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SUMMARY

A fully Bayesian analysis of linear and nonlinear population models has

previously been unavailable, as a consequence of the seeming impossibility

of performing the necessary numerical integrations in the complex multi-

parameter structures typically arising in such models. It Is demonstrated

that, for a variety of linear and nonlinear population models, a fully

Bayesian analysis can be Implemented In a straightforward manner using the

Gibbs sampler. The approach Is illustrated with examples involving

challenging problems of outliers and mean-variance relationships in population

modelling.
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1 DITRODUCTION

1.1 Povulation Models

Population models are widely used In biometrical growth analysis (see,

for example, Berkey, 1982, Lange, Carlin and Gelfand, 1992), in pharmacokinetic

studies as part of drug development procedures (see, for example, Beal and

Sheiner, 1980, Lindstrom and Bates, 1990), and have a long history of use in

educational research (Novick et al, 1972), econometrics (Swamy, 1970) and

other fields. Related models are now Increasingly used for multi-centre

clinical trials (Skene and Wakefield, 1990) and for spatial epidemiology

studies (Besag et al, 1991).

From a Bayesian perspective, such models are variations on and extensions

of the following hierarchical structure. Let y denote the totality of

measurement data on I individuals in a designated population (for example, of

patients, experimental animals, firms, etc. ); let e denote the parameters

defining I underlying 'response' profiles (for example, weight versus age,

drug concentration versus time after administration, profits versus structural

variables defining a firm, etc. ) and # denote hyperparameters defining

relationships among components of 0. Then, population models correspond to

the hierarchy of distributions

where, adopting the notation of Gelfand and Smith (1990), joint, conditional

and marginal densities for random quantities, u, v are denoted, respectively,

by 1u, ,uly], [u], Iv].

In the context of (1. 1), interest my centre on Inference for components

of e (.e. relating to aspects of specific Individual profiles), or for

(I.e. relating to population characteristics), or on predictions of future

observations from an already included individual or a new individual drawn

from the same population. In all cases, the Integrals required for a fully

Bayesian analysis are typically not available in closed form and numerical or

analytic approximation is required. Hitherto, however, no approximation

approach has been found to be entirely satistfactory. The purpose of this

paper is to demonstrate that a highly effective Bayesian computation strategy
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for general population model analysis is available, based on the Gibbs

sampler.

1.2 Structure of the paper

In Section 2, we consider In detail two population model examples (one

linear, one non-linear), which pose challenging problems going beyond basic

population analysis, by modelling and analyzing population outliers and mean-

variance relationships. In Section 3, we provide a description of the Gibbs

sampler approach to Bayesian calculations for hierarchical models. In Section

4, we analyse In detail the linear model example, exhibiting, in particular, a

method for detecting population outliers. In Section 5, we analyse in detail

the nonlinear model example. We show, in particular, that the inclusion of

mean-variance relationships causes little additional computational difficulty

with the Gibbs sampler approach. The key message in both Sections 4 and 5 is

that the seemingly intractable calculations associated with the Bayesian

analysis of population models do indeed become relatively straightforward

under the Gibbs sampler approach. In Section 6, we put the Gibbs Sampler

approach in perspective by commenting briefly on other available alternatives.

2 ILLUSTRATIVE EXAMPLES

2.1 A linear population biological Erowth example

Table 1 records dental measurements of the distance (in a) from the

centre of the pituitary to the pteryo-maxillary fissure in 11 girls and 16

boys at the ages of 8, 10, 12 and 14 years. Both In the original analysis

(Potthoff and Roy, 1964) and in a Bayesian reanalysis (Fearn, 1975), a linear

growth relationship between the dental measurement and age was assumed. This

is also assumed in our subsequent analysis, together with homoscedastic normal

errors within each separate population (girls, boys). Let x j , Y j denote,

respectively, the Jth time point (using age 11 as origin) and associated

measurement on the ith individual ( - 1,... . 11 for the population of girls, J

- 12,..., 27 for the population of boys, J - 1,...,4).

--------------------------
Table 1 Here

-------------------
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For both the girl and boy populations the first stage model of (1. 1)

takes the form

"'Y LY1jI. TIr - J 11 [y ijI1z Or TI

(1.2)

n 1 17 N(Y" fi. 4r) .

where -r denotes the common normal measurement precision (reciprocal variance)

and G M (&i, 1) denotes the Intercept and slope for the ith Individual's

straight-line growth curve.

