yield flat, rigid membranes.
to result in a pyramidal horn with smooth sidewalls. Details of this process are available in 1201.

The horns are made by anisotropic etching of silicon in an After etching, the probe antennas, detectors, and connec-
ethylenediamine-pyrocatechol solution [181. This widely used tions are fabricated by standard photolithographic techniques.
etchant naturally forms pyramidal holes bounded by (I 11) The horn sidewalls are coated with gold to reduce the resis-
crystal planes in (100) silicon. The flare angle of the horn is tive losses. The probe antennas are made of silver 1000 A
fixed by the orientation of the crystal planes at 70.6', which thick. The detectors are 4 am-square bismuth microbolome-
is larger than desirable. It may be possible to achieve smaller ters 1211 with a dc resistance of 140 0, and a dc responsivity
flare angles with ion-beam milling or reactive-ion etching. It of 10 V/W at a bias of 100 mV. It should also be possible to
is also necessary to align the mask openings to the (110) make superconducting tunnel junctions on the membranes.
crystal planes, because a misalignment increases the size of The wafer stack is made by aligning the wafers in a mask
the etched pyramidal cavity. To produce the membrane, a aligner, and gluing them with photoresist spread around the
siicon oxynitride layer is deposited on the front wafer using corners. A completed horn is shown in Fig. 4. There is
plasma enhanccd chemical vapor deposition 1191. and the typically a 20 pr c step in thc pyramidal-cavity sidewalls
silicon etched away it) leave the free standing membrane. The when any two wafcrs arc joined together. This is due to a

13
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Fig. 6. Forward ari backward traveling waves tin a wavei-widc 'icp ulctii.
aind a waveguide'cwctiorI (right).

before in the analysis of waveguide transformers 1221. and
recently applied to the analysis of a corrugated horn 1231.
The fields in space are given by two-dimensional Floquet
modes 1241. The boundary conditions are matched at each of'
the waveguide sections. and at the aperture of the horn The

Fig. 4, A scanning electron micrograph of a finished horn elernent for 242 antenna pattern may be calculated by assuming thc antenna as
G H. r Th misatigriieni between the wafers is 20,uam. either a transmitter or a receeiver-the equivalence of these

two cases follows from the reciprocity theorem 1251. In our

Membrane analysis. we assume the horn to be a receiving antenna. The
pattern is found by calculating thc received fields at the

Antennaposition of an infinitesimal dipole inside the horn, for plane
waves incident at different angles. The effect ol* the mi~-

brane on the incident radiation is negected. since the mn,,-
brane is very thin compared to a free space wavelength.

x A. Pyramidal Horn Characterization
A Horn axis Y' In this section, the scattering matrices of a waveguide-stepz

junction and a linear-waveguide section are derived (Fiie 6).
A horn matrix H- is then calculated, relating the fields in the
membrane section C,, to the fields in the opening section C
Finally, the Floquet modes in space are matched to the hieldN
in the opening waveguide. and the fields in section C,, are

Rectangular wavguide calculated in terms of incident field using the horn matrix H.

apprximtio MThe transverse fields (K,, Hl,) in waveguide section 1I)
Fig. (6) can be represented by a linear combination of

C0  transverse electric (TE) and (TM) waveguide modes 1261.

Fq. 4; A vieppctd wa'eiuide approiition of a pyramidal horn C,, iv the
firm waseeuitte and C,, is the mvembrane wavcguide. a; e3 Y

slight misalignment with the (110) crystal planes. and to +

variations in the wafer thicknesses from batch to batch.0 0

Ill. THEORY I- ', 4Je-'i"

The theoretical antenna pattern of a single horn-element is
calculated assuming an infinite two-dimensional array of -Z b:,Y2e/: P

horns. It should be noted that we are not calculating the"
pattern of a phased array. hut rather the pat -tern of a single where p denotes either a TE or a TM mode. , is, the wave
element in a two-dimensional array, This is because we are propagation constant and is real for a propag.arine! wave and
interested in a focal-plane array of anteninas fir multibeam imaginary for an attenuating wave,,,is the wave aditi-
irnaging applications. Since the horn dimensions are compa- tance for a TE TNM niode. and e~,iN a FE TNI ecienvectior
rahle to a treespace wavelength, the horn-array has to be normalized such that the power cairried bv a given vs is e i,

rigi,riousl ;hnal\ ied uNmL a ciotiplete clectrotitaunetic solu- proportional to the squaiirc of its Ciiellicin w;", or b"
tion In this aiil lvis. a hioro-clenicnt tiv ippriiated hy a The fields in wavcuilde eCtiiiti1 12) i01l0%k thte N,1iiic icJ1iC1Cn-
,trkittnrc ofit otiltiple rcctan *1ettir ssaveeoinle section\s (lie. lt atlio The ciellicieii , mid hl " <'11 atUniknrtiis i.11ii, "III
i11tti liedl In cacti \avei~indc seCtimlo ire "iscii by a, linear be c;alculatcd later in ieriii\ tmt he it icniiitlil ,it iilie nor' it

