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ABSTRACT

Two numerical methods for solving the incompressible Navier-Stokes equations are
compared with each other by applying them to calculate laminar and turbulent flows
through curved ducts of regular cross-section. Detailed comparisons, between the
computed solutions and experimental data, are carried out in order to validate the two
methods and to identify their relative merits and disadvantages. Based on the conclusions
of this comparative study a numerical method is developed for simulating viscous flows
through curved ducts of varying cross-sections. The proposed method is capable of
simulating the near-wall turbulence using fine computational meshes across the sublayer in
conjunction with a two-layer k-e model. Numerical solutions are obtained for: i) a straight
transition duct geometry, and ii) a hydroturbine draft-tube configuration at model scale
Reynolds number for various inlet swirl intensities. The report also provides a detailed
literature survey that summarizes all the experimental and computational work in the area of
duct flows.
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I. INTRODUCTION

The study of flow through curved ducts, or conduits is of great importance because such

flows are found in a variety of practical situations, ranging in scale from the flow through the

human arterial and respiratory systems to that in the ducting of gas and hydraulic turbines. The

flow in open channels and rivers is also related to duct flow, although, in these cases, both the

bottom and the free surface may be free to move. An accurate description of the flow in ducts,

even when the walls are rigid, poses a challenging fluid mechanics problem. There are several

difficulties. One of these is the complexity of the geometries encountered in practice. Changes in

cross-sectional shape and curvature of the duct axis are of particular concern because these lead to
vortical motions, flow reversals, and unsteadiness. Another major difficulty is related to the fact

that most flows of practical interest are turbulent, and available mathematical models cannot

properly simulate all of the consequences of turbulence. To these may be added difficul ies that are

peculiar to specific applications, such as coupling between the flow and moving boundaries in

biomedical applications, compressibility effects and shock waves in gas turbines. sediment

transport in rivers, and aeration in autoventing hydraulic turbines. These, and other applications

too numerous to list, have inspired many experimental, analytical and computational studies of the

flow in curved ducts but, for a variety of reasons, it is still not possible to accurately predict such

flows.

The work described in this report was motivated by a recently initiated joint research

program between the Iowa Institute of Hydraulic Research (IIHR) and the Tennessee Valley

Authority (TVA). This program aims to develop a numerical method specially for applications to

the new generation of autoventing hydroturbines (AVT) that are being considered as possible

replacements for conventional ones. The initial phase of the project is conducted in two parts:

development of a numerical method for solution of the Reynolds-averaged Navier-Stokes (RANS)

equations for single-phase flow in ducts of complex geometry is pursued at IIHR. and

development of physical models and transport equations for two-phase flow, for air-water

exchange, is carried out at TVA. The two phases will be integrated at an appropriate stage. This

report describes the development of numerical methods for prediction of single-phase fluid flow in

curved ducts.

The starting point for the research described here was provided by the two numerical

methods that were available at IIHR at the beginning of the project, namely, one developed by
Patel and his colleagues (see, for example, Chen, Patel and Ju (1990)), and the other developed by

Sotiropoulos (1991). Both were developed for external, three-dimensional, laminar and turbulent
flows, and have been extensively applied to such flows. Both methods were modified to

incorporate the two-layer turbulence model of Chen and Patel (1988), and extended to internal flow



in ducts. As a preliminary step in the validation of these methods, consideration is first given to

the flow in simply-curved ducts of simple cross-section. The choice of suitable test cases to

evaluate the performance of these methods is not straightforward, however, because there exists an

enormous amount of previous work on this subject and even a cursory review of this indicates that
there are a number of issues, both numerical and physical, that are not yet fully resolved.
Therefore, this report begins with a brief review of previous studies of curved duct flows with

emphasis on experiments and those aspects that are still topics of active research. The two

methods are then described, and their results are compared for a few relatively simple duct flows to

highlight their capabilities and shortcomings. Next, a modified version of the method of
Sotiropoulos is employed to study the flow in additional cases. Among these are the flow in a

straight duct that changes its cross section from circular to rectangular, and the flow in a typical

draft tube of a hydraulic turbine. These two examples bring forth the complexities that are present
when the duct cross-section shape is changed and the area is increased for continuous diffusion.

The results demonstrate that accurate numerical simulation of such practical flows is at hand

provided some improvements are made in two areas, namely, in the turbulence model and in

generation of grids appropriate for more complex geometries. Possible future directions of the

project are outlined in the final section of the report.

II. OVERVIEW OF PREVIOUS WORK ON FLOW IN CURVED DUCTS

Before attempting to summarize previous work on flow in curve.i ducts, it is useful to

define certain terms that are commonly used in connection with such flows. Definition of these

terms aids in the classification of duct flows, in general, and provides a basis for comparing the
various types of flows that have been studied.

The flow in a curved duct of finite cross-section is three dimensional insofar as the velocity
vector has three non-zero components, each of which varies across the section. Whether the flow

is laminar or turbulent, such a three-dimensional flow is often described in terms of primary and

secondary velocities. Loosely speaking, primary refers to the velocity component along the axis of
the duct and secondary flow refers to velocity components in transverse sections, orthogonal to the

duct axis. For ducts whose cross-section shape and area change rapidly, these terms are not

precise because these velocity components are not orthogonal and, therefore, depend on the

coordinates that are chosen. The term secondary also suggests that motion is weak compared with
the primary motion. This is again not true for ducts of arbitrary shape and curvature. However,

most previous studies of curved-duct flow are confined to simple cross sections and moderate

curvatures for which the concepts of primary and secondary flow are quite useful.
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In a curved duct, the secondary flow arises quite simply as a result of the radial pressure

gradient. The higher pressure at the outer radii drives the slower moving near-wall fluid towards
the inner radii. This is compensated by ai: opposite but considerably weaker motion of the higher-

velocity fluid in the duct core from the inner to the outer radii. Prandtl termed the resulting

secondary flow as secondary motion of the first kind or pressure-driven secondary motion. In
turbulent flow, another kind of secondary motion can be induced, even in straight ducts, by the

gradients of the Reynolds stresses in the plane normal to the primary flow. Prandtl called this

secondary motion of the second kind. This stress-driven secondary motion is absent in laminar

flow, but in turbulent flow, both are present. For an overview of the theory of secondary motion
in turbulent flows, reference should be made to the recent article by Bradshaw (1987).

The magnitude of the pressure-driven secondary motion depends on a number of factors,

including the section shape, the Reynolds number, the Dean number, and the flow conditions at the

beginning of curvature. In general, Reynolds-stress driven secondary motion is much weaker than
pressure-driven secondary motion but the two are not easily separated because of the coupling

between the mean flow and the Reynolds stresses. Secondary motions of both kind have a

significant impact on the distribution of the wall shear, heat transfer at the wall, and related

properties.

A review of previous work on curved ducts leads to the following general observations.

Most studies have dealt with ducts of simple shape, such as a circular or square section, with

constant cross-sectional area, turning through either 90 or 180 degrees with a constant radius.
Ducts with two bends, the so-called S-shaped ducts, also fall in this category. There are very few
investigations in ducts with section and area changes, or in ducts with axis curved in more than one

plane. Secondly, there are many more studies of laminar flow, at necessarily low Reynolds
numbers, than with turbulent flow. Transitional flows have not been investigated. Thirdly, fully-

developed entry flow is more common than developing boundary-layer flow at entry. The former
leads to rapidly developing and stronger secondary motions. Fourth, in spite of extensive

experimental investigations, the data base is still limited, particularly with regard to the distribution

of the Reynolds stresses in turbulent flow.
The better documented experiments in laminar and turbulent flows have been used to test

computations using a variety of numerical methods and turbulence models. Of course, there are
many computations for each experimental condition, and the results have been rather mixed.

Differences among numerical methods and turbulence models will be discussed in the text as the

results of the present methods are presented and compared with previous ones. For the present

purposes, it is more useful to provide a summary of some of the most commonly cited

experiments. This summary is not intended to be exhaustive, however. We have selected the most
recent experiments, performed with advanced instrumentation to obtain the most detailed data.

3



11.1 Experiments in laminar flow

Laminar flow through curved pipes have been studied extensively during the past fifteen

years, primarily because of their relevance to biomedical problems. Measurements for steady and

unsteady flows have been reported by, among others, Agrawal et al. (1978), Chandran et al.

(1979, 1981), Enayet et al. (1982b), Talbot and Gong (1983), Bovendeerd et al. (1987) and Rindt

et al. (1991). There are several other experiments in curved ducts of different shapes but none
provide data thzt are comparable in detail to the experiments summarized in Table I. Together,

these experiments provide a data base for the development of secondary motion in laminar flow
with developed and developing flow at entry.

11.2 Reynolds-stress driven secondary motion: experiments in turbulent flow

in straight ducts

Secondary motions of the second kind were first observed by Nikuradse (1926) who made

careful measurements of mean velocity in turbulent flow in a series of straight, non-circular ducts.

His measurements indicated that the isovels (or isotachs, contours of constant axial velocity) were

distorted near the comer region in a manner that suggested the existence of secondary motion.

This situation is depicted in Figure 1, taken from Gessner and Jones (1965), where a typical isovel

pattern for laminar flow is compared with the corresponding one for turbulent flow. Recall that

there is no secondary motion in laminar flow. This has been shown analytic'ýIlv by Moissis (1957)

and Maslen (1958). It is seen that in the turbulent case the isovels are displaced towards the comer

and away from the mid-point of the walls. Prandtl (1926) suggested that the distortion of the
isovels is the result of a secondary motion towards the corner, which is accompanied by a return

flow at the mid-points of the walls for continuity to be satisfied. Moreover, he postulated that this

secondary motion is generated by velocity fluctuations tangential to the isovels in regions where the

curvature of the isovel changes.
Due to the small magnitude of the secondary-flow velocity components, approximately one

percent of the average or bulk velocity, quantitative measurements for developing turbulent flows
in square ducts were not reported until Hoagland (1960) developed a hot-wire technique.

Subsequently, hot-wire measurements of increased accuracy were reported by Leutheusser (1963),

Brundrett and Baines (1964), Gessner (1964), Gessner and Jones (1965), Ahmed (1971), Thomas

and Easter (1972), and Launder and Ying (1972). The first attempt to provide a comprehensive

explanation of the physics of stress-driven secondary flow was that of Brundrett and Baines who

measured the three mean-velocity components and the six Reynolds-stress components. In their

analysis, they employed the equation for the mean streamwise vorticity along with the symmetry

properties the Reynolds-stress tensor, and showed that: (i) streamwise vorticity is produced in the
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region near the corner bisector by the gradients of the Reynolds stresses, (ii) the corner bisectors

separate independent secondary flow circulation zones (as seen in figure lb), and (iii) the main

contribution to streamwise vorticity production comes from the gr:,dients of the normal Reynolds

stresses. The validity of their last conclusion, however, was later challenge] by Perkins (1970)

and Gessner (1973). Perkins, for instance, pointed out that the experimental apparatus of Brundet',

and Baines could lead to ±100% error in the shear stress measurement, while Gessnef (1973)
claimed that the gradients of the normal Reynolds stresses do not play a major role in the

streamwise vorticity production and it is rather the transverse gradients of the shear stress that drive
the secondary motion in the corner region. In a more recent work, Demuren and Rodi (1 P84)

reviewed all the above experimental findings and concluded that both the gradients of normal and

shear Reynolds stresses are of the same order of magnitude and that it is their difference that drives

the secondary motion.

In most of the above experimental efforts the emphasis was placed in understanding the

physical mechanism that generates and sustains the secondary motion, rather than in providing a

reliable data base suitable for validating turbulence models. in many of these studies, for instance,

the symmetry of the flow about the corner bisector was either not checked (since measurements
were carried out in only one octant), or the check was not thorough enough to guarantee reliability

of the measurements. In a more recent study, Melling and Whitelaw (1976) attempted to obtain

better quality measurements in the entrance region of square ducts using Laser-Doppler
Velocimetry (LDV). They made measurements in a quadrant of the flow at several cross-sections

and reported high levels of symmetry in the streamwise mean velocity and normal Reynolds-stress

components (the maximum asymmetry was found to be about 3 percent in the near wall region and

1 percent elsewhere). The same degree of symmetry, however, was not achieved in their

secondary flow velocities and transverse Reynolds-stress components, and their data indicate

significant asymmetries about the wall bisector. Another set of measurements in developing

turbulent flow in the entrance region of a square duct was reported by Gessner et al. ( 1977); see

also Po (1975). They carried out detailed mean velocity (in a quadrant of the flow) and turbulence

(in an octant of the flow) measurements at several cross-sections in the developing and fully-

developed flow regions. Their mean velocity data exhibit high levels of symmetry, but the quality

of their turbulence data can not be readily evaluated. The measurements of Gessner et al. constitute

a complete and comprehensive data set which is detailed enough to assist in the development and
validation of turbulence models. A detailed review of experiments and computations for straight

ducts of regular cross-section can be found in Demuren and Rodi ( 1984). Additional experimental

data for ductf with arbitrary cross-sections have been reported by Rodet (1960), Aly et al. (1978)
and Seale (1982) for trapezoidal, triangular, and simulated rod-bundle-type cross-sections,

respec#,%vely.
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As already noted, the driving force for secondary motions of the second kind is the

anisotropy of the Reynolds stresses and, thus, any attempt to calculate such motions should utilize

a turbulence model which can predict turbulence anisotropy. It has been demonstrated

computationally (see Demuren and Rodi, 1984) that the isotropic k-E model does not predict any

secondary motion of second kind and fails, consequently, to predict the important features of

straight duct flows. For that reason all the computational efforts in the area of stress-driven

secondary motions have focused on developing algebraic Reynolds stress (ASM), or full Reynolds

stress (RSM) models. The first calculation of secondary motion of the second kind, in straight

non-circular ducts, was reported by Launder and Ying (1973). They employed an ASM model

(LY model, day) based on a simplification of the model of Hanjalic and Launder (HL) (1972). The

LY model, or some variant of it, was subsequently used by Gessner and Emery (1981), Trupp and

Aly (1979), Rapley and Gosman (1986), and Nakayama et al. (1983) to calculate flows through

straight ducts of regular and irregular cross-sections. All the above calculations yielded fairly good

results for the magnitude of the secondary flow but failed to yield accurate predictions for the

Reynolds stress distributions. Naot and Rodi (NR) (1982) were able to obtain better overall

predictions, for both the crossflow and the Reynolds stress distributions, by utilizing an ASM

model which they developed from the Reynolds stress model of Launder, Reece and Rodi (LRR)

(1975). A more refined version of the NR model was proposed by Demuren and Rodi (DR)

01984, 1987) and used to calculate the flow in ducts with simple cross-sections. Recently,

Demuren (1991) has extended both the NR and DR models to generalized curvilinear coordinates

and applied them to calculate flows in straight ducts of arbitrary cross-sections. Most of his

computations demonstrate correct trends but are, at best, in qualitative agreement with the

experimental data. It should be pointed out that all of the above described computational methods

utilize the wall-function approach which, as indicated by the limited success of even the most

advanced methods, is inadequate for complex shear flows (Demuren, 1991).

11.3 Experiments in turbulent flow in curved ducts of regular cross-

sectional shape

Turbulent flow measurements in curved ducts of square or rectangular cross-section have

been reported by Joy (1950), Eichenberger (1952, 1953), Squire (1954), Bruun (1979),

Humphrey et al. (1981), Taylor et al. (1982), Enayet et al. (1982a), Chang (1983), lacovides et al.

(1990) and Kim (1991). The early works of Joy, Eichenberger and Squire provided evidence of

the oscillatory nature of the secondary flow in 1800 square bends. The turbulent flow

measurements of Joy, for instance, indicate that the secondary flow was reversed at a bend angle

of 1350. Bruun (1979) studied the effect of inlet boundary-layer thickness on the development of

the secondary flow and on the pressure losses in a 1200 square bend. He presented data for the
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mean total pressure, static pressure and velocity field as well as some limited turbulence intensity

data.

Table 2 summarizes the most detailed experiments in turbulent flow in curved ducts. A

significant contribution in the understanding of the physics of curved-duct flow came from

Humphrey et al. (1981) who presented detailed measurements inside a highly curved 900 square

bend. They employed LDV to measure the mean-velocity components and components of the

Reynolds-stress tensor at several cross sections inside the bend. Their data indicates that the

Reynolds-stress driven secondary motion, measured in the inlet tangent of the bend, was quickly

taken over by the pressure-driven motion, in which the secondary velocities attain values up to 28

percent of the mean bulk velocity, during the first half of the bend. This latter secondary motion

was found to be responsible for strong cross-stream convection of the Reynolds stresses inside the

bend which, in conjunction with the curvature effects, resulted in a high level of anisotropy of the

turbulence. Furthermore, the production of turbulent kinetic energy predominated near the outer

wall (destabilization due to concave curvature) but regions of negative production were observed

near the inner wall (stabilization by convex curvature). To study the effect of the inlet boundary-

layer thickness on the flow structure, Taylor et al. (1982) carried out meabu;ý,ments in exactly the

same bend but with developing flow, compared to the nearly fully-developed flow in the

experiments of Humphrey et al., at the inlet to the bend. They concluded that the thinner inlet

boundary layer results in weaker crossflow and lower overall turbulence intensities.

The effect of bend curvature on the crossflow and the turbulence structure was studied by

Enayet et al. (1982a) who carried out measurements inside a 900 bend of milder curvature with a

partially developed flow (relatively thick boundary layer) at inlet. Their data shows that, due to the

milder curvature the streamwise pressure gradient is small and less important. Also, unlike

observations in strongly curved ducts, there appears to be no evidence of significant damping or

amplification of turbulence due to longitudinal curvature. Taylor et al. compared their

measurements with the data of Enayet et al. and concluded that the milder curvature results in much

weaker crossflow velocities which are confined to a smaller region near the wall. However, due to

the small streamwise pressure gradient, in the case of mild curvature, the effect of the crossflow in

the streamwise flow development was found to be dominant.

The flow through a strongly curved 1800 square bend was studied by Chang (1983). His

detailed measurements (wall pressures, mean velocity components and Reynolds stresses) revealed

rather complicated flow patterns, with the secondary motion dominating the dynamics of the flow

development. Between 0" and 451, for instance, destabilizing and stabilizing curvature effects in

conjunction with the strong secondary motion--primarily pressure driven except in the inlet straight

tangent, where Reynolds stress driven secondary currents are present--cause large levels of

turbulence anisotropy. As a result, a region of negative production of turbulent kinetic energy

7



exists near the inner wall, indicating flow of energy from the large eddies back to the mean flow

(recall that a similar trend was observed by Humphrey et al. (198 1) in their 900 bend experiment).

The anisotropy of the turbulence field is reduced, however, for bend angles greater than 13 0 °, due

to the mixing effect of the crossflcw. Apart from influencing the dynamics of turbulence, the

secondary motion has a significant impact on the mean flow development as well. For bend angles
less than 90° the strong secondary currents convect low momentum fluid from the side walls to
the core of the cross-section, resulting in S-shaped axial and radial mean velocity profiles. The

same phenomenon was observed by Humphrey et al. (1977) in their laminar flow measurements.

but it was not present in the turbulent flow measurements of Humphrey et al. (1981 ) despite the

fact that the same bend was used in both experiments. For angles greater than 900, however, the
crossflow starts decreasing and high speed fluid is restored back in the core of the flow. In a

more recent study, lacovides et al. (1990) carried out turbulent flow measurements through a 1800

square bend whose geometry was similar to that used by Ghang (1983) except that the inlet section

was shortened to six hydraulic diameters (as compared to some thirty diameters in the experiment

of Chang)--the short inlet tangent resulted to a developing flow at the beginning of the bend with

the thickness of the boundary layer being approximately 15 percent of the hydraulic diameter.