Fearn (1975) takes as the second stage (population) distribution for the

0-1 's a bivariate normal distribution (separately, for each of the girl and boy

populations). so that

with - (e, Z), where e - (A V 92 )
' () - P (1 ) = p2, so that the

individual straight-line growth curves are, n affect, regarded as

distributed around a 'mean' population growth curve, p + p2x with population

variation described by the 2 x 2 covariance matrix Z. (We digress to note

that since the 13 are positive In this case it might be more reasonable to

assume log 1 to be normally distributed. Such a refinement is not, in fact,

important In this example and so we shall not pursue it, In order to keep this

Initial exposition as simple as possible. We shall illustrate such a

transformation n our second, nonlinear, example.) In what follows, we shall

denote p, by aG (ca) for the girl (boy) populations and u2 by 3G (3B).

Since information from Individuals within each population is effectively

'pooled' to give population 'mean' Inferences, it can be important in such

studies to guard against an aberrant or 'outlying' Individual unduly

influencing the population Inference. Proceeding naively, examining, for

example, the pooled population of girls and boys. one might plot the least-

squares estimates of ntercepts and slopes, as in Figure 1. Should one

conclude from the plot that the boy labelled 24 Is a 'slope outlier'? Or that

the boy labelled 21 is an 'intercept outlier'? We seek a modelling analysis
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strategy which will .provide both a coherent outlier detection diagnostic and

direct inferences which accommodate the effect of any outliers present.

Figure 1 Here

The strategy we shall adopt Is to replace the population bivariate normal

assumption for the 01's by a bivariate Student-t assumption (see, for example,

Smith, 1983, 0'Hagan, 1987, for general discussions of modelling with heavy-

tailed distributions). The hierarchical model s then completed by assigning

priors to T, u and Z. As we shall show In Section 4, analysis of this model

(perhaps surprisingly) Is still easily implemented via the Gibbs sampler and

provides a novel form of graphical diagnostic for second-stage outliers in

hierarchical models.

The main inference questions in this study relate to differences in

growth between the girl and boy populations. We shall provide illustrative

analyses of this n Section 4, taking into account the outlier issue discussed

above.

2.2 A nonlinear povulation vharmacokinetlc example

Table 2 presents pharmacokinetic data on the plasma concentration of the

drug Cadralazine in 10 cardiac failure patients at various times after the

administration of a single dose of 30mg.

Table 2 Here

The starting point for modelling the first stage of the hierarchy in this

case is the one-compartment nonlinear model for Individual plasma

concentrations (y 1j) against time (xij) (see Racine et a, 1986), which

implies that

plasma concentration = 30 x a exP(- 1 x time) , (2.1)

where a , Pi (> 0) are, respectively, the volume of distribution and

elimination rate for Individual 1. I - 1,.., 10.
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Measurement variance is certainly related to underlying concentration

level in studies such as this, so that a simple additive homoscedastic normal

error assumption for the first stage distribution is inappropriate. We shall

illustrate possible models and their subsequent analyses by considering the

following three intra-individual error structures.

As a first possibility, letting - l ( Pi. i) and denoting the right-

hand-side of (2.1) by iij(01), we assume that

log Yij " log 1Ij(0 ) + C ii

with independent normal errors having zero mean and constant variance T-

A second modelling possibility is to assume that

YJ = 'Qi(0i) + C '

with independent normal errors having zero mean and variances given by

[I1j(0$111 T- 1 ,(2.2)

so that a: 0 indexes a power law relationship between the variance and the

mean. We shall refer to these two variance models as the lognormal model and

the power model.

In Section 5 we shall show, in fact, that neither of these formulations

is adequate for the Cadralazine data. We now describe a third, more complex

error model.

Careful study of data resulting from the analytical assay technique

revealed that the variance became approximately constant for low

concentrations, but increased as a function of the mean for larger

concentrations. To model this behaviour directly would require a 'cut-off'

point for concentrations, below which the variance was assumed constant and

above which the power model was used. Such a model requires additional

parameters, so instead the power model (2.2) was used, but it was assumed that

the error distribution is a truncated normal distribution with Y a 0. This

model reproduces the correct behaviour and also ensures that predictive
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distributions will always produce non-negative concentrations.

For the (population) second stage of the hierarchical model we define

(log &is log fl3) and assume that the the 0 's follow a bivariate normal

distribution with mean P - p L2 ) and covarlance matrix X. The hierarchical

model Is then completed by assigning priors to the elements of T, , Z and,

for the second and third of the above models, T. We shall show in Section 5

that the Gibbs sampler again permits relatively straightforward

Implementation, despite the complications of nonlinearity, mean-variance

relationships and parameter transformations in specifying a population

distribution.