I '1, 111ii.11 1, vs' s \Ixcut1ti titoiles Its, iithm,t hasJ beenC e1  
' arraV "he b1mtii11"nrs Jilito .th de Xsi' ceiitils 'iL-11 Jiii
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tion are the continuity of the transverse electric and magnetic
fields over the area A,. and the vanishing of the transverseE
electric field on the area (A, - At). Using the Galerkin bf
mode matching technique 1271, we get a set of linear equa-
tions

( l + ,..) ,o ., 
aP + b/_

aP' - b mn )

= j , PV,(a,. - b_ ) (2)
• N /V M nMN M

N M dipole

w ,,N is the scalar product between a TE/TM -

eigenvector in waveguide section (1) and a TE/TM eigenvec- t E - X0
tor in waveguide section (2), given by M '

t waveg2d si () gi by ( Fig. 7- Incident plane waves for E- and H-plane pattern calculation.
V,N=J [ -, .- dAI (3)

4P.' " tmn l"

The fields in waveguide section (I) can then be related to the where a-Pf and b., are the coefficients of the incident plane
fields in waveguide section (2) through the matrix equation wave and the reflected Floquet modes, respectively, and p.qy,., Y,, and e,, are in the same notation as the fields in

ag b -g Y V r () ]b (4) waveguide section (I). The orthonormalized set of eigenvec-

b-) or V,, ) are derived from the potential function of a plane

where I is a unit matrix, Y, and Y2 are diagonal admittance wave incident on a periodic structure.

matrices of the individual TE/TM modes in sections (1) and The same method is used to match the fields in air to the

(2). respectively. V is a scalar-product matrix of the eigen- fields in C. The coefficients of the fields in waveguide

modes at the interface, and V r is the transpose of V. section Co can be related to the coefficients of the fields in air

(a. b,) and (a2 , b,) represent the coefficients of the incident through the matrix equation

and reflected fields for waveguide sections (I) and (2), respcc- F F )(a) l - I
tively. (Y -YJb 0 J FrY r ') (7The fields in a lossless-waveguide section (Fig. 6) are 0 1F
related b, a simple phase-delay matrix, given by where I is a unit matrix. Y0 and Yf are diagonal matrices of

a 0 e a'2 the individual waveguide and Floquet modes, and (a. bo)
2) - 0 - -  0 e ) 2 ]" (5) and (a1 , bf) are the coefficients of the incident and reflected

b, ~e~jl~r) 0 Y2fields for C, and air, respectively. F is a matrix of the scalar

The coefficients of the fields in the membrane section C, product between a TE/TM eigenvector in waveguide section
can be related to the coefficients of the fields in the first C, and a TE/TM Floquet eigenvectors in air. given by
section Co by multiplying the step and delay matrices of a
large number of waveguide sections together. The resultant F, pfN / i',, P dA o . (8)
matrix is called the horn matrix H. The smallest waveguide A,,
section C, is chosen to be small enough to have only rapidly
decaying evanescent waves. This section is assumed to be an The incident field is a plane wave of unit amplitude and its
infinite rectangular waveguide with waves traveling only in coefficients a~f are known. The coefficients of the reflected

the negative z-direction. This is important for the numerical Flouet modes b,, and the coefficients of the waveguide

solution because large exponential decay constants are modes a and b," can be calculated in terms of the

avoided. The boundary condition" at C, relates the forward coefficients of the incident field. The incident field is a TMo0
and backward traveling waves in the waveguide sections. plane wave for the E-plane pattern calculations, and a TE0 o
This results in only one independent set of variables at Co to plane wave for the H-plane pattern (Fig. 7).
match to the incident field. The theory developed above is valid for horns with any

rectangular cross-section, having an arbitrary separation be-
B. Matching to the Floquet Modes tween the horn apertures. The only condition is that the array

The transverse fields in air (FEf, Hf) can be represented by is periodic and infinite in extent. The horn was modeled
a linear combination of TE and TM Floquet modes [241 .  using 50 steps per wavelength, the smallest section C, being

0.2 X. In the case of E- and H-plane pattern calculations.

Ef a. e 0b + I -  Pf only certain waveguide modes are excited because of symme-
,, -- M= -- M try. All relevant modes were considered up to M = N = 7.

z x f = _apf YPfe, -,(?Z iPf The patterns were calculated for square apertures, with the
periods of the two-dimensional array. X 0 and Y. taken

+ h / Ybe z - Of (6) equal to the horn aperture C,. The separation between the
_ - ,-horn openings is neglected. since it is much smaller than C,.
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Fig. 8 Normalized fields on the horn axis for a plane wave incident Fig. 9. Quarter-wave dipole with a low-pass filter on the membrane.
normal to the aperture.

wafers. The quarter-wave section of coplanar strips trans-
The horn sidewalls are assumed to be lossless. The following forms the 4 Q2 impedance into a very large parallel impedance
tests were conducted to check the accuracy of the results: at the dipole apex. The bolometer presents there a much

1) Conservation of power-the sum of power in the re- lower impedance, and therefore absorbs all the received
flected modes must equal the power in the incident power.
modes. This is true because an infinitesimal dipole does
not absorb any power, and the walls are assumed to be V. MEASUREMENTS
lossless. Microwave measurements were made on 'a 3 x 3 scale

