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Abstract

The paper addresses results of numerical experimentation with an a-posteriori error estimator
which was theoretically analyzed in [1]. The paper concentrates on the problems of the selection
of benchmarks which is directed to a numerical verification of basic theoretical features of the
estimator.



1 Introduction

During recent years much interest has been focused on the design of a-posteriori error esti-
mates in the finite element method, their experimental verification and their use for adaptive
procedures. We refer for example to [1-24] and further citations there.

The a-posteriori error estimators are often derived by purely heuristic reasoning and without
mathematical analysis. If a mathematical analysis is made it adresses most often only asymp-
totic properties and special meshes. Usually the estimators are numerically analyzed (verified)
on a set of examples (benchmarks) which are selected at best by heuristic reasoning. Often
these benchmark computations are used for the design of a correction factor which is used to
improve the quality of the estimators for this set of benchmarks.

This pragmatic approach to test and compare the estimators by benchmark computations has
serious shortcomings. The quality of an estimator is usually very sensitive to the structure
of the solution and the meshes used. The performance of an estimator can be very different.
It may depend on whether the meshes are nearly translation invariant or general, or whether
the meshes are general or such that the error indicators are nearly equal on all elements (i.e.
the meshes are equilibrated), or whether the solution is smooth, has point singularities or is
generally unsmooth, etc. Some of these aspects are adressed in [5]. Hence the benchmark
computations could motivate misleading conclusions. Each benchmark computation should be
a representative of a more or less precisely defined class of computational problems and the
conclusions used for this class of problems.

In this paper we will address various aspects of the relation between theoretical understanding
of an estimator and the benchmark selection. We will adress a certain estimator which is used
in practice, and discuss its properties. We do not intend to compare it with any other error
estimator.

2 The Model Problem

Let n E R2 be a bounded polygonal domain and let r be its boundary. Assume further that
TT = Ufil if7, where fli is a polygonal domain (with boundary O1i) and that (1 fl n, - 0 for
i 6 j. We will be interested in solving the following problem:

au
-div(aVu) f in fl, u=0onrD, a n=gonIrN, ID UIrN=lr, (2.1)

where n is the outward normal to 11. We assume that f E H1(fl), g E Hl(ID), a > ao > 0
is constant on fl,, i = ... ,m, We will assume that either meas('rD) 6 0 or, if rD = 0,

fa fdxdy + fr gds = 0 and u(A) = 0, A E ff. (Because of the assumptions about f and g,
u E H(fl),a > 1, and so u(A) = 0 makes sense.)

We will consider the weak solution of (2.1). To this end we denote by Hk(11) the usual Sobolev
space and let H~l ={uH )uo onr

Further we let
B(u, v) j a(T + (2.2)



be the bilinear form defined on H (fl) x Ho'(f) and

F(v) = Ifvdzdy + I gvds. (2.3)

be a linear functional on Ho(fl). Then the weak solution u of (2.1) in Ho exists, is unique and

B(u,v) = F(v) Vv E Ho. (2.4)

If ro = 0, we consider H'(1) instead of Ho(f2) and assume u(A) = 0, which is well-defined, as
we have in fact higher regularity for u.

Let us consider a family M of triangular meshes M on fl satisfying a uniform minimal angle
condition. We denote by T the closed triangles of the mesh M, U T = M. We will assume that
if T E M then interior(T) C 01 for some I, i.e. T lies in a domain where a is a constant. To
every mesh M we associate a parameter t(M) >_ 0, for example t(M) - N where N is the
number of the nodes that do not belong to rD or t(M) = h where h = max(d(T)) and d(T)
denotes the diameter of Ti . We will always assume that h = max(d(T)) -- 0 as t(M) -- 0.

Further let S(M) be the set of all continuous functions on fl whose restriction on a T E M
is a linear function. Obviously S(M) C H(fl). Let So(M) = H (fl) fn S(M) and SA(M) =

{u E S(M), u(A) = 0). Then the finite element solution us E So(M) satisfies

B(us,v) = B(u,v) Vv E So(M) (2.5)

where u is the exact solution of (2.1). If FD = 0, we replace So(M) by SA(M). We will consider
a family of finite element solutions us associated to M and assume that flu - us(M)IIE =

B(u - US(M), u - UStM))2 -- 0 as t(M) -- 0. By (2.5) we associate to any solution u its finite
element solution us = us(M, u) and an error estimator 6(u, M) that will be defined in the
next section. In fact £ depends on us and M but because of (2.5) we write E(u, M). This
estimator approximates the energy norm of the error, i.e. 6(u, M) ; IieIIE = (B(e, e))1/ 2 , where
e = U - US.