In pharmacokinetic studies the main questions relate to population

inferences and/or inferences for future concentration levels. Though not

relevant to our particular example, the former question may relate to the

identification of important covariates such as age, weight and sex. Interest

may focus on nonlinear functions of the population parameters, for example,

the so-called clearance parameter (defined for an individual by a 1 ) and the

elimination half-life (defined for an individual by log2/0 1 ). Issues arise

here concerning the best summaries of the appropriate population analogue

(mean? mode? median? quantiles?). In fact, from a Bayesian perspective the

single most relevant summary will often be the predictive distribution (for

example.- of the half-life) for a new Individual from the population, or from a

subpopulation (typically conditioning on covarates). A predictive

distribution for concentration can, in particular, enable the benefits of a

candidate dosage regimen to be investigated.

3. THE GIBS SAMPLER

Suppose that the Joint probability structure for a collection of random
variables U1 .... Is such that the oint density [0,... ] is uniquely

determined by the full conditional densities [{UslUr, r s], s -

Suppose that samples of U can be generated efficiently from [U sUr. r * s]

given specified values of the conditioning variables, Ur, r 0 s. An algorithm

for extracting information from these full conditional distributions in order

to estimate the marginal distributions, [U 1, s - 1 ... ,k, has been discussed

by Hastings (1970) and Geman and Geman (1984). This so-called Gibbs sampler
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algorithm, further developed and illustrated In Geifand and Smith (1990) and

Gelfand et P' (1990). Is a Markovlan updating scheme which proceeds as

follows.

Given arbitrary staring values, u( 0 ), U ( 0 ) , for the k random

variables, we generate a random varlate U) from I U(0) .... () followed
byr1 ro U (1) (0) (0 1 * u (U 1 ) .. UkI.olwe

by) and so on up to U from
[UJ, U ... 1 .so on +

() l!I ".I. This completes one Iteration of the sampling scheme.

After t such iterations, we would arrive at a Joint sample (U I ... . ut).
As t 4 a, Geman and Geman show (under rather mild regularity conditions) that

this tends in distribution to a variable having the Joint distribution

U 1 .... Uk. Suppose that we have m independent realizations of [U ..... Uk"

Such realizations could arise from the relplication of the iterative cycle m

times or from the use of a smaller number of such cycles from which, for t

sufficiently large, realizations are extracted a number of iterations apart,

the gap being large enough to ensure the 'independence' of the subsequent

samples. See for example, Raftery and Lewis (1992). We note that the

parameterization of the model is relevant to the choice of Gibbs strategy.

See Hills and Smith (1992) for general comment, Wakefield (1992) for comments

specific to the application in Section 5. The replicate values for

U s, .. .. U , say, can be regarded as a sample of size a from [U I. Based

on the a lid k-tuples (U1 i.... Uk ), j - 1,... , the marginal density [ Us]

can be approximated by the finite mixture density

& - ; [ -(lUrUj, r *s]

If the right-hand side Is explicitly available. Alternatively, an estimate

[Us I could be obtained using a kernel density estimate based on U ... * so

Moreover, if interest centres on the marginal distribution for a random

variable V - g(U1,... ,U k), for an arbitrary function g, we note that

evaluation of i(U, . ',kJ, = - 1... U,) directly provides a sample

V11... ,Va, so that [V) Is immediately available from a kernel density

estimate. See Gelfand and Smith, 1990, for further discussion.
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Turning specifically now to Bayesian applications, suppose that t=

( - '*,k ) is a parameter vector of interest and that, given h(O) - [0{dataJ

we wish to evaluate [* 1 IdataJ, for some or all of I = 1.... k. Successively

regarding h(t) as a function of 0 for fixed # J I, Immediately identifies

functions h1(01 10 , J * i), I - ,...,k, which are such that

h1(01 10J. J - 1) a [Oil*J. J * 1. data)

From knowledge of h (J0 ,1 i J * 1) we can sample from [01#J, J * 1, data], so

that the Gibbs sampling algorithm is seen to provide a general solution to the

problem of calculating marginal densities given the specification of a

likelihood and prior.

In fact, very general methods (Including ratio-of-uniforms and envelope

rejection techniques) are available for random variate generation, given only

the form, up to proportionality, of the density function (see, for example,

Ripley. 1987). We shall describe a recent adaptation of the ratio-of-uniforms

method in Section 5. If inferences are only required in the form of summaries

of posterior densities, for example, moments or quantiles, these are obtained

in a straightforward manner from the samples generated by the Gibbs sampler

(see Gelfand and Smith, 1991).

