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Abstract

This report summarizes the results of an extensive research program on the r~al-time im-
plementation of multidimensional (M-D) digital signal processing algorithms. We began our
study on the efficient implementation of M-D digital filters. We mapped the M-D digital
filter to a state space model because the state space model supports local data communi-
cations. We studied various approaches to implementing the state space model for M-D
digital signal processing applications. We found that the best approach involves mapping
the state space model onto a generalized linear finite state machine which facilitates the
hardware implementation. Using this approach, we were able to develop a multiprocessor
system architecture which is scalable, which is modular, and which has a high efficiency.
Based upon these results, we developed the architecture for an application specific comput-
ing system which we call a Block Data Flow Architecture (BDFA). We are currently studying
the mapping of several other M-D signal processing algorithms and matrix operations to the
BDFA. These studies show that multiprocessor systems using the BDFA can achieve high
throughput and high efficiency at a modest cost.



Chapter 1

Introduction.

1.1 Statement of the Problem.

Extensive research and development have been devoted to multidimensional (M-D) digi-
tal signal processing [1]. Recently, there has been a dramatic increase in the performance
of computer systems. Thus, it has become more practical to implement many of the M-
D digital signal processing applications in real-time. Practical applications of M-D digital
signal processing include remote sensing, industrial inspection, robot vision, data compres-
sion for communications, processing biomedical images for diagnosis, character recognition,
recognition of figure prints, weather forecasting, etc. In general, these applications are com-
putationally intensive and require substantial data communications.

In many cases, the reduction of computer hardware cost makes it practical to design
special purpose computer systems tailored to the specific requirements of a given class of
algorithms. Systems with the computational capability to handle real-time or near real-
time M-D digital signal processing are just becoming available as a result of these efforts.
However, most M-D digital signal processing tasks are too complicated to imp"cment in real-
time using a single processor system. Thus, the development of M-D digital signal processing
algorithms specifically designed for multiprocessor systems is an import-.r.t research area.

In this research program, we have concentrated on the development of algorithms
which can be effectively used for high speed, M-D digital signal processing in a multiproces-
sor or multicomputer environment. The traditional approach to research on the development
of efficient algorithms for digital signal processing is to reduce the total number of multi-
plications (or complex multiplications) required. Howevwr, this approach is not valid for
algorithms to be implemented on a state-of-the-art multiprocessor system. For example, the
transfer of a data word between chips in a multiple chip system (typically on the order of 30
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to 100 nanoseconds) can require as much time as required for a multiplication. Thus, data
communications requirements should be given at least equal consideration to computational
complexity in developing algorithms for multiprocessor systems.

We began our research program on the real-time implementation of two-dimensional
(2-D) digital filters. We later generalized our results to include all discrete, linear, shift-
invariant (DLSI) M-D systems. A DLSI system is a discrete system for which the system
parameters do not vary with changes in the independent variables (time, space, distance,
range, etc.). Thus, the coefficients for the finite difference equation representation of a DLSI
system are constants. A finite difference equation expresses the result of a computation as a
weighted average of current and previous inputs and past outputs. Quite often the indepen-
dent and dependent variables are parameters such as time, space, range, temperature, etc.
Many practical digital signal processing and digital control problems can be represented as
DLSI systems. In addition, many shift variant systems can be approximated over small inter-
vals as DLSI systems. Our approach has been to design computationally efficient algorithms
which are optimized for implementing M-D DLSI systems in a multiprocessor environment.
In this way, our results can be applied to a large variety of problems.

Real-time M-D digital signal processing has a wide range of applications such as
radar and sonar signal processing, biomedical diagnosis, photography, broadcast television,
computer vision, and seismology. Computational requirements of signal processing tasks
such as beam-forming, adaptive filtering, data compression and paramebler estimation can
be reduced to a common set of matrix operations[2]. Matrix operations also find important
applications in many areas such as oceanography, weather prediction, dynamic quantum
field theory, aerodynamics, petroleum exploration, astrophysics, fluid mechanics, geophysics
and particle physics. These applications require a system with high throughput and high
efficiency for real-time implementation.

Normally, signal processing tasks and matrix operations possess a large amount of
inherent parallelism. Many parallel algorithms and parallel structures have been developed
to exploit this parallelism[3][4]. However, most parallel algorithms have been optimized for
implementation on general purpose computers. General purpose computers can not achieve
the high system throughput required for real-time processing because of limitations due to
system management and control overhead and data communication problems. Data com-
munications requirements are very important in developing multiprocessor implementations
of these algorithms.

Most parallel multiprocessor system such as systolic arrays and hypercube multi-
processor systems have a synchronous SIMD structure. A synchronous system achieves its
parallelism by synchronous clock-step operations [5]. This implies that all operands have to
be ready before any processor can start its designated operation. This strictly synchronous
operation imposes a severe timing restriction on the system design and causes implementa-
tion difficulties such as the clock skew problem for large scale systems. Thus, the throughput
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rate of most multiprocessor systems fails to increase linearly proportional to the increase in
the number of processors.

A wavefront array replaces the requirement for correct timing by a requirement for
correct sequencing to overcome the globally synchronous timing problem[6]. However, if the
handshaking for the wavefront array is done at the word level, then the resources required
to implement the handshaking protocol limit the overall system efficiency and throughput.
The BDFA is essentially a wavefront array with a block data handshaking protocol. Thus,
the BDFA has the asynchronous timing advantages of the wavefront array but it can still
have a very high efficiency because of the reduction of overhead due to handshakng for data
communications.

Algorithms designed for systolic arrays and wavefront arrays use an algorithm parti-
tioning strategy. In an algorithm partitioning strategy, each processor implements a different
part of the algorithm and the total problem is solved using a pipeline. The use of this strategy
may lead to unnecessary data movement among processing elements because only the edge
processors have access to input or output devices. Processing results go through processor
by processor in order to reach the one which can interface to the output device. This unnec-
essary data movement may increase system management and data communication overhead,
and may increase hardware complexity. It also increases the data dependency among the
processing elements.