2) Boundary conditions-the fields at Co calculated from aluminum mcdel of the 93 GHz array at around 7.3 GHz to
the waveguide-modes representation must match the determine the impedance of the dipole probe antenna inside
fields calculated from the Floquet-mode representation. (he pyramidal cavity. A coaxial line feeds a dipole antenna

3) Reciprocity theorem-the coupling between any two and a coplanar-strip transmission line which is shorted X/4
Floquet modes must remain the same if the incident and away from the feed. This design has two purposes. It models
reflected modes are interchanged, the coplanar strips on the membrane effectively, and it pro-

vides an effective balun (21 for the coax-dipole feed. The
IV. DESIGN OF THE HORN STRUCTURE measured impedance, 50 9 + j95 0, is highly inductive. The

The horn structure is designed to produce a desirable 93-GHz antenna will have an additional series resistance
radiation pattern for an imaging system. The variable param- resulting from loss in the metal. The dipole thickness is only
eters are the dimensions of the horn and the position of the about a third of the skin depth, so that we can safely take the
dipole inside the horn. Fig. 8 shows the normalized electric RF series resistance to be the same as the dc series resis-
field along the horn axis (starting from the apex) for a plane tance, which is approximately 4 f1. The estimated 93-GHz
wave incident normal to a 1.5 X square horn array. At a feed antenna impedance is thus Z. = 54 9 + j95 1.
position smaller than 0.35 X, the membrane cross section is Millimeter-wave measurements were made at 93 GHz and
smaller than 0.5 X, and the fields decrease uniformly because 242 GHz. At 93 GHz, the source was a Varian reflex
all the waveguide modes are in the cut-off region. There is Idystron modulated at I kHz with a power output of 80 mW.
also a defocusing effect around a feed position of 0.92 X. The At 242 GHz, the source was a Millitech waveguide-tripler
patterns calculated at feed positions of 0.42 X. 0.56 X, and fed by an 80.7 GHz Gunn diode modulated at I kHz. The
0.71 X show good horn patterns, indicating a wide horn- power output of the tripler was about I mW. The detected
bandwidth. Also, the pattern at 0.42 X was better than the signal was fed to a lock-in amplifier. Care was taken to
pattern at 0.56 X. This shows that the point of maximum field reduce scattering from the antenna and source mounts.
intensity is not necessarily the point which gives the best Measurements were made in the E- and H-planes and 45'
radiation pattern. planes of both the co-polarized and cross-polarized compo-

Imaging arrays with square horn apertures of 1.0 X, 1.45 X nents. Full two-dimensional scans were also made of the
and 2.1 X were fabricated for 242 GHz, and a 1.0 X array co-polarized component. Patterns measurements were made
was fabricated for 93 GHz. In all cases, the feed position was on four different elements within the imaging array. Single
0.3') X, and the membrane side length was around 0.55 X. element patterns are given here; the results for the other
The probe antennas were X/4 dipoles with an integrated elements are very similar. No measurements were made on
coplanar-strip isolation filter (Fig. 9). The coplanar strips are elements at the edge of the array.
designed to have a characteristic impedance of 200 12 when
suspended on the membrane, (calculated from the quasi-static VI. PATTERNS: TiiEORY VFRSUS EXPERIMENI
solution to coplanar strips in free space 1281). and an The measured patterns at 93 and 242 GHz show ,!ood
impedance of 4 1 when sandwiched bctween two silicon agreement with theory (Figs. 10- 15). The E-plane pattern ot
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the 1.45 X array measured at 242 GHz does not exhibit any The horn antennas were linearly polarized parallel to the
sidelobes. We attribute this to losses in the cavity sidewalls. probe dipole. The cross-polarized component at normal inci-
which were not coated by a gold layer. In contrast. the dence was limited by the noise floor, which ranged from

sidewalls for the 93 0Hz array were gold coated, and the - 20 to - 30 dB depending on the quality of the bolometers.
E-plane pattern of the I O X array measured at 93 0Hz (Fig. There was also no measurable cross-polarized component tn

10) shows slight gain suppression at normal incidence and either the E- or H--planes. This is due to the symmetrical
sidelobes as predicted by the theory. The sidelobes result structure of the antenna. The 45' c ross- polarized patterns
from the incident energy scattering into successively htgher were symmetrical about normal incidence, and showed a

order Floquet modes. A 1.0 X array was constructed for 242 peak cross-polarized component at ± 60* (Fig, 13).
0Hz which did not incorporate gold plating on the horn Tabulated in Table I are the exact dimensions iol the
sidewalks. The measured patterns (not shownt were similar to imaging arrays. with the corresponding mneasured 3- and
the 93 0Hz I 0 X array except for the absence of sidelobes. 10-dB bcamwidths of the E- ind H-plane patterns. The
The discrepancy between theory and experiment in the E- calCULated diriecuitics from the co polarited two-dimensional
plane pattern of the 2.1 X arrays (Fie 12) can also he scans -.how% a decreasine! horn-aipertture ethiccrncy with in-

explained by the large resistive sidewall loss.. In this case, the creasing aperture sile. F-ront a traiiiinfg pint iii view, a

cavity was not ,old coated, and the siliconi water was h~tivl horn Aith a 1.1r,_c apcrwic is not itttlt\ml illiiiated h, the
dopedl - dipole and( tillers I row aperture * Ip I ilomir t11orill i Ctd
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Fig. 12 Typical E-plane (a) and H-plane (b) patterns measured at 242 242 GHz on a (9 x 9), 1,45 X imaging array (~a). and at 93 GHz on a

