
AD-A254 739 -

TECHNICAL REPORT BRL-TR-3382

BRL
HARDWARE AND SOFTWARE DESCRIPTION OF

A PROTOTYPE CONTROLLER FOR THE
TWO-DEGREE OF FREEDOM "BRL" MOUNT

MAK D. KREGEL DTIC
SELECTE

%AUG 19, iZL

JULY 1992

AWRVE) P lM PUMBLC RBLEA. DSh1MON IS UMNMrM.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

92-23010

2, 8 18 048l

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position,
unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement
of any "commbrcial produtct.

Fa Apen

REPORT DOCUMENTATION PAGE 1WN. M?

gauetg ndminal i nhgtedaanee, n opltn n reviwig he olecio of infornmain.Sn conmemsn regerdlng fthi burden estimteoreyote aspect of ths
c 'lcinof I"Iain inldn oefrrdcn has burdent ehntnledqat~ Services D1ractorete frnomei Oper atins and Reports. 1215 Jefferson

Darsigoay Sut W204 Arigol2O4O.adt heOfc fMngmn nudget Paperwork Reduction PrOlac (07040166). Washngton. DC 20S03.
1. AGENCY USE ONLY (Leave bln)j.REPORT DATE I 3. REPORT TYPE AND DATES COVERED

b is)1 July 1992 I Fbial, January-July 196
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Haidware and Software Description of a Prltp onrWfrf WO: 44=9-102-51-4233
Two-Degree of Freedomn -MV Mount

&. AUTHOR(S)

Mark D. Krege

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 6. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

U.S. Amly Balistlo Research Loratouy
ATTN: SLCSR-DD-T BRL-TR-3382
Aberdeen PwAhi Ground, MD 21005-50866

111. SUPPLEMENTARY

NOTES

12a. DISTRIGUITION/AVAILAUIUTY STATEMENT 12b. DISTRIBUTION CODE

Apprvoed wufor ,ýrelase; didrbutmion eunind.

13. ABSTRACT (Maximu200 wodrh)

As part of fth LASCOM TEAM COO Program, the U.S. Army Ballestc Research taboritory, recently
coeutucld a two-dgree of freedom mount sultabl for Wtwin boads up lo 800 to. The mount was

lvean In both azlmi~h and In elsevaton by Wp~ stepper motors. in oeder, to test and evahate the mount,
a preihyikis11y contolle Wasl constuoted tha Would 81o1w fa operation ftrough keyboard ent" of a remrote
oomputer. Th~s report doec Wes the controller and bs operation as well as technfca descriptions of key
circult elements. it also pwovdes a haIng of the controlle softwar and the corresponding softwaem for fth
loget compuer.

14. SUBJECT TERMS 15. NUMBER OF PAGES
59

continuous prcomessng; mOr oprocessor gunl m'ounts; clroji analysi 16. PRICE CODE

17. SECURITY CLASSIFICATION I It SECURITY CLASSIFICTIN 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT Of THIS PAGE OF ABSTRACT

UNCLSSIFIED L9UNCLASSFIED I NCLASSIFIED SAR
N4SN 7S40.01-2W0S500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39.11
2WI 02

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

Page

LIST OF FIGURES ... v

1. INTRODUCTION ... 1

2. OVERVIEW OF THE SCC 1

3. DETAILED DESCRIPTION OF THE SCC MOUNT CONTROLLER 4

4. TECHNICAL DESCRIPTIONS AND PINOUTS OF THE CPU AND
SUPPORT ELEMENTS 5

5. DETAILED DESCRIPTION OF THE MOUNT CONTROLLER 9

6. DESCRIPTION OF THE SOFTWARE USED IN THE SUPPORT OF
THE MOUNT COMPUTER 15

7. DESCRIPTION OF THE SOFTWARE IN SUPPORT OF THE OPERATION
OF THE HOST COMPUTER 19

8. SUMMARY ... 20

9. CONCLUSION .. 21

10. REFERENCES .. 23

APPENDIX A: LISTING OF THE CONTROL PROGRAM USING A
"DESCRIPTIVE" COMPUTER LANGUAGE 25

APPENDIX B: ASSEMBLY LANGUAGE LISTING OF THE SOFTWARE
FOR THE MOUNT COMPUTER 31

APPENDIX C: PASCAL LISTING OF THE DRIVER PROGRAM UTILIZED
BY THE HOST COMPUTER 55

DISTRIBUTION LIST .. 63
Aoession For z

NTIS GRA&I A-"

DTIC TAB -

D SCTjED Unarinoinced Q

By_

Ava IIbll.Ity Codes

Avail and/orMI Dist Speolal

INTENTIONALLY LEFT BLANK.

iv

LIST OF FIGURES

Flaure Pae

1. The Z80 CPU Pinout and Pin Description Diagram 7

2. Pinout and Pin Description of the 8255A Programmable Peripheral Interface
Integrated Circuit ... 7

3. Pinout and Pin Description of the 8251A Programmable Communication
Interface Chip .. 8

4. Pinout and Pin Definitions of the 6116 16,384-bit (2048x8) Static CMOS
Random Access Memory and 2716 Electrically Programmable Read
Only Memory .. 10

5. Pinout and Pin Definitions of the CY525 Intelligent Ramping Stepper Motor
Controller ... 10

S. Clock Circuit for the Mount Computer 12

7. Schematic Diagram Showing the Glue Logic Chip for Generating Chip
Select for I/O Operations 12

8. Memory Enable Circuitry of the Mount Computer 14

9. Interface Between a 8255A Programmable Peripheral Interface Input/Output
Element and a CY525 Stepper Motor Controller 14

10. Pin Definition and Interface Connections of the 13-bit Shaft Angle Encoder
in Support of the Azimuth Measurements 16

11. Pin Definition and Interconnection of the 13-bit Shaft Angle Encoder Used
In Support of Elevation Measurements 16

V

INTENTIONALLY LEFT BLANK.

vi

1. INTRODUCTION

The U.S. Army Ballistic Research Laboratory (BRL) receJitly constructed a two-degree of

freedom mount suitable for slewing loads up to 800 pounds. This work was part of the LABCOM

TEAM COOP Program involving, in addition to BRL, the Harry Diamond Laboratory and the

Human Engineering Laboratory (CY525 Intelligent Ramping Stepper Motor Controller 1984). The

mount was controllable in both azimuth and elevation and could be used as a weapons platform

or as a surveillance and tracking platform. In order to expedite the use of the mount, a single

card computer (SCC) was designed, constructed, and programmed by the author which served

as a controller and communications interface for the mount. The SCC was connected by an

RS232 data link to a PC class computer, termed the host computer, that allowed the control of

the mount by a remote operator.

This report describes both the SCC, its software and, in addition, the software controlling host

computer used by the operator, also written by the author. Diagrams of the SCC and pinouts of

all the major integrated circuits will be included along with listings of the software in Appendices

A, B, and C.

2. OVERVIEW OF THE SCC

The SCC was designed to control a mount consisting of an azimuth axis and an elevation

axis. For each axis a 13-bit shaft angle encoder for determining mount angle was used along

with a stepper motor, an intelligent stepper motor controller, and a corresponding stepper motor

amplifier. The SCC, or simply the mount computer, required a serial data link to the host

computer which input commands could be entered by the operator. The design philosophy

behind the mount computer was that it would support serial communications to and from the host

computer using a whighn level language to convey position and status information. The mount

computer was also designed to support a "low" level language to allow communications to and

from the two intelligent stepper motor controller integrated circuits (ICs) that were incorporated

directly within the mount computer.

The mount computer's software was designed to take as much of the computational burden

as possible off of the host computer, allowing the host computer to communicate only high level

Q1

information. Information for positioning the mount takes the form of an axis designator, an angle

to be acquired, and the actual slew or *goo command. Upon receiving a command, the mount

computer indicates a busy condition for the designated axis as long as slewing about that axis

is taking place.

The stepper motor controllers used were CY525 Intelligent Ramping Stepper Motor Controllers

(Zilog Z80-CPU Technical Manual 1976) manufactured by Cybernetic Micro Systems, Inc. (1984),

San Gregorio, California. The CY525 stepper motor controller is packaged in a 40-pin dual-in-line
IC. It communicates commands and data through an 8-bit-wide data bus. The CY525

generates four output phases for controlling a four-phase stepper motor and an equivalent single

output phase and corresponding direction output for driving an mintelligent" stepper motor

amplifier. Other outputs include a busy*/ready status, a slew* status, and a run* status. (In the

text an "**" after a logic definition denotes that the logic function is active low.) Inputs include

handshake logic lines for the input and output of information over the data bus such as i/o

requests.

Communications to and from the CY525 can either be in the form of encoded ASCII-decimal

or binary, with binary being selected for this application. The CY525 instruction set has 27

commands such as looping, branching, testing status conditions and various executables.

Because of its richness of commands, the CY525 can be programmed to execute complex and

lengthy programs on its own. In this application, the CY525 was not used in the "execution"

mode, but was setup to execute commands one at a time as they were received. As a

consequence, only of a few of its possible commands were utilized.

The principle advantage of using a stepper motor controller IC is that it allows for the

automatic computation of stepping rates as a function of the number of steps within the

constraints of its operational parameters. Thus, by programming the CY525 with various

operating limits such as the maximum ramp rate rates for acceleration, maximum step rate, and

initial ramp rate, the CY525 can compute a stepping sequence based on a "least time to turn."

All that is required is to program the various limits and then to send to the CY525 the number of

steps, the direction the stepper motor is to turn, and a go command, which is one of the CY525's

executables.

2

Normally, the programming of the operational parameters of each CY525 is dor,9 each time

the mount computer is reset. The mount computer then waits for the host computer, at which

time it generates a low le-vel request to the appropriate CY525. For the mount computer to

control a CY525, it must first determine the initial angle of the corresponding axis. Once the initial

angle is known, the mount computer converts the information about the terminal angle into a

direction and number of steps. The number of steps is simply the angle for the mount to be

turned through in degrees times the number of steps required by the stepper f,: each degree of

angle. The angle to be turned through, of course, is simply the final or desired angle minus the

initial angle where the initial angle, as mentioned, is determined by reading a shaft angle encoder

prior to the slew operation.

In determining the initial angle, the rr)unt controller must "read" the appropriate shaft angle

encoder and convert the resulting binary information into an angle in degrees. Since the angle

the mount turns through to produce one turn of the shaft angle encoder is known, each reading

of a shaft angle encoder can be converted into an angle by a suitable scaling.

The mount computer requires various types of input/output (i/o) elements since it must

interface to two shaft angle encoders, two CY525s, and a host computer. Communications to the

host is done serially through an RS232 serial communications interface, a standard interface used

frequently to connect computers with terminals. The shaft angle encoders and the CY525s are

accessed through parallel interfaces since the speed for parallel i/o is far greater than for serial.

Since the mount computer receives high level commands from the host, it must have a CPU

(central processing unit) to convert these high level commands into low level commands suitable

for the CY525s. In addition, the CPU must "read" the appropriate shaft angle encoder and

compute the number of steps and the corresponding direction for each slew request. That is, the

CPU must be able to communicate utilizing various i/o devices and to be able to perform all

necessary operations in, essentially, real time.

