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EXTENSION OF FRESNEL NEAR-FIELD REGION
BY SINGLE-CYCLE SINUSOIDAL PULSES

1. INTRODUCTION

The theory of diffraction of a monochromatic (or a CW) wave [1,2] by a circular disk (or aper-

ture) of radius a =D /2, shows that the diffracted energy density in the Fresnel near-field region

decreases slower than i/z2 on the axis of the disk. Beyond this region the well-known behavior is

lI/z2 in the Fraunhofer region (far field region). Though there is no well-defined demarction

between the Fresnel and the Fraunhofer region, the optical [1,2] and the acoustical [3] literatures take

this to be a 2 A, where X is the wavelength of the wave concerned. On the otherhand, it is a common

practice in the antenna literature [4] to assume this boundary to lie between D2 /X (= 4a 2 /X) and

2D 2 /X (= 8a 2 /X). An approximate theory [1] can be used to explain that as the point of observation

z from the disk (or aperture) is made longer than a 2 /, there is less than one Fresnel zone in the disk

and the intensity of the wave energy decays as l/z 2 (as in the Fraunhofer region or far field). On the

otherhand, as z is made to shrink towards the aperture along its axis, so that more than one Fresnel

zone in the aperture contributes to the intensity at z, the energy density oscillates between zero and a

maximum value. For extremely small z, this approximate theory is not applicable. The first max-

imum intensity appears at z = a 2 A, beyond which the wave intensity starts to decrease like li/z 2 .

This observation then indicates that the Fresnel near-field region, where the energy density drops

slower than 1/z2 , increases as the frequency of the incident field increases. The decrease of intensity

slower than l/z 2 implies also that the diffracted or radiated field is collimated.

In many applications which require transmission of high field intensity (such as an extended

radar system), to a relatively long distance (a few hundred to a few thousand kilometers), in principle

this distance can be made to fall within the Fresnel near-field region by simply increasing the fre-

quency of the field as well as the aperture dimension of the radiator. However, just increasing the

frequency of the monochromatic source of the radiator may not be an efficient method, as indicated in

the following recent works [5,6,7,81.
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Wu [5] who introduced the concept of "electromagnetic missile', defining the electromagnetic

energy which decays slower than 1/r2 , showed that some pulsed sources backed by a reflector can

transmit electromagnetic energy to a great distance, where the field energy falls slower than the

inverse of the square of the distance. Wu and Shen [6] also preformed an experiment in a laboratory

for demonstrating the validity of the theory. Besides them, Ziolkowski and his associates [7,81 also

investigated the behavior of a special type of highly collimated wave, named "localized wave

transmission" which also required an excitation of an aperture by suitably created pulses. They [8]

also conducted an acoustic experiment for verifying their concept and theory. The aims of these two

groups ([5,61, [7,8]) appear to be the same, though their respective theoretical approaches and con-

cepts are different. For instance, in the study of "electromagnetic missiles," a conventional method

of solution of wave equation in the Fresnel region is needed, which makes it easier to understand the

process of radiation. However, a special solution (appears to be unconventional) together with the

choice of a special type of pulsed sources are required in Ziolkowski's is work. In spite of the

apparent conceptual and methodological differences, the studies of both the "electromagnetic missiles"

and the "localized wave transmission" shoNw that directed short pulses encompassing a wide band of

high frequencies are required. The results of these studies provide a clue to the question of finding a

method of extending the Fresnel near-field region more efficiently.

In references [5,6] non-sinusoidal pulses with suitable forms were used so that the results could

be expressed and interpreted conveniently. For non-sinusoidal pulses there is no unique and apparent

equivalent wavelength, corresponding to which a Fresnel region can be identified. As a result, there

is no convenient and well accepted way to determine the enhancement of the near-field region, when

the source of radiation is a non-sinusoidal pulse. On the otherhand, for a sinusoidal pulse, such as a

single-cycle sin,,•t or cos 00t, the extension of the Fresnel region can be ascertained in a convenient

manner by comparing the respective results with those of a CW sinroot source.
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In view of the above observations, the present investigation, resembling the study of "elec-

tromagnetic missiles,' studies the feasibility of extending the Fresnel near-field region of a conducting

circular disk antenna [Fig. 1] excited by sinusoidal pulses, single-cycle sinoot and single-cycle coswot,

which are more familiar. It may not be too difficult to generate a short pulse containing a few cycles

of sinw~t. The consideration of a single-cycle cosw0t appears to be more academic than realistic,

nevertheless the results shed some light, pointing out clearly that the shorter the rise time of a pulse,

the slower is the decay of the radiated energy density. The efficacy of a single-cycle sinwot pulse

over the corresponding CW sinwot as exciting sources in extending the Fresnel near-field region (and

hence collimating the radiated energy) lies in the cohesive contributions of all the higher frequencies

equal to and above w0o (i.e. all w in w t wo0) contained in the pulse.

In section 2 presentation and discussion of numerical results are made, followed by conclusions

in section 3. Development of the theory of radiation in the Fresnel near-field region of a circular

conducting disk excited by uniform sinusoidal current pulses and the associate analyses can be found

in Appendixes A and B.

2. DISCUSSIONS OF NUMERICAL RESULTS

Since the behavior of the energy density as a function of the coordinate z along the axis of the

conducting disk or the dimensionless distance a(-=z /(D2 /X0)) will demonstrate whether these

sinusoidal pulses do indeed enhance the Fresnel near-field region, we shall first present the energy

densities for different parameters. The wavelength X0 is defined by X0 = 21rc Iw0, where c is the

velocity of light in free space. In Fig. 3a three normalized energy density expressions associated with

a CW sinwot current (Eq. 24, Appendix A), a single-cycle sinwo0t pulse (Eq. 34a, Appendix A) and a

single-cycle coscot (Eq. 34b, Appendix A) are presented as functions of ct along the axis of the disk.

The energy per cycle of each of these excitations is the same.
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The behavior of the radiated normalized energy density, P1/P 0 = sin2 [*-11 corresponding

to the CW sinoot current source is well-known [3,5,6]. It is highly oscillatory for a :5 1/8, reaches

the maximum value I at a = 1/4, and then begins to drop monotonically. This oscillatory behavior

of P,, for a,< 1/8 is due to the fact that more than one Fresnel zone in the disk (source region) con-

tributes to the illumination and causes interference. Here we make a distinction between the Fresnel

zone and the Fresnel region. The Fresnel zone is located in the source region, whereas the Fresnel

region lies in front of the radiator, where near-field radiation takes place.

In contrast the normalized radiated energy density PI/Po, associated with the single-cycle of

sinowot, has a constant value unity without showing any oscillatory behavior in the region ca _5 1/8.

For ca > 1/8, it increases to a maximum value of 1.5 at Ca = 1/4, from there it decreases monotoni-

cally with the increase of ca. The oscillatory behavior of P, for Ca < 1/8 is also absent in PI/Po,

the normalized energy density corresponding to the single-cycle coswo0t excitation. This observation

suggests that if there are nulls in the radiation pattern of a radiator excited by a monochromatic sig-

nal, those nulls can be eliminated by choosing a short pulse, the spectrum of which contains that

monochromatic source frequency as a source of excitation.

However, the behavior of Pc/Po shows a peculiarity, since it begins to drop from unity to a

minimum value (about 0.78) near a -= 0.162, from where it starts to increase to a maximum value

(about 1.58) at a = 0.3. Before attaining this maximum value P,./Po passes through the point of

maximum of P,/Po at a = 1/4. From a = 0.3, P,/Po begins to decrease monotonically with a.

although at a slower rate than either P,/P 0 or Pw/P 0 , exhibiting the fact that P, has a larger value

than that of P, or P,,.. Between a = 1/8 and 1/4, P, is smaller than P,- However, both P, and P,

are larger everywhere than Pc, if we agree that the average value of P,.1P0 is only 1/2 for

a - 1/8, since both Ps/P 0 and Pc/Po are unity. Although some graphs are shown for a = 0 (or

z = 0), they are not valid. However, a can be very small, depending on the value of X0 and the con-

dition a/z << 1.
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The larger values of Ps and P, are due to the simultant6us and collective contributions of all the

high frequencies exceeding wj (,w w•0 ) contained in the single-cycle pulses. It is not, however, clear

why PI/Po is smaller than P,/P 0 in the region 1/8 < a < 1/4. It may be that for a certain large

co. the amplitudes of the frequency spectrum between wo0 __ w :5 co, of the single-cycle coswot are

smaller than those for the single-cycle sin w0t, although the single-cycle cos w0t contains more high

frequencies with large amplitudes in general. Note that the spectra of the single-cycle sin w0 t and the

single-cycle cos wot behave like 1 1w 2 and 1 o, respectively, as W - oo.