To examine the structure of the Gibbs sampler in the context of

population hierarchical models, consider first a very general Bayesian

hierarchical model having K stages. In an obvious notation, the joint

distribution of data, Y, and the parameters w1 ... w ,k from each of the stages

is given by

[Y[ I 1 I(e 21w 2"]'"" [wK-1UK
]

Suppose now that inferential interest centres on [ 1 iY], I - 1,... ,K and that

we wish to calculate these using the Gibbs sampler, so that we need to sample

Iteratively from the full conditionals [sJY, w r, r * s].

Examination of the hierachical structure (a 14arkov random field with an

'adjacent' neighbourhood system) reveals that
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[W I lY, w2 l s - I i

SlyI' wr , r * s] 1 [wSJY.__ ws_1 w s+1] 2 s s s K-1

[wKIY, wKi 1 ] s -K

so that there is typically considerable simplification In the forms of the

full conditional distributions, greatly facilitating the implementation of the

Gibbs sampler. In the following two sections, we shall illustrate the power

and relative simplicity of the latter by considering the two particular

population problems introduced earlier.

4. ANALYSIS OF THE LINEAR GROWTH EXAMPLE

We begin, in Section 4. 1, by reviewing the case where the population

(second-stage) distribution Is assumed to be normal, so that each population

follows the hierarchical normal-linear model (Lindley and Smith, 1972). We

then, in Section 4.2, extend this linear case to incorporate the outlier

accommodation modelling discussed in Section 2. 1 by means of a Student-t

population distribution. An illustrative analysis of the data presented in

Section 2.1 is given in Section 4.3.

4.i A normal-linear poDulation model

To illustrate the structure (1. 1) in the case of the normal-linear

hierarchical model, suppose that the first-stage model has the form

n II l IfJT fJ [y1 j 1 e1
' "r] - JJT N( Ix 1 . T-/l

so that, -l , (Y1 I""Yin), the Ith of I observation vectors is modelled as

linear structure Xi, 21, p x 1. with conditionally independent homoscedastic

normal errors having variances T- 
. Suppose further that the second-stage

structure is given by

I I

U = [el"] j " N(e01 1 " - )
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so that the first-stage regression parameter vectors are taken to be a random

sample from a 'population distribution', N(p, Z), together with

[TI] - G(TlXu0, XVuO O )

-1
corresponding to an Inverse-gamma prior for the common variance T .

Finally, suppose that the prior specification Is completed by assuming

'O , To known and taking the third-stage of the hierarchy to have the form

11 -1 -1
[ ] = [id[Z -1 I c-p l, S)W( IcpP) , p)

with i), C, p and R known, and V denoting a Wishart distribution. The Wishart

distribution is used here for convenience (sampling from it Is straight-

forward). The parameters p and R are chosen apriori: p = p is most non-

informative In the sense that its distribution Is flattest; the matrix R is

chosen to be an approximate estimate of X.

Defning y = (yl,..-.,y), 0 - ( 1 ... ,02), i '- -1,E Dj1 = - Tx X1 +

E1, V-- = 1E- + ,and treating = i ,...,r , ,T) as an unknown

parameter of dimension p(I + 1) + Xp(p + 1) + 1, it is easily seen that a

Gibbs sampler is defined by the following conditional distributions:

[oily. e. z - , r, 0, J * 11 = 1 elD( y + X-1 p), DI) I 1,... ,I

[-l, -l - T + -I- ,y-l 0 + p V

[,l,:-I , T-x -1 a IE(e n) £c -e) T + (Xf - P~e) o

Generation of random varlates Is straightforwardly achieved for the normal and

gamma distributions: generation for the Wishart distribution is achieved using

the algorithm given In Odell and Fieveson (1966). See Gelfand et a (1990)

for further details and an application.
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4.2 A Student-linear Dopulation model

To robustify the second-stage of the hierarchical model given In Section

2.3. suppose that we wish to replace the assumption that the 01 are a random

sample from an N(i. X) distribution by the assumption that they are a random

sample from St (' ). a multivariate Student-t distribution with mean p.

covarlance matrix I and degrees of freedom P.

One way of representing such an assumption in the structure (1.2). is to

take

I I

14 [Gilt] = 14 N(0111z 7, 1E

so that now = (p., £,l .. ,Al), and then subsequently to assume that

[01 = (&l-zl[bll...IA ,

where [t/] is defined by [PiA] = G(PA il)Xv, X) (_ z2). See, also, Racine-Poon

(1992). The remaining hierarchical structure is defined exactly as in Section

2.3. For references establishing that [ejLIe, -, A 1 = N(e1 IL, A- I E) and [uA

- G(VA1KP , %) generate 1Oeji, 11 - StP(aIle, 1), see Johnson and Kotz (1972,

Chapter 27, §3-4).