The CPU must be able to "parse out" the high level commands received from the host

computer and generate appropriate low level commands for the CY525s. It then must "present"

these commands to the CY525s in the proper order. The CPU must also monitor the operations

of the CY525s and generate any diagnostics should busy or fault conditions occur. Because of

the need to store pointers, intermediate results, etc., the mount computer is required to have a

3

RAM (random access read/write memory) as well as an EPROM (electronically programmable

read only memory) for program storage.

3. DETAILED DESCRIPTION OF THE SCC MOUNT CONTROLLER

The CPU that was selected for the mount computer was the Zilog Z80-CPU microprocessor,

manufactured by the Zilog Corporation, Cupertino, California. The Z80 has, over the years,

become the most widely used 8-bit microprocessor of all for process control applications. The

Z80, as most if not all microprocessors, utilizes three buses: a data bus, an address bus, and

a logic or control bus. The data bus defined by the Z80 is 8 bits wide. The address bus, on the

other hand, is 16 bits wide and is able to support an address space spanning 65,536 bytes of

memory, each byte being separately addressable. In hexadecimal notation, the address space

defined by the Z80 is from OJOOH to Offff H or from 0 to 65535 in decimal. The logic or control

bus consists of a system control portion and a CPU control portion. Because the control bus is

normally not compatible with the various memory or i/o elements used in the mount computer,

a number of "glue" logic elements must be used to allow the CPU to utilize and contol both the

memory and i/o elements. In designing computers, it is essential to not only know the function

of all the pins on the CPU chip but also their timing sequences as well as the timing sequences

for the i/o and memory ICs. The Zilog Z80-CPU Technical Manual (1976) defines the function

of each pin of the Z80 and describes its timing sequences (for example, those for memory

fetches, for i/o operations, etc.).

Each i/o and memory element in the mount computer must interact in some way with the three

buses. In some instances address and logic functions are combined into "chip select" and "chip

enable" functions, which is done by the glue chips. All elements though, be they memory or i/o,

connect to the data bus directly using tri-state logic. The data bus is a bi-directional bus in which

information can be passed either to the CPU from the various support elements or to the various

support elements from the CPU. As a consequence, the data bus must employ tri-state logic that

assures that only one element at a time can take control of it for transferring information. The

control of the data bus, in terms of who can drive it, is always maintained by the CPU. The CPU
"selects" various support elements as needed and yields control for short periods of time to those

elements. As a consequence, each support element must have a unique identification or memory

space. If the CPU requires information from a specific memory location, oniy the appropriate

4

element must respond. As a consequence, the glue chips must decode information from the

address bus and provide suitable "select" logic signals to the appropriate memory chip. The

same is true for the Vo elements.

A description of the mount computer therefore must begin with a "pinout" of each IC, be it

either a memory chip or an Vo chip, and a pinout of the CPU itself. Each pinout must define logic

pins, data pins and, if used, memory address pins. Later In this report, descriptions of how logic

level signals derived from the address bus and the control bus are combined by the glue chips

to provide the chip select and chip enable functions will be given.

Once the pinouts are defined, the functions of the memory and i/o elements and their address

space must be defined as well as how they are connected to the CPU, the host computer, the

shaft angle encoders, the CY525s, and the glue chips. Central to the chip select and enable

functions is the use of a 74154 TTL (transistor to transistor logic) compatible 4-line to 16-line

decoder/demultiplexer.

The elements used include the 8251A programmable communication interface chip that

supports serial communications and the 8255A programmable peripheral interface chip that

supports parallel i/o. The memory elements used include the 6116 16,384-bit (2048x8) static

CMOS RAM and a 2716 16,384-bit (2048x8) UV erasable CMOS EPROM. The glue chips

consist of standard TTL operations, such as the "and," "or," and "not" operations. For example,

the "74000 TTL chip provides four 2-input positive nand (not and) gates, etc. In addition, the

mount computer utilizes a MC1 488 quad line driver for driving the RS232 serial interface data link

for communicating with the host computer and a MC1 489 quad line receiver for converting RS232

logic level signals from the host computer to TTL level signals.

4. TECHNICAL DESCRIPTIONS AND PINOUTS OF THE CPU AND SUPPORT ELEMENTS

Because of the many and complex details of the machine cycle timing diagrams of the CPU,

detailed timing charts were not Included. In general, timing diagrams give the time during an

instruction execution when memory or i/o elements can "read" information on the data bus or

when they can assume control of the bus and place information on it for the purpose of writing.

It is important to remember that timing is based on clock cycles ("T" states) within each instruction

5

execution cycle. Each instruction requires a specific number of T states., the first defining the

actual instruction fetch. A smaller number of T states are required if the instruction to be

executed is a logical operation, as opposed to an input or output operation. All glue chips as well

as Vo and memory elements must operate fast enough to keep up with the system clock.

Figure 1 gives the pinout and pin definitions for the Z80 CPU.

Neither the MI* pin, the CPU bus control pins, or the CPU control pins defined in Figure 1

are used by the mount computer. Of the system control pins, only the output pins MREQ*,

IORQ*, RD*, and WR* are used. MREQ becomes active when the CPU is performing either an

input or output operation to a memory element. IORQ, on the other hand, becomes active only

if the CPU is performing an input or output operation to an Vo element. RD is active if the CPU

performs any input operation, either from an i/o element or a memory element, and WR is active

only if the CPU is performing an output operation.

The second pinout and pin description are for the 8255A Programmable Peripheral Interface

chip and are shown in Figure 2.

The 8255A is used in the mount computer to provide parallel input/output operations. Four

8255As are used, one each for the two shaft angle encoders and one each for the two CY525s.

The 8255A contains three 8-bit ports (designated as A, B, and C), making a total of

24 programmable Vo lines altogether. In addition to the 8-bit data bus that allows data

communication with the CPU, the 8255A contains a CS° (chip select*) pin, an RD* (read input*)

pin, a WR° (write output*) pin, and a reset pin. Any of the three Vo ports, A, B, or C, can be

selected by the use of the AO and Al pins which are binary-input port-select pins. AO is

connected to the least significant line of the address bus and Al next to the least (that is,

standard address decoding is used by the 8255A). After a reset, the three ports are assumed

to be in the read or input mode and must be programmed by the CPU before they can be used

in the output mode. Many options and combinations of input and output functions for the these

three ports can be programmed through software. The programming of the four 8255As will be

outlined in the portion of the report describing the software.

The third pinout and pin description is for the 8251 A Programmable Communication Interface

and is shown in Figure 3.

6

PIN NM~tES
"IS~ 2? So AS
mann* is so Al 0-0 DT 110RCML

SYSTEM KND 26 32 A2? O my umcIUCU.
no 21 33 AS REST OE UINPUTCONTROL v*2 46 ADDRESS CBS 011W SELEC
WSHO 26 ZBO 85 AS Bus Wo EA INPT

CPU 34 & 0 *M WUIPTW
S? AT As.A, PONT *UE
SO As PAT - PAD POST A (off)

WAIT. 24 40 Al0 PC C PORT cc IT
CPU On* Is 1 All .C 3 OT
CONTROI. -. I 1 2 Al2 OHI VOLTS

ESUSTO 26 3 £la
4 £14
5 A13

CONTROL EMASS 23 13

9 O3 DATA BUS

CLUCK veC I I* is 9
POWER is 291 7
GROUND

Figure 1. The Z80 CPU Pinout and Pin Description Diaciram. The address bus and the data bus
are shown to the right, and the control bus, composed of system control, CPU control, and the
CPU bus control is shown to the left. The clock signal, applied to pin 6, is a 2.4576-MHz square
wave generated by a crystal-controlled oscillator. M1% FRSH, HALTr, INTr, NMI', BUSRO and
BUSAI(are not used. RESET is an input Only the logic signals MREO, 10R0, RD% and WR*
are used with the mount computer.

PAN C PA4PIN NMAES

*I-" DATA m 401"IOUCTRIM)
P~ 3]PAS o 013K INPT

pa 3 1PAS mu.: SA DWT
VMS V11111 SPOT
PAT? P0AD POST A CON)

&I SI D

As 36

PCT 325AO

PPm?

P3s P34

Figure 2. Pinout and Pin Descriotion of the 8255A Programmable Perioheral Interface Integrated
Circuit. The 8255A is used in the support of parallel input/output operations and contains 24 Vo
lines that can be programmed in blocks as either Input lines or as output lines.

7

PIN NANES

02 at S -00 DATA M15 CmE.MCTImAS
C/oT P0 MOR DATAD3 C-x -27 DO m. =Af a".
Vile Vaf11 DOW•

mLI CLOMa rumCK

TlS -14 CT*AIKWIM DATA

sMC ammam ADY
asCKW1la a oe IIE DATAl

EX--" 0251A Von TodOVTY TAMRn WAD (HAS A CfARACTER)
S *AT&GDAET =V Y

=8 m USK. DTD* DATA TON40AL WDYSINNEe IIlVC

•TTLCefT" W CET IT89 IEMifT T9 9 DATA
CT90 ClOAR TO 1 DATAV00,-1 ,'M"Y TUD T3-1 TREn10"m OT

•V= ~ 0 5 Va.lf
CS 0 11' Ii18 TuEPiDT UND 0 VOWT9

IlhDYW 1=4• -15 T~•WL

Figure 3. Pinout and Pin Description of the 8251A Proqrammable Communication Interface Chip.
The 8251A supports the serial communications to the host computer. Baud rates for both
transmitting and receiving are determined through software and an external clock, derived from
the system clock by dividing by powers of two.

The 8251 A programmable communication interface is used to generate TTL level signals for

transmitting serial information between the mount controller and the host computer. Conversion

of the TTL level output signal to an RS232 level is performed by one section of an MC1488 quad

line driver. One section of an MCI 489 is used to perform the reverse process, of converting from

the RS232 logic level to the TTL level. The 8251 A can provide both synchronous and

asynchronous operation. In the asynchronous mode of operation, as it is used in the mount

computer, it supports a format consisting of a start bit, seven data bits of information, and two

stop bits at 19.2 kHz baud. The 8251 A is termed a two-port device in that two port addresses

are required for its operation. The first port is used for programming and for checking operating

status conditions. The second port is used to input characters received by the unit or to output

characters that are to be transmitted. The 8251A has a CS* (chip select*) pin, an RD* (read data

command') pin, a WR* (write data or control command*) pin, a reset pin, a clock input pin, as well

as several pins denoting the status of the various communications. Serial output and input are

at the TTL level, and each is converted to RS232 logic levels as needed by the MC1488 and

8

MC1489. The circuitry and the glue chips required to utilize the 8251A will be described later in

this report.

The final two major elements of the mount computer are the 6116 RAM and the 2716

EPROM. Both of these memories have the same pinout and pin definitions. Because these are

memory elements, they both require address information from the address bus. They utilize only

enough address Information, though, to span the address space they need. In addition, they both

utilize chip enable and output enable pins. Of course, they both utilize the data bus, as does the

i/o. A pinout and pin definitions are given in Figure 4.

Both the 6116 RAM and the 2716 EPROM utilize 11 address lines (out of the 16 supported

by the Z80). In addition, each chip utilizes a chip enable* pin and an output enable* pin. Both

memory elements utilize a single +5-V power source. Programming the 2716 EPROM is done

separately from the mount computer by a special EPROM programming device from data files

generated by an assembler. A listing of the assembly language program will be included in the

Appendix B of this report.