Figure 3a shows the behavior of Pw, P, and P, for small values of ci(_< 1). On the other hand,

Fig. 3b displays how P,, P, and P, decrease for larger values of ct, which is helpful in determining

whether P, and P, have indeed shown extension of the near-field region when compared with Pw.

For this purpose let us choose first a value of a, which we take to be 2 (i.e. z = 2D 2 /X0 ) for con-

venience. At this distance along the axis of the disk P1/P 0 has a value about 0.03806, which is

equivalent to -14.2 dB. We now find from Fig. 3b that P./Po and P,/Po drop to this value at

at = 11 and 30 respectively. This finding can be interpreted as follows: when compared with a CW

sin w•0t excitation, the single-cycle sin w0tand the single-cycle cos co0t enhance the Fresnel near-field

region by 37.5% and 275%, respectively. Although an ideal single-cycle cosw0t is not realizable

(similar to the case of an ideal rectangular pulse, which is used in many examples in the literature for

the purpose of illustrations) the associated results shed light in showing clearly that the higher the rate

of rise of an exciting pulse, the slower is the decay of the radiated energy.

Let us now turn our attention for a moment to an interesting aspect of the initial time variation

of a pulse and the corresponding behavior of its spectrum at high frequencies. Reference 16] shows

that if the current pulse behaves like t- 1/2 for small values of t, then its spectrum F(w) at high fre-

quencies decreases like w- + ./2) Consequently, the corresponding radiated energy density P(z)

along the axis of the disk drops as z- 2 with increasing z. In order for a current pulse to produce a

5



"missile" effect, they required 0 < e < 1, so that the energy density decreases slower than I/z 2 .

For a single-cycle sintuot we can not apply these results in a strict sense. For instance, for small 1,

sintoit increases as t. If we use their results, we get e = 3/2, showing F,(W) - I/c,2 and

P'/Po - l/z 3, without displaying any "missile" effect. Although the behavior of Fs(W) is correct as

w - w, our result [Eq. 34a, Appendix A] shows that P,(z)/Po behaves like l/z 2 for very large z.

In spite of this behavior of Ps(z), it displays [Figs. 3a and 3bJ effective enhancement of the near-

field, i.e. showing "missile" effect. Using a similar argument for the single-cycle coswot, one finds

that for small t, coswot = I indicating e = 1/2, F,(w) - 11w and P, - 1/z for large z. Surpris-

ingly, such behaviors agree with our results, although the single-cycle cosw0t is unrealizable.

The above discussions pertain to the axial behavior of the energy densities, which are not too

difficult to compute. On the other hand, the off-axis (i.e. s = p/a > 0) behavior of either P, or P,

is very difficult to compute, since the expressions (32a) and (32b) of Appendix A converge slowly.

In s = p/a, p is the perpendicular distance from the z-axis. However, for s = 1 and s >> 1, it is

relatively easy to caiculate P, and P, in closed form [Eqs. (39a) to 40b, Appendix A]. For s >> I

the associated infinite series can be adequately approximated by retaining only the first term. In Figs.

(4a) and (4b) we show these results. Figure 4a displays the behavior of the normalized energy den-

sity Ps/Po for s = 0, 0. 125, 0.25 and 1. Similarly, Fig. 4b presents P,/Po for the same values of

s. The cases, s = 0.125 and 0.25 for Ps/Po are computed by using Eqs. (36a) and (36b) of Appen-

dix A, respectively. For s >> 1, both normalized energy densities become so small, that they are

excluded from these displays. In general these results show that both P, and P, are concentrated in

the vicinity of the disk axis and drop rapidly with increasing values of s. Such behaviors of P, and

Pc, together with an examination of the expressions (24) to (27) of Appendix A, indicate that the radi-

ated energy density associated with a short-pulse excitation is highly focused towards the axis of sym-

metry of the radiator and extends to a larger distance along this axis when compared to the

corresponding results for the CW excitation.
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In Figs. 5a through 5d the behavior of the normalized radiated electric field, E,, associated

with the single-cycle sincfot are presented. The corresponding behaviors of E,, (not shown) associated

with the single-cycle cos&*t can be obtained by taking the first derivative of E,, with respect to uoot*,

( = t - z/c). Figures 5a through 5d show E, as a function of the normalized time 7 = t/T,

where T = 2/rA is the period of one cycle, for s = 0 and 1 at a given distance a, parallel to the

z-axis. The thick dotted curve is common to both s = 0 and 1. It follows from Eq. 28a of Appendix

A that for s = 0, the two signals, one radiated from the center of the disk [the first term of (28a)]

and those radiated from the circumference of the disk (second term), overlap for a < 1/8. For

s = 1 [Eq. 30a, Appendix A], the radiated fields from these two regions overlap for a > 1, other-

wise they are separated. Thus, Figs. 5a through 5c show that these two radiated signals overlap for

s = 0, and are well separated for s = 1. However, in Fig. 5b one finds that for s = 1, the two sig-

nals begin to combine. The second signal (s = 1), which comes from the center as well as from

other circumferential points that are farther away, is much smaller than the first signal, which comes

only from the nearest point on the circumference. The interference of these rays among themselves

reduces the amplitude of the second signal. Figure 5d shows that for a large s(=5), the off-axis field

strength is very small, which agrees with what is intuitively expected.

3. CONCLUSIONS

It has been shown that in order to extend the Fresnel's near field region, which process being

the same as collimating (or focusing) the radiated energy, infront of a conducting circular disk

antenna, a single-cycle sincftt current pulse is more efficient than the corresponding CW sinco 0t

current source. Such an ability of a single-cycle pulse lies in the cohesive contributions of the high

frequencies above uoo (co z wo) contained in the pulse. Assuming that the near field region extends

to unit distance (along the disk axis) due to the excitation by a CW sinwot current, it is found that the

corresponding distances are 1.375 and 3.75 when the exciting current sources are a single-cycle
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iinWt and a single-cycle coswolt, respectively. The use the single-cycle cos~ot pulse may be regarded

as more academic than realistic, nevertheless the corresponding results show clearly that the shorter

the rise time of a pulse consisting of large amplitudes of high frequency components, the slower is the

rate of fall of the radiating energy, thereby proving itself more efficient in focusing or collimating the

field energy in the vicinity of the axis of symmetry of the radiator. If there is a way to generate a

short pulse, the frequency spectrum of which falls like /I&P as w increases indefinitely, with 0 lying

at least in the range 1 s 0 < 2, it should be welcomed as a potential candidate for the applications

where the above mentioned behavior of the radiated energy in the Fresnel region is desirable.

The results of this study indicate also that if there are nulls in the radiation pattern of a radiating

system excited by a monochromatic signal, those nulls can be made to disappear if, instead, a short

pulse, the spectrum of which contains that frequency of the monochromatic source, is used.
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APPENDIX A

I. GENERAL FORMULATION

For the transmission of a directed and collimated electromagnetic energy one needs a focusing

device in addition to an antenna. However, for the purpose of demonstration and simplicity we shall

take a perfectly conducting circular disk of radius a as an antenna, which also serves as a focusing

mechanism. This circular disk antenna is excited by sinusoidal single-cycle uniform current pulses,

sinwot and cos wo, respectively. The primary reason of our choice of these sinusoidal pulses is to

show, by comparing with the result corresponding to a cw si'iusoidal excitation, whether these pulses

do indeed extend the Fresnel's near field region.