While it is possible to obtain impressive performance with bus-organized multipro-
cessor systems and multiprocessor array systems for individual algorithms, the performance
typically falls off due to data communication problems and/or synchronization problems as
the number of processors is increased. In addition, hardware especially designed for a given
algorithm either can not be adapted to solve other problems or the performance is dras-
tically reduced on other problems. We have attempted to develop an application specific
architecture which can solve a class of problems with high throughput and high efficiency.
We expect this approach to result in a cost effective solution to demanding M-D digital signal
processing problems.

1.2 Application Specific Computing Systems

Although the primary goal of our research program is the development of algorithms and
computational structures for high performance M-D digital signal processing applications, a
secondary goal of our research program is the development of application specific computing
systems for digital signal processing with emphasis on real-time applications. We are espe-
cially interested in computationally intensive M-D digital signal processing applications such
as beam-forming, M-D digital filtering, discrete transforms, adaptive filters, etc. Since many
of these applications can be formulated as matrix operations, we include matrix operations
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in the desired family of algorithms.

We developed the BDFA to have the flexibility to efficiently solve a variety of problems
in this class of algorithms while still providing the high throughput for real-time applications.
By exploiting the regularity and inherent parallelism in these applications, we found that
many M-D signal processing and matrix algorithms can be solved using a data partitioning
strategy. In a data partitioning strategy, each processor receives a different portion of the
data and attempts to complete all of the necessary computations for its assigned data par-
tition. We eliminate data communications to other processors when possible and minimize
it when it is necessary.

We choose the data partitioning strategy for the BDFA to reduce data dependency
between processors, to reduce interprocessor communication, and to simplify the intercon-
nection network. In a BDFA, input (output) data can be moved directly into (from) any
processor without interfering with any other processors. Thus, in this scheme, the interpro-
cessor communications only involve the passing of intermediate computational results.

The interprocessor communications for the BDFA are in only one direction by design.
This permits the use of FIFO buffers for interprocessor data communications. The FIFO
buffers also provide asynchronous data communication capability which in turn relaxes the
requirement for strict timing between processors. This is an important advantage as we
increase the number of processors in a BDFA.

In mapping a given algorithm to a BDFA system, we try to minimize the interpro-
cessor communications and data movements since they affect system throughput, system
efficiency and system management overhead. Secondly, the BDFA maintains a direct input
data channel to each processor and a direct output data channel from each processor to
substantially reduce the required data movements for the processor array.

1.3 Overview of the Report.

This report presents a summary of the results achieved under Office of Naval Research
contract V00014-83-K-0138. In chapter 2, we develop the state space representations for the
2-D and the M-D discrete linear shift-invariant (DLSI) systems. We use these state space
representations to obtain the computational structure for real-time implementation on M-D
DLSI systems. In chapter 3, we present the architectual features of the BDFA. We also
present a performance evaluation of the use of the BDFA for the 2-D digital filters. The
outstanding performance on this problem has encouraged us to consider the use uf the BDFA
for other M-D digital signal processing problems[8],[7].



Chapter 2

State Space Representation of M-D Digital
Systems.

The state space representation provides the potential for minimizing the data communication
requirements for a given algorithm without increasing computational complexity. Other
advantages of the state space implementation over direct implementation include decreased
sensitivity to parameter variations and improved performance when finite arithmetic is used.

A set of finite difference equations is one of the forms commorly used for representing
DLSI systems. We have chosen this mathematical abstraction as a convenient starting
point for development of the algorithm decomposition scheme for implementing the M-D
DLSI system. The first step in the procedure is the state space representation of the system.
Although we show the development of the state space representation from the finite difference
equation, we can also obtain a state space representation from a signal flow graph or a block
diagram representation. We use the state space representation as an intermediate form for
representing the system. In order to clearly explain the concepts involved in this approach,
we first discuss the state space implementation of 2-D DLSI systems. We then show that
the concepts used in the 2-D case can be extended to the M-D case (M > 2).

2.1 State Space Representation of 2-D DLSI Systems

The general-order, causal 2-D finite difference equation with quarter-plane support is given
by [1].

Li L-2 Ll L2

g(nln2) =E E Zb(jl,j2)f(n,-j, n 2 -j 2 ) - E a(jl,j2)g(n, - j,,n2 - j2) (2.1)
h =0 j2=0 il=0 2=0

j1+32>O
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The parameters a(jl, j 2) and b(ji, j2) in the above equation are coefficients which determine
the characteristics of the algorithm. Since the coefficients can take on arbitrary values, this
equation can represent many 2-D problems including spatial domain filters, image processing,
simulation, control systems, etc. The state space approach can be extended to the 2-D DLSI
system [91 [101. For the 1-D case, a simularity transformation can be used to optimize the
state-space representation for a given criteria. However, there is a fundamental problem in
extending this concept to the 2-D case because an arbitrary bivariate transfer function cannot
be factored into distinct poles and zeros and cannot be expanded into partial fractions. Thus,
these approaches to developing a parallel or cascade implementation are not extendible to
M-D systems due to the lack of a fundamental theory of algebra for M-D systems.

Roesser's state space model for 2-D DLSI systems is perhaps the most widely accepted
model [9]. This model provides for the update of the next state for a set of vertical state
variables and a set of horizontal state variables as a linear combination of the present vertical
and horizontal state variables and the current input. The output is also a linear combination
of the present vertical and horizontal state variables and the current input.

SH(nl + 1,n2) A 1 A 2 SI[ l(nln2) + B 1  [f(ni,n 2 )]

Sv(nln2 + 1) [ A 3 A 4  Sv(ni,n 2 ) B2

[g(n , n2)] = [C1 C2 1 Sq'(n nl2) ]+ D [f (ni, n 2 )] (2.2)

Roesser's state space model is based upon assigning state variables to the output of the
delay elements. We find it more convenient to assign state variables to the input of the delay
elements. This makes the state space representation compatible with the evential hardware
implementation because a state variable identifies a parameter which must be stored for later
use. This alternate choice for the state variables is equivalent to the parameter substitution:

QH(nl,fn2) = SH(ni + 1,n 2 )

Qv(nl,n2) = Sv(ni,n 2 +1) (2.3)

With this substitution, the indices for the modified state vector are the same as those for
the current input. Thus, the modified model is conceptually simpler because it more closely
resembles the finite difference equation model. It also simplifies our later derivations for the
block-state model and the development of' the initial conditions models.