The next integrated circuit to be discussed is the CY525 stepper motor controller. Though

the CY525 contains a data bus and various control bus pins, they are not connected to the data

control bus of the mount controller. Instead they are connected to eight Vo pins of an 8255A

which serves an interface function. Because the CY525 is embedded, many of its control and

status pins are not used, such as outstrobe*, clock/15, dowhile, etc., while others, such as the

ascii/binary* pin, are hard-wired either high or low. By suitably connecting the CY525, it could

in fact be made to work from a keyboard, though that is not done here. The principle reason for

using the CY525 in the mount computer is because of its ability to perform ramp computations

in real time. A more detailed description of the CY525 stepper motor controller chip can be found

in a publication from Cybernetic Micro Systems, Inc., its manufacturer (Ref. 2). The pinout and

pin definitions of the CY525 are given in Figure 5.

5. DETAILED DESCRIPTION OF THE MOUNT CONTROLLER

This portion of the report will concentrate primarily on the control portion of the mount

computer. As indicated, the data bus runs from element to element to element, linking all the

9

PON NAMES

T~4-1 Y CC As -Ale ASUSSWTM
0-?07 DATA,6 fr~T 3[]S a-,,,n alpm,,a,•aimi,,,

WE* m.MIW, SEECTAnEJ At mP 06 VOLT HaE.
_on VOLT PAM

4 1_. WE* MvI) vPP -aVG.T

AS aM WIag
A2 0ý 6116 MAl

iT (2716) I All

AG r-e-, •17 07

as Cri 06

&I Ci -13 05

Figure 4. Pinout and Pin Definitions of the 6116 16,384-bit (2048x8) Static CMOS Random
Access Memory and 2716 Electrically Programmable Read Only Memory. The pinout for both
elements are identical as far as the mount computer is concerned. Elements in parentheses
apply to the 2716 EPROM.

1/0 REOUEST* I =W VCC

XTAL •.WAITIPIfORAM)

REST•S W - OTIOM COUPLITE

UNUSED ASCII'/INARY*

ABORT*9 PUL3E.

GND - PROGRAMMABLE OUTPU'T

INSTROi t4(,, , DIRECTION

UNUSEDI I RUNS IINT REG 21

OUTSTROBE. 3• ,.r PRoO/LIVEO

CLOCK/IS STEP INHIBIT

00) L SLIPS

01 u .M DOws ILE

DI B,..u USY*/RLDY0, V 13D,,C

D4 4....wUNUSED
DOs d•T , PHI 4

D5 0PH STEPPER
Do PU3 PHI J NOTOR

COMINIAMBDRIVE
07 ... PHI 2 SIGNALS

OND, PHI I

Figure 5. Pinout and Pin Definitions of the CY525 Intelligent RamDing Stemoer Motor Controller.
An 8.0-MHz crystal is connected between pins 2 and 3. Output from the CY525 for driving a
stepper motor was from pulse* (pin 35) and direction (pin 33).

10

elements that utilize the data bus, such as the CPU, Vo, and the memory. To a lesser extent, the

same is true for the address bus. For the mount computer though, only 11 of the 16 address bus

lines are used. The control bus portion, on the other hand, requires a number of glue logic chips

to generate the proper selects and enables.

The clock circuit used in the mount controller is constructed using two TTL sections from a

7404-hex invertor chip, two 2.2-k resistors, a 0.001-jlf capacitor, and a 4.9165-MHz crystal.

Output from the clock is fed into a binary counter composed of one section of a 7493 4-bit binary

counter. The counter serves to "clean up" the clock signal and to provide a 50% duty cycle. It

does this by changing its output only on positive transitions of the clock. Figure 6 shows how the

clock circuit is wired.

With regards to device or element selection, four control output pins on the Z80 are utilized,

as mentioned previously. There is a pin to indicate that the Z80 is performing an i/o function,

termed the IORQ* pin; one used when performing a memory operation, the MEMR* pin; one used

when an input function is to be performed, be it either i/o or memory, the RD* pin; and one used

when an output function is performed, the WR* pin. The glue logic takes these control signals,

along with portions of the address bus, and generates the appropriate select and enable pulses

for all the Vo and memory. Figure 7 defines 16 additional TTL logic level lines, SO* through Si 5'
(of which only 5 are used), which are device select lines derived from IORQ* and the 4 address

lines (A2 through A5) by the 74154 4-line input 16-line output demultiplexier.

All the logic shown in Figure 7 is active low, and, as a consequence, all the necessary chip

select pulses for i/o operations can be obtained directly from the 74154. Since the 74154 utilizes

as inputs address lines A2-A5, each Vo element is assigned four address spaces. An Vo element

can only be selected if the IORQ* pin of the Z80 is low, indicating that an i/o operation is taking

place. Specific addresses within the assigned block of four is specified by AO and Al while the

Vo function is specified by either the RD* pin of the Z80 or the WR* pin.

Unlike the Vo elements, the memory elements utilize the address bus directly, being

connected to AO through Al 0. The next higher address line, corresponding to Al 1, is therefore
used as a chip select line. By feeding All directly to the CE* pin of the 2716 EPROM, an

address space of 00000h to 07ffh can be assigned, since All must be low for the 2716 to be

11

Oast•'ium of a 4-1M

4.915294

Figure 6. Clock Circuit for the Mount Computer. A standard oscillator circuit utilizing two sections
of a hex invertor is used to produce a "quasi" TTL clock output at 4.9152 MHz. One section of
a 7493 4-bit binary computer divides the rate by two and gives a true TTL output with a 50% duty

cycle.

ISO• Addlress Addess A ddes Address Addroes
Spae m-S Sace4h7h Specso Mh-Obh Space ocb-Ofh SPace lOll-lih

2--n-oo 2.

Figure 7. Schematic Diagram Showing the Glue Logic Chip for Generating Chip Select for I/O
Operations. A 74154 4-line to 16-line decoder/demultiplexer is utilized. Each i/o element is
assigned four address spaces. The first (left most) 8255A services the azimuth shaft angle
encoder, the second the elevation shaft encoder, the third the azimuth CY525 controller and the
fourth the elevation CY525 controller. The 8251 A services the serial interface connections that
link the computer to the host.

12

enabled. On the other hand, by feeding AlI" to the CS* pin of the 6116 RAM, an address space
of 0800h to Offfh can be assigned, since All must be high for the 6116 to be selected. The

select circuitry of the memory ICs is shown in Figure 8.

Selecting and enabling the 2716 EPROM is accomplished by wiring the RD* line ('or'ed with
the MREQ* line from the Z80) to the OE* (output enable*) pin of the 2716 and the Al 1 (address

bus, bit 11) line of the Z80 to the CE* (chip enable) of the 2716. Selecting and enabling the 6116
RAM is accomplished by wiring the MREQ* of the Z80 to the OE* of the 6116, the WR* of the

Z80 to the WE* of the 6116, and Al 1 * of the Z80 to the CS* (chip select) pin. Al 1*, for example,
is obtained by negating Al 1 by the use of a section of a hex invertor.

The memory space of the 2716 EPROM is established by requiring Al 1 to be at logic level 0.

Any bit pattern in the address space of xxxx,0000 0000,0000B (16-bit binary) to xxxx,0111
1111,1111 B will select the 2716 EPROM. (Here the "x" denotes a "don't care" bit.) The memory
space of the 6116 RAM, because of the inversion of All, is from xxxx,1000 0000,0000B to

xxxx,l 111 1111,1111 B. For programming, it is therefore assumed that the address space of the
2716 is from OOOOH to 07ffH and that of the 6116 from 0800H to OfffH.

It is essential that the 2716 EPROM be addressed starting at 0000H because after a reset

the program counter of the Z80 is set to that address. That is, the first instruction to be executed

by the Z80 after a reset operation is at address 0000h.

The interface or electrical connections between an 8255A programmable peripheral interface

i/o element and a CY525 stepper motor controller integrated circuit is somewhat different than,

for example, a memory element and the Z80 since the CY525 is considered a peripheral and not
located directly on the data bus. Because of this, the CY525 requires both a hardware interface

as well as a software interface. The hardware interface is shown in Figure 9.

In Figure 9, PC4 serves as a strobe input%, latching eight data bits from the CY525's parallel

data bus into the 8255A's port A. A "ready" condition is set through PB5, indicating that valid

data is on the parallel data bus to be input by the 8255A. Output of 8-parallel data bits to the
CY525 is accomplished by placing the data on port A and strobing PC0 (connected to the i/o
request* pin) low while PC1 (i*/o request pin) is low. The motion complete* pin is read to

determine when a slew command sent to the CY525 is completed.

13

mremrmreq* oe.r: oe*

wr* we*

All
ca*

Figure 8. Memory Enable Circuitry of the Mount Computer. The two input "or" section prevents
inadvertent writes to the 2716 EPROM.

UA CY!=
pa7-paO -4.1-4 sl-.z parattel data bus

acknowledges pc6 ...s*trbes

strobe inputs p4 "busy* / ready

pcO ' i / o request*'1 I I
pc 7 I s - - 39 - i o/ re q u e s t

pbo ,- 7 action complete*

p 27 '21 29 slew indicators

&• abort*

K SU step inhibit

• iascii / binary*

Figure 9. Interface between an 8255A Programmable Peripheral Interface input/Output Element
and a CY525 Steoper Motor Controller. The 8255A is used in operating mode "two" in which port
A (pins PA7-PAO) is bi-directional and where PC0 and PC1 are set and reset under software
control through the "single bit set/reset" feature of the 8255A. Port addresses of 08h-Obh are
used for the CY525 that controls the azimuth stepper and Och-Ofh for the CY525 that controls the
elevation stepper.

14

The Input of information from a shaft angle encoder is far simpler than for the case of a

CY525. For the input of information from a shaft angle encoder, all that is required is the "hold"

pin of the shaft angle encoder to be held low for 2 gs. Information is "frozen" and placed on the

13 output pins of the shaft angle encoder which can be input by an 8255A using 13 parallel input

lines. Since more than eight data bits are input, two input ports are required. Figure 10 defines

the interface between a 13-bit shaft angle encoder and a 8255A parallel input interface element.

The pin definition and interface connections of the shaft angle encoder used in the support

of elevation measurements is shown in Figure 11.

6. DESCRIPTION OF THE SOFTWARE USED IN THE SUPPORT OF THE MOUNT

COMPUTER.

The software for the mount computer is written in assembly language using Zilog mnemonics.

In the program, symbols are used which are composed of one or more alphanumeric characters

and the underscore. Among other things, symbols are used to denote variables. When

parentheses are used around symbols defined as variables, they denote that the address

associated with the symbol is to be Inferred. Symbols followed by a colon denote an address

label. Characters following a semicolon denote comments.

In order to make the logic behind the assembly language more intelligible, a "pseudo" program

has been written using a cross between the English language and Pascal. As such, it is not only

suggestive of the actual assembly language program, but it can be understood far more easily.

Regrettably, in order to understand the programming of the Vo elements, one must refer to

component data catalogues that list the specific elements. The assembly language program,

though, should serve as a example for specific cases.

The variables in the assembly language listing as well as the pseudo listing include

channel(8), no(8), np(8), g.o(8), g.p(8), nloo(8), njlo_p(8), saeO-o(1 6), sae p(1 6),

sael1o(16), saelp(16), cc(16), and others, as listed. Subscripts after a variable denote an

array. The variables contain either numerical values or flags. Control of the program is

maintained by the use of flags that are tested, set, and reset as needed.

