TECHNICAL REPORT BRL-TR-3382

BRL

HARDWARE AND SOFTWARE DESCRIPTION OF
A PROTOTYPE CONTROLLER FOR THE
TWO-DEGREE OF FREEDOM "BRL" MOUNT

MARK D. KREGEL DTIC

ELECTE
AUG 19,1962

% .
|3
5 >

JULY 1992

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

92-23
p2 8 18 048 lllllllﬂ"lhl!llllllHMIIIIIIIII' Ill'llll

oSO 709¢

NOTICES

Destroy this report when it is no longer needed. DO NOT retumn it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position,
uniess so designated by other authorized documents.

The use of trade names or manufacturers’ names in this report does not constitute indorsement
of any commercial product.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188
e R e et Lo ey mx@mmw.m;ﬁ:%wm“ e S e
Davis Highway, Suite 1204, Adi 'l uzousoz wwmonmmmmtmwrm Project (0704-0188), Washington, DC 20503.
_—__1 AGENCY USE ONLY (Leave biank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1992 Final, January-July 1969
(4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Hardware and Software Description of a Prototype Controller for the s
Two-Degree of Freedom "BRL" Mount WO: 44592-102-51-4233
6. AUTHOR(S)
Mark D. Kregel
[7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 3. PERFORMING ORGANIZATION |
; REPORT NUMBER
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING/ MONITORING |
AGENCY REPORT NUMBER
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T » ' BRL-TR-3382
Aberdeen Proving Ground, MD 21005-5066 :

11. SUPPLEMENTARY NOTES

12a. mm‘/AVAum STATEMENT j 12b. DISTRIBUTION CODE
Approved for public release; distribution is uniimited.

13. ASS CT (Maximum 200 words)

MM«“WMWMMU&WMWRMWM
constructed a two-degree of freedom mount sulable for siewing loads up 10 800 bs. The mount was
driven in both azimuth and in elevation by large stepper motors. In order to test and evaluate the mount,
amhmmnrmmnmmmumwmmm«amm
computer. This report describes the controller and Rs operation as well as technical descriptions of key
mmmmnmmamammmwmmmmmmm

P ———————
14. SUBIECT TERMS 1S5. NUMBER OF PAGES
59

CONtiNUOUS Processing; MICTOProcessors; gun mounts; circult analysis 16. PRICE CODE
ey "o " TSPt ty——emm ’
17. SECUNITY CLASSWICATION | 18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

R Prexnbed by ANSI Std. 239-18
T 298102

INTENTIONALLY LEFT BLANK.

> »w N

o

10.

TABLE OF CONTENTS

Page
LIST OF FIGURES ittt ittt ittt ittt st teeseareneennnn v
INTRODUCTION ...ttt ittt ittt titeteesenanesecneenennnnns 1
OVERVIEW OF THE SCC ittt ittt it i i ittt etannnennn 1
DETAILED DESCRIPTION OF THE SCC MOUNT CONTROLLER 4
TECHNICAL DESCRIPTIONS AND PINOUTS OF THE CPU AND
SUPPORT ELEMENT S ... ittt ittt it te i eerannaeannn. 5
DETAILED DESCRIPTION OF THE MOUNT CONTROLLER 9
DESCRIPTION OF THE SOFTWARE USED IN THE SUPPORT OF
THE MOUNT COMPUTERottt ittt et ter e v ienanan 15
DESCRIPTION OF THE SOFTWARE IN SUPPORT OF THE OPERATION
OF THEHOST COMPUTERttt ittt ettt teennnns 19
SUMMARYcccv... T 20
CONCLUSIONciivnunn. et ettt ittt e 21
REFERENCESttt ittt ittt ittt tentsennnnennennn 23
APPENDIX A: LISTING OF THE CONTROL PROGRAM USING A
*DESCRIPTIVE" COMPUTER LANGUAGE 25
APPENDIX B: ASSEMBLY LANGUAGE LISTING OF THE SOFTWARE
FORTHE MOUNT COMPUTER ittt 31
APPENDIX C: PASCAL LISTING OF THE DRIVER PROGRAM UTILIZED
BY THEHOSTCOMPUTERc.i ittt it i iieienen.. 55
DISTRIBUTION LIST .o ittt it ettt ettt ettt teteeenenn 63
Acce_ff_l?g PFor '
DTIC o N
TAN [rale]
LITY m“‘)ﬂ‘("TED 8 | Unarncunced 8

Justif -ation

By.

| Distribution/

K

Aval Ighil lty Codegs

lavail and/or
L Dist Speoial

INTENTIONALLY LEFT BLANK.

10.

11.

LIST OF FIGURES

The Z80 CPU Pinout and Pin DescriptionDiagram

Pinout and Pin Description of the 8255A Programmable Peripheral Interface
Integrated Circuitottt eiiierenannnas

Pinout and Pin Description of the 8251A Programmable Communication
Iferface Chip ittt i i i ettt ittt

Pinout and Pin Definitions of the 6116 16,384-bit (2048x8) Static CMOS
Random Access Memory and 2716 Electrically Programmable Read
Only Memoryiiiiiiiiiiiiitiiitnenetnnerennsnnaans

Pinout and Pin Definitions of the CY525 Intelligent Ramping Steppér Motor
Controllerottt i ettt et e

Clock Circuit forthe MountComputerccivevrreennnnnnn.

Schematic Diagram Showing the Glue Logic Chip for Generating Chip
Selectfor /O Operationsiiiiiiiiriiiiiernnnnannnan

Memory Enable Circuitry of the MountComputer

interface Between a 8255A Programmable Peripheral Interface Input/Output
Element and a CY525 Stepper Motor Controller

Pin Definition and Interface Connections of the 13-bit Shaft Angle Encoder
in Support of the Azimuth Measurementsc0uuunn.

Pin Definition and Interconnection of the 13-bit Shaft Angle Encoder Used
in Support of Elevation Measurementscovvvunu...

10

10
12

12
14

14

16

16

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

The U.S. Army Ballistic Research Laboratory (BRL) receitly constructed a two-degree of
freedom mount suitable for slewing loads up to 800 pounds. This work was part of the LABCOM
TEAM COOP Program involving, in addition to BRL, the Harry Diamond Laboratory and the
Human Engineering Laboratory (CY525 Intelligent Ramping Stepper Motor Controller 1984). The
mount was contrcliable in both azimuth and elevation and could be used as a weapons platform
or as a surveillance and tracking platform. In order to expedite the use of the mount, a single
card computer (SCC) was designed, constructed, and programmed by the author which served
as a controller and communications interface for the mount. The SCC was connected by an
RS232 data link to a PC class computer, termed the host computer, that allowed the control of
the mount by a remote operator.

This report describes both the SCC, its software and, in addition, the software controlling host
computer used by the operator, also written by the author. Diagrams of the SCC and pinouts of
all the major integrated circuits will be included along with listings of the software in Appendices
A, B, and C.

2. OVERVIEW OF THE SCC

The SCC was designed to control a mount consisting of an azimuth axis and an elevation
axis. For each axis a 13-bit shaft angle encoder for determining mount angle was used along
with a stepper motor, an intelligerit stepper motor controller, and a corresponding stepper motor
amplifier. The SCC, or simply the mount computer, required a serial data link to the host
computer which input commands could be entered by the operator. The design philosophy
behind the mount computer was that it would support serial communications to and from the host
computer using a "high” level language to convey position and status information. The mount
computer was also designed to support a "low" level language to allow communications to and
from the two intelligent stepper motor controller integrated circuits (ICs) that were incorporated
directly within the mount computer. *

The mount computer’s software was designed to take as much of the computational burden
as possible off of the host computer, allowing the host computer to communicate only high level

information. Information for positioning the mount takes the form of an axis designator, an angle
to be acquired, and the actual slew or "go” command. Upon receiving a command, the mount
computer indicates a busy condition for the designated axis as long as slewing about that axis
is taking place.

The stepper motor controllers used were CY525 Intelligent Ramping Stepper Motor Controllers
(Zilog Z80-CPU Technical Manual 1976) manufactured by Cybernetic Micro Systems, inc. (1984),
San Gregorio, California. The CY525 stepper motor controller is packaged in a 40-pin dual-in-line
IC. It communicates commands and data through an 8-bit-wide data bus. The CY525
generates four output phases for controlling a four-phase stepper motor and an equivalent single
output phase and corresponding direction output for driving an “intelligent” stepper motor
amplifier. Other outputs include a busy*/ready status, a slew" status, and a run* status. (In the
text an "*" after a logic definition denotes that the logic function is active low.) Inputs include
handshake logic lines for the input and output of information over the data bus such as i/o
requests.

Communications to and from the CY525 can either be in the form of encoded ASCll-decimal
or binary, with binary being selected for this application. The CY525 instruction set has 27
commands such as looping, branching, testing status conditions and various executables.
Because of its richness of commands, the CY525 can be programmed to execute complex and
lengthy programs on its own. In this application, the CY525 was not used in the "execution”
mode, but was setup to execute commands one at a time as they were received. As a
consequence, only of a few of its possible commands were utilized.

The principle advantage of using a stepper motor controller IC is that it allows for the
automatic computation of stepping rates as a function of the number of steps within the
constraints of its operational parameters. Thus, by programming the CY525 with various
operating limits such as the maximum ramp rate rates for acceleration, maximum step rate, and
initial ramp rate, the CY525 can compute a stepping sequence based on a "least time to turn.”
All that is required is to program the various limits and then to send to the CY525 the number of
steps, the direction the stepper motor is to turn, and a go command, which is one of the CY525's
executables.

Normally, the programming of the operational parameters of each CY525 is dor.2 each time
the mount computer is reset. The mount computer then waits for the host computer, at which
time it generates a low level request to the appropriate CY525. For the mount computer to
control a CY525, it must first determine the initial angle of the corresponding axis. Once the initial
angle is known, the mount computer converts the information about the terminal angle into a
direction and number of steps. The number of steps is simply the angle for the mount to be
turned through in degrees times the number of steps required by the stepper f.: each degree of
angle. The angle to be turned through, of course, is simply the final or desired angle minus the
initial angle where the initial angle, as mentioned, is determined by reading a shaft angle encoder
prior to the slew operation. |

In determining the initial angle, the m junt controller must "read” the appropriate shaft angle
encoder and convert the resulting binary information into an angle in degrees. Since the angle
the mount turns through to produce one turn of the shaft angle encoder is known, each reading
ot a shaft angle encoder can be converted into an angle by a suitable scaling.

The mount computer requires various types of input/output (/o) elements since it must
interface to two shaft angle encoders, two CY525s, and a host computer. Communications to the
host is done serially through an RS232 serial communications interface, a standard interface used
frequently to connect computers with terminals. The shaft angle encoders and the CY525s are
accessed through parallel interfaces since the speed for parallel i/o is far greater than for serial.
Since the mount computer receives high level commands from the host, it must have a CPU
(central processing unit) to convert these high level commands into low level commands suitable
for the CY525s. In addition, the CPU must "read” the appropriate shaft angle encoder and
compute the number of steps and the corresponding direction for each slew request. That is, the
CPU must be able to communicate utilizing various i/o devices and to be able to perform all
necessary operations in, essentially, real time.

The CPU must be able to "parse out” the high level commands received from the host
computer and generate appropriate low level commands for the CY525s. It then must "present”
these commands to the CY525s in the proper order. The CPU must also monitor the operations
of the CY525s and generate any diagnostics should busy or fault conditions occur. Because of
the need to store pointers, intermediate results, etc., the mount computer is required to have a

3

RAM (random access read/write memory) as well as an EPROM (electronically programmable
read only memory) for program storage.

