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May 21, 1992

CHANGE ANALYSIS AND
FISHER-SCORE CHANGE PROCESSES

Emanuel Parzen
Department of Statistics
Texas A&M University

College Station, Texas 77843-3143 USA

This paper is written for discussion at the AMS-IMS-SIAM Summer Research Work-
shop on "Changepoint Analysis", at Mt. Holyoke College, July 11-16, 1992 and at the
Carleton University Workshop on "Changepoint Analysis," August 31-September 5, 1992.
Contents are:

0. Goals
1. Comparison change analysis as probability study of (X, Y);
2. Asymptotic distributioiis of sample change processes;
3. One way analysis of variance (AOV);
4. Change analysis approach to AOV;
5. Components of change analysis;
6. Four phases of change analysis;
7. Nonparametric statistics for multisample analysis;
8. Fisher-Score change processes.

Change last year,
Change the year before!
Expect Change this year,
Unlike any change of yore?
To detect change, without fear,
CUSUM process your score ...
Unity makes practice of statistics clear.
Who could ask for anything more?

0. GOALS
Ultimate goals of our research program include: unify parametric and nonparamet-

ic inference for continuous and discrete data; synthesize classical statistical methods and
changepoint hypothesis testing; demonstrate that mathematical statistical and data an-
alytic approaches are both needed for statistical inference; stimulate exoteric methods
(applicable by applied researchers) rather than esoteric methods (known only to a small
group of mathematical statisticians); combine mathematical statistical and data analytic
views to develop methods of statistical analysis which are based on assumptions (known
model) which are tested in ways that provide insight how to model deviations of the data
from the assumed model (and thus often identify a "true" model as an "iterated" model
which models "residuals"); contribute to solutions of the historical basic applied problem
of statistics: distinguish change (of the model) from fluctuation (within the model), the
variability expected under homogeneity.

This paper is not a finished or rigorous presentation of results; it is a stimulus for
discussion about open research problems in change analysis. One need may be to determine
how to develop a classification scheme to catalog the past and future extensive literature
about statistical methods to model change.

Researrh supported by the U. S. Army Research Office
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1. COMPARISON CHANGE ANALYSIS AS PROBABILITY STUDY OF
(X,Y)

This section outlines the notation and concepts that we introduce (Parzen (1992))
in our probability theory of the relations between two random variables X and Y. They
motivate the statistics that we propose to describe the changes over time of a series of
observations Y(t), t = 1,2,.... To apply the probability theory of (X, Y) to data, let X
represent t, the index of observation.

The distribution function, quantile function, probability mass function, and proba-
bility density functions of Y are respectively denoted Fy(y), Qy(u), py(y), fy(y). We
assume that Y is either discrete or continuous, X is either discrete or continuous.

To develop a theory that applies to both discrete and continuous variables we define
r, 0 < r < 1, to be an X-exact value if

Fx(Qx(r)) =,r.

If FX(.) is continuous, all T are X-exact. If FX(.) is discrete, r is X-exact if there exists
value x at which Fx jumps and x = QX(T) (therefore Fx(x) = T-).

Let U denote a random variable which is Uniform[O,1]. If Y is continuous, the proba-
bility integral transform Fy(Y) is identically distributed as U. If Y is discrete we transform
Yto Fid(Y) = Fy(Y)- .5py(Y).

If u is Y-exact,
Prob[Fmid(y) < u] = u = Prob[Y < Qy(u)].

A function J(u), 0 < u < 1, is called a score function (to be more precise, Y-score
function); it is called normalized if

J(u) = 0,j J2 (u)du = 1.

Score change density and score change process: Define for 0 < r < 1

c(r, J) = E[J(Fmid(Y))IX = Qx(r)]] - E[J(U)],

C(rJ) = 0c(, J)dt.

