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SUMMARY

A fully Bayeslan analysis of linear and nonlinear population models has
previously been unavajlable, as a consequence of the seeming impossibility
of performing the necessary numerical integrations in the complex multi-
parameter structures typically arising in such models. It is demonstrated
that, for a variety of linear and nonlinear population models, a fully
Bayesian analysis can be implemented in a straightforward manner using the
Gibbs sampler. The approach is illustrated with examples involving '

challenging problems of outliers and mean-variance relationships in population
modelling.
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1 INTRODUCTION

1.1 Populatjon Models
Population models are widely used in blometrical growth analysis (see,

for example, Berkey, 1982, Lange, Carlin and Gelfand, 1992), in pharmacokinetic
studies as part of drug development procedures (see, for example, Beal and
Sheiner, 1980, Lindstrom and Bates, 1990), and have a long history of use in
educational research (Novick et al, 1972), econometrics (Swamy, 1970) and
other fields. Related models are now increasingly used for multi-centre
clinical trials (Skene and Wakefield, 1990) and for spatial epidemiology
studies (Besag et al, 1991).

From a Bayesian perspective, such models are variations on and extensions
of the following hierarchical structure. Let y denote the totality of
measurement data on I individuals in a designated population (for example, of
patients, experimental animals, firms, etc.); let @ denote the parameters
defining I underlying ‘response’ profiles (for example, weight versus age,
drug concentration versus time after administration, profits versus structural
variables defining a firm, etc.) and Q denote hyperparameters defining
relationships among components of 6. Then, population models correspond to
the hierarchy of distributions

(y|el , [e]¢]l , (] , (1.1)

where, adopting the notation of Gelfand and Smith (1890), Jjoint, conditional
and marginal densities for random quantities, u, v are denoted, respectively,
by (u, v], [u|v], [ul, [v].

In the context of (1.1), interest may centre on inference for components
of 6 (l.e. relating to aspects of specific individual profiles), or for ¢
(i.e. relating to population characteristics), or on predictions of future
observations from an already included individual or a new individual drawn
from the same population. In all cases, the integrals required for a fully
Bayesian analysis are typically not avallable in closed form and numerical or
analytic approximation is required. Hitherto, however, no approximation
approach has been found to be entirely satistfactory. The purpose of this
paper is to demonstrate that a highly effective Bayesian computation strategy




for general population model analysis is available, based on the Gibbs
sampler. .

1.2 Structure of the paper
In Section 2, we consider in detail two population model examples (one

linear, one non-linear), which pose challenging problems going beyond basic
population analysis, by modelling and analyzing population outliers and mean-
variance relationships. In Section 3, we provide a description of the Gibbs
sampler approach to Bayesian calculations for hierarchical models. In Section
4, we analyse in detail the linear model example, exhibiting, in particular, a
method for detecting population outliers. In Section 5, we analyse in detail
the nonlinear model example. We show, in particular, that the inclusion of
mean-variance relationships causes little additional computational difficulty
with the Gibbs sampler approach. The key message in both Sections 4 and 5 is
that the seemingly intractable calculations assoclated with the Bayesian
analysis of population models do indeed become relatively straightforward
under the Gibbs sampler approach. In Sectlion 6, we put the Gibbs Sampler
approach in perspective by commenting briefly on other available alternatives.

2 ILLUSTRATIVE EXAMPLES

2.1 A linear population biological growth example

Table 1 records dental measurements of the distance (in mm) from the
centre of the pituitary to the pteryo-maxillary fissure in 11 girls and 16
boys at the ages of 8, 10, 12 and 14 years. Both in the original analysis
(Potthoff and Roy, 1964) and in a Bayesian reanalysis (Fearn, 1975), a linear
growth relationship between the dental measurement and age was assumed. This
is also assumed in our subsequent analysis, together with homoscedastic normal
errors within each separate population (girls, boys). Let x; 7 ¥, J denote,
respectively, the jth time point (using age 11 as origin) and associated
measurement on the ith individual (i = 1,...,11 for the population of girls, i

= 12,...,27 for the population of boys, j = 1,...,4).

Table 1 Here




For both the girl and boy populations the first stage model of (1.1)
takes the form

I;I I;I lyjylep <1 = ]-:I I;I yyglep 8 ¥
= ].;[ I;I"(yulai + leij' T) .

where 1 denotes the common normal measurement precision (reciprocal variance)
e 8 1) denotes the intercept and slope for the ith individual's
straight-1ine growth curve.