3. DETAILED DESCRIPTION OF THE SCC MOUNT CONTROLLER

The CPU that was selected for the mount computer was the Zilog Z80-CPU microprocessor,
manufactured by the Zilog Corporation, Cupertino, California. The Z80 has, over the years,
become the most widely used 8-bit microprocessor of all for process control applications. The
280, as most if not all microprocessors, utilizes three buses: a data bus, an address bus, and
a logic or control bus. The Jata bus defined by the Z80 is 8 bits wide. The address bus, on the
other hand, is 16 bits wide and is able to support an address space spanning 65,536 bytes of
memory, each byte being separately addressable. In hexadacimal notation, the address space
defined by the Z80 is from 0J00H to OffffH or from 0 to 65535 in decimal. The logic or control
bus consists of a system control portion and a CPU control portion. Because the control bus is
normally not compatible with the various memory or i/o elements used in the mount computer,
a number of "glue” logic elements must be used to allow the CPU to utilize and conirol both the
memory and i/o elements. In designing computers, it is essential to not only know the function
of all the pins on the CPU chip but also their timing sequences as well as the timing sequences
for the i/o and memory ICs. The Zilog Z80-CPU Technical Manual (1976) defines the function
of each pin of the Z80 and describes its timing sequences (for example, those for memory
fetches, for i/o operations, etc.).

Each i/o and memory element in the mount computer must interact in some way with the three
buses. In some instances address and logic functions are combined into “chip select” and "chip
enable” functions, which is done by the glue chips. All elements though, be they memory or i/o,
connect to the data bus directly using tri-state logic. The data bus is a bi-directional bus in which
information can be passed either to the CPU from the various support elements or to the various
support elements from the CPU. As a consequence, the data bus must employ tri-state logic that '
assures that only one element at a time can take control of it for transferring information. The
control of the data bus, in terms of who can drive it, is always maintained by the CPU. The CPU
"selects” various support elements as needed and yields control for short periods of time to those
elements. As a consequence, each support element must have a unique identification or memory
space. If the CPU requires information from a specific memory location, oniy the appropriate

4

element must respond. As a consequence, the glue chips must decode information from the
address bus and provide suitable “select” logic signals to the appropriate memory chip. The
same is true for the i/0 elements.

A description of the mount computer therefore must begin with a "pinout” of each IC, be it
either a memory chip or an i/o chip, and a pinout of the CPU itself. Each pinout must define logic
pins, data pins and, if used, memory address pins. Later in this report, descriptions of how logic
level signals derived from the address bus and the control bus are combined by the glue chips
to provide the chip select and chip enable functions will be given.

Once the pinouts are defined, the functions of the memory and i/o elements and their address
space must be defined as well as how they are connected to the CPU, the host computer, the
shaft angle encoders, the CY525s, and the glue chips. Central to the chip select and enable
functions is the use of a 74154 TTL (transistor to transistor logic) compatible 4-line to 16-line
decoder/demultiplexer.

The elements used include the 8251A programmable communication interface chip that
supports serial communications and the 8255A programmable peripheral interface chip that
supports parallel i/o. The memory elements used include the 6116 16,384-bit (2048x8) static
CMOS RAM and a 2716 16,384-bit (2048x8) UV erasable CMOS EPROM. The glue chips
consist of standard TTL operations, such as the "and,” "or,” and "not" operations. For example,
the "7400" TTL chip provides four 2-input positive nand (not and) gates, etc. In addition, the
mount computer utilizes a MC1488 quad line driver for driving the RS232 serial interface data link
for communicating with the host computer and a MC1489 quad line receiver for converting RS232
logic level signals from the host computer to TTL level signals.

4. TECHNICAL DESCRIPTIONS AND PINOUTS OF THE CPU AND SUPPORT ELEMENTS

Because of the many and complex details of the machine cycle timing diagrams of the CPU,
detailed timing charts were'not included. In general, timing diagrams give the time during an
instruction execution when memory or i/o elements can "read” information on the data bus or
when they can assume control of the bus and place information on it for the purpose of writing.
It is important to remember that timing is based on clock cycles ("T" states) within each instruction

execution cycle. Each instruction requires a specific number of T state:., the first defining the
actual instruction fetch. A smaller number of T states are required if the instruction to be
executed is a logical operation, as opposed to an input or output operation. All glue chips as well
as i/o and memory elements must operate fast enough to keep up with the system clock.
Figure 1 gives the pinout and pin definitions for the Z80 CPU.

Neither the M1* pin, the CPU bus control pins, or the CPU control pins defined in Figure 1
are used by the mount computer. Of the system control pins, only the output pins MREQ"*,
IORQ*, RD*, and WR* are used. MREQ becomes active when the CPU is performing either an
input or output operation to a memory element. IORQ, on the other hand, becomes active only
if the CPU is performing an input or output operation to an i/o element. RD is active if the CPU
performs any input operation, either from an i/o element or a memory element, and WR is active
only if the CPU is performing an output operation.

The second pinout and pin description are for the 8255A Programmable Peripheral Interface
chip and are shown in Figure 2.

The 8255A is used in the mount computer to provide parallel input/output operations. Four
8255As are used, one each for the two shaft angle encoders and ohe each for the two CY525s.
The 8255A contains three 8-bit ports (designated as A, B, and C), making a total of
24 programmable i/o lines altogether. In addition to the 8-bit data bus that allows data
communication with the CPU, the 8255A contains a CS* (chip select*) pin, an RD* (read input*)
pin, a WR* (write output®) pin, and a reset pin. Any of the three i/o ports, A, B, or C, can be
selected by the use of the A0 and A1l pins which are binary-input port-select pins. “AO is
connected to the least significant line of the address bus and A1 next to the least (that is,
standard address decoding is used by the 8255A). After a reset, the three ports are assumed
to be in the read or input mode and must be programmed by the CPU before they can be used
in the output mode. Many options and combinations of input and output functions for the these
three ports can be programmed through software. The programming of the four 8255As will be
outlined in the portion of the report describing the software.

The third pinout and pin description is for the 8251A Programmable Communication intertace
and is shown in Figure 3.

./ PIN NAMES
Mo 27 fe- -»{30 A0
mm. i b IR M o7 - 00 DATA BUS (BI-DIRECTIONAL)
SYSTEN : e e :: 3 RESEY RESET MPUT
CONTROL YR® 22 |e- - 34 A4 ADDRESS cse CHI SELECT
aFsHe 28 |o— 280 —~i 33 AS BUS Roe READ WPyt
lo— cPU - 36 A6 wRe WYRITE WPYT
fo— - 37 A7 AQ,AY PORY ADBERESSES
lo— -=i{ 38 A PAT - PAD PORT A (BIT)
HALT® 18 [-»{ 39 A9 PET -POG PORT 8 (BI1T)
VAIT®S 24 |- —={ 40 AIOD PC7 - PCO PORT C (BIT)
cPu mye 16 > = 1 Al g ;s'v:.'::
mue 17 o -y 2 A2
CONTROL RESET® 26 |- -»{ B A1l
- ¢ ate
- 3 A3
-
CPU BUS SUERG® 23 |-o- —
CONTROL I SUSAK® 25 e —dve oo
-t 1S OV
-t 12 92
-1 8 03 DATA BUS
[,] T 6 e 9 s
cLocx vee 1 e o 10 D6
POWER onp - -—ei 13 D7
GROUND

Figure 1. The 280 CPU Pinout and Pin Description Diagram. The address bus and the data bus
are shown to the right, and the control bus, composed of system control, CPU control, and the
CPU bus control is shown to the left. The clock signal, applied to pin 6, is a 2.4576-MHz square
wave generated by a crystal-controlled oscillator. M1°, FRSH', HALT, INT", NMI", BUSRQ' and

BUSAK' are not used. RESET is an input. Only the logic signals MREQ', IORQ’, RD’, and WR’
are used with the mount computer.

PIN NAMES
Pas [~ rae
= e Ll M
rat [T [T8] ras . 2: e-u:m"m
= D iEm
o [T 347 vo o o vouLTS
ar [T [35] o1
e 37 (53] o2
rer (i8] 82554 (AT} os
res (17 [30] oe
res (1Z] [15] os
ree (AT 78] oe
ree (i3] [37] o7
rer (73] 38] vee
re2 (1€ 3] e
res (7] 53] ree
ree (1§ [7T] res
roy (193] [37] Pee
re2 (5] [37] res

Figure 2. Pinout and Pin Description of the 8255A Programmable Peripheral Intertace Integrated
Circuit. The 8255A is used in the support of paralle! input/output operations and contains 24 i/o
lines that can be programmed in blocks as either input lines or as output lines.

7

PIN NAMES

o2 [/ 28] o1 o7 ~ 0o DATA BUS (BI-BMECTIONAL)
c/o CORTROL OR DATA
o3 (7] 77] oo e d READ WPYY
vRe WRITE SePUT
w0 (7] 36] vee cse CHIP ERARE
oax CLOCK PULSE
omo (4] [35] mxce RESEY RESET MPUT
TnCo TRANSIHTTER CLOCK
os 37 74] oTms =9 TRARSIITTER DATA
' RaC® RECEIVER CLOCK
s (] - T arse - RECEIVER DATA
RSV RECEIVER READY
se (7] 82514 (73] osme TuROY TRARBIITTER READY (HAS A CHARACTER)
. ssRe DATA SIT READY
or (& [F7] weser orRe BATA TERMINAL READY
sYmeet SYNE SETECT
Tuco[T] 78] o nise RESUTST TO SEND DATA
: crse CLEAR 7O SIND DATA
was[io [79] =0 ok TRANGMITTER EMPTY
. vee *3 yoLTS
cse 11 (18] TxgrPTY GWO o voLTs
croe(iz 7] crse
Rpe |13 16| SYNDET
RuRDY| 14 15| TutDY

Figure 3. Pinout and Pin Description of the 8251A Programmable Communication Interface Chip.
The 8251A supports the serial communications to the host computer. Baud rates for both

transmitting and receiving are determined through software and an external clock, derived from
the system clock by dividing by powers of two.

The 8251A programmable communication interface is used to generate TTL level signals for
transmitting serial information between the mount controller and the host computer. Conversion
of the TTL level output signal to an RS232 level is performed by one section of an MC1488 quad
line driver. One section of an MC1489 is used to perform the reverse process, of converting from
the RS232 logic level to the TTL level. The 8251A can provide both synchronous and
asynchronous operation. In the asynchronous mode of operation, as it is used in the mount
computer, it supports a format consisting of a start bit, seven data bits of information, and two
stop bits at 19.2 kHz baud. The 8251A is termed a two-port device in that two port addresses
are required for its operation. The first port is used for programming and for checking operating
status conditions. The second port is used to input characters received by the unit or to output
characters that are to be transmitted. The 8251A has a CS* (chip select®) pin, an RD* (read data
command®) pin, a WR" (write data or control command*) pin, a reset pin, a clock input pin, as well
as several pins denoting the status of the various communications. Serial output and input are
at the TTL level, and each is converted to RS232 logic levels as needed by the MC1488 and

MC1489. The circuitry and the glue chips required to utilize the 8251A will be described later in
this report.

The final two major elements of the mount computer are the 6116 RAM and the 2716
EPROM. Both of these memories have the same pinout and pin definitions. Because these are
memory elements, they both require address information from the address bus. They utilize only
enough address information, though, to span the address space they need. In addition, they both
utilize chip enable and output enable pins. Of course, they both utilize the data bus, as does the
i/o. A pinout and pin definitions are given in Figure 4.

Both the 6116 RAM and the 2716 EPROM utilize 11 address lines (out of the 16 supported
by the Z80). In addition, each chip utilizes a chip enable* pin and an output enable® pin. Both
memory elements utilize a single +5-V power source. Programming the 2716 EPROM is done
separately from the mount computer by a special EPROM programming device from data files
generated by an assembler. A listing of the assembly language program will be included in the
Appendix B of this report.

