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FINAL REPORT

Statement of Problem:

At the time of initiation of this research, the materials community was just becoming
aware of the pioneering work on nanophase materials by Prof. Gleiter, in Germany, and
the forecasts of new materials with highly desirable properties were being offerred. For
ceramic materials, the potential for low temperature sintering and superplastic deformation
were very exciting possibilities, while the effect of nanoscale grain structures on other
properties were also of interest. This research, therefore, was initiated to evaluate the
properties of monolithic, nanophase ceramic materials.

Summary of the Most Significant Results:

1. SueMlastic deformation in nanophase TiO9
One of the primary motivations for ha~ing studied nanophase ceramics derives from

their potential for superplastic deformation. Fig. 1, which illustrates the ductility of TI1) 2 in
compression, demonstrates that large deformations are, indeed, possible in nanophase
ceramics, and at relatively low temperatures, approximately one-half the melting
temperature, Tm. This study also began to develop constitutive relations for the
deformation. For the generalized equation,

,= A_ exp(-AH/kT}
dq

we have found that n - 3 and q - 1.5. The activation enthalpy has not yet been obtained.
This work remains the only creep study on a dense nanophase ceramic material. It is
noteworthy that the Gleiter group has published that nanophase TiO2 can be plastically
deformed at room temperature, i.e., T < 0.2Tm; however, from our investigations we can
infer that this was possible only because the density of the samples employed for those
experiments were less than 80% dense. Nev.:- theless, our investigations clearly
demonstrates that nanophase ceramics are very conducive to superplastic deformation at T

0.5 Tn, which is still quite extraordinary.
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An important problem that limits the superplastic response of nanophase ceramics is
their propensity for grain growth. We were able to fabricate specimens whose grain sizes
in the green body, which was - 78% dense, were less than - 10nm, but the grains grew to
- 40-50 nm during densification, and then to - 400 nm during the deformation process that
led to the deformed specimen illustrated in Fig. 1. It is clear that methods for controlling
the grain size will be required, if these materials are to be used for structural applications
where high densities are important.

2. Sinter-forin
One of the methods for enhancing the densification rate during sintering is to apply

an external stress. The application of a hydrostatic stress during sintering, i.e., hipping,
has long been used for this purpose. The application of a uniaxial stress, however, can
also be beneficial. For example, the specimen illustrated in Fig. 1 was densified at 600 OC
to nearly full density, while the grain size increased from 10 nm to 40 nm. Sintering of
similar specimens without an applied stress revealed that complete densification could not
be achieved below - 950 °C, and at that temperature, the grain size had increases to - 0.5
pm. In addition to providing a convenient and efficient means to enhance sintering,
sintering-forging provides fundamental information about the deformation mechanisms in
the material.
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Fig.3 Model of grain boundary sliding during sinter-forging

Fig. 2 illustrates the densification of nanophase TiO2 during sinter-forging; it
shows the change inlength of a nanophase TiO2 cylinder as a function of time. It should be
noticed that the densqication takes place at 650 °C, which is < 0.5 Tm; similar results were
obtained at 600 °C , as well. The data in Fig. 2 also show that the densification does not go
to completion at the applied stress of 57 MPa, but rather a "metastable" density is obtained.
The metastable density was found to be a function of applied stress and temperature. The
existence of a threshold stress observed in these sinter-forging experiments appears to be
unique to nanophase materials. Although we are still in the process of developing a model
to describe this phenomenon, we feel the threshold stress is a consequence of grain
boundary sliding as illustrated in Fig.3. In this simplified picture of sinter-forging, it is
shown that as grain boundary sliding occurs in the vicinity of a pore, the surface area of the
pore increases while grain boundary area decreases, with a net increase in energy. This
increase in energy is provided by the work performed by the applied stress. Densification
is activated during this process by (i) improving packing of the grains as grains slide past



The fracture toughness of nanophase TiO2 is plotted in Fig. 7 as a function of grain
size. These data were obtained by indentation methods. Clearly shown is that the fracture
toughness of the sample is independent of grain size.
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Fig.6 Vickers microhardness as a function Fig.7 Fracture toughness KIc as a function
of inverse temperature of grain size

Sintering of NanoDphase TiO) and ZrO,
A thorough investigsiion of thi sintering of nanophase TiO2 and ZrO2 was carried

out, and it was found that sintering temperatures are reduced by several hundred K relative
to pm-sized materials. Below- 900 °C, both nanophase oxide materials densified with
increasing sintering temperature and without significant grain growth. But above this
temperature, when the density became greater than - 90%, the samples underwent rapid
grain growth. For TiO2 , this led to grain sizes of" I pm before full density could be
achieved. The ZrO2 samples,which had a monoclinic structure, became fully dense at
similar sintering temperatures, but the grain size remained below - 0. 1pm. Data for the
Z10 2 sample are shown in Fig.8. Preliminary studies on the effect of impurity doping on
grain growth during sintering of TiO 2 were performed, and it was observed that the grain
size could be maintained below -0. lm during densifcation.
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each other, (ii) hipping, since the hydrostatic component of the uniaxial stress is 1/3 q&W,
and (iii) destabilizing the equilibrium shape of the pore and reinitiating sintering. In this
simple model, the threshold stress is given by,

Ay
Cathrcsh w g 4

where Ay is the difference in the surface and grain boundary energies, g is a geometry
factor of order unity, and d is the grain size. Because of the small grain size, d - 10 -20
nm, the threshold stress is on the order of 50 - 100 MPa.

Fig. 4 shows the dependence of strain rate on applied stress, and it is seen that the
the stress exponent ("n" in eq. (1), above) is approximately three. In larger grain ceramic
materials, the stress exponent is usually one, again showing the difference between
nanocrystalline and micmcrystalline materials

Mechanical proverties of TiO9
As part of a survey of-the mechanical properties of nanophase ceramic materials, we

examined the hardness and fracture toughness of TiO2 as a function of grain size; the
results are illustrated in Figs. 5, 6 and 7. The hardness data reveal two regimes. At larger
grain sizes, the Vickers microhardness follows normal Hall-Petch behavior, i.e., the
hardness increases as the inverse square root of grain size. However, below a critical size,
- 40 nm, the hardness becomes much less sensitive to the grain size, although still
increasing slightly with decreasing grain size. In regards to the absolute value of the
hardness, the Vickers microhardness of nanophase samples, when fully dense, is
somewhat higher, - 25%, than bulk samples. The temperature dependence of the hardness
is illustrated in in Fig. 6, where it is shown that significant softening begins at temperatures
greater than 400 *C.
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DMveovments in Procewing Narnoqh=s Ceramics:

During the coume of this investigation, some efforts were focused on developing
the processing capabilities of nanophase ceramics. A major improvement was the
development of a magnetron sputtering system for the production of refractory type
materials. The ZrO2 samples, for example, were produced by fimt preparing nanophase Zr
powder by magnetron sputtering and subsequently oxidizing it. This method is particularly
useful when alloy materials are desired since the composition can be well controlled.

A "flow" system for processing nanophase powder was also developed. Unlike the
original Gleiter method, which employs thermophoresis for the collection of powder, this
system utilizes force flow and collection of the powder in a filter. The system has the
advantages that it is conducive to scale up and is cheaper to build.
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