We can combine the vertical state variables and the horizontal state variables into a
state vector for a given location in the M-D array. Thus,

Q(nljn2) [ QH(ni,n2) ] (2.4)Q~nn, = Qv(ni,,n2)I

We can then update this state vector and compute the current output using a linear combi-
nation of the most recent vertical state variables, the most recent horizontal state variables



8

and the current input. The revised model is equivalent to Roesser's original model. However,
the notation more accurately reflects the computational model and the resulting architecture
presented in this report.

The modified state model for the causal 2-D DLSI system with quarter plane support
is given by

QH(nl,n2) [ Al A2 ] [ QH(n - 1,n2) + [ B1 [f(nl,n2)]Qv(ni, n2) I A3 A411 Qv(nl, n2 -1 1 B2

[g(n 1 ,n 2 )] = [C1 C 2] Q(n - n) + D[f(nin 2 )] (2.5)
I Qv(ni,n2- 1) 1

In this equation, QH(ni, n 2 ) is a column vector whose elements are the current values of
the state variables for the horizontal processing direction corresponding to the index nj.
Qv(nl, n,2 ) is a column vector whose elements are the current values of the state variables
for the vertical processing direction corresponding to the index n2 . The index (n, - 1, n2 )

implies a delay in the horizontal direction and the index (n1 , n2 - 1) implies a delay in
the v, rtical direction. A 1 , A 2 , A 3, A 4, B 1 , B 2, C 1, C 2 , and D are appropriate coefficient
matrices such that Eq. 2.1 and Eq. 2.5 are equivalent. Fig. 2.1 gives a block diagram for
a linear finite state machine which iA, equivalent to the state space representation of the 2-D
DLSI system given in Eq. 2.5. The linear finite state machine for Eq. 2.2 is idE-ntical except
for the designation of variables as specified in Eq 2.3.

A state variable represents information that must be stored for later use. Therefore,
it is important to select state variables that minimize data communication requirements
without increasing computational complexity. In a typical image processing application, a
horizontal delay represents a storage of one word while a vertical delay represents a storage
of an entire row of data. Therefore we selected a canonical form which minimizes the number
of vertical state variables.

The state space representation for a given 2-D DLSI -ystem is not unique. In addi-
tion, the problem of defining a representation with the minimum number of states has not
been solved [11. We choofe a particular canonical form to facilitate the development of a
computational primitive for 2-D DLSI systems. We then assign state variables to the inputs
of the delay elements to obtain the state rariable representation. The procedures which we
use are general and can be applied to obtain a state space representation from any signal
flow graph or block diagram.
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r(nln2) 2(n a)
Sc%(n.1.n) + cQ,%(n~.l •z•

+ Dt(n 1'-2)

A 1Q H(n -'n2)A2V n, 1
+ n 1 A2% (nB 2-1)

A3Q(nl-,n2)+ 4Q V(nI,ni-1) Q H(n1,n2)

+ 3 Sf(n ,I )

_Qv_(n I ,)

Z'
21

Figure 2.1: Two-dimensional generalized finite state machine.

2.1.1 Deriving the 2-D State Space Equations.

The 2-D transfer function corresponding to Eq. 2.1 is given by

LI L2

•_ Z b(j 1,j 2 )zj
2 1Z' z 2

l=032=0 (2-6)Y(zi,z 2 ) = L ,(26

1 + a a(j,,j2)zl "12j2

jl =0 j2=0

j1+j2>0

Note that H(zi, z 2) describes an input/output relationship between the transform of the
input sequence, F(zi, z2), and the transform of the output sequence, G(zl, z 2 ). We can show
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this relationship as follows:

L2 L,

G(z,,z2) = b(O,O)F(zi,z 2) + Z 1 [b(jF,j2)F(zz 2 ) - a(j,,j2)G(zi,z 2)]z-j 1 z~j2

J2=O l=

jl +j2>0

(2.7)
Fig. 2.2 gives a block diagram representation of a 2-D filter partitioned as specified by Eq.
2.7. Note that the number of vertical delays is the same as the order of the filter in the

f(nl,n2)

,O)b1,0)O b1b(0,0)

-~a(L1,0) -ka(L.1,0) -a(1,0)

b(LL-.) b (-1,I) b(O,1)
*1 g~n&0 2)

1 04I- w2
O-a(L,1) -a(L-1,1) (,.1)

b(L1.LoJ b(LI-I1)j(J2
Z1.1 R'

-a(OJl)

Figure 2.2: Block diagram representation of a 2-D system.

z2 variable which is the minimum possible number as desired. We can obtain the desired
state space representation by assigning a horizontal state variable to the input of each of the
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horizontal delay blocks (associated with the z, variable) and a vertical state variable to each
of the vertical delay blocks (associated with the z2 variable). We then write the resulting
equations in matrix form as given in Eq. 2.5.

Fig. 2.3 gives a section of the block diagram of the 2-D DLSI system having one
horizontal delay and one vertical delay. Assigning state variables as described above, the

q2J(nl,n2-1)

f(nl'n 2)

b(O,k) Z22

qjjnjn-a(,) @qJln~21

-'ml- -q2,j(nl,n 2)

-a(O,k)

Figure 2.3: Section of the block diagram of a 2-D DLSI system.

typical vertical state equation for the 2-D DLSI system can be represented as

q2J 2(n,,n2) = b(O,jj2)f(ni,n 2) - a(O,j 2)g(n 1 ,n 2)
+ q1,j1 (n, - 1,n2) + q2 ,12+l(nl,n2-1); 1 j j2 < L 2

I, = Ljj 2 + 1

12 = j2

q2,L2+I(nl,n2 - 1) - 0 (2.8)

In a similar way, the typical horizontal state variable is given by

q1,11(nl,n 2) = b(j1,j 2)f(ni,n 2) - a(jj,j 2)g(n1 ,n 2 )

+ ql,i 1+i(n 1-ln 2); 1 < j• :_ L,-I; 0 j2 :2 L 2

I1 = j 2 L1 + ji. (2.9)
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ql,l (n 1 , n 2 ) = b(ji,j 2)f(ni,n2) - a(ji,j2)g(nl,n 2)

ji = L1 ; 0<3 j2 •_ L 2 .
I = (j2 + 1)LI. (2.10)

The output equation is given by

g(n 1 ,n 2) = b(O,O)f(ni,n2) + ql,i(n, - 1,n 2) + q2,1(nl,n2 -1) (2.11)

The vertical and horizontal state variables can then be represented by [12]

qjji,(n 1 ,n 2) = bj",f(ni,n 2) - 7-g(nn 2) + qi.j,+(ni - 1, n-)

+ q,,1 (n,n;-- 1) (2.12)

If i = 1 then 1 = 2 and vice versa. Note that if i = 1 in Eq. 2.12, then the corresponding
vertical state variable is equal to zero [qj;,(ni, n-; - 1) = 0].