For a sequence Y(t), t = 1,..., n, analogous concepts are, defining
n n V QUALITY IVP~pECTE, -

Y-= (1/n) E Y(t), f- = (1/n) f(Y(t)),
t=1 t=1 Aoeeslon For

the sample change density -TIS GA&IB
DTIC TAB []

c(r) = Y(t) - Y-,(j - 1)/n < r < j/,j = 1,... ,n. Unazm:.;rjced 0Ju st 'Ic t 1on
and the sample change process

By

C-(_)= C-(t)dt, 0 < 1
10 Availability Cod.s
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which is our version of CUSUMS. Dat | Speo /l
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Patterns in these change processes will be examined by computing linear functionals
for suitable change-score functions K(r), 0 < r < 1. Define

[c(., J), K] = [J, KI = 1 c(r, J)K(T)dr

We call [J, K] a double score component. It measures how c(r, J) behaves as a function of
r (for J fixed).

Change Theorem C: C(r, J) linearly interpolates its values at X-exact values of r,
where it satisfies

C(T, J) = r(E[J(Fyid(Y))IX < Qx(r)]I - E[J(U)]).

The proof of Change Theorem C requires the methodology (Parzen (1979), (1991),992), (993)) of comparison density functions d(u; F, G) and comparison distributions
(u; F, ); they compare two distributions F and G which are either discrete or continuous.

D/u) is defined as the integral of d(u), d(u) = D'(u). When d(u) is piecewise constant,
D~u) is piecewise linear. When F and G are both continuous we define D(u; F, G) =
G( F- (u)).

Change Dependence Densities and Distributions: define, for 0 < r, u < 1

d(r, u) = d(u; Fy, FYIX=Qx(r)),

d(0,,r], u) = d(u; Fy, Fyx<Qx(r )).

D(r,u) = D(u;Fy,yIX=Qx(r)),

D([O, r], u) = D(u; Fy, FyIx <Qx(r)).

Best Change Theorem D: For r X-exact and u Y-exact

rd([O,r],u) = j d(tu)dt

We call this theorem best because it explains why estimators of rd([0, r], u) for fixed r
have asymptotic variances similar to that of probabilities rather than densities, and it
yields proofs of all change theorems stated. The proof of Change Theorem D is outlined
in Parzen (1992).

Change Theorem E: c(-r, J) = fo J(u)(d(r, u) - 1)du

CQr, J) = j 1 J(u)(d([0, -T], u) - 1)du

[J,K =K(7)J(u)(d(rU) - 1)du d

Important score functions are indicator score functions J(.; u): J(u'; u) = 1 or 0 as
u < u or u' > u. Assume u is Y-exact. Denote by c(r, u) and C(r, u) the change density
and change process of J(.; ,t):

c(r,u)= Prob[Fyzid(y) _ uIX = Qx(r)I - u,

C(r, u) = r(Prob[Fyt(L(Y) < uX < Qx(r-)]] - u).

3



Change Theorem F: At X-exact r and Y-exact u

C(r, u) = r(D([O, 7], u) - u)

C(r, u) = D(T, u) - ru

Another important score function is J(u) = Qy(u). Its change density and change
process correspond to conditional means of Y:

c(r, Qy) = E[YIX = Qx(r)] - E[Y],
C(r, Qy) = r(E[YjX < Qx(r)]- E[Y])

Measures of dependence can be defined in terms of

fO Ic(r, Qy)I2 d = VAR(E[YIX]),

C(,r, Qy)d-r = -(s - .5)c(s, Qy)ds

When X and Y are jointly normal with correlation coefficient p,

E[Y - E[Y]IX = ([Y]/o[XJ)p(X - E[X])

Therefore the change density of Y given X, when (X, Y) is bivariate normal, is

c(,r,Qy) = fp-'P-1 (,r).

Its integral is C(r, Qy) whose graph has the typical shape of a change process which is
able to detect whether there is a change in Y as a function of X.

To test the independence of X and Y one examines change processes c(r, g(Qy)) for
several transformations g, which correspond to conditional means of non-linear functions
of Y. The problem in practice is how to choose informative non-linear functions.

If one assumes a parametric model fO(y) for the true density fy(y), where 0 is a vector
parameter with components Oj, one choose non-linear functions of Y equal to Fisher-score
functions, defined by

Si(y,G) = (O/89)logfo(y).