At first, the problem will be formulated in the frequency domain, and then the corresponding

time domain result will be obtained by an application of the inverse Fourier transform. It should be

noted that the assumption of exciting the circular disk by a uniform current imposes an unnecessary

restriction, which implies filtering out very.high frequencies. Nevertheless, it is adequate [5,61 for

the purpose at hand. Consider a thin perfectly conducting disk of radius a, lying in the x-y plane in

otherwise free space [Fig. 1]. The center of the disk coincides with the origin of the coordinate sys-

tem. This disk antenna is excited by a uniform x-directed surface current Jj(r',w), where r' is on the

disk and Aw = 21rf is the angular frequency, which will excite. all the rectangular components of the

electromagnetic field except H1. The non-zero field components can be expressed in terms of the x-

directed vector potential A,4(Fs). Since we are interested in the transmission or radiation of elec-

tromagnetic energy in the z direction only, which is perpendicular to the circular disk, only the com-

ponents E. and Hy contribute. The x-component of the vector rntential in the frequency domain is

given by

(,() = (o/4zr)IS J. (r',() (e'Mk/R) dS' (1)
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The integration is over the surface of the disk, where R = 17 - " 1 , k = w =c = 2w/X and 7(x,y,z)

and r'(x',y',O) are the observation and source coordinates, respectively. In the Fresnel region, where

a/X >> 1 and z/a >> 1, the R in the exponential is approximated by [3-61.

R = Z--r' z + (x -x') 2/2Z + (y-y') 2/2z (2a)

=Z + (p 2 + p, 2 )/2z - (pp'/z) cos (,0 -

where

x = p cos ,y = p sin 4 (2b)

x = p' cos 0' and y' = p' sin 4'

and p/z << 1, a/z << 1. In the denominator of the integrand in (1), R is approximated by z. The

approximations indicated by (2a) and (2b) with a /X > > 1 imply that the Fresnel region confines

itself close to the axis of the circular disk. For a uniform current let us write

Zh (roW) = Io F(W), (3)

The constant 10 has a dimension ampere/meter. Then using (2a) and (2b) in (1), we have

,X (-, W) = [O AO F(o)/(4irz)] 0 dp'p' e•p 0 2T e-i(k pP'/z)cos(0 - '6 d4)'. (4)

The integral over 0' is 2WJ0 (k pp '/z), where Jo(x) is a Bessel function of order zero. Introducing

now the following change of variables

S= p'la, u = k pa/z, and y = ka 2/z, (5)

the expression (4) can be re-expressed as

A1 (rJ) = L10 goto F()/(2z)] exp [ik(z + p2/2z)] I(y,u), (6a)

where

(-Y,u) = a 2 fo Jo (u t) exp (ij r2 /2) t" dt. (6b)
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The integral i(-yu) in (6b) cannot be evaluated in closed form. '"owever, it can be expressed in

terms of two Lommel's functions, UI(,y,u) and U2(Y',u) [9, 10, 111 in the following manner

1("yu) = (zc/i) e"i/ 2 [Ul(y,,u) - i U2 (,u)], (7a)

where

U1 (Iu) = -Y so Jo (u r) cos h'(l-_, -2)/21.t dr, (7b)

S(--I)m (*,?/U)2m+l J2.+l(//).

m =0

and

U2(-y,u) -Y 0 1o Jo (u') sin [t-(l - r2)/2) rd" (7c)

- (- 1) (,Y/u)2m + 2 J2M + 2(u).
m =0

The representation of 1(y, u) given by (7a)-(7c), although valid for all s p p/a = u /-, is

suited more for large s. For example, when s > > 1, only the m = 0 term is sufficient to obtain an

accurate approximation of (,yu), i.e., J(-yu) = (zc/wo)U(-yu)exp (i-y/2) = (zc/ w).

exp (i-y/2)J1 (u)/s + 0 (1/s 2). An alternative representation of l(-V,u), which is suited for small

values of s, can be presented as follows [11]. Note that the notations used here are different from

those in [11]. Define first

"C(-y,u)/2 = fo Jo(ur) cos (-Y r.2/2) rdr, (8a)

S(-y,u)/2 = 10 J°(ur) sin (.y r 2 /2) rdt, (8b)

V0(SU) = E (- 1)m S2m J 2M(u), (9a)
m m

V1 (s,u) = E (-1)tm s2'+ 1 J 21 +1 (u). (9b)
M-0
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Then we have

I(-V,u)la 2 = C(yu)/2 + iS(-yu)/2 (10)

C(,y,u) = (2/y) [sin (u2 /2.y) + Vo (s,u) sin (fi/2) - V, (s,u) cos (7y/2)], (I la)

S(yu) = (2/-) [cos(u 2/27) - Vo (s,u) cos (-y/2) - V, (s,u) sin (7/2)]. (lib)

The field components E1 (r,w) and Hy(?,ow) can be obtained using the following relations in the

Fresnel region.

E.(F,w) = ib [ax + (I/k 2 ) Aj *4x = i A(w), (12a)

HytQw) = (l/Po) a4z A (ihc.o/) Ax (7,w), (12b)

where no = N/p-•co. The time-dependent radiated electric field in the Fresnel region is then given

by the following Fourier transform.

E,(.r)= (1/2T) E., (7w) e dw

M 2

= (i/21r) Ito 1o_ l(,u) P F((o)/(2z)] exp [-icowt - + -L-] /c)] dw (13)

The other quantity of interest is the z-directed energy density at a point in the Fresnel region and

expressed as

Pnr: -- _ (7, ,t) xTI•r,t) . dt

I_'. "'-

(1/21r) _ E ("w) Hy (r,w) dw

= [120 no/(81r)] __ IF( _)E- (±L)2 iJ(7,U)12 dwo, (14)

where
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I(vY,u)1 2 = (cZ/1,W) 2 [U2 (y,u) + U2 (y,u)], (15a)

which is suitable for p/a = s > I and

U)( ,u1 2 = (a 2 /-y) 2 [1 + Vo2 (S,u) + V2 (S,u)

- 2Vo (s,u) cos (('y + u 2/-y)/21 - 2 V 1(s,u) sin I(-y + u 2 /-y)/211, (15b)

which is suited for s < 1.

Except for s = 0 and s = 1, none of the above integrals, (13) and (14), can be evaluated in

closed forms. However, for small values of s, I (-y,u) 12 given by (15b) can be used in a series form

in powers of s. On the otherhand, for large values of s Eq. (15a) can be used to expressing it as a

series in powers of (1/s). Similar statement holds for the expression of the electric field (13). Let us

now express J(-yu) for various values of s, namely, s = 0,1, s << I and s >> 1. These will be

found to be very useful in evaluating E1(7,t) and P( ). For s = 0, it is easier to compute I(-j,u)

from (6b), although (7) and (10) may also be used. Thus for s = 0 we have

1(-y,u)I =o = 2(cz/1w) sin !Z exp (16a)

s X(-Yu) 1, o 12 = 4(z /()2 sin2  , (16b)

For s << 1 using (9), (10), and (11) one finds

1(,y,u)la 2 - (i ly) [exp - a 2 ] -

- exp [ik 2 a (2o(U) + isJ.I(u) - S 2 J 2 (u) + O(s3)] (17a)

where

u = ka2S/Z.

Note that for very small s, Jo(u) = 1, jI(u) = 0(S) and J 2 (u) = O(s2 ).
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II(-Y,u) 2 - (z /k) 2 [I + J4(u) - 2 cos (ka2 /2z)Jo(u) - 2s sin (ka 2 /2z) J (u)

+ s2  J(u) - 2J(u) J 2 (u) + 2 os (ka2/2z) J2(u) +

S < < 1. (17b)

The expressions (17a) and (17b) reduce to (16a) and (16b) respectively for s = 0. For s = 1

either (7) or (10) may be used and the results are

l(, = I) 1(y,y) = i(zc/Io) exp (i-y/2) [e-i-, - Jo(Y)] /2, (1 8a)

and

I I(e,'Y) 12 -- (/(0)2 [1 + J2-(y) - 2 J 0(-y) cos yJ/4. (l8b)

For very large values of s, the representations (7) and (15a) are appropriate. Thus we have for

S> >1

(-yu) - (zc/wo) exp (i-y/2) VJl(u)/s - U2 (u)/s 2 + O(1/s 3 )], (19a)

and

jJ(y,u)1 2  (zc/w0) 2 J2 (u)/s 2 , s >> 1. (19b)

II. BEHAVIOR OF FIELD AND ENERGY DENSITY IN THE FRESNEL REGION DUE TO

EXCITATION BY SINUSOIDAL PULSES

In this study we shall consider only two sinusoidal current pulses, namely single-cycle siniot

and cosco0t, where wo is the angular carrier frequency. The respective spectra of these pulses are

F3(&) = - w0 (1- exp (i.W7))/(,W2 - W2), (20a)

for the sine pulse and

Fc(a) = i(1 - exp (iiT))/(co - (g), (20b)

for the cosine pulse, where T = 2'Aa0. As the frequency w increases indefinitely, one finds
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IF,(w) = O(1/w2) (21a)

and

IFc(to) = 0(11co). (21b)

For single-cycle pulses sintojt and cosw0t, F(w) in (13) and (14) are replaced by F3 (w) and

Fk(w), respectively.