Their data indicates that, despite the thinner boundary layer, the S-like structure of the streamwise

velocity Drofiles were as notable in their measurements as in those of Chang. They also reported

the generation of a very strong secondary motion, which, by 1350 around the bend, appeared to

have broken down into a chaotic pattern.
Data from most of the above described experiments have been used, over the last ten years,

as test cases for validating numerical methods and turbulence models. Humphrey et al. (1981)
presented calculations for their experimental configuration using the standard k-E model in

conjunction with the wall-functions approach. The same configuration was one of the test cases

selected for the 1980-81 Stanford Conference on Complex Turbulent Flows (Kline et al.. 1981)

and was computed by several participants. In most cases good agreement between computed and
measured mean-velocity components was obtained for the first half of the bend but significant

deviations were present farther downstream. The configuration of Taylor et al. (1982) has been

computed by Buggeln et al. (1980) (one-equation turbulence model), Govindan et al. (1991)
(algebraic turbulence model) and Kunz and Lakshminarayana (1991) (k-c model with wall-

functions). All the numerical predictions for this case are in better overall agreement with the

measurements than the corresponding results for the configuration of Humphrey et al., despite the

fact that the same bend was used for both cases. This is mainly due to the thinner boundary layer

present at the inlet of the bend in the study of Taylor et al. which resulted in weaker secondary

motion than measured by Humphrey et al. The 1800 bend configuration of Chang has been
studied computationally by Chang (1983), Johnson (1984), Birch (1984) and, more recently, by
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Choi et al. (1990). Chang, Johnson, and Birch used in their calculations the standard two-
equation k-e turbulence model in conjunction with wall functions; Chang also carried out

calculations using an algebraic Reynolds stress model but he was unable to obtain a converged

solution. All three computations failed to reproduce significant features of the flow field, such as
the S-shaped profiles of the mean axial velocity component caused by the strong secondary

motion. In the more recent study, Choi et al. showed that the inability of the computations to
reproduce correctly the strength of the secondary flow and its interaction with the axial flow can be

attributed primarily to the inadequacy of the wall-function approach for complex, three-
dimensional, non-equilibrium shear flows. They carried out calculations all the way to the wall by
replacing the wall functions with a fine mesh across the sublayer and tested both the k-e model and

an algebraic Reynolds-stress (ASM) model. For both models, the near-wall region was modeled
by the van Driest mixing-length formula. Their k-E calculations showed significant improvements.

as compared to previous computations (Chang, Johnson, Birch). in the agreement between
measurements and computations. Better agreement for the axial velocity profiles and the
distribution of the Reynolds stresses was obtained, however, when the algebraic Reynolds-stress

model was employed. Despite marked improvements in their results, significant discrepancies

between experiment and calculations still remained. However, the success of their modelling

refinement sequence indicates that, for future improvements in the modelling of such flows,
research efforts should focus in the development of turbulence models which account for non-
isotropic effects and at the same time provide accurate resolution of the near-wall layer.

The most recent experiment listed in Table 2 is that of Kim (1991), who made measurement
of pressure, mean velocity, and Reynolds stresses in developing boundary-layer flow in a
rectangular duct, of aspect ratio six, turning through an angle of 900. There are. to be sure, several

previous measurements in rectangular ducts of different aspect ratio but, to the authors'

knowledge, most of these were concerned with secondary motion (of the second kind) in fully-
developed flow in straight ducts. In particular, none has considered developing flow in a curved
duct. Kim's measurements are particularly noteworthy because they document the development of
the pressure-driven secondary motion in boundary layers, and the formation of longitudinal
vortices within the boundary layers as a result of this secondary motion. His data also reveal the

action of the concave and convex surface curvatures on the boundary layer velocity and turbulence
profiles. Kim made extensive comparisons between measurements and calculations. The

calculations were performed with one of the numerical methods used in the present work. As the
method will be described in this report, discussion of Kim's results is postponed until a later

section.

Measurements in turbulent flow in curved circular ducts appear to be relatively sparse in

spite of the varied practical applications. The first detailed measurements were reported by Rowe
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(1970) who used Pitot probes to measure the total pressure, mean velocity, and yaw angles in

several cross-sections of a 1800 pipe bend of mild curvature. His data indicate that the crossflow

reaches a maximum at a bend angle of 300 and then decreases to a near constant value. Rowe

explained this phenomenon by examining the gradients of the total pressure and using inviscid

theories to predict the evolution of the secondary motion. In a later work, Enayet et al. (1982b)

used LDV to measure the streamwise components of the mean and fluctuating velocity in a 900
strongly curved pipe bend. A very detailed set of data for turbulent pipe-bend flow was reported

by Azzola and Humphrey (1984) who measured both the streamwise and circumferential

components of the mean and fluctuating velocity in a 1800 bend. The major features of this flow

are the reversals that the secondary motion undergoes for bend angles larger than 900, a

phenomenon which was found to be essentially independent of the Reynolds number, and the large

levels of turbulence anisotropy arising everywhere in the bend and in the downstream tangent.

Comparison of this pipe-bend flow with the corresponding square-duct flow (Chang. 1983)
reveals that the magnitudes of the secondary motion are in general lower for the pipe bend.

Moreover, there are no crossflow reversals in the square bend case which demonstrates that.

despite superficial similarities, the two flows may be quite different. The most recent set of

measurements was reported by Anwer et al. (1989) who carried out mean flow and turbulence

measurements through a 1800 pipe bend and in the downstream tangent. Their measurements

include the three components of the mean velocity and the six Reynolds stress components.
The first turbulent flow calculation of a curved pipe flow was reported by Patankar et al.

(1975), who presented solutions for the mildly curved bend measured by Rowe. Their solutions,

obtained with the standard k-e model with wall functions, were quite successful in reproducing the

general features of the flow observed in the measurements. However, the shapes of the computed

contours of constant velocity head, which are not as distorted as the corresponding measured ones.

indicate that the calculations did not predict accurately the development and decay of the secondary

motion. It should be pointed out, however, that the data of Rowe do not include quantitative
measurements of the secondary motion and thus no direct comparisons could be made. In a more

recent study, lacovides and Launder (1984) calculated the 900) pipe bend of Enayet et al. (1982b).
They employed a two-layer, k-E model with van Driest's eddy-viscosity formula for the near-wall

layer. The agreement of their calculations with the experimental data was broadly satisfactory for

the streamwise velocity profiles, but the boundary layer on the inside of the bend did not proceed

as far toward separation as indicated by the measurements. Moreover, the calculated rate of

recovery of the flow in the downstream tangent was slower than measured. The 1800 pipe bend of

Azzola and Humphrey (1984) was computed by Azzola et al. (1986), using the same method as in

lacovides and Launder (1984). Their calculations for the development of the streamwise mean
velocity component through the bend, along the radius at 900 from the symmetry plane, were in
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good agreement with the measurements. However, significant discrepancies between experiment

and calculations were present in the corresponding profiles of the circumferential mean velocity

component between bend angles of 450 and 1800, as well as in the rate of recovery of the flow in
the downstream tangent. In a very recent study, Lai (1990) computed the 1800 pipe bend of

Anwer et al. (1989) using a full Reynolds-stress transport model including the direct modelling of

the near wall flow. His calculations emphasized the secondary flow patterns in curved-pipe flows.

Based on analytical arguments with the vorticity transport equation, as well as on his numerical

calculations, he showed that a turbulence-driven secondary motion is present near the outer bend of

the curved pipe.

11.4 Experiments in turbulent flow in transition ducts

The term transition duct denotes an internal flow configuration whose cross-sectional shape
changes in the streamwise direction, for example. from circular to rectangular (CR), or vice versa.

Transition ducts can be either straight or curved and are encountered in aircraft propulsive systems

(as inlet and exhaust nozzles of jet engines), wind tunnels (wind tunnel contractions and diffusers),

and hydraulic turbine systems (draft tubes). Turbulent flow measurements through transition ducts
have been reported by Mayer (1939), Taylor et al. (1981), Burley and Carlson (1985), Patrick and

Mc Cormick (1987, 1988) and, more recently, by Miau et al. (1990), and Davis and Gessner

(1992). All these experiments, which have focused exclusively on straight transition ducts, are

summarized in Table 3.

The first turbulent flow measurements in a transition duct were reported by Mayer (1939)

who measured the flow through two rectangular-to-circular (and vice versa) transition ducts of

constant cross-sectional area. His measurements included streamwise static pressure variations

along the duct walls, total pressure contours and mean velocity components. The next set of

measurements was reported four decades later by Taylor et al. (1981) who carried out mean
velocity measurements through a square-to-circular transition duct whose cross-sectional area

reduced by 21.5% over the transition length. These two experimental studies demonstrated the

impact of the transition length on the streamwise flow development and showed that a moderate

secondary motion (not exceeding 10% of the bulk velocity) can induce significant distortion of the

streamwise flow. In a more recent study, Burley and Carlson (1985) carried out pressure loss
tests for transonic flow through five different CR transition ducts in order to study the effect of

transition length, cross-sectional shape and inlet swirl on the duct's performance. Their

measurements indicated that short transition lengths (less than 0.75 hydraulic diameters) can induce
large regions of separated flow. They also found that the inlet swirl can enhance the performance

of low pressure ratio transition ducts.
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The first turbulence measurements for transition duct configurations were reported by

Patrick and McCormick (1987, 1988). They carried out measurements for two CR transition

ducts: i) the first with an aspect ratio of three and transition length equal to one diameter, and ii) the

second with an aspect ratio of six and transition length equal to three diameters. The cross-

sectional area ratio remained constant for the first duct but it increased to 1. 1 at the midpoint and

then decreased back to 1.0 for the second duct. Their measurements include mean velocity

components and normal Reynolds stresses at the inlet and exit planes. More recently Miau et al.

(1990) carried out turbulent flow measurements through three CR transition ducts of constant
cross-sectional area. They reported measurements of mean velocity components, static pressure

distributions and normal Reynolds stress distributions. Miau et al. used their data to evaluate the

different terms in the transport equation for the mean streamwise vorticity component and showed
that the generation of the secondary motion is due to the transverse pressure gradients induced by

the rapid geometrical changes. Perhaps the most complete set of measurements for a transition

duct configuration is the very recent work of Davis and Gessner (1992) who measured the flow
through a CR transition duct (overall length-to-diameter ratio of 4.5, aspect ratio of 3.0 at the exit

plane, cross-sectional area ratio increasing to 1.15 at midpoint and then decreasing back to 1.0 at

exit). They made very detailed mean flow and turbulence measurements (including all the six

components of the Reynolds stress tensor) at several cross-sections within the transition region as
well as at the exit plane of the duct. Their results show that the curvature of the duct walls induces
a relatively strong pressure-driven secondary motion which significantly distorts both the

streamwise mean-velocity and Reynolds-stress fields. In addition, careful analysis of their near-
wall data indicated that the extent of the law-of-the-wall behavior is diminished in regions where

streamwise wall curvature effects influence the flow development.
Finally, we note that data on turbulent flow in curved transition ducts, with significant area

changes, such as a hydroturbine draft tubes, are quite sparse, and certainly neither well

documented nor detailed enough to serve the purpose of evaluating numerical methods.

Nevertheless, we shall refer to the available data in a later section.

III. SCOPE OF THE PRESENT WORK

The foregoing review of previous research on flow in curved ducts clearly indicates that the

related literature is vast and still growing. The subject continues to be of great current interest

because there are a number of issues that remain to be settled. In the case of laminar flow, the

central concern is that of developing numerical methods for the solution of the Navier-Stokes

equations that can accurately capture the various phenomena that are observed in the experiments.

There exist significant differences among calculations made by different numerical methods with
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identical geometries as well as initial and boundary conditions. Such differences are also observed

in turbulent flow. In this case, however, experiments reveal a much more complex response of the

flow to curvature, and the numerical problem is compounded by the differences in turbulence

models that are used for closure of the Reynolds-averaged Navier-Stokes equations. The initial

and boundary conditions employed for the additional turbulence-model equations, and the manner

in which these equations are solved, influence the results. In both laminar and turbulent flows,

there are a number of other problems, such as grid topology and grid generation, that must be

resolved when existing methods are extended and applied to complex duct geometries of practical

interest. Thus, current research is driven by the need for accurate numerical methods, on the one

hand, and improved turbulence models, on the other. These two aspects become even more critical
when numerical methods are used for the prediction of the flow in curved ducts of arbitrary and

changing cross section.

The present work represents the first phase of a broad research effort that aims to develop

numerical methods suitable for predicting the flow through the passages of hydraulic

turbomachinery. Passages such as turbine scrolls and draft tubes are strongly curved ducts of

arbitrary and changing cross-section. In view of the inadequacy of state-of-the-art numerical

methods and turbulence models to predict flows through simply-curved ducts of square and

circular cross section, it is not surprising that the flow in ducts with the geometric complexity of a

typical hydroturbine lies beyond present capabilities. Our initial objective herein is to assess the

performance of the numerical methods and turbulence models currently available at the Institute in

the context of curved duct flows and identify the focal areas of our subsequent research efforts.

We first present the Reynolds averaged Navier-Stokes equations, along with the turbulence

closure equations, in Cartesian coordinates. Subsequently, we describe and examine in parallel

two numerical methods, namely, the one developed by Patel and his co-workers (see Kim. 1991),

which will be referred to as Method I, and the other developed by Sotiropoulos (1991), referred to

as Method II. We then proceed to carry out a series of laminar and turbulent flow calculations in

ducts of regular (square, rectangular, and circular) cross-section and to compare the results with

experimental data. The laminar calculations offer a very good indication of the spatial resolution of

the numerical methods while the turbulent calculations allow the evaluation of the turbulence model

of Chen and Patel (1988) which is incorporated in both methods. Finally, we report results of

calculations made for the straight transition duct of Davis and Gessner (1992), and a draft tube

configuratioa derived from the one at the Norris Dam in Tennessee. These are perhaps the first

such results to be obtained with a fine grid, resolving the flow all the way to the wall. In the case

of the draft tube, qualitative comparisons are made between the present results and those of some

recent calculations for similar draft tubes made by Vu and Shyy (1990) and Agouzoul et al. (1990),

who have employed rather coarse grids. The present solutions reveal a wealth of detail that is
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difficult to capture with coarse-grid calculations, and offer the opportunity to speculate on advances

that must be made to develop a predictive capability for turbulent flow in hydroturbine ducts and

similar geometries encountered in numerous other applications.

IV. GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The Reynolds-averaged Navier-Stokes equations for an incompressible fluid, non-

dimensionalized by the fluid density p, reference velocity Uo, and reference length Lo, in Cartesian

coordinates xi (= Xl,X2,X3 ) are

ovVi Vi _ _p 1 V , +a--t +V xj - ax--i Re a~xjaxj + vij}

and the conservation of mass (continuity) condition is

_V__ 0(2)
'vj=0

axi

Here, Vi is the mean velocity component in xi direction, vi denotes the corresponding fluctuating

component, an overbar denotes an ensemble average, and Re is the Reynolds number (Re =

UoLo/v ), where v is molecular viscosity. The Reynolds stresses are related to the mean flow

through the eddy viscosity vt by

-i V[aVi + Vj]-2 (3)
- iv =V -- x + -- -il _-3-k 8•ij

where the Kronecker delta function is given by

1, i=j8ij = 0, i # j

The eddy viscosity vt is related to the turbulent kinetic energy k and its rate of dissipation e by the

Prandtl-Kolmogoroff formula

vt = C9 k 2
E

and k and e are determined by the modelled transport equations
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_k + k =a[ 1ee vi k+ (5)
Tt+~~ ý x ( xRe Fk 5-xjj]

e + e= a [ +1 Vt/a1E , G-CE2F2

-vt xjx ax1 [e ; xj k (6)

where the generation of turbulent kinetic energy, G, is

aVi [aVi dV.] ai(

The constants used in this "standard" k-E model are Cg = 0.09, Cpl = 1.44, CE2 = 1.92, ck = 1.0

and a. = 1.3.

In the two-layer turbulence model of Chen and Patel (1988), which is employed in both

methods here, the flow domain is divided into two regions -- the inner layer and the outer layer.

The inner layer includes the sublayer, the buffer layer and a part of the fully-turbulent or

logarithmic layer. The simple one-equation model of Wolfshtein (1969) is modified and employed
to account for the wall-proximity effects, whereas the standard, two-equation k-e model is used in

outer layer.

The one-equation near-wall model requires the solution of only the turbulent kinetic energy

equation (5) in inner layer. The rate of energy dissipation in this rtgion is specified by

k3/2 (8)

and the eddy viscosity is obtained from

vt = C 9 ke (9)

where the length scales eF and eg contain the damping effects in the near-wall region in temis of

the turbulence Reynolds number Ry (= y)
V

ge=C~y 1-exp -Y (11)
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Note that both 4g and Ce become linear, and approach C, y with increasing distance from the wall.

The constant C, is given by

Ce =' KC C93/4 (12)

Ki (=0.418) being the von Karman constant, to ensure a smooth eddy-viscosity distribution at the
junction of the inner and outer layer. In addition, AE = 2C, is assigned so as to recover the proper

asymptotic behavior

E-2v k
y- 2(13)

in the sublayer. The third parameter Apt = 70 was obtained from numerical tests to recover the

additive constant B = 5.45 in the logarithmic law in the case of a flat-plate boundary layer. In the

outer layer, beyond the near-wall layer, the standard k-e model is employed to calculate the velocity

field as well as the eddy viscosity.

V. DESCRIPTION OF METHOD I

The numerical method developed by Patel and his co-workers (see, for instance Kim,

1991), which for convenience will be referred to as Method I, is described first. Method I utilizes

thefidl transformation approach, which transforms both dependent (velocity and Reynolds stress

components) and independent (spatial coordinates) variables to generalized curvilinear

components. In the following sections, the governing equations in generalized curvilinear

coordinates, expressed in terms of the physical contravariant velocity components, are presented

and the overall solution procedure is described.

V.A Governing equations in general curvilinear coordinates

The transformation of the equations from Cartesian coordinates, xi, to the general

nonorthogonal coordinates, 4i, is facilitated by the use of the metric tensor in the ýi coordinates

axr ax"
gii= "rs

bl ai (14)
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and its inverse matrix giJ given by

gii = 1 (91=91n - gknglm)
S (1 ( 5)

where the indices, grouped as (i,k,l) and (j,m,n), follow a cyclic order. The Jacobian of the

transformation is the square root of the determinant of the gij matrix, j 2 = IgijI = g, and the

Christoffel symbols of the second kind are related to the metric coefficients by

FImnI gi D fgjm~ + gnj - Dgmn2 )~ m ~ (16)

To carry out the transformations, the partial derivatives are first changed into covariant

derivatives. Next, the vector components of velocity are replaced by the contravariant

components, and the indices of covariant terms, like the gradient of a scalar, are raised by

multiplying by the geometric coefficient gij. The resulting equations, in general curvilinear

coordinates, are:

continuity equation

Vtm m = 0 (17)

momentum equation

_a_ + (Vm_ gmn Vt.n)V'.m - vt,.gimV", n

.gim(_ + 2k + (. + Vt) grfl (V'm), n

where use is made of the eddy-viscosity relation

ViVm = Vt (girvm,r + gmsvis) - g2k (im
3 (19)

k-e model equations

Tk+ vm I_! gmnVt ~ k ~n =(•k~n. + G
ýRt 11 " (210)

aS M-+ v -L gmv,.,.., =l t-.-gm"(!-.n).,,,+CdJ F-,G; CE2 V_
(Y IRe ') k (21)
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in which

G = - gij viv m VJm = Vt (Vm,iVim + gijgmnVimVJn) (22)

In the above, the covariant derivative of a scalar is defined by

k~m = A-
k m (23)

the covariant derivative of a contravariant component of a vector is given by

Vim = aV_ + ["imkVk
' m M V ( 2 4 )

and the covariant derivative of a covariant component of a vector is given by

(k~m ).n - , n , ( = _C_- ka m Fs (25 )

The covariant derivative of a mixed second-order tensor is given by

(V'im)n+ lins(VS m)- "SmnSVk,s)
c3•,n(26)

which results in

gmn(Vi~m}.= V2V' + 2C'mV + VS + mr + CbIS]S In - --mn +s'm
[] (27)

where Cim = gmni's, and V2 is the Laplacian of a scalar, defined bys ns

2 a2 a+
V = gmnfm~n +am (28)

and

fm grs _-l jgrm)
r,=j 

(29)
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The contravariant components of velocity vectors do not, in general, have measurable

dimensions. Therefore, following Trusdell (1953), the so-called physical components of the

contravariant components, defined by

V (i) = f Vi (30)

are introduced. Then, the final equations, which are solved, are obtained by substituting (30) into

equations (17) through (21). Thus, we have the

continuity equation

I a[Jgi}/2v(i)] =0J0
(31)

momentum equation
+_ giji /2 1/21•Vi

V + g Iý2 V(mt-Y--- + Dm(i)V(m)V(i) + g1, gnn FmnV(m)V(n)]

-- t[g -V(i) .+ g-nl/2g!2gimg ) + Em(i)V(i) + g-,1'2g.2Ei(n)V(n)

+ 2 "/2(n C v(s)i- g+{2 gim rp [+21e]
+ • 1 SS I -S S1 .. . ..m-r -

p 3 ]

'Re vvi + + P(i)Vli) + m+/2,-l/'. CnmaV(n)

(no sum on i) (32)

k-zj mo(4- uat.i9_ons

1k [V1 gmn avt oAkV2
g-•- • V(m)- • m] =(e + •k)Vk + G - F,

at ,M I k aý- a~ Gk(33)
SL V(m)--1g mn vt m Re = L vkt 2 G( 33)

"Ft+ g V (m)- E Mm aCm Re a 72 e+ CC ,k- k (34)

where

G = - gij vivm VJ'm = Vt (vM,ivi,m + gijgmn V'.mVjnn)
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with

Vi'm = g-l2 Vi gM/ s/
=+ -1/2 Dm(i)V(i) + g V(s)
Vm g1 V (35)

and other geometry-related terms are
Din(i) = 1 agii

2gii a•m

Em(i) = gmn Dn(i)

On, = gmf

P(i) =[Em(i)] + [Dm(i) + 1-nmj Em(i)

Q - aCim + [2Dm (i) + 1"Sm] CGin + rVsmnCim

V.2 Discretization of the transport equations

The three-dimensional form of the transport equations of momentum and turbulence
properties are discretized using the finite-analytic method developed by Chen and Chen (1984) and
modified by Patel, Chen and Ju (1988). The dimensionless forms of the momentum and k-E

equations are arranged into the form of a general convection-diffusion equation as follows:

gl 1,0 , + g22PN ' +g33p = 2COOý + 2B OO-n + 2A OOý +Rbt + S(36)

where the subscript indicates a partial derivative with respective to time or one of the general
coordinates (ý1,42,•3) S The variable 0 represents one of the following quantities: [V(1),

V(2), V(3), k, el.