GHz on a 7 x 7). 2A X imaging array. (7 x 7), 1.0 X imaging array (b).

distribution) and phase errors. Also, the H-plane pattern the 2.2 dB dipole mismatch loss between the probe dipole

narrows with increasing aperture size, while the E-plane and the bolometer. It is given by the formula 4RoR, I/I Z,, +

remains the same after 1.45 X,. This is due to the boundary Rb, 12, where R. is the antenna radiation resistance (50 f2),

conditions at the horn aperture. R, is the bolometer resistance (138 0), and Z, is the
antenna impedance (54 + j95 1). The next biggest loss is

VII. HORN-APERTURE EFFICINCY AT 93 GHz resistive loss in the horn sidewalls, which is equal to 0.7 dB.

The horn-aperture efficiency of a single element in the In this case, the 93 GHz horn array was assembled from four

array is defined as the power received by the bolometer different stacked wafers, and the membrane wafer was not

divided by the total power incident on the horn aperture. To gold coated. It should be possible to reduce the mismatch and

measure this, we must calibrate the bolometer, and measure wall losses, if all the horn sidewalls are gold coated, and the

the gain and the power transmitted from the source. Details antenna is matched. The aperture efficiency of a 1.0 X square

of the procedure are given in 120|. The measured horn-aper- horn should then be around 88 %.
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Fiig. 14. Measured two-dimensional scans of a (7 x 7) array at 93 iHz.
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i~ilFig. 16. Coupling eiciency of a horn element in a 1 0 X imaging array.

Measured points. indicated by circies, include (he mismatch and resistive

olosses in the horn element. and the taper and spillover losses of the lens.

O/.-Pu.. incident on the primary lens, when the lens is illuminated by
30 a plane wave. The coupling efficiency of the 1.0 X imaging

?a.SO,50 array was measured at 93 GHz for systems of different
f-number (Fig. 16). These were produced by placing aper-

0 20 olure-stops over the lens. We found that 24% of the incident

Fig. 15. Measured two-dinepsional scans of a (9 x 9) array at 242 Ghz. power is absorbed by a single detector for an f-number of

Vertical scale is linear in power. 0.7, and 14% for an f-number of I. I. If matching and
sidewall losses were eliminated, the efficiency would be
54%. This agrees with the theoretical coupling-efficiency of

TABLE I 60% [301.
MEAsuRED 3-dB AND 10-dB BEAMWIDTHS OF SFVERAL The distribution of power in the focal plane, for an inci-

MILLIMETiER-WAVE IMAGING ARRAYS, dent plane-wave normal to the lens, was measured for two

Aray 10 AL 1,45 .A separate lenses with f-numbers of 1.1 and 0.7. respectively

fGlla 93 242 24. (Fig. 17). The sum of the total power on the focal plane
c,/A 101 1.4 209 yields a total coupling efficiency of 25% for both lenses. The

Sep/A 002 T 01 0., lens Airy pattern 1311 has a first dark-ring radius of 0.61 X
25% 13.5% 7 % and 1.22 X for an f 0.7 and f 1.1 lens. respectively. The

E .dB, "'l 3s5! 15'E(0-dB) 9 5"~ __ _center element receives 96% of the total power incident on

(10-I1) 00*' the focal plane for an f 0.7 lens, and 56% for an f' 1.1
H ,dl 62 ' 16- I '32 *

(-6 lens. There is then a strong optical coupling between the

If (104'13) i110* 9o.) 70*
D 10 - elements for an f I. I lens. i.e.. for a diffraction limitednj 7t 3 . 2i .1

, , .... , ,~. imaging array. Hence, a significant fraction of the power
appropriated to the central element is distributed among

Sep is the ,cparalion between two olpenng, C. and :e l n and this cntral elementlso receives
perceniage of the spae on the wafcr occupied hv the memhranes and the

.intenn-,19 power appropriated to its neiwhhors. This optical coupling
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at 93 (3Hz on as 1.0 Xs imaging array Microwave IniidCline! a[
1'.7 00%7.3 GHz indicates that the major loss component IN the

mismatch loss between the probe dipole and the detector The
other main contribution arises from the horn sidewalls. It

00% 0261/06 0/ should be possible to reduce the mismatch and wall losses,
and thus result in a 1 .0 X imaging array with an aperture
efficiency around 88%. A system coupling efficiency of 24%
has been measured at 93 GHz for a f/0.7 imaging system

00% 0.07% 24.0% 0.14 0 09% including spillover, taper, mismatch and resistive losses The
distribution of power in the focal plane indicate that the

F~rt nng, of imaging array is well suited for diffraction-limited imaging.
ArtyPartem 0% 0.6 05%Finally, the horn-array could be used as a monolithic phased

array, with the power combiners and phase shifters occupy-

ing the available space near the antennas-E~l ACKNOWLEDGMENT
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Thin-Film Power-Density Meter for Millimeter
Wavelengths

Karen A. Lee, Yong (Juo, Philip A. Stimson.
Kent A. Potter, Jung-Chih Chiao, and

David B. Rutledge

Abstract-A quasi-optical power-density meter for millimeter and
submillimeter wavelengths has been developed. The devik. is a 2-em
square thin-film bismuth bolometer deposited on a mylar membrane.
The resistance respositivity is 15001W and the time constant is one
minute. The meter is calibrated at DC. The bolometer is much thinner
than a wavelength and thus can be modeled as a lumped resistance in a
transmission-line equivalent circuit. The absorption coefficient is 0.5 for
189 02/square film. As an application, the power-density meter has been
used to measure absolute power densities for millimeter-wave antenna
efficiency measurements. We have measured absolute power densities of
0.5 mfW/cm 2 to an estimated accuracy of 501.