Eq. 2.12 is a computational primitive for the 2-D DLSI system since the vertical state
variables, the horizontal state variables and the output can be mapped into this equation
with a suitable interchange of variables. In using Eq. 2.12 as a computational primitive,
qjj,, (ni, n2) can represent the current value of the horizontal or vertical state variable or the
output as appropriate, qj,-,.(n, - 1, n-) represents a previous value of a horizontal state
variable (delayed by one pixel), qi, 1(ni, n- - 1) represents a previous value of a vertical state
variable (delayed by one row). We can implement this equation in a tree structure using two
multipliers and three adders [12] as shown in Fig. 2.4 or in two steps using a multiplier-adder.

2.2 State Space Representation of M-D DLSI Sys-

tems.

We now discuss the extension of the 2-D state space implementation presented above to M-D
DLSI systems. The general multivariable difference equation for the causal, DLSI system
with first section support (the M-D equivalent of quarter plane support) is given by [1]

L1 L2 LM

g(n) = E x... E b(J)f(nl - j,,,nM-- jM)
A=Oj 2= 0  M 0=O

L L,2 Ljw

E E... E a(J)g(n - j,'',nM - jM)
jl1=02=0 jM 0=O

l +j2+'.++"M; > (
n = ni,n2,...,* nM; J = jlijh,"',M (2.13)
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q 2,j(nln2) = b2,*f(nl n2)+ql .1nI- 1,n +l(n1 .n2-1)+a2j*y(njn2)

q•j(nl,n2)

Figure 2.4: Tree structure for the computational primitive..

The input f(n) is assumed to be sampled at uniform intervals in each of the independent
variables and g(n) is the corresponding output. The parameters a(J) and b(J) are coefficients
which determine the characteristics of the algorithm. Since the coefficients can take on
arbitrary values as appropriate, this equation can represent many common M-D problems.

The state space representation of the M-D DLSI system is given by [13]

Si(ni + 1,n 2,... ,- M) All A 12  ... AIM S1 (n)
2(n, n2 + 1,.-, M) A21 A22 ... A2M S 2 (n)

SM(ni, n 2 ) ",nM ) AM1 AM2 ... A M

B 1

+ B ] [f(n)]

BMj
- S, (n)

[g(n)] - [C 1 C2 ... CM] [SM( )

+- f(n)
+ D [f (n)] (2.14)
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We choose state variables for the M-D case in the same manner as we did with the 2-D case.
This is equivalent to the following parameter substitution:

Qj(...,ni -.- )= S&(...,n +1,...) ; 1 < i < M. (2.15)

With this substitution, the indices for the modified state vectors are the same as those for
the current input and the state variables are updated as a linear combinations of the delayed
state variables and the current input. Thus, the theoretical model more closely matches the
computational model and is consistent with the difference equation notation. The resulting
state space representation for the M-D DLSI system is given by

Qj(n) All A12 "" AlM Qj(n, - 1,n2,...,nM)

Q2(n) A21  A2 2  ... A2M Q2(n, n2 ... , M)

@M(n) A-M AM2 ... AMM QM(nl,n2,..., nM - 1)

Bi 1

+ B [f(n)]

BM
Q, (n, - 1,n2, .. ,rm)

[g(n)] = [Ci 02 ... CM] Q2 (n 1,n2  1 , M)

QM(nl, n , ... , nM -1)

+ D [f(n)] (2.16)

We can use the approach we used for the 2-D DLSI system to obtain a state space repre-
sentation of the M-D DLSI system. First, we obtain a suitable computational graph for the
M-D system. Then we assign the input to each delay as a state variable in the corresponding
tuple. In the development of the M-D state space implementation that follows, we have
chosen a canonical form which minimizes the number of state variables in the Mth tuple.
This is comparable to choosing a canonical form to minimize the number of veritcal state
variables in the 2-D DLSI system.

If we express the state equations and the output equation for the M-D system in
matrix form, then we have the M-D state space model as given in Eq. 2.16. For convenience,
we define

[QI(n)
Q(n) = Q2(n)

QM(n)
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where ki- 1 and k, may either be 0 or 1 depending upon whether the associated delayed
state variable appears in the equation for state variable qil-,(n) or qlj,, respectively.

Eq. 2.30 is a computational primitive for the M-D DLSI system since the state
variables for each tuple and the output can be mapped into it with a suitable interchange
of variables. Also note that if d'i is equal to zero, then Eq. 2.30 becomes a computational
primitive for the M-D FIR DLSI system. On the left side of the equal sign, qi,,(n) can
represent the current value of the state variable in any tuple or the output as appropriate.
The state variables on the right side of the equal sign are delayed by one element in the
respective tuple. Thus, Eq. 2.30 is a generalization of the 2-D computational primitive as
given in Eq. 2.12. Note that only 2 multiplications and a maximum of M + 1 additions
are required to compute-any of the state variables or the output for a M-D system.