(1.2)

and 91' (a

Fearn (1975) takes as the second stage (population) distribution for the
e I'S a bivariate normal distribution (separately, for each of the girl and boy
populations), so that

I:,[IQAQ] = ].:Imgjl.‘." ) .

with ¢ = (u, Z), where p = (“1' "2)’ E(aj) =K, E(Bi) = K,, so that the
individual stralght-line growth curves are, In effect, regarded as

distributed around a ‘mean’ population growth curve, Hy o+ Hox with population
variation described by the 2 x 2 covariance matrix z. (We digress to note
that since the 8 ; are positive in this case it might be more reasonable to
assume log 81 to be normally distributed. Such a refinement is not, in fact,
important in this example and so we shall not pursue it, in order to keep this
initial exposition as simple as possible. We shall illustrate such a
transformation in our second, nonlinear, example.) In what follows, we shall
denote My by «. (aB) for the girl (boy) populations and My by BG (BB).

Since information from individuals within each population is effectively
‘pooled’ to give population ‘mean’ inferences, it can be important in such
studies to guard against an aberrant or ‘outlying’ individual unduly
influencing the population inference. Proceeding naively, examining, for
example, the pooled population of girls and boys, one might plot the least-
squares estimates of intercepts and slopes, as in Figure 1. Should one
conclude from the plot that the boy labelled 24 i1s a ‘slope outlier’? Or that
the boy labelled 21 is an ‘intercept outlier’? We seek a modelling analysis




strategy which will .provide both a coherent outlier detection diagnostic and
direct inferences which accommodate the effect of any outliers present.

Figure 1 Here

The strategy we shall adopt is to replace the population bivariate normal
assumption for the @ 1’s by a bivariate Student-t assumption (see, for example,
Smith, 1983, O’Hagan, 1987, for general discussions of modelling with heavy-
tailed distributions). The hierarchical model is then completed by assigning
priors to 7, g and Z. As we shall show in Section 4, analysis of this model
(perhaps surprisingly) is still easily implemented via the Gibbs sampler and
provides a novel form of graphical diagnostic for second-stage outliers in
hierarchical models.

The main inference questions in this study relate to differences in
growth between the girl and boy populations. We shall provide illustrative
analyses of this in Section 4, taking into account the outlier issue discussed

above.

2.2 Ano ation pharmacoki e
Table 2 presents pharmacokinetic data on the plasma concentration of the

drug Cadralazine in 10 cardiac failure patients at various times after the
administration of a single dose of 30mg.

Table 2 Here

The starting point for modelling the first stage of the hlerarchy in this
case is the one-compartment nonlinear model for individual plasma
concentrations (yu) against time (XU) (see Racine et al, 1986), which
implies that

plasma concentration = 30 x ¢11 exp(-Bl X time) , (2.1)

where . 81 (> 0) are, respectively, the volume of distribution and
elimination rate for individual i, i = §,..,10.




Measurement variance is certainly related to underlying concentration
level in studlies such as this, so that a simple additive homoscedastic normal
error assumption for the first stage distribution is inappropriate. We shall
illustrate poséible models and their subsequent analyses by considering the
following three intra-individual error structures.

As a first possibility, letting 21 = (“1' Bl) and denoting the right-
hand-side of (2.1) by "U(!I)' we assume that

log yU = log "U(!I) + cU s

with independent normal errors having zero mean and constant variance T -1.

i

A second modelling possibility is to assume that

STRRITE JUR ST
with independent normal errors having zero mean and variances given by

r _ -1
["11(5?1” T, , (2.2)

so that ¥ z O indexes a power law relationship between the variance and the
mean. We shall refer to these two variance models as the lognormal model and
the power model.

In Section 5 we shall show, in fact, that neither of these formulations
is adequate for the Cadralazine data. We now describe a third, more complex

error model.

Careful study of data resulting from the analytical assay technique
revealed that the variance became approximately constant for low
concentrations, but increased as a function of the mean for larger
concentrations. To model this behaviour directly would require a ‘cut-off’
point for concentrations, below which the variance was assumed constant and
above which the power model was used. Such 2 model requires additional
parameters, so instead the power model (2.2) was used, but it was assumed that
the error distribution is a truncated normal distribution with ¥y, J 2 0. This
model reproduces the correct behaviour and also ensures that predictive




distributions will always produce non-negative concentrations.

For the (population) second stage of the hierarchical model we define
91 It log Bl) and assume that the the gl’s follow a bivariate normal
distribution with mean g = (“1’ u2) and covariance matrix I. The hierarchical
model is then completed by assigning priors to the elements of T, B § and,
for the second and third of the above models, y. We shall show in Section 5
that the Gibbs sampler again permits relatively straightforward
implementation, despite the complications of nonlinearity, mean-variance
relationships and pearameter transformations in specifying a population
distribution.