Since we wish to compare the energy densities of the radiated fields associated with these

single-cycle pulses at a given point in the Fresnel region with that of a CW sinusoidal signal (sinwot

or coswiot), it is necessary to normalize the energy content of these signals. Therefore, we shall

assume that the energy of each of the single-cycle sinusoidal pulses is the same as the energy per

cycle of the corresponding CW signal. This assumption then leads to the following expression for the

square of the magnitude of the spectrum of a CW sinusoidal (sinwot or coswot) signal.

rFý(W) 12 = (72/(2(0o)) [6(W - (a0o) + 6 (W + (0o)]. (22)

where 6 is the Dirac's delta function. Replacing I F(w) 12 in (14) by 1 ,k(W) I, the energy density of

the sinusoidal CW excitation can be expressed as

Pcw'r = PO (wo/(2cz)) 2 I I(,y,u) I = " 12, (23)

where Po = (162vo/2)(r/wo) is a constant, which has a dimension of Watts-sec per meter. It may be

noted that I l(,Y,u) 12 is an even function of w.

For s = 0, using (16b) in (23), the energy density along the axis of the circular disk due to a

CW sinusoidal excitation is given by the well-known expression [3,5].

PC.-nriso = P.(z) =Po sin2 [1i-] (24)

where a = z /(4a 2 /) 0 ) is a normalized distance along the axis of the circular disk and X0 = 2rc Iwo.

Next from (17b) and (23) we have for s << 1
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+2{4 2 IrS -- 2]0 L J2 i" I- + 2J2 i Cos - + (25)

which reduces to Eq. (24) when s = 0.

For s = 1, one obtains from (18b) and (23)

Pc. nr = (Po/16)[1 +4 j0 I -ir 2J0  Ti- ICos I-TIr (26)

Finally, for s >> I me have from (19b) and (23)

Pc. n)=(Pol4)A Ij L-2J-]/s2. (27)

Before we proceed to compute the energy density integral (14) for the sinusoidal pulses let us now

calculate the time dependent electric field, for both the pulses at various values of s. For this purpose

the expression (13) will be evaluated using (7), (10), (16a) and (18a). The integration technique

needed for the evaluation of (13) is discussed in the Appendix B. Here we shall simply present the

pertinent results. On the axis (s = 0), the fields E.,(z,t) and E.,(z,t), excited by the single-cycle

sine and cosine pulses, respectively are

E.(z,t) = Eo [- sin wot* tU(t*) - U(t* - 7)1

a 2  a 2  U a2 l
+ sincJ(t* - -- )[U(t* - -) - U(t* )I (28a)

2cz 2cz z

E.,(z,t) = Eo P coswot* (U(t*) - U(t* - 7)1

a 2  a 2  a2

+ cosCOO (t* - L) "IU(t* - -) - U(t* - ) , (28b)
2cz 2cz 2cz

where Eo = 10o qo/2 is a constant, which has a dimension of electric field, t* =t - z Ic and U(t) is
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the unit step function. Note that (28b) can be obtained from (28a) by differentiating Ex,(z,t) with

respect to cot*. This should be expected, since E. and E.c are excited by single-cycle sinwot and

coscot, respectively. The first term of each of the expressions (28a) and (28b) is radiated directly

from the center of the disk, whereas the second term of each expression is radiated from all points on

the circumference of the disk. Since the point of observation in this case is on the axis, from which

any point on the circumference is equidistant, the radiated field from each circumferenical point is

equal and all of them add nicely to a single term (the second term of (28a) and (28b)). However,

when the observation point is off-axis (i.e. s is finite and nonzero), its distance from different circum-

ferential points is different and, therefore, an infinite number of terms are needed, in general, to

represent the total off-axis field or energy density. For s < 1 the electric fields have the following

representations.

E.('-,t) = - Lo sinwot* (U(t*) - U(t* - 7)]

Fi1si ot* w(l + S2)1j
,-0 4acwo

E=O (-1)m s J2,+1 Cos o It* 4a]oo,,,=0 4[To-a

_ _____ -u T(l+s)2  
-71

[U lt* 4o(1 + U t* 4rl+ ) 71, (29a)

where we have used a 2woo/(CZ) = v/(2a) and

Ex, (7,t) = - Eo cos wot* IU(t*) - U(t* - 7)]

i~ 2)+ E o (l)m s2 m J.m L rs cosW t * - '(1 + s
IM -0 ITI4aw

i ~~2 )
O ( -l 2m s +I J ,,,+ I is sin coo It* - '( 1 + s )1
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U~t* r(l + s)2  u w(I + s)2 
_ 1

Ut- of a), a(t*nd ( . 71 (29b)I4cico 4ci.,o I

In this case the first terms of (29a) and (29b) also correspond to the radiation directly from the center

of the disk. The rest of the infinite series of each expression represents the contributions from every

point on the circumference of the disk. For s = 0 each of the infinite series reduces to a single term

which is equal to the respective second term of (28a) and (28b). Here again (29b) can be obtained by

differentiating (29a) with respect to uot*. For s = 1, using some well known relations involving

Bessel functions, the expression (29a) and (29b) can be reduced to (30a) and (30b) respectively.

Alternatively, using (18a) into (13) together with (20a) and (20b) the relations (30a) and (30b) can be

obtained. Thus for s = I we have

E(p -= a,z,t) = (E0 /2) sin wot*[U(t*) - U(t* - 7))

+ JoF sinoo (t* - 2 U(t* - -U(o* - -3T0

ILTicJ 2awo aw0  jw
and

Ex,(p -= a,z,t) = (E0/2) cosswot* IU(t*) - U(t* - 7)]

+ JO [iICos WO(t* - 7 )fU(t* - I - U(t"* - I.L.. - 7Q1 .(30b)

Noting that t* - = t - (z + 2a 2 /z)/c = t - ((2a) 2 + z2 )112 , for 2a/z < < 1, one may
crw0

attempt to point out the origins of each terms of (30a) and (30b) in the following manner. Consider a

point P on the cylindrical surface of radius a, the base of this cylindrical surface being the circular

disk radiator. Let Q be the intersection of a line through P parallel to the z-axis and the circumfer-

ence of the circular disk. Then PQ is the z-coordinate of P. Let the point R be on the circumference

diametrically opposite to Q, i.e. QR = 2a. Then PR = ((2a)2 + z2)/ 2 - z + 2a 2 /z, for

2a << z. The first term of (30a) and (30b) shows the portion of the field at P originating from Q.
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The second term is contributed by rays from all other circumferential points, the point R having the

largest distance from P.

The electric fields for points s > 1 can also be expressed in the form of an infinite series simi-

lar to (29a) and (29b) using the relations (7) in (13). However, we simply present the dominant term

for only zl--2/a >> s >> 1.

ir(1 + s 2) (1 + S)2
E~,(r, t) -EO(l/Is) JI Iic-S os WO It aw I[Ult* 4w

L 4aw
- - (l + s)2  7"1(31a)

and

E.c,t) .Eo(l/s) J, • - sin o It* + U t* - (I + S

4aowo 
4awo

Ulf* - w(1 + s)2 _T71 (31b)

Let us now evaluate the expression for the energy density P•r) given by (14) for those special

cases used in electric field computations. Before proceeding farther let us reexpress (14) in a dimen-

sionless form which is more suitable for numerical computation. Then for both the sinusoidal pulses

we have

- t2 sin2(/s) ,

P,(r) = IPO1(2ct2)] fo q2- I(Z, r;a, S) 12d.(32a)

and

Pc-r) = [Po/(2a)2 ] S0- t4 sin( 2 r/s) Ij(E, .,C,s) 2 dE. (32b)(q2 _ 1)2

where
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i( ,';cs)-= Jo "] exp Lr (33)

For the special cases where closed from solutions are possible, we shall use (14) together with (20a)

and (20b), and the results presented in Appendix B will be employed without further explanations.