2.3 A 2-D Example.

Consider the second order 2-D digital filter with transfer function given by

2 2

SZ b(ji,j 2 )z'j' Z2

H(zi,z 2) = (2.31)
1 + F_, a(j,,j2)Zj 1Z

2

At =0 j2=0

i1+j2>o

Using Eq. 2.30, we can write state equations as follows:

y(nl, n2) = ql,l(n, - 1, n 2 ) + q2,1(ni,n 2 - 1)

g(nl, n2) - bo,of(ni,n 2) + y(nl, n2)
ql,,(ni, n2) = b1,,f(ni,n2) + d -1y(nin2) + q1,2(r,1 - 1,n 2 )

ql,2(n,, n2)= bl2f(n1 ,n 2) + al,2y(n,,n 2)
q1, 3 (n,,72) = b." 3f(n 1 ,72) + a-7.y(ni, n 2) + ql,4(n, - 1, n2)

,3(nln2) = bf(ni,n 2 ) + l,3y(n 1 ,n 2 )

ql,s(n1,,n2) -- b1 ,"5sf(ni,n2 ) + 6~asy(n 1 ,n 2 ) + q, 6(n1 - 1,n2)

q, 6 (ni,n2) - b,,f(ni,n 2 ) + i' 6 y(nl,n 2 )

q2,1((n 1, n2) = b2, 1•f(n, ,n 2 ) + a2,1y(n, ,n2) + q6,,(n, - 1,7n2)

+ q2,2 (n•,an2 -1)

q2,1(n7, n2) - b2 ,2f(ni,n 2 ) + d2,2y(n,,n2) + q,, 3 (n, - 1,n2)

(2.32)
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The coefficients are given by

S= b(o,0)

S= b(1,O)-b(O,O)a(1,0)

a,-j = -a(1,0)

12= b(2,0) - b(o, 0)a(2, 0)

,2 = -a(2, 0)

, = b(1,1) - b(O, O)a(1, 1)

a, = -a(l, 1)

S= b(2, 1) - b(O, O)a(2, 1)

a-,1 = -a(2,1)

5= b(1,2)-b(O,O)a(1,2)

a1,'5  = -a(1,2)

6= b(2,2) - b(O, 0)a(2, 2)

6 = -a(2,2)

6,1 = b(O, 1) - b(O, O)a(O, 1)

2,1 = -a(O, 1)

2 2 = b(O, 2) - b(O, 0)a(0, 2)

a2, = -a(0, 2) (2.33)

Thus, we can write
a"Zj' 1 0 0 0 0 0 0
a1,2 0 0 0 0 0 0 0
aia 0 0 1 0 0 0 0
a 0 0 0 0 0 0 0 (.4

a2,1 0 1 0 0 0 0 0a•.oooioooooLad2,2 0 0 0 1 0 0 0

0 0 0 0 0 0 a -,, 0
0 0 0 0 0 0 d'l,2 0

X2 0 0 0 0 0 0 d-, 0 (2.35)
ooooooaTo

0 0 0 0 00 a2,"1 1

0 0 0 0 0 00 d2 0
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b 1 , 2

b1 ,3

f3 L1,4 (2.36)

F1, 6
b2,1

.b2,2

C=[1 0 0 0 0 0 0 01 (2.37)

- - [0 0 0 0 0 0 1 01 (2.38)

D = [b(0,0)] (2.39)

2.4 Computation of Initial Conditions.

Many practical digital systems require the use of appropriate boundary values or initial

conditions. The classical approach of assigning a value of zero to boundary values often

leads to undesirable transients during initialization. Our approach to the initial condition

problem involves the state space model and the estimation of the initial state using the

constraint that the state does not change upon applying the initial inputs on the boundary.

Using this constraint, the initial state can be determined from the relationship

Q(O) = Q(-1,0,...,0) = Q(0,-1,0,...,0) ... (2.40)

It follows from the use of Eq. 2.22 that

M

Q(O) = iQ(o) + Bf(O)
i=1
M

g(O) = E Q(O) + Df(O) (2.41)

Since M

A'-= A, (2.42)

we can write

Q(O) = [I - A]-' Bf(O)

g(O) = [C I - A-' B + DI f(O) (2.43)
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Thus, we can compute the initial state vector and the initial output by using only the initial
input.

Using the constraint above on the initial conditions, we can compute the state and the
output along any boundary. Consider the use of this constraint along the boundary where
the index for tuple k has a value of zero. For this case, we have

Q(nl,n2,.... ,nk,,...,nM) = Q(nh,n2,...,nk - 1,...,nM) ; nk = 0 (2.44)

The state equation for this boundary is given by

M

Q(n) = XQ(n) + -'Ai Q(n - r71) + Bf(n); nk = 0 (2.45)
i=1
i:Ok

Thus,

M 7
Q(n) = [I- Ak] 11 Q(n-r,7) + [I - Xk]Bf(n); n+ = 0 (2.46)

i=1
i~k

The corresponding output equation is given by

M M
g(n) = M Q(n-,r 1 ) + Ck [I - Q(--,-1)

Ak----1Q n-rI
i==1

i~k i:$k

+ Ck [I - k] -1 Bf(n) + Df(n) (2.47)

2.4.1 Initial Conditions Example.

We now show the computation of initial conditions for a second order 2-D IIR filter as an
example. We derived the coefficient matrices for this case in a previous example. The state
space representation for this filter is given by

Q(nrn 2 ) = Q(n 1-1z,n2 ) + AQ(n2 , n2 - 1) + Bf(nl,n2)
g(n1 ,n 2 ) = CQ(n- 1,n 2 ) + C2Q(n2,n 2 - 1) + Df(nl,n2) (2.48)

Let the numerator polynomial for the 2-D transfer function H(z) be given by

N(zI,z 2) = 0.0427 + 0.0853z- 1 + 0.0427z -2

"+ 0.0853z2" + 0.1707z,'z" 1 + 0.0853z' 2 z"1

+ 0.0427z-"2 + 0.0853z-'1z" 2 + 0.0427z-'z "2 (2.49)
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Let the denominator polynomial for H(z) be given by

D(z1 ,z 2) = 1.0 - 0.3695z- 1 + 0.1958z" 2

- 0.3695z" 1 + 0.1366z-'z" 1 - 0.0724zj-2 z- 1

+ 0.1958z" 2 - 0.0724z- 1 z "2 + 0.0383z '2 z"2  (2.50)

The coefficient matrices corresponding to Eq. 2.22 are given by

0.3695 1 0 0 0 0 0.3695 0
-0.1958 0 0 0 0 0 -0.1958 0
-0.1366 0 0 1 0 0 -0.1366 0