3 The Error Estimator

Let M E M, Ti,T E M be two triangles with common side 7t.i as shown in figure (3.1). By
nl,i we denote the outer normal from T to Ti; we will also write Ti = Tin and Ti = "T,, as Tm

is the triangle for which the normal n,i is the outward one.

Let us now define for every side -y,i

-ta±1ifl (x) = (aVus) ITl nt,i - (aVus) IT,, . nl,, (3.1)

the jump of a8 across the side 'yj,i. This value is independent of the choice of ni,i, i.e.
[aoa (x)= 1 8u (z) and so we will write a9-n I (X).

For each triangle T E M let

R= - [div(aVu) IT + div(aVus) [T] + f IT. (3.2)

2
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Figure 3.1: Scheme of neighbouring elements

We may write for any v E H' the residual equation

B(e,v) = JR~vddy +j1(g -a2-u-)vds +~j[~A] vda (3.3)

where G stands for the set of all interior edges of M and n for the outward normal to fl. (If
rD = 0 the equation (3.3) is the same, but v E H(fl).)

For any T E M we define

T T Rdzdy (3.4)

where ITI is the area of T. (IIT is the L 2(T) projection of the interior residual onto the set of
constants.) Further for each -y E rN, where - is a side of a triangle T, we define

1, (g - -)d,, (3.5)

where 1-'N is the length of -y. (IIH, is the L2 (3,) projection of the boundary residual onto the set
of constants.)

For each edge -/ of the mesh let

J, Jalk]if -i E G
21 if -' C rN (3.6)
0 if -Y C I'

and for each triangle T E M we define the error indicator W-:

9- a 2 + ET 1711 akdS (3.7)IT 2 -YeST aI

which approximates the energy error on T. Further we define the error estimator

E(u,M):= E 9 (3.8)

where r. is a suitable constant which will be defined later. It is convenient to write

E*(u, M) : (3.9)

for the choice oc = 1. Let us note that the error indicator is meaningful for more general f
and g than we have assumed. Nevertheless our generality is sufficient for practical purposes.
Obviously the set of problems we are discussing is precisely described.
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4 The Quality of the Error Estimator

In Section 3 we defined the error estimator C(u, M) which approximates IlellE. In the following
we will discuss the relation between C(u, M) and IleflE, especially the effectivity index of the
estimator C(uM)

' = IlelI

Before addressing this problem we introduce some notation which we will need in the following.
Let SP(M) be the space of all continuous functions on fl whose restriction on T E M is a
polynomial of degree p. Let S (M) = Sp n HJ(fl) and up E S"(M) be the finite element
solution of problem (2.1), i.e.

B(uP, v) = B(u, v) Vv E rS.'M)

(If rD = 0, we use SVA(M) instead of S (M).) Obviously u is the p-version solution of problem
(2.1). For more about the h - p-version we refer to [6]. We have for any k > 1:

I[uP -utls _ Cp-(k-1)[[u~ujhI n{P'k- } (4.1)

with C dependent on k, but not on p and h.

Remark: Although in (4.1) the maximal element side is used, an analogous element by element
estimate holds.

Now we are able to state the basic theorems about C*(u,M) . (See [1] for the detailed proof
and Section 5 for an outline of the main ideas.)

Theorem 4.1 For any integer p there is a constant K' depending only on the minimal angle
aT of the triangles used and on p, such that

Ilells < K2't*(u, M) + Ilu - utsls + 0(hi) (4.2)

and the constant K2 grows logarithmically with p.

Theorem 4.2 There is a constant K, > 0, depending only on aT and on the jumps of a, such
that

t*(u, M) _< KI IICIIE + 0(hl), (4.3)

The constants K, and K2P are computable. We have

K2P = pax CPT (4.4)

and
K, = (mi C;-)Q., (4.5)

where
a IT

Q. = max (-). (4.6)
Tr"# a1.,

For 2 < p _5 8 we have the estimates
.548 logi psin-f(--) < CP <_..813 logi psin-f(-) (4.7)

2 2
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___ CPT.
p=2 p=4 p=-6 p=8

7.5 .051 2.390 3.306 3.660 3.988
15.0 .072 1.682 2.341 2.609 2.839
22.5 .087 1.363 1.918 2.156 2.343
30.0 .099 1.169 1.670 1.895 2.058
37.5 .108 1.035 1.508 1.727 1.876
45.0 .115 .939 1.400 1.615 1.757
52.5 .119 .875 1.334 1.547 1.684
60.0 .121 .850 1.309 1.522 1.657

Table 4.1: Constants CP and Cr for various angles QT

and

3.45sin-1(-) <C 7 _ 5.85sin- (-) (4.8)

where aT is the minimal angle of T. In Table 4.1 we give the values of CT' and C;.