Defining C 1  T XX 1  x + - A ( ) C ( the

full conditionals defining the Gibbs sampler become

(G1y., e  r--1 A, 6,J*iJ - N(eleC(TX I y , ) + A 1, .... ,

[ply-. T. A] = N (U( -?, + C 1 -)' U)I

T-1A -1 IEA1(,-ee e)T+ -1 +P
[Z-11, ., .i, .r, .A1 - V(E -l[E A1c(e[ - &)(en - .)r pRF1-, i + p)

I

, 1  A] G(.- .( + n), Zi lj - - ) + Po0

IV , e, l rIli . J A - G(VAM €+1 c p), K)
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where

vI (e U )T +1e - V

Generation of all the required random variates Is straightforward, thus

providing - via the Gibbs sampler - a fully Bayesian Implementation of the

hierarchical linear model with Student-t second stage. By using the same

device of scale mixtures of normals, the first stage of the hierarchy could

also be taken to be Student-t, thus providing an analysis robust to both data

outliers and outlying Individuals In the population. More generally, the

device used here leads to a straightforward Gibbs sampler implementation for

any robustifying distribution defined as a scale mixture of normals (see

Andrews and Mallows, 1974, Carlin and Poison, 1992).

4.3 Illustrative analysis

Using the model structure outlined In Section 4.2, the data In Table I

was analysed with a number of second stage assumptions. The first analysis

assumed that the (a, 1)-pairs from each of the girl and boy populations arose

from separate bivariate t-distributions with 2 degrees of freedom. We denote

this model by St 2 . For this example the values chosen for the hyper-

parameters were

, 1  [101
v.0, C 0o, =-2, R 0 .1

The following Gibbs strategy was used: 25 cycles were run Initially for 30

iterations before being Increased to 50 cycles. These were run for 30

Iterations also before being increased to 100 cycles for 100 Iterations.

One of the principal als of this Illustration is the detection of

outlying individuals using the St P model. The scale parameter A is a good

global Indicator of outliers. The prior expectation of A1 Is 1, so that a A

value substantially below 1 Indicates that the 1th Individual parameter vector

(a 1 , PI) Is likely to be far away from the population mean e. Since the

Mahalanobis distance Is effectively used here to measure the distance from ,

AI provides only a global diagnostic for outliers. To investigate further the

specific elements of 01 for which the particular individual Is outlying, one

needs to examine moment summaries or graphical displays of a, P,, marginally

or Jointly using the generated samples. Figure 2 displays the box plots of

ii



the posterior sample values of the A,'s, for each of the 16 boys. It is clear

that boy 21 is likely to be an outlier. Boy number 24 s not, however, as

extreme. Further Investigation of the marginal posterior plots of a and 1

enables us to conclude that boy 21 is an Intercept outlier, whereas boy 24 is

a possible slope outlier.

Figure 2 Here

To compare the influence of the outliers on the overall Inferences, the

data set of the boys was reanalyzed using the normal model, first with the

full data set (NO). then with boy 21 removed (Ni) and then with both boys 21

and 24 removed (142). The median, 5% and 95% posterior sample percentiles of-1
aB , B and T (the population Intercept, slope, and measurement variance),

along with the sample mean of the population covarlance matrix E are

summarized In Table 3 for the various models for the boys, and for the St 2

model for the girls. The boy population parameter inferences shift in the

expected directions with the various normal models; e. g., the Intercept in NO

Is higher than that of NI and N2. The population variance of both the

Intercept and slope are higher In the NO model than In the other normal

models. The results for the St 2 model lie, as expected, between NO and m2.

Table 3 Here

The main objective in this problem is to make inferences concerning the

difference in dental growth between boys and girls. For this comparison, the

St 2 model was chosen for both groups. Let a(t) be the difference In the

dental measurement of boys and girls at age t, given by

8(t) - (LB + iB(t-1)) - (aG + G(t-1))

One can easily obtain posterior samples of a(t) by direct substitution of the

corresponding values of the generated samples of &B' 9B and &G, P. Figure 3

displays box plots of the differences at ages 8, 10, 12 and 14 years. It is

quite clear that the boys have higher dental measurements and the differences

14



become increasingly larger as a function of age.

Figure 3 Here

We have demonstated here that the Gibbs sampler provides a straight-

forward means both for Inference summaries and for diagnostic checks. Once

the basic posterior samples are obtained for the original model parameters,

the effort required to perform additional analyses Is small.