The next integrated circuit to be discussed is the CY525 stepper motor controller. Though
the CY525 contains a data bus and various control bus pins, they are not connected to the data
control bus of the mount controller. Instead they are connected to eight i/o pins of an 8255A
which serves an interface function. Because the CY525 is embedded, many of its contro! and
status pins are not used, such as outstrobe*, clock/15, dowhile, etc., while others, such as the
asciibinary*® pin, are hard-wired either high or low. By suitably connecting the CY525, it could
in fact be made to work from a keyboard, though that is not done here. The principle reason for
using the CY525 in the mount computer is because of its ability to perform ramp computations
in real time. A more detailed description of the CY525 stepper motor controller chip can be found
in a publication from Cybernetic Micro Systems, Inc., its manufacturer (Ref. 2). The pinout and
pin definitions of the CY525 are given in Figure 5.

5. DETAILED DESCRIPTION OF THE MOUNT CONTROLLER

This portion of the report will concentrate primarily on the control portion of the mount
computer. As indicated, the data bus runs from element to element to element, linking all the

9

(

%

FLHAMHEHA

(23] A8
23] a9

EEXEE

6116
(2718)

17 a7

[1¢] oe

(151 o3

2 8
&l L

14 |

oe
a3

i
A

12 1

134 vee

[Z1] vee (vew)
[30] oee
(197 a0

(18] cze (cxe/rme)

PIN NARES

AD - AVD ADDEESS WPUTS
a8 - o7 DATA BUS
cEe/ron CRIP ERABLE/PROBRAM
vEe AEAR/VYRITE SELECT
wr S VOLT READ,

+23 VOLT PROBRAM
vee +*3 VOLT
one s vaLY

Figure 4. Pinout and Pin Definitions of the 6116 16,384-bit (2048x8) Static CMOS Random
Access Memory and 2716 Electrically Programmable Read Only Memory. The pinout for both

elements are identical as far as the mount computer is concened. Elements in parentheses

apply to the 2716 EPROM.

1/0 REQUESTe(L= e -$38i veo
(T <33} t+/0 seLECT
XTAL (Tl <P} YAIT(PROGRAN)
RESETS (3 e «=>JT} MOTION COMPLETES
unused T =S BT ASCII/BINARY®
ABORT® _§ Juew - PULSEe
GND (T} «of §8+ PROGRAMMABLE OUTPUT
INSTROBE* ,:f_ ~=$ §J] DIRECTION
UNUSED 3] cysas ~=+FJ] RUN® (INT REQ 2)
OUTSTROBE® [T }e= onmmny PROGS /LIVEe
CLOCK/ 15 (JT}em -% STEP INMIBIT
71 cm.._. - SLEWs
o1 @.—. s T} DOVHILE
D2 ({Sleeme ~>1JY] BusYe/RODY
[+5] @._.. "E vee
D4 ({f}ewee (] unussD
03 TIPSR —aE STEPPER
Dé (1§ jowme MuTOR ¥ 1L mg
07 (3 i - 5] Pt 2 SIGNALS
OND (T} -=i31) PRI 1

Figure 5. Pinout and Pin Definitions of the CY525 Intelligent Ramping Stepper Motor Controller.
An 8.0-MHz crystal is connected between pins 2 and 3. Output from the CY525 for driving a

stepper motor was from pulse (pin 35) and direction (pin 33).

10

elements that utilize the data bus, such as the CPU, i/o, and the memory. To alesser extent, the
same is true for the address bus. For the mount computer though, only 11 of the 16 address bus
lines are used. The control bus portion, on the other hand, requires a number of glue logic chips
to generate the proper selects and enables.

The clock circuit used in the mount controller is constructed using two TTL sections from a
7404-hex invertor chip, two 2.2-k resistors, a 0.001-uf capacitor, and a 4.9165-MHz crystal.
Output from the clock is fed into a binary counter composed of one section of a 7493 4-bit binary
counter. The counter serves to "clean up” the clock signal and to provide a 50% duty cycle. It
does this by changing its output only on positive transitions of the clock. Figure 6 shows how the
clock circuit is wired.

With regards to device or element selection, four control output pins on the Z80 are utilized,
as mentioned previously. There is a pin to indicate that the Z80 is performing an i/o function,
termed the IORQ"* pin; one used when performing a memory operation, the MEMR* pin; one used
when an input function is to be performed, be it either i/o or memory, the RD* pin; and one used
when an output function is performed, the WR* pin. The glue logic takes these control signals,

“along with portions of the address bus, and generates the appropriate select and enable pulses
for all the i/o and memory. Figure 7 defines 16 additional TTL logic level lines, S0* through S15*
(of which only 5 are Used), which are device select lines derived from IORQ* and the 4 address
lines (A2 through A5) by the 74154 4-line input 16-line output demuitiplexier. -

Al the logic shown in Figure 7 is active low, and, as a consequence, all the necessary chip
select pulses for i/o operations can be obtained directly from the 74154. Since the 74154 utilizes
as inputs address lines A2—-AS5, each i/o element is assigned four address spaces. An i/o element
can only be selected if the IORQ" pin of the Z80 is low, indicating that an i/o operation is taking
place. Specific addresses within the assigned block of four is specified by AQ and A1 while the
iVo function is specified by either the RD* pin of the Z80 or the WR* pin.

Unlike the i/o elements, the memory elements utilize the address bus directly, being
connected to AQ through A10. The next higher address line, corresponding to A11, is therefore
used as a chip select line. By feeding A11 directly to the CE"* pin of the 2716 EPROM, an
address space of 00000h to 07ffh can be assigned, since A11 must be low for the 2716 to be

1

One Seetion of a 4-8Bit
7493 Binary Comnter

System Clesk
} (2.43576 Miiz)
AV V4
22x 0.?1 E 22%
7404 7404
fit
4.9132 MMz

Figure 6. Clock Circuit for the Mount Computer. A standard oscillator circuit utilizing two sections
of a hex invertor is used to produce a "quasi® TTL clock output at 4.9152 MHz. One section of

a 7493 4-bit binary computer divides the rate by two and gives a true TTL output with a 50% duty
cycle.

" o S vy N vy IR vy N v
wre ore wre |“= ore wr®
AD AD (] A0 AD eld®
Al [} [)] ()} ()]

_I—uO es® [1 4 os® es®
forg® —qt¢ soace onoon l—“ [j,:::':;:.,.. svocs” son-0fh | space” 108-13n
AS —=i A3 e—————

A ——— A2 I
Al e Al
A2 ey AD

’30,—-

— v

Figure 7. Schematic Diagram Showing the Glue Logic Chip for Generating Chip Select for I/O
Operations. A 74154 4-line to 16-line decoder/demultiplexer is utilized. Each i/o element is
assigned four address spaces. The first (left most) 8255A services the azimuth shaft angle
encoder, the second the elevation shaft encoder, the third the azimuth CY525 controlier and the

fourth the elevation CY525 controlier. The 8251A services the serial interface connections that
link the computer to the host.

12

enabled. On the other hand, by feeding A11* to the CS* pin of the 6116 RAM, an address space
of 0800h to Offfh can be assigned, since A11 must be high for the 6116 to be selected. The
select circuitry of the memory ICs is shown in Figure 8.

Selecting and enabling the 2716 EPROM is accomplished by wiring the RD* line (“or"ed with
the MREQ" line from the Z80) to the OE* (output enable*) pin of the 2716 and the A11 (address
bus, bit 11) line of the Z80 to the CE* (chip enable) of the 2716. Selecting and enabling the 6116
RAM is accomplished by wiring the MREQ* of the Z80 to the OE* of the 6116, the WR* of the
Z80 to the WE" of the 6116, and A11* of the Z80 to the CS* (chip select) pin. A11*, for example,
is obtained by negating A11 by the use of a section of a hex invertor.

The memory space of the 2716 EPROM is established by requiring A11 to be at logic leve! 0.
Any bit patterh in the address space of xxxx,0000 0000,0000B (16-bit binary) to xxxx,0111
1111,1111B will select the 2716 EPROM. (Here the "x" denotes a "don't care" bit.) The memory
space of the 6116 RAM, because of the inversion of A11, is from xxxx,1000 0000,0000B to
xxxx,1111 1111,1111B. For programming, it is therefore assumed that the address space of the
2716 is from 0000H to 07ffH and that of the 6116 from 0800H to OfffH.

It is essential that the 2716 EPROM be addressed starting at 0000H because after a reset
the program counter of the 280 is set to that address. That is, the first instruction to be executed
by the Z80 after a reset operation is at address 0000h.

The interface or electrical connections between an 8255A programmable peripheral interface
i/o element and a CY525 stepper motor controller integrated circuit is somewhat different than,
for example, a memory element and the Z80 since the CY525 is considered a peripheral and not
located directly on the data bus. Because of this, the CY525 requires both a hardware interface
as well as a software interface. The hardware interface is shown in Figure 9.

In Figure 9, PC4 serves as a strobe input®, latching eight data bits from the CY525's parallel
data bus into the 8255A’s port A. A “ready" condition is set through PB5, indicating that valid
data is on the paraliel data bus to be input by the 8255A. Output of 8-parallel data bits to the
CY525 is accomplished by placing the data on port A and strobing PCO (connected to the i/o
request’ pin) low while PC1 (i*/o request pin) is low. The motion complete* pin is read to
determine when a slew command sent to the CY525 is completed.

13

mreqtj >
mreqs oes oe*
rds

wrs wes

All %I cs'

ces

Figure 8. Memory Enable Circuitry of the Mount Computer. The two input “or" section prevents

inadvertent writes to the 2716 EPROM.

STA_ s

e f
pa7-pal '—HWATH paraiiel data bus

acknowledge® pcé - inatrobes

1
strobe inputs pcs Ll—

\

{ =35 busys / ready
pbS

ry resets

i

i / o requests

' 14 1 I
pe? F1 m i* / o request
pbo I 18 a-% motion completes
pb7 | 43 3"§"| slew indicators

m"_5‘i aborts

[—_!l-l step inhibit
i
"4 sscii / binarys

v

Figure 9. Interface between an 8255A Programmable Peripheral Interface input/Output Element
and a CY525 Stepper Motor Controller. The 8255A is used in operating mode "two" in which port
A (pins PA7-PAO0) is bi-directional and where PCO and PC1 are set and reset under software
control through the "single bit set/reset” feature of the 8255A. Port addresses of 08h—-0Obh are
used for the CY525 that controls the azimuth stepper and 0ch—0th for the CY525 that controls the

elevation stepper.

The input of information from a shaft angle encoder is far simpler than for the case of a
CY525. For the input of information from a shaft angle encoder, all that is required is the "hold”
pin of the shaft angle encoder to be held low for 2 ps. Information is "frozen” and placed on the
13 output pins of the shaft angle encoder which can be input by an 8255A using 13 parallel input
lines. Since more than eight data bits are input, two input ports are required. Figure 10 defines
the interface between a 13-bit shaft angle encoder and a 8255A parallel input interface element.

The pin definition and interface connections of the shaft angle encoder used in the support
of elevation measurements is shown in Figure 11.

6. DESCRIPTION OF THE SOFTWARE USED IN THE SUPPORT OF THE MOUNT
COMPUTER.

The software for the mount computer is written in assembly language using Zilog mnemonics.
in the program, symbols are used which are composed of one or more alphanumeric characters
and the underscore. Among other things, symbols are used to denote variables. When
parentheses are used around symbols defined as variables, they denote that the address
associated with the symbol is to be inferred. Symbols followed by a colon denote an address
label. Characters following a semicolon denote comments.

In order to make the logic behind the assembly language more intelligible, a "pseudo” program
has been written using a cross between the English language and Pascal. As such, it is not only
suggestive of the actual assembly language program, but it can be understood far more easily.
Regrettably, in order to understand the programming of the i/o elements, one must refer to
component data catalogues that list the specific elements. The assembly language program,
though, should serve as a example for specific cases.