I. INlTRODUCTION

In measuring millimeter-wave antenna efficiencies, knowing the
absolute power density at the re(,iving antenna is essential. Relativ'e
power-densirv measur11ements at mnillimieter and submillimeter wave-
lengths are readily performed using commercial detectors. These

Manuscript received May 10. 1")0: -2siscd September 20, 194X). Yhis
work was supported by the Jet PrOpulsion Laboratory, the Aerojet E11c-
troSystems and the Department of Defense Terahertz Technology Program,
under Contract F19629-97 K-0051. which is managed by the Electromagnet-
ics Directorate of RADC and funded by SSIO-IST

The authors are with the Division of Engineering and Applied Science,
California Institute of Technology. Pasadena. ('A 141125.

IEFE Log Number X)1253

00l 9T 92(X 01 ;01t) 045 0 f, 1901 11111

22



426 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL 39. NO 3. MARCH 1991

E,,po-wn ha ,.th (J. A,-,lI tnowtt formed with dc measurements only. This means that no chopping
factors or frequency roll-off corrections are required The device is
polarization independent and the reception patterns are smooth, with
no spikes at normal incidence. A primary application for this device
is absolute power calibration for antenna efficiency measurements.

- '1- II. DESCRIPTION AND FABRICATION

A bolometer is a thermal detector whose resistance change is
proportional to its thermal impedance. The resistance responsivity in
. / W is given by

ac. RR, (1)

]="Y' ° ' Cu .... where a is the millimeter-wave absorptance, a is the temperature
L • 1-d coefficient of the bolometer material, R, is the electrical resistance,

and R, is the thermal resistance. We have constructed our bolome-
ter on a 5-Mm mylar membrane in order to increase the thermal
resistance of the device. The bolometer is surrounded by 5-cm
styrofoam blocks to reduce convection heat loss to the air and to

My,, , .t sdi, rm block infrared radiation. The bolometer has a time constant of I
tAM min, which appears to be determined by thermal diffusion through

the styrofoam. The attenuation at 93 GHz in the styrofoam was
measured to be less than 0.01 dB/cm so that its effect on our

coCo -,da measurements is negligible. By placing the structure in an absorbing
(R W beam dump, reflections and other unwanted signals are minimized

(Fig. INb))

The bismuth film was evaporated through a metal mask onto the
mylar until.the dc sheet resistance was 189 9. The thickness was

.about 500 A. This sheet resistance gives the maximum absorptance
by a thin film, 0.5. and is insensitive to small changes in the

*resistance and the angle of incidence. In addition, the absorptance is
independent of polarization and frequency. We have chosen bismuth
as the bolometer material because of its high temperature coeffi-
cient, measured to be 0.0026 K-'. The geometry of the device
allows for a four-point measurement which eliminates the effect of

mi rin. ram 1,o6,1r resistance in the contacts because the biasing leads are separate from
onm tar memtrane the voltage sensing leads. The bolometer is square and much thinner

than the skin depth in bismuth at millimeter and submillimeter
Beam dump wavelengths (5 Mm at 93 GHz), so the RF sheet resistance is the

(b) same as the dc resistance.
Fig. 1. (a) Thin-film bolometer on a membrane. (b) Power-density meter

with bolometer embedded in styrofoam. ll. CALIBRATION AND MEASUREMENT

consist of two principal types: quasi-optical power meters in which The power density is determined from the resistance change due
the radiation is incident on an absorbing element in free space 11, to millimeter-wave power. Fig. 2 'hows a typical measurement
and waveguide power meters in which the radiation is coupled by a sequence. All voltage and current measurements are made with a
hom to fundamental-mode waveguide and absorbed by an element Hewlett-Packard 6 -digit multimeter. We need to wait at least 5 min
in the guide. However, absolute power-density measurements are before making a resistance measurement to allow for the long time
more difficult. With the quasi-optical power meters the uncertainty constant of the boiometer. We multiply the resistance change by the
comes about from not knowing accurately the absorption coefficient responsivitv to get the power density. The meter is calibrated by a
of the detector element. This problem also exists in the waveguide similar measurement sequence with a known amount of dc power,
power meters. Other problems with waveguide power-meter mea- and then making a correction for the absorptivity to get the millime-
surements are the repeatability of connections, calibration of direc- ter-wave responsivity. There is a resistance drift, which is typically
tional couplers, and the uncertainty in standard-gains horns. 0.1 0Q/hour. We correct for the drift by taking the average of two