Let us note that for h small only very few elements have a side on the interface al; we can in
fact use Q. = 1.

Remark: We have dealt only with the Laplace equation. In this case we use the minimal angle
OT of the triangle. For a general differential equation we have to replace it by a T which is the
minimal angle of the triangle after a local transformation of the general equation to Laplace's
equation (this is always possible).

The term 0(hi) in (4.2) and (4.3) depends only on [f JHI(n) and Ilgll j(r), but not on u. For
any u the term hiu - uI can be made arbitrarily small by (4.1) using sufficiently large p. We
note that the smoothness of u is governed by the smoothness of f and g, transition of boundary
conditions and smoothness of r. It is unessential that the estimates (4.2) and (4.3) have an
asymptotic character. For example if f = const on every T and g = const on every triangle
side of rN, the term 0(hi) disappears. Hence as t(M) --+ 0, the term O(hf) is negligible in
general.

Theorems 4.1 and 4.2 indicate that the error estimator E'(u, M) can be either smaller or bigger
than the true error. Further the error estimator loses accuracy when aT --* 0 and for unsmooth
u the reliability of the estimator decreases because a higher p is needed in the estimator.

The coefficient ic, which scales the error estimator (E(u, M) = xt*(u, M) ), can be calculated
in different ways. We can use the geometrical average of the bounds in (4.4), (4.5). Another
possibility is to choose x such that the error estimator is asymptotically exact for uniform

meshes of equilateral triangles and f = 0. In this case we get / = (Vf83)-1 ;z 0.26864 which

will be used for all examples.

Theorems 4.1 and 4.2 indicate the expected theoretical properties of the estimator well. The
structure of Theorems 4.1 and 4.2 clearly suggests the set of benchmark experiments that should
be performed.
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5 The Outline of the Proof of Theorems 4.1 and 4.2

For simplicity assume that f and g are constant on each 7" resp I E rN. (The general case is
discussed in [1].) With e. := up - us E So, we have

IICIIE- < IlepIIE + IU - UsIIE (5.1)

and
tle,1I' = B(ep, ep) B(us - u, e,) + B(u - us, ep) = 8(e, ep) (5.2)

For any continuous function v let v' denote the linear interpolant of v on T. Using (3.3), we
have:

lie,112E = B(c, ep) = 1 iT(e, - e,)dzdy + J(e, - e)ds
TEM 1 T2 ,Pj

TeM IIJ& I

E_ 17'TCTPIIep IIE,T
TEM

where

P f 1(v - v)dxd I + I fI(v _ V )dS2 1
/

(IT Espb fT IVV12dZdy -v)d5)

Here, P. and P0 denote the spaces of all polynomials of degree p or 0 on T, respectively.

Hence
liIpliE _5 Ill't(,,, M)

with
K2 = sup C-.

TEM

Using (5.1) we get (4.2) without the term 0(h 1/2). This is related to the simplification assump-
tion about f and g made in this section.

Let us now address inequality (4.3). For any triangle T as shown in Fig. 5.1, let wo be the
cubic bubble function vanishing on OT with Wo(Qo) = 1, where Qo is the barycenter of T. Let

QQ

QQ Q1

Q4 Q3 Q5

Figure 5.1: Notation for triangular elements

further P2(T) be the space of quadratic functions vanishing at the vertices of 7' and let {JWi}3
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be the canonical basis of this space (i.e. Vi(Qj) = 6ij, i = 1,2,3,j = 1,... 6) and let VT be

the space spanned by { t} =O . Set wT = E31.0 wiPi E VT with coefficients wo,wi,w 2,w3 chosen

such that 2

J IIrrw-dxdy = ITI T dxdy (5.3)

JJ.wTds = a -[1,1 L . s, i = 1,2,3 (5.4)•I (al,

where [a]i, is the average of a over the triangles sharing the edge li, i.e.