= (log a

In pharmacokinetic studlies the main questions relate to population
inferences and/or inferences for future concentration levels. Though not
relevant to our particular example, the former question may relate to the
identification of important covariates such as age, weight and sex. Interest
may focus on nonlinear functions of the population parameters, for example,
the so-called clearance parameter (defined for an individual by alB 1) and the
elimination half-life (defined for an individual by logZ/BI). Issues arise
here concerning the best summaries of the appropriate population analogue
(mean? mode? median? quantiles?). In fact, from a Bayesian perspective the
single most relevant summary will often be the predictive distribution (for
example; of the half-life) for a new individual from the population, or from a
subpopulation (typically conditioning on covariates). A predictive
distribution for concentration can, in particular, enable the benefits of a
candidate dosage regimen to be investigated.

3. THE GIBBS SAMPLER

Suppose that the joint probability structure for a collection of random

variables Ul. e Uy is such that the joint density [Ul.. .. ,Uk] is uniquely
determined by the full conditional densities [Uslllr. resg], s=1,...,k

Suppose that samples of Us can be generated efficiently from [Uslllr. res)
given specified values of the conditioning variables, Ur’ r+* s. An algorithm
for extracting information from these full conditional distributions in order
to estimate the marginal distributions, [Usl. s =1,...,k, has been discussed
by Hastings (1970) and Geman and Geman (1984). This so-called Gibbs sampler




algorithm, further developed and illustrated in Gelfand and Smith (1980) and
Gelfand et ~»° (1990), 1is a Markovian updating scheme which proceeds as
follows.

(0) y(0)

Given arbitrary staring values, U for the k random

1oty ok for e 40
variables, we generate a random variate U,”" from (U, |U . ], followed
(1) (1) ,(0) 0, 1y Tk
byU from [U¥|U Us .....Uk ], and s0 on upt,ou from
|U(1) 1)] This completes one iteration of the sampling scheme.

Aft.er t such it.entions. we would arrive at a Joint sample w(t) ”u‘(‘t)).

As t 5 ©, Geman and Geman show (under rather mild regularity conditions) that
this tends in distribution to a variable having the joint distribution

(v
Such realizations could arise from the relplication of the iterative cycle m

TR .Uk]. Suppose that we have m independent realizations of [Ui. .o .Uk].

times or from the use of a smaller number of such cycles from which, for t
sufficiently large, realizations are extracted a number of iterations apart,
the gap being large enough to ensure the ‘independence’ of the subsequent
samples. See for example, Raftery and Lewis (1892). We note that the
parameterization of the model is relevant to the choice of Gibbs strategy.

See Hills and Saith (1992) for general comment, Wakefield (1992) for comments
specific to the application in Section 5. The replicate values for

Us usl""'usn' say, can be regarded as a sample of size = from [Us]. Based
on the m iid k-tuples ‘"u"""’u" J=1,...,m, the marginal density [Us]
can be approximated by the finite mixture density

~ g 0B .
(v,) = a 121 wlu, = v,

r=s] ,

1f the right-hand side is explicitly available. Alternatively, an estimate
[U ] could be obtained using a kernel density estimate based on U JREREE ’Usn'
Horeover. if interest centres on the marginal distribution for a random
variable V = g(Ul.. .. 'Uk)’ for an arbitrary function g, we note that
evaluation of g(UU. se 'ukj)’ J=1,...,m, directly provides a sample

Vl, ee ,V.. so that [{V] is immediately available from a kernel density
estimate. See Gelfand and Smith, 1880, for further discussion.




Turning specificaily now to Bayesian applications, suppose that ¢ =
(&1.. .. .wk) is a parameter vector of interest and that, given h(y) « [y|datal
we wish to evaluate [wjldata]. for some or all of { = 1,...,k. Successively
regarding h(y) as a function of *1 for fixed &1. J # 1, immediately identifies
functions hj“l“j' J= 1), 1=1,...,k, which are such that

hy(¥yl¥y J» 1) « L9, J* 1 datal]

From knowledge of h.,(wle. J # 1) we can sample from ”1“’1- J = 1, datal, so
that the Gibbs sampling algorithm is seen to provide a general solution to the
problen of calculating marginal densitles given the specification of a
likelihood and prior.

In fact, very general methods (including ratio-of-uniforms and envelope
rejection techniques) are avallable for random variate generation, given only
the form, up to proportionality, of the density function (see, for example,
Ripley, 1987). We shall describe a recent adaptation of the ratlio-of-uniforms
method in Section §. If inferences are only required in the form of summaries
of posterior densitlies, for example, moments or quantlles, these are obtained
in a straightforward manner from the samples generated by the Gibbs sampler
(see Gelfand and Smith, 1991).