Recently, there has been interest in millimeter-wave power- readings at different times.
density meters whose absorption coefficient is accurately known and
whose response can be calibrated at low frequencies. In one ap- IV. SYSTEMATIC CHECKS

proach, developed by Derek Martin. radiation is absorbd in a
metallic thin film suspended in a gas cell. and a microphone detects To obtain accurate absolute power measurements from the meter.
the resulting pressure change 121 An accuracy of 10% is quoted. edge effects and the effects of the biasing contacts and the voltage
Another approach consists of a thin-film bolometer on a silicon- sensing leads should be negligible. To check for these effects.
oxynitride membrane whose responsivity is calibrated with an am- several bolometers of different sizes were constructed. The measure-
plitude-modulated ac current. The resistance change resulting from ments from the different bolometers agreed to within ± 2%. The
the incident chopped millimeter-,Aave signal is measured with a results are shown in Table I. The bolometer response was also
lock-in amplifier 131. measured as a function of incident angle (Fig. 3). We can use the

Our meter is a simple desirn consistig of an evapirated bismuth transmission-ine model to calculate the received power as a fune-
film on a mylar membrane iFte lfa)) There are no vacuum lion it the angle of incidence P(O) When the sheet resistance is
windows and the device is easy o fabricate Calibration is per- hall the lrece-pacc impedance. the pattern is independent ot the
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________ l_____ion an.,,

"- iKi-tvron l o

i -- -- Coupler,

0 1 ...

'I Atte-iaor'

c v Wavegulde
50 po nrute,pit-n, Power -oenuri,

4 meter

S"Fig. 5. Aperture efficiency measurement of hom antenna arrays at 93 GHz.

Response with drift TABLE I
Response after correcting for drift POWER DENSITIES MEASURED WITH DIFFERENT BOLOMETERS AT 93 GHz;

SAMPLE STANDARD DEVIATION IS 1.2%

-5( ]0 20 :it

T, minutes Width Length Power density
(cm) (cm) (FW/Cm

2 )

Fig. 2. Response to blocked and incident millimeter-wave power.

2.0 2.0 575
2.0 1.5 565
2.0 1.0 564
1.5 2.0 582
1.0 2.0 569

10 -

polarization and given by

2 cos 2 
o

P(O) (2),: (1 + Cos 0)"

where 0 is the incident angle. The measurements agreed well withthe theory. There are no spikes near normal incidence [4].

It pl-' ,At higher frequencies, the finite thickness of the mylar membrane
S: ....... I E-I.... will affect the absorptance of the film, and this must be corrected.

T,ht The calculated correction factors are shown in Fig. 4. For mylar.

- the refractive index is taken from 15]. The correction is 5'C at 2
7 THz. Alternatively, the thickness of the membrane could be reduced

-90 -45 46 ,10 to avoid using the correction 13]. In addition, the absorptance of the
Incident angle, degrees styrofoam may affect the measurement and this would need to be

Fig 3 Measured response to vertically polarized radiation in the E-plane checked.
and H-plane as a function of incident angle at 93 GHz. The received power
at angles greater than 60 is reduced by blockage from the mount. V. APPLICATION: ANTENNA EFFICIENCY MEASUREMENT AT

93 GHz

The power-density meter was developed to make accurate aper-

r, ,ture efficiency measurements on horns at 93 GHz. These antennas
are fabricated on a silicon wafer with integrated microbolometers

Bismuth in front [6]. The aperture efficiency is the ratio of the power received by the
Biiuth behind microbolometer in the horn to the power incident on the aperture.

The horns are placed in the far field of a source (Fig. 5) and the
- change in resistance of th- microbolometer is measured. The
- power-density meter is placed at the same location and its change in
- resistance is measured. The aperture efficiency r? of a horn is given

by a simple formula

A_f,,, ARo~(3)
'A,,.~, ARm()

where A is the area. 1 is the resistance responsivity. AR is the
resistance change, and the subscripts m and a denote the power-
density meter and the antenna respectively.

........ . .. . . Alernativelv, the power-density measurement can be related to
,, , "the reading on the waveguide power meter in Fig. 5. This makes it

Fig 4 Calculated ahmorplance ot the pi'wer dcnsity meter at higher ire unnecessary to calibrate the directional coupler. atenuator. and

icuencie, horn tndi~iduallv.
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I. CONCLUSION 12] Thomas Keating Ltd., Billingshurst. West Sussext, England.

By using a metal film bolometer, we made accurate absolute [3] C. C. Ling and G. M. Rebetz. "A wideband monolithic subillime-
set-wave quasi-opical power meter." in IEEE Microwave Theory

power measurements at 93 G~lz. The calibration procedure is Tech. Soc. fIn. Microwave Symp.. May 1990. Dallas, TX.
simple and accurate to within 5%. and the actual mieasuremnt [41 D. B. Rutledge and S. E. Schwarz. "Planar multimode detector
involves knowing only a few fundamental parameters. This device is arrays for infrared and millimeter-wave applications." IEEE J.
useful for measuring millimeter-wave antenna aperture efficiencies. Quantum Electron., vol. QE-17. Mar. 1981.

15] American Institute of Physics Handbook, 3rd ed. New York:
REFERNCESMcGraw-Hill, 1972.