i T +aIT.,)if ii= ni. n n.,
[al if , C OTr (5.5)[i,= a [I" if li c T nr

The coefficients .. ,... ,w3 satisfying (5.3) and (5.4) are

31/jw'=2[a],

w1  = T a E

Since for any interior edge 1 he values w are the same on both triangles T sharing the edge,

the function w composed from wr on every triangle is continuous and hence w E Hj(fl). Using

(5.1), (5.2) we get:

(E*(u, M))l q2T77
TEM

[fI Tirdxdy +! J12 dsl

TEM 2T
Tal -9~

- TeM TZ eT J IT

where wh reC. = max [a]l-
IET,TEM aIT

Sincew E HO we get from (3.3)

(.Ff(u, M)) 2 < CoB(e,w) _<C.IleIIEIIWIIE. (5.6)

Now let for r = {ri}fi

C2 = sup fT IIlVvrl 2dxd
IlirliO r 2 + 21E=1 I.?

where vr E VT is the function satisfying fT vrdxdy = 1ITro, f, vrds = Illr,, i = 1,2,3. Therefore

-r is the function Vr corresponding to

1o = I l7 -
a IT

it= -J , i= 1, 2, 3
[all,

7



and so

II'Er = a IT J IIlVv,1dXdy

, 'TIIT 1 2 11 [ ],

= C-. L1 1 ,
l ' a '2 r 2 T [/Tai

where

IT

C max ai.ICST,TEM [al

Hen ce

and so, u~ing 5.6, we obtain
C'*(u, M) _< Qo(max CTz)IleI

where a ITQ = CC, = max
TwM a IT'

and we get (4.3).

6 The Experimental Results

In this section we will experimentally verify the reliability of various conclusions that can be
made from Theorems 4.1, 4.2 for the given estimator.

6.1 The Influence of Mesh Topology

Theorem 4.1 was proven for general meshes without any restrictions on the mesh topology.
Hence, it can be expected that particular meshes with different topologies could influence the
effectivity index in the same order of magnitude as indicated by the theoretical upper and
lower bounds. In addition the influence of the angle has to be visible (and could also depend
on the topology). To check the validity of this conclusion for a smooth solution we consider
the following problem:

For f0 = (0, 1) x (0, 1), let u be the solution of

-Au=finfl, u=Oon F (6.1)

We choose f such that u = sin rz sin -y.

8



mesh ratio 1/1 mesh ratio 1/2

Figure 6.1: Regula, three-direction mesh

6.1.1 Three-direction meshes

Let us consider the three-directional meshes which are obtained by uniform refinement of a
basic mesh of the type 1, n = 1,2,4,8 as shown in Fig. 6.1.

In Table 6.1 we report the effectivity index for these meshes. We also report the upper and
lower bounds for the effectivity index from Theorems 4.1, 4.2, when p - 2 was used.

number of mesh
elements 1/1 1/2 1/4 1/8

8 0.852
16 0.993
32 1.070 1.289
64 1.183 1.804

128 1.147 1.503
256 1.252 2.068
512 1.180 1.571

1024 1.277 2.145
2048 1.192 1.594
4096 1.287 2.169

upper bound 2.34 2.87 3.87 5.38
lower bound 0.29 0.21 0.15 0.12

Table 6.1: Effectivity index for problem 6.1 (u = sin wx sin wy) and 3-direction meshes

6.1.2 Criss-cross meshes

Let us consider now the 'criss-cross' meshes as shown in Fig. 6.2. The effectivity indices for
these meshes are given in Table 6.2.

6.1.3 Diamond-shaped meshes

Finally, we consider the 'diamond-shaped' meshes as shown in Fig. 6.3. The effectivity indices
are given in Table 6.3.

Comparing the tables we can make the following conclusions, which are in agreement with
Theorems 4.1, 4.2:

9



mesh ratio 1/1 mesh ratio 1/2

Figure 6.2: Regular criss-cross mesh

number of mesh
elements 1/1 1/2 1/4 1/8

8 1.350
16 0.939
32 1.036 1.049
64 1.053 1.349

128 1.077 1.179
256 1.085 1.518
512 1.088 1.214

1024 1.093 1.562
2048 1.090 1.223
4096 1.095 1.574

upper bound 2.34 2.87 3.87 5.38
lower bound 0.29 0.21 0.15 0.12

Table 6.2: Effectivity index for problem 6.1 (u = sin 7rx sin 7ry) and 'criss-cross' meshes

mesh ratio 1/1 mesh ratio 1/2

Figure 6.3: Regular 'diamond-shaped' mesh

10



number of mesh
elements 1/1 1/2 1/4 1/8

6 1.465
12 0.750
20 1.017
24 0.523
40 1.026
48 0.385
72 1.107
80 1.111

144 1.188
160 0.959
272 1.131
288 1.558
544 1.234
576 1.708

1056 1.138
1088 1.740
2112 1.246
2176 2.274
4160 1.139
4224 1.793
8448 2.515

upper bound 2.34 2.87 3.87 5.38
lower bound 0.29 0.21 0.15 0.12

Table 6.3: Effectivity index for problem 6.1 (u = sin Ix sin 7ry) and 'diamond-shaped' meshes