5. ANALYSIS OF THE NONLINEAR PHARNACOKINETIC EXAMPLE

We begin in Section 5. 1 by identifying the forms of the full conditionals

for the power model specification (2.2) given in Section 2.2. In Section 5.2

we carry out an analysis of the data presented in Table 2 and discuss the two

alternative model specifications of Sections 2.2.

5. 1 A nonlinear Dopulation model

Suppose that the f irst-stage of the model has the form

I n I n

Ly [Y 1 J1!1 TI t -] l = IJ N(Y 1 PIT(a)(e7-.' )

where v1i (a ) is a nonlinear function. Suppose further that the second and

third-stage structures are as given in Section 4. 1, with, additionally, a

uniform prior for 7 over some suitably assessed interval 0 S S c, with c

known. As in that section, the Gibbs sampler can again be defined by the full

conditional distributions

[.eil, ju, 1 , T, i,, joi] I 1,...,I

[. , , . - , ., 71
S T, 71

[Tz, , ., i, *j iJ I Z

15



-1
The conditional distributions for yu and Z are identical to those described

in Section 4. 1. The conditional distribution for -r Is similar with

[T ',I. 2. AV, 7. " J, J G& Gt=a., + n, )

nn 2

M VOTO + 71 l~e)

For each I = 1 ... 1, the conditional distribution of the p-vector e is given

by

T' ]X exp -( _= -ij (,) 1

T 2 I
x exp t-M(ei - L)T teLUp)j

Ignoring the final tern gives the conditional form for 7 on the range 0 s :s

c. To generate from the conditional distributions of e and 7 we use the

generalized ratio-of-uniforms technique as described in Wakefield, Gelfand

and Smith (1991) and summarized here in an Appendix. For a range of examples,

this method has been found to be considerably more reliable than the normal

approximation rejection techniques used in a related setting by Zeger and

Karim (1991).

5.2 Illustrative analysis

Using the power model structure outlined in Section 5.1 the data in Table

2 was analyzed using the following hyperameters

V- [ .09

R was chosen In the following manner. We require an approximate estimate of

16



the variance-covariance matrix of the log a and log P population distribution.

The off-diagonal element is chosen to be zero. Without loss of generality

consider log a. In many pharmacokinetic applications we have some idea of the

magnitude of the coefficient of variation of the a's. Now if the variance of

the a's is small we have

log a a log E(a) + (a - E(a))
E(a)

and

var (log a) - var(a)

E(a)
2

Consequently the square of the coefficient of variation gives an estimate of

the variance of log a. In this example the coefficient of variation for both

a and 1 was estimated to be 30%.

The upper bound for v, c was chosen to be 5 in this example. The Gibbs

strategy was as follows. Good initial estimates were found and from these 10

cycles were run for 400 iterations. Samples were extracted from each cycle,

10 Iterations apart from iteration 310 onwards to give 100 realizations from

the posterior. The marginal distribution for 7 was found to be located at

approximately O.6. As we noted In Section 2.2 one of the principal aims of

studies of this kind is the computation of predictive distributions for

concentrations. The model described In Section 5. 1 was found to be inadequate

in providing such predictive distributions. The value of y was not large

enough to ensure that the predictions avoided assigning significant

probabilities to negative concentrations. The lognormal Intra-Individual

error specification described in Section 2.2 would, of course, always produce

positive predictive concentrations. However, the lognormal model also does

not fit these data, as is clear from the following. The lognormal model y =
£2 2

()ee with c-N(O, a ) can, for small a, be approximated by

yK .4(e) (1 + 0)

yielding E(Y) a V(G) and Var(Y) 22W. This corresponds to 7 - 2 In our

power model error specification . Consequently, if the lognormal error model

were correct and the above approximation were accurate we would expect the

marginal distribution for 7 to be located close to the value 2. For error
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variances and parameter values similar to those for this dataset, lognormal

data were simulated and the marginal distribution for 7 was indeed found to be

close to 2 and not 0.6 as In this example. We conclude that the lognormal

specification is not adequate for this example and so do not include here

details of the Gibbs sampler conditional forms. We note, however, that

the conditional form for 0 is the only element of the sampler to change and

generation via the ratio-of-uniforms method is again possible.

The truncated normal model outlined in Section 2.2 produces the following

first stage

n

ex " _ [Y J e "  "e ] 2I n.1-1)

aj I

for Ylj a 0. Here O(.) denotes the cumulative distribution function of the

standard normal distribution. In terms of the Gibbs sampler for the power

model, specified In the previous Section, the conditional distributions

for 0, T and ' are affected by this change. For a and 7, the ratio-of-

uniforms can still be used though there Is an additional computational expense

in the numerical calculation of (. ). Previously the generation for the -r' s

was straightforward. This Is no longer the case so, again, the ratio-of-

uniforms technique (for log T i ) was utilized and the analysis successfully

implemented. Figure 4 shows a predictive distribution for concentration for

patient 2 at 32 hours.

