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Halogen Surface Chemistry on Si(100)-(2xl)

John T. Yates, Jr., C.C. Cheng, Q. Gao, and W.J. Choyke

Surface Science Center
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260

Abstract

The surface chemistry of adsorbed halogen atoms on

Si(100) has been studied using several surface science

methods. It has been found using electron-stimulated

desorption ion angular distribution (ESDIAD) that Cl atoms

bond to dangling bonds on symmetric Si2 dimer sites, and

that the Si-Cl bond angle is tilted (250±40) frem the

normal in the vertical plane containing the symmetric Si2

dimer bond. The covalently-bonded halogens Cl, Br, and I

have been studied on Si(100) using atomic hydrogen