When 0 represents one of the velocity components, [V(I),V(2),V(3)] = (U,VW), say, the

coefficients and source terms derived from the momentum equations are

2C = R4, [gilf/2V(1) - gl Vt__L. gil aV.t - [fI + 2E'(i) + 2Cl]
.4n .Oin o(37)
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2B = R0 g-2V(2) - g2n --g + 2(i) + 2C12

(38)

2AO = R Fg3 1ý2v(3) - g3n V_t - gi3 f3 + 2E 3(i) + 2C,3]

I an (39)

10 = RvI = RV2= RV3 = I 1

Re (40)

So = - NO•V(i)] + R •,ln gim 1 p (m Vm + 3

- g-I 97112 1/2 i_ ,V2t Vj + Cj 12gj/im a't )V(k) 1
Ij' 9 11l 9'1 a• a I "11 -1 k q

- R6 PVt [Em(i)V(i ) +g gmQV (m)V + g. 2gUim + Cg)•V2nC

P~~~)+ g,12g-1(2QiVM+ g~j2g-4I22C'maV() + 1I2g1/2,)CtmaV(k)_

[k1)\1 m_ 1  1V 1 + i jJ + 1  kk - k -m

+ Rog [Dm(i)V(i)V(m) + gi/2ghn/2FnnV(m)V(n)] (41)

where (i,j,k) are in cyclic order and the diffusion terms arising due to the nonorthogonal

coordinates are given by the operator

NO(O) = 4[1 20rl + g13 ,k" + g230,] (42)

The various geometric coefficients were defined in the previous section. Note that they involve

sums over the indices m and n. The coefficient required for each component of the momentum

equation can be found using

0 = V(I) = U (i=l, j=2, k=3)

S= V(2) = V (i=2, j=3, k=1)

0 = V(3) = W (6=3, j=l, k=2)

The coefficients for 0 = k or e are derived from their corresponding non-dimensional

equations and arranging them in the form of equations (37) to (39) and (41). This yields
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2C =R : [0g- 2v( -_L gln _t fI
00 aý n_(43)

2130 = R g2ý42V(2) - _L g2fl f2Y]

(44)

2AO = R0 [g3!2V(3) - _L (45)V. • Y T (45)

Sk = - NO(k) - Rk (G - E) (46)

Se = - NO(E) - Re C- (CEiG - CE20)
k (47)

where RO is the effective Reynolds number defined by

1 _ 1 vt
Rk Re Gk (48)

1 _ 1 +Yit
RE Re aE (49)

Now, introducing the coordinate stretching

Wg _ 11 = 1 _jg___

P (50)

equation (36) reduces to the standard three-dimensional, convective-diffusive transport equation

described in Chen and Chen (1984), i.e.,

0*ý* + On*,9* + 0*ý* = 2C•, + 2B4q* + 2AO, +Rot + (S&5p (51)

with
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C-(CO)P B= (Bo' A- (Aoý R=(Rop

A9 _g Ig _V I9 (52)

for a numerical element with dimensions

at e = 1 k _= AC" _1._ (53)
A/gi _Pg 2P

shown in figure 2, where subscript P denotes a quantity evaluated at a point (node) P.

In applying the finite-analytic method of Chen and Chen (1984) to the linearized equation

(5 1), the most general version for a three-dimensional element results in a 28-point discretization

formula. While such a scheme will, in principle, yield better results, for a wide class of problems

it suffices to use a simplified method to save computational effort. Here the hybrid method, which

combines a two-dimensional local solution in the riý-plane with a one-dimensional solution in the

G-direction, is employed. A brief description is given below.

In the hybrid scheme, equation (51) is decomposed into one- and two-dimensional partial

differential equations as follows

2COý, - ok*ý* + Rot + (Sb)p = G(ý*,rl*,ý*,t) (54)

01l*-q* + Oý*ý* - 2B~n* - 2AOý, = G(ý*,rl*,C*,t) (55)

If G is assumed to be constant in each local element, and if the time derivatives are approximated

by backward finite-difference formulas, equations (54) and (55) reduce, respectively, to the

standard one- and two-dimensional convection-diffusion equations described in Chen and Chen

(1984).

The general solution of the one-dimensional equation (54) can be readily obtained as

S= a(e2C* - 1)+ b4* + c (56)

where a, b, c are constants to be determined from the boundary conditions. By substituting

equation (56) into (54), the source function G at the center node P is obtained as

Gp = g = G(0,0,0,0) = (2CX * - 0ý*k, + Rot + So0)
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-(CU + CD) OP - CUOU - CDOD + (OP np.1) + (S.)pA'r (57)

with

C eC' C e (58)
- sinh C' D P sinh C(

where the subscripts P, U, and D denote the center, upstream and downstream nodes,

respectively, as shown in figure 2. The superscript (n-1) refers to the value at the previous time

step, and At is the time step.
By specifying boundary conditions for each element, equation (55) can be solved

analytically by the method of separation of variables. The boundary conditions on all four
boundaries, Tr = + k and * = + h of the transverse section (rl•-plane) of each local element are

specified as a combination of exponential and linear functions, which are the natural solutions of

the governing equation, i.e.,

= an (e2A'* - 1) + bnC* + cn

- a, (e2Aý* - 1) + b,ý* + c,

O(Tl*,h) = ae (e2BTI* - 1) + befl* + ce

O(Tl*,-h) = a, (e2BTI* - 1) + bwrT* + cw

where a, b, c are again constants determined by the nodal values along the boundaries of the

element. When the local solution thus derived is evaluated at the center node P of the element, the

following nine-point discretization formula is obtained:

Op = CNEONE + CNWONW + CSEOSE + CswOsw

+ CECOEC + CwcOwc + CNCONC + CscOsc + Cp g (59)

where

CSC eBk PA
2 cosh Bk

CNC = e2Bk Csc
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Cwc= eAh P]

2 cosh Ah

CEC = e-2  Cwc

CSW = eBk + Ah (0-PA-PB)
4 cosh Bk cosh Ah

CSE = e-2Ah Csw

CNW = e-2Bk Csw

CNE = e"2Bk - 2Ah Csw

Cp = h tanh Ah (1 - PA) = k tanh Bk (1 - PB)
2A 2B

with

PA = 4E2 Ah cosh Ah cosh Bk coth Ah

PB =1 + Bh coth Bk (PA- 1)

Ak coth Ah

and

E2=X (-) m Xm h

xM = (M - Ic

Finally, by substituting the inhomogeneous term g from equation (57) into equation (59). the

following discretization formula is obtained for an unsteady, three-dimensional flow:

25



1p (Cu I CNEONE + CNW@NW + CSEOSE + CswOsw1+C Cp(u+CD+ R-)

"+ CECOEC + CwcO/C + CNCONC + CSCOSC

"+ Cp CUOU+ CDOD + ' ) + CP NO (60)

or

8Op I Cnb¢nb

I +Cp(C U+CD+ R) nb=1

+ CPI (CUiU + CD1D + -I + CI,(S )p (61)
AT (61)

where the subscript nb denotes "neighboring" nodes (NE, NW, etc.). It is seen that Op depends

on all eight neighboring nodal values in the transverse plane as well as the values at the upstream
and downstream nodes (OU, OD) and the previous time step Opn- I. When the cell Reynolds

number 2C becomes large, CU approaches 2C/[ = 2(CO)p and CD goes to zero so that the

coefficients of discretized equations turn windward. Similarly, all finite-analytic coefficients of

transport equations automatically control the direction of difference and weighting of neighboring

nodes.

As equations (61) are implicit in time and space, their assembly for all elements in the

solution domain results in a system of simultaneous algebraic equations. These equations are

solved by the tridiagonal-matrix algorithm in conjunction with an Alternating-Direction-Implicit

(ADI) scheme. For steady-flow calculations, where it is not necessary to obtain a fully converged

solution at intermediate stages, only ten internal iterations are used during each time step.

V.3 Continuity equation and pressure-velocity coupling

If the pressure is known, equation (61) can be employed to solve equations (32) for three
velocities, and (33) and (34) for k and e. However, the pressure is not known a priori and must be

determined by requiring the velocity field to satisfy the continuity equation (31). In the method of

Chen and Patel (1989), the pressure equation is derived by introducing pseudo-velocities at

staggered locations while maintaining the regular grid arrangement for all the transport quantities.
Figure 2 shows the locations of nodes in the regular grid in the Tlý plane.
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In the regular grid arrangement, the twelve-point discretization formula (61) for the

momentum equations gives the contravariant physical velocity component V(i) at P as

8

[V(i)]p= nb
I +Cp (Cu + CD +R-•) nb=-I

+ Cp (CuV(i)u + CDV(i)D + P V(i)•"I + Cp (Sv(i))p}
At (62)

Note that these equations contain the pressure gradient terms inside the source terms; see equations

(41).

The actual velocity field V(i) in the momentum equation (32) is decomposed into a modified

pseudo-velocity 0(i) plus the pressure gradient terms acting in the direction of the velocity

component. i.e..

V(iV(i) (i) Cp R g9 2  gi
I +CP(CU +CDAR) (63)

AT (63)

or

V(i) = V(i) - Eii -p (no sum on i)
a4i (64)

The continuity equation (31) yields

[JgIl{2v( 1 )]d [jgjl'2v( I)]u

+ [Jg£ZV(2)]e- [Jgý2v(2)]w

"+ [Jgil42V(3)]n - [jgPl92V3]s = 0 (65)

Substitution of (64) into (65) gives

{[Jg'll/2El id + [jgll/2E1 l]u + [jgýl'•2E22]. + [jgýi:•2E22]w

+ [jgW 2E33]n + [jgjl•2E33]s} pp

= [Jg-il( 2 E' lId PD + [jg I' 2E' I]u PU + [jg2 l42E22] PEC

+ [jgýl12E22]w pwC + [jg3I 2E33]n PNC+ [jg9312E33]s Psc - D (66)
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where

= j l[jg2_( 1 + [jg-i /2V(1)]. + [jg2142 V(2)]e

+ [Jg•-2 V(2)]. + [Jga1/2V(3)]. + [Jga /2v(3)]s (67)

With a regular grid, the modified pseudo-velocities at the staggered locations cannot be obtained

directly. Therefore, a simple one-dimensional linear interpolation is used to obtain the modified

pseudo-velocities at the required staggered nodes, i.e.,

[V(1)]d = MI +j ([Vu]] +

[V(2)]e = 1 {[f-(2)]EC + [V(2)]p) (68)

[Vý(3)]n _ [(3)]Nc + [V(3)],,) etc.

so that 6 of equation (67) can be expressed in terms of the pseudovelocities at regular nodes as

follows:

D { [V(i)]D-[Vl(1)]U +[V(2)]EC- [V(2)]wc +[V(3)INC-

The coefficients (Jg1/2E 114X' (Jg 12E22t)e, etc. in equation (66) are also calculated by one-

dimensional interpolation in the same way as in equation (68).

The solution of the coupled momentum and continuity equations involves a global iteration
process, in which the velocity-pressure coupling is effected by predictor-corrector steps. In the

predictor step, the pressure field at the previous time step is used in the solution of the implicit

momentum equations to obtain the corresponding velocity field. Since this velocity field does not

satisfy mass conservation, a corrector step is needed. In the corrector step, the explicit momentum

equations and the implicit pressure equation are solved iteratively to ensure that the continuity

equation is satisfied. This procedure is almost the same as the PISO algorithm of Issa (1985)

except for some minor details. In the PISO algorithm, the pressure equation in an incremental

form is solved in two correction steps. The present procedure, however, solves the absolute

(nonincremental) pressure equation in several correction steps, the number of which is specified a

priori. In the present algorithm, the finite-analytic coefficients are not updated during the corrector

steps, while in the PISO algorithm the corresponding convection-diffusion coefficients based on

finite-differenca! formulation are updated in the corrector steps.
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V.4 Solution procedure

The system of algebraic equations formed by (61) for transport quantities and (66) for

pressure is solved by the tridiagonal matrix algorithm in conjunction with the ADI (Alternating-

Direction-Implicit) scheme. For transient problems, where the initial and boundary conditions are

properly specified, the overall numerical solution procedure may be summarized as follows.

1. Read in the grid and calculate the geometric coefficients and related terms.

2. Specify the initial conditions for velocity and turbulence fields.

3. Give an initial guess for pressure.

4. Calculate the finite-analytic coefficients for the transport equations.

5. Solve equations (33) and (34) for turbulence parameters by tridiagonal matrix

algorithm. Update the eddy-viscosity using the two-layer turbulence model.

6. Solve the momentum equations (32) using the previous pressure field. This step

constitutes the predictor step for velocity field.

7. Calculate modified pseudovelocities from equation (64) and solve the pressure

equation (66).

8. Using the newly obtained pressure, calculate the new velocity field explicitly from

equation (64). This completes the corrector step.

9. Repeat steps 7 and 8 a spec.fied number of times to obtain a converged solution.

10. Return to step 4 for th- next time step.

VI. DESCRIPTION OF METHOD II

Method iI is based on the one developed by Sotiropoulos (1991). However, during the

course of this work, a number of new features and capabilities have been added, including an

implicit solution procedure for the pressure equation and the two-layer turbulence model of Chen

and Patel (1988). As this method utilizes the partial transformation approach, with the velocity

components expressed in Cartesian coordinates, the appropriate forms of the Reynolds-averaged

Navier-Stokes equations, and the equations for the turbulence model, in generalized curvilinear

coordinates are presented once again. The spatial and temporal discretization of the governing

equations, pressure-velocity coupling algorithm, and convergence acceleration techniques are then

described in turn.

VI.A Governing equations

The Reynolds-averaged Navier-Stokes equations (I) and the equation of continuity (2), are

transformed to generalized curvilinear coordinates by invoking the partial transformation, i.e., xi
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__> •i, but leaving the velocity components Vi in Cartesian coordinates, but now denoted Vi. The

transformed governing equations, of continuity and momentum, read as follows:

continuity equation

1 (JVi) _0a (Vi (69)

momentum equation

-- + 1 a v+ H = 0 (70)

In the above equation. Q is the velocity vector Q = ( V1,V2,V 3 )T. The matrices Aj in equation

(70), are diagonal matrices defined as follows

Aj = diag(VJ,VJVJ) (71)

The viscous flux vectors Evj which appear in the momentum equation (70) are

Ev,= (El,, EV, E3)T

where

Ek, = j (- t vk+9P Vk + 1k
V Re V L~Xk~I + g p) 5~+

S1j = tJR21 + VJR3,

S2j = VJ,R12 + ý,,R31 (72)

S3j = tJR 3 + VJR23

avik

The source vector H in the momentum equation (70) is given by
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~Pk k3P

The equations for the turbulent quantities k and S are written in generalized curvilinear as

follows:

A A _I a [(1 +t jgij-~lGso(4
aFk + k v_ a._..I_.. + vt )J Ok j I -+0

at + a4•i Re J g4i -cERe G+Ci= 0 (75)

The production term G can be expressed in generalized curvilinear coordinates as

G = L vt (Rii + Ri) 2  (76)

where repeated indices imply summation and Rij is defined in equation (72).

VI.2 Spatial discretization of continuity and momentum equations

The momentum equations (70) are discretized in space, on a non-staggered mesh, using

three-point central finite differencing for the pressure gradient and viscous terms, and second order

upwind finite differencing for the convective terms. The upwind differencing of the convective

terms eliminates the need for adding artificial dissipation terms, to the right hand side of the

momentum equations, to stabilize the numerical algorithm. This is due to the fact that a fixed

amount of dissipation is inherent in the upwind differencing.

Referring to the computational cell of figure 3, discrete approximations of convective,

pressure gradient and viscous terms in equations (70) are as follows:

[Vlavl =V ÷ " (V,)i k +VI- + (VJ(
I 8 ( k + Vi,j,k 5 " Iij,3

4 --] (ýx,)i~j,k 6t' Pi~j,k (8
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(v+v,) ( X, I+g 'V Ilk = 8 V Vt) iv , 8v , 1 g) '(Vi),kl

(79)
where

v 1[v ±I]V (for i = 1,2,3)
2

)ij,k = [-3()iOjk + 4 0i+±,j.k - OL2.j,k]

2A41

'()Oij.k- = AI1 [Oi+1/2,jk - Oi-1/2.j,k]

Similar expressions are used to discretize derivatives with respect the other two spatial directions.

In all the above equations, the metrics and the Jacobian of the geometric transformation are

computed at the (ij,k) nodes using three-point central differences. To compute the metrics and the

Jacobian at the half nodes ((i+1/2,j,k) and etc.), where they are needed for the discretization of the

viscous terms, a simple averaging procedure is employed.

The continuity equation (69) is discretized using three-point central differences. For

convenience we define the discrete divergence operator as follows:

DIV [Qij,k] I 15: (J-ýq)i.j.k] (81)

where Q is the cartesian velocity vector and vq are the contravariant components of the velocity.

VI.3 Temporal discretization of continuity and momentum equations

The system of the discrete continuity and momentum equations is integrated in time using
the four-stage, explicit Runge-Kutta scheme. Although explicit in time, the Runge-Kutta scheme--

first used by Jameson (1981) to solve the compressible Euler equations--is known to have very

good error damping properties, which can be further enhanced by employing convergence
acceleration techniques as discussed later on. Particularly in complex three-dimensional flow

applications, the Runge-Kutta scheme can be very competitive to approximate-factorization

techniques, since it is fully vectorizable and can easily take advantage of parallel processing

capabilities of today's supercomputers. The Runge-Kutta scheme has been adopted by several
researchers and applied, with a great deal of success, to solve compressible viscous and inviscid
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flows (Jameson and Baker (1983), Chima and Yokota (1990)). Merkle et al. (1986) used the four-

stage Runge-Kutta scheme in conijunction with the artificial compressibility method to solve the

incompressible Euler equations, while Sotiropoulos (1991) applied it in conjunction with the
pressure-Poisson approach to calculate incompressible turbulent flows past ship hulls.