To examine the structure of the Glibbs sampler in the context of
population hierarchical models, consider first a very general Bayesian
hierarchical model having K stages. In an obvious notation, the joint
distribution of data, Y, and the parameters «
is given by

10 9 from each of the stages

[Ylmll'[m1 ]uzl'. e O |0Kl

Suppose now that inferential interest centres on [uilY], i=1,...,K and that
we wish to calculate these using the Gibbs sampler, so that we need to sample
iteratively from the full conditionals [(w_[Y, v, r # s].

Examination of the hlerachical structure (a Markov random field with an
‘ad Jacent’ neighbourhood system) reveals that




(o [Y, w,] s=1 ,
] 2sssK-1 ,
] s=K |,

o }Y, w, r=sl = o |7, Wo_gr Peaq

loglY, wy_,
so that there is typically considerable simplification in the forms of the
full conditional distributions, greatly facilitating the implementation of the
Gibbs sampler. In the following two sections, we shall iliustrate the power
and relative simplicity of the latter by considering the two particular
population problems introduced earlier.

4. ANALYSIS OF THE LINEAR GROWTH EXAMPLE

We begin, in Section 4.1, by reviewing the case where the population
(second-stage) distribution is assumed to be normal, so that each population
follows the hierarchical normal-linear model (Lindley and Smith, 1972). We
then, In Section 4.2, extend this linear case to incorporate the outlier
accommodation modelling discussed in Section 2.1 by means of a Student-t
population distribution. An illustrative analysis of the data presented in
Section 2.1 is given in Section 4.3.

4.1 A normal-linear ulation model
To illustrate the structure (1.1) in the case of the normal-linear
hierarchical model, suppose that the first-stage model has the form

1 M I
-1
]I:I E [Yulgr Tl = H N(legﬁj' T Ini) '

so that, 5= (,yn....._ym ), the ith of I observation vectors is modelled as
1

linear structure X 19 It e p PX 1, with conditionally independent honoécedastic

normal errors having variances t-l. Suppose further that the second-stage
structure is given by

I

I
[9 ] = H"(e M, 2) »
[T oo =TT meylu. =

i=1

10




so that the first-stage regression parameter vectors are taken to be a random
sample from a ‘population distribution’, N(g, Z), together with

[t) = Glx|hy, XvgTy)

corresponding to an inverse-gamma prior for the common variance 1:-1.
Finally, suppose that the prior specification is completed by assuming
vo. to known and taking the third-stage of the hierarchy to have the form
-1 -1 -1
[¢] = [MI[Z "] = N(g|n, CIW(E "|(pR) °, p) ,

with n, C, p and R known, and VW denoting a Wishart distribution. The Wishart
distribution is used here for convenience (sampling from it is straight-
forward). The parameters p and B are chosen apriori: p = p 1is most non-
informative in the sense that its distribution is flattest; the matrix R is
chosen to be an approximate estimate of Z.

Defining y = (y,,....y,), 8= (8,,....8)), 8 =T 'L o, b;' ==X X, +

£ v =1+ ¢l and treating g = (o, ... .6, 1, I, T) as an unknown

parameter of dimension p(I + 1) + Xp(p + 1) + 1, it is easily seen that a
Gibbs sampler is defined by the following conditional distributions:

-1 -1
9,1y, # T 7 6 J# ) = N DXy, + E W), D) L d= 1,0,

o I, Tl = NulruE 8+ ¢l D)

-~

[uly.

l’<

(£ )y, o w71 = WE IR, - wie, - w s oL 14 p)
i
[r]y, & u I 1 = Glx|hlyy + n), KDy, - X807y, - X8 + vyry])
i

Generation of random variates is straightforwardly achieved for the normal and
gamma distributions: generation for the Wishart distribution is achieved using
the algorithm given in Odell and Fleveson (1966). See Gelfand et al (1990)
for further detalls and an application.

11




4.2 A Student-linear population model
To robustify the second-stage of the hierarchical model given In Section

2.3, suppose that we wish to replace the assumption that the 6 jarea random
sample from an N(y, I) distribution by the assumption that they are a random
sample from Stv(g. Z), a multivariate Student-t distribution with mean g,
covariance matrix I and degrees of freedom v.

One way of representing such an assumption in the structure (1.2), is to
take

1 I
-1
[Tt - [T mege '
i= i=
so that now ¢ = (u, Z, Al.....AI). and then subsequently to assume that

(8] = (wlEIA)... 1A,

I
vhere (2,] is defined by [1A;] = G(vlllma. X) (= xﬁ). See, also, Racine-Poon
(1892). The remaining hierarchical structure is defined exactly as in Section
2.3. For references establishing that [g | I, A;) = N(g,|u. A;'5) and (v )
= G(vA |%v, %) generate [0 |, Z] = St (8,|p, Z), see Johnson and Kotz (1972,
Chapter 27, §3-4).