Figure 4 Here

For population inferences, we note the following interesting issue. Our

second stage assumption is that the (a,, p 1 )-pahr are lognormally distributed

1B)



with mean [j' 1 , A21 and covariance elements [Zil, X1 2 , E2 2 ]. To summarize the

population distribution of, say, the a, s we therefore have a number of

options. We could choose to calculate the mean, the mode, the median, or more

generally the quantiles of order q of the distribution, given, respectively,

by exp(M1 + Z1 1/2), exp(AI - Zl), exp(il), and exp(L I + n 1 )0 where nq Is
1 11 1 q 11

the quantile of order q of an N(O, 1) distribution. For a posterior sample

from the marginal distribution of p I and X1 1 we can easily generate any of

these quantities. Recall that we may also be Interested In the clearan-ce a

and the half-live A, where for the ith Individual "I M yL and A1 - log2/i1.

It Is straightforward to make Inferences about these quantities since the

(Oi, )-patr also have a lognormal distribution with mean (Il + 12 log(log
2) - P2 ) and covarlance elements (Zll + 22 + 2X12, - 112 - F22i 22) , Figure

5 shows a bivariate plot of the medians for 0 and A, with corresponding

(histogram) density estimates.

Figure 5 Here

6. DISCUSSION AND RELATION TO OTHER WORK

Two alternative approaches for approximating posterior distributions for

hierarchical models, such as those of Section 2, are the EM-type approxi-

mations (Racine-Poon, 1985; Racine-Poon and Smith, 1990), and the Laplace

approximation method (see, for example, Tierney and Kadane, 1985; Kass and

Steffey 1989).

The EM type approximation treats the individual level effects, 01, as

missing data and uses the EM algorithm to obtain the mode of the Joint

posterior distribution of the hyperparameters of 01 (in our terminology, the

population parameter t). The marginal posterior density for a population

level parameter is approximated by the full conditional distribution for this

parameter, with estimates from the EM algorithm replacing the conditioning

parameters. Since the exact marginal posterior distribution is a continuous

mixture of these full conditional forms, we might expect such an approximation

to be poor (see Gelfand et &1, 1990. for evidence that this is the case).
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More specifically, let us consider the models in Sections 2.1 and 2.2

omitting the variance power transformation for simplicity. For the student-

linear population model interest would often focus upon the posterior

distribution of p. One attempt at using the EM approximation is to take as

the estimates of the posterior distribution of p, the full conditional for #A,

substituting estimates of 0, Z and X obtained by the EN algorithm. An E step

is straightforward. The M step, however, requires a maximization over L, X

and X given 0, and with more parameters than data this maximum is unbounded.

If instead we 'integrate out the X,', again the E step is straightforward but

now, without conjugacy, the M step cannot be achieved in closed form.

In the normal nonlinear model, taking O1 as say, the MLE or a nonlinear

least squares estimator of O1, the EM approximation replaces

ni

17 N(Y 1 I?(O)

J=1

with an approximate normal distribution for OI based upon asymptotic theory.

The remainder of the model specification Is unchanged so that, with the

resultant conjugacy, implementation of the EM algorithm is straightforward.

However, since interesting applications tend to have small to moderate n the

quality of the normal approximation is questionable.

With regard to the Laplace method approach, we first note that the joint

posterior distribution of all the parameters is proportional to likelihood x

prior. Hence any expectation, including any marginal distributions, can be

expressed as a ratio of integrals. The Laplace method approximates both the

numerator and denominator integrals. In particular, the version by Tierney

and Kadane (1986) appears to offer the best such general approximation and has

been tailored in Kass and Steffey (1989) for application to exchangeable

hierarchical models.

When the model is conjugate, by which we mean that closed form

integration over 0 results, the Laplace approximation may be applied without

difficulty. If not, as with the Student linear and normal nonlinear models,

further techniques are needed. Kass and Steffey suggest that, if the

dimensionality of G is high, perhaps an approximate EM-type method might be
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used! We note additionally that, in implementing the Laplace approximation,

two function maximizations will always be required and at least one additional

maximization will be required for each different expectation that is sought.

Also, as demonstrated in Achcar and Smith (1990), the approximation is very

sensitive to paraaeterization.

The Gibbs sampling approach is able to avoid many of the problems

associated with the above alternative approximations, and appears to offer the

most flexible and powerful method currently available for the routine analysis

of challenging population model problems.
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Table 1.