15

Iteo .S/23K Shaft Aeqll Eanedw.r B2=A lwpat/Ouwilt
_______________________ mterfae. Elemeet

FumtýIe PinNUmber Fumetlm Pie UMbEr Pert Adlress
VCC I

sit 0 CLSB) 2 Paz 21 1
1 3 P34 22 1
2 4 P95 23 1
3 5 Pea 24 1
4 6 P117 25 1
a 7 - PCO 14 2

a 3 PCI 1s 2
7 9 - PC2 16 2
a I0 PC3 17 2
9 11 PC4 13 2

10 12 PCS 12 2
11 13 PCs 11 2
12 14 PC? to 2

amD 13
Held 16 PAO 4 4

Figure 10. Pin Definition and Interface Connections of the 13-bit Shaft Angle Encoder in Support
of the Azimuth Measurements. "Data freezing" occurs 2 lis after the *hold* pin of the shaft angle
encoder is brought. low. After reading or inputting the data, the hold pin is returned high by PAO.

Site 6/3 Ih Aeqi., Cesedur 3A hpet/mlOpu

Fumetie PIN aner Fmetie Pt1umber Pert Addrem
vC I

IM o.Sa) 2 i, f 21 5
1 3 P1114 22 a
2 4 PUS 23 a
3 5 PU 24 5
4 6 PMY 25 5
5 7 PCO 14 6
6 a PCi 15 £
7 9 PC2 16 6
a 10 PC3 17 6
9 11 PC4 13 &

10 12 P=5 12 6
11 13 PCs 1 6
12 14 PC7 10 6

4111 is
IHol 1i PAW 3 4

Figure 11. Pin Definition and Interconnection of the 13-bit Shaft Angle Encoder Used in Support

of Elevation Measurements.

16

Though the program is set up to handle only two channels, in theory 256 channels could be

handled by simply cloning sections of the program for each additional channel. A typical slewing

command issued by the host would take the form of a channel specifier, an "No command

denoting that the following two characters are to be interpreted as data bytes, and a "G"

command for initiating mount motion of the specified axi•, to the prescribed angle. A single

command is the "ping" command. When the host sends a ping command, the mount computer

Immediately responds with an "ack." This lets the host know that the mount computer is "alive."

There Is also a g_status" command used by the host for determining which, if any, of the mount's

axes are busy. The use of the g-status command precludes the sending of additional commands

to the mount computer while it is still busy.

Because of the rather simple command structure, the host is not able to change the ramping

parameters of the CY525s. All ramping Information is programmed into the mount computer's

EPROM and Is output to the CY525s only on power up or after a hardware reset. The

programming of all the Vo elements also occurs at the very same time, even before the

programming of the CY525s, since the CY525 programming information must come through an

8255A. Baud rates associated with the 8251 A likewise cannot be changed but are also fixed in

the EPROM.

Upon reset, various "boolean" variables are set to false to indicate a no operation condition.

As commands are received from the host, the mount computer updates these variables to true

as needed. Entry into various parts of the program is controlled by these variables used as flags.

After a pending task is accomplished, the corresponding flag is set to false, denoting completion

of the operation. Another variable, *channel," is used as a pointer to the currently assigned

channel, be it the azimuth channel or the elevation channel. All information from the host is

directed to the active channel, of which there can be only one. The program must distinguish

between data and such things as command and channel specifiers. This is accomplished by

establishing a protocol in which all input is taken as commands until the "N" command is sent.

In this case, after the receipt of the N command, the next two bytes are assumed to be an angle

specified, even though these data bytes may be valid commands or channel specifiers.

The "G" or "go" command will only be accepted after an N command and two data bytes, at

which time the selected axis of the mount will begin to slew. During the slew command, the

17

active channel is "unavailable" until the corresponding CY525 signals that motion is complete.

Commands sent to an active channel will be ignored, but any non'ctive channel can be

programmed. Thus, it is possible to have multiple channels operating at the same time.

Appendix A contains a listing of the pseudo control program whose basic purpose is to merely

indicate program flow and to aid the reader in understanding the more detailed assembly

language listing. Both the pseudo program and the assembly listing use the same statement

labels. These programs consist of three sections-an initialization and program control section,

a section devoted to the "o" or elevation channel, and a section devoted to the "p" or azimuth

channel. Here mo" and Op" are used to denote channels as opposed to the us. of the words
"elevation" and "azimuth." The symbol "regpc denotes the "c" register of the Z80 CPU. As can

be seen in the assembly language listing in Appendix B, the h and I registers of the Z80 are used

quite extensively as they can be combined into a single 16-bit register in support of 16-bit

arithmetic.

The angle "space" in both azimuth and elevation is spanned by a twos compliment 16-bit

representation. As a consequence, care has to be taken in computing angular differences to

prevent overflow, since all possible bit patterns may be used to represent angles. Because gear

reduction units are used to tum the shaft angle encoders, their output must be scaled. In

addition, the terminal angles must be scaled in terms of the number of steps required by the

stepper motors. Again, care must be taken to assume that the precision limitations of the CPU

(that is, representing angles in a 16-bit format) are allowed for. It may also be noted that the

mount computer does not use interrupts, since all activity occurs on time scales commensurate

with machine or human time scales as measured in seconds.

Upon receipt of a channel specified and a "N" command, the appropriate n x and nlo_x

variables are set true. Here "x" denotes either an "o" or a "p.m For the sake of discussion,

assume that the mo" channel has been selected. Upon receipt of the next character from the host,

a data byte denoting the least significant portion of the angle, the program is directed to line 114

where nIoo is tested to see if it is true, which it is in the case of the first data byte. The

program then places the data from the host into n vlo o and immediately sets n Io o false.

After the iiext character is received, the program is again directed to line 114, but this time it is

redirected to 117 because of nloo being false. The new data is now placed into n v hio and

18

n_o Is made false. At this point, the appropriate shaft angle encoder is input, number of steps

and direction computed, and the CY525 programmed. All that is now needed for the CY525 to

generate stepper pulses is the receipt of a *goo command from the host.

Upon receipt of the next character from the host, the program falls through to line 19 where

a test is made to see if the character is a "G," denoting "go." If it is, then a "goo command is

transmitted to the CY525 stepper motor controller, and a "G" character is sent to the host,

Indicating the stepper response. At this point, the status of the CY525 is continually tested

following line I11o. Status information is made available to the host at line IIae. New input in

the form of an ON" command could be sent to the mount computer at this time and would be

accepted since g__o is merely a toggle. However, the operation of the software in the host

precludes this option, waiting for the stepper to complete its operation before additional

commands are transmitted. Thus, the host is assured that all commands will be executed and

none lost. Because the transmission time for the transmission of instructions is short compared

with a typical slew time interval, the CY525 could essentially be kept busy all the time if needed.

7. DESCRIPTION OF THE SOFTWARE IN SUPPORT OF THE OPERATION OF THE HOST

COMPUTER.

As mentioned previously, the host computer is equivalent to a PC clone and is in the form of

a Z80-based Digilog microcomputer. One reason for selecting the Digilog was that several were

on hand and that assembly language "hooks* were available for supporting input and output

operations that could be invoked from Pascal programs. Assembly language segments can be

placed in a Pascal program by the use of the Pascal "inline" statement. By the use of the Pascal

"vart that allows variable declaration in procedures and functions, program variables can be

incorporated into the assembly language modules.

A listing of the Pascal program utilized in the host computer is given in Appendix C. One of

the objectives of the program is to perform diagnostics on the remote computer whenever

possible. After a command is sent to the remote computer, the host times the response from it.

If the response time exceeds a preset limit, then a diagnostic message is displayed to the

operator. In some instances, helpful suggestions are included in these messages.

19

After a reset, a *ping" message is sent to the mount computer. If a proper response is not

received within the preset time limit, the program displays a diagnostic message. The program

also prevents efforts on the part of the operator to send mount messages. Only when a proper

response from a ping is received will the operator be queued for Input. After each character of

a command is sent, the computer waits for an "ack," signifying that the remote has accepted the

character and is ready for another. After the issuance of the go command (the "G" character),

the host periodically checks the status of the remote to determine when the corresponding

slewing command sent to a CY525 is completed.

By the use of such checks, the proper operation of the remote computer is more nearly

assured. Synchronization is also maintained between the two computers during the transmission

of an instruction.

8. SUMMARY

This report describes both the hardware and the software of a two-axis mount controller

computer and the associated drive software of a host computer. Included were descriptions of

the various computer elements used, such as the CPU, Vo, and memory elements. A simple

hardware design was selected based on the ubiquitous Z80 CPU manufactured by the Zilog

Corporation. The program for the mount computer was stored in an EPROM that was

programmed from assembly language using a Zenith Data Systems computer and an EPROM

programmer board. Software for the host computer, used as a control terminal for the mount, was

written in Pascal and stored on a floppy disk. During execution, the control program in the host

resided in its random access memory, being read in from the floppy disk drive.

It is hoped that the documentation included In this report will enable others to repiicate the

mount computer, including all the software, for similar applications. It is also hoped that this

report will give the reader a deeper insight into the use and operation of microcomputers in

general.

The hardware and software shown were was the simplest and quickest to develop, allowing

use of the mount while a more complex controller was being developed. Because of this

20

simplicity, bugs in the software and in the mount computer itself could easily be fixed, allowing

developmental efforts to focus on the mount itself.

9. CONCLUSION

The mount controller computer, its software, host software, and serial interface link between

the two computers have worked extremely well. No evidence of a failure during operation was

ever traced to a software fault Occasionally, a hardware failure of either the remote mount

computer or host would cause a synchronization problem where the two programs would loose

track with each other. Normally, resetting both systems was sufficient to cure any such problems.

The hardware and the software both served as bread boards for system development with

both being responsive to developmental needs. The success of the-system provided guidance

for the Installation of a more complex system based on state-of-the-art process control computers

costing perhaps In excess of 100 times as much.

21

INTENTIONALLY LEFT BLANK.

22

10. REFERENCES

CY525 Intelligent Ramping Stepper Motor Controller. San Gregorio, CA: Cybernetic Micro
Systems, Inc., 1984.

Zilog Z80-CPU Technical Manual. Cupertino, CA: Zilog, Inc., 1976.

23

INTENTIONALLY LEFT BLANK.

24

APPENDIX A:

LISTING OF THE CONTROL PROGRAM USING A "DESCRIPTIVE" COMPUTER LANGUAGE.

Note: The Purpose of This Usting Is to Provide Only an Indication of the Program Flow
and Logic.

25

INTENTIONALLY LEFT BLANK.