1 ~1

?A ;* c
full conditionals defining the Gibbs sampler become

-1 T -1 -1 -
Defining 91 =t¥1¥1*l‘§ . g =§ » A= (J\l,....AI), the

- T -1 .
» T, A, QJ' Jell = ”‘91'91("51!1 + Ajg n, QI) i=1,...,1 ,
£ v Al = NUETEAg v C )
1
[2-1 -1 T -1
L |y, 6, g T, Al = W(E |[§ A8, - p)(8, =) +pRI °, I+p)

-1
[t|ly. 6, #. T, Al = Glx|%(v, + n), x[)}: ¥ - {IQI)T(ZI - X.8,) + voro D)

-1
gly, & o 7 T A, jo il =Goa|%v + p), %),

12




where

v, = (8, - WE e, - +v
Generation of all the required random variates is stralghtforward, thus
providing - via the Gibbs sampler - a fully Bayesian implementation of the
hierarchical linear model with Student-t second stage. By using the same
device of scale mixtures of normals, the first stage of the hierarchy could
also be 'taken to be Student-t, thus providing an analysis robust to both data
outliers and outlying individuals in the population. More generally, the
device used here leads to a straightforward Gibbs sampler implementation fob
any robustifying distribution defined as a scale mixture of normals (see
Andrews and Mallows, 1974, Carlin and Polson, 1992).

4.3 [llustrative analysis

Using the model structure outlined in Section 4.2, the data in Table 1
was analysed with a number of second stage assumptions. The first analysis
assumed that the (a, B)-pairs from each of the girl and boy populations arose
from separate bivariate t-distributions with 2 degrees of freedom. We denote
this model by St,. For this example the values chosen for the hyper-

2
parameters were

-1 1 0
Yo 0,C =0, p=2, R= [0.1]

The following Gibbs strategy was used: 25 cycles were run initially for 30
iterations before being increased to 50 cycles. These were run for 30
iterations also before being increased to 100 cycles for 100 iterations.

One of the principal alms of this illustration is the detection of
outlying individuals using the St model. The scale parameter A 1 is a good
global indicator of outliers. The prior expectation of A i is 1, so0 that a Ai
value substantially below 1 indicates that the ith individual parameter vector
(aI, ﬂj) is likely to be far away from the population mean 4. Since the
Mahalanobis distance is effectively used here to measure the distance from K,
A i provides only a global diagnostic for outliers. To investigate further the
specific elements of e 1 for which the particular individual is outlying, one
needs to examine moment summaries or graphical displays of @ 31. marginally
or Jointly using the generated samples. Figure 2 displays the box plots of

13




the posterior sample values of the Ai's, for each of the 16 boys. It is clear
that boy 21 is likely to be an outlier. Boy number 24 is not, however, as
extreme. Further investigation of the marginal posterior plots of a, and B i
enables us to conclude that boy 21 is an intercept outlier, whereas boy 24 is

a possible slope outlier.

Figure 2 Here

To compare the influence of the outliers on the overall inferences, the
data set of the boys was reanalyzed using the normal model, first with the
full data set (NO), then with boy 21 removed (N1) and then with both boys 21
and 24 removed (N2). The median, 5% and 95% posterior sample percentiles of
ap. BB' and ‘t’-l (the population intercept, slope, and measurement variance),
along with the sample mean of the population covariance matrix T are
' summarized in Table 3 for the various models for the boys, and for the St2
model for the girls. The boy population parameter inferences shift in the
expected directions with the various normal models; e.g., the intercept in NO
is higher than that of N1 and N2. The population variance of both the
intercept and slope are higher in the NO model than in the other normal
models. The results for the St2 model lie, as expected, between NO and N2.

Table 3 Here

The main objective in this problem is to make inferences concerning the
difference in dental growth between boys and girls. For this comparison, the
St2 model was chosen for both groups. Let 3(t) be the difference in the
dental measurement of boys and girls at age t, given by

‘ a(t) = (aB + BB(t-u)) - (aa + Ba(t-u))

One can easily obtain posterior samples of 3(t) by direct substitution of the
corresponding values of the generated samples of «_, BB and as BG' Figure 3
displays box plots of the differences at ages 8, 10, 12 and 14 years. It is
quite clear that the boys have higher dental measurements and the differences

14




become increasingly larger as a function of age.

Figure 3 Here

We have demonstated here that the Gibbs sampler provides a straijght-
forward means both for inference summaries and for diagnostic checks. Once
the basic posterior samples are obtained for the original model parameters,
the effort required to perform additional analyses is small.