Fisher-score change densities are defined to be c(r, Sj(Qy, 0)).
They are called parametric change densities in contrast with c(r, J) which are non-

parametric change densities.

2. ASYMPTOTIC DISTRIBUTIONS OF SAMPLE CHANGE PROCESSES
Empirical process theory studies limit theorems for

in
C-(f)= -(f(Y(t))- E[f(Y(t))])

t=1

uniform in f belonging to a specified family of functions f(y).
Empirical change processes theory studies limit theorems for

C(r, f) '- (f(Y(0) -
t=1
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where f- is the sample mean of f(Y(t)).
Sample versions of change processes C(r, J) and C(r, u) computed from a sample (of

size n) are denoted C'(r, J) and C-(r, u); using theorems in the literature (especially Cs6rg6
and Horvath (1987)) one can show that they have large sample asymptotic distributions
under the hypothesis of no change (where B(r) is a Brownian Bridge and B(r, u) is a
Brownian sheet)

n' 5 C~(r, Q'y), 0 < 7r < 1 converges to B(r), 0 < r < 1.
n'5C'(r, J), 0 < r < 1 converges to B(r), 0 < -r < 1, assuming J normalized,
n'C-(r, u),0 < r,u < 1 converges to B(r,u),0 < r,u < 1;
for fixed r, (n/r(1 - r))'C~(r,u),0 < u < 1 converges to B(u),0 < u < 1.
Parzen and Horvath (research in progress) establish similar asymptotic theorems for

Fisher-score change processes
n 5 C( r, Sj(Qy, 6))

where 6 is a maximum likelihood estimator.
For comparison distributions, the asymptotic distributions under the null hypothesis

of no change axe
n 5 (D-(r, u) - -ru) converges to B(r, u)

n'5r(D-(0, r],u) - u) converges to B(-r, u)

The Pyke-Shorack two sample process can be expressed: for fixed T-, as n tends to 00,

(ni-/(1 - -r)) 5 (D([Or],u) - u) converges to B(u).

The sample distribution ftmction F- of a sample (of size nj) from true distribution
F can be studied as the limit of two samples as r -- 0, first sample size n 1 = nr --- oo;
empirical processes can be expressed

njh(D-(u; F, F) - u) converges to B(u).

The foregoing are asymptotic distributions of sample change processes under the null
hypothesis of no change. Of great interest are their asymptotic distributions under alter-
native hypotheses of change.

The sample comparison function D(u; G, F-) of the sample distribution function F-
with a model G, when the sample of size nI has true distribution function F, has asymptotic
distribution

n'l5 (D (u; G, F) - D (u; G, F)) -- BF (D (u; G, F))

where
BF(u) = nl5(D(u; F, F-) - u)

is called the empirical process of the sample and is approximately a Brownian Bridge.
Under suitable conditions

n, 5(D -(u;G,F - ) - D-(u;G,F))

(d D-(u;G,F)) (-1)BF(u)

The comparison of the sample up to time r (of size nr) with the whole sample (of size
n), under the changepoint assumption that the sample up to time r and the sample after
time r have respective true distributions F([0, r], y) and F([r, 1], y) and pooled sample
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has distribution Fy(y) = F([0, 1], y), has asymptotic distribution for fixed r suggested by
Pyke-Shorack theory for two samples: as processes on 0 < u < 1,

n 5 r (D'([0, Tr, u) - D([O,r, u))

-- Td([0, 7], u)B[,,Ij((1 - T)D([7, 1], u))

-(1 - -rd([0, rj, u)B[or]( D([0, r], u))

where B[or](U ) and B,1](u) are the empirical processes of the samples before and after r

respectively. Note that B(TD) symbolizes r' 5B(D), and

TD([0, r], u) + (1 - r)D([r, 11, u) = u.