Thus along the axis of the disk where s = 0, we have with the aid of (16b) the expressions for the

respective energy densities.

P'(z) = PO [U(I/8 - a)

8a [*] sin []]1/)
+ cos s 2w " U(a - (3a)

and

P"(z) = Po [U(I/8 - af)

I-(I--!)Cos + U(a - 1/8). (34b)

It follows from (34a) and (34b) that for large values of a, for which ir/4a < < 1, P,(z) and Pc(z)

behave respectively as

P,(z)- Po r2 /(32a 2 ), (35a)

and

Pc(z)- P0/(4or)• (35b)

Relations (35a) and (35b) show that in the far end of the Fresnel region the energy along the

axis due to a single-cycle sine pulse decreases like I/z 2 , whereas the single-cycle cosine pulse causes

the energy to decay as li/z, which is much slower than that for the sine pulse. The corresponding

CW energy density (see (24)) behaves like l/z2 , which follows from
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pm(Z)- _ 0 72/(64C,), (35c)

Although both P, and Pw drop like i/Z2 in the far end of the Fresnel region, the energy density

associated with the single-cycle sine pulse is double that of CW. This shows that both the single-

cycle sine and cosine pulse can really enhance the Fresnel region when compared with the CW signal.

Noting the high frequency behaviors of the spectra of the sine and cosine pulses (see (21a) and (21b)),

it can be stated that the higher the high frequency content of a pulse, the larger is the extension of the

Fresnel region. Although a single-cycle cosine pulse.is unrealizable (similar to an ideal rectangular

pulse), the result illustrates the fact that the shorter the rise time (which corresponds to amount of

high frequency content) of a pulse, the greater is the distance along which the energy density remains

highly collimated. This observation suggests that if some realizable pulses can be created having the

frequency spectra, the behavior of which lies between 1w/o2 and 1 1w, for very large w, such pulses

are potential candidates for the enhancement of the Fresnel region.

Next we present the off-axis energy density in the vicinity of the axis (i.e. for s << 1), using

(17b) into (14), in the following manner [see the derivations of the integrals (2)-(4) in Appendix B]

16
P'(p,z) =PO "I• , s < 1/2 (36a)

i-I

16
Pc(p,z)= P. , C, s < 1/2 (36b)

i-I

where

=-(1/4) [((2/i)sin [(I -(/2ax) cos jJO [i (37a)

+ (s /a) sin [t] , [ji-] NO

S2(s/4)[f(4/1) cos [-] + (l/2a) sin I[ ] i J1 i[ ] (37b)
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(s /a) cos (i/4ct) l r IU(cf)

j,.3 =(S2 /2) [1(3/i) sin (I (14a) cos [-] 1 1 [Ii] (37c)

+ (s /2a)1 [J - sin [-c]1 JU(a),

I,.4 = (1/2)U(a), (37d)

I.5 = (1/2)J3 -] U(aO, (37e)

ls.6 = (1/8)[1(2/u') sin + 2(2 - 1/4a) cos [is-] o [is- (37f)

+S (/ar)1 J, sin Fi1JU(cx - 1/8 - ¾,
I2~ Tr c rJ 4

kj,7 (1 /8)[1(2/ir) sin L J 2(2 + j-) cos L J o L J(37g)

+ (s/a)J 'S sin ]U(C),

(,. s /8)[14/w) cos - 2(2 - -) sin li- , IJi - (37h)

- s/ar) JO ] cos [jJU(ct - 1/8 - s/)

.1a I. 4a7

1s.9 = - (s/8) [1(4/ir) cos + 2(2 + -L) sin [ I (37i)
4a

22



=" lo (s 2 /2) J1 [-lr] U (- a - ss/2), (37j)

=Sl s 2 .' [s- J2 [frI U(ct - s /2), (37k)
I•' 1wa I.. IT-s

Is. 12 = (s 2 /8) [1- (6/i) sin + 2(2 - L) cos [ J2 [ (371)

+ (s/a) Jl I sin [ ]U( - 1/8 - s14),

Is. 13 = (s 2 /8) [1(6/w) sin + 2(2 + -L-) cos I ] . [2 (37m)

2' 4a l r sI (37m)-S (/a) J [ft-] sin -4-, ]JU(cc),

1,. 14 = (1/8) [12/i) sin +J2(2 - -)cos L Jo (37n)

+ (s/ac)J, sin ]..1U(118 - s14-2),

I,. 15 = (s /8)[[ - (4/i") cos + 2(2 - -L) sin F]1 (37o)

+ (s/a)Jo cos ]U(1/8--" - a),

4,. 16 = - (s 2 /8) [1(6/w) sin [r + 2(2 - •-) cos J2] I2 (37p)

-S (/cc)J, [ ]sin [ jiU(1/8 -sf/4 a c).

= (1/4)[[(2/i) sin [] + (I/,2a) cos [' j " .,o [•] (38a)
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-S (/cO)J I sin Ft-] ]U(c4,

Ic2=-(s /4)[(l1/2a) J sin'r (38b)

+ (S /a) JO ITCXICos : W O

4.,3 = - (S2 14) [I- (2/w) sin [] + (1/2a) co [i] J2 [a(38c)

+ (S /a) J I[ITif-] sin [1]JUWOO.

4c,4 = (1/2)U(ca), (38d)

,5 = (1/2)j2 irsI U(a), (38e)

lc6 =(1/4) ,[(1/ir sin -- 2(2 - 1/4a) cos [t] IJo [i'-]s (380

- (s/2a) J, [s sin [ j]U(a - - /4)

1c,7 =- (1/4) [1l/w) sin + (2 + 1/4a) cos J] o [lrs (38g)

=c g (s /4) [(2 - I1/4ar) J T1 s sin Lf-Jcr (38h)

+ (s /2av)Jo I icsCos [tlil U(a - 1/8 - s/)

24



'c,,9 =- (s /4) [(2 + I /4a) J I f-], sin I-i.] (38i)

(s /2a) Jo Ts Cos I ]U(),

I, =-- (S2 /J2 i[-L] U(a -s/2), (38j)

=c -1 S2 j0 [*j I J2 ITIU (a - sf/2), (38k)

Ic, 12 - (s 2 /4) [(1/ w) sin T l + (2 - )cos i I "J2 (381)

- (s/2a)J1  F sin ]U( -1/8 -

Ic, 13 = (S 2 /4) [- (IPr) sin + (2 -L) cos I J2 i (38m)

"+ (s /2at) J [S,] sin [f-], IUMCI),

4.,14 =(1/4)1[1- (1/1w) sin [..!]+ (2 - -)cos [ V o [~ ~(38n)

"+ (s /2ax)J LJ sin LJIU(- L - a),
I Tcs,8 4

1,s 15 (sf/4) [(2 - 1/4a)J M sin [](38o)

"+(s /2ag) J Cos U- i 48-S )

4c, 16 = S - s/4) [1(1/ir) sin [ij+ (2 - 1/4ot) cos [ J] ITC - I] (38p)
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-(s/2at) J [Z] sin [ ]IU(118 - sf4 - ar).

Note that for s = 0, the relations (36a) and (36b) reduce to (34a) and (34b) respectively. Then

for s = 1, using (18b) in (14) we have

P,(p = a,z) = (P 0 /8) [1 + J02 - 2JO [i cos

+ (I /2a) hO [~~ TcrICos [f-]r, - i I.. it ,

and

P,(p = a,z) = (Po/8) [1 + j 2 " - 2.IO cos Ir

+ (I /2a) f.!0 [f-T]c ICos [ ] .1. I [ifji sin

Finally for s >> 1, use of (19b) in (14) yields the following expressions for the energy densities.

ps(p,Z)= poj2 /(2s 2) =pC (p,z), 1 << s < 2a. (40)

The conditions, such as 1 << s < 20e, U(a - 1/8 -s/4) etc., which appear with various

expressions indicate the region of validity of that expression in question. These conditions are noth-

ing but the requirements of the convergence of certain integrals, which had to be evaluated in obtain-

ing that expression. In addition, it is also necessary to remember that the validity of the approxima-

tion in (2a) used for Fresnel region requires a2 /(2z) << z, ap/z << z and p2 /(2z) << z, which
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are equivalent to 4ci(a /o) >> » ,s and 4a(a /4) > > s /-, for all values of s and a. These later

conditions, must therefore, also be imposed simultaneously with those mentioned above.
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APPENDIX B

EVALUATION OF CERTAIN INTEGRALS

Special cases of the following integrals involving Bessel, exponential and trigonometric functions

appear in the Appendix A.