S.  ANALYSIS OF THE NONLINEAR PHARMACOKINETIC EXAMPLE

We begin in Section 5.1 by identifying the forms of the full conditionalé
for the power model specification (2.2) given in Section 2.2. In Section 5.2
we carry out an analysis of the data presented in -Table 2 and discuss the two
alternative model specifications of Sections 2.2.

5.1 A nonlinear population model
Supprse that the first-stage of the model has the form

1" 1"
= 7 -1
E E lyy 185 7y 71 H ]j] Ny ln, (00, n 8%,

where ", j(gl) is a nonlinear function. Suppose further that the second and
third-stage structures are as given in Section 4.1, with, additionally, a
uniform prior for y over some suitably assessed interval 0 = 115 ¢, with ¢
known. As in that section, the Gibbs sampler can again be defined by the full
conditional distributions

IEI'X' E' E-lo En £ 9.’. j’jl ) i= 1.....1
tuly. & £, 7, 7]
£y € ¢ % 7]

r,ly. & !, T, Jei) 1=1,...,1

15




The conditional distributions for u and §-1 are identical to those described
in Section 4.1. The conditional distribution for T i is similar with

ltjlx' 99 En E-lo £ tJ’ j # i] = Ga TI'X(VO + nl)

n 2
X% V5% + JZ Y .
. =1 "11(91)
For each i = 1,...,1, the conditional distribution of the p-vector e i is given
by
-1
(yly, . 270 . 7, 8, Il =
n
i ) 4 n 2

I s] =3 p s

X 7 2 L 7

J=1 "11‘91’ 1 nu(gl) i

T e - wi

X exp [-x(gi - i)
Ignoring the final term gives the conditional form for 7 on the range 0 s 7y =<
c. To generate from the conditional distributions of e i and ¥ we use the
generalized ratio-of-uniforms technique as described in Wakefield, Gelfand
and Smith (1991) and summarized here in an Appendix. For a range of examples,
this method has been found to be considerably more reliable than the normal
approximation rejection techniques used in a related setting by Zeger and
Karim (1991).

5.2 ]llustrative analysis
Using the power model structure outlined in Section 5.1 the data in Table

2 was analyzed using the following hyperameters

Vom0 ¢ m0 o2 p = [ 0] .

B was chosen in the following manner. We require an approximate estimate of

16



the variance-covariance matrix of the log a and log g population distribution.
The off-diagonal element is chosen to be zero. Without loss of generality
consider log «. In many pharmacokinetic applications we have some idea of the
magnitude of the coefficlent of variatlon of the a’s. Now if the variance of
the a's is small we have

log « = log E(a) + L'l_;_(éggﬁ .
and
var (log a) = var(g)
E(a)

Consequently the square of the coefficient of variation gives an estimate of
the variance of log a. In this example the coefficient of variation for both
o and B was estimated to be 30%.

The upper bound for ¥, c was chosen to be 5 in this example. The Gibbs
strategy was as follows. Good initial estimates were found and from these 10
cycles were run for 400 lterations. Samples were extracted from each cycle,
10 iterations apart from iteration 310 onwards to give 100 realizations from
the posterior. The marginal distribution for y was found to be located at
approximately 0.6. As we noted in Section 2.2 one of the principal aims of
studies of this kind is the computation of predictive distributions for
concentrations. The model described in Section 5.1 was found to be inadequate
in providing such predictive distributions. The value of y was not large
enough to ensure that the predictions avoided assigning significant
probabilities to negative concentrations. The lognormal intra-individual
error specification described in Section 2.2 would, of course, always produce
positive predictive concentrations. However, the lognormal model also does
not fit these data, as is clear from the following. The lognoml model y =

(a)e with e~N(O, o ) can, for small 0-2, be approximated by

y=sue) (1+¢) ,

ylelding E(Y) = n(6) and Var(Y) = 'nzcrz. This corresponds to 7 = 2 in our
power model error specification . Consequently, if the lognormal error model
were correct and the above approximation were accurate we would expect the

marginal distribution for y to be located close to the value 2. For error
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variances and parameter values similar to those for this dataset, lognormal
data were simulated and the marginal distribution for y was indeed found to be
close to 2 and not 0.6 as in this example. We conclude that the lognormal
specification i1s not adequate for this example and so do not include here
detalls of the Gibbs sampler conditional forms. We note, however, that

the conditional form for 6 i is the only element of the sampler to change and
generation via the ratio-of-uniforms method is again possible.

The truncated normal model outlined in Section 2.2 produces the following
first stage

n;

) ST R R T PR
HH [ S]] ]
= "1 "1

o[- [2]]

2 _n 7

iJ

for y, J Z 0. Here &(.) denotes the cumulative distribution function of the
standard normal distribution. In terms of the Gibbs sampler for the power
model, specified In the previous Section, the conditional distributions

for 6, T and 7 are affected by this change. For e i and 7y the ratio-of-
uniforms can still be used though there is an additional computational expense
in the numerical calculation of #(.). Previously the generation for the t 1's
was straightforward. This is no longer the case so, again, the ratio-of-
uniforms technique (for log T 1) was utilized and the analysis successfully
implemented. Figure 4 shows a predictive distribution for concentration for
patient 2 at 32 hours.