0.0724 0 0 0 0 0 0.0724 0 (2.51)
A= 0.0724 0 0 0 0 1 0.0724 0

-0.0383 0 0 0 0 0 -0.0383 0
0.3695 0 1 0 0 0 0.3695 1

-0.1958 0 0 0 1 0 -0.1958 0

0.3695 1 0 0 0 0 0 0
-0.1958 0 0 0 0 0 0 0
-0.1366 0 0 1 0 0 0 0

0.0724 0 0 0 0 0 0 0
0.0724 0 0 0 0 1 0 0 (2.52)

-0.0383 0 0 0 0 0 0 0
0.3695 0 1 0 0 0 0 0

-0.1958 0 0 0 1 0 0 0

0 0 0 0 0 0 0.3695 0
0 0 0 0 0 0 -0.1958 0
0 0 0 0 0 0 -0.1366 0
0 0 0 0 0 0 0.0724 0 (2.53)

- 0 0 0 0 0 0 0.0724 0

0 0 0 0 0 0 -0.0383 0
0 0 0 0 0 0 0.3695 1
0 0 0 0 0 0 -0.1958 0

The initial state vector at n = n2= 0 is given by

Q(0,0) = [I- A]-'B f(0,0) (2.54)

The corresponding initial output is given by

g(0,0) = [[C- + •][I- A]-1 B + D] f(0,0) (2.55)
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Thus,
g(O,0) = f(0,0) (2.56)

where
[[C + -21[1 - A]-'B + D] = 1.0 (2.57)

For the first row, we have

Q(n,,-1) = Q(n,,0) (2.58)

Using this assumption, we obtain

Q(n,,0) = [I - " 2 ]- A'Q(n, - 1,0) + [I - X 2 ]-' B f(n,,O) (2.59)

The corresponding output equation is given by
g(n,,n2) = [•-i + 0"[I - X]-'IQ(n -l1,0) + [0(1 21- A2 ]1B + D]f(n,,0) (2.60)

Let
Ah = [I- A2]- 1 , (2.61)

Bh = [I - 2]-l B, (2.62)
c,, = [c' + 021- A]-', (2.63)

and
Dh = [C-(2I - A-]-'B + D] (2.64)

Then, the state space representation for the first row can be written as

Q(n,,0) = AhQ(n, - 1,0) + Bhf(ni,0)

g(n,,0) = ChQ(n, - 1, 0) + Dhf'(ni,0) (2.65)

For our example, we have

0.44721360 1 0.44721360 0 0.44721360 0 0 0
-0.23698230 0 -0.23698230 0 -0.23698230 0 0 0
-0.16525767 0 -0.16525767 1 -0.16525767 0 0 0

_ 0.08757145 0 0.08757145 0 0.08757145 0 0 0
- 0.08757145 0 0.08757145 0 0.08757145 1 0 0 (2.66)

-0.0464048c 0 -0.04640486 0 -0.04640486 0 0 0
0.02102313 0 1.21023130 0 1.21023130 0 0 0
--0.23698230 0 -0.23698230 0 0.76301770 0 0 0



25

0.16167809
0.00222197
0.14248059
0.10029146

Bh - 0.10029146 (2.67)
0.00347517
0.16390006
0.00222197

Ch - [1.2102313 0 1.2102313 0 1.2102313 0 0 0] (2.68)

For the first column, we have

Q(-1,n 2) = Q(O,n 2) (2.69)

Using this assumption, we obtain
Q(0, n2) = [I - Al]- A2Q(0, n2 -1) + (I- A]'1 Bf(0,n2 ) (2.70)

The corresponding output equation is given by

g(O, n2) = [C 2 + C-'1[I- X-ilj- ]Q(0, n2 - 1) + [Ci-[I- K-j 1-'B + D]f(0, n2) (2.71)

Let

A = [I - A,]-' X, (2.72)
B = [I - A-]-' B, (2.73)

CV = [2 + [I - 1-1- (2.74)

and
D, = ['i5[I - A1]i-'B + D] (2.75)

Then, the state space representation for the first column can be written as

Q(O, n2) = AvQ(0, n 2 - 1) + Bvf(0, n 2)

g(O,n 2 ) = CvQ(O, n2 - 1) + Dvf(O, n 2) (2.76)

For our example, we have

0 0 0 0 0 0 0.21023129 0
0 0 0 0 0 0 -0.23698230 0
0 0 0 0 0 0 -0.07768622 0
0 0 0 0 0 0 0.08757145 0 (2.77)
0 0 0 0 0 0 0.04116659 0
0 0 0 0 0 0 -0.04640486 0
0 0 0 0 0 0 0.36952738 1
0 0 0 0 0 0 -0.19581571 0
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0.16390006
0.00222197
0.24277204

B = 0.10029146 (2.78)Bv = 0.13504272 (.8

0.03475127
0.40445013
0.13726469

C, = [0 0 0 0 0 0 1.3695274 1] (2.79)



Chapter 3

The Block Date Flow Architecture.

3.1 Introduction.

Two-dimensional digital filtering is one of the important applications of 2-D DLSI systems.
We need a multiprocessor system to implement 2-D digital filters in real-time at rates ap-
propriate for image display. We began our research on the real-time implementation of 2-D
digital filters by exporing the design of a special purpose multiprocessor system for this pur-
pose. We la-. : explored the potential for increasing the programmability of our design to
solve other problems. Thus, we derived the BDFA. We are currently exploring the mapping
of other problems to the BDFA.

3.2 The BDFA Configuration

A BDFA system consists of three modules: an Input Control Module (ICM), a Processor
Array (PA), and an Output Control Module (OCM) as shown in Figure 3.1.