11



1. For h -b 0 the effectivity index stays in the theoretical bounds. In addition we see that in
our concrete case the effectivity index converges to a limiting value. This is not surprising,
because the mesh is translation invariant and the solution can be periodically extended.
In this case various results about superconvergence can be used (see [21]).

2. The effectivity index depends on the topology. The error estimator is not asymptotically

exact.

3. The dependence of the effectivity index on the angle is clearly visible.

4. The theoretical bounds for the effectivity index are relatively pessimistic. This is because
these bounds are independent of the topology and the solution. Better bounds in our
case could be obtained by exploiting the superconvergence effect (see [51).

6.2 The Influence of the Solution Structure

Theorems 4.1 and 4.2 have been shown for a general solution. We expect that the effectivity
index may depend on the solution structure. To check this conclusion consider the solution of
the following problem on fl = (0,1) x (0,1):

-Au=finfl, u=Ofor z=Oand x=l, -=0 for y=O and y=l (6.2)

with f such that u = sin irz. We will use meshes as in Fig. 6.1 with the orientation shown
there (mesh 1/2 and 1/4) and with the opposite orientation (2/1 and 4/1).

number of mesh
elements 1/1 1/2 1/4 2/1 471

8 1.013
16 1.564 0.717
32 1.107 2.258 0.507
64 1.598 0.783
128 1.131 2.273 0.553
256 1.608 0.800
512 1.137 2.278 0.566

1024 1.611 0.804
2048 1.139 2.279 0.569
4096 1.612 0.806

upper bound 2.34 2.87 3.87 2.87 3.87
lower bound 0.29 0.21 0.15 0.21 0.15

Table 6.4: Effectivity index for problem 6.2 (u = sin rz) and 3-direction meshes

From Table 6.4 we see in fact that the effectivity index depends on the relation between the mesh
and the structure of the solution (especially the relation between the second derivatives and the
mesh orientation). Hence in general we have to deal with uncertainties in the effectivity index.
(No correction factor could improve the situation.) We note that our factor ic = 0.2684...
could be changed, but in general (for all functions) the range in the effectivity index could not
be improved. Again, we see that Theorems 4.1 and 4.2 reliably predict the outcome of the
numerical experiments.

12



6.3 The Influence of the Smoothness of the Solution

Theorems 4.1 and 4.2 contain higher order terms which we neglected in the reported theoretical
bounds in Tables 6.1-6.4. when computing the bounds. These terms influence the convergence
of the effectivity index as h --+ 0. To check the effect of these terms we will consider once more
problem 6.1, using now the solution

u(x, y) = sin awx sin avy. (6.3)

(We use regular three-direction meshes, as in Fig. 6.1 with mesh ratio 1/1).

number of
elements a=I a=2 a=4 a=11

8 0.852 0.833 0.438
32 1.070 0.876 0.932 0.379

128 1.147 1.080 0.887 0.530
512 1.180 1.161 1.090 0.780

2048 1.192 1.187 1.168 1.022
8192 1.148

upper bound 2.34 2.34 2.34 2.34
lower bound 0.29 0.29 0.29 0.29

Table 6.5: Effectivity index for problem 6.3 (u = sin airx sin aiy) and 3-direction meshes

We see that the insufficient smoothness influences the effectivity index and that the effec-
tivity index can behave erratically. Nevertheless the bounds -where higher order terms are
neglected- are still valid. We see in general that the effectivity index decreases with decreas-
ing smoothness of the solution. The lower bound goes down with increasing p, but the upper
bound is not influenced. Hence we can expect that the effectivity index will go down (assuming
heuristically that the effecitivity index moves as the middle of the interval). The same effect
will be seen later. Once more we see good agreement with the conclusions stemming from
Theorem 4.1 and that we cannot hope for the existence of a universal correction factor.