Figure 4 Here

For population inferences, we note the following interesting issue. Our
second stage assumption is that the (aj, 81)-pairs are lognormally distributed

18




with mean [“1’ pzl and covariance elements (zu. 212. 2221. To summarize the
population distribution of, say, the a 1's we therefore have a number of
options. We could choose to calculate the mean, the mode, the median, or more
generally the quantiles of order q of the distribution, given, respectively,

by exp(u1 + 211/2). exp(u1 - Zu). exp(ull. and exp(u1 + nq tfl). where n, is
the quantile of order g of an N(0, 1) distribution. For a posterior sample
from the marginal distribution of By and zu we can easily generate any of
these quantities. Recall that we may also be interested in the clearance Q

and the half-live A, where for the ith individual 01 = ¢‘BI and AI = 1032/61.

It is straightforward to make inferences about these quantities since the

(QI. AI)-pairs also have a lognormal distribution with mean (u1 + Ky log(log

2) - "2) and covariance elements (211 + 222 + 2212. - 212 - 222. 222). Figure
5 shows a bivariate plot of the medians for Q and A, with corresponding
(histogram) density estimates.

Figure 5 Here

6. DISCUSSION AND RELATION TO OTHER WORK

Two alternative approaches for approximating posterior distributions for
hierarchical models, such as those of Section 2, are the EM-type approxi-
mations (Racine-Poon, 1985; Racine-Poon and Smith, 1980), and the Laplace
approximation method (see, for example, Tierney and Kadane, 198S; Kass and
Steffey 1989).

The EM type approximation treats the individual level effects, e Ig
missing data and uses the EM algorithm to obtain the mode of the joint
posterior distribution of the hyperparameters of ¢ { (in our terminology, the
population parameter ¢). The marginal posterior density for a population
level parameter is approximated by the full conditional distribution for this
parameter, with estimates from the EM algorithm replacing the conditioning
parameters. Since the exact marginal posterior distribution is a continuous
mixture of these full conditional forms, we might expect such an approximation

to be poor (see Gelfand et al, 1980, for evidence that this is the case).
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More specifically, let us consider the models in Sections 2.1 and 2.2
omitting the variance power transformation for simplicity. For the student-
linear population model interest would often focus upon the posterior
distribution of . One attempt at using the EM approximation is to take as
the estimates of the posterior distribution of i, the full conditional for K,
substituting estimates of 6, Z and A obtained by the EM algorithm. An E step
is straightforward. The M step, however, requires a maximization over [ §
and é given g. and with more parameters than data this maximum is unbounded.
If instead we ‘integrate out the A ,, again the E step is straightforward bat
now, without conjugacy, the M step cannot be achieved in closed form.

In the normal nonlinear model, taking 91 as say, the MLE or a nonlinear

least squares estimator of 6,, the EM approximation replaces

1'

I-_[ LS FTILITICRE o
J=1

with an approximate normal distribution for é i based upon asymptotic theory.
The remainder of the model specification is unchanged so that, with the
resultant conjugacy, implementation of the EM algorithm is straightforward.
However, since Interesting applications tend to have small to moderate n, the

i
quality of the normal approximation is questionable.

With regard to the Laplace method approach. we first note that the jJoint
posterior distribution of all the paxineters is proportional to likelihood X
prior. Hence any expectation, including any marginal distributions, can be
expressed as a ratio of integrals. The Laplace method approximates both the
numerator and denominator integrals. In particular, the version by Tierney
‘and Kadane (1986) appears to offer the best such general approximation and has
been tallored in Kass and Steffey (1989) for application to exchangeable
hierarchical models.

When the model is conjugate, by which we mean that closed form
integration over @ i results, the Laplace approximation may be applied without
difficulty. If not, as with the Student linear and normal nonlinear models,
further techniques are needed. Kass and Steffey suggest that, if the
dimensionality of e is high, perhaps an approximate EM-type method might be
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used! We note additionally that, in implementing the Laplace approximation,
two function maximizations will always be required and at least one additional
maximjzation will be required for each different expectation that is sought.
Also, as demonstrated in Achcar and Smith (1990), the approximation is very
sensitive to parameterization.