From Ruymgaart (1974) we obtain results when (X, Y) has a continuous bivariate
distribution:

n'5(j K('r) J(u)dD-(-, u) - jjK-)J(u)dDi-r, u))

Normal (0) j IV(r,u)12dD(r,u))

defining

V(r, u) = K(r)J(u) - j j K(t)J(s)dD(t, s)

+ f I K(t)[e(s - u) - s]J'(s)dD(t,s)

+ jo j K'(t)[e(t - r) - t]J(s)dD(t , s)

where e(x) = 1 or 0 as x > 0 or x < 0. Under the null hypothesis that X and Y are
independent, D(-r, u) = ru,

V(r,u) = (K(r) - K(t)dt)(J(u) - J(s)ds),

and n'5(D-(r,u)- D(r,u)) -4 B(,u).

Note that (Weiss (1964))

Coy [n'5fxQx(r) fQx() - Qx(r)}, n"5fyQy(u) {Q-y(u) - Qy(u)}]

is aymptotically D(r, u) - ru.

3. ONE WAY ANALYSIS OF VARIANCE (AOV)
Change analysis provides new graphical data analysis interpretations of classical statis-

tical methods. The one way analysis of variance (AOV) tests the equality of distributiions
of variables (or populations) Y1 ,...,Y uder the assumption that they are independent
and their distributions satisfy

Yj is Normal(ij, o2 ), = 1,...,c.

6



Note that if one has observed values Y(t),t = 1,... ,n, of a variable Y, the variables
Yj could represent the values of Y(t) for the j-th time segment Tj-1 < t < Tj, wvhere
0 = To < T < ... < T, = n are specified by the statistician.

The parameters to be estimated are /1,... , p a. The basic hypothesis to be tested
is the hypothesis of homogeneity

H 0 :/j ... =pc = p.

For j = 1,..., c, one observes nj values of Yj denoted Yj,. , Yj,, with sample mean

ni

f-J = (1/nj) Yj
i=1

and sample variance
nj

S2 = (I/nj) L(Yji- Y-y.) 2 .
i=I1

The pooled sample of all the data has size n = nl + ... + nc. The proportion of the
pooled sample from the j-th sample is

pj = nj/n;

the cumulative proportions are denoted

Tj = PI +... + Pj.

We introduce a variable X to represent the population j = 1,...,c from which an
observation Yji is made. An observation is (X, Y). The sample probability and distribution
of X is px(j) = pj,Fx-(j) = rj.

The variable X is not a random variable, but we condition Y by X using sample
(empirical) probabilities rather than population (ensemble) probabilities. We find it an aid
to understanding to use an alternate notation for Y--. and S2 as the sample conditional

mean and variance of Y given X = j:

E[YIX = j] = Y-J..

VAR-[YIX = j1 = S 2

The pooled sample has sample mean Y-.. and sample variance S2 which can be inter-
preted as unconditional mean and variance of Y:

E"[Y] = Y-.. = I PJY-i."
i= I

C Ilj

VAR-[Y] = S2 = (1/n) E(Yj i - y-..),
j=l i=1

7



The theory of conditional expectation has important formulas

VAR[Y] = VAR[E[YJX]] + E[VAR[YIXI].
VAR-[Y] = VAR-[E'[YIX]I + E-[VAR~[YIXI].

Analysis of variance tests H0 by comparing various estimators of variance. The mean
conditional variance (denoted S2a,) and the variance of the conditional mean (denoted
Smean) are defined by

S.2 =E[VAR-[YIXII = Z pS],
j=1

C

Smean = VAR[E'[YX] = .P2(Yj -

j=1

The traditional F test statistic (denoted FT) for testing H0 can be represented

FT = ((n - c)l(c - 1))F,

F = S ean/Svar

An estimator of a2 in the AOV model is

S' = (n/(n - c))Sva,;

it is unbiased since E[S 2] = a 2 . The numerator of the F statistic can be shown to have
mean

c

E[Smean] = (c- 1)0,2 + E pj pj - t)2,
j=l

defining
C

yz E pj14j.

j-'l

The numerator and denominator of F can be shown to be independent random variables;
therefore

E[FT] = 1 + (c - 1)- 1 Fpj((,i- j )a) 2

j=1

This formula for the mean of FT is used to justify why we should reject the hypothesis H0
of equal means when FT is too large; FT > 2 is a reasonable general criterion for rejecting
H0 . Akaike (1985) describes the emergence of the magic number 2. The critical value
of FT is exactly determined from the fact it obeys an F distribution with (c - 1, n - c)
degrees of freedom.