The variables in the assembly language listing as well as the pseudo listing include
channel(8), n_o(8), n_p(8), g_o(8), g_p(8), n_lo_o(8), n_lo_p(8), sae0_o(16), sae_p(16),
sae1_o(16), sae1_p(16), cc(16), and others, as listed. Subscripts after a variable denote an
array. The variables contain either numerical values or flags. Control of the program is
maintained by the use of flags that are tested, set, and reset as needed.

15

Itek «8/23K Shaft Aagle Enceder 8233A input/Ouipet
interfase Element

Fenation Pia Number Funetion Pin Number Port Address
vce 1
8it 0 (LSB) 2 —— PR 21 1
1 3 ——— PR4 22]
2 4§ —— PES 23 1
3 S ———— PBE 24 1
4 6 —————— PRT 23 1
| 71— PCO 14 2
[8 ——————e PC1 13 2
7 9 ———— P2 16 2
8 10 —————eeeepp PC3 17 2
9 1 —— PC4 13 2
10 12 ———————s PCS 12 2
1"t 13 ————eer PCH 1 3] 2
12 14 ———ceetp PCT 10 2
o 13
Held 16 »———ee PAQ 4 4

Figure 10. Pin Definition and Interface Connections of the 13-bit Shaft Angle Encoder in Support
of the Azimuth Measurements. "Data freezing” occurs 2 us after the "hold" pin of the shaft angle

encoder is brought low. After reading or inputting the data, the hold pin is returned high by PAO.

ek «8/23K Shaft Angle Enceder S233A Wmput/Output
interfase Eloment
Fenstion Pin Number Feastion Pin Number Port Adivess
vece 1
Bt 0 (L.S8) 2 ——————p PR 21 3
1 3 ———— P4 2 S
2 @ ——— RS 23 3
3 g —— PRO 24 S
) ¢ ————reeeeep PQ7T 23 s
S T et PCO 14 6
1 3 8 et PCY 13 6
7 P —— D 16 6
 } 10 ety PCY 17 [3
11 ———e—————ate PG4 13 [3
10 12 ——r—— P 12 [3
11 13 ——————— PCE 1 6
12 14— T 10 6
ond 13
Heold 16 = PAY 3 L)

Figure 11. Pin Definition and Interconnection of the 13-bit Shaft Angle Encoder Used in Support
of Elevation Measurements.

16

Though the program is set up to handle only two channels, in theory 256 channeis could be
handied by simply cloning sections of the program for each additional channel. A typical slewing
command issued by the host would take the form of a channel specifier, an "N" command
denoting that the following two characters are to be interpreted as data bytes, and a "G"
command for initiating mount motion of the specified axis to the prescribed angle. A single
command is the "ping” command. When the host sends a ping command, the mount computer
immediately responds with an "ack.” This lets the host know that the mount computer is "alive.”
There is also a "g_status” command used by the host for determining which, if any, of the mount’s
axes are busy. The use of the g_status command precludes the sending of additional commands
to the mount computer while it is still busy.

Because of the rather simple command structure, the host is not able to change the ramping
parameters of the CY525s. All ramping information is programmed into the mount computer’s
EPROM and is output to the CY525s only on power up or after a hardware reset. The
programming of all the i/o elements also occurs at the very same time, even before the
programming of the CY525s, since the CY525 programming information must come through an
8255A. Baud rates associated with the 8251A likewise cannot be changed but are also fixed in
the EPROM. |

Upon reset, various "boolean” variables are set to false to indicate a no operation condition.
As commands are received from the host, the mount computer updates these variables to true
as needed. Entry into various parts of the program is controlled by these variables used as flags.
After a pending task is accomplished, the corresponding fiag is set to false, denoting completion
of the operation. Another variable, “channel,” is used as a pointer to the currently assigned
channel, be it the azimuth channel or the elevation channel. All information from the host is
directed to the active channel, of which there can be only one. The program must distinguish
between data and such things as command and channel specifiers. This is accomplished by
establishing a protocol in which all input is taken as commands until the "N* command is sent.
in this case, after the receipt of the N command, the next two bytes are assumed to be an angle
specified, even though these data bytes may be valid commands or channel specifiers.

The "G" or "go” command will only be accepted after an N command and two data bytes, at
which time the selected axis of the mount will begin to slew. During the slew command, the

17

active channel is "unavailable” until the corresponding CY525 signals that motion is complete.
Commands sent to an active channel will be ignored, but any noncctive channel can be
programmed. Thus, it is possible to have multiple channels operating at the same time.

Appendix A contains a listing of the pseudo control program whose basic purpose is to merely
indicate program flow and to aid the reader in understanding the more detailed assembly
language listing. Both the pseudo program and the assembly listing use the same statement
labels. These programs consist of three sections—an initialization and program control section,
a section devoted to the "0" or elevation channel, and a section devoted to the "p" or azimuth
channel. Here "0" and "p" are used to denote channels as opposed to the use of the words
"elevation” and "azimuth.” The symbol "reg_c" denotes the "c" register of the Z80 CPU. As can
be seen in the assembly language listing in Appendix B, the h and | registers of the Z80 are used
quite extensively as they can be combined into a single 16-bit register in support of 16-bit
arithmetic.

The angle "space” in both azimuth and elevation is spanned by a twos compliment 16-bit
representation. As a consequence, care has to be taken in computing angular differences to
prevent overflow, since all possible bit patterns may be used to represent angles. Because gear
reduction units are used to turn the shaft angle encoders, their output must be scaled. In
addition, the terminal angles must be scaled in terms of the number of steps required by the
stepper motors. Again, care must be taken to assume that the precision limitations of the CPU
(that is, representing angles in a 16-bit format) are allowed for. It may also be noted that the
mount computer does not use interrupts, since all activity occurs on time scales commensurate
with machine or human time scales as measured in seconds.

Upon receipt of a channel specified and a "N" command, the appropriate n_x and n_lo_x
variables are set true. Here "x" denotes either an "0" or a "p." For the sake of discussion,
assume that the "0" channel has been selected. Upon receipt of the next character from the host,
a data byte denoting the least significant portion of the angle, the program is directed to line (14
where n_lo_o is tested to see if it is true, which it is in the case of the first data byte. The
program then piaces the data from the host into n_v_lo_o and immediately sets n_lo_o false.
Atter the iiext character is received, the program is again directed to line 114, but this time it is
redirected to |17 because of n_lo_o being false. The new Jata is now placed into n_v_hi_o and

18

n_o is made false. At this point, the appropriate shaft angle encoder is input, number of steps
and direction computed, and the CY525 programmed. All that is now needed for the CY525 to
generate stepper pulses is the receipt of a "go™ command from the host.

Upon receipt of the next character from the host, the program falls through to line 19 where
a test is made to see if the character is a "G,"” denoting "go.” If it is, then a "go" command is
transmitted to the CY525 stepper motor controller, and a "G" character is sent to the host,
indicating the stepper response. At this point, the status of the CY525 is continually tested
following line I1_o. Status information is made available to the host at line 11_ae. New input in
the form of an "N" command could be sent to the mount computer at this time and would be
accepted since g_o is merely a toggle. However, the operation of the software in the host
precludes this option, waiting for the stepper to complete its operation before additional
commands are transmitted. Thus, the host is assured that all commands will be executed and
none lost. Because the transmission time for the transmission of instructions is short compared
with a typical slew time interval, the CY525 could essentially be kept busy all the time if needed.

7. DESCRIPTION OF THE SOFTWARE IN SUPPORT OF THE OPERATION OF THE HOST
COMPUTER. '

As mentioned previously, the host computer is equivalent to a PC clone and is in the form of
a Z80-based Digilog microcomputer. One reason for selecting the Digilog was that several were
on hand and that assembly language "hooks" were available for supporting input and output
operations that could be invoked from Pascal programs. Assembly language segments can be
placed in a Pascal program by the use of the Pascal "inline” statement. By the use of the Pascal
"var® that allows variable declaration in procedures and functions, program variables can be
incorporated into the assembly language modules.

A listing of the Pascal program utilized in the host computer is given in Appendix C. One of
the objectives of the program is to perform diagnostics on the remote computer whenever
possible. After a command is sent to the remote computer, the host times the response from it.
if the response time exceeds a preset limit, then a diagnostic message is displayed to the
operator. In some instances, helpful suggestions are included in these messages.

19

After a reset, a "ping” message is sent to the mount computer. If a proper response is not
received within the preset time limit, the program displays a diagnostic message. The program
also prevents efforts on the part of the operator to send mount messages. Only when a proper
response from a ping is received will the operator be queued for input. After each character of
a command is sent, the computer waits for an "ack,” signifying that the remote has accepted the
character and is ready for another. After the issuance of the go command (the "G" character),
the host periodically checks the status of the remote to determine when the corresponding
slewing command sent to a CY525 is compieted.

By the use of such checks, the proper operation of the remote computer is more nearly
assured. Synchronization is also maintained between the two computers during the transmission
of an instruction.

8. SUMMARY

This report describes both the hardware and the software of a two-axis mount controller
computer and the associated drive software of a host computer. Included were descriptions of
the various computer elements used, such as the CPU, /o, and memory elements. A simple
hardware design was selected based on the ubiquitous Z80 CPU manufactured by the Zilog
Corporation. The program for the mount computer was stored in an EPROM that was
programmed from assembly language using a Zenith Data Systems computer and an EPROM
programmer board. Software for the host computer, used as a control terminal for the mount, was
written in Pascal and stored on a floppy disk. During execution, the control program in the host
resided in its random access memory, being read in from the floppy disk drive.

It is hoped that the documentation included in this report will enable others to repiicate the
mount computer, including all the software, for similar applications. It is also hoped that this
report will give the reader a deeper insight into the use and operation of microcomputers in
general.

The hardware and software shown were was the simplest and quickest to develop, allowing
use of the mount while a more complex controller was being developed. Because of this

20

simplicity, bugs in the software and in the mount computer itself could easily be fixed, allowing
developmental efforts to focus on the mount itself.

9. CONCLUSION

The mount controller computer, its software, host software, and serial interface link between
the two computers have worked extremely well. No evidence of a failure during operation was
ever traced to a software fault. Occasionally, a hardware failure of either the remote mount
computer or host would cause a synchronization problem where the two programs would loose
track with each other. Normally, resetting both systems was sufficient to cure any such problems.

The hardware and the software both served as bread boards for system development with
both being responsive to developmental needs. The success of the system provided guidance
for the installation of a more complex system based on state-of-the-art process control computers
costing perhaps in excess of 100 times as much.

21

INTENTIONALLY LEFT BLANK.

10. REFERENCES

CY525 Intelligent Ramping Stepper Motor Controller. San Gregorio, CA: Cybernetic Micro
Systems, inc., 1984.

Zilog Z80-CPU Technical Manual. Cupertino, CA: Zilog, Inc., 1976.

23

INTENTIONALLY LEFT BLANK.

24

APPENDIX A:
LISTING OF THE CONTROL PROGRAM USING A "DESCRIPTIVE" COMPUTER LANGUAGE.

Note: The Purpose of This Listing Is to Provide Only an Indication of the Program Flow
and Logic. '

25

INTENTIONALLY LEFT BLANK.