Measurements on 11 Girls and 16 Boys, at 4 Different Ages

Girls - Age In Years

Individual 8 10 12 14

1 21 20 21.5 22

2 21 21.5 24 25.5

3 20.5 24 24.5 26

4 23.5 24.5 25 26.5

5 21.5 23 22.5 23.5

6 20 21 21 22.5

7 21.5 22.5 23 25

8 23 23 23.5 24

9 20 21 22 21.5

10 16.5 19 19 19.5

11 24.5 25 28 28

Boys - Age in Yesr

Individual 8 10 12 14

12 26 25 29 31

13 21.5 22.5 23 26.5

14 23 22.5 24 27.5

15 25.5 27.5 26.5 27

16 20 23.5 22.5 26

17 24.5 25.5 27 28.5

18 22 22 24.5 26.5

19 24 21.5 24.5 25.5

20 23 20.5 31 26

21 27.5 28 31 31.5

22 23 23 23.5 25

23 21.5 23.5 24 28

24 17 24.5 26 29.5

25 22.5 25.5 25.5 26

26 23 24.5 26 30

27 22 21.5 23.5 25
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Table 2.

Pharmacokinetic Data

HOURS AFTER ADMINISTRATION

PATIENT 2 4 B 8 10 24 28 32

1 1.09 0.75 0.53 0.34 0.23 0.02
2 2.03 1.28 1.20 1.02 0.83 0.28
3 1.44 1.30 0.95 0.68 0.52 0.06
4 1.55 0.96 0.80 0.62 0.46 0.08
5 1.35 0.78 0.50 0.33 0.18 0.02
6 1.08 0.59 0.37 0.23 0.17 0.00
7 1.32 0.74 0.46 0.28 0.27 0.03 0.02 0.00
8 1.63 1.01 0.73 0.55 0.41 0.01 0.06 0.02
9 1.26 0.73 0.40 0.30 0.21 0.00
10 1.30 0.70 0.40 0.25 0.14 0.00
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Table 3.

Model P, P2 c man of Z

BOYS

St2  24.65 0.7781 2.65 1.7967 -0.0229

(23.96, 25.94) (0.5986. 0.9867) (1.79, 3.87) 0.0742.

NO 24.99 0.7978 2.90 2.5470 0.0063

(24.30, 26.92) (0.5952, 0.9931) (1.86, 4.25) 0.0927

Ni 24.67 0.7999 2.86 1.5290 -0.0021

(23.84, 25.25) (0.6161, 0.9799) (1.92. 3.79) 0.0919

N2 24.66 0.7000 2.55 1.7041 0.0234

(23.84, 25.28) (0.4771, 0.9098) (1.68, 3.56) 0.0719

GIRLS

St2  22.47 0.4322 0.49 3.1409 0.1070

(21.39, 23.38) (0.2175, 0.6085) (0.28, 0.83) 0.0594

() denotes a 90% sample Interval
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APPENDIX The generalized rato-of-uniforms method

Let f(G) denote the unnormalized univarlate density from which we wish to

generate. The generalized ratio-of-uniforms method is as follows. If we

generate bivariate points In the region C defined by

C. { . ) 0 < ,rf (A.1)

with r > 0, then the resulting 'ratio-of-uniforms' K has distribution f/If.r
U

The efficiency of the method depends crucially upon the ease with which we can

generate points within the region C. The strategy which has proved most

successful is to contain C within a rectangle R = [0, a] X [b-, b+]. We

define a, b- and b+ shortly. It is shown in Wakefield, Gelfand and Smith

(1991) that the probability of acceptance of a point generated in R is, in

general, large if we generate instead from # = a - e*, where 0* is the mode of

f(e).

The aforementioned paper also recommends the use of r = .5. With this

value and the 'mode-shift' we obtain the following strategy.

1 Determine a =/max f(e)" '

2Determine b- min 0[f(# + eo)] r/r+ 1

0

and b+ D iem [f(# + GO)] r/r+1

b 0

3 Generate u - U(O, a) and v - U(b-, b ). Let = +. +r

4 If ; is not contained in the support of 9 go to 3.

5 If ur 5 s f(0) then accept 0, otherwise go to 3.

With this strategy, typical acceptance probabilities of around 0.8 have

resulted for a range of models. As long as the maxima/minima defined in 1 and

2 exist the method can be applied. Apart from this restriction the method Is

completely general and does not, for example, need log-concavity of f, as per
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the adaptive rejection sampling method described In Gilks and Wild (1992).
The price of this generality is, of course, the need to carry out the
max Iisations/aIniizations In order to find the bounding rectangle.
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