~2 j

= SMF (w)2 I, (,B&o) J (Owa)dw, (2)

2, =(a) I 1,()' j. (0o) cos (o8a) da, (3)

,= • I•Ft(w)2 J, (wo) sin (60 cw) dw, (4)

where 0,, o and a are positive; and I = s for the single-cycle sine pulse and I = c for the single-

cycle cosine pulse. The frequency spectra of the single-cycle sinusoids are given by

Fs(w) = 2i coo ei'.Y/2 sin (coT/2)/1(c 2 - e0), (5)

Fc) = -2wo eiT/2 sin (coT/2)/(c 2 
- 0o), (6)

where w0T = 2w. Since the functions ^,(w) and F'c(wa) are bounded (or finite) at w = -- wo, these

points along the real axis of w are not the singular points (or poles) of any of the above integrals.

However, the factor e iwT12 sin(wT/2) has different exponential behavior in the upper and lower

halves of the complex w.-plane. Therefore, it is necessary to split this factor into exponential form,

(e iwT - 1)/(2i), and then consider each term of these factors separately for evaluating the resulting

integrals. However, this procedure introduces pole singularities at w = * wo on the real o-axis in

each of the separate integrals. In order to avoid this difficulty, we replace the integration path from
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- c to +a in the original integrals (1) to (4) by a path (or contour) C (Fig. 2), which also runs

along the real axis except at w = +.coo, where upward (i.e. above the real axis) indentations are

made, thus avoiding the path running through w = -. co. This is permissible, since the original

integrals before spliting the functions F^(W) or I F(w) 12 into exponential forms, are analytic in the

neighborhood of w. - - wo, an appropriate deformation of the path of integration around these points

will not change the value of the integrals. Therefore, the original path along the real axis for all the

integrals (1) to (4) is replaced by the contour C, described above.

Before evaluating (1) to (4) it will be very helpful to consider the following auxiliary integrals

involving Bessel and Hankel functions of integer orders.

S= IC ( 2 -w) exp (-iwo) dw, a 2-- > 0, (7)

A = C W I . ,O)exp (-icoa)dw, a 6 > 0, (8)

A f3 - C MOW2_2)2 (-i~w) dwe, 6 2t > 0, (9)

J.(0w)

f4 w2  (w ) exp(-iMw) doa, b t 6 > O, (10)

J4(03w) R~0~w000~m~(1
C(W2 -WO)

A = MO(W) _ .2)(6) •`0w),, # > 0, 0 5 m :- n, (12)

6 = IC W(2Jnw(OW) /f2) (Ow)d0, 0 > 0, 0 5 m s n + 2, (12)

I 2MOW) Jm(0w) exp (-iaw), a a 2,0 > 0, (13)S•C (W02 _ W•2

=0c 2 Jw(() exp (-icrw), a > 2 0 > 0. (14)
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The contour C of the above integrals (7)-(14) can be joined by an infinite semi-circle in the

lower half of the complex w-plane. The integrands on the infinite semi-circle vanish either exponen-

tially or at least as w- 3I 2 . The branch cut of H(/1) (Ow) in (11) and (12) is chosen along a ray (start-

ing at the origin w = 0) in the 2nd guadrant of the w-plane, making a very small angle with the nega-

tive real axis, so that the branch cut does not touch the indented contour C. In order to avoid the

branch cut, the contour C in (11) and (12) is indented also below the origin, although they are not

shown in Fig. 2. It may also be noted that imposition of various convergence conditions, such as

o _ m _ n, o : m _ n + 2, 2 > 0 > 0, 6 z 0 > 0 and u > 2:0 > 0, the behaviors of the

Bessel and Hankel functions in the complex w-plane played a role. With these preliminary observa-

tions, the preceeding integrals can be evaluated easily by the application of the calculus of residue. In

particular, if N(wo) represents any of the numerators of the integrands of f3 to f8, then the value of

those integrals can be expressed as

(-21ri) [d.; (N(W)/(W - O})2 + {N(w)/(W + Wo)2 j . (15)

Following the procedure outlined above, the integrals (7) to (14) can be evaluated as presented

below.

r-2w'/wo,) I, (Ow•o) si (wo0 c) U (ci - 0),

(= sfor n = 0, or even integer, (16a)

r-(2vi Icwo) J'. (Owo) cos ("'o a) U(a -

-- ,or n = odd integer, (16b)

r0, for x a 0
where U(x) -- o, for x < 0' (17)

r(-2'i) J. (0 coo) cos (wo a) U(a - 0)
-42 = forn = 0, or even integer, (18a)
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r(-2i) J. (O&o) sin (to a) U(or - 6)

= tfor n = odd integer. (1 8b)

3) [(n + 1) j. (a wo) sin (6 Wo) - fl j. (DC8(0) Sin (boo)

-6(-o J. Wvo) cos (&do)] U (a - 0), (19a)
for n = 0, or even integer,

0W/W) f[(n + 1) J,. O(ft) cos (6 w0) - 6wo J _n - (flwo) Cos (b&o)

= + j wO J,. J Oo) sin (6 too)] U(b - j6) (19b)

Lfor n = odd integer.

(vIco) [(n - 1) J. (Owo) sin (&iso) - Owo J._ - (IOwo) sin (6(.o)

-= -&o JJ. (Dwo) cos (&fo)] U (b - .6) (20a)

Lfor n = 0, or even integer,

(i /co) [(n - 1) J. (DCO) cOs (Wo) - 00o Jn.-I (DWO) COS (6 (0o)
+ i +&f J. ("o) sin (&&o)] U (b - 6), (20b)

Lfor n = odd integer.

(i71Wo) [I(n + m + 1) J, (PcO) - flwo J. -I (fl"o) Jm (Ofw0)

- 6" J. 6("o) Jm-1 (AWo)] (21a)

Lfor n + m = 0, or even integer,

(/wo) [11(n + m + 1) Ji (D0o) - rwo J,. -I.(Owo)j N. (0wo)

- j~wo J,, (Swao) N.- (f(i30)l (21b)

Lfor n + m = odd integer,

where N,4(16wo) and N,-t(J16o) are Neumann's functions.

Taking now the real and imaginary parts of (11) and (2 1) we have

J'n6(16) Jm (0w)dw

=C (,02- 0)2

_ rO,for n + m = 0, or even integer,
- 0 s m s n, (22a)
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er,3) [I(n + m + 1) J. (g(00) - gWo j.--t (0CO)W, (6wo)
- 0lw J, (Oo"') Nm-I (ftw)]

for n +m -= odd integer, (22b)

and

= J. (o)w Nm. (fw) dw
(02 -C W 2)2

"IOrl/`o)[I- (n + m + 1)J. J (o) + [`o Jn,-i ([30o)}Jm ([3wo)
+ `IOW ([3`o) Jm,- (0o.o)
for n + m = 0, or even integer, (23a)

Osm S n,

= Ofor n + m = odd integer. 0 _5 m _< n. (23b)

"(-ir/wo)[t- (n + m - 1) J,. (Oo) + 0Wo Jn-I (Owo)l Jm (0Wo)
+ 16(00 J. (00.0)J . - 1 ([ -0001,

J6 for n + m = 0, or even integer (24a)

-r/o)[- (n + m - 1) J. (Owo) + &0o J.I (Oo)I N. (fWoo)

+ + W, Jn (w 0O) Nm - 1 (twO)] (24b)

jfor n + m = odd integer, 0 -5 m :S n + 2.