Following Sotiropoulos (1991), the Runge-Kutta scheme is applied to the system of the

governing equations (69) and (70) as follows (for P = 1,2,3,4):

DIV [Q'iJ~k] = 0 (82)

Q iik Q'ij -e Atijk RHS•' (83)

In the above equations, the superscript "n" denotes the time step at which the solution is known,
while the superscript "/" denotes an intermediate time level (or iteration level) used to advance the

solution from time step "n" to time step "n+l" (we designate Q( = Q" for t(---) and Qý = Q'" for
1=4). For the four-stage scheme. the coefficients ar's are: 1/4, 1/3. 1/2 and I for i = 1.2.3.4. in

sequence. The RHS in equation (83) denotes the discrete approximation of the right-hand side of

the momentum equations (70) at the node (i.j,k):

RHS = Aj Q _ -)Ev;+ H (84)

Also, Ati.jk in equation (83) is the time increment which, for reasons discuss later on, varies in

space (local time stepping). For the sake of convenience, however, in the rest of the analysis the

(i.j,k) subscript has been dropped.

VI.4 Pressure-velocity coupling algorithm

The system of discrete governing equations (82) and (83) can not be integrated in time in its

current form due to the lack of an evolution equation for the pressure field. The discrete
momentum equation (83), however, can be substituted in the discrete continuity equation (82) to

obtain a Poisson equation for the pressure field at the intermediate stage (t-I). As discussed in

Sotiropoulos (1991), on a non-staggered grid layout, the so resulting pressure equation would be

exactly equivalent to the discrete continuity equation--since, at steady state the pressure equation
reduces to the continuity equation (82)--but it would yield oscillatory solutions for the pressure

field (odd-even decoupling). To overcome this difficulty, it was proposed by Sotiropoulos (1991)
to derive the discrete pressure equation starting from a modified form of the discrete continuity

equation. More specifically, the proposed discrete "continuity equation" reads as follows:
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DIV [ .j.k = - L i.[P'k (85)

where

L[4= ( J g"lAt ) + 5-(Jg 2  ) +j '( J g3 3 At 8 )[H (86)

L[ 1 ( J g,,At 6 +&2( j g2  - ) + ;( J g3 3At6P 85') (87)

The detailed reasoning behind the selection of the source term in the right hand side of equation

(85) can be found in Sotiropoulos (1991). Herein, it suffices to note that the source term in

equation (85)--which is necessary to guarantee the smoothness of the computed pressure field--is

proportional to the difference between the orthogonal parts of two discrete approximations of the
Laplace pressure operator: the one that results by discretizing over 2Aý and the one that results by

discretizing over 4Aý. The positive constant y is introduced to control the size of the source term

and minimize the error in the satisfaction of the discrete continuity equation. Numerical
experimentation with a variety of three-dimensional flows has shown that values of 'y between 0.01

and 0.1 are sufficient to eliminate the odd-even decoupling of the pressure nodes.

By incorporating the discrete momentum equation (83) into the discrete "continuity

equation" (85), the following equation is obtained for the pressure field at the (!'- 1) stage (for the

sake of convenience we set m=&- 1):

(l-y) LP m + y[P m] + N[P m] l DIV[Q n- m (

1  ijk88)

where

N[P] = {184[JAt (g1282+g13843)] + 54-[JAt (g128I+g 2383)]

+ 513[JAt (g138tI+g 2384z)J )[P] (89)

and

a = 5F, (JAt 44) (90)

where f•J contains discrete approximations of the convective and viscous terms which appear in the

J-momentum equation.

34



In Sotiropoulos (1991), the pressure equation (88) was solved using the point successive

relaxation method. In the present work, however, in order to accelerate the convergence of the

pressure equation as well as that of the global time marching procedure, equation (88) is solved

using the Alternate Direction Implicit (ADI) method. For that reason, a time derivative of the

pressure is introduced in equation (88) transforming the pressure-Poisson equation into a

diffusion-like evolution equation:

ap
-13 - + (l-y) L[P m] + yl[Pm] + N[Pm] =... (91)

where 13, in equation (91), is a positive preconditioning constant introduced to accelerate the

convergence to steady state as discussed in a later paragraph. Incorporating the first-order accurate

Euler implicit temporal linearization scheme

P m= M-1 + ap t + 0(At 2) = M + AP

in equation (91), one obtains

AP - At { (l-y) L[AP] + y L[AP] - At PRHS (92)

where

PRHS = (1-y) L[P "I] + yL[pmM-] + NIP m-1] - - DIV[Q n] - Cyi',k (93)

Note that the non-orthogonal pressure terms (N[ ]) in equation (92) are being treated explicitly in

order to preserve the tridiagonal character of the resulting system. Also the dissipation term for the

pressure equation (source term in equation (85)) is treated implicitly in equation (92). Such

treatment, however, would result (for the general case of y * I) to a pentadiagonal system--in the i-

sweep, for instance, the points i-2, i-l,i, i+ I and i+2 would be involved. To avoid the inversion

of a pentadiagonal system, the L[ ] operator, which introduces the i-2 and i+2 off-diagonal terms,
is eliminated from the left-hand side of equation (92) by setting the y parameter equal to one--only,

of course, in the left-hand side of equation (92). Obviously, this step has no effect on the steady

state solution of the pressure equation since its left-hand side vanishes at convergence. Application

of the ADI approximate factorization method to equation (92) gives:
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[1- At 6 1(Jg" At 1)][1 - •- 4 (Jg2 2At )][l1 - At • (Jg3 3At •3] AP

=_AtPRHS

1P (94)

Equation (94) is solved, in three consecutive sweeps, using the Thomas algorithm. It is important

to point out that the implicit solution of the pressure equation (94) increases the overall CPU

requirement no more than five percent, mainly because: i) the three tridiagonal matrices to be

inverted in equation (94) depend only on the metrics of the geometric transformation (the three

diagonals of each matrix can be computed once, at the beginning of the calculation, and stored for

subsequent use); and ii) the Thomas algorithm can be vectorized by solving simultaneously for all

the points on a plane perpendicular to the current sweep direction.

It is well known that the ADI factorization is unconditionally stable (Anderson et al., 1984)

when applied to the parabolic-in-time heat equation. Of course, the same argument can not be

readily extended to the pressure equation without rigorous stability analysis of the system of

governing equations. Numerical experimentation has shown, however, that stable solutions for

the pressure equation (94) can be obtained for time steps much larger than those used for the

momentum equations. More specifically, values of the preconditioning constant 3 of the order of

0.1 have been used in all the calculations reported in the following sections. This allows the

pressure equation to operate with an effective time step one order of magnitude higher than the

momentum equations, and this results in significant convergence acceleration of the overall time

marching procedure.

VI.5 Solution of the k and E equations

The k and e equations (74) and (75) are discretized in space using second-order upwind

differencing for the convective terms, and three-point central differencing for the viscous terms.

Equations (74) and (75) are of the same type as the momentum equations (parabolic in time, elliptic
in space) and, thus, the Runge-Kutta scheme could be applied to integrate them in time. The k-e

equations, however, contain source terms which are stiff--the production term G, for instance, is
very large near solid boundaries while it decays rapidly to zero in the outer part of the boundary

layer. The use of an explicit time-marching algorithm to integrate a stiff set of equations may

impose severe time step limitations and have overall stability problems. To avoid such undesirable

complications, equations (74) and (75) are solved by employing the ADI approximate factorization

scheme.
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The e-equation (75) is used to demonstrate the linearization and approximate factorization

procedure (a similar procedure is employed for the k-equation). Using the Euler implicit temporal

discretization scheme, equation (75) is linearized in time as follows:

A, + At [ -CEI + CQ2 2- + V+8 + W68
k k

- (JVjg I A, -At RHS (

where

RHSZ= V+•-'+ V •• 3 '(JEjV 5,) E) - CE~ G + C 2- (6
RHS~V~&cElk (96)

"( )±i.j,k - ( )i.j,k (97)

VE = + Vt (98)
Re aT

The source terms of equation (75) have been linearized in time as

SG = G -9L G + A-G
k k k

(99)

(EC n+l) (,n)2 _FA= + 2, A F
k k k

In order to preserve the tridiagonal character of the resulting system, the non-orthogonal terms of

the diffusion operator have been treated explicitly in equation (95). For the same reason, the

convective terms in the left-hand side of equation (95) have been discretized using first-order

upwind differencing. This less accurate spatial discretization does not have any effect on the

steady state solution--the left hand side of equation (95) vanishes at convergence--since the

standard second-order upwind differencing has been employed in the right-hand side. Finally,

applying the ADI approximate factorization, equation (95) reads as follows:

(1 + At [VI+ 8t1 + V' -8 i (8vtg'1 J)}g

37



1 + At V2+ V32 + -2 j2 (JvEg22 2)])

(1+ At [v+ ;3 + V-3 _ IL (Vg33 ýj J3 Ac= -At* RHSE (100)

where

At= At (101)I +At (CE,2-- CG}

Equation (100) is solved using a vectorized version of the Thomas algorithm, in a similar fashion

as described in the previous section for the pressure equation. The k-equation is linearized and

solved in an identical manner as described above. The only difference, of course, being that, in the

context of the two-layer model, the k-equation is solved all the way to the wall while the s-equation

is solved only in the outer layer.

Due to the rapid changes in the cross-sectional shape and area of some of the duct

configurations to be considered herein, care must be exercised when specifying the matching

boundary for the two-layer k-e turbulence model. In all the previously reported calculations with

the two-layer model (see, for instance, Kim, 1991) the approach followed is to match the one- with

the two-equation model along a pre-selected coordinate surface which is broadly located within

what is normally the logarithmic region. This approach, although it works well for ducts of

constant cross-section (and is adopted herein for similar configurations), is obviously not adequate

for transition ducts where the cross-section changes from circular at the inlet to rectangular at the

exit. For that reason, in the calculations with transition ducts we choose to follow a more rigorous

approach, that is to match the two models at points where the turbulence Reynolds number Rey (=
/-ky/v) is approximately equal to 250 in order to ensure that the wall damping effects are negligible

(Chen and Patel, 1988) beyond that distance.

VI.6 Summary of algorithm and convergence acceleration techniques

Assuming that the solution at the "n" time level is known, the solution at the "n+ I" time

level is obtained through the following steps:

1. Solve the k and s equations (74) and (75), as described in section 5, and calculate the

new eddy-viscosity field.

38



2. Using the currently known pressure field, calculate the artificial mass source term for

the pressure equation (right-hand side of equation (85)). To save computational time

the artificial dissipation term is frozen in all subsequent Runge-Kutta stages.
3. For f=l to 4 ( Qe= Q n+l for f = 4):

(a) Compute the right-hand side of the pressure equation as given by equation (93).

(b) Solve the pressure equation (94) to obtain the pressure field at the "e-l" stage.

Since, the steady state solution is of interest, only one ADI iteration is performed on

the pressure.

(c) Using equation (83) compute the velocity field at the "f-stage' and return to step

(a).

4. Repeat steps 1 to 3, until convergence is reached.

The convergence rate of the time marching procedure is enhanced by employing the local

time-stepping technique along with implicit residual smoothing. The time increment is computed

and stored for every node as follows (see Martinelli (1987), Kunz and Lakshminarayana (1991)):

At I AtI (102)ti.j,k = Min (Ati.j,k,Ati. j,k 012

where

At = CFL min( g1-g, I, -g'2, Fg33 )

At= 0

Re

In the above equations, CFL and Q denote the Courant-Friedrich-Lewis number (hyperbolic

stability criterion) and the von Neumann number (parabolic stability criterion), respectively. The

CFL number, used herein, is an approximate one, since it is based only on the local length scales

of the computational grid. Although an exact CFL number should involve the local velocity scales

as well, we chose to use this approximate formulation in order to avoid the calculation of At' at

every new iteration level--this purely geometric variation of At' has been found adequate on highly

stretched meshes (Sotiropoulos, 1991). Typically, the parabolic stability constraint dominates only

in the near-wall region where the grid spacing, the velocity and the eddy viscosity approach zero.

Sufficiently far from the wall, however, the hyperbolic stability criterion dictates the choice of a

stable time increment. In the present calculations, the selection of the local time increment based on
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both the hyperbolic and parabolic stability criteria (equation (102)) was found necessary for

stability only for Reynolds numbers of the order of 106 or greater. At lower Reynolds numbers,

the hyperbolic stability criterir.-. was sufficient for obtaining converged solutions.

The implicit residual smoothing was first proposed by Lerat (see, for example, Hollanders

et al., 1985) for use with the Lax-Wendroff scheme and was later adopted by Jameson (1983) to

accelerate the convergence of Runge-Kutta schemes. In the present study, the implicit residual

smoothing is applied to the right-hand side of the momentum equation as in Sotiropoulos (1991).

More specifically, the residual calculated in equation (84) is smoothed by the constant coefficient

implicit operator to define a new residual:

(1- (0, -2,2)(1- (013.3) RHS" = RHS" (104)

where

(()i+l)j,k - 2( )i.jk + ( )i-l.j.k8e',()i~j.k =I

The constants (o1, w2 and (o3 are smoothing parameters which are of the order of one and their

subscripts indicate that they can be chosen differently for each spatial direction. Equation ( 104) is

solved using the Thomas algorithm and the smoothed residual replaces the residual RHS in

equation (83). The residual smoothing is applied at every stage between steps (3.b) and (3.c) in

the solution procedure described in the beginning of this section . The implementation of the

implicit residual smoothing in the four stage procedure allows the use of higher CFL numbers and

consequently leads to a significant acceleration of the convergence rate--Sotiropoulos (1991)

reported a fifty percent gain in convergence speed. Moreover, the vectorized version of the

Thomas algorithm, used for inverting the three linear operators in equation (104), increases the

overall CPU time by no more than five percent.

The smoothing coefficients in equation (104) are constant in each spatial direction and,

therefore, one can expect this formulation to be optimal for grids that are not highly stretched.

Surprisingly though, equation (104) has worked quite well (Sotiropoulos, 1991) for highly

stretched grids with large aspect ratios. For further acceleration of the convergence rate, however,

Martinelli (1987) proposed a formulation--for the two-dimensional compressible Navier-Stokes

equations--where the smoothing coefficients in equation (104) are functions of characteristic wave

speeds. The idea behind Martinelli's suggestion is that, since the minimum local grid spacing

dictates the maximum allowable local time step for stable calculations, more smoothing should be
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applied in the direction of that minimum spacing. If the same smoothing is applied in the other

spatial directions--where the grid spacing is coarser and the time step, as computed by equation
(104), is much smaller than the local stability limit--the damping properties of the scheme are

impaired. Martinelli's formulation was extended to three-dimensions by Radiespiel et al. (1989)

and Liu and Jameson (1992). In the present study a formulation similar to that of Liu and Jameson

is adopted as follows:

(01 =max{0, I[ CFL 1 .2_ lJ
4 10CFL* I + r 12 + r 13 )(105)

u)., = max {0, 4L [( CFL I - 2_1]
4 CFL* I + r2 1 + r23 (106)

"" CFL* I + r3 1 + r32 (107)

rij= vgjj

In the above equations, CFL* denotes the CFL number of the unsmoothed scheme while CFL

denotes the desirable CFL number. It can be easily seen that, for non-equal grid spacings, larger

smoothing will be applied in the direction of smaller spacing, while for uniform grid the three
smoothing coefficients are equal. In addition, these equations involve only geometric quantities

and, consequently, the smoothing coefficients need to be computed only once at the beginning of

the calculation.

VII. THE DISCRETE CONTINUITY EQUATION IN METHODS I & II

It is well known that on a non-staggered computational grid--which is used by both

methods employed here--the discrete continuity equation cannot be satisfied to machine zero with

the resulting pressure field being smooth (Strikwerda (1984), Sotiropoulos (1991)). In general, a

smooth pressure field can be obtained only at the expense of accuracy of the discrete continuity
equation. Thus, a successful non-staggered grid, primitive variable method must have built into it

a dissipative mechanism that eliminates the pressure decoupling and, at the same time, a

mechanism that minimizes any errors introduced in the discrete incompressibility condition.

Method H1 was specifically tailored to account for the ambiguities associated with the non-

staggered grid. The artificial mass source term, introduced in the discrete continuity equation (85),
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eliminates the decoupling of the pressure nodes but at the same time its size is controlled via the
constant y. An estimate for the size of this source term can be easily obtained if we consider its

form for the case of uniform cartesian grid (see Sotiropoulos, 199 1):

4 •4
4 a X4

where the subscript II is used to differentiate from an equivalent parameter which will be

subsequently used for Method I. Also the dots in equation (108) imply similar terms in the other

spatial directions, which are omitted for convenience. Recall now that Method II employs the local

time stepping technique according to which the local time increment is proportional to the grid

spacing, with the constant of proportionality being the CFL number (At = CFL Ax). Incorporating

this in equation (108), we obtain

DIV[Qii k] = "YU C-L Ax3 4P +"". (109)4, aX4

This shows that the error in the satisfaction of the discrete incompressibility condition is third order

in space (lower than the truncation error of the second-order accurate finite difference

approximations). Also, it is important to note that the use of the local time stepping scales the time

increment out of equation (109) and makes the steady state solution independent of the time step.

Moreover, the CFL number in equation (109) does not have any significant effect in the steady

state solution, since its maximum allowable value for stability is 4 (CFL/4 _< 1). All the herein

reported calculations performed with Method I1 use YII = 0.01 -4). I.

Let us examine now the accuracy of Method I insofar as the satisfaction of the discrete

continuity is concerned. For convenience, but without loss of generality, we use only the ýl-

derivatives in the pressure equation (66). First recall that the ý1-momentum equation at the (ij,k)

node reads (equation (64)):

Vi(l) = Vi(l)"E (- E (110)

with the pressure gradient term computed as

\p Pi+I - Pi-lS2A 1 (111)(a~, 2A42
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The pressure equation is derived from the discrete continuity equation

[Jg-1 2V(1)]l/ 2 - [Jg 1
12V(1)i.,/2 +... =0

by substituting in this equation (110), using simple linear interpolation to compute the

pseudovelocities at the cell interfaces (equation (68)), and calculating the pressure gradient terms as

follows:

(p c)--•)+12+ Pi±l - Pi

i A4 (112)

The resulting pressure equation (66) reads

u -1/2 " _[ /g-?•• 1C 1 P~ ~ i _~ l/P _il'[Jg 1
1 V(1)]j+l - [Jg 1

1(V(1)]i-I C+.. Pi+1 -P2 I P1-P +

2A+1 +1/2 A 1 1-112 A41(1 3
2A•1A ~ (113)

where for convenience C 11 = Jg 1/ 2E1 . By simply adding and subtracting appropriate terms and

using linear interpolation to compute the coefficients of the pressure derivatives at the interfaces.

the right-hand side of the pressure equation (113) can be rearranged as follows:

[JgI 2V(1)li+l - [Jg1
1•2V(1)]i - + _ 1 ci+2-Pi - clilppi-2l-

2A22 2A1 2A4 2A4

[C'1 Pi+2-2Pi+l+Pi - C-, 2-2Pi+P1  1 1 Pi-2Pi.+Pi.]

2A4t 2AII 2A4 2A41

or, equivalently
^i-121 Pi+12-Pi

1 {(Jg-( 2)i+,[ V(1)il - E1' ]

2A41 2A41

1P-P'- 2 j} +-.. =
- Jg'~)~[V(1)j

1 1 - E _______ý

2A•1
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-1 iclP+-2Pi~l+Pi cl~+-2Pj+Pi-I cllPl-2P -+Pi-]

2A4 2A41 I 2A41 2A41 (114)

Note that equation (114) is identical to the original pressure equation (113). Assuming that

convergence is reached for the pressure and the momentum equations, equation (110) implies that

the two bold-faced terms in the left side of equation (114) reduce identically to the velocity

components at the i+I and i-I nodes. Thus, at convergence, the pressure equation (114) can be

written as follows:

I [(jg-j 2V(1))i'j- (jg-'j 2 V(1))i +... -(aYl)2 l (C'l I81ý)P, +.