26

start: program the 8251A serial i/o element;
s1: initialize the two 8255As that interface to CY525s;
s2: initialize the two 8255As that interface to SAEs;
s3: program the i/o request* and i*/o request pins the CY525s;
s5: program the interrogate pins on the SAEs;
s6: program the stack pointer to the top of RAM;
s7: program the firstrate, rate, slope and divisor functions;
s8: exercise the programmable output pins;

slO: set channel - "channelo";
set destination - "desto;

sll: set n o-"false";
set n-p-"false";
set go-"false";
set gyp-"false";

11_a: if there is no character from host then goto 11 aa
else input character and place it in characterfromhost;

11_b: if channel- "channelp" and if np -- "true" then goto 11_aa;
if channel- "channelo" and if n o -- "true" then goto llaa;
if characterfromhost -- "ping" then

begin
send "ack" to host;
goto 11_a;

end;

11_ac: if characterfromhost -- "channelp" then
begin

set channel- "channelp";
send "ack" to host;
goto 11_a;

end;

if character-from host -- "channelo" then
begin

set channel - "channelo";
send "ack" to host;
goto 11_a;

end;

11_ae: if character-fromhost -- "g-status" then
begin

if go -- "true" then set regc - "1";
if gp -- "true" then set reg-c - "2";
send regc to host;
goto 11_a;

end;

11_aa: if destination -- "dest o" then goto 11 o;
if destination -- "dest:p" then goto l1yp;

11_o: set destination - "dest-p"; (Servicing the "o" channel.)
if g_o - "true" and if (bitO, port bl) - "0" then set

g_o-"false";

27

15: if there is no character from the host then goto 11a;

if channel <> "channelo" then goto 11_b;

16: if n o -- "true" then goto 14;

17: if character-from host -- "N" then
begin

set n o - "true";
set n lo o - "true";
send "N" to host;
goto 11_a;

end;

19: if character-from host <> "G" then goto 11_a;

112: send "GO" to the "elevation" CY525;
set g o - "true";
send "G" to host;
goto 11-a;

114: if n_1o0o -"true" then

begin
set n v lo o - character-from host;
set n Io o - "false";
send "ack" to host;
goto 11_a;

end;

117: set n o - "false";
set n v hi o - character-from host;

118: read "elevation" shaft angle encoder into saeOo (13 bits);
set saeO o - 1101*sae0_o/1024;
set sael-o (low byte) - n v lo o;
set sael-o (high byte)- nvhi o;

set cc - abs(sael o - sae0_o);
if saelo >- saeO0o then set reg-c-"+" else set regc:-"-";
send reg_c to the "elevation" CY525;
set cc - cc*12160;
send "N2" to the "elevation" CY525;
send cc (low byte) to the "elevation" CY525;
send cc (high byte) to the "elevation" CY525;
send cc (high byte) to host;
goto 11_a;

llp: set destination - "dest o"; (Servicing the "p" channel.)
if gp -- "true" and if (bit 0 of port b3)--"0" then
set g~p - "false";

15_p: if there is no character from host then goto 11_a;
if channel <> "channelp" then goto 11_b;

28

16_p: if n_p -- "true" then goto 114_p;

17_p: if (character from host) -- "N" then
begin

set n-p - "true";
set n lo - "true";
send "N" to host;
goto 11_a;

end;

19_p: if characterfromhost <> "G" then goto 11_a;

112_p: send "GO" to the "azimuth" CY525;
set gyp - "true";
send "G" to host;
goto 11_a;

114_p: if n loy - "true" then
begin
set n v loyp - character-fromhost;
set no lp- "false";-
send "ack" to host;
goto lla;

end;

117_p: set n_p - "false";
set n_v hi_p - characterfromhost;

118_p: read "azimuth" shaft angle encoder into saeO0p (13 bits);
set saelJp (low byte) - n v -lo;
set saely (high byte)- n v hi~p;
set cc - abs (sael_p sae-L 3);
if sael_p>- saeop then set reg c- "+" else set regc- "-";
send reg_c to the "azimuth" CY525;
set cc - cc*61;
send "N2" to the "azimuth" CY525;
send cc (lo byte) to the "azimuth" CY525;
send cc (high byte) to the "azimuth" CY525;
send cc (high byte) to host;
goto lla;

end.

29

INTENTIONALLY LEFT BLANK.

30

APPENDIX B:

ASSEMBLY LANGUAGE LISTING OF THE SOFTWARE FOR THE MOUNT COMPUTER.

Note: After Compilation, the Resulting Machine Level Code Is Programmed
Into the 2716 EPROM.

31

INTENTIONALLY LEFT BLANK.

32

; Software to drive the BRL turret mount in azimith and elevation. ;
org h'0800

cc: dw ; "o" denotes azimuth.
dw

ccOO: dw ; 'p' denotes elevation.
dw

ccOl: dw
dw

cc02: dw
dw

cc04: dw
dw

cc08: dw
dw

ccl6: dw
dw

cc32: dw
dw

cc64: dw
dw

cc128: dw
dw

cc256: dw
dw

cc512: dw
dw

saeo: dw
saep: dw
sae_0o: dw
saeOp: dw
sael o: dw
sael~p: dw
n-o: dw
n_p: dw
g_o: db
g_p: db
chr: db
n lo o: db
n lo_p: db
nvloo: db
n v ioy: db
nvhi o: db
n v hi p: db
channel: db ;Controlled by host, specifies channel,"o" or "p".
chrready: db ; Boolean.
destination: db ; Controlled locally. Toggled locally.

; initialize the 8251A serial interface, V.

org h'0000

ld a,b'0 J01110 ;1 stop bit, no parity, 8 data bits, 16x baud
rate factor.

out (portb5),a ; write to the 8251A command port, mode byte.
ld a,b'00110111 ; command instruction.
out (portb5),a ;write to the 8251A command port, command byte. ;

initialize 8255A-I and 8255A-III, the two CY525s interface chips.

33

Id a,b'11000010 ; Control word.
out (portdl),a ; port a is bi-directional, port b input, port c

output.
out (portd3),a

; initialize 8255A-II and 8255A-IV, the shaft angle encoder interface
chips.

ld a,b'10011011 ; Control word.
out (portd2),a ; ports b and c are input, port a is input.
id a,b' 10001011
out (portd4),a ; ports b and c are input, port a is output.

id a,noioreq ; Set (I/O REQUEST)*, bit 1 of port c.
out (portdl),a
out (portd3), a

id a,ioselin ; Set 1* /0 REQUEST line low for CY525 "in"
out (portdl),a
out (portd3),a

ld a,b'00000000 ; bit 0 is the sae2 "interrogate."
out (porta4),a ; bit 1 is the sae4 "interrogate."

;initialize and set parameters on CY525.

ld sp,h'1000 ; set stack pointer.

ld de,st in o ; point to string to be transmitted to the CY525.
call spr_l_o ; do it. String defines initial CY525

conditions.
ld de,stinp ; point to string to be transmitted to the CY525.
call spr_3_p

ld de,st on ;Exercise programmable output pin (34) on CY525_o.
call s_pr_1 o
ld de,st off
call spr_1_o
ld de,st on
call sprlo
ld de,st off
call sp•r_l_o
ld de,st on
call s_pr_1_0

ld de,st on ;Exercise programmable output pin (34) on CY525_p.
call spr_3_p
ld de,st off
call sypr_3_p
ld de,st on
call spr3yp
ld de,st off
call syr_3p
ld de,st on
call spr_3_p

id a,channelo
ld (channel),a
ld a,desto

34

id (destination),a

ld a, false
ld (n o),a
id (n-p),a
id (go) ,a
id (gp),a

id a,b' 00000010
out (porta4),a ; Not freeze on elevation channel.

* ; &&&&&&&&&&&&&&&&& end initialization

; @@@@@@@@@@@@@@@@ start master loop @@@@@@@@@@@@@@@@@@

11_a:
call test_s in ; Returns chr and chr-ready:boolean.
*1d (chrready),a
cp false
jp z,llaa

11_b:
id a, (channel) ; Determine if "o" or "p" to receive char.
cp channelp
jp z,ll_a_p

11_ao:
id a,*(no) ; Char. from HOST meant for "o"
cp true ; If no true then char. is data.
jp z,ll aa
Jp ll_aS

11_ap:
ld a, (np) ; Char. from HOST meant for "p"
cp true ; If np true then char. is data.
jp z,llaa

11_ab:
ld a, (chr)
cp ping ; Respond to "ping"
jp nz,llac
ld c,ack
call host
jp 11_a

11_ac:
ld a, (chr) ; Get character from HOST. Is the
cp channelo ; data either "channelo" or "channelp"

Jp z, ch
cp channelp
jp nz, 11_ae

ch:
ld (channel),a ; Update "channel"
Id c,ack

35

call host
jp 11-a

11_as: Id a, (chr)
cp gstatus
jp nz,ll_aa

id a, (g.o) ;Get motion complete status of channel 'o'.
ld c,b'00110000 : '0'.
cp false
jp z, 11_ad_o
ld a,c
or b'00000001 ; Set LSB for channel 'o'.
id c,a ; Store status in reg. c.

11_ad o:
ld a, (g_p) ;Get motion complete status of channel 'p'.
cp false
jp z,ll-ad_p

ld a,c
or b'00000010
id c,a

1llad_p:
call test_s_out
cp false
jp z,ll-adyp

id a,c
out (porta5),a

Jp 11_a
i1_aa: ld a, (destination) : Alternate "o" and "p" loops.

cp dest o
jp z, IT_o
jp l1p

; &&&&&&&&&&&&&&&&&& Start of "o" loop.
11_0:

id a,dest_p
id (destination),a ; "destination" points to alternating loops.
ld a, (go) , Test if "go" active.
cp false
jp z,15

12: ; "go" active here. Test for "motion complete."
in a, (portbl)

; Note: "motion complete" active high.
and b' 000000I
jp nz,15

14: ; Motion is now complete. Turn off "go."
id a,false ; g :- false.
id (g-o),a

2d a, (chr ready) ; Is there data from host?
cp false . If not abort effort and start over.

36

jp z, 11_a

ld a, (channel)
cp channelo
jp nz,llb ;Check other channels if character not needed here.

16:
ld a, (no)
cp true
Jp z,114

17:
id a, (chr)
cp h'4e ; chr - 'N' ?
Jp nz,19

18: ; Last character received was IN'.
id a,true ;Get setup for receiving position data from host.
id (n_o),a ; n :- true.
ld (n_lo_o),a ; n low :- true.
Id c,h'4e
call host
jp 11_a

19:
ld a, (chr)
cp h'47 ; chr - "G" ?
Jp nz,lla I Jump if chr <> "G"

112:
ld de, stg ; Here if n is false and last character
call sypr-lo received from host was "G"
ld a,true
id (g_o) ,a ; g :- true.
ld c,h'47
call host
Jp 11ha

114:
ld a, (nlo_o) ; Here if data from host is to be received.
cp false
Jp z,117

115:
ld a, (chr) : Here if LSB is to be received.
Id (n_v_lo_o) ,a
id a,false
ld (n_loo),a ; n_low :-false.
ld c,ack
call host
jp 11ha

117:
id a,false ; n_high :-false.
ld (n_o),a ; nO :- false.
ld a, (chr)
ld (nvhi o),a ;n_valhigh :- last character received from host.

118:
;Read the shaft angle encoder into SAEO. Send "interrogate" pulse.

ld a,b'0000001 ; Set "interrogate" of SAE2, bit 0 of 8255A-4.

37

out (porta4),a ; Bit 1 stays high for second channel.
out (porta4),a ;delay. Toggle bit 0. Wait for "Data Ready."
out (porta4),a
Id a,b'00000010 ;Reset "interrogate" of SAE2, bit 0 of 8255A-4.out (porta4),a

10: ; SAE:- initial shaft angle reading.
in a,(porta2) ; Test "Data Ready" from sae2, bit 0 of 8255A-2.
and b'00000001
jp z,10 ; Loop until high.** restore for uSl6/23**
in a,(portb2) ; Get least significant byte (from portb2).
and b'11111000 ; remove this for uS16/23 operation *
id (saeO o),a
in a,(portc2) ;Get most significant byte (from portc2).
Id (sae0_o+h'01),a ; sae0 (16 bits) is present sae reading.