Equating real and imaginary parts of (12) and (24) we have

0,2 J (,CO) Jm(O) d, 0n

((2 2o)2 m n +2

-{0, for n + m = 0, or even integer (25a)

(-/uO)[- (n + m - 1)J, (fio) + Owo J. - 1 (Owo)jNm (O0oo)

= Scf+ Jo2 (16go) Nm.- I (Ocfo)] (25b)

Lfor n + m = odd integer.
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(02 J. () N. (f8w)dw
• =|c ((02 - (010SO m S n +2

(r/(o)[- (n + m - l)J, (&0o) + f1OoiJo - (ftuo)l J, (0(00
- + &0 J. (AW'o)J.-I (6wo)] (26a)

Lfor n + m = 0, or even integer.

Sto, for n + m = odd integer (26b)

(F/WW3) [(n + m + 1)Jn (fo) Jm (J'o) Sin ((row)

- I' Vw n -1 (80)0) m (f6(00) + Jn (OWO) Jm-I (ao)I sin (ucwo)
- uo0o Jn (j€oo) Jm (Owo) cos (a(0o)] U(u - 20), (27a)

Lfor n + m = 0, or even integer,

"(filr/o3) [(n + m + 1) in (#aO) j3 (16(O) COS (a (00)
- PO 1in-I (WO) J.i(f0 0 ) + J,, (COO) Jm,-I (fWo)I cos (ao )

+ O coo Jn (C(&o) m (Out) sin (a o%)] U (a - 26) (27b)

for n + m odd integer.

iWAo0) [(- (n + m -. 1) I. (OWo) + OWO -1 (OWO)i in (OCaO)
= + Awo J. (cA0o) Jm.-.i (Owo)] U(o - 20) (28a)

Lfor n + m - 0, or even integer,

-r/o) [If- (n + m - 1) n (WWO) + OWO Ji-. i (flo)I Nm (&o)

- + fl(0o Jn (Wco) N._ - (w0o)] U (a - 20) (28b)

Lfor n + m = odd integer.

In addition, the following relations can be easily established.

J9 =fc ((02 _ (o = 0, a > ( > 0, (29)

(W2 _ (l01) •id0

J1o = nc (OI) e'odw > 0 > 0 (30)
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J.(-6,w) e'(- dw = 0, > j6 > 0 (31)

A12 = ff 0 (2 J. ,W) -- 0,8> f > 0, (32)
(W2 - Wý

J13 = JC J(aw _M",0(w)dw =0,0>0,0:sm _<n (33)

SC (Wa2 - Ja 2)

2 j"•8W) H (",)dw
4 =(W2 _2)2 0o, # > 0, 0 _< m s n + 2. (34)

For (33) and (34) the contour C is also indented above the origin and the branch cut of H<,(mc)(0) is

chosen along a ray from w = 0 to - oo slightly below C in the 3rd quadrant.

Jn,(fl"a) Jm(0a")eaO°wd"

5sS = IC J 'w) _--- w = 0, a > 2j6 > 0 (35a)

. W2 2.• )2j.Oeiod

16 = C w2 J w) J.j)e' d = 0, o > 2 > 0. (35b)
(W2 2-

For all of the integrals (29) to (35), the contour C can be closed by an infinite semi-circle in the

upper half of the complex w1-plane. Since all of the integrands vanish on this infinite circle and the

integrands are analytic inside the closed contour, the integrals vanish. Furthermore, we have

J17 = c(,W 2 d( ")2 = 0, (36)

ji= fc (.2 _w,) 2 = 0,T> 0 (37)
e -(2T

19 = IC e wT 2 / ,T > 0 (38)

Aod -= - ] sin to" U(t) (39)

A' = 5c (W ,2 0) _ - 2"i cos coot U (t) (40)
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In view of (7) and (35), we have the following relations.

J=c.I (8`0) J.(,c,,) cos (a `o) do,
(C (W2 *2)2 =AJ/2, a > 20 > 0, (41)

3= cJ,. (Ow) J., (8(j) sin (a ̀ 0) d`0
(23= `0)s = -( 2A/(2i), a > 20 > 0. (42)

Similarly, from (9) and (31), we have

J.(jlco) cos(5*)dw -J3/2,5>0>0 (43)

A25) sin (5 2)2 A ` _ /(2i), 6 > j6 > 0, (44)

From (10 and (32), we have

J26 = IC 4,
2 J. (8w) cos(6w)dw f /2, 5>#>0, (45)

6 C (2 -

w2 . (.Ow) sin (S w*o) d *>
A7 = Ic (,o2 _*2)2 f- -J/(2i), 6 > 03 > 0, (46)

Similarly, from (14) and (35), the following relations can be obtained.

J2 = JC (0 _w)() c (at)d A/2, a > 20 > 0, (47)

W 2 j n (j3co) J,.(pw*) sin (a *oa) d w0
A 29 = JC (,o2 _ (,a2)2 =- J/(2i), o > 2a > O. (48)

Using now the preceeding results we present the integrals (1) to (4) for I = s and c in the following

manner.

~f~s = s(d))Jn (Ow) e d w

v- J. (P co) sin (coo O) [U (0 -) - U (a -0- T)]

lfor n = 0 or even integer, (49a)
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= i J. (ft wo) cos (wo) [U(a - o) - u (a- 0 - 7)
=Jfor n = odd integer. (49b)

i M . ca e- d to,

Iwr J.0 (f t) cos (a (ft) [U(a - 0) - U(a - 0 -A

- for n = 0, or even integer, (50a)

= 21ri J,. & ) sin (a cft) [U(a - 6) - U (o - 0- 7)]
f--•for n =odd integer, (50b)

cm~ I Fs(W) 12 j.(Owj) J.(16) d w

C(2fl 2 /, o) Jn (woo) J4 0 coo) U (O/oo - 0)
=",for n + m = 0, or even integer, (51a)

-(2i"/cao) [I-(n + m + 1) J, (ft $o) + 6coo J"I-1 (6o.0)INm (o.o)
+ 0 too iJn (. wo) Nm. _ (6 .,o)]U(S)

+(ilr/oo) [- (n +m +1) Jn(iOto) J, (fooo) + 0(.o J. (Ocft) J. (0•cO.) (51b)
+ 0 WJ,, (0WoO) J,-1 (0 (ut)] U(T/,o -o)

for n + m = odd integer.

Ie~~ Fc (W)12 jn(. a J.(0 w)d co

"(2w2 Ao) J. (0 fto) J. (0 (00) U (rlwo - 0)

=f {for n + m = 0, for even integer (52a)

2 w/coo) [I(n + m + 1) J, (0 oo) - Oowo J. -1 (0 0 u)1 Nm (f wo.)

- w ,.,o J.(Oo) N._-I (O,,o)l U (0)

- (ihri/c) [I(n + m - 1) J. (0 oo) - 0 JIn -i (o wo)] J.m (o wo) (52b)

- O(t A (0. oo) J.m- ( too)1 U Or/,,o - 0)
for n + m = odd integer.

-f2., a' I s(Wa)I12jn (ft w) cos(0o w) d c

= (r/ 2 ,o) [(n + 1) JI, (O,,o) sin (Oo ot) - 0 cft J.--I (8wo) sin (Oo coo)
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"+ (2v - go c%) J. (c8 ) cos (go "')l U (2v/wA - go - 0)

"+ (v/c) [(n + 1) J, (P o) sin (0o c) - J. -1 _ft (•) sno (0o ('0)

AD •o J .j6, cao) cos (0oao)] U(Oo - j)

* (r/2ao) [-(n + 1) J. (8 c%) sin (j6o wo) + 6 wo J. -_I (• 8o) sin (lo too)

+ (0o co - 2r) J, ((ft) cos(0 0 coo•)] U (fio - 2w/w0 - 0)

+ (r/2wo) [- (n + 1) In (Oo) sin (16o wo) + 0 'o J.-1 (0 wo) sin (00 'o)

+ (21 + gowo) Jn (0 "o) cos (,So wo)] U (2w/wo + Oo - 0)

when n - 0, or even integer. (53a)

-( 2,o) [(n + 1) JR (0 •) cos; (1o o) + w i -1 (0 ,o) cos (0o coo)

"+ (2v - f•owo) J,, (8 to) sin (6o w0o)JU (2-/coo - u - P)

"+ Y(ir/c) [(n + 1) J,. (W "o) Cos A• ") - 0 ,"' J. -I (ft ".) Cos ('60•

+ fbo wo In (0 "o) sin (bo (ao)] U (bo - 0)