2A41 (115)

with

8e•,( i - k-1 [ )i+, -2( )i + ( )j_1l

(A41)

The right-hand side of equation (115) is the artificial mass source term introduced by the pressure-

velocity coupling formulation of Method I in the continuity equation. This artificial source term is

responsible for eliminating the odd-even decoupling of the pressure nodes on the non-staggered

grid arrangement. It is interesting to point out that, using straightforward algebraic manipulations,
the artificial source term (pressure dissipation) used in Method 11 (see equation (85)) can be
rearranged (Sotiropoulos, 1991) in a form similar to the right-hand side of equat;on (1 15)--the

difference being that the C11 coefficients in equation (115) depend on geometric quantities and the
velocity field (see definition of E11) while the corresponding coefficients in Method II depend on

geometric quantities only. Note, however, that in Method 11 the source term (see equation(85)) was

added explicitly in the discrete continuity equation before deriving the equation for the pressure. In
Method I, on the other hand, the mass source is implicitly introduced in the discrete continuity

equation because two different approaches are used to calculate the pseudovelocities and the

pressure gradient terms at the cell interfaces. Recall, that linear interpolation is used to obtain the

velocities at the cell interfaces (equations (68)) while the pressure gradient is discretized using

equation (112). If the same interpolation procedure used for the pseudovelocities were to be used

for the pressure gradient terms, no error would be introduced in the discrete continuity equation but
the resulting pressure equation would yield oscillatory solutions for the pressure. Assuming now a

uniform cartesian grid, equation (115) can take the following approximate form:
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DIV[Qij.k] = -61 AT [Ax 2 a4P (116)

4 x4

where

= CpRe (117)
At [1 + Cp(CU+CD)]+CpRe

Note that equation (116) is only an approximation--as opposed to equation (108) for Method II

which is exact on a uniform cartesian grid--because the part of the C11 coefficient that contains the

finite analytic coefficients (EI term) has been locally linearized and taken out of the derivative.

Although only approximate, equation (116) shows that Method I satisfies the discrete equation to

accuracy comparable to that of Methoo 11 (equation (108)). The difference between the two

formulations, however, is in the size and form of the dissipation coefficients F- and F-l. The

coefficient in Method I (equation (1 17))--and consequently the computed solution--is a function of

the Reynolds number of the flow, the time step and the local velocity field (a dependency

introduced via the finite analytic coefficients in equation (117)), while the sll coefficient iii equation

(108) is a user specified constant. It is interesting to point out, however, that for sufficiently large

Reynolds numbers, the sI coefficient is of the order of one (see equation (117)), while it

approaches zero with the Reynolds number. It can be deduced, therefore, that in the general case

of any finite Reynolds number--and assuming that the left term in the denominator of equation

(117) is always positive--the s- term is positive and less or equal to one.

VIII. A COMPUTATIONAL COMPARISON OF METHODS I & II

In this section a computational comparison of Methods I and H1 is made in order to identify

their relative merits and weaknesses, and decide on an optimal numerical approach best suited to

the problems under consideration. For this purpose, both methods are employed to calculate the

following three cases (see also table 1 for more details on each case):

(i) laminar flow (Re = 790) through a 900 square bend with fully-developed entry flow

(Humphrey et al., 1977),

(ii) laminar flow (Re = 790) through a 900 square bend with developing entry flow

(Taylor et al., 1982), and

(iii) turbulent flow (Re = 224,000) through a 900 rectangular duct of aspect ratio six with

developing entry flow (Kim, 1992).
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The two laminar flow cases--both very well documented in experiments--are selected in order to

assess the accuracy of the numerics without the uncertainties of a turbulence model. The third test

case, on the other hand, is selected to evaluate the combined performance of the numerics with the

same turbulence model. To establish a basis for meaningful and fair comparison, ii subsequently

reported calculations were performed with identical computational meshes, starting from the same

initial conditions, using the same boundary conditions, and with the same convergence criteria tor

both methods. The relative performance of the methods is discussed with colphasis on numerical

accuracy and overall computational efficiency.

VIII.1 Fully-developed laminar flow through a 900 square bend

The measurements of Humphrey et al. (1977) were carried out at Reynolds number. Re =

790. with a corresponding Dean number, De = 368. In the experiment, a long straight entry duct
was used to realize fully-developed flow at the entrance of the bend (see tablt, 1). In the present

calculations, however, the solution domain starts five hydraulic diameters upstream of the bend

and fully-developed flow conditions are prescribed there using the analytical solution given in

White (1974).

Calculations are carried out on two numerical grids, namely, grid A with 74x41x21 nodes,

and grid B with 99x41x21 nodes, in the streamwise, radial and normal directions, respectively.

The streamwise spacing inside the bend is 20 for grid A and i.50 for grid B. The grid nodes in the

cross-sectional plane are distributed using a hyperbolic tangent stretching function with stretching

ratios, in all spatial directions, nowhere exceeding 1.3. The exit boundary for both grids is located

seven hydraulic diameters downstream of the bend. The physical and computational domains,

along with the coordinate systems, are shown in figure 4. Typical views of the grid in the

symmetry plane and the cross-section are also shown. As the duct geometry is symmetric with

respect to the z-axis and as the entry flow profile is also symmetric, only one-half of the duct was

considered.

As mentioned above, the same set of boundary conditions is employed for both methods.

More specifically, Dirichlet conditions are used for the velocity components at the inlet (analytical

solution) and on the solid walls (no-slip, no-flux condition), while at the exit the three velocity

components are computed by assuming zero streamwise diffusion (0 = 0). The pressure at the

inlet, exit and solid boundaries is computed using linear extrapolation from within the solution

domain. Finally, on the symmetry plane (z = 0), the governing equations are solved in exactly the

same way as for every internal computational node using mirror-image reflection for the grid and

the flow variables.
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The convergence histories, with grid A, are shown in figure 5 for both methods. The

vertical axis in this figure is the logarithm of a residual defined as:

RESIDUAL = X Aui~i~k]2+ [~ijk Av i~jk] 2+ [Y. A Aw iiijk2} 2

where N is the total number of grid nodes, A denotes changes between iterations and u, v and w

denote the physical contravariant velocity components for Method I and the Cartesian velocity

components for Method H1. The horizontal axis in figure 5 is the computational work expressed in

terms of Cray-2 CPU minutes. It is seen that Method II converges twice as fast as Method I. This

result, however, is to be expected because Method I utilizes the full-transformation approach which

increases considerably the computational work per grid node per iteration. The increased effort is

associated with discretization of the additional grid-related terms introduced in the governing

equations to account for the spatial variations of the contravariant base vectors (see Section V. 1).
Recall also that Method H1 is a mixed explicit-implicit method and, therefore, the computational

work required per grid node per iteration is, by default, considerably less than that of an implicit

method, such as Method I. Moreover, in the implicit parts of Method 11 (implicit residual

smoothing and solution of the pressure equation) the operators to be inverted are linear and thus
they are computed only once, at the beginning of the iterative procedure, and stored for subsequent

use. In Method I, on the other hand, the operators to be inverted (momentum and pressure

equations) are nonlinear and they need to be re-computed every iteration.

The effect of grid refinement on the computed solutions is shown for both methods in
figt :e 6, where the computed streamwise velocity profiles--on grid A (dashed line) and grid B

(solid line)--are plotted along the radial direction (from the inner to the outer wall) for several axial
locations at z = 0. and z = -0.25. The comparison between grid A and grid B solutions is very

good for Method I, since only some minor changes occur at 0 = 600 and 900 near the duct

centerline. The same overall trend is also observed in the solutions obtained by Method II, except
the centerplane profiles at 0 = 600 and 900 where a local maximum of the velocity appears clearly

near the inner convex wall in the fine-grid solution.

The fine-grid solutions of the two methods are compared with the experimental data of

Humphrey et al. (1977) in figures 7 and 8. In figure 7 the computed (dashed line for Method I and

solid line for Method II) and measured (symbols) streamwise velocity profiles are plotted in the

same fashion as in figure 6. The calculations are in good agreement with each other and with the
experimental data at 0 = 00 and 300. Some discrepancies exist, however, at the more downstream

locations. More specifically, at 0 = 600 Method I yields lower, than measured, velocities near the

bend centerline, while at 0 = 900 it underpredicts the slope of the streamwise velocity profile at the
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z = -0.25 plane near the inner wall and fails to capture the local velocity maximum near the inner
wall at z = 0. The computed lower velocities near the bend centerline at 0 = 600 are even more

pronounced in the solutions obtained with Method II. Note that Method I1 predicts two well-

defined peaks in the velocity profile at z = -0.25 and 0, in contrast with the Method I solutions
where two velocity peaks appear only at z = -0.25. At the 0 = 900 plane, on the other hand,

Method II correctly predicts the slope of the velocity profile near the inner wall at z = -0.25 and

captures also the velocity maximum near the inner wall at z = 0.

Figure 8 compares the computed streamwise velocity profiles and the corresponding

experimental data at 0 = 300, 600 and 900. For each axial location the velocity profiles are plotted

along the z-direction (from bottom wall to symmetry plane) for five different radial locations. As
can be seen, both methods yield very similar solutions at 0 = 300 and 600 but some discrepancies

exist between experiment and calculations, particularly near the inner wall. At 0 = 900 Method II

agrees very well with the experimental data, while Method I appears to grossly underpredict the

streamwise velocity at r* = 0.9. Figure 9, which is of the same format as figure 8, compares
profiles of the radial velocity component calculated by the two methods; no experimental data for

the radial velocity component are available. As expected, differences between the two calculations

occur at the same locations where discrepancies were observed in the streamwise velocity

component (figure 8). Finally, a more global picture of the computed solutions can be obtained

from figure 10 where contours of the calculated streamwise velocity component are compared with

measurements at 0 = 600 and 900.

VIII.2 Developing laminar flow through a 900 square bend

The measurements of Taylor et al. (1983) were made at Re = 790 and De = 368. The duct

and bend geometry was almost identical to that of Humphrey et al. (1977), the only difference

being a shorter entry length in order to obtain a thin boundary layer at the entrance to the bend.
The calculations are carried out on a single computational grid with 69x41 x21 nodes in the axial,

radial and normal directions (with a streamwise spacing inside the bend of 30). No grid refinement

study is carried out for this case since the response of each method to a finer grid was established
in the previous calculation. It should be pointed out, however, that the grid size employed here,

particularly the number'of planes in the streamwise direction, is probably not sufficient for grid

independent solutions to be established.

The computations started 7.5 hydraulic diameters upstream of the bend entrance to match

the experimental configuration, and a uniform (plug) inflow velocity profile was specified.

Starting, however, with uniform flow at this location does not exactly represent the experimental

conditions because, in reality, a boundary layer has already started forming at that location.

Govindan et al. (199 1) reported that in order to match the experimentally observed thickness of the
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boundary layer at entrance of the bend they had to start their calculations 8.5 diameters upstream

with a very thin boundary layer. No such effort is made in the present study but, as the

subsequently presented results indicate, the effect of this inaccurate inlet condition is small and
limited to the first one-third of the bend only. The exit boundary is located 7 hydraulic diameters

downstream of the bend. The boundary conditions are applied as discussed in the previous

section.

The contours of streamwise velocity component computed by the two methods are

compared with experimental data at several axial locations, inside the bend and in the upstream and
downstream tangents, in figure 11. The effect of the inlet conditions in the flow development can
be seen primarily at x = -0.25dh and 0 = 300. where the computed velocities in the region near the

bend centerline are lower than the measured ones. This trend--which implies that the core flow has
not accelerated as much as the experimental data indicate--can be attributed to the specification of a
plug flow profile at the inlet of the computational domain, as previously discussed. At subsequent

axial locations, the distortion of the measured isovels indicates the development of a strong

secondary motion which increases the velocity near the outer wall and decreases it near the inner
wall. Method II appears to capture, with reasonable accuracy, the major features of the flow field.

The isovels computed by Method I, on the other hand, are not distorted to the extent indicated by

the experimental data, a trend which implies that the strength of the secondary motion is not
correctly predicted (see, for example, the calculated 0.6 isovel in figure I Ic which intersects the

centerplane at the same point as the measured 0.4 isovel).

In order to assess the results of the calculations in more detail, the computed streamwise
velocity profiles are compared with the experimental data at 0 = 300, 600, 77.50 and x = 0.25dh

and 2.5 dh, in figure 12. For every axial location the velocity profiles are plotted along the z-

direction (from the bottom wall to the symmetry plane) at five radial locations. Both methods yield
satisfactory results at 0 = 300 and 600. At the next two downstream locations, however.

significant differences appear between the two numerical solutions. More specifically, Method II
agrees very well with the experimental data except, perhaps, near the inner wall at 0.25dh where

the velocity is underpredicted. Method I, however, significantly underpredicts the velocity near the
inner wall at 0 = 77.50 and at x = 0.25dh; note that this trend was also present in the fully-

developed entry flow case at approximately the same locations. Figure 13 compares the computed
radial velocity profiles with the experimental data. It is seen that the two numerical solutions are in
much closer agreement in this case. Differences, however, do exist at the same locations where the

disagreements in the axial velocity component also occur. For instance, Method I underpredicts
the crossflow near the inner wall at 0 = 77.50 while it overpredicts it at 0.25dh. Also Method I

fails to capture the experimentally observed structure of the radial velocity profiles (see profiles at
r* = 0.7 for 0 = 77.50 and for 0.25dh). It would appear, therefore, that the observed differences
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in the predicted strength of the secondary motion, no matter how small they may be, are

responsible for the significant differences in the distribution, within a cross-section, of the

streamwise momentum.

VIII.3 Turbulent flow in a 900 rectangular bend with developing entry flow

These calculations correspond to the recent experiment of Kim (1992), who carried out

detailed mean flow and turbulence measurements--as well as numerical calculations using Method

I-- through a 900 rectangular duct, of aspect ratio 6, at Reynolds number Re = 224,000 (based on

the duct width and the mean bulk velocity). An overall view of the wind tunnel and duct geometry,

as well as the sections at which measurements were reported (U 1, U2, 15, 45, 75, DI and D2),

are shown in figure 14. As can be seen in this figure, the flow enters the inlet tangent of the

curved duct through a short transition duct (a two-dimensional 6:1 contraction). The transverse

pressure gradients on the top wall of the contraction induce a pair of vortices inside the top-wall

boundary layer resulting in three-dimensional flow at the inlet of the upstream straight tangent.
Figure 15 shows the measured mean velocity, turbulent kinetic energy and transverse Reynolds

stress fields at station U 1. The apparent complexity of the inlet flow requires a careful

specification of inlet conditions for the numerical calculations in order to properly represent the

experimental situation. For that reason, following Kim (1992), the experimental data at station U I

are used to construct appropriate inlet distributions for the mean velocity components and the

turbulent quantities.

The computational domain starts 4.5H upstream from the inlet of the bend (section U 1) and

extends up to 30H downstream from the exit of the bend. A numerical grid with 62x69x52 nodes,

in the streamwise, radial and normal directions, respectively, is used for the subsequently reported

calculations with both Methods I and II. The streamwise spacing inside the bend is 30. while the

first coordinate surface just off the duct walls is located well within the laminar sublayer, around

y÷= 0.75, almost everywhere. Method I requires approximately 2 hours of Cray-YMP CPU time

to reduce the residuals by three orders of magnitude, while the same level of convergence is

achieved in 75 minutes of CPU time by Method H.

Measured and computed profiles of the three mean velocity components at several sections

through the bend and in the upstream and downstream tangents are shown in figure 16. Both

numerical methods yield identical results at section 15. which are in good overall agreement with

the experimental data. At the next downstream station (45) the two computed solutions are still in
very close agreement with each other but discrepancies between experiment and calculations appear

near the outer concave wall of the duct. As indicated by the computed velocity profiles, the

predicted boundary layer is somewhat thicker than the measured one. This discrepancy should be
attributed to the well known inability of k-e based models to capture the effects of concave
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curvature--that is increased levels of turbulent mixing which result in fuller velocity profiles near

concave walls--rather than to numerical inaccuracies (Kim, 1992). The discrepancies between

experiment and calculations in the prediction of the boundary layer thickness near the concave wall
persist in the following downstream stations 75, Dl and D2 even after the removal of the

curvature. The agreement between the two computed solutions is still quite close at sections 75

and Dl but additional discrepancies between experiment and calculations appear near the inner

wall. More specifically, as indicated by the shape of the measured velocity profiles, a pressure-

driven longitudinal vortex develops near the inner wall which transports low momentum fluid from

the top wall boundary layer towards the inner side wall. As a result, the measured streamwise
velocity profiles exhibit an S-shaped pattern as seen in sections 75 (Z = 0.5) and D I (Z = 0.5 and

0.75). Both numerical methods fail to mimic the shape of the measured profiles, a trend which

implies that the strength of the secondary motion is underpredicted. This can be seen by inspecting

the measured and computed W-velocity profiles. Note, however, that at sections 75 and Dl
Method II predicts peak values of the W-velocity (parallel to the vertical walls, see figure 14)

component which are consistently higher--and consequently closer to the measurements--than
those predicted by Method I. The same trend in the prediction of the secondary motion continues

in the next downstream station D2 which is the last station at which measurements were taken. At

station D2, the U-velocity profiles calculated by Method II exhibit a much more pronounced S-
shaped structure than those calculated by Method I. Naturally, the differences in the computed

streamwise velocity field are induced by the differences in the corresponding transverse velocity

components, since Method II consistently predicts significantly higher peak values of the W-
velocity profile. More specifically, at Z = 0.5 and 0.75, Method 11 overpredicts somewhat the

measured W-component but good agreement between measurement and calculation is achieved at Z
= 1.00. Method I, on the other hand, underpredicts the magnitude of the secondary motion by as

much as 50 percent at Z = 1.0. It should be pointed out, however, that the shape and magnitude of

the U and W velocity profiles at Z = 0.5 and 0.75 computed by Method H1 imply that the predicted

longitudinal vortex is located at a lower position (nearer to the top wall) as compared to the

measured one. In other words, Method II yields a better prediction for the strength of the

secondary motion but fails to accurately capture its spatial evolution.

Figure 17 depicts the calculated, by.both Methods I and I, and measured profiles of the

turbulent kinetic energy at stations 45 and D 1. Both methods predict very similar k-distributions

which are, however, in gross disagreement with the measurements. Particularly near the concave

wall, the calculations consistently underpredict the level of the turbulent kinetic energy by as much

as 80 percent. As already discussed previously, these discrepancies underline the inherent
inadequacy of the k-e model to predict the high levels of production of k along concave walls.
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Finally, figures 18 and 19 show, respectively, the computed and measured contours of

streamwise velocity and vorticity at several locations. These figures demonstrate in a more global

sense the trends discussed in the previous paragraphs as far as the discrepancies between

experiments and calculations as well as those between the two numerical methods are concerned.
The vorticity contours in particular (figure 19) reveal clearly the differences between the two

numerical methods. Although both methods yield similar vorticity fields at stations 75 and D 1, the
vorticity computed by Method I appears to diffuse more rapidly in the next downstream station D2.

Note, for instance, that Method II yields a core vorticity value of -0.9 which is more than twice the

corresponding core value in the solution obtained by Method I.

VIII.4 Discussion

The calculations presented in the previous three sections reveal significant discrepancies

between the steady-state solutions obtained by each numerical method. despite the fact that identical

computational grids, solution domains and boundary conditions were employed. For the two

laminar flow cases computed, it is seen that Method I tends to underpredict the magnitude of the

streamwise velocity component near the inner (convex) wall for bend angles larger than 600 and

that this trend does not seem to be affected by grid refinement. Method 11, on the other hand,

appears to capture correctly most of the flow features observed in the experimental data. The

differences in the computed axial velocity field are accompanied, as one would anticipate, by

qualitative and quantitative differences in the corresponding computed crossflow velocities.

Method I, for instance, tends to underpredict the strength of the secondary motion inside the bend

and overpredict it near the end of the bend and in the downstream tangent.