Data analysis by analysis of variance is usually presented as an AOV table.

4. CHANGE ANALYSIS APPROACH TO AOV
The change analysis approach to AOV provides graphical analysis of the standardized

data
y* = (Y - E'[Y])/Sy.

8



by forming processes on the unit interval 0 < 7- < 1 defined as follows;
change density: c'(r) = Y*J = (Yi. - Y-..)/Sy, rjI < r < rj;

change process: C-r) = f0c(s)ds;
change test process: CT-(r) = C-(r)/(r(1 - r))-5;
change test density: cT'(r) = c-(r)(pj/(1 - pj)5 , rj1 < 5 rj.
The change process is linear between its values at r = rj:

i
C-(rj) = Zpi(Y-i. - Y-..)=Sy " TjE-[Y*IX < j].

i=1

The process n' 5 C~(r), 0 < r < 1, can be shown to have an asymptotic distribution
under H0 at the "exact" values 0 = r0 < rj < ... < r, = 1 which is the same as
the distribution of a Brownian Bridge stochastic process B(r), 0 < 7- < 1, a zero mean
Gaussian process with covariance kernel

EIB(rl)B)- 2) = min(r1 , r 2 ) - 71 r2 .

We call C(r) a dynamic statistic since the significance of its graph can be determined
by thinking of it as a sample path of a Brownian Bridge. We also relate its graph to
vaxious deterministic shapes it could have under various assumptions about the values of
the means 14j.

Graphical data analysis of C-(.) can often indicate whether to accept or reject H0 .
To obtain "p values" for the level at %hich H0 is rejected or accepted we need to form
functionals of the process.

Theorem: The important functional

R 2 = Ic-(r)12 dr

can be related to the traditional F test statistic FT by

FT = ((n - c)/(c - 1))F, F = R2 /(1 - R 2 ).

Proof: Verify that

Sy 2 Sar,= Smean / S

RV 1R 2 "S2 S2R V I R var/ Y.

The distribution of R 2 under HO is analogous to sample correlation; therefore we call
R 2 a correlation statistic to distinguish it from an F statistic of the form F = R 2 /(1 - R 2 ).

F tests (and R 2 tests) are "portmanteau" statistics which should be represented in
terms of diagnostic statistics which can help indicate which part of the data is the cause
of rejection of the null hypothesis. For this purpose we introduce "two sample statistics"
for the no-change hypotheses

Hj<: The pooled sample of variables YI,... Y- has sane distribution as the pooled
sample of variables Y,+I,..., Yc,

Hj=: The variable Yj has the same distribution as the pooled sample which does not
include Y.

9



Denote by TT< the two sample t-test statistic for Hi< and denote by TTj= the two
sample t-test statistic for Hj=. One can show

TTj= = ((n - c)pj/(1 - pj)).5(y-J. - Y-..)/Sy

TTj< = ((n - c)rj/(l - rj))'5(E-[YIX < j - Y-..)/Sy.

Therefore TTj< = ((n - c)1(1 - R2))'cT-(rj),

TTj= = ((n - c)/(1 - R'))"S c T - ( r j )

The portmanteau F test statistic can be expressed
¢

FT = (c - 1)- 1 j(1 - pj)ITTj=j2.
j=1

5. COMPONENTS OF CHANGE PROCESSES
We call the two-sample t statistics TT "abrupt change" statistics since they test

hypotheses of an abrupt change. We would like statistics that test for smooth change
(such as linear or quadratic). Natural test statistics are linear functionals in the change
density process, called components T(K) or [c7, K] with score function K(r), defined by

T(K) = [c-, K] = j K(r)c(r)dr = E-Y*-J I K(r)dr
j=1

The identity score function K(r) = r yields the Wilcoxon type statistic

C

[c-, r] = 1 Y*-1 Pj .5(r_ 1 + rj)

j=1

A general approximation for a component is

C
[fc, K] == j7 Y* pI (nd)

j=1

defining
Tm id = -5(7j- I + -) = 7j - -. py

To express the statistics TTj= and TTj< as components we first define score functions

Kj=(r) = 1/pj for rjI < r < 7-, = 0, otherwise;

Kj<(r) = 1 for 0 < -r <' 7j, = 0, otherwise.