The Gibbs sampling approach is able to avoid many of the problems
assocjated with the above alternative approximations, and appears to offer the
most flexible and powerful method currently available for the routine analysis
of challenging population model problems.
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Table 1. _
Measurements on 11 Girls and 16 Boys, at 4 Different Ages

Girls - Age In Years

Individual 8 10 12 14

1 21 20 21.5 22
21 21.5 24 25.5

3 20.5 24 24.5 26

4 23.5 24.5 25 26.5

5 21.5 23 22.5 23.5

6 20 21 21 22.5

7 21.5 22.5 23 25

8 23 23 23.5 24

9 20 21 22 21.5

10 16.5 19 19 19.5

11 24.5 25 28 28

Boys - Age in Years

Individual 8 10 12 14
12 26 25 29 31
13 21.5 22.5 23 26.5
14 23 22.5 24 27.5
15 25.5 27.5 26.5 27
16 20 23.5 22.5 26
17 24.5 25.5 27 28.5
18 22 22 24.5 26.5
18 24 21.5 24.5 25.5
20 23 20.5 31 26
21 27.5 28 31 31.5
22 23 23 23.5 25
23 21.5 23.5 24 28
24 17 24.5 26 29.5
25 22.5 25.85 25.5 26
26 23 24.5 26 30
27 22 21.5 23.5 25
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Table 2.

PATIENT

O 0 N 0O O b WN -

[y
(=

1.

2

08

2.03

L I R O o Y N

.44
.55
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.08
.32
.63
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.30

O O =» O O O O = » O

.75
.28
.30
.96
.78
.59
.74
.01
.73
.70

O O O 0O 0O 00 0 - O

okine

HOURS AFTER ADMINISTRATION

o

> O

.20
.95
.80
.50
.37
.46
.73
.40
.40

0.34
1.02
0.68
0.62
0.33
0.23
0.28
0.55
0.30
0.25

24

10

0.23
0.83
0.52
0.46
0.18
0.17
0.27
0.41
0.21
0.14

24

0.02
0.28
0.06
0.08
0.02
0.00
0.03
0.01
0.00
0.00

28

0.02
0.06

32

0.00
0.02




Table 3.

Model ”1 u2 T mean of ¥

BOYS

St2 24.65 0.7781 2.65 1.7967 =~0.0229
(23.96, 25.94) (0.5986, 0.8867) (1.79, 3.87) 0.0742 -

NO 24.99 0.7978 2.90 2.5470 0.0083
(24.30, 26.92) (0.5952, 0.9931) (1.86, 4.25) 0.0927

N1 24.67 0.7999 2.86 1.5290 -0.0021
(23.84, 25.25) (0.6161, 0.9799) (1.92, 3.79) 0.0819

N2 24.66 0.7000 2.55 1.7041 0.0234
(23.84, 25.28) (0.4771, 0.9098) (1.68, 3.56) 0.0719

GIRLS

St2 22.47 0.4322 0.49 3.1409 0.1070
(21.39, 23.38) (0.2175, 0.6085) (0.28, 0.83) 0.0594

() denotes a 90% sample interval
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APPENDIX he gene ized ratio-of-uniforms thod

Let f(0) denote the unnormalized univariate density from which we wish to
generate. The generalized ratio-of-uniforms method is as follows. If we
generate bivariate points in the region C defined by

C={(u.v):0<urﬂsf[—:]}. (A.1)
u

with r > 0, then the resulting ‘ratio-of-uniforms’ _:_. has distribution f/ff.

u
The efficlency of the method depends crucially upon the ease with which we can

generate points within the region C. The strategy which has proved most
successful is to contain C within a rectangle R = [0, al x [b, b']. We
define a, b and b* shortly. It is shown In Wakefield, Gelfand and Smith
(1991) that the probability of acceptance of a point generated in R is, in
general, large if we generate instead from ¢ = 6 -~ 6*, where 6* is the mode of
f(e).

The aforementioned paper also recommends the use of r = .5. With this
value and the ‘mode-shift’ we obtain the following strategy.

1 Determine a =/max f(6)'",

P
2 Determine b = min ¢lf(¢ + 6*)17/7*1 |
¢$s0
and b* = max olfr(¢ + e')]"'/r'*1
¢z0

3 Generate u ~ U0, a) and v ~ U(b~, b'). Let @ = 2. 0.
u

4 If @ is not contalned in the support of 6 go to 3.

r+l s f(0) then accept 6, otherwise go to 3.

5 If u
With this strategy, typical acceptance probabilities of around 0.8 have
resulted for a range of models. As long as the maxima/minima defined in 1 and
2 exist the method can be applied. Apart from this restriction the method is
completely general and does not, for example, need log-concavity of f, as per
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the adaptive rejection sampling method described in Gilks and Wild (1992).
The price of this generality is, of course, the need to carry out the
maximisations/minimizations in order to find the bounding rectangle.
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