3.2.1 Input Control Module

The ICM serves as a buffer between the host system (or an input/output device) and the
processor array. It includes two FIFO buffers and it converts the input data stream into
blocks of data. It maintains a direct input channel to each processor. Designated data
blocks are sent to each processor through these channels without any interference from other
processors. A control logic submodule provides each processor with control for data man-
agement and communication services. The block diagram of the ICM is shown in Figure 3.2.
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}'igure 3.1: Block Diagram of the BDFA

3.2.1 The Processor Array

The PA contains enough processors to provide the computational power required for real-time
signal processing and fast matrix operations. Since we limit the interprocessor communica-
tions to being local and in one direction, we can simply connect all the processors together
to form a linear array. Each processor has a separate input channel and a separate output
channel. The processors are divided into two processor groups: an odd number processor
group and an even number processor group. Each processor group is directly connected to
an input FIFO buffer and an output FIFO buffer. Therefore, each processor always uses
the same input and output FIFO. Finally, FIFO buffers are used for interprocessor commu-
nications to minimize overhead due to addressing and routing. The block diagram of the
processor array is shown in Figure 3.3.
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M = NumberE of processors in PA

Input Device MK=T
1 1 m () = rlog (K)I

C2  DEMUX(1:K) C3 - M D((1:K)

dl d3 dM., d2 d4  dM

Figure 3.2: Input Control Module

M= Number of processors in PA

d d2  dM.1 dM

i g e2 3Mro eM

Figure 3.3: Processor Array
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3.2.3 The Output Control Module

The OCM consists of a control logic submodule, a submodule for post-processing, and two
output FIFO buffers. It collects processing results from each processing element and converts
the blocks of data into a synchronized output data stream. It provides each processor with
data management and communication services. The post-processing submodule also may
implement different dynamic scaling algorithms for signal processing. It collects overflow
information from each processor and adjusts the system gain based on this information. For
example, the system gain factor may be fed back to the processor array at the end of each
frame. A scale memory also can be used as a "look-up table" to scale the output for a
particular output device, The post-processing submodule is very flexible and can contain
different function modules for specific applications. The block diagram of an OCM is shown
in Figure 3.4.

el e3  eM4 e2 e4  em

M 1T

mm PMost r M

M F-log (K)

Figure 3.4: Output Control Module
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3.3 Architectural Features of a BDFA

The architectural features of a BDFA are:

* block data processing and the block data flow paradigm,

* globally asynchronous and locally synchronous data transmission protocol,

* linear array topology and "skew" operations among processors,

* local data transmission in only one direction, and

* overlap of data movement and interprocessor communication with data computations.

Large scale tasks can be divided into smaller tasks using either an algorithm parti-
tioning strategy or a data partitioning strategy. With an algorithm partitioning strategy, a
complex algorithm is decomposed into a sequence of simple operations. Each simple opera-
tion or group of operations is assigned to a different processor. With the data partitioning
strategy the whole image or matrix is divided into data blocks and each data block is as-
signed to a different processor. Each processor is capable of performing all the required
functions for the assigned data blocks. The algorithm-partitioning strategy can simplify the
structure of each processing element. However, the processors in an algorithm partitioned
system cannot operate independently and they are subject to timing, sequencing and data
dependency restrictions.

In the BDFA, we adopted the data partitioning strategy at the high level to build
an alternative structure with independent processors. The more independent the processors
are, the less time required to implement data communications protocols or to synchronize
data movements. A structure with independent processors is also more flexible in coping
with a variety of algorithms with different operational requirements.

The second advantage of the data partitioning strategy is the reduction of unneces-
sary data movement between the processors. Input data goes directly to the processor that
will use it. The interprocessor communications are limited to passing necessary interme-
diate computational results. Output results go directly from each processor to an output
device without any interference to or from other processors. Additionally, block data pro-
cessing provides the opportunity for intermediate computational results to be used locally.
A large reduction in interprocessor data communications can have a tremendous impact on
the hardware implementation.



32

3.3.1 Block Data Flow

The BDFA implements the block data flow paradigm to achieve maximum parallelism at
the processor level. Incontestably, we need many processing elements working together to
increase computational power. The use of the Von Neumann computation model restricts
the full utilization of all of the processing elements. The management of and the contention
for the globally addressable memory necessary with the Von Neumann structure also limits
effective parallelism.

The data flow model is different from the Von Neumann computation model. Data
flow processors are stored-program computers. If sufficient resources are provided, the system
can exploit all concurrency present in the program. This approach can be naturally extended
to an arbitrary number of processors[14]. This concept also reduces the data dependency,
control dependency, and resource dependency among processors. However, it is difficult to
manage the data flow model for a multiprocessor system[15]. We implemented the data flow
paradigm at the processor array level with a large data-block-grain and limited our array
to being linear. With these restrictions, we have successfully implemented the data flow
paradigm for the BDFA.

When a processor in a BDFA system has received its assigned data block and all
of its intermediate data, then the processor is able to perform its designated functions in-
dependently. When data blocks and the necessary intermediate data are available for all
processors, then all processors are able to perform their designated functions on their own
data blocks independently.

The use of the block data flow paradigm also helps us to reduce data storage require-
ments. In a BDFA system, the input data blocks flow into the system and the output data
blocks flow out of the system. There is no need to store the whole frame of the image or all
the entries of a matrix into a BDFA system.

3.3.2 Data Transmission Protocol

Data transmission protocols may be categorized into synchronous data transmission pro-
tocols and asynchronous data transmission protocols. The synchronous data transmission
protocol is fast and simple and there is no handshaking overhead. However, the synchronous
data transmission protocol places a timing restriction on the system design. In particular,
this can be a problem for large-scale systems. The asynchronous data transmission protocol
does not have this timing restriction. However, there is a considerable amount of over-
head associated with the asynchronous data transmission protocol. The BDFA system uses
a globally asynchronous data transmission protocol with a large data grain and a locally
synchronous data transmission protocol with small data elements to:
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* avoid the globally synchronous transmission problem,

* minimize overhead due to asynchronous handshaking signals,

* reduce communications control hardware, and

* minimize data communications overhead.

3.3.3 Linear Array Topology and Skew-Operations

Since the BDFA uses the Aata partitioning strategy, the interprocessor communications have
been limited to only passing intermediate computational results. We restrict the interpro-
cessor communications to be local and only in one-direction to make the implementation
of the data flow paradigm feasible. This means we can simply connect the processors to-
gether to form a linear array. The linear array topology is simple and has efficient channel
utilization[16]. Furthermore, the linear array topology allows us to skew the operations
among the processors[17]. Allowing the operations to be skewed among processors plays an
important role in balancing the system input/output bandwidth and the computational in-
tensity. It also helps to reduce the storage requirements of the interprocessor communication
buffers.