; Multiply sae reading by 1011/1024. 1011 - 001111110011B.
; Reverse sae reading.

ld hl,(sae0_o); hl :- sae-o.
id a,l
db h'2f ; Complement accumulator, one's complement.

id l,a
id a,h
db h'2f ; One's complement, high byte.

id h,a

id (ccOO),hl; ccoo - saeo, used as buffer.
ld (cc0l),hl; ccOl :- - sae-o.

; >>>>>>
add hl,hl ; cy] < [h15 < hO] < 0.
sbc hl,hl

id (cc00+h'02),hl; cc00+h'02 :- h'ff or h'00.
id (cc0l+h'02),hl; cc0l+h'02 :- h'ff or h'00.

ccOO will be destroyed in 'elements' routine.
call elements; Generate cc02, cc04, cc08, ccl6, cc32, cc64, cc128,

cc256 and cc512.
; Above elements are generated from ccOO.

01 + 02. Sunming in ccOO (32 bit).
id hl,(cc0l)
ld de,(cc02)
add hl,de
ld (ccOO),hl
ld hl,(cc0l+h'02)
ld de,(cc02+h'02)
adc hl,de
id (ccOO+h'02),hl

16
id hl,(ccOO)
ld de,(ccl6)
add hl,de
ld (ccOO),hl
id hl,(ccOO+h'02)
id de,(cc16+h'02)
adc hl,de
id (ccOO+h'02),hl

38

32
id hi, (ccOO)
id de, (cc32)
add hl, de
id (ccOO),hi
id hi, (ccOO+h' 02)
id de, (cc32+h' 02)
adc: hl,de
id (ccOO+h'02),hi

64
id hi, (ccOO)
id de, (cc64)
add hi,de
id (ccOO),hi
id hi, (ccOO+h' 02)
id de, (cc64+h' 02)
adc: hl,de
id (ccOO+h'02),hi

128
id hi, (ccOO)
id de, (cc128)
add hi,de
id (ccOO),hi
id hi, (ccOO+h' 02)
id de, (cc128+h' 02)
adc hi,de
id (cc00+h'02),h1

256
id hi, (ccOO)
id de, (cc256)
add hi,de
id (ccOO),hi
id hi, (ccOO+h'02)
id de, (cc256+h' 02)
adc hl,de
id (ccOO+h'02),hi

512
id hi, (ccOO)
id de, (cc512)
add hi,de
id (ccOO),hi
id hi, (ccOO+h' 02)
id de, (cc512+h' 02)
adc: hi,de ;ccOO :-cc512 + cc256 + cc128 +.
id (ccOO+h'02),hl cc64 + cc32 + ccl6 +

ccO2 + ccOl - 1011*ccOO.
;Divide ccOO (32 bits) by 1024.

cals3 cIh cO/2

call sr32 ; ccOO, hil: ccOO / 2.

id a, (ccOO+h' 02) ; Byte shift left.
id hi, (ccOO)

39

ld l,h
id h,a
ld (sae0_o),hl ; saeOo :- -1101/1024 of initial value.

id a,(n v lo o) ;sael from host data, n_vallow, n_val high.
ld (sael_o),a
ld a,(n v hi o)
Id (sael_o+h'01),a ; hl :- sael, destination angle.

118aa:
Id a,(sae0 o+h'01) ; high order byte.
and b'1000000 ; test hight order bit.
Jp z,ll8b ; jp if sae0(16) >- 0.

118c:
ld a,(sael o+h'01) ; high order byte. Case where sae0 < 0.
and b'10000000
jp z,ll8f ; jp if sael(16) >- 0.

118e: ; Case where (sael<0, sae0<0) or (sael>-0, sae0>-0).
ld hl,(sae0_o) ; hl :- sae0 (present position).
ld de,(saelo) ; de :- sael (desired position).
xor a ; cy :-0.
sbc hl,de ; hl :- sae0 - sael.
ld a,h
and b'10000000
jp z,118d

118f:
ld hl,(saelo) ; hl :- sael. Case where sael >- 0, sae0 < 0.
Id de,(sae0_o) ; de :- sae0.
xor a ; cy :-0.
sbc hl,de ; hl :- sael - sae0.
id c,h'2d ; c :- "-"

jp 118a

118b: ; Case where sae0 >- 0.
ld a,(sael o+h'01)
and b'10000000
Jp z,118e ; Jump if sael >- 0.

118d: ; Case where sae0 >- 0, sael < 0.
ld hl,(sae0_o) ; hl :- sae0.
ld de,(saelo) ; de :- sael.
xor a ; cy :- 0.
sbc hl,de ; hl :- sae0 - sael.
id c,h'2b : c :- "+".

118a:
id (cc),hl ; save hl.
call s ch 1 o ; Send direction to CY525-1, either "+" or "-"
id c,h' 00
call sach_1_o ; Terminate direction command.

; Need to multiply (cc) by 6080 to generate number of steps.
; Double this factor for half-step operation. February 23, 1990.

id hl,(cc):
ld (ccOO),hl ; ccOO :- cc.
ld hl,h'00

40

id (ccOO+h'02),hi ccOO+h'02 :-00.

id hi, (ccOO);
add hi,hi
id (ccOO),hl
id hi, (ccOO+h' 02);
adc hi,hi
id (ccOO+hf02),hi

id hi, (ccOO);
add hl,hl
id (ccOO),hi
id hi, (ccO0+h' 02);
adc hi,hi
id (cc00+h'02),hl

id hi, (ccOO);
add hi,hi
id (ccOO),hi
id hi, (cc00+h' 02);
adc hi,hl
id (cc00+h'02),hl

call elements; generate ccO2, cc04, ccO8, cci6, cc32, cc64, cc128,
cc256, cc512.

Begin summnation into ccOO.
08, 16

id hi, (ccOS)
id de, (cci6)
add h'l,de
id (ccOO),hi

id hi, (ccOS+h' 02)
id de, (cci6+h' 02)
adc hl,de
id (ccOO+h'02),hi ccOO :-ccO8 + ccl6.

32
id hi, (ccOO)
id de, (cc32)
add hi,de
id (ccOO),hi

id hi, (ccOO+h' 02)
id de,(cc32+h'02)
adc hi,de
id (ccOO+h'02),hi ccOO :-ccOB + ccl6 + cc32.

64
id hi, (ccOO)
id de, (cc64)
add hl,de
id (ccOO),hl
id hi, (ccOO+h'02)
id de, (cc64+h' 02)
adc hl,de
id (ccOO+h'02),hi ccOO :-ccO8 + ccl6 + cc32 + cc64.

128
id hi, (ccOO)
id de, (cc128)

41

add hl, de
id (ccOO),hl
ld hl, (ccOO+h'02)
ld de, (cc128+h'02)
adc hl, de
id (ccOO+h'02),hl ; ccOO :- cc08 + cc16 + cc32 + cc64 + cc128.

512
Id hl, (ccOO)
ld de, (cc512)
add hl, de
ld (ccOO),hl
ld hl, (ccOO+h'02)
ld de, (cc512+h' 02)
adc hl,de ; ccoo :- ccO8 + cc16 + cc32 + cc64 +

cc128
id (ccOO+h'02),hl + cc512.

; February 23, 1990 - double value for half-step.

ld hl, (ccOO)
add hl,hl
ld (ccOO),hl
ld hl, (ccOO+h'02)
adc hl,hl
ld (ccOO+h'02),hl ; February 23, 1990 - end.

; <<<<<<<<<

id c,h'4e ; Send the "N" command.
call s ch 1 o
id c, h'02
call s ch 1 o ; Send byte count, 2, to CY525 for "N" command.
ld a, (Ec0U+R' 02)
ld c,a
call s ch 1 o ; No echo to host.
ld a, (ccO0+h'03)
ld c,a
call s ch 1 o
call host ; Echo most significant byte to host.
Jp 11_a

; %%%%%%%%%%%%% start of "p" loop

id a,dest o
ld (destination) ,a
ld a, (gp)
cp false
jp z,15_p

12_p: in a, (portb3) ; "motion-complete" active high.
and b'00000001
jp nz, 15_p

14_p:
ld a,false ;Set gp - false.

Id (gp),a

42

15_p:
ld a, (chrready)
cp false
jp z,1_a

ld a, (channel)
cp channelp
jp nz,l1_b ; See if other channels needs the character.

16_p:
ld a, (np)
cp true
Jp z,114_p

17_p:
ld a, (chr)
cp h'4e ; chr - 'N' ?
jp nz,19_p

18p: ; last character received was 'N'
ld a,true : Get setup for receiving position data from host.

ld (np),a ; n :-true.
ld (nlop),a ; n_low :-true.
ld c,h'4e
call host
Jp 11ha

19-p:
ld a, (chr)
cp h'47 ; Chr- "G" ?
jp nz,l1_a ; Jump if chr <> "G"

112_p: ; Chr - 'G' here.
ld de, st g ; Here if n is false and last character
call spr_3-p ; received from host was "G"
ld a,true
ld (g-y),a ; g :- true.
ld c,h'47
call host
Jp 11_a

114 _p:
ld a, (nlop) ; Here if data from host is to be received.
cp false
Jp z,117-y

115_p:
ld a, (chr) ; Here if LSB is to be received.
ld (n_v_lo_), a
ld a,false
ld (nlop),a ; n_low :- false.
ld c,ack
call host
jp 11_a

117_p:
ld a,false ; n_high :- false.
ld (n-p),a ; n :- false.

43

ld a, (chr)
ld (n-v-hiyo),a ;n_valhigh last character received from host.

118_p:
; Read the shaft angle encoder into SAEO. Send "interrogate" pulse

Id a,b'00000000 ; Set "interrogate" of SAE2, bit 1 of 8255A-4
out (porta4),a ; Active low, data freeze *.
out (porta4),a ; delay
out (porta4),a
in a, (portb4) ; Get least significant byte.
ld (saeO_p),a
in a,(portc4)
ld (saeO0p+h'01),a ; sae0 (16 bits) is present sae reading.
ld a,b'00000010 ; Reset "interrogate" of SAE2, bit 1 of 8255A-4
out (porta4),a

; Convert BCD into 2'1 compliment. 360 degrees-0111 1111 1111 1111b
ld hl,d'00
ld a, (sae0_p)
ld c,a ; Store least significant byte in c.
and b'00000100
Jp z, z0002
ld de, d'18 ; 0.1 degree.
add hl,de

z0002:
ld a,c
and b'00001000
Jp z, z0004
ld de,d'36 ; 0.2 degree.
add hl,de

z0004:
ld a,c
and b'00010000
Jp z, z0008
ld de,d'73
add hl,de

z0008:
ld a,c
and b'00100000
Jp z, z0010
ld de,d'146
add hlde

z0010:
ld a,c
and b'01000000
jp z, z0020
ld de,d'182 ; 1.0 degree.
add hl,de

z0020:
ld a,c
and b'10000000
jp z, z0040
ld de,d'364
add hl,de

44

z0040:
ld a, (saeO-P+h' 01)
id c,a
and b'00000001
ip Z, Z0080
id de,d'728
add hl,de

Id a,c
and b'00000010
ip Z, zOlOO
id de,d'1456
add hl,de

zOlOO:
id a,c
and b'00000100
jp z, z0200
id de,d'1820 ;10.0 degrees.
add hl,de

z0200:
id a,c
and b'00001000
jp z, z0400
id de,d'3641
add hl,de

z0400:
id a,c
and b'00010000
jp Z, z0800
id de,d'7281
add hl,de

Z0800:
id a,c
and b'OO10000G
jp Z, zlOOO
id de,d'14563
add hl,de

zlooo:
id a,c
and b'01000000
jp z, z2000
id de,d'18203 ;100.0 degrees.
add hl,de

z2000:
id a,c
and b'10000000
jp z, z4000
id de,d'36407
add hl,de

45

z4000:
id a,1 Restore (saeO~p) and
(saeO-P+h' 01)
id (saeOjp),a
id a,h
id (saeOyP+h'01),a

id a, (n-v-lo~p) ; sael from host data, n-val-low, n-val high
id (sael~p),a
id a, (n-v-hi~p)
id 'saelyp+h'0l),a ; hi :- sael, destination angle.