+ (iwr/2uot)[- (n + 1) J,. (0o") cos (b "o) + 0 ao "Jn -1 (0 wo) cos (bo coo)

+ (,6b oo - 2w) J., (0 "o) sin (bo wo)] U (4b - 2 1r/co - 0)

+ (i '/2"o) [- (n + 1) J. (0 coo) cos (f0o uot) + 0 oo J. -I (O•oo) cos (bo wio)

- (21r + Oo coo) J.n (0 co) sin (bo wo)] U (2r/co0 - Oo - 0), (53b)

when n = odd integer

J 2 .c, , I 1()12 j. (16w) cos (0Oo,)d w
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=(v/ 2 cft) [(n - 1) J.~ (8i oo) sin (00 oo0) - #ao j,..._I (aowo) sini (00 coo)

+J (2ir - AD (ft) J. (ft)CO (6 cs(ow)J U (2ir/w - 160 - 1)

+ (/ct) (n- 1) J. (8o) sin 1O0&a WO Jn - 1(16 cf) sin (#w0 f)

Ao cfJ. (j6 o) COS(fto cf)IU (10 - 0)

+ (v/2cft) [-(n - 1)J,. (8i wo) sin (00 cft) + 0 cf J. - (8 coo) sin (80 &V')

"+ (o wo - 2-) J. (,6 wo) COS (~o 'wo)] U (00 - 2 wlwo - f)

"+ (7/24ft) [ - (n - 1) J., Wi5wo) sin (#o coo) + 0 wo Jn - 1 (06 cooi) sin (00 W'O)

"+ (2ir + 100o0)Jn (fi wo) COS(flo cf)J U (2ir/w + 16 -01) (M4a)

when n = 0 or even integer,

(i v/2oi0 ) [(n-l1) Jn (0 Wa) COS (060 WO)+ ftWO J - I(ft WO) COS (00 COO)

* (2w - flo 'a') Jn (0 (Aov) sin (16o wo)] U (2vw/w - 160 - 05)

+ 0iT/Wa) [(n - n (8 Wat) COS (60o "o) - 6(0 "'o 1 -I (OWO) COS (00 WOo)

*+0 WO ' Jn (06 Wa) sin (fl0 coo)] U (flo - 06)

+ (i v/ 2 coo) [-(n - 1) J,, (flwo) cos (6o coo) + ftwo J. -1 (0 "'o) COS (go 'oo)

+ (j60 cf - 21r) Jn (Oowo) sin (00o Wa)] U (00 - 2w/coa 0)

+ (i v/ 2 (f)[ - (n-i1) J., (16cf) cos (80 cw0) + Ocoo Jn- I (O6wo) COS (00 WO)

(2v + 00 (ft) Jn (P lwo) sin (160 to)] U (2w/Wao + fib -0f), (M4b)

when n = odd integer.
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J'3.s ý_I,(w,)IJ. (0 w)sin (go(a) d t

- (i /2co)[- (n + 1)J, (flwo) sin (fo wc) + 0 c% J..- (1co%) sin (60o (0o)

- (21r - 160 co) i, (1wc) cos (go coo)] U (2wr/cwo - gio - 0)

+ (i'r/co)[ (n + 1) Jn (Owoo) sin (0fo wo) - 0 Wo Jn -I (Ol oo) sin (0o wo)

- fo w&O Jn (0 WO) Cos (fib wo)] U (fi0 - 0)

"+ (ixr/2wo)[ -(n +1)Jn (Owo) sin (gio wo) + 0 wo Jn-I (g wo) sin (gio wo)

"+ (go wo - 21r) Jn (0 wo) cos (fo wo)] U (go - 2r/wo - 0)

"+ (i"/ 2wo) [-(n +1) Ji, (0 wo) sin (go wo) + 0 ')o Jn-1 (0 wco) sin (fio w0 )

"+ (2v + bo cwo) J,. (0 "oo) cos (fo wco)] U (2 w/wo + fo - 0)

when n = 0, or even integer, (55a)

= (r/2wo) [- (n +1) Jn (Owo) cos (16 "'o) + 0 "'o J.-I (Owo) cos (0o wo)

"+ (2v - bo wo) J. (fcwo) sin (0o "'o)] U (2/lwo - fo - 0)

"+ (r/woo) [-(n +1) J, (Owo) cos (0o wo) + 0 wo Ji- 1 (06 wO) cos (fo "'o)

- 0o wo Jn (0 "g) sin (fio wo)] U (fio - g)

+ (v/ 2uo) [(n +1) Jn (0 wo) cos (00 wo)) - 0 co J,-1 (0 wo) cos (130 "'o)

- (fbo wo - 27) Jn (0 woo) sin (fio oo)] U (fio - 2r/cwo - 0)

"+ (7/2 wo)I(n + 1) i. (8 coo) cos (0o wo) - oo J.I - (06 ") cos (00 wo)

"+ (2ir +o .0,) J., (0 w0o) sin (f6 ,%)] U (2ir/wo + lo - f) (55b)
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when n = odd integer.

1e3,c = _ IFc(co)1 2 Jn (.0 co) sin (O0 0 o) d co

= (iwr/2ooj)t-(n -1) Jn (,w) sin (go coo) + wo Jn-I (coo) sin (8o coo)

- (21r - Oo wo) J (g coo) cos (0o to)] U (27/0co - 0o - 0)

+ (ir/uo) [(n -1) J (P w) sin (00 coo) - 0 coo J.-( 1 o.'o) sin (Oo coo)

- 160 co nJ (0 coo) COS (Wo coo)] U (Ao - 0)

+ (iwv/2coo)[- (n -1) in (0 coo) sin (go coo) + 0 oo Jn-i (-coo) sin (Oo 0o)

+ (flo &)o - 2w) J. (0 wo) cos (80 coo)] U (,o - 2 w/coo - 0)

+ (iwr/2coo)[- (n -1)Jn (06 coo) sin (8o c(o) + 0 coo Jn- (10 coo) sin (0o coo)

+ (2 v + jo coo) in (flo) cos (o6 o)] U (2ir/coo + 0o -0 ), (56a)

when n = 0, or even integer

-3.c = (r/2coo)[-(n -1) In (ftwo) cos (fib coo) + go coo in-1 (0 •o0) Cos (0 co)

+ (21 - j6o coo) Jn (0 coo) sin (0o wo) ] U (2w/coo - fo - 0)

+ OrI/)[-(n -1) Jn (0 0 ) cos (Io ol + go o J.- i (wo) cos (o co)

- Oo co nJ (fcoo) sin (f0 coo)] U (,6o - 0)

+ (r/2coo) I(n - l)Jn (8 coo) cos (fto coo) - wcoo In -I (0 coo) Cos (Oo coo)

- (o coo - 21r) JI (ft coo) sin (fi coo)] U (fto - 2 1r/coo - 0)

+ (w/ 2 &o)[(n -1) Jn (fSo) cos (f0 coo) - i coo-I-1 (0 coo) cos (g0 coo)
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+ (2r + too) J. .8 ,0o) sin (Oo oo)] U (2r/coo + go -0) (56b)

when n = odd integer.
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Fig. I - A circular disk of radius a = D/2, which is excited by uniform single-cycle sinusoidal currents.
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Fig. 3a - Normalized energy densities along the axis of the disk for a < I

46



0!2

a~C -J LLC)WW

I- 0e

oi L< to VI

I I.to 0

Io <

< c 00~ I 'Z J LLWc

m- >( Ocr

00 a5 a <

z LL J crw <S

ir IS
w w

C - - a

0 < Tc - >- cc LL*~( cLeea
Ir I

(OP w acriv) ~fl~O

z4



1.5 S= s=p/a
Z

CO)

L9D1.0 Is=0.1 25

W ,

-- a:.5 s=l0.25•

SO0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

aZ = z/(D2/X,0)

Fig. 4a -- Normalized energy densities associated with the single-cycle sinowot for different values of s
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Fig. 4b - Normalized energy densities associated with the single-cycle cosoit for different values of s
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Fig. 5a -- Normialized field as a function of r for a = 0.25
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Fig. 5b - Normalized field as a function of r for o = 0.5
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Fig. 5c - Normalized field as a function of 7 for a = 1.0
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Fig. 5d - Normalized field as a function of 7 for a = 0.5

53