26

start:
sl:
s2:
s3:
s85:
s86:
s7:
s8:
sl0:

sll:

11 a:

11 b:

11 _ac:

11_ae:

11 aa:

11 _o:

program the 8251A serial i/o element:

initialize the two 8255As that interface to CY525s;
initialize the two 8255As that interface to SAEs:;

program the i/o request* and i*/o request pins the CY525s;
program the interrogate pins on the SAEs;

program the stack pointer to the top of RAM;

program the first rate, rate, slope and divisor functions;
exercise the programmable output pins;

set channel = "channelo";
set destination = "dest_o:;
set n_o="false";
set n_p="false";
set g o="false";
set g_p="false";

if there is no character from host then goto 11_aa
else input character and place it in character_. from _host:;

if channel== "channelp” and if n_p =="true™ then goto ll_aa;
if channel== "channelo" and if n o =="true" then goto 1ll1_aa;
if character_from host =="ping" then
begin
send "“ack" to host:;
goto 11_a:;
end;

if character_from host =="channelp" then
begin
set channel= "channelp";
send "ack" to host;
goto 11_a;
end;

if character_from host =="channelo" then
begin
set channel = "channelo"™;
send "ack" to host:;
goto 1l1_a;
end;

if character_from host == "g status"™ then
begin
if g 0 == "true" then set reg c = "1%;
if g_p == "true" then set reg _c = "2%;
send reg_c to host;
goto 11_a;
end;

if destination == "dest_o" then goto 1l1_o:
if destination == "dest_p" then goto 11 p;

set destination = "dest p":; {Sexvicing the "o" channel.}
if g 0 == "true" and if (bitO, port bl) == "0" then set

g_ o="false";

27

15: if there is no character from the host then goto 1l1_a;
if channel <> "channelo® then goto 11 _b:

16: if n_o == "true" then goto 14;
17: if character_from host == "N" then
begin

set n_o = "true"“;
set n lo 0o = "true";
send "N" to host:;
goto 1ll1_a;

end:

19: if character_from host <> "G" then goto 1l1l_a:

112: send "G0" to the "elevation® CY525;
set g 0 = "true";
send "G" to host;
goto 11_a;

114: if n_lo_o =="true" then

begin
set n_v_lo_o = character_from host;
set n_lo o = "false";
send "ack" to host:

goto 11 _a;
end;
117: set n_o = "false";

set n_v_hi o = character_from host:

118: read "elevation™ shaft angle encoder into sae0_o (13 bits):
set sae0_o = 1101*sae0_o0/1024;
set sael o (low byte) = n_v_lo_o;
set sael o (high byte)= n_ v_. " hi -F

set cc = abs(sael o - sae0_o);

if sael_o >= san o then set reg_c="+" else set reg_c:="-"
send reg_c to the "elevation" CY525.‘

set cc = cc*12160;

send "N2" to the "elevation" CY525.

send cc (low byte) to the "elevation" CY525;

send cc (high byte) to the "elevation™ CY¥525:;

send cc (high byte) to host;

goto 11_a;

11 _p: set destination = "dest_o": {Servicing the "p" channel.}
if g_p == "true" and if (bit 0 of port b3)=="0" then
set g p = "false";

15 p: if there is no character from host then goto 1l1_a;
if channel <> "channelp" then goto 11l _b;

28

16 p: if n_p == "true" then goto 114_p:

17_p: 1if (character from host) == "N" then
begin
set n_p = "true";
set n_lo_p = "true";
send "N" to host;
goto 1l1_a;
end;

19 p: 1if character_from host <> "G" then goto 1ll1_a;

112 p: send "GO" to the "azimuth" CY525;
set g_p = "true";
send "G" to host:
goto 11_a;

114 _p: if n_lo_p == "true" then
begin
set n_v_lo_p = character_from host;
set n_lo_p = "false";
send "ack" to host:
goto 11_a;
end;

" 117_p: set n_p = "false";
set n_v_hi p = character_from host;

read "azimuth" shaft angle encoder into sae0_p (13 bits):
set sael p (low byte) = n v lo p;

set sael_p (high byte)= n v hi p;

set cc = abs(sael_p = sael_p);

if sael_p>= saeo_p then set reg _c= "+" else set reg c= "-";
send reg_c to the "azimuth" CY525;

set cc = cc*61; -

send "N2" to the "azimuth"™ CY¥525;

send cc (lo byte) to the "azimuth" CY525;

send cc (high byte) to the "azimuth" CY525;

send cc (high byte) to host;

‘goto 11 _a:

118_p

‘end.

29

INTENTIONALLY LEFT BLANK.

30

APPENDIX B:
ASSEMBLY LANGUAGE LISTING OF THE SOFTWARE FOR THE MOUNT COMPUTER.

Note: After Compilation, the Resuiting Machine Level Code Is Programmed
Into the 2716 EPROM.

31

INTENTIONALLY LEFT BLANK.

32

; Software to drive the BRL turret mount in azimith and elevation.
org h’0800

r

cec: dw ; "o" denotes azimuth.
dw
cc00: dw ; 'p’ denotes elevation.
dw
ccll: dw
dw
cc02: dw
dw
ccl4: dw
dw
cc08: dw
dw
celé: dw
dw
cc32: dw
dw
ccb4: dw
dw
ccl28: dw
dw
cc256: dw
dw
cc512: dw
dw
sae_o: dw
sae_p: dw
sae(_o: dw
sael_p: dw
sael_o: dw
sael_p: dw
n_o: dw
n_p: dw
g_o: db
g_p: db
chr: db
n_lo o: db
n_lo_p: db
n_v_lo_o: db
n_v_lo p: db
n_v_hi o: db
n_v_hi p: db
channel: db ;Controlled by host, specifies channel,"o" or "p".
chr_ready: db : Boolean.
destination: db ; Controlled locally. Toggled locally.

; initialize the 8251A serial interface, V.

"org h’0000
" 1d a,b’0 001110 ;1 stop bit, no parity, 8 data bits, 16x baud
rate factor.
out (portb5),a ; write to the 8251A command port, mode byte.
1d a,b’00110111 ; command instruction.

out (portbS5),a ;write to the 8251A command port, command byte.
; initialize 8255A-I and 8255A-I1I, the two CY525s interface chips.

33

.
’

14 a,b’11000010 ; Control word.)
out (portdl),a ; port a is bi-directional, port b input, port ¢

output.

out (portd3),a

; initialize 8255A-II and 8255A-1IV, the shaft angle encoder interface

chips.

1d a,b’10011011

Control word.

out (portd2),a ; ports b and ¢ are input, port a is input.
1d a,b’10001011
out (portd4),a ; ports b and ¢ are input, port a is output.

“e

1d a,noioreq ; Set (I/O REQUEST)*, bit 1 of port c.
out (portdl),a
out (portd3l),a

..

1d a,ioselin ; Set I* /O REQUEST line low for CY¥525 "in"
out (portdl),a
out (portd3),a

14 a,b’ 00000000 : bit 0 is the sae2 "interrogate."

out (portad),a

e wa wo

bit 1 is the saed4 "interrogate."

initialize and set parameters on CY525.

1d sp,h’1000 ; set stack pointer.

.

1d de,st_in_o :; point to string to be transmitted to the CY525.

call

conditions.

s_pr_1l o ; do it. String defines initial CY¥525

1d de,st_in p ; point to string to be transmitted to the CY¥525.

call

1d de,

call

1d de,

call

1d de,

call

ld de,

call

1d de,

call

-

s_pr_3 p

st_on ;Exercise programmable output pin (34) on CY525_ o.
s pr_1l o

st_off

s_pr_ 1l o

st_on

s pr_ 1l o

st_off

s pr_ 1 o

st_on

s_pr_1l o

1d de,st_on ;Exercise programmable output pin (34) on CY525 p.

call

14 de,

call

1d de,

call

1d de,

call

s_pr_3 p
st_off
s_pr_3 p
st_on
s_ pr 3 p
st_off
s_pr_3_p

1d de,st_on

call

s pr 3 p

1d a,channelo
ld (channel), a
1ld a,dest_o

ld (destination),a

-

1d a,false
1d (n_o),a
1d (n_p).,a
1ld (g_o0).,a
1d (g_p),a

1d a,b’00000010
out (porta4),a ; Not freeze on elevation channel,

§6&L5ELELESLESE4EE end initialization G6EEEEEEEELEEEEESES
; 008@QQQEEEREEEEEe start master loop @reeaQeeeeeeeeeeaa

11 _a:
- call test_s_in ; Returns chr and chr_ready:boolean.
-1d (chr_ready),a
cp false
jp z,11_aa

11_b:
14 a, (channel)
cp channelp

jp 2z,11_a_p

Determine if "“o" or "p" to receive char.

-,

il_a_o:

14 a, (n_o) Char. from HOST meant -for "o"
cp true ; If n_o true then char. is data.
jp z,11 aa

jp 11_ab

11_a p:
ld a, (n_p) ; Char. from HOST meant for "p"
cp true ; If n_p true then char. is data.

jp z,11_aa

11_ab:
14 a, (chr)
cp ping ; Respond to "ping"
jp nz,11 _ac
1ld ¢,ack
call host
" dp 11 _a

11_ac:
14 a, (chr) ; Get character from HOST. 1Is the
cp channelo ; data either "channelo™ or "channelp"
jp z, ch
cp channelp
jp nz, 11_ae

ch:

ld (channel),a ; Update "channel®™
1ld c,ack

35

call host
jp 11_a

11_ae:
1d
cp
ip

1d
1d
cp
jp z, 11l_ad o
1d a,¢
or b’00000001
ld ¢c,a

a, (chr)
g_status
nz,ll_aa

a, (g_o)
c,b’00110000
false

11 _ad o:
14 a, (g_p)
cp false
jp z,11_ad p
ld a,c¢
or b’00000010
ld c,a

11_ad p:
call test_s out
cp false
jp z,11_ad p
ld a,c
out (portal),
jp 11_a

11 _aa:
ld a, (destinati
cp dest_o
jp z,11_o
jp 11 p

SL&ELEEEELEEEEGEEE
11l o:
ld a,dest_p
ld (destination),a
1d a, (g_o)
cp false
jp z,15

.
»

12:
in a,

H “goﬂ
(portbl)

;Get motion complete status of channel ‘o‘.
rQ’.

r

; Set LSB for channel ‘o’.
; Store status in reg. c.

;Get motion complete status of channel ’'p’.

a

e
’

on) Alternate "o" and "p" loops.

Start of "o" loop. L&E&E&LELELEEEEEEELESSE

; "destination® points to alternating loops.
; Test if "go" active.

active here. Test for "motion complete."

; Note: "motion_complete"™ active high.

and b’ 00000001
jp nz,15

1d a,false ’
1ld (g_c).,a

1d a, (chr_ready)
cp false

Motion is now complete.
: g := false.

Turn off "go."

Is there data from host?
If not abort effort and start over.

.
’

.
’

36

jp z,11_a

1ld a, (channel)
cp channelo .
jp nz,11_b ;Check other channels if character not needed here.
l6:
1ld a, (n_o)
cp true
jp z,114
17:
1d a, (chr)
cp h'’de ; chr = 'N’ ?
jp nz,19
18: ; Last character received was ’N’‘.
1ld a,true ;Get setup for receiving position data from host.
ld (n_o),a ; n := true,.
ld (n_lo_o),a : n_low := true.
1ld c,h’4e
call host
jp 11_a

19:

1ld a, (chr)

cp h’47 ; chr = "G" ?

jp nz,11_a ; Jump if chr <> "G"
112: :
1d de, st_g ; Here if n is false and last character
call s pr lo ; received from host was "G"
1d a,true
ld (g_o),a ; g := true.
1d c,h’ 47
call host
jp 11_a

114:
1d a, (n_lo_o) ; Here if data from host is to be received.
cp false
jp z,117

115:
1d a, (chr) : Here if LSB is to be received.
ld (n_v_lo_o),a
1ld a,false
1d (n_lo_o),a : n_low := false.
ld c¢,ack ’
call host
jp 11_a

1d a,false ; n_high := false.

1d (n_o),a : n_0 := false.

1d a, (chr)

1d (n_v_hi o),a :n_val_high := last character received from host.

-

118:
;Read the shaft angle encoder into SAE0. Send "interrogate" pulse.
1d a,b’00000011 ; Set "interrogate™ of SAE2, bit 0 of 8255A-4.