118aayp:
id a,(saeOp+h'01) ; high order byte.
and b'1000&?000 ; test hight order bit.
jp z,118byp ; p if sae0(16) >- 0.

1.18 cp:
id a,(sael-p+h'O1) ; high order byte.
and b'10000000
jp z,118fjp ; jp if sael(16) >- 0.

118 ep:
id hi, (saeO~y) ; hil: sae0.
id de, (saelyp) ; de :-sael.
xor a ; cy:0.
sbc hl,de ; hil: sae0 sael.
id a,h
and b'1000C0000
jp z,ll8djp

118 fTPd:h(saelyP) ; hil: sael.

id de, (saeO~p) ; de :-saeO.
xor a ; cy:0.
sbc hl,de ; hil: sael - sae0.
id c,h'2d ; C -

jp 118a~p

118b p: a,(saelyp+h' 01)

and b'10000000
jp z,118eyp

118 dy:
id hi, (saeOjp) ; hil: sae0.
id de, (saelyp) ; de :-sael.
xor a ; cy:0.
sbc hl,de ; hil: sae0 sael.
id c,h'2b ;c :-"+I".

118a lp: (cc) ,hl ; save hi.

call s ch3_3 p ; Send direction to CY525-1, "+" or ""

id c,h'100-
call s-ch3_3y Terminate direction commuand.

call mult200 ;ccOO ccOl-200 cc (32 bit). 200 steps/turn.

46

call elements; generate cc02, cc04, cc08, ccl6, cc32, cc64,
cc128, cc256 and cc512.

Begin summation into ccOO.
512 + 256

id hl, (cc512)
ld de, (cc256)
add hl,de
ld (ccOO),hl
ld hl, (cc512+h'02)
ld de, (cc256+h'02)
adc hl,de
ld (ccOO+b'02),hl ; ccOO :-cc512 + cc256.

32
id hl, (ccOO)
ld de, (cc32)
add hl,de
ld (ccOO),hl
ld hl, (ccOO+h' 02)
id de, (cc32+h'02)
adc hl,de
id (ccOO+h'02),hl ; ccOO :- cc512 + cc256 + cc32.
id (ccOO),hl

Id c,h'4e ; Send the "N" command.
call s ch 3_p
id c,h'02-
call s ch3_p ; Send byte count, 2, to CY525 for "N" command.
ld a, (ccOO+h'02)
ld c,a
call s ch 3_p
ld a, (ccO0+h'03)
id c,a
call sch 3_p
call host
jp 11 a

; %%% ;
Procedures s

;test serial i/o if input data ready.
;returns with a - true if input data ready (host), data byte in c.
;returns with a - false if input data from host not available.

test s in:
in-a, (portb5);
and b'00000010
Jp z,zzz0l
in a, (porta5)
id (chr),a
id a,true
id (chrready),a
ret

zzz01:
id a,false
ld (chrready),a
ret

;test serial i/o for data output ready (to host).

47

ret

s_pr_3_p: ; routine to send command bytes to the CY525, III.
; de :- pointer to byte string, Offh is stopper.

id a, (de) ; get next byte from buffer.
cp h'ff ; is it the stopper?
ret z
inc de ; update pointer.
id c,a
call s ch 3_p
jp spr3p

s_ch_3_p: ; output char in c to CY525.
in a, (portb3)
and ready
Jp z,s ch 3_p

id a,c
out (porta3),a ; put character on the data bus.

id a,ioreq
out (portd3),a ;reset (I/O request)*, tell CY525 data available

way3_p:
in a, (portb3)
and ready
jp nz,way3_p

Id a,noioreq ; set bit 0 of port c to 1.
out (portd3),a ; set (I/O request)*.
ret

mult200: ; ccOO (32) :- 200 * cc, (32 bit).
id hl,h'00
id (cc+h'02),hl ; Set upper word of cc to zero.

id hl, (cc) ; cc :- cc + cc;
add hl,hl
ld (cc),hl
ld hl, (cc+h'02)
adc hl,hl
ld (cc+h'02),hl ; cc:-2 phi.

ld hl, (cc)
add hl,hl
ld (cc),hl
ld (cc04),,hl
ld hl, (cc+h'02)
adc hl,hl
ld (cc+h'O),hl ; cc:-4 phi.
ld (cc04+h'02),hl ; cc04 :- 4 phi.

ld hl, (cc) ; cc :- cc + cc;
add hl,hl
ld (cc),hl
ld hl, (cc+h'02)
adc hl,hl

49

id (cc+h'02),hi cc:-8 phi.

id hi, (cc) ;cc :- cc + cc;
add hi,hi
id (cc),hi
id hi, (cc+h' 02)
adc hl,hl
id (cc+h'02),hi cc:-16 phi.

id hi, (cc) ;cc :- cc + cc;
add hi,hi
id (cc),hl
id (cc32),hi
id hi, (cc+h'02)
adc hi,hi
id (cc +h'02),hi ; cc :-32 phi.
id (cc32+h'02),hi ; cc32 :-32 phi.

id hi, (cc) ;ccE4 := cc + cc;
add hi,hi
id (cc64),hi
id hi, (cc+h' 02)
adc hi,hi
id (cc64+h'02),hl cc64 :- 64 phi.

Perform summation.
id hi, (cc64)
id de, (ccO4)
add hl,de
id (ccOO),hi
Id hi, (cc64+h'02)
id de, (ccO4+h' 02)
adc hi,de
id (cc00+h'02),hi ccOO :-cc64 +i ccO4.

id hi, (ccOO)
id de, (cc32)
add hi,de
id (ccOO),hi
id hi, (ccOO+h' 02)
id de,(cc32+h'02)
adc hi,de
id (ccOO+h'02),hl ccOO :-cc64 + ccO4 + cc32.

id hi, (ccOO) ;Double ccOO.
add hi,hi
id (ccOO),hi
Id (cc~i),hi
id hi, (ccOO+h' 02)
adc hi,hi
id (ccOO+h'02),hi
id (cc~l+h'02),hi ccOl :- CCUO.
ret

elements: ; generate ccO2, ccO4, ccO8, ccl6, cc32, cc64,
;cc128, cc256 and cc512, from ccOO.
02

id hi, (ccOO) ;ccOO :- ccOO + ccOO;
add hi,hi

50

id (ccOO),hl
id (ccO2),hl
id hi, (ccOO+h'02)
adc hi,hi
id (ccOO+h'02),hl ;ccOO:- 2 phi.
id (cc02+h'02),hl

04
id hi, (ccOO) ;ccOO :- ccOO + ccOO;
add hl,hl
id (ccOO),hi
id (ccO4),hl
id hi, (ccOO+h' 02)
adc hi,hl
id (ccOO+h'02),hl ;ccOO :-4 phi.
id (ccO4+h'02),hl ;ccO4 :-4 phi.

08
id hi, (ccOO) ;ccOO : ccOO + ccOO;
add hi,hl
id (ccOO),hi
id (cc08),hi
id hi, (ccOO+h' 02)
adc hi,hi
id (cc00+h'02),hl ccOO :-8 phi.
id (cc08+h'02),hl ccO8 :-8 phi.

16
id hi, (ccOO) ;ccOO : ccOO + ccOO;
add hi,hi
id (ccOO),hl
id (ccl6),hi
id hi, (ccOO+h'02)
adc hl,hl
id (ccOO+h'02),hi ccOO :-16 phi.
Id (ccl6+h'02),hi ccl6 :16 phi.

32
id hi, (ccOO) ;ccOO : ccOO + ccOO;
add hi,hi
id (ccOO),hi
id (cc32),hi
id hi, (ccOO+h' 02)
adc hi,hi
id (ccOO+h'02),hi ; ccOO :-32 phi.
id (cc32+h'02),hi ; cc32 :-32 phi.

64
id hi, (ccOO) ;ccOO : ccOO + ccOO;
add hl,hi
id (ccOO),hi
id (cc64),hi
id hi, (ccOO+h' 02)
adc hi,hi
id (ccOO+h'02),hi ; ccOO :-64 phi.
id (cc64+h'02),hi ; cc64 :-64 phi.

128
id hi, (ccOO) ;ccOO : ccOO + ccOO;
add hi,hi
id (ccOO),hl
id (cc128),hi
id hi, (ccOO+h' 02)
adc hi,hi

51

id (ccOO +h'02),hl ; CCOO :-128 phi.
id (cc128+h'02),hl ; cc128 :-128 phi.

256
id hi, (ccOO) ;CCOO :- ccOO + ccOO;
add hi,hi
id (ccOO),hi
id (cc256),hi
id hi, (ccOO+h'02)
adc hl,hl
id (ccOO+h'02),hl
id (cc256+h'02),hi cc256 :256 phi.

512
id hi, (ccOO) ;ccOO :- ccOO + ccOO;
add hl,hi
id tcc00),hl
id (cc512),hi
id hi, (ccOO+h'02)
adc hi,hi
id (ccOO+h'02),hl
id (cc512+h'02),hl cc512 :-512 phi.
ret

sr32:ld hi, (ccOO+h' 02) ; 32 bit shift right from ccOO
db h17c, h'lf, h167 ; (?] > [h7 ... >... hO] > [cy]
db h17d, h'lf, hl' 6f ; [cy] > [17 >. ... 101 > [cy]
id (ccOO+h'02),hi

id hi, (ccOO)
db h17c, h'lf, h167
db h17d, h'lf, h16f
id (ccOO),hi
ret

st-in-o: db h149, hWOO , I initialize CY525_o.
db h146, h101, 3 ;"F," ,first rate,
db h152, h101, 32 ;"R" ,rate,-
db h1,53, h101, 2 ; 5 slope,
db h15a, h101, 2 11 "Z Divisor
db h'ff ;"stopper."

st-inyp: d~b h'49, h'00 ,"I" ,initialize CY525_p.
d~b h146, h101, 3 ;"F," ,first rate,
db h152, h101, 32 ;"R" ,rate,
db h153, h'01, 2 ; S slope,
db h15a, h101, 2 :"Z, ,Divisor
db h'ff ,"stopper."

st-g: db h147, h100, h'ff ;CY525: G, 0, "stopper."
St on: db h142, h100, h'ff ;Bit set, CY525, pin 34.
St off: db h143, WOO0, h'ff ;Bit-reset, CY525, pin 34.