[11 F. B. Foote. D. T. Hodges, and H. B. Dyson. "Calibration of power [6] G. M. Rebeiz, D. P. Kasilingam, Y. Guo. P. A. Stimson. and D. B.
and energy meters for the far infrared/near millimeter spectral Rutledge, "Monolithic millimeter-wave two-dimensional horn imag-
region," Int. J. Infrared Millimeter Waves, vol. 2, no. 4, 773-782. ing arrays." IEEE Trans. Antennas Propagat.. vol. 38,
1981. 1473-1482, Sept. 1990-
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Defector Aniensa Filter Membraie Horn

(a)

Loss component loss, dB

Intr;nsic pattern loss 0.2

Mismatch loss 2.2

Cross-polarization loss 0.2

Horn-to-horn coupling loss 0.1
APERTURE EFFICIENCY OF Horn sidewall loss 0.7
INTEGRATED-CIRCUIT
HORN ANTENNAS Total calculated loss 3.4

YOng Guo, Karen Lee, Philip Stimson, Kent Potter, Measured loss 3.6
and David Rutledge
Division of Engineering and Applied Science
California Institute of Technology
Pasadena, California 91125 Figure 1 Integrated-circuit horn array made by (a) anisotropic etch-

ing of silicon, and (b) the summary of measured and calculated losses
KEY TERMS reported by Rebciz et al. IlI

Integrated-circuit horn antenna. aperture efficiencv, power density
meter millimeter arrays. The array is fully two-dimensional, and the

ABSTRAcT horns are made simultaneously by integrated-circuit process-

We have improved the aperture efficiency of silicon integrated-circuit ing techniques. It should be possible to integrate supercon-

horn antennas by optimizing the length of the dipole probes and ly ducting tunnel-junction devices with the horns. An isotropic

coating the entire horn walls with gold. To make these measure- etching technology is also available in gallium arsenide, which

ments, we developed a new thin-film power-denstty meter for mea- suggests that it should be possible to make horns that would
suring power density with accuracies better than 5%. The measured include monolithic Schottky diodes. The membranes appear
aperture efficiency improved from 44% to 72% at 93 GHz. This is fragile. but we have been able to mount beam lead diodes on
sufficient for use in many applications which now use machined them, and they have passed standard industrial temperature
waveguide horns, and vibration tests. However. the measured aperture effi-

ciencv was low, Rebeiz et a. reported a value of 44% at 93
INTRODUCTION GHz for an array with a period of I A. This efficiency is not
Rebeiz et al. [I] developed an integrated-circuit horn array good enough for most applications.
based on anisotropic etching of silicon [Figure l(a)]. The etch Rebeiz" measured and calculated losses are summarized in
forms pyramidal cavities bounded by (Ill) crystal planes. Figure l(b). The two major loss components are mismatch
Gold is evaporated on these walls to make them highly con- loss (2.2 dB) and horn-sidewall loss (1.7 dB). The mismatch
ducting. The power received by the horns is picked up by loss was estimated from 7-GtIz modeling experiments that
dipole probes suspended on I-lim silicon-oxynitride mem- indicated that the antenna inpedance is 54 + /95 11, com-
branes inside the horns. The power is detected by bismuth pared with the bolometer resistance. 138 QI. The horn-sidewall
microbolometers. Horns were demonstrated at 242 and 93 loss arose from fact that the entire horn was not coated with
GHz. and the technology appears to be quite suitable for gold: part was hare silicon with a resisti itv of 0.5 11 cm. The
scaling to the terahertz frequency range These horns have horn array, arc ntlc i ai .tick o four wafers. One of these
several potential advantages for u',c in millimeter and sub- wafers inchdes the icinhr;inc,. ih; s si flcr was not coated

6 MICROWAVFE O (T!(cAI 06'i(~Oy I ETTERS ),t No .ri.r
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with gold because the membranes would also have been coy- Evaporated bismuth film Acryli moun

ered over during the evaporation. The goal of this work was ___

to eliminate these two sources of loss. .
Another difficulty with the previous measurements was

measuring the aperture efficiency. A 10% accuracy was _ .. __.
claimed, but this is not adequate for testing antennas with lead
higher efficiencies. Although the measurement is fundamen-
tally only the ratio of received power to incident power voltg
density, there were many factors that complicated the
measurement and affected the accuracy. The power density
was calculated from the reading of a waveguide power meter [ 7

connected by a calibrated directional coupler, together with Cu srreat
the calculated gain of a standard gain horn. The received lead

power was measured for a chopped signal, and this required
an accurate knowledge of the effective value of the modulation
waveform and the frequency roll-off of the bismuth micro-
bolometer. To simplify the measurements and improve the
accuracy, we developed a new thin-film power-density meter (ytar membrane Silvr paint
and used only four-wire DC electrical measurements in the (a)
calibration and measurement.