37

out (portad),a ; Bit 1 stays high for second channel.
out (porta4}).,a ;delay. Toggle bit 0. Wait for "Data Ready."
out (porta4),a
1d a,b’00000010 ;Reset "interrogate®™ of SAE2, bit 0 of 8255A-4.
out (portad),a
10: ; SAE:= initial shaft angle reading.
in a, (porta2) :; Test "Data Ready" from sae2, bit 0 of 8255a-2.
and b’00000001 ’
jp z,10 Loop until high.** restore for uS16/23**
in a, (portb2) Get least significant byte (from portb2).
and b’11111000 *** remove this for uSl1l6/23 operation ***x*
1d (sae0_o),a :
in a, (portc2) ;Get most significant byte (from portc2).
1ld (sae0_o+h’01l),a ; sae0 (16 bits) is present sae reading. ;

~e
“e wo w¢

Multiply sae reading by 1011/1024. 1011 = 001111110011B.
Reverse sae reading.

e o o

1d hl, (sael_o); hl := sae_o.
14 a,1
db h’2f ; Complement accumulator, one’s complement.
1ld 1,a
1d a,h
db h’2f ; One’s complement, high byte.
1d h,a
ld (ccQ0),hl; cc0 i= - sae_o, used as buffer.
1ld (cc0l),hl; ccOl i= -~ sae_o.
: >O>>>>
add hl,hl ; eyl < [h15 < h0] < O.
sbe¢ hl,hl :)
1d (cc00+h’02),hl; cc00+h’02 := h’ff or h’00.
1d (cc01+h’02),hl; cc01+h’/02 := h’£ff or h’00.
: cc00 will be destroyed in ’‘elements’ routine.

call elements; Generate cc02, cc04, cc08, cclé, cc32, cc64, ccl28,

cc256 and cecb512.
; Above elements are generated from cc00.

: 01 + 02. Summing in cc00 (32 bit).

1d hl, (cc01) ;

1d de, (cc02)

add hl,de

1d (cc00),hl

1d hl, (cc01+h’02)

1d de, (cc02+h’02)

adc hl,de

1d (¢cc00+h’02),hl

e Ne W,

1d hl, (cc00)

1d de, (cclé6)

add hl,de

1d (cc00),hl

1d hl, (cc00+h702)
1d de, (ccl6+h’02)
adc hl,de H
1d (cc00+h’02),hl H

e

38

32
1d hl, (cc00) 2
1d de, (cc32)
add hl,de
1d (cc00),hl
1d hl, (cc00+h’02)
1d de, (cc32+h’02)

adc hl,de H

1d (cc00+h’02),hl :
64

1d hl, (cc00) H

1d de, (cc64)

add hl,de

1d (cc00),hl
1d hl, (cc00+h’02)
1d de, (cc64+h’02)

adc hl,de H

1d (cc00+h’02),hl :
128

1d hl, (cc00) H

1d de, (ccl28)

add hl,de

1d (cc00),hl
1d hl, (cc00+h’02)
1d de, (ccl28+h’02)

adc hl,de _ H
1d (cc00+h’02),hl :
256
1d hl, (cc00) :
. 1d de, (cc256)
add hl,de

1d (cc0d),hl
1d hl, (cc00+h’02)
1d de, (cc256+h’02)

adc hl,de : H

1d (cc00+h’02),hl :
512

14 hl, (cc00) :

1d de, (cc512)

add hl,de

1d (cc00),hl

1d hl, (cc00+h’02)

1d de, (cc512+h’02)

adc hl,de ; cc00 := cc512 + cc256 + ccl28 +

1d (cc00+h’02),hl : cc64 + cc32 + cclé +
H ccl02 + cc0l = 1011*cc00.

; Divide cc00 (32 bits) by 1024.

call sr32 ; ¢c00, hl := cc00 / 2.
call sr32 ; cc00, hl := cc00 / 2
1d a, (cc00+h’02) ; Byte shift left.

1d hl, (cc00)

39

~e “e

id 1,h
1d h,a
1d (sae0_o),hl ; sae0_o := -1101/1024 of initial value.

€< CCCCLCCLCLCLCLCLCLCLCLKCLCLCLCLC<CLC<LKL
1d a, (n_v_lo_o) :;sael from host data, n_val_low, n_val_high.
ld (sael_o),a
1d a, (n_v_hi_o)
1d (sael_o+h’0l),a ; hl := sael, destination angle.

i18aa:
1d a, (sae0_o+h’01) ; high order byte.
and b’10000000 ; test hight order bit.
jp z,118b : jp if sae0(16) >= 0.
118¢:

1d a, (sael_o+h’0l1l) ; high order byte. Case where sae0 < 0.
and b’10000000

jp z,118f ; jp if sael(16) >= 0.
l1l8e: ; Case where (sael<(0, sae0<0) or (sael>=(0, sae(>=0).
1d hl, (sae0_o) ; hl := sae0 (present position).
1d de, (sael_o) .2 de := sael (desired position).
Xor a ; ¢cy =0,
sbc hl,de : hl := sae(~ sael.
1d a,h
and b’10000000
jp z,118d
118f:

1d hl, (sael_o) ; hl := sael. Case where sael >= (0, sae0 < 0.
1d de, (sae0_o) de := sae0. :

e

x0or a ; cy := 0,

sbc hl,de ; hl := sael - sae0.

14 c'h'Zd 3 C = N_m J % %k kkk
jp 118a
i18b: ; Case where sae(>= (.

14 a, (sael_o+h’01) :

and b’10000000

jp z,118e ; Jump if sael »>= 0.

118d: ; Case where sae0 >= 0, sael < 0.

1d hl, (sae0_o) ; hl := sae0.

1d de, (sael_o) ; de := sael.

xor a ; cy := 0,

sbc hl,de ; hl := sae0 - sael.

14 c'h'Zb P C 1= N4w *kkkkkhk
l18a:

1d (cc),hl ; save hl.

call s_ch_1 o ; Send direction to CY525-1, either "+" or "-".

1d ¢,h’00

call s_ch_1 o ; Terminate direction command.

Need to multiply (cc) by 6080 to generate number of steps.
Double this factor for half-step operation. February 23, 1990.
1d hl, (cc):
1d (¢c00),hl H cc00 i= ccC.
1d h1,h’00

40

.
L4

cc256, cchl2.

’

.
14

1d (cc00+h’02),hl

1d hl, (cc00):;

add hl,hl

1d (¢cc00),hl

1d hl, (cc00+h’02);
adc hl,hl

1d (cc00+h’02),hl

1d hl, (cc00):

add hl,hl

1d {(cc00),hl

1d hl, (cc00+h’02);
adec hl,hl

1d (cc00+h’02),hl

1d hl, (cc00);

add hl,hl

1d (cc00),hl

1d hl, (cc00+h’02):;
adc hl,hl

1d (cc00+h702),hl

; ¢cc00+h’02 := 00.

call elements; generate cc02, cc04, cc08, ccl6, cc32, ccb4, ccl2s,

1d hl, (cc08)
1d de, (cclé)
add hl,de

1d (cc00),hl

1d hl, (cc08+h’02)
1d de, (ccl6+h’02)
adc hl,de

1d (cc00+h’02),hl

14 hl, (cc00)
1d de, (cc32)
add hl,de

1d (cc00),hl

14 hl, (cc00+nh’02)
1d de, (cc32+h’02)
adc hl,de

1d (cc00+h’02),hl

1d hl, (cc00)

1d de, (cc64)

add hl,de

1d (cc00),hl

1d hl, (cc00+h’02)
1ld de, (cc64+h’02)
adc hl,de

ld (cc00+h’02),hl

14 hl, (cc00)
1d de, (ccl28)

Begin summation into cc00.

08, 16

’

;s cc00 := cc08 + cclb.

32

; cc00 := cc08 + cclé + cc32.
64

; cc00 := cc08 + ccl6 + cc32 + cc64.
128

41

add hl,de
1d (cc00),hl
1d hl, (cc00+h’02)
1d de, (ccl28+h’02)
adc hl,de
1d (cc00+h’02),hl : cc00 := cc08 + ccl6 + cc32 + cc64 + ccl28.
512
1d hl, (cc00) F
1d de, (cc512)
add hl,de
1d (cc00),hl
1d hl, (cc00+h’02)
1d de, (cc512+h’02)
adc hl,de
ccl2s
1d (cc00+h’02),hl ; + ccb5l2.

-p

we

cc00 := cc08 + ccl6 + cc32 + cc6b4 +

; February 23, 1990 - double value for half-step.

1d hl, (cc00)

add hl,hl

1d (cc00),hl

1d hl, (cc00+h’02)

adc hl,hl

1d (cc00+h’02),hl ; February 23, 1990 - end.

: <<<<<L<<LL<L

1d c,h’4e : Send the "N" command.

call s_ch_1 o '

1ld ¢,h’02

call s ch_ 1 o ; Send byte count, 2, to CY525 for "N" command.
1d a, (cc00+h’ 02)

ld c,a .

call s_ch_ 1 o ; No echo to host.

1d a, (cc00+h’03)

1d c,a

call s_ch_1 o

call host ; Echo most significant byte to host.
jp 11_a <

THEELLLILHVEY start of "p" loop FEELTEEHTHIH%Y

= Yo ve

1l p:

P 1d a,dest_o
1d (destination),a
1d a, (g_p)
cp false

jp z,15_p

12 p:
» in a, (portb3) ; "motion_complete™ active high.
and b’00000001
jp nz, 15 p
14 p:

1d a,false :Set g_p = false.
1d (g_p),a

42

15_p:
1d

cp
jp

1d
cp
ip

1d
cp
ip

e

17_p

a, (chr_ready)
false
z,11_a

a, (channel)
channelp
nz,1l1l b H

a, (n_p)
true
z,114 p

"1d a, (chr)

cp h'’4e ;
jp nz,19 p

18_p

"1d a,

true ; Get

See if other channels needs the character.

chr = N’ ?

: last character received was 'N’
setup for receiving position data from host.

1d (n_p),a ; n := true.
1d (n_lo_p),a
1d c,h’ 4e

call

host

jp 11_a

19 p

"1d a, (chr)

cp h’47
Jp nz,11_a

112 p:
call

1d a,

1d de, st_g

s pr_3 p
true

1d (g_p),a
1d c,h’47

call

host

Jjp 11_a

114_p:
1d

a, (n_lo_p)

cp false

jp z,

115_p:

117_p

1d a, (chr) H
ld (n_v_lo_p),a

14 a,

false

1d (n_lo_p).,a

1d ¢,

call

ack
host

jp 11_a

il?_p:

ld a,

false

ld (n_p),a

; n_low := true.

3 Chr = "G"™ ?
Jump if chr <> "G"

~e

Chr = /G’ here.
Here if n is false and last character
received from host was "G"

e “o W

g := true.

~e

Here if data from host is to be received.

~e

Here if LSB is to be received.

; n_low := false.

; n_high := false.
; n_0 := false.