3.3.4 Data Communications

A BDFA system overlaps the input/output data movements and the interprocessor commu-
nication with data computations. This is possible because the ICM takes care of routing the
input data block to the appropriate processor as soon as it is available and the OCM always
provides an output FIFO whenever a processor needs to output a block of processing results.
Therefore, the processors are able to devote almost 100% of their time to computations.
Consequently, the system achieves high throughput and high efficiency.

In addition, a BDFA system has all of the advantageous features of a systolic array or
wavefront array. This includes such features as modularity, regularity, local interconnection,
highly pipelined multiprocessing, highly parallel processing at the array level, and a balance
of external I/O and computational intensity. The BDFA system is also able to use a systolic
array or a wavefront array for its processing elements.

3.3.5 The BDFA Mapping Criteria

We established three criteria for mapping algorithms to a BDFA. These three criteria are:
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* the algorithm must be data partitionable,

* data communications must be local and in only one direction, and

* the computational load must be balanced among the processors.

The requirement for the algorithm to be data partitionable lays the foundation for block data

processing. The requirement for local uxii-directional interprocessor communication makes
it easy to implement the block data flow paradigm. Basically, any algorithm which conforms
to these two criteria can be implemented on a BDFA. The third criterion, the computational

load balance, sometimes is hard to achieve because of the variety of computational require-
ments of different algorithms. However this criterion only affects the system's hardware

efficiency. In some applications, the hardware efficiency is not very critical and the system
throughput is of most concern. Thus, if an algorithm meets the first two BDFA mapping
criteria but not the third one, it still can be implemented on a BDFA with high throughput.

In addition, these criteria are not very restrictive and many algorithms can meet this criteria

or can be adapted to this to meet this criteria.

We have been able to map the following algorithms onto a BDFA:

* 2-D digital IIR filter[8],

* 2-D digital FIR filter[8],

* orthogonal transformation of a dense matrix using Givens rotations[7],

* updating and down-dating for the least square problem based on an inverse QR

decomposition[7],

* lower-upper (LU) decomposition of a dense matrix[7], and

* 2-D discrete cosine transform[8].

3.3.6 Performance Evaluation

The BDFA was developed as a part of our efforts to implement 2-D IIR filters in real-time

[12],[8],[18]. As a part of this effort, we designed a special purpose node processor [181 and
we developed a multiprocessor system which uses this processor to implement 2-D IIR filters
in real-time [7]. We refer to the special purpose node processor as a 2-D DSP. In this section,

we summarize our simulation results on the performance evaluation of this multiprocessor
system as an example of the expected performance of a BDFA system.
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Table 3.1: Performance of Systems with a Different Number of Processors

N initialization latency wait throughput
10 3492 1418 4 0.9696
6 2129 1418 505 0.5940
2 765 1418 1028 0.1988

Table 3.1 and table 3.2 give the functional level simulation results for the 2-D IIR
digital filter BDFA system. In these tables, "initialization" refers to the number of cycles
required to initialize the system and load filter coefficients, "latency" refers to the interval in
cycles between the time a processor receives its assigned data block and the time it begins
transferring its output to the OCM, and "wait" refers to the number of cycles between output
data blocks. We consider the system to be performing in real-time when there is always a
processor ready to receive an input block when it is ready.

Table 3.1 shows the performance of a second order system with a different number
of 2-D DSPs. The size of the sample image is 128 x 128 pixels. This table reveals that
the BDFA system can perform 2-D IIR digital filtering in real-time and that it essentially
achieves a linear speed-up rate. The relative system throughput (the ratio of output pixels
over system cycles needed) for a ten-processor system is very close to 1 (0.9696). The relative
system throughput of a six-processor system is very close to 0.6 (0.5940). The relative system
throughput of a two-processor system is very close to 0.2 (0.1988). The system throughput
of the ten-processor system is about 5 times as high as the system throughput of the two-
processor system and 1.6 times as high as the throughput for the six-processor system. This
means the system throughput is proportionally increased with the increase of the number of
processors until real-time processing is achieved. Thus, the BDFA system almost achieves a
linear speed-up rate.

Table 3.2: Ten-Processor System's Performance on Images with Different Sizes

size initialization latency wait throughput

512 x 512 3492 5642 4 0.9922
256 x 256 3492 2816 4 0.9846
128 x 128 3492 1418 4 0.9696
64 x 64 3492 714 4 0.9411
16 x 16 3492 186 4 0.8000

Table 3.2 shows a ten-processor system processing images with different sizes. The
system achieves its maximum throughput when it processes the image with the largest pos-
sible data block size. The system processes all the images in real-time. This indicates the
number of processors needed for real-time processing is independent of the processed image
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size.

Commercial DSPs, such as the Motorola DSP56000, and general-purpose processors,
such as the Intel 80486, can be used as processing elements in a BDFA system. The system's
throughput will increase proportionally with the number of processors in the system due to
the characteristics of the BDFA. Table 3.3 shows the number of cycles needed to compute
the output of a pixel element using different processors in a BDFA system.

Table 3.3: The Number of Cycles for Different Processors

order 2-D DSP DSP56000 80486
2 10 36 273
4 26 100 785

8 82 324 2577

3.4 Conclusions

High system throughput and high system efficiency are the key requirements for many reai-
time signal processing and fast matrix operation applications. The BDFA provides an alter-
native multiprocessor system architecture for high throughput and high efficiency.

.~~MM~ I
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2-D discrete cosine transform", Proceedings of Southeastcon, April, 1991.

11. Kwanghoon Sohn, Winser E. Alexander, Arne A. Nilsson, Jung H. Kim, Eui H.
Park and Sung H. Yoon, "Boundary representation with lines and circular arcs using
boundary split-and-merge method", Proceedings of Southeastcon, April, 1991.

4.3 Patents During the Contract Period.

1. Winser E. Alexander, Hongyu Xu and Jae-Gil Jeong, A Block Data Flow Architecture
for Digital Signal Processing, Patent application filed on February 18, 1992.
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