Similar trends, as far as the prediction of the secondary motion is concerned, are observed

in the turbulent flow case as well since the longitudinal vortex computed by Method I diffuses

more rapidly in the downstream straight tangent. However, it should be noted that, in contrast

with the laminar flow cases, the discrepancies between the two computed solutions become

pronounced only several duct widths downstream from the end of the bend. Unfortunately, it is

not possible at this stage to separate the effect of the turbulence model from that of the numerical
scheme. Certain deficiencies of the two-layer k-s models--such as those associated with the

prediction of turbulence along concave walls--have already been discussed. In addition, the

present study (see also all subsequently reported calculations) confirms the results of Kim (1992)

and W. J. Kim (1992) who employed the same turbulence model insofar as they indicate the
inadequacy of isotropic model to accurately predict the origin, growth and decay of complex

vortical flows. Therefore, it is concluded that the turbulence model is responsible for introducing a

large amount of "false eddy viscosity" into the numerical solution, and this apparently
overshadows the effect of any numerical dissipation and discretization errors associated with the
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numerical methods. This conclusion by no means undermines the importance of an accurate
numerical discretization. Rather, it emphasizes the fact that the numerics become crucially

important (as our laminar-flow calculations clearly demonstrate) when the turbulence model has

been sufficiently refined to accurately represent real flow phenomena.
The discrepancies between the two numerical solutions are certainly more dist .,bing than

those between the calculations and the experimental data--particularly for the laminar tC I%, cases
where no turbulence model related uncertainties are present in the calculations. For a giv!frn mesh

size (and the same turbulence model, for a turbulent flow case) one would, in general, anticipate

differences between solutions computed by two numerical methods, mainly due to differences in
the order of the truncation error inherent in the numerical discretization of continuous differential

operators. Any such differences, however, should decrease with increasing grid resolution and

eventually approach zero in the continuum limit, provided that each discretization scheme is

consistent (Peyret and Taylor. 1983). Note that recent calculations carried out with very different

numerical methods for both the laminar fully-developed entry flow case (Rogers et al. ( 1991 ) with

an artificial compressibility method and a non-staggered grid; Rosenfeld et al. (1991) with a
fractional-step method and staggered mesh), and the laminar developing entry flow case (Williams,

1991), have yielded results which are in close agreement with those of Method II. The cause for

the discrepancies between the present numerical Methods I and II could be attributed to the

different approaches each method adopts to formulate and discretize the flow equations--such as
the type of the coordinate transformation, the accuracy in the satisfaction of the discrete continuity

equation, and the resolution of the spatial discretization scheme. These factors are considered

below.

Generalized coordinate transformation approach: Method I utilizes the full- transformation

approach with the physical contravariant components as independent variables as opposed to the
partial-transformation approach used by Method 11. As already discussed, the full transformation

approach introduces additional terms in the governing equations to account for the spatial variation

of the coordinate base vectors (Cristoffel symbols) and imposes, consequently, additional

smoothness requirements on the computational grid. As a result, Method I is expected to be more
sensitive to grid discontinuities which, if large, could deteriorate the accuracy of the computed

solution. It should be recalled, however, that in all the herein reported calculations: i) the

configurations under consideration are geometrically very simple, and ii) particular care has been

exercised to construct smooth numerical grids by keeping the grid stretching ratio less than 1.3

everywhere. Moreover, the full-transformation approach was also adopted by Rosenfeld et al.

(1991), in conjunction with a finite-difference, non-staggered grid, fractional-step method, but, as
mentioned above, their results (for the fully-developed entry flow case) are in very good agreement

with those of Method II. Therefore, the full- transformation approach, although it may have some
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impact on the accuracy of Method I, would not appear to be the major cause for the observed

differences between the two methods.

Satisfaction of the discrete continuity equation: As shown in section V, both methods

satisfy the discrete continuity equation up to dissipative terms which are proportional to fourth

order derivatives of the pressure. There are two major differences between the two methods: i) the

dissipative term in Method I is nonlinear in the geometrical quantities as well as the velocity field,

while in Method II the corresponding term is nonlinear only in the geometrical quantities; and ii)

the coefficient of the dissipative term in Method I (Fee equations (116) and (117)) is, for

sufficiently high Reynolds number, of the order of one, while the corresponding coefficient used

in Method II is a user specified constant, typically set equal to 0.01. These differences in the

accuracy with which each method satisfies the discrete continuity equation suggest that. for a given

mesh size, differences in the overall accuracy of the computed solutions are to be expected.

Sotiropoulos (1991) showed that, while this is in general true, accuracy differences between
solutions computed with different values of the yl coefficient in equation (108) decrease with grid

refinement. This is also to be expected since the error in the discrete continuity equation for both

methods is proportional to the grid spacing. In the present calculations, however, a 34 percent

increase in the number of grid nodes (grid B for the first laminar flow case computed) did not have

any significant effect on the solution computed by Method I and certainly did not appear to

minimize the differences between the two methods.

S oatial discretization scheme: Method I utilizes a hybrid finite-analytic discretization

scheme, while Method II uses an upwind finite-difference scheme which is formally second order

accurate provided the grid stretching ratios are kept close to unity everywhere. The accuracy of the

hybrid finite-analytic scheme, on the other hand, can not be readily estimated--using standard

techniques such as Taylor series expansion--due to the complexity of the finite-analytic

discretization coefficients which involve hyperbolic functions and exponentials. Note, however,

that the hybrid finite-analytic scheme employed here is a simplified (for reasons of computational

efficiency) 9-point version of the more general--and consequently more ac7urate--28-point scheme.

This 9-point scheme has worked quite well for three-dimensional flows where the streamwise

direction is the dominant flow direction (Patel et al., 1988: Kim, 1991) but it may be inadequate for

highly swirling flows such as those considered in the present work. In the laminar fully-

developed entry flow case, for instance, there are regions of the flowfield where the radial velocity

component is as high as 50-60 percent of the streamwise component. In a very recent work, Yeo

et al. (1991) calculated the duct flow of Humphrey et al. (1977), the first case computed in the

present study (section VIII. 1), using three different finite-difference schemes for discretization of

the convective terms, namely, the first-order upwind differencing, the second-order upwind

differencing, and the QUICK scheme. Interestingly enough, a comparison of their first-order
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upwind solutions with the present Method I (finite-analytic discretization) solutions reveals very
similar trends in the region between the middle of the cross-section and the inner wall, although

Method I is more accurate near the outer wall. The similarities and differences between the first-
order upwind solution of Yeo et al. and the present Method I solution would suggest that the
hybrid finite-analytic discretization switches to first-order upwinding near the inner wall while it

maintains higher accuracy elsewhere. The switch to first-order upwind could be probably
attributed to high values of the local cell Reynolds number caused by the very large secondary
velocity components--recall that the finite-analytic method automatically becomes one sided for

large cell Reynolds numbers. Another interesting point regarding the calculations of Yeo et al.--
which is not addressed at all by the authors--is the fact that, as the grid is refined, the second-order

upwind and QUICK solutions tend to approach each other, as it should be the case for consistent
finite-difference schemes, while the first-order upwind solution improves only near the outer wall
and maintains essentially the same trends near the inner wall. Similarly, the grid refinement in the
present calculations did not seem to bring Methods I and 11 closer to each other (see figure 6). An

explanation for this rather odd and unexpected behavior may be found in the recent work of Brandt

and Yaneh (1991). They proved, mathematically and computationally, that when the grid lines are
not aligned with the streamlines, which is usually the case except for some very cases such as

boundary-layer flows, the first-order upwind oifference is inadequate regardless of the grid
spacing. To be more precise, their analysis assumes that the grid spacing tends to zero but it
always remains bounded from below by a certain relation which involves the Reynolds number
(cell Reynolds number constraint) so that the upwind differencing is necessary for stability; for

sufficiently small grid spacing no such problems arise since centered schemes can be employed
without stability problems. The use of the first-order upwind scheme to discretize the convective

terms introduces nonisotropic artificial viscous terms which, even when their coefficients tend to

zero, may effect the solution significantly.

In summary, it appears that the discrepancies between the two numerical methods used here
may be primarily attributed to the different discretization schemes that are employed. Improvements
in the spatial resolution of Method I could be achieved by replacing the 9-point hybrid finite-

analytic scheme with a more general one involving perhaps the corner points at the upstream and

downstream faces of the solution element.
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IX. SOME ADDITIONAL CALCULATIONS OF FLOW IN DUCTS OF

SIMPLE CROSS-SECTIONS

In this section we report a series of laminar and turbulent flow calculations for flow in

curved ducts of square and circular cross-sections. All calculations were performed with Method

IH. The following cases are computed:

i) laminar flow through a strongly curved 900 pipe bend, with fully-developed entry flow,

measured by Bovendeerd et al. (1987);

ii) laminar flow through a strongly curved 900 pipe bend, with developing entry flow,

measured by Enayet et al. (1983);

iii) turbulent flow through a mildly curved 1800 pipe bend, with fully-developed entry flow,

measured by Rowe (1970);

iv) turbulent flow through a strongly curved 1800 pipe bend, with fully-developed entry

flow, measured by Azzola and Humphrey (1984);

v) turbulent flow through a strongly curved 900 square bend, with fully-developed entry

flow, measured by Humphrey et al. (1981); and

vi) turbulent flow through a strongly curved 1800 square bend, with fully-developed entry

flow, measured by Chang (1983).

IX.1 900 pipe bend of Bovendeerd et al. (1987)
The measurements of Bovendeerd et al. (1987) were carried out at Reynolds number, Re =

700 (based on the bulk velocity and the diameter D of the pipe) and Dean number, De = 286. The

radius of curvature of the bend is 3D, and the length of the upstream tangent is 50D to ensure fully-

developed flow at the entrance of the bend.

In the present study, the calculations start 5D upstream of the bend where a fully-

developed velocity profile is specified. The exit boundary is located 7D downstream the end of the

bend. The grid topology and the related nomenclature are depicted in figure 20. Note that the bend

is symmetric with respect to the z-axis and since the inlet flow is also sym .ic, only one-half of
the bend needs to be computed. The curvilinear coordinates (4,rI,ý) are aligned with the centerline,

the circumferential direction, and the tangential direction, respectively. This choice of coordinates

facilitates the description of the pipe bend geometry at the expense of making all the points on the

bend axis singular. In the transformed domain, the bend centerline is mapped into a plane

(ABCD), as shown in figure 20. The boundary conditions at the exit (GLCB plane), the solid wall

(FGKE plane) and the symmetry boundaries (AFGB and DEKC planes) are applied as described
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for the previous square-bend calculations, while a simple averaging is used to obtain all dependent

variables on the singular plane ABCD. Note that the grid topology depicted in figure 20 is used

through out in all calculations with pipe bends. The results for this case are obtained with

69x33x3I grid nodes in the axial, circumferential and radial directions; finer grid calculations

yielded solutions almost identical with this grid. Typical views of the algebraically generated grid

are shown in figure 21.
The computed contours of the streamwise velocity component are compared with the

experimental data, at several planes inside the bend, in figure 22. It is seen that the calculations

reproduce with remarkable accuracy the development of the streamwise flow as it passes through

the bend. In figure 23, the computed streamwise velocity profiles on the symmetry plane are

compared with the experimental data at several streamwise locations. Again, excellent agreement is

observed between calculation and experiment.

IX.2 900 pipe bend of Enayet et al. (1983)

Enayet et al. (1983) carried out measurements at Re = 1096 and De = 693. The radius of

curvature of their bend was 2.8D and the length of the upstream tangent was only 5D so that the

flow at the entrance of the bend was still developing.

The calculations start 5D upstream of the entrance to the bend with a uniform inlet velocity

distribution. The exit boundary is located 7D downstream of the exit from the bend. Grid

refinement studies showed that a grid with 89x43x41 points in the streamwise, circumferential and

radial directions, respectively, is necessary to obtain grid independent solutions. Note that, for the

pipe bend of Bovendeerd et al., a much coarser grid (69x33x3 1) yielded a grid independent

solution. This is attributed to the fact that, in the present case, the boundary layer entering the bend

is much thinner--as compared to the fully- developed profile in the previous case--and

consequently, finer grids are required to accurately resolve the steep velocity gradients in the near-

wall region.

The calculated contours of streamwise velocity are compared with the experimental data at

four streamwise locations in figure 24. At the 0 = 300, 600 and 750 cross-sections, the

calculations reproduce quite well the overall features of the flowfield. Some discrepancies

observed between experiment and calculations, primarily in the high velocity region, are probably

caused by the specification of the plug-flow inlet profile at a location where the boundary layer in

the experiment has already started to develop. As the secondary motion takes over the dynamics

of the flow development inside the bend, however, the effect of the inlet flow profile is

significantly reduced. This can be seen from the results at the last downstream station where the

calculations reproduce the experimental data with remarkable accuracy.
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IX.3 1800 pipe bend of Rowe (1970)

Rowe (1970) carried out measurements in turbulent flow, at Re= 236,000 and De =

68,127, in a 1800 mildly-curved pipe bend, with radius of curvature of 12D. The upstream

tangent was 69D long and sufficiently rough to ensure that the pipe inlet had an axisymmetric and

fully-developed turbulent velocity profile.

A grid with 96x33x41 points in the axial, circamferential and radial directions.

respectively, is used for the present calculations. Grid dependence studies with coarser grids

indicate that this grid is sufficient for grid independent solutions. The first ý = constant coordinate

surface of the solid wall is located at y+ = 1 almost everywhere. To obtain the necessary inlet

conditions, the flow through a very long straight pipe is calculated and the resulting fully-

developed profiles of velocity and turbulence parameters are specified one pipe diameter upstream

of the entrance to the bend.

Figure 25 depicts the computed and measured contours of the velocity head. pU2, at
I

several cross-sections within the bend--the velocity head is nondimensionalized with ,-pU,-.

where U0 is the centerline velocity at the inlet. At the 0 = 00 plane, the measured velocity

contours--which should correspond to fully developed turbulent pipe flow--imply smaller than the

calculated velocities in the core region. This discrepancy indicates that the flow in the experiment

was still developing at the entrance of the bend (such a conclusion is also supported by the

calculations presented in the next section, where a straight pipe calculation is also carried out,

although at a lower Reynolds number, and the computed fully-developed axisymmetric velocity

profile is in very good agreement with the measurements). The inlet velocity profile affects the

predicted streamwise flow development inside the bend, since the velocities in the core are

consistently higher than the measurements. Overall, however, the calculations predict fairly well

the shifting of the maximum of the velocity towards the outer radii and the accumulation of low

speed fluid near the inner radii. But the latter process is not as pronounced in the calculations, as

the experimental data indicates, since higher velocities are predicted near the inner radii. Although

no crossflow measurements were reported by Rowe, we can speculate that this trend is due to an

underestimation of the strength of the secondary motion which is responsible for the distribution of

the streamwise momentum within the cross-section.

IX.4 1800 pipe bend of Azzola and Humphrey (1984)
Azzola and Humphrey measured the flow through a 1800 strongly curved pipe bend (Rc =

3.375D) at two Reynolds numbers, Re = 57,400 and 110,000, corresponding to De = 31,300 and

59,900. The entrance length of their bend was 54.7D to ensure axisymmetric fully-developed flow

at the inlet to the bend.
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Calculations are carried out only for the low Reynolds number case. The computational

grid comprises 154x41x23 nodes in the streamwise, radial and circum-ferential directions,
respectively. The first • = constant coordinate surface just off the pipe wall is located at y+ = 0.6

almost everywhere. The inlet profiles, for the velocity and turbulent quantities, are obtained by

solving the developing flow through a long straight pipe. The calculations start two diameters

upstream of the entrance to the bend and continued until eight diameters downstream.

The computed profiles of the longitudinal (uo) and circumferential (uo) velocity

components are compared with the measurements at several streamwise locations in figure 26 (the

profiles are plotted from the symmetry plane to the wall along the radius located 900 from the

symmetry plane). The calculations capture well the development of the longitudinal velocity
component inside the bend and in the downstream tangent--some differences exist only at 0 = 900

where the measurements indicate a larger dip in the velocity profile near the symmetry plane. This

is not the case, however, with the profiles of the circumferential velocity component. The

calculations underpredict the secondary motion in the first quarter of the bend with the maximum

discrepancy occurring at 450 in the near-wall region. Further downstream, the measurements

indicate a reversal of the secondary motion near the symmetry plane at approximately 900. This
process is predicted qualitatively by the calculations, but it is weaker and somewhat delayed since it

occurs after 900. Moreover, the calculations indicate two more crossflow reversals occurring at

1770 and at one diameter downstream of the end of the bend. The measured crossflow, on the

other hand, exhibits a trend to reverse direction, decreases between 1350 and 1770 and increases

between 1770 and one diameter downstream the bend, but remains always positive near the
symmetry plane. The two additional crossflow reversals near the symmetry plane were also

predicted (at the same locations as the present calculations) by Azzola et al. (1986), who calculated
the same bend on a mesh of similar size using the standard k-E model.

The effect of the crossflow on the streamwise flow development can be seen in figures 27,
where the calculated contours of streamwise velocity component and the cross-flow velocity

vectors are plotted at several longitudinal locations inside the bend and in the downstream tangent.

At 900 and 135o, for instance, the strong secondary motion has displaced the maximum of the
velocity in the interior of the cross-section, while the effect of the crossflow reversal near the

symmetry plane is clearly visible at 1770 and x=+l (see, for example, the change in the shape of

the U = 1.0 isovel between these two locations).

IX.5 900 square bend of Humphrey et al. (1981)
Humphrey et al. (1981) carried out turbulent flow measurements in a square bend

geometrically identical to that used by Humphrey et al. (1977) and Taylor et al. (1982). Their

measurements were made at Re = 40,000, corresponding to De = 26,000. The length of the entry
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tangent was 45 hydraulic diameters so that fully-developed flow was expected at the entrance of the

bend.

This experiment of Humphrey et al. (1981) was one of the test cases selected for the 1980-

81 Stanford Conference on Complex Turbulent Flows (Case 0512) (Kline et al., 1981) and for

which numerical solutions were submitted by six computor groups. The turbulence models used

for the calculations by the various computors included: i) an algebraic eddy-viscosity model (one
computor); ii) the standard k-e model with wall functions (three computors); iii) a k-l model with

wall functions (one computor); and iv) an algebraic Reynolds-stress model (one computor). These

calculations were started 7.5 hydraulic diameters upstream of the entrance of the bend where the

experimental data of Melting and Whitelaw were used to obtain inlet profiles for the flow variables.

A sample of the calculations is shown in figure 28 (taken from Vol. II, pp. 942-943, of the

Conference Proceedings). Figure 28a shows general agreement on the streamwise velocity

component at the inlet plane but significant disagreement at the exit. On the other hand, the

predictions of the radial velocity component (Figure 28b) are, with one exception, reasonable at

both the inlet and exit planes. Overall, however, none of the six computers produced results that

could be characterized as satisfactory. Note that in assessing the performance of the numerical

methods applied to incompressible duct flows in the Stanford Conference, J. B. Jones concluded

that (Vol. II, pp. 914-918): "among all the cases involving secondary flow of the second kind.

Case 0512 has produced the least satisfactory results."

The present calculations are carried out on a 54x49x26 mesh which is found to be adequate

for grid independent solutions. The inlet conditions are obtained by performing a developing flow

calculation through a long, straight, square duct. The fully-developed solution is then used to set

the inlet profiles of the velocity components and the turbulent quantities, 2.5 hydraulic diameters

upstream of the inlet of the bend; the experimental data of Humphrey et al. (1983) indicate that the

flow at that location corresponds to fully-developed square duct flow with no influence of the

downstream bend. The calculated fully-developed mean velocity profile is compared with th,

measurements of Humphrey et al. (at x=-2.5 dh) in figure 29. The calculated isovels do not mimic

the shape of the measured ones which appear to be bulging towards the corners of the cross-

section. Recall, however, that the distortion of the measured isovels is caused by the existence of

secondary motion of the second kind which is induced by the anisotropy of the Reynolds stresses.

The inability of the calculations to reproduce this behavior is due to the isotropic eddy-viscosity

model employed in the present calculations. The present model implies equal normal Reynolds

stresses and, therefore, cannot predict the stress-driven secondary motion.