con'ection and
IR shields

HORN FABRICATION
A range of horns with dipole probes varying in length from
0.32 A to 0.50 i were constructed. In addition, the horn walls
on the membrane wafer were coated with gold by evaporating
at an extreme angle so that the walls of the horns formed a
shadow over the membrane. The bolometers were fabricated
by a photoresist bridge technique [2]. They had resistances
in the range 50 to 100 fl, with typical resistance responsitivities
of 20,000 D/W. Thi m ,

on mylar membrane

POWER-OENSITY METER Beam dump

Recently there has been renewed interest in developing (b)
quasioptical power meters. Professor Derek Martin has re- Figure 2 (a) Thin-film power-density meter and (b) assembly
cently developed an approach where the power is absorbed
in a metallic thin film suspended in a closed gas cell [3]. The
accuracy is reported to be 10%. Ling and Rebeiz are pursuing
a design on a silicon-oxynitride film [4]. Our power meter one additional correction factor for the proportion of power
(Figure 2) consists of an evaporated bismuth film with a sheet that is absorbed by the power-density meter.
resistance of 189 1l on a 4.5-jim-thick Mylar sheet. A film In the measurements, the signal source was a 93-GHz
with this sheet resistance absorbs half the incident power and klystron with an output power of 170 mW feeding a horn 60
transmits half. The device is surrounded by a 5-cm-thick layer cm from the array. The resistance changes in the horn mi-
of styrofoam to reduce the convection heat loss and to block crobolometers were measured, and then the horn array was
infrared radiation. The transmitted power is absorbed by a replaced by the power-density meter. The aperture efficiency
pyramidal beam dump lined with absorber. The power-den- q can then be written as a simple formula
sity meter works as a bolometer. It absorbs power, heats up,
and we measure the change in resistance by a four-wire mea- = (2)
surement. The bolometer has an active area of 4 cm', and the A, gAR,'
typical resistance responsivity to RF radiation is 20 fl/(W/
cm'). We have carefully considered and tested for different where A,, is the area of the power-density meter, i, is the
sources of error: resistance drift, edge effects, time constants, corrected resistance responsivity of the meter, AR, is the re-
varying angle of incidence, and absorption in the styrofoam, sistance change of the horn microbolometer, A, is area of
and feel that the measurements are accurate to better than the horn, R, is the responsivity of the horn microbolometer,
5% for incident power densities greater than 100 uW/cm-. and AR,. is the resistance change of the power-density meter.

Figure 3(a) shows the measured efficiencies for different
MEASUREMENTS antenna lengths. Measurements were made first for mem-
Both the power-density meter and the horn microbolometers brane wafers without gold coating. After the membrane waf-
were calibrated by a plot of the resistance R versus DC power ers were coated with cold. the efficiencies were measured
P. This plot is of the form again. The efficiency reaches its maximum value, 72%, for a

length of (.37 ;.. For all but the longest probe, gold coating
R = R. - qP. (1) the walls of the membrane wafcr improves the efficiency. The

typical improvement i% W;. Figure 3(b) shows the estimated
where , is the resistance responsivity in (1iW. 'he resistance loss breakdown. The total calculated loss is 0.9 dB. compared
responsivity is calculated from the slope of the plot. There is with the measred value. I -1 dM [here is till some mismatch

MICN(-)WAVE AND OODTtAI TFCHNOI )(,V LF iTER', Vi . ,) 1 Jjnuary b 1991 7
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f-number
2.9 iS5 1 0 0n 07

40-

2j ovasoBefore Au Coating204

L*-** After Au Coating F'gure 5 Sy40Ia~ni ~:8es hnotlai

Probe length, I/X is the half angle subtended by the le'ns, which is varyied by changing
(a) stops in front of the lens

Loss component loss, dB
to 0.40 ;.. gave efficiencies better than 60%. The 3-dB band-

Intrinsic pattern loss 0.2 widths are of the order of 10 GHz.
Finally, we made measurements of the system coupling

Mismatch loss 0.4 efficiency with a lens (Figure 5). This system coupling effi-

C ross- polarization loss 0.2 ciency is the ratio of the detected power to the power incident
on the lens. In the measurement, various stops were used to

Horn-to-horn coupling loss 0.1 change the half angle subtended by a 100-mm-diameter lens
with an f-number of 0.75. The highest system coupling effi-

Total calculated loss 0.9 ciency with a lens is 36% for an f-number of 0.75. We estimate

Measredloss1.4that the loss from reflection and absorption is the lens is 28%.
Measredloss1.4so that it should be possible to achieve a coupling efficiency

(b) of 50% in a f-0.75 system with reflecting optics, compared
(b) with 24% reported by Rebeiz et al. [2].

Figure 3 (a) Measured aperture efficiencies at 93 GHz versus an-
tenna length. The efficiencies were measured before and after coating CONCLUSION
thecmembrane wafer with evaporated gold. (b) Summary of measured W aemrvdteaetr fiinyo iio ne
and calculated losses W aemrvdteaetr fiinyo iio ne

grated-circuit horn antennas by optimizing the length of the
dipole probes and by coating the entire h )rn walls with pold.

loss (0.4 dB), because the bolometer resistance in the mea- To make these measurements, we developed a newi thin-film
surements was 90 fl, compared with the resonant antenna bolometer power-density meter for measuring power censity
resistance of 5010 that was measured on the microwave model. with accuracies better than 5%o. The measured aperture cf-
We also made a plot of efficiency for the frequency range from ficiency improved from 44% to 72% at 93 GHz. These horns
77 to 109 GHz for antennas of various lengths. and this is are now. efficient enough to be considered for use in remote
shown in Figure 4. Probes with lengths in the range from 0.37 sensing, plasma diagnostics. and radio astronom%.
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MLSSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C I) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