It can be shown that under H 0 a component T(K) is asymptotically normal with mean 0
and variance

Non-n(K) 2 = j IK(r) - j K(s)djdT

10



The identity score function K(r) = r has norm squared 1/12. Therefore the asymptotically
Normal (0,1) version of the Wilcoxon type test statistic is the component T(12"5r).

The score functions corresponding to the TT statistics have norms square

Norm(Kj<) 2 = T(1 - r),

Norm(Kj=) 2 = (1 _Pj)/pj

Consequently one can represent the two sample t statistics as components

TTj< = T(K,</Norm(Kj<))

TTj= = T(Kj=/Norm(Kj=))

6. FOUR PHASES OF CHANGE ANALYSIS
A sample change process C'(r), 0 < r < 1, is a dynamic statistic (sample path of a

stochastic process) which often can be shown to satisfy under the null hypothesis of "no
change" the null hypothesis H0 : C-(.) is a Brownian Bridge (or a related hypothesis). The
statistical analysis of C-(.) has four phases:

Phase 1: Graphical analysis; is the plot of C(r), 0 < r < 1, oscillatory, a deterministic
parabola, cther patterns.
Phase 2: Non-linear functionals. One tests Ho by computing the values of test statis-
tics (whose asymptotic distributions under H0 can be deduced from the theory of
empirical processes)

j IC'(T)I 2dr,
o(jC(r)12/r(1 - r))dr,

max IC(r)l,

0<r<l
max C'(,r)1r(1 - r).
r=j/n

Phase 3: Linear functionals. For various score functions K(7), called change score
functions, one computes the linear functional (or component)

C-(K) = j K(-)dC-(-) = j K(-)c'(-)d-

One can often write approximately

C-(K) = (1/n) K K((j - .5)/n)c-((j - .5)/n)

j= 1

The score function is usually chosen as a sequence of Orthonormal functions
1(.), 02(.), .. , especially the Legendre polynomials, which test against patterns in the

change density c'(r).

The key to change analysis is to choose transformations of data (score the data) which
are most powerful for detecting change. From the sample change processes, suitable linear
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functionals (score the change) are formed. These linear functionals are called "double score
components'. One can de'he bivariate density functions d(7, u), 0 < r < 1, 0 < u < 1, of
which double score functions are diagnostics. Choice of data score functions are motivated
in sections 8 and 7 parametrically and non-parametrically, respectively.

Phase 4: Density estimation. By one of the many methods available in the theory of
curve smoothing (kernel methods, splines, exponential methods, wavelets, etc.) form
a smooth estimator cir) of the change density.

An exposition of the theory of these phases would require a book and is beyond the
scope of this paper. Our goal in this paper is to outline the phases and to explain how we
choose transformations of the original data from which to form a change process.

7. NONPARAMETRIC STATISTICS MULTI-SAMPLE ANALYSIS
To test the equality of c samples non-parametric statistics starts by transforming

each observation Y-i to its "mid-rank" in the pooled sample. Let Fy- and py- denote
the sample distribution and probability mass functions in the pooled sample. Define the
mid-distribution function

F -mid(y) = Fy(y)- .Spy'(y).

Let J(u), 0 < u < 1, be a score function. Transform Yji to

Zji = J(Frmid(yji)).