The computed and measured contours of streamwise mean-velocity component, at several

cross-sections within the bend, are shown in figure 30. At the inlet of the bend, the calculations

indicate that the high speed core of the flow shifts towards the inner wall. This trend is broadly
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consistent with the data but the measured velocities in the high speed core are higher than the
calculated and also the velocity maximum stays closer to the centerline of the bend. Moreover, as

indicated by the shape of the measured isovels near the corners, the effect of the stress-driven
secondary motion is still present in the measurements at that location. At the 0 = 450 cross-

section, the calculations imply that the high speed core continues to move towards the inner wall
while in the measurements this trend has been reversed, since the velocity maximum appears to be

shifting towards the centerline. At the two subsequent cross-sections the calculations predict in

general, although not to the extent indicated by the data, the accumulation of low speed fluid near

the inner wall and the shifting of the high speed core towards the outer wall. But the predicted
velocities in the high speed core are significantly lower than the measured. Finally, the predicted
and measured contours of radial velocity component at 0 = 900 are shown in figure 31. The

computed radial velocity contours are in good agreement with the measurements except near the

endwall of the duct, where the calculations predict somewhat higher crossflow velocities.

The reason for the significant disagreement between the calculations and measurements is

not altogether clear although, as noted earlier in the case of the rectangular duct flow (section
VIII.3), the turbulence model must be suspected. To some extent, and particularly near the inlet of

the bend, the disagreement can be attributed to the simple inlet conditions used in the present

calculations. The flow through the bend undergoes very rapid changes over a short distance (the
bend under consideration is strongly curved) and, thus, one would anticipate the inlet conditions to

be of major importance. Recall, however, that all the calculations for the 1980 Stanford

Conference started with the measured inlet flow conditions. As a result (see figure 28a) almost all
the predictions were quite satisfactory at 0 = 00 but major disagreements were observed at 0 = 900.

Interestingly enough, at the exit of the bend, most of the Stanford Conference calculations exhibit

the same general features as the present results. For instance, most of the methods predicted

reasonably well the radial velocity component, but did not predict as high streamwise mean
velocities in the core as indicated by the experimental data (only one method predicted velocities of

the correct magnitude but then the predicted high speed core was displaced close to the outer wall).

The common factor between the present numerical method and most of the methods used in the
1980 Stanford Conference is the use of the isotropic k-e model. We should point out, of course,

that in the present method the calculations are carried out all the way to the wall, while all the

Stanford Conference methods employed the wall-function approach to bridge the gap between the
logarithmic layer and the wall. For the flow under consideration, high levels of turbulence

anisotropy are present throughout the bend. Near the inlet of the bend, for instance, the stress-

driven secondary motion, generated in the straight entry tangent, affects the dynamics of the flow

development but only locally, since it is been quickly taken over by the pressure-driven secondary

motion. On the other hand, near the exit of the bend, Humphrey et al. (1983) reported high levels
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of turbulence anisotropy, caused by the redistribution of the Reynolds stresses by the secondary

motion, as well as regions of negative turbulent kinetic energy production near the inner convex

wall. These phenomena cannot be accounted for by an isotropic eddy viscosity model and,

therefore, the failure to accurately simulate this flow must be attributed largely to the turbulence

model.

IX.6 1800 square bend of Chang (1983)

This test case corresponds to the measurements of Chang (1983) who carried out detailed

mean and turbulent flow measurements through a strongly-curved 1800 square bend and its

downstream tangent at Re = 56,700 and De = 21,900. An inlet tangent of 31 hydraulic diameters

long was used in order to ensure nearly fully-developed flow at the entrance to the bend.

The calculations are carried out on a numerical grid with l19x41x22 nodes in the

streamwise. radial and normal directions, respectively. The streamwise spacing inside the bend is

20 while the first coordinate surface just off the duct walls is located at y+ = 2 almost everywhere.

The computational domain starts 5 hydraulic diameters upstream of the inlet to the bend and

extends 7 diameters downstream of the end of the bend. The inlet distributions of the mean

velocity and turbulence quantities are specified from a straight duct calculation as in the previous

test case.

The calculated velocity profiles at several streamwise locations are compared with the

measurements in figure 32. The discrepancies between experiment and calculations observed at the

upstream station -1 dh are due to the inaccuracies in the inlet conditions caused by the inability of

the turbulence model to predict the stress-driven secondary motion. At the next downstream

station, 0 = 30, the calculations are in good overall agreement with the measurements. although

discrepancies associated with the prediction of the boundary layer thickness on the concave wall,

the reasons for which have already been discussed, can be clearly seen, particularly near the

bottom wall of the duct (see profiles at D and E). Further downstream, however, large

discrepancies between experiment and computations, similar to those encountered in previous

turbulent flow calculations, appear in the region between the duct centerline and the inner wall.

More specifically, at 0 = 900 the pressure-driven secondary motion transports fluid from the

boundary layer of the convex wall towards the duct centerplane, resulting in the big "holes" in the

streamwise velocity observed in the A, B and C profiles. The calculations fail completely to

reproduce this feature of the flow field, a trend which, once more, indicates that the strength of the

secondary motion is grossly underpredicted. Similar discrepancies between experiment and

calculations, although not as severe due, perhaps, to the reduction of the strength of the secondary

motion, persist at the next station, 0 = 1300.
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In a recent study, Choi et al. (1989) have calculated the same bend geometry using a

anisotropic, algebraic Reynolds-stress closure and a computational grid of similar size as the one

used in the present calculations. Their calculations were certainly more successful than the present

ones in predicting at least qualitatively the shapes of the streamwise velocity profiles, although

significant quantitative differences remained between the experiment and their computation. They

also reported a multi-cellular structure of the calculated secondary motion at the 0 = 1300 station

with the main vortex breaking down into three smaller vortices. No definite conclusion can be

drawn, however, about how successful their calculations were as far as the prediction of the

secondary motion is concerned since no detailed comparisons with the data were reported.

X. FLOW IN STRAIGHT AND CURVED TRANSITION DUCTS

In this section we report a series of laminar and turbulent flow calculations with typical

transition duct configurations. Two test cases are studied: i) turbulent flow through a straight

circular-to-rectangular transition duct for which detailed turbulent flow measurements have been

recently reported by Davis and Gessner (1992), and ii) laminar and turbulent flow through a typical

hydroturbine draft tube. The draft tube is a strongly curved diffuser whose cross-sectional shape

also changes from circular at the inlet to rectangular at the exit. No measurements are available for

the latter geometry. Although some measurements in a similar geometry have been reported, it has

not been possible to acquire the necessary geometrical details to carry out a meaningful calculation.

X.1 Turbulent flow in a straight circular-to-rectangular transition duct

The measurements of Davis and Gessner (1992) were carried out at a Reynolds number,

Re = 3.9x105, based on the bulk velocity and the inlet diameter. The circular-to-rectangular (CR)

duct configuration chosen for their experiment has an exit aspect ratio of 3.0 and a transition length

of 1.5 inlet diameters over which changes in the cross-sectional shape occur. At each streamwise

location, the cross-sectional shape is defined by the equation of a super-ellipse. Details about the

precise geometry definition can be found in Davis (1992). The geometry of the CR duct along

with the stations where measurements were carried out are shown in figure 33.

The computational domain extends from station 1 to station 6 and a grid topology similar to

that used for pipe bend calculations is employed. The numerical grid, generated algebraically using

the EAGLE grid generation code (Thompson, 1987), consists of 46x51 x27 grid nodes in the axial,

radial and tangential directions, respectively. The grid lines are concentrated near the duct wall

using hyperbolic tangent stretching functions. The first coordinate surface just off the solid wall is

located, almost everywhere, at y÷ = 0.5 with 8 to 10 points within the sublayer and the buffer

layer. Typical cross-sectional views of the numerical mesh, as well as a view of the mesh on the
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duct wall, are given in figure 34. Due to the symmetry of the duct and symmetric inlet-flow

conditions, only one quadrant of the duct is simulated.

Inlet conditions are specified at station 1 using the very detailed data of Davis and Gessner

(1992); they reported mean velocity measurements up to the edge of the sublayer and turbulence

measurements up to y+ = 200. Detailed discussion of the flow conditions at station I can be found

in Davis (1992). Here it suffices to say that the inflow conditions correspond to developing pipe

flow with a boundary layer thickness of approximately 14 percent of the inlet diameter and a

friction velocity of 0.0406.

Computed and measured distributions of wall static pressure coefficient around the

perimeter at stations 3 to 6 are shown in figure 35. In this figure, S is distance along the wall

along the perimeter, and Sref is one quarter of the duct perimeter at each station. The calculations

are in fair agreement with the experiment since they reproduce all the measured trends. However,

the calculated pressures are somewhat higher than the measured ones at stations 3 and 4 with this

trend reversing at the exit of the duct (station 6). This indicates that the pressure gradients are not

being accurately resolved.

The calculated contours of mean streamwise velocity are compared with the measurements

at stations 3, 4, 5 and 6 in figure 36. At station 3, both the calculated and measured contours

follow the general shape of the wall and are in good agreement with each other. At the next

downstream station (station 4), the thickening of the measured boundary layer near the shorter wall

indicates that a pressure-driven secondary motion (induced by the rapid geometrical changes) starts

to develop. The calculations, although in fair agreement with the measurements, predict a

significantly fuller boundary layer in the vicinity of the side wall. The distortion of the measured

isovels at stations 5 and 6 is due to a secondary flow pattern which develops into a pair of vortices

along the shorter sidewall. The calculations fail to reproduce the measured isovel shapes, a trend

which, as in previously reported calculations with ducts of regular cross-section, indicates that the

predicted secondary motion is much weaker than the measured one.

The extent to which the present calculations resolve the near-wall region is demonstrated in

figure 37, where measured and computed velocity profiles are plotted in wall coordinates at

stations 5 and 6 along the vertical (YI-profiles) and horizontal (Y2-profiles) planes of symmetry at

each station. The solid line in these figures corresponds to the sublayer and logarithmic portions of

the usual law of the wall. It is seen that, for all profiles shown in figure 37, the calculations exhibit

the correct asymptotic behavior in the sublayer. Moreover, the calculated profiles are in good

agreement with the measurements along the vertical plane of symmetry (Y I-profiles) where the

boundary layer is thin. Along the horizontal plane of symmetry, however, the calculations agree

with the experiment only in the inner layer, up to about y+ = 1000, hut significant discrepancies
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appear farther away from the wall. These discrepancies underscore the failure of the calculations to

reproduce the region of low streamwise momentum within the developing vortical flow.

X.2 Laminar and turbulent flow in a typical hydroturbine draft tube

The draft tube is a strongly curved diffuser located right beneath the turbine in a

hydropower plant. Its role is to deliver the exhaust water from the turbine to the tailwater basin at a
reduced speed in order to recover part of the velocity head that is not recovered by the turbine. The

velocity head recovered within the draft tube represents a significant portion of the total effective

head of the turbine and, therefore, the design of the tube is of crucial importance for the overall

efficiency of the hydropower plant. A typical draft tube consists of a short conical diffuser

followed by a strongly curved 900 elbow of varying cross-section and then a rectangular diffuser

section. Its cross-sectional shape changes continuously from circular, at the inlet, to elliptical

within the elbow, and finally to rectangular at the exit. The flow that enters the draft tube--the

wake of the turbine blades--is turbulent and three dimensional with high levels of swirl. The

already complex inlet flow undergoes additional straining as it passes through the tube, induced by

the rapid area changes and the very strong longitudinal curvature, resulting in an extremely

complicated shear flow with very strong vortical motions, which are often accompanied by regions

of streamwise flow reversal at off-design operating conditions.

Here we report laminar and turbulent flow calculations for a typical draft tube

configuration. Our objective, herein, is twofold: i) to demonstrate the feasibility of carrying out

turbulent flow calculations all the way to the wall for complex, three-dimensional geometries of

practical interest, and ii) to identify areas upon which future research efforts should concentrate in

order to improve the numerical and physical modelling of such flows. It is important to point out

that recent attempts to numerically simulate the flow in a draft tube (Vu and Shyy (1990),

Camarero et al. (1991)) have been restricted to the use of very coarse grids in conjunction with the
wall-function approach for the treatment of the near-wall flow. As a result, and given the inherent

complexity of the flow, the so obtained solutions have provided only limited information about the

structure of the flowfield. The calculations to be subsequently reported, however, constitute the

first attempt to model the details of the flow through a draft tube using fine numerical meshes.

X.2.1 Draft tube geometry and computational grid

The draft tube configuration, used for the present computations, is based on one of the

draft tubes at the Norris Power Plant in Tennessee, which is designed to operate with 66,000 H.P.

turbines. The geometry of the draft tube was made available by the Tennessee Valley Authority
(Waldrop, 1991 b). The neat lines of the tube along with its plan and elevation views are shown in

figures 38 and 39. The area expansion ratio for this draft tube (ratio of the exit over the inlet cross-
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sectional area) is approximately 4.5:1 while the radius of curvature of the elbow is 1.34 diameters

of the inlet circular cross-section. The configuration shown in figures 38 and 39 has two piers,

symmetrically placed about the centerline, supporting the downstream rectangular diffuser. For

simplicity, particularly in grid generation, the piers are omitted in the present calculations but their

effect is accounted for by appropriately scaling the dimensions of the cross-sections such that the

longitudinal variation of the net flow area remains the same. The various cross-sections of the

scaled draft tube, without the piers, are shown in figure 40.

A grid topology similar to that used for the pipe-bend calculations (see figure 20) is also

adopted for the draft tube. The physical and transformed domains along with the associated
coordinate systems are shown in figure 41. Note that, for the present applications--unlike all our

previous pipe calculations--the inlet velocity profile is not in general symmetric and thus the entire

tube geometry has to be considered. The transformation of the physical to the computational

domain is achieved by introducing an artificial cut along the symmetry plane of the tube and

mapping it into two planes (ABCD and HGFE in figure 41) where periodic conditions are applied.
With reference to figure 41, the overall computational domain consists of the inlet (ABHG) and

exit (DCFE) planes, the solid wall boundary (BCFG), the two periodic boundaries (ABCD and

HGFE) and the tube centerline singular boundary (ADEH).

The computational grid for each cross-section is generated algebraically using the EAGLE

grid generation code (Thompson, 1987). The grid lines are concentrated near the walls using the
hyperbolic tangent stretching function. As in all previous calculations, particular care is exercised

to keep the maximum stretching ratio near 1.3 everywhere. The cross-sectional grids are then
stacked along the centerline of the tube to complete the three-dimensional grid. A view of the

three-dimensional grid on the surface of the draft tube is shown in figure 42, while typical cross-

sectional views are shown in figure 43.

X.2.2 Boundary conditions

With reference figure 41, the boundary conditions for the calculations are applied as

follows:

Inlet: The distributions of the three velocity components, and the turbulence parameters (k,
E) in the case of turbulent flow, are specified at the inlet plane (ABGH). For the laminar flow

calculations, a plug flow profile with zero swirl is specified for the velocity field. For the turbulent

calculations, several velocity profiles with and without inlet swirl are considered (see subsequent

sections). The pressure is computed from the interior nodes using linear extrapolation.

Periodic boundaries: The governing equations are solved on the periodic boundaries
(planes ABCD and HGFE) in a similar fashion as for any interior node by appropriately

introducing fictitious periodic lines.
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Solid wall: No-slip, no-flux conditions for the velocity components, k = 0, and linear

extrapolation for the pressure are employed.

Exit boundary: To facilitate the application of outflow boundary conditions the
computational domain is extended by adding a straight tangent (3 to 4 inlet diameters long) at the

end of the draft tube. At the end of this straight tangent, the velocity components and the
turbulence quantities are computed by assuming zero streamwise diffusion while the pressure is

computed using linear extrapolation. The downstream extension of the computational domain was
found necessary in order to ensure that no reverse flow reaches the exit boundary, in which case

the calculations become unstable and eventually fail to converge.

X.2.3 Laminar flow

The laminar flow calculations are carried out at Reynolds number Re = 1,000, based on the
bulk velocity and the diameter of the circular inlet cross-section. A plug flow profile without swirl

is specified at the inlet. Since the inlet profile is symmetric only half of the draft tube needs to be

computed. Two numerical grids are used for the calculations in order to study the grid dependency

of the computed solutions: i) a coarse grid with 43x47x51 (13 planes in the elbow) nodes, and ii)
and a fine grid with 64x47x51 (31 planes in the elbow) nodes in the streamwise, tangential and

radial directions, respectively. The minimum grid spacing, just off the solid wall, is 4x10-5 inlet

diameters for both grids. Note that the near-wall resolution of the two grids is the same as that
used for the subse'iuently reported turbulent flow calculations in order to test the robustness of the

numerical methoa on highly stretched grids.

The solutions obtained with the coarse and fine grids are compared in figures 44 and 45.
In figure 44, the streamwise velocity profiles at the end of the elbow (section XV in figure 38) are

plotted along the :iorizontal and vertical cross-sectional axes of symmetry, while figure 45 depicts

the contours of constant static pressure on the symmetry plane. The agreement between the coarse

and fine grid solulions is good, since only relatively small discrepancies can be observed. All the

subsequently reported results have been obtained on the fine grid.

The comp ited velocity vectors on the symmetry plane of the draft tube, along with a blow

up of the downstream region, are shown in figure 46. The flow in the first half of the elbow

exhibits all the typical features of a plug flow entering a strongly curved passage. More

specifically, the tVow is accelerated near the inner (top) side of the tube since it is driven by the,
initially, favorable longitudinal pressure gradient. Along the outer side (bottom wall), on the other
hand, the initially adverse longitudinal pressure gradient induces a small region of reversed flow.

Further downstream, however, a strong secondary motion develops--driven by the transverse

pressure gradients--which transports high momentum fluid towards the outer (bottom) wall of the

elbow (see figure 48). As a result, the flow is accelerated along the outer wall while it is retarded

67



along the inner (top) wall. This process, in conjunction with the continuous increase of the cross-

sectional area in the streamwise direction, leads to a large region of reversed flow at the top of the

draft tube. This originates near the end of the elbow and extends all the way to the exit from the

tube.

Figures 47 and 48 show the contours of streamwise velocity and the cross-flow vectors at

sections IX, XV and XXXI (see figure 41). At section IX (located at 0 = 450) a very strong

secondary motion develops with two distinct swirls near the left and right side walls. The

secondary motion tends to sweep the flow away from the vertical axis of symmetry and as a result

the maxima of the streamwise velocity appear in the vicinity of the side walls. At the exit of the

elbow (section XV) the magnitude of the secondary motion is significantly reduced and the two

swirls shift towards the corner between the inner (top) and end walls. A region of reversed flow

appears in the vicinity of the top wall which induces the acceleration of the flow observed near the

outer wall. At the exit of the draft tube (section XXXI) the secondary motion--although very
weak--sweeps the high speed fluid towards the two side walls while a large separated region is still

present near the top wall.

X.2.4 Turbulent flow

A series of calculations was carried out at a typical model-scale Reynolds number, Re =

1. l x 106 (based on the bulk velocity and the inlet diameter of the draft tube), in order to investigate

the effect of the inlet velocity profile on the flow development through the draft tube. Two

different inlet conditions were simulated: i) a fully-developed pipe-flow profile (obtained from a

straight pipe computation), combined with a free-vortex with an axial-velocity defect (case FV),

which approximates the real flow situation since it accounts for the wake-like outflow from the

turbine runner; and ii) the fully-developed pipe-flow profile for the streamwise velocity combined

with a solid-body rotation swirl . In both cases, the swirl velocity at the wall is reduced to zero

using the inner leg of Johnston's (1960) triangular model relating the secondary and primary
velocity components in a three-dimensional turbulent boundary layer. The swirl intensity S is

defined, in the present study, as the ratio of the area average swirl velocity at the inlet divided by

the bulk velocity (for solid body rotation this definition yields S = 0.66Vm, where Vm is the

maximum swirl velocity). According to this definition, solid-body swirl intensities of S = 0, 0.33

and 0.66 (cases S 1,S2,S3, respectively) were investigated in the present study. The inlet velocity

profiles for all the cases computed are shown in figure 49. In the following sections we discuss

the grid sensitivity of the computed solutions and compare the computed flow structures

corresponding to different inlet velocity profiles and swirl intensities.
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Grid dependence study

The grid dependence study was performed only for the case FV, since this corresponds to
the real life flow situation through the draft tube. The calculations were carried out on two

numerical grids, a coarse one with 45x94x51 nodes, and a fine one with 64x94x51 nodes in the

streamwise, circumferential and radial directions, respectively. The streamwise spacing inside the

elbow is 7.50 for grid A and 3.750 for grid B. For both grids, the first coordinate surface just off
the solid wall is located everywhere such that I < y÷ < 4, with at least 4 coordinate surfaces placed
within the sublayer and the buffer layer. Approximately 4000 iterations are required for three

orders of magnitude reduction of the velocity and pressure residuals, which, for the fine grid, take

about 4.5 hours of CRAY-YMP CPU time.