6.4 Harmonic solutions

The error estimator contains terms related to the residual and the jumps, respectively. To isolate
the influence of the jump term, we consider the following problem (again in f0 = (0, 1) x (0, 1)):

-Au=0infS, u=0 for x=0,x=l and y=O, Lnf=ig for y =l (6.4)

and let u(x, y) = sin rx sinh ry. The effectivity index (for a regular three-direction mesh as
shown in Fig. 6.1) is given in Table 6.6.

Comparing Table 6.1 and 6.6 we see a similar behaviour influenced only mildly by the structure
of the solution. The limiting value for the effectivity index seems to be different for the mesh
1/1. For the other meshes this effect is less visible. For these particular meshes, this might be
explained by a superconvergence phenomenon.
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number of mesh
elements 1/1 1/2 1/4 1/8

8 0.841
16 0.958
32 0.978 1.269
64 1.102 1.795

128 1.040 1.457
256 1.166 2.042
512 1.065 1.534

1024 1.190 2.136
2048 1.071 1.560
4096 1.199 2.166

upper bound 2.34 2.87 3.87 5.38
lower bound 0.29 0.21 0.15 0.12

Table 6.6: Effectivity index for problem 6.4 (u(x, y) = sin 7rx sinh 7ry) and 3-direction meshes

6.5 Adaptively Constructed Meshes

So far, we have restricted our experiments to uniform meshes. We will now consider nonuniform
meshes either based on an adaptive procedure or randomly refined. We use problem 6.4 again.
We have constructed three sequences (A - C) of meshes. Each sequence is obtained by refining
a part of the elements of the previous mesh according to a refinement indicator and adjusting
neighbouring elements. In sequences A and B the refinement indicator was an error estimator
(with different parameters), in sequence C the indicator was a random number. Typical meshes
of each sequences are shown in Fig. 6.4. The effectivity indices are given in Table 6.7.

Sequence A Sequence B Sequence C
elements effectivity index elements effectivity index elements effectivity index

8 0.841 8 0.841 8 0.841
19 0.944 19 0.944 23 0.906
47 0.970 38 0.941 45 0.964
94 1.008 67 0.980 96 1.008

181 1.018 107 0.949 200 0.979
323 1.041 201 1.013 435 0.990
593 1.043 355 1.039 964 0.972

1020 1.060 607 1.032 2129 1.008
1773 1.051 991 1.056 4588 0.992

Table 6.7: Effectivity indices for problem 6.4 and nonuniform meshes

Comparing Tables 6.7 and 6.6 we see that different refinement strategies lead to different
effectivity indices, although the difference is not big. Once more we see a range of the effectivity
indices. We note that for these general meshes superconvergence results cannot be applied.
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Figure 6.4: Nonuniform meshes for problem 6.4
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6.6 Effectivity Indices for Problems with Unsmooth Solutions

So far, we have considered problems with a smooth solution. Let us now examine the behaviour
of the error estimator for solutions with singularities. Theorems 4.1 and 4.2 indicate a decrease
of the effectivity index, when the singularity of the exact solution grows, and also that this
effect diminishes when adaptive meshes are used.

To this purpose we consider the domain fl = (-1, 1) x (-1, 1), partitioned into 4 square
subdomains as shown in Fig. 6.5. Let u be the solution of

- V(a(x,y)Vu) = 0 in f, a(x,y)-IOU = g(x,y) on r (6.5)

where a(x, y) is constant in each quadrant (a(x, y) = 1 or a(z, y) = a, see Fig. 6.5). a is chosen
so that

u(x, y) = ra(c cos(ctr) + si sin(aw)) (6.6)

where (r, W) are polar coordinates with center in the origin. For a = 0.5 and a = 0.1 we get
a = 3 + -A8 5.828... and a _ 166.447..., respectively.

2 1
a(z, y) = a(x, y) =

3 4
a(z, y) = 1a(z, y) =

Figure 6.5: Coefficient a for problem 6.5

Table 6.8 shows the effectivity index for uniform meshes. (In each quadrant the meshes are
uniform three-direction meshes of mesh ratio 1/1 as in Fig. 6.1. The orientation of the meshes
is changed in subdomains 2 and 4 to preserve the symmetry of the solution.)

number of
elements a = 0.5 a = 0.1

32 0.658 0.520
128 0.694 0.512
512 0.711 0.524

2048 0.719 0.536
8192 0.722

Table 6.8: Effectivity index for problem 6.5 (u = raf((p)) and 3-direction meshes

Although the estimator in Theorem 4.1 includes the ratio of a, it influences only elements on
the interfaces and hence this factor can be neglected. The decrease of the effectivity index is
clearly related to the necessity to use a higher degree p in 4.2 for the estimate. Hence the
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unsmoothness of the solution decreases the effectivity index. This has also been observed in
Table 6.5.