43

1ld a, (chr)
ld (n_v_hi_p),a ;n_val_high last character received from host.

i18_p

3
’

.
’

Read the shaft angle encoder into SAE0. Send "interrogate" pulse

1d a,b’ 00000000 ; Set "interrogate" of SAE2, bit 1 of 8255A-4

out (portad),a ; Active low, data freeze *.
out (portad),a ; delay

out (portad),a

in a, (portb4) : Get least significant byte.
1d (sae0_p),a H

in a, (portc4)

14 (saeQ_p+h’0l),a ; sae0 (16 bits) is present sae reading.
1d a,b’00000010 ; Reset "interrogate"™ of SAE2, bit 1 of 8255A-4
out (portad),a

Convert BCD into 2’g compliment. 360 degrees=0111 1111 1111 1111b

14 hl,d’00

1d a, (sae0_p)

ld c,a ; Store least significant byte in c.
and b’00000100

jp z, z0002

1d de, 4’18 ; 0.1 degree.

add hl,de

20002:

[
’

14 a,c

and b’00001000

jp z, z0004

1d de,d’ 36 ; 0.2 degree.
add hi,de

z0004:

1d a,c

and b’00010000
jp z, 20008

1d de,d’73
add hl,de

20008 :

ld a,c

and b’00100000
jp z, z0010

1ld de,d’146
add hl,de

20010

1d a,c

and b’01000000

jp z, 20020

1d de,d’182 : 1.0 degree.
add hl,de

20020

1ld a,c

and b’10000000
jp z, z0040

1d de,d’ 364
add hl,de

z0040:
1ld a, (sae0_p+h’01)
1l1d c,a
and b’00000001
jp z, z0080
1d de,d’728
add hl,de

20080:
1d a,c
and b’00000010
jp z, z0100
1d de,d’ 1456
add hl,de

z0100:
ld a,c
and b’00000100
jp z, z0200
1d de,d’1820 ; 10.0 degrees.
add hl,de

z0200:
1d a,c
and b’00001000
ip z, z0400
1d de,d’ 3641
add hl,de

z0400:
1d a,c
and b’00010000
jp z, 20800
1d de,d’ 7281
add hl,de

z0800:
1d a,c
and b’00100000
jp z, 21000
1d de,d’14563
add hl,de

21000:
14 &,c
and b’01000000
jp z, 22000
1d de,d’18203 ; 100.0 degrees.
add hl,de

z2000:
14 a,c
and b’10000000
jp z, z4000
1d de,d’ 36407
add hl,de

z4000:
1d a,1 ; Restore (sae0_p) and
(sae0_p+h’01).
ld (sae0_p),a
1d a,h
1ld (sae0_p+h’0l),a

ld a,(n_v_lo_p) ; sael from host data, n_val_low, n_val_high
1d (sael_p),a

1d a, (n_v_hi p}

1d (sael_p+h’01),a ; hl := sael, destination angle.

1l18aa _p:
1d a, (sae0 _p+h’01) ; high order byte.
and b’10000000 test hight order bit.
jp z,118b_p ; jp if sae0(16) >= 0.

e

ich_p:
1d a, (sael_p+h’01)
and b’10000000

high order byte.

“e

jp z,118£f p ; jp if sael(l16) >= 0.
l18e_p:

1d hl, (sae0_p) ; hl := sae0.

1d de, (sael_p) ; de := sael.

Xor a : cy =0,

sbc hl,de ; hl := gsae0 - sael.

1d a,h

and b’1000C000

jp z,118d p
lleIp:

d hl, (sael_p) ; hl := sael.

1d de, (sae0_p) ; de := sae0.

Xxor a ; ¢y := 0.

sbc hl,de : hl := sael - sae0.

1d c¢,hf2d 3 C = Mm *hkkkkk

jp 118a_p

118b_p:
Ig a, (sael _p+h’01)
and b’10000000

jp z,118e_p
l18d _p:

1d hl, (sae0_p) ; hl := sae0.

1d de, (sael_p) ; de := sael.

Xor a ; cy := 0.

sbec hl,de ; hl := saeQ - sael.

1d ¢,h’2b ;P C 1w Mgm, *k Kk Kk kK
1l18a p:

Tg (cc),hl : save hl.

call s_ ch_ 3 p ; Send direction to CY525-1, "+" or "-".

1d ¢,h’00

call s_ch_3 p ; Terminate direction command.

call mult200 ; cc00 cc01=200 cc (32 bit). 200 steps/turn.

46

call elements; generate cc02, cc04, cc08, ccl6, cc32, ccé4,
ccl28, cc256 and ec512,

H Begin summation into cc00.
H 512 + 256

1d hl, (cc512) ;

1d de, (cc256)

add hl,de

1ld (cc00),hl

1d hl, (cc512+h’02)

ld de, (cc256+h’02)

adc hl,de

1d (cc00+h’02),hl ;: cc00 := cc512 + cc256.

1d hl, (cc00) H

1d de, (cc32)

add hl,de

1d (cc00),hl

1d hl, (cc00+h’02)

1d de, (cc32+h’02)

adc hl,de

1d (cc00+h’02),hl : cc00 := cc512 + cc256 + cc32,
1d (cc00),hl

1d c,h’4e ; Send the "N" command.

call s_ch_3 p

1d ¢,h702 -

call s_ch 3 p :; Send byte count, 2, to CY¥525 for "N" command.
1d a, (cc00+h’02) ’

ld c,a

call s_ch 3 p

1d a, (cc00+h’03)

ld c,a

call s ch 3 p

call host

pll_a
; SHEEALHSIILLFLIFTHLLLIFALISISLLELIHLIELIHLLLLLLLLLILLLHLLLH9%9%%
;] kK k ok ok k k Kk Kk % Procedures * * *x % x x x % %

;test serial i/o if input data ready.
;returns with a = true if input data ready (host), data byte in c.
;returns with a = false if input data from host not available.

test_s_in:
in a, (portb5):
and b’00000010
ip z,2z201
in a, (portab)
1d (chr),a
1d a,true
1d (chr_ready).,a
ret

zzz01:
1ld a, false
1d (chr_ready),a
ret

;test serial i/o for data output ready (to host).

47

-

ret

s_pr_3_p: ; routine to send command bytes to the CY¥525, III.
; de := pointer to byte string, 0ffh is stopper.
1d a, (de) ; get next byte from buffer.
cp h'ff ; is it the stopper?
ret z
inc de ; update pointer.
1d c,a
¢all s_ch 3 p
jp s_pT_3 p

s_ch 3 p: ; output char in ¢ to C¥525.
in a, (portb3)
and ready
jp z,s_ch_3 p

1ld a,c
out (porta3),a ; put character on the data bus.

1d a,ioreq

out (portd3),a ;reset (I/O request)*, tell CY525 data available ;
way3_p:

in a, (portb3)

and ready

jp nz,way3 p

1d a,noioreq set bit 0 of port ¢ to 1.
out (portd3),a : set (I/0 request)*.
ret

mult200: ; cc00 (32) := 200 * cc, (32 bit).
1d hl1l,h’00 H
1d (cc+h’02),hl :; Set upper word of cc to zero.

e
o wo

1d hl, (cc) ; CcC := ¢cCc + cc;
add hl,hl

1d (cc),hl

14 hl, (cc+h’02)

adc hl,hl

1d (cc+h’02),hl ; cc:=2 phi.

1d hl, (cc)

add hl,hl

1ld (cc),hl

1d (cc04),hl

1d hl, (cc+h’02)

adc hl,hl

1d (cc+h’07},hl ; cc:=4 phi.

1d (cc04+h’02),hl ; cc04 := 4 phi.

1d hl, (cc) ; €C := ¢cc + cc;
add hl,hl

1ld (cc),hl

1d hl, (cc+h’02)

adc hl,hl

49

1d (cc+h’02),hl ; cc:=8 phi.

“e

1d hl, (cc) ; cC = cc + cc;
add hl,hl

1ld (ce),hl

1d hl, (cc+h’02)

adc hl,hl

1d (cc+h’02),hl ; cc:=16 phi.

.,

1d hl, (cc) ; cC = cc + cc;
add hl,hl

1d (ce),hl

1d (cc32),hl

1d hl, (cc+h’02)

adc hl,hl

1d (cc +h’02),hl ; cc := 32 phi.
1d (ce32+hf02),hl ; cc32 := 32 phi.

~e

1d hl, (cc) ; ccb4 := cc + cc;
add hl,hl

1d (ccé4),hl

1d hl, (cc+h’02)

adc hl,hl

1d (cc64+h’02),hl ; cc64 := 64 phi.

K Perform summation.
1d hl, (cc64) ' -
1d de, (cc04)
add hl,de
1d (cc00),hl
ld hl, (cc64+h’02)
1d de, (cc04+h’02)
adc hl,de
1d (cc00+h’02),hl ; cc00 := cc64 + cc04.

1d hl, (cc00)

1d de, (cc32)

add hl,de

1d (cc00),hl

14 hl, (cc00+h’02)
1d de, (cc32+h’02)

we

adc hl,de ' '

1d (cc00+h’02),hl ; cc00 := cc64 + cc04 + cc32.
’ 1d hl, (cc00) ; Double cc00.

add hl,hl

1d (cc00),hl
1d (cc0l),hl
1d hl, (cc00+h’02)

adc hl,hl
1d (cc00+h’02),hl
1d (cc01+h’02),hl ; cc0l := cc00.
ret
elements: ; generate cc02, cc04, cc08, ccl6, cc32, ccé4,
; ccl28, cc256 and cc512, from cc00.
; 02
1d hl, (cc00) ; cc00 := cc00 + cc00;
add hl,hl

50

1d (cc00),hl

1d (cc02),hl

1d hl, (cc00+h’02)
adc hl,hl

1d (cc00+h’02),hl
1d (cc02+h’02),hl

1d hl, (cc00)

add hl,hl

1d (cc00),hl

1ld (cc04),hl

1d hl, (cc00+h’02)
adc hl,hl

1d (cc00+h’02),hl
1d (cc04+h’02),hl

1d hl, (cc00)

add hl,hl

1d (cc00),hl

1ld (cc08),hl

1d hl, (cc00+h’02)
adc hl,hl

1d (cc00+h’02),hl
14 (cc08+h’02),hl

1d hl, (cc00)

add hl,hl

1d (cc00),hl

1d (ccl6),hl

1d hl, (cc00+h’02)
adc hl,hl

1d (cc00+h’02),hl
1d (ccl6+h’02),hl

1d hl, (cc00)

add hl,hl

1d (cc00),hl

1ld (cc32),hl

1d hl, (cc00+h’02)
adec hl,hl

1d (cc00+4h’02),hl
1d (cc32+h’02),hl

1d hl, {(cc00)

add hl,hl

1d (cc00),hl

1d (cc64),hl

1d hl, (cc00+h’02)
adc hl,hl

1d (cc00+h’02),hl
1d (cc64+h’02),hl

1d hl, (cc00)

add hl,hl

1d (cc00),hl

1d (ccl28),hl

1d hl, (cc00+h’02)
adc hl,hl

;s cc00

04
; cc00

; cc00
; cc04

: ¢cc00

; cc00
; cc08

; cc00

; cc00
; cclé

: ¢cc00

;s cc00
; cc32

; ¢c00

: cc00
; cc64
128
; cc00

:= 2 phi.

:= cc00 + cc00;

:= 4 phi.
:= 4 phi.

:= cc00 + cc00;

:= 8 phi.
:= 8 phi.

:= cc00 + ¢c00;

:= 16 phi.
:= 16 phi.

= cc00 + cc00;

:= 32 phi.
:= 32 phi.

:= ¢cc00 + cc00;

:= 64 phi.
:= 64 phi.