The solutions computed on the coarse and fine grids are compared in figures 50 to 53. The
piezometric pressure coefficient on the wall, around the perimeter at the end of the elbow (section
XV), is plotted in figure 50 , i both grids. Here, S is the distance along the wall and Sref is the

total perimeter at that station. It is seen that both solutions exhibit similar trends, but the finer grid
predicts higher overall pressures as well as a steeper pressure gradient along the inner wall of the

bend (the midpoint of the inner wall is located at S/Sref = 0.5). The contours of piezometric
pressure in the plane symmetry of the draft tube are shown in figure 51. The general features of

both solutions are very similar in the region between the inlet and the beginning of the elbow.
Note, for instance, the sharp rise of pressure in the inlet conical diffuser as indicated by the closely

spaced pressure contours--in fact most of the pressure recovery appears to take place in this inlet

region. Further downstream, however, and towards the end of the elbow, the fine grid solution

predicts steeper streamwise pressure gradients as well as higher pressures near the outer wall.

In figure 52 the streamwise velocity profiles, computed on both grids, are plotted along the
horizontal and vertical axes of symmetry at the end of the elbow. Along the horizontal line of
symmetry (figure 52a) both solutions are in close agreement, although the fine grid solution

predicts somewhat lower velocities near the left endwall. Significant discrepancies between the

two computed solutions appear, however, along the vertical axis of symmetry (figure 52b) and

particularly in the vicinity of the inner wall where the coarse grid solution predicts a much thicker

boundary layer as compared to the fine grid prediction. A more global picture of the computed

solutions is given in figure 53, where the contours of constant streamwise velocity are plotted at
the end of the elbow and the end of the draft tube (sections XV and XXXI). The general structure

of the isovels appears to be the similar for both grids at both sections but a closer look reveals

significant differences. At the end of the elbow (figure 53a), for instance, the closely spaced
isovels near the inner wall, computed on the fine grid, indicate fuller velocity profiles in that region

(compare, for example, the 0.5 and 0.6 isovels in both solutions). This trend implies that the fine
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grid solution predicts a stronger secondary motion than the corresponding prediction on the coarse

grid, and this tends to sweep the isovels closer to the inner wall, resulting in the fuller velocity

profiles in that region. At the exit of the draft tube (figure 53b), the coarse grid solution predicts

lower velocities in the center of the cross-section with regions of reversed flow both on the inner

and outer walls. The fine grid solution, on the other hand, predicts only one small region of

reversed flow near the inner wall.

Finally, figure 54 depicts the calculated velocity vectors on the plane of symmetry as well

as a blow up of the downstream diffuser region. The two solutions exhibit similar overall features

through the elbow and in the downstream diffuser. The coarse grid solution, however, predicts a

much larger region of reversed flow near the inner wall of the downstream diffuser which is

accompanied--for continuity to be satisfied--by higher velocities in the vicinity of the outer wall.

This trend is consistent with the discrepancies between the two solutions already observed in the

streamwise velocity contours and profiles. Also, the reduction of the separated flow region in the

fine grid solution is consistent with the steeper streamwise pressure gradients, observed in the

pressure contours computed on the fine grid (figure 51).

The above comparisons clearly indicate that, unlike the laminar flow calculations where the

coarse and fine grid solutions were quite similar, the streamwise resolution of the coarse grid is not

sufficient to capture the evolution of the streamwise and secondary flow through the elbow and in

the downstream diffuser (recall that the coarse grid has only 13 planes within the elbow). The

coarse grid solution, however, exhibits all the general features observed on the fine grid and can,

thus, be used to predict quantitatively the flow field. For that reason and in order to save computer

resources, all the subsequently reported calculations with different inflow conditions are carried out

on the coarse grid. Note that the main objective of these calculations is to get an overall idea about

the impact that the inflow conditions have on the flow development through the draft tube rather

than to perform detailed comparisons with experimental data, which are not available at this time.

Effect of inflow conditions on the flow development

The velocity distributions in the symmetry plane of the draft tube computed with the four

different inflow conditions are shown in figure 55. The figure also includes an enlargement of the

exit region of the draft tube so that the effects of inflow conditions can be easily identified. For

case S 1 (no inlet swirl, figure 55a), the maximum of the velocity profile initially shifts towards the

inner wall of the elbow (due to the initially favorable pressure gradient along this wall) but this

trend is reversed half way through the elbow by the strong pressure-driven secondary motion.

Note that this behavior is consistent with experimental data for curved ducts of regular cross-

section. Towards the exit from the elbow, the strong adverse pressure gradient, induced by the

continuous area increase, results in a large recirculation or reverse axial-flow zone covering the
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area between the centerline and the inner wall, with reverse-flow velocities as high as 30 percent of

the bulk velocity. The favorable effect of a solid-body swirl on the flow development can be seen

in the subsequent figures 55b and 55c. For case S2, for instance, the extent of the recirculation

zone in the downstream diffuser is significantly reduced and the maximum backflow velocities do

not exceed 15 percent of the bulk velocity, while for case S3 the recirculation zone disappears

entirely. For this latter case it is interesting to note that, starting half way through the elbow, the

flow bifurcates towards the inner and outer walls and, as a result, the minimum of the velocity

appears near the centerline of the draft tube. For the FV case, shown in figure 55d, a region of

very low velocity appears near the centerline (due to a combination of the adverse pressure gradient

and the wake-like inlet velocity profile) and the maximum of the velocity remains near the inner

wall throughout the elbow. In the downstream diffuser, a small recirculation zone also appears

near the inner wall but the velocity profiles between the centerline and the outer wall tend to be

more uniform as compared to the corresponding profiles of cases S I and S2.
The effect of the inflow conditions on the pressure field is depicted in figure 56, where

contours of constant piezometric pressure are plotted in the symmetry plane for all four cases. The

pressure in these figures has been referenced with respect to the pressure at the center of the inlet

cross-section. For cases S 1, S2 and S3 it is seen that the overall pressure rise between the inlet of

the draft tube and the end of the elbow increases with increasing swirl intensities. In addition, for

case S3, almost 50 percent of the overall pressure rise takes place within the inlet conical diffuser.

For the FV case the pressure rises very rapidly in the inlet region and almost 70 percent of the

overall pressure rise is achieved within the inlet conical diffuser.

The contours of streamwise velocity and the associated secondary flow vectors at stations

IX, XV and XXXI are shown in figures 57 to 59 (the inner wall of the draft tube is at the top). It

can be seen that the inlet swirl has a dramatic effect on the flowfield through the elbow and in the

downstream diffuser. At station LX, the two curvature-induced swirls located near the inner (top)

wall, symmetrically about the vertical centerplane in case SI (figure 57a), transport high

momentum fluid towards the outer (bottom) wall along the centerplane, and this results in the low

velocity regions observed near the inner wall. The imposition of an inlet swirl which counteracts

the pressure-driven secondary motion, however, tends to reverse this trend. In case S2, for

instance (figure 57b), the maximum of the streamwise velocity has shifted near the inner wall

while, for the S3 case (figure 57c), the maximum velocity also appears near the inner wall but a

region of high velocity has appeared near the outer wall as well. This accumulation of high

momentum fluid near the inner wall increases the resistance of the flow against the adverse

pressure gradient and, thus, results in the reduction of the recirculation zone in the downstream

diffuser as discussed above. A similar trend is also observed in case FV (figure 57d).
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At the end of the elbow (figure 58), a large region of reversed flow appears near the inner

wall in case the S1. As the swirl intensity increases, however, the separated flow region is

significantly reduced and eventually eliminated for sufficient high swirl intensities (cases S3 and

FV). For case S2, the maximum of the velocity is located in the vicinity of the inner wall to the

right of the vertical axis of symmetry. For the S3 case, on the other hand, the bifurcation of the

high speed flow towards the inner and outer walls, observed in figure 55c, persists in this station

as well. In addition, a core of low speed fluid is seen to develop near the junction between the

inner wall and the left endwall. For the FV case, the maximum of the velocity is also located near

the inner wall and to the right but now a larger cross-sectional area near the right endwall is

occupied by high speed fluid.

At the exit from the draft tube (figure 59), zero inlet swirl (figure 59a) results in a large

region of reversed flow, near the inner wall, and in a secondary motion that sweeps the high speed

flow towards the two end walls. For the S2 case, the separated flow region is significantly

reduced and a single swirl appears near the right endwall. High velocity fluid is accumulated near

both the left and the right endwalls but the maximum velocity occurs in the vicinity of the right

endwall. Further increase of the swirl intensity (case S3) results in an accumulation of high speed

fluid almost exclusively near the right endwall with a small region of reversed flow at the junction

between the inner and left end walls. A flow pattern somewhat similar to that of case S2 is also

observed at the exit of the tube in case FV (figure 59d). More specifically, high speed fluid is

found in the vicinity of both endwalls with the maximum velocity near the right endwall.

However, a region of low velocity, with two separation bubbles near the inner and outer walls, is

found in the middle of the cross-section.

Finally, the near-wall resolution achieved by the present numerical method and turbulence

model is demonstrated in figure 60, where velocity profiles are plotted in wall coordinates for cases

S1, S2 and S3, and compared with the universal law of the wall. The profiles shown in these

figures are plotted at two axial locations, at the exit from the elbow and the at the end of the draft

tube, on the symmetry plane from the outer wall towards the centerline. At the exit from the

elbow, all three velocity profiles collapse into a single curve and conform with the law of the wall

up to y÷ < 80, approximately. This behavior is consistent with the conclusions of the recent

experimental work of Davis and Gessner (1992). Their data indicate that at the end of the

transition duct the measured velocity profiles exhibit logarithmic behavior for values of y÷ less than

80, but they fall below the logarithmic curve for greater values of y÷. At the end of the draft tube,

however, the computed velocity profiles conform with the law of the wall only within the sublayer

but none of them appears to exhibit a logarithmic region. More specifically, the velocity profile for

S I (no swirl) falls well below the logarithmic curve while increased swirl intensities tend to reverse

that trend. This latter behavior is consistent with the strong adverse pressure gradient which the
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flow experiences in the downstream diffuser. The behavior of the near-wall flow for case S 1, on

the other hand, can be attributed to the strong divergence of the flow away from the centerplane

towards the left and right endwalls (a divergence induced by the pressure-driven secondary

motion). As the inlet swirl intensity increases it counteracts the secondary motion and, as a result,

the effects of the adverse pressure gradient dominate in the near-wall region. The velocity plots

clearly show the location of the near-wall grid points and the resolution that is achieved in the

sublayer.

XI. SUMMARY AND CONCLUSIONS

Two numerical methods were described and their results compared with each other in order

to identify the relative merits and disadvantages of these methods when applied to calculate laminar

and turbulent flows in curved ducts with varying cross-section. Method I employs the finite-

analytic discretization for the convective and viscous terms and solves the fully-transformed

governing equations in generalized curvilinear coordinates using the AD! method. Method H1, on

the other hand, is a finite-difference method which integrates in time the partially-transformed

governing equations (with the cartesian velocity components retained as unknowns in generalized

curvilinear coordinates) using the four-stage, explicit Runge-Kutta algorithm, enhanced with local

time stepping and implicit residual smoothing. For turbulent flows, both methods employ the two-
layer, two equation k-e model of Chen and Patel (1988). The methods were applied--on the same

numerical grid, with identical boundary conditions, starting from the same initial conditions, and

using the same convergence criteria--to calculate laminar and turbulent flows through strongly

curved ducts of regular cross-section. The computed solutions were compared with each other and

with experimental data in order to assess the spatial resolution of each method.

Method II was subsequently applied to calculate laminar and turbulent flows in several

curved ducts of square and circular cross-sections, as well as turbulent flow in a straight circular-

to-rectangular transition duct, and a curved circular-to-rectangular transition duct, namely a

hydroturbine draft tube. The objective of these calculations was twofold: i) to further validate the

spatial resolution and numerical performance of Method H; and ii) to validate the ability of the two-

layer turbulence model to predict the origin, growth and decay of pressure-driven vortical

structures in complex, three-dimensional shear flows. To facilitate the validation process, a

detailed literature survey was carried out in order to summarize all the experimental and

computational work in the area of duct flows and identify, among the available experimental

studies, those that are more appropriate for validating numerical methods and turbulence closures.
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The study is concluded with application of Method [I to simulate the flow through a typical
hydroturbine draft tube. Unlike previous attempts to simulate such flows, the present method

resolves the near-wall flow using fine computational meshes across the sublayer. Numerical

solutions were obtained, at typical model-scale Reynolds numbers for various inlet swirl intensities

and axial velocity profiles, for a draft-tube configuration based on the installation at the Norris Dam

in Tennessee.

The following general conclusions are drawn from the present study:

i) An accurate simulation of complex, three-dimensional flows requires very careful

discretization of the governing flow equations--particularly the convective terms--in order to ensure

that numerical diffusion is kept to a minimum and real viscous-flow processes are not obscured.

This was demonstrated in the comparison of the two numerical methods, since the finite-analytic

method (Method I) appeared to consistently underpredict the strength of the secondary motion and

consequently its impact on the streamwise flow development. This is attributed to the fact that the

finite-analytic discretization automatically switches to a first-order accurate upwind discretization in

regions of the flow where the cell Reynolds number exceeds a certain limiting value. The

performance of Method I in highly three-dimensional flows considered here could be improved if

the hybrid nine-point discretization formula employed in the present version of the method is

replaced with a more accurate discretization involving additional points in the upstream and

downstream sections of the finite-analytic element. This, however, would result in additional

computational effort. Method H, which uses a second-order accurate upwind scheme, was shown

to be sufficiently accurate to predict--at least for the laminar flow cases where no turbulence-model

related uncertainties are present--the evolution of the streamwise and the secondary flow with

remarkable accuracy.

ii) The present study indicates that isotropic eddy-viscosity based turbulence models are

inadequate for resolving the origin, growth and decay of pressure-driven secondary motion in

complex, three-dimensional shear flows, even when the most advanced, state-of-the-art near-wall

models are used to resolve the flow all the way to the wall. In all the turbulent flow calculations

performed herein, the two-layer k-e model failed to predict the strength of the secondary motion as

well as its effect on the streamwise flow development. These discrepancies cannot be attributed to

numerical discretization errors since the calculations were carried out using Method II, the

numerical performance of which was carefully established through a series of complex laminar-

flow calculations. While it is well known that turbulence models of the type employed here cannot

predict Reynolds-stress-driven secondary motion, the reasons for the failure of the two-layer

model to capture the pressure-driven secondary motion are not entirely clear, particularly because it

appears to resolve the important near-wall layers in even the most complex flow situations. One

may only speculate that the observed discrepancies are due, at least in part, to the equally well

74



known deficiency of the k-E model to account for the increased levels of turbulence production

along concave walls. Whether it is this factor, or the general anisotropy of the Reynolds stresses,

cannot be answered without further computations using turbulence models that claim greater

generality. This is obviously a topic for further research. Extensions of Method I1 to incorporate

models based on the individual Reynolds-stress transport equations are now under way.

iii) The computations with the draft tube geometry demonstrated, for the first time, the

feasibility of carrying out turbulent flow calculations all the way to the wall for complex, three-

dimensional configurations. The numerical method was shown to yield robust and efficient

solutions on highly stretched, very fine computational grids--with as many as 310,000 grid nodes.

The efficiency of the numerical method can be significantly improved, however, by implementing

the multigrid acceleration technique which can reduce the overall CPU time required for

convergence by a factor of four to five.

iv) The inlet swirl intensity and the axial velocity profile were found to have a dramatic

effect on the flow development throughout the draft tube. The numerical results indicate that high

swirl intensities tend to diminish the stalling characteristics of the flow through the elbow and to

increase the overall pressure recovery. In addition, the comprt. olutions were shown to

reproduce with remarkable accuracy the correct limiting behavior oi" the flow within the sublayer.

While the present solutions are qualitatively similar to those reported by others for different draft-

tube geometries, no specific conclusions can bt irawn at this time insofar as the overall accuracy

of the computed solutions is concerned since no experimental data is available to validate the

numerical predictions. An experiment is under way at Voith Hydro Inc. to measure the flow in a

scaled model of the Norris Dam draft 'ube. including the flow dividing piers in the downstream

reach of the tube. The numerical method will be modified to handle such a geometry, and

comparisons will be made between the calculations and data as they are gathered.
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Fig. 36 Measured (Davis and Gessner, 1992) and computed axial velocity contours
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Fig. 36 Measured (Davis and Gessner, 1992) and computed axial velocity contours
(b) Station 4
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Fig. 36 Measured (Davis and Gessner, 1992) and computed axial velocity contours
(c) Station 5; (d) Station 6
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Fig. 37 Measured (Davis and Gessner, 1992) and computed law-of-the-wall velocity
profiles along the horizontal and vertical planes of symmetry
(a) Station 5
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Fig. 37 Measured (Davis and Gessner, 1992) and computed law-of-the-wall velocity
profiles along the horizontal and vertical planes of symmetry
(b) Station 6
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Fig. 41 curvilinear coordinates for a typical draft Tube configuraon

(a) physical solution domain; (b) t-ansforned solution domain
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Fig. 42 Typical 3-D surface view of the computational grid for the draft tube geometry
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Fig. 43 Typical cross-sectional views of the computational guid for the draft tube
geometry
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Fig. 44 Grid-dependence study (Re=1000): Streamwise velocity profiles at station XV
(a) vertical plane of symmetry; (b) horizontal plane of symmetry
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Fig. 45 Grid-dependence study (Re= 1000): Static pressure contours on the plane of
syfmietry
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(a)

(b)

Fig. 46 Velocity field on the plane of symmetry (Re=lOOO)
(a) Overall view; (b) Exit region
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Fig. 47 Strearnwise velocity contours (Re= 1000)
(a) Station IX; (b) Station XV; (c) Station XXXKI
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Fig. 50 Grid-dependence studies (Re=l.lxl06; Case FV):
Peripheral wall static pressure distribution at station XV
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Fig. 51 Grid-dependence study (Re=l.1xl06 ; Case FV): Static pressure contours on the
symmetry plane
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Fig. 52 Grid-dependence study (Re=I.lx10 6 ; Case FV): Strarnwise velocity profiles at
station XV. (a) Vertical plane of symmety, (b) Horizontal plane of symmetry
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Fig. 53 Grid-dependence study (Re=l.lxlO>, Case FV): Suramwise velocity contours
(a) Station XV
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Fig. 53 Grid-dependence study (Re=1.x1o 6 -, case FY): Streaniwise velocity contours
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Fig. 54 Grid-dependence study (Re=l.1x10 6; Case FV) (a) Velocity field on the plane
of syfnnaetry (overall view)
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Fig. 56 Static pressure contours on the plane of symmetry for various inflow conditions
(a) Case S 1; (b) Case S2
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Fig. 56 Static pressure contours on the plane of symmetry for various inflow conditions
(c) Case S3; (d) Case FV
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Fig. 57 Streamnwise velocity contours and secondary flow vectors at section EX for
various inflow conditions: (a) case S I; (b) case S2
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Fig. 57 Streamwise velocity contours and secondary flow vectors at section IX for
various inflow conditions: (c) case S3; (d) case FV
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Fig. 60 Law-of-the-waUl velocity profiles for various inflow conditions
(a) Section XV; (b) Section XXXI
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