We have seen in Table 6.7, that nonuniformity of the mesh does not influence the effectivity
index too much. On the other hand an adaptive procedure refines the mesh in the places where
the solution in unsmooth and hence a lower p can be used. We have created two sequences of
adaptivily refined meshes (A and B). The meshes BI and B2 are less refined than the meshes
A1 and A2. The refinement in meshes B is more concentrated around the origin than in meshes
A. Examples of each sequences are displayed in Fig. 6.6. If the mesh is properly refined , a
lower p can be used and the effectivity index improves. Table 6.9 confirms this conclusion (for

= 0.5).

Al B1

\//

/I////\\

A2 B2

Figure 6.6: Nonuniform meshes for problem 6.5

The effect of the unsmoothness of the solution can also be observed if the singular part of the
solution is removed. So we consider problem 6.5 in the domain A = fl - [-0.5,0.5 x [-0.5,0.51
and prescribe a& = g on M . Table 6.10 shows the effectivity indices for this problem using
uniform meshes as for Table 6.8. Again, a = 0.5.

We note that the effectivity index is now very similar to problems 6.1, 6.2.
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Sequence A Sequence B
elements effectivity index elements effectivity index

32 0.658 32 0.658
87 0.712 64 0.719

194 0.738 96 0.787
370 0.761 168 0.830
725 0.787 244 0.880

1297 0.807 363 0.918
2346 0.828 485 0.960

604 0.959
768 0.975
965 0.995

Table 6.9: Effectivity indices for problem 6.5 (u = raf(Wp)) and adapted meshes

number of
elements a = 0.5

24 0.964
96 1.027

384 1.059
1536 1.070
6144 1.073

Table 6.10: Effectivity index for problem 6.5 (u = rof(W) on !5) and 3-direction meshes
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6.7 The Oscillation Effect

It is often assumed, that the error of the interpolant is close to the error of the finite element
method. To demonstrate that this assumption is in general incorrect, we show that the error
of the finite element method could oscillate. To this end we show in Fig. 6.7 the typical
error behaviour for the problem discussed in section 6.6 with uniform meshes and a = 0.5.
Displayed are two patches of regular three-direction meshes at the same location-far from the
singularity-in fl. Fig. 6.7 also shows the error indicators (in parentheses). In Fig. 6.8 we
illustrate graphically the error behaviour for the entire mesh where the mesh has 363 elements.

(An element is black if the energy norm error in this element exceeds a certain threshold. Here,
the threshold is 4.0 X 10- 4 .)

2.(-3) / 2.5(.3) 5.6(-4) 5.9(-4)
(3.0(-4) (3.2(-4)

1.0(-3) 1.1(-3) 2.6(-4) 2.7(-4)
_ _(1.2(-3)) / (1-4(-3))_ _ (3.0(-4)) (3.2(-4))

2.2(-3) 2.4(-3) 5.6(-4) 5.9(-4)
(10(3) (12(3)(2.7(-4) (3.0(-4)

9.7(-4) 1.1(-3) 2.6(-4) 2.6(-4)
(1.0(-3)) (1.2(4)) (2.7(-4)) (3.0(4))

small element side: 1/8 small element side: 1/16

values in (..): error estimator

Figure 6.7: Oscillation of the finite element error

We see that the error indicator shows approximately the average error for adjacent elements
and hence does not exhibit the oscillation of the error of the finite element solution. Note that
the interpolant does not show the oscillation. This oscillation effect is caused by the pollution
of the error stemming from the singularity of strength r' /2 . If we enforce a smooth solution by
removing the center part of the domain, as in problem 6.5, the results given in Fig. 6.9 show
that the oscillation disappears. (We use elements from the same location as in Fig. 6.7; the
numbers are therefore directly comparable.)

The oscillation effect is weaker, if a 6 0.5 or the mesh is constructed adaptively. We show in

Fig. 6.10 the local results for a = .8 and in Fig. 6.11 the results for a = .5 and adaptively
refined meshes. In Fig. 6.12 we show the error behaviour for an adaptively refined mesh and
the threshold 2.0 x 10- 3 . In Section 7 we will examine this effect.