Our definition of transformed data Z handles tied data and discrete data without
extra effort. Traditional definitions assume all values in the pooled sample are distinct,
and transform Yji to

Zji = J(nFy~(Yji)/(n + 1)) = J(Rji/(n + 1)),

where Rji is the rank in the pooled sample of Yji.
We calculate for the transformed data Z the correlation type statistic R 2 from Z

values in exactly the same way that R2 was calculated from Y values. Asymptotically for
J(u) = u, Sz = 1/12, so that we could define

R' = 12 E pi (Z-j - Z-.),
j=1

Note Z-.. = .5. The Kruskal-Wallis statistic equals (n + 1)R ,

R2 = 12((Z(nj/n)Z - - .25),

j= 1

where Z-j is the rank average in the j-th group, traditionally computed

zj = (1 /71) R n/(n + 1)
i=1

12



Traditional non parametric computes only numerical test statistics such as R 2 correspond-
ing to a score function J(u) = u. The change analysis approach to non-parametric analysis
with score function J(u) = u starts with a change density defined by

cz'(r) = 12-5(Z-3.- .5),rj_ 1 < r < rj,

does graphical data analysis of its change process CZ(7r), and computes double score
components [K, J1.

8. FISHER-SCORE CHANGE PROCESSESTo detect change over time in a sequence one must have some prior opinion about the
ways in which the probability distribution of the observations may be changing (such as in
location, scale, skewness, etc). Sample change processes are formed for transformed data,
where the transformation is called intuitively a data score function. The most powerful data
transformations are essentially the sufficient statistics, or more precisely the Fisher score
functions, when one has a parametric model f(y; 8) for a random sample Y(t), t = 1,.. ,
where6 = (01,. 00)

The maximum likelihood estimator 0- is obtained by maximizing the average log-
likelihood

n

L(0) = (1/n) E-logf(Y(t);9)
t=1

Define score functions
Sj(Y; 0) = o/ aj log f(Y; 0)

The maximum likelihood estimator is the solution of the estimating equations for j = 1,
.° k

n

(1/n) 1 sj(Y(t); o-) = 0.
t=I

Our approach to change analysis asks if for every potential changepoint r = m/n the
parametric model with 0 = 0^ fits the data Y(t), t = 1,... ,m, up to the time m in the
sense that approximately

m

(1/n)Z s(Y(t);o ^) = 0.

We define the Fisher-score change process to linearly interpolate its values at r rn/n,
form- =1,...,n

C-(r; S) = (1/n)Z s(Y(t); 0-)
t--1

where
eS(Y; F). = Sj(Y;6^)/E 5-[Sj(Y; 0)].

We form k Fisher-score change processes, for j = 1, ... , k.

We call this approach "random walk (or CUSUM) your normalized scores." We are
developing the probability theory of the Fisher-score change processes.

These theoretical concepts can best be understood through examples. Consider a
gamma distribution model

f(y; v, 0) = (6(v))-1 x' exp(-y/o)

13
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where 8 is a positive scale parameter, assumed unknown, and v is a positive shape param-
eter, assmed known. One can show that the score function of the parameter 0 is

S(Y; 0) = (1/o)((Y/G) - V);

the maximum likelihood estimator is

0^ = Y-/v;

the normalized score function evaluated at the maximum likelihood estimator of the pa-
rameter may be shown to be

S*(Y(t); 6) = v'5 ((Y(t)/Y)- 1).

To test the observations Y(.) for change, one forms the maximum likelihood score
change process C'(r; S*), 0 < r < 1, and tests if this dynamic statistic is significantly
different from a sample path of a Brownian Bridge stochastic process. A linear functional
of the change process corresponding to the score function

K(r) = 125(r - .5)

is
n

C'(K,S*) = (1/n) Z(12v).5 ((Y(t)/Y - ) - 1)((t - .5)/n)
t=1

n

t=1

Under the null hypothesis of no change the asymptotic distribution of n'5 C-(K, S*) is
Normal(0,1).

An example of an application of this statistic is in Hsu (1979) where it is presented
as a test designed for a small change in the scale parameter 0 of aa independent Gamma
distributed sequence, derived by Kander and Zacks (1966) by a Bayesian analysis assuming
the changepoint r is uniformly distributed in time. This test statistic is derived in our
approach as analogous to a component in standard goodness of fit analysis.
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