= cc00 + cc00;

51

1d (cc00 +h’02),hl ; cc00 := 128 phi.
14 (ccl28+h’02),hl ; ccl28 := 128 phi.
256
1d hl, (cc00) ; ¢c00 := ¢cc00 + cc00;
add hl,hl
1d (cc00),hl
1da (cc256),hl
1d hl, (cc00+h’02)
adec hl,hl
1d (cc00+h’02),hl
1d (cc256+h’02),hl ; c¢cc256 := 256 phi.
H 512
1d hl, (cc00) : ¢cc00 := cc00 + cc00;
add hl,hl
1@ (cc00),hl
1d (cc512),hl
1d hl, (cc00+h’02)
ade hl,hl
1d (cc00+h’02),hl
1d (ec512+h’02),hl ; cc512 := 512 phi.

e

ret
sr32:1d hl, (ccO0+h’02) ; 32 bit shift right from cc00
db h’7c, h’1f, h’67 12 > [h7 ... > ... h0l > [ey]
db h’7d, h’1f, h’6f P leyl > (17 .o0 > ... 101 > [ey]

1d (cc00+h’02),hl

1d hl, (cc00)
db h’7¢c, h’1f, h’67
db h’7d, h’1lf, h’é6f
14 (cc00),hl

ret
: €< <CCCCCCLCLCLCLCLCLCLCLCLC<LKL
st_in_o: db h’49, h’00 ; "I"™ ,initialize CY525 o.
db h’46, h’01, 3 ;: "F," ,first rate,
db h’52, h’01, 32 : "R" ,rate, .
db h’53, h’01, 2 ; "S" ,slope,
db h’5a, h’01, 2 ; “2Z“ ,Divisor
db h’ff ; "stopper."
st_in p: db h’49, h’00 ; "I" ,initialize CY525 p.
db h’46, h’01, 3 : "F," ,first_rate,
db h’52, h’01, 32 ; "R" ,rate,
db h’53, h’01, 2 ; "S" ,slope,
db h’S5a, h’01, 2 ; "z2* ,Divisor
db h’ff ; "stopper."™
st_g: db h’47, h’00, h'ff ;: C¥525: G, 0, "stopper."
st_on: db h’42, h’00, h'ff ; Bit_set, CY¥525, pin 34.
st_off: db h’43, h’00, h'ff ; Bit_reset, CY525, pin 34.

’

; initialize variables.
equ true +h700
equ false (DN’ OfE
equ ready h’20
equ ack ,h'64 ;3 ngne
equ ping (h’61 ; "a"

52

equ
equ

equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

equ

end

reset
ioselout
ioreq
noioreq
ioselin
portal
portbl
portel
portdl
porta2
portb2
portc2
portd2
porta3
portb3
porte3
portd3
porta4
portb4
portc4d
portd4
portad
portbs
channelo
channelp
g_status
dest_o
dest_p

e %o %4 g N,

“o"
Np"
nsn

"o“

“p"

INTENTIONALLY LEFT BLANK.

54

APPENDIX C:
PASCAL LISTING OF THE DRIVER PROGRAM UTILIZED BY THE HOST COMPUTER.
Note: Assembly Language "Hooks" Are Used to Allow the Program to Communicate

With the Serial Input/Output Device for the Purpose of Controlling the Mount
Computer.

55

INTENTIONALLY LEFT BLANK.

56

{File:CY525.pas, Disk#005, TurboDOS 1.2, March 14, 1989, June 26,1989}

{For use with stepper motor controllers: azimuth and elevation}
program CY525;

label s60;
var
sae, i, max :integer:
remote, g_o, g_p :boolean:
ping, ack, reset, rfda, status, data_lo, data_hi, cha :byte:
ch : :char:
g, n, o, p, S, channel :byte;
saer :real;

function inta(x:real) :real;
begin
if x<0.0 then inta:=int(x)-1.0 else inta:=int (x);
end;

function fract(x:real):real;
begin
if %x<0.0 then fract:=frac(x)+1.0 else fract:=frac(x):
end;

procedure inpmdm(var y,z:byte):
begin
inline ($db/$05/%e6/$01/%$2a/ y/$77);
if y<> 0 then
inline ($db/$00/$2a/ z/$77);
end;

procedure outmdm(var z:byte):;
begin
inline ($db/$05/%e6/$20/$28/$fa/$2a/ 2z/$7e/$d3/$00):
end;

procedure mdmofl; {Procedure to take the ACE off line.}
begin
inline ($af/$d3/801/5db/$04/$£6/$10/5d3/504);
end;

procedure mdmonl; {Procedure to put the ACE on line.}
begin
inline ($db/$00/$3e/$07):

inline($0e/%0c/$06/5$46/505/520/$£4/50d4/$20/8£8/$3d/620/$£3);
inline ($db/$00/$db/$04/$e6/5ef/5d3/$04);
end;

procedure start_up:;
begin
inline ($21/$68/$00/$eb/$db/$03/$£6/$80/$43/503);
inline ($7b/$d3/$00/$7a);
inline ($3e/$03/$d3/503/5$db/$04/5£6/503/$8d3/504);
end;

procedure delay(z:integer):

57

var i:integer;
begin

for i:=1 to z do begin end;
end;

procedure convert (var x:integer; var y,z:byte):
begin
inline($2a/ x/$7e/$23/$5f/%7e/$2a/ z/$77/$2a/
y/$73);
end;

begin {main}
ping := 97; {(61h, "a"}
reset := 98; {62h, "b"}
ack :=100; {64h, "d"}
:= 71; {47h, “G"}
78; {4eh, "N"}
. {4fh, won}
80; {50h, "P"}
:= 83; {53h, "S"}
g_o :=false;
g_p :=false;
remote:=false; {**x**x}

nw'o 0DV
[I I I
~
0

clrscr; start_up;

cha:=0;

while (cha<>ack) do
begin

status:= 0;
while status = 0 do
begin
outmdm{ping) :
delay (9000)
inpmdm(status,cha);
if status = 0 then
begin '
gotoxy(1l,1);
writeln (’Remote not responding. *):;
writeln(‘Please check power and prese the "reset"
switch.’);
remote:=false;
end; {if status}
end; {while status}
end; {while (cha<>ack)}

if (status<>0) and (cha=ack) then remote:=true;

1f (remote=true) then writeln(’Remote system has responded to a
"ping“ r);

while (remote = true) do

begin
s60: gotoxy(1l,1);
write(~[’X’); {Enablie cursor}
write(’Enter channel specifier, "o" or "p" : ’); readln{(ch);

58

if (ch='0’) then channel
else if (ch='p’) then channel :
else goto s60;

"0 O

delay(20000) ; clrscr:

{Test status of channel}

{N}

cha:=3g; {Status}
outmdm(cha); i:=1; status := 0;

while ((status=0) and (i<400))do
begin
inpmdm(status, cha);
i := i+1;
end;

if((status=0) and (i = 400)) then

writeln(’ System not responding. "Status" ‘):
remote:=false;

if (status<>0) then remote:=true;

if ((cha=48) or (cha=50)) then g_o:=false;
if ((cha=48) or (cha=49)) then g_p:=false;

if (((channel=o) and (g_o=true)) or
((channel=p) and (g_p=true))) then
begin

writeln(’The channel you have selected is busy now. ‘);

goto s60; . :
end;

outmdm(channel); i := 1 ; status :=0;
while ((status=0) and (i<400)) do
begin
inpmdm(status,cha);
if((status<>0) and (cha<>ack)) then
writeln (’Not proper system response. "Channel " ’'):
i:=41i+ 1;
end;

remote:=false;
if ((status<>0) and (cha=ack)) then remote:= true;

write (’Enter shaft angle ‘):
readln (saer);

sae := trunc(saer*32767.0/180.0);
convert (sae,data_lo,data_hi);
writeln;

cha:=n;
outmdm(cha); i:=1; status := 0;
while ((status=0) and (i<400))do
begin
inpmdm(status,cha);
if ((status<>0) and (cha<>n)) then

59

writeln (/Not proper system response. ‘}):;
1:=i+1;
end;
if ((status=0) and (i=400)) then
writeln (’/System not responding. "N" ‘);

{data_lo}

cha:=data_lo;
outmdm(cha); i:=1; status := 0;
while ((status=0) and (i<400)) do
begin
inpmdm({status,cha);
if ((status<>0) and (cha<>n)) then
writeln(/Not proper system response. '):;
i:=i+1;
end;
if ((status=0) and (i=400)) then
writeln(’System not responding. "Lo™ ‘}:

{Hi}

cha:=data_hi-;
outmdm(cha); i:=1; status := 0;
while ((status=0) and (i<400))do
begin
inpmdm(status,cha);
if((status<>0) and (cha<>n)) then
writeln ('Not proper system response. ‘):
i:=1i+1;
end;
if ((status=0) and (i=400)) then
begin
writeln(’System not responding. "Hi" ')’
writeln(’The shaft angle encoder interface may be
defective ‘):
end;

{The "cha"™ value is the hi byte of the "N" number send to the CY¥525.}
writeln(cha:8):
delay(9000):

{G}

cha:=qg; {G}
max:=400;
if (channel=o) then g_o:=true;
if (channel=p) then g _p:=true;
outmdm(cha); i:=1; status :=0;
while ((status=0) and (i<max)) do
begin
inpmdm{status,cha);
if((status<>0) and (cha<>g)) then
writeln (’Not proper system response.’);
i:=i+1;
end;

60

if ((status=0) and (i=max)) then
writeln(’System not responding. "G" 7):
remote:=false;
if ((status<>0) and (cha=g)) then remote:=true;
end;
end.
~Z

61

INTENTIONALLY LEFT BLANK.

62

No. of

Copies Organization

2

{Unciass. onty)q

Administrator

Defense Technical Info Center
ATTN: DTIC-DDA

Cameron Station

Alexandria, VA 22304-6145

Commander

U.S. Army Materiel Command
ATTN: AMCAM

5001 Eisenhower Ave.
Alexandria, VA 22333-0001

Commander

U.S. Army Laboratory Command
ATTN: AMSLC-DL

2800 Powder Mill Rd.

Adelphi, MD 20783-1145

Commander

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-IMI-I

Picatinny Arsenal, NJ 07806-5000

Commander

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-TDC .

Picatinny Arsenal, NJ 07806-5000

Director

Benet Weapons Laboratory

U.S. Army Armament Research,
Development, and Engineering Center

ATTN: SMCAR-CCB-TL

Watervliet, NY 12189-4050

Commander ,

U.S. Army Rock Island Arsenal
ATTN: SMCRI-TUTechnical Library
Rock Island, IL 61299-5000

Director

U.S. Army Aviation Research
and Technology Activity

ATTN: SAVRT-R (Library)

M/S 219-3

Ames Research Center

Moftett Field, CA 94035-1000

Commander

U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

No.

>3

pies Organization

1

(Class. only)1

(Unciass. only)q

10

Commander

U.S. Army Tank-Automotive Command

ATTN: ASQNC-TAC-DIT (Technical
information Center)

Warren, Ml 43397-5000

Director

U.S. Army TRADOC Analysis Command
ATTN: ATRC-WSR

White Sands Missile Range, NM 88002-5502

Commandant

U.S. Army Field Artillery School
ATTN: ATSF-CSI

Ft. Sill, OK 73503-5000

Commandant

U.S. Army infantry Schoot

ATTN: ATSH-CD (Security Mgr.)
Fort Benning, GA 31905-5660

Commandant

U.S. Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5660

WUMNOI
Eglin AFB, FL 32542-5000

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen

Cdr, USATECOM
ATTN: AMSTE-TC

" Cdr, CRDEC, AMCCOM

ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-MS!

Dir, VLAMO
ATTN: AMSLC-VL-D

Dir, USABRL
ATTN: SLCBR-DD-T

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number ___ BRL-TR-3382 Date of Report July 1992

2. Date ReportReceived

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for
which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of
ideas, etc.)

S. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,
operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Name
CURRENT Organization
ADDRESS

Address

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address
in Block 6 above and the Old or Incorrect address below.

Name
OLD Organization
ADDRESS

Address

City, State, Zip Code
(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

.

DEPARTMENT OF THE ARMY
Si's Army Ballistic R ch Laboratory

o~ § 08 @A [¢
ATTN: SLCBR-DO-T

Aberdeen Proving Ground, MD 21005-5066

OFAMCIAL BUSINESS

BUSINESS REPLY MAIL
FRST CLASS FERMIT No 0001, APE. MD

Posiage will be paid by addressee.

Director

U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DOD-T

Aberdeen Proving Ground, MD 21005-5066

NO POSTAGE
NECESSARY
1F MAILED
tN THE
UNITED STATES