7 Analysis of the Oscillation Phenomenon

The oscillation phenomenon we have observed in Section 6.7 occurs also in the case of the
following problem on f0- [- 1, I] x [0, 11

-Au= 0 in 0, u 0 on FD{(XY)105X514=0), au=g on rN=r-rD
O n
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6.0(-4) 7.0(-4) 1.4(-4) 1.6(-4)
(5.1(-4) (5.9(4) (1.3(-4) (1.3(4)

5.1(-4) 6.1(-4) 1.3(-4) 1.4(-4)
(6.2(-4)) (7.0(-4)) (1.5(-4)) (1.6(-4))

5.9(-4) 6.7(-4) 1.4(-4) (1.5(-4)
5.(4) 6.7(-4) (1.4(-4) .5(-

4.6(-4) 5.3(-4) .2(-4) 1.3(-4)
(5.4(-4)) (6.2(-4)) ( (1.5(-4))

small element side: 1/8 small element side: 1/16

values in (..): error estimator

Figure 6.10: Finite element error and estimators for problem with singularity (a = .8, uniform
mesh)

1.4(-3) 1.8(-3)

(1.8(-3) (1.6(-)

1.O(-3) 1.5(-3)('1.3(-3)) /(1.7(-3))

1.4(-J) 1.4(-)
(1.2(-3) (1.5(-3)

1.0(-3) 1.4(-3)/(1.3(-3))/ (1.6(-3))

small element side: 1/8

values in (..): error estimator

Figure 6.11: Finite element error and estimators for problem with singularity (a = .5, adap-
tively refined mesh)
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Figure 6.12: Finite element error for adapted mesh (a = 0.5)

with g selected so that
u = r1/ 2 sin(!W) = Rez1 / 2

2
with z = x + iy.

We consider now a uniform 3-direction mesh of the type shown in Fig. 6.1. Then the finite

element solution has essentially the form

us(X,y) = u'(x,y) + G(x,y) + R(x, y), (7.1)

where 11R(., -)IH' < o(h) and G(x, y) is a piecewise linear function, which coincides in the nodal
points of the mesh with the function

G*(x,y) = Ar- 1/2 sin Oh = AhPez- 1/ 2. (7.2)

The function G*(z, y) is the adjoint singularity function. It describes the pollution error, which
is of the same order (in II.IIE) as the error of the interpolant. The error-measured in the
energy norm-is locally (i.e. on single elements) of order h2 and is governed by the second
derivatives of u. The contributions of G to the energy err, r are of the same order, but are
governed by the first derivative of G. Now observe that in our case both errors are governed by
the second derivative of Rez1 /2. This leads to a cancellation and consequently to the oscillation
phenomenon.

To demonstrate this, we consider a patch of two triangles as in Fig. 7.1 with local coordinates
f, q with the origin in the lower left vertex of the patch.

Using (7.1), (7.2) we can assume that on the patch:

U = a( 2 - 172) + b~iq + linear functions + h.o.t.
G = (aa + ab7)h + constant term + h.o.t.
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2

Figure 7.1: Mesh for local analysis of errors

where a is related to A in (7.2). Neglecting R in 7.1, we get by simple computations

I1ell 1' (a' + b)(1 + 2a + 3a 2 ) + a'
1lell' 2  (a2 + b2)(1 - 2a + 3a2 ) + a2

(lells, is the energy norm of the error in element i) and we see that we have in the case without

pollution (a = 0)
Ilell2El
11eC11E2

while the ratio is 0 1 in the presence of the pollution error. This explains our observation in
Section 6.7.

Let us note that the said effect occurs when the pollution error and the error of the inter-
polant have the same strength. This is in agreement with our results in Section 6.7, where the
oscillation phenomenon was only visible for the singularity a = .5.

8 Conclusions

Summarizing the results that we have presented in the previous sections we draw the following
conclusions.

1. The estimator performs as expected from its properties given in Theorems 4.1 and 4.2.

2. The effectivity index depends on the mesh, especially on the angle of the triangles. Hence
meshes without small angles are preferable. The notion of the angle depends on the
differential operator.

3. The effectivity index is not too sensitive to the topology of the mesh (except for the
minimal angle).

4. The effectivity index can be larger or smaller than 1 depending on the character of the
solution as predicted in Theorems 4.1 and 4.2.

5. If the solution has singular behaviour, the quality of the error estimator deteriorates. The
deterioration can be avoided by adaptive refinement, as follows from Theorem 4.1.
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