;initialize variables.
equ true ,h100
equ false ,h'Off
equ ready ,h120
equ ack ,hl64 ; I'd"
equ ping~,h6 ; "a"

52

equ reset ,h'62 ; "b"
equ loselout ,h'03
equ ioreq ,h'00
equ noioreq ,hIOl
equ ioselin ,h'02
equ portal ,h'08
equ portbl ,h'09
equ portcl ,h'Oa
equ portdl ,hIOb
equ porta2 ,h'00
equ portb2 ,h'O1
equ portc2 ,h'02
equ portd2 ,h'03
equ porta3 ,h'Oc
equ portb3 ,h'Od
equ portc3 ,h'Oe
equ portd3 ,hIOf
equ porta4 ,h'04
equ portb4 ,h'05
equ portc4 ,h'06
equ portd4 ,h'07
equ porta5 ,h'10
equ portb5 ,h'll
equ channelo ,h'4f ; "0"
equ channeip ,h'50 ; "P"
equ g-status ,h'53 ; 'IS"
equ dest-o ,h'6f ; "o"
equ dest~p ,h'70 ; p

end

53

INTENTIONALLY LEFT BLANK.

54

APPENDIX C:

PASCAL LISTING OF THE DRIVER PROGRAM UTILIZED BY THE HOST COMPUTER.

Note: Assembly Language "Hooks" Are Used to Allow the Program to Communicate
With the Serial Input/Output Device for the Purpose of Controlling the Mount
Computer.

55

INTENTIONALLY LEFT BLANK.

56

(File:CY525.pas, Disk#005, TurboDOS 1.2, March 14, 1989, June 26,1989}

{For use with stepper motor controllers: azimuth and elevation)
program CY525;

label s60;

var
sae, i, max : integer;
remote, g_o, g__p : boolean;
ping, ack, reset, rfda, status, data-lo, data hi, cha :byte;
ch : char;
g, n, o, p, s, channel :byte;
saer : real;

function inta(x:real) :real;
begin

if x<0.0 then inta:-int(x)-1..O else inta:=int(x);
end;

function fract(x:real) :real;
begin

if x<0.0 then fract:=frac(x)+1.Q else fract:-frac(x);
end;

procedure inpmdm(var y,z:byte);
begin

inline ($db/$05/$e6/$O1/$2a1 y/$77);
if y<> 0 then
inline($db/$0O/$2a/ z/$77);

end;

procedure outmdm(var z:byte);
begin

inline ($db/$05/$e6/$20/$28/$fa/$2a/ z/$7e/$d3/$O0);
end;

procedure mdmof 1; {Procedure to take t he ACE off line.}
begin

inline($af/$d3/$01/$db/$04/$f6/$lO/$d3/$04);
end;

procedure mdmonl; {Procedure to put the ACE on line.)
begin

inline ($db/$O0/$3e/$07);

inline($Oe/$Oc/$06/$46/$05/$20/$fd/$Od/201f81$3d/$20/$f3);
inline ($db/$0O/$db/$04/$e6/$efl$d3/$04);

end;

procedure start -up;
begin

inline ($21/$68/$OO/$ebl$db/$03/$f6/$801$d3/$03);
inline ($7b1$d3/$OO/$7a);
inline ($3e/$03/$d3/$03/dbl04/$f6/$03/$d3/$04);

end;

procedure delay(z:integer);

57

var i:integer;
begin

for i:-i to z do begin end;
end;

procedure convert(var x:integer; var y,z:byte);
begin

inline($2a/ x/$7e/$23/$5f/$7e/$2a/ z/$77/$2a/
y/$73);

end;

begin {main}
ping :-97; {61h, "a")
reset :-98; {62h, "b"}
ack :-100; {64h, "d"}
g :- 71; {47h, "G"}
n :-78; {4eh, "N")
o :-79; {4fh, "0"}
p :-80; {50h, "P"}
S :-83; {53h, "S"}
g_o :-false;
g9p :-false;
remote:-false; {****}

clrscr; startup;

cha:-0;
while (cha<>ack) do

begin
status:- 0;
while status - 0 do

begin
outmdm(ping);
delay (9000) ;
inpmdm(status,cha);
if status - 0 then

begin
gotoxy(1, 1);
writeln('Remote not responding. ');
writeln('Please check power and prese the "reset"

switch.');
remote:-false;

end; {if status)
end; {while status)

end; {while (cha<>ack)}

if (status<>0) and (cha-ack) then remote:-true;

if (remote-true) then writeln('Remote system has responded to a
"ping" ');

while (remote - true) do
begin

s60: gotoxy(1,1);
write(^['X'); {Enable cursor)
write('Enter channel specifier, "o" or "p" : '); readln(ch);

58

if (ch-'o') then channel :-o

else if (ch-'p') then channel :-p

else goto s60;

delay(20000); clrscr;

{Test status of channel)
cha:-s; {Statusl
outmdm(cha); i:-1; status :- 0;

while ((status-0) and (i<400))do
begin

inpmdm (status, cha);
i -il

end;

if((status-0) and (i - 400)) then
writeln(' System not responding. "Status" ');
remote: -false;
if (status<>0) then remote:=true;

if((cha-48) or (cha-50)) then go.:-false;
if((cha-48) or (cha-49)) then gyp:-false;

If (((channel-o) and (gob-true)) or
(channel-p) and (g~p-true))) then

begin
writeln('The channel you have selected is busy now.)
goto s60;

end;

outmdm(channel); i :-1 ;status :-0;
while ((status-0) and (i<400)) do
begin

inpmdm(status,,cha);
if((status<>0) and (cha<>ack)) then
writeln(INot proper system response. "Channel ")

i -i + 1;
end;

remote: -false;
if ((status<>0) and (cha-ack)) then remote:- true;

write('Enter shaft angle 1);
readln(saer);
sae :- trunc(saer*32767.01180.0);
convert (sae,data-lo,data-hi);
writeln;

(NJ

cha :-
outmdm(cha); i:-1; status :- 0;
while ((status-0) and (i<400))do

begin
inpmdm(status, cha);
if((status<>0) and (cha<>n)) then

59

writeln('Not proper system response. '):
i:-i+l;

end;
if ((status-0) and (i-400)) then

writeln('System not responding. "N" ');

{data_lo}

cha:-data lo;
outmdm(cha); i:-l; status :- 0;
while ((status-0) and (i<400)) do

begin
inpmdm(status, cha);
if((status<>0) and (cha<>n)) then

writeln('Not proper system response. ');
i:-i+l;

end;
if ((status-0) and (i-400)) then

writeln('System not responding. "Lo" ');

{Hi}

cha:-data hi;
outmdm(cha); i:-l; status :- 0;
while ((status-0) and (i<400))do

begin
inpmdm(status,cha);
if((status<>0) and (cha<>n)) then
writeln('Not proper system response. ');
i:-i+l;

end;
if ((status-O) and (i-400)) then

begin
writeln('System not responding. "Hi" ');
writeln('The shaft angle encoder interface may be

defective ');
end;

{The "cha" value is the hi byte of the "N" number send to the CY525.}
writeln(cha:8);
delay (9000) ;

(G}

cha:-g; (GI
max:-400;
if (channel-o) then 9_o:-true;
if (channel-p) then gp:-true;
outmdm(cha); i:-l; status :-0;
while((status-0) and (i<max)) do

begin
inpmdm(status,cha);
if((status<>0) and (cha<>g)) then

writeln('Not proper system response.');
i:-i+l;

end;

60

if ((status-O) and (i-max)) then
writeln('System not responding. "G"I ');

remote: -false;
if((status<>O) and (cha-g)) then remote:=true;

end;
end.
AZ

61

INTENTIONALLY LEFT BLANK.

62

No. of No. of
Copes Oroanization Cooles Omanization

2 Administrator I Commander
Defense Technical Info Center U.S. Army Tank-Automotive Command
ATTN: DTIC-DDA ATTN: ASQNC-TAC-DIT (Technical
Cameron Station Information Center)
Alexandria, VA 22304-6145 Warren, MI 48397-6000

Commander 1 Director
U.S. Army Materiel Command U.S. Army TRADOC Analysis Command
ATTN: AMCAM ATTN: ATRC-WSR
5001 Eisenhower Ave. White Sands Missile Range, NM 88002-5502
Alexandria, VA 22333-0001

1 Commandant
Commander U.S. Army Field Artillery School
U.S. Army Laboratory Command ATTN: ATSF-CSI
ATTN: AMSLC-DL Ft. Sill, OK 73503-5000
2800 Powder Mill Rd.
Adelphi, MD 20783-1145 (Claw. WI Commandant

U.S. Army Infantry School
2 Commander ATTN: ATSH-CD (Security Mgr.)

U.S. Army Armament Research, Fort Benning; GA 31905-5660
Development, and Engineering Center

ATTN: SMCAR-IMI-I (uncaa, m"Y)l Commandant
Picatinny Arsenal, NJ 07806-5000 U.S. Army Infantry School

ATTN: ATSH-CD-CSO-OR
2 Commander Fort Benning, GA 31905-5660

U.S. Army Armament Research,
Development, and Engineering Center 1 WLIMNOI

ATTN: SMCAR-TDC Eglin AFB, FL 32542-5000
Picatinny Arsenal, NJ 07806-5000

Aberdeen Provinl, Ground
Director
Benet Weapons Laboratory 2 Dir, USAMSAA
U.S. Army Armament Research, ATTN: AMXSY-D

Development, and Engineering Center AMXSY-MP, H. Cohen
ATTN: SMCAR-CC8-TL
Watervliet, NY 12189-4050 1 Cdr, USATECOM

ATTN: AMSTE-TC
(Uncla,. "mI Commander

U.S. Army Rock Island Arsenal 3 Cdr, CRDEC, AMCCOM
ATTN: SMCRI-TlJTechnical Library ATTN: SMCCR-RSP-A
Rock Island, IL 61299-5000 SMCCR-MU

SMCCR-MSI
Director
U.S. Army Aviation Research I Dir, VLAMO

and Technology Activity ATTN: AMSLC-VL-D
ATTN: SAVRT-R (Library)
M/S 219-3 10 Dir, USABRL
Ames Research Center ATTN: SLCBR-DD-T
Moffett Field, CA 94035-1000

Commander
U.S. Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010

63

INTENTIONALLY LEFT BLANK.

64

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number BRL-TR-3382 Date of Report July 1992

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for

which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of

ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Name

CURRENT Organization
ADDRESS

Address

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address
in Block 6 above and the Old or Incorrect address below.

Name

OLD Organization
ADDRESS

Address

City, State, Zip Code

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

DPM NT or TE ARMY1111
Oirector .jNO POSTAGE
U.S. �A~ s Balisic Research Laboratory NECESSARY
ATTN: SLCBR-00oT IF MAILED
Aberdeen Proving Ground, MD 21005-5066 aN THE

I UNITED STATES

oROA, SUW, BUSINESS REPLY MAIL
a s: am uamT ,m, _ _

toslag wil bl a by awddgssee.

Director
U.S. Army Ballistic Research Laboratory _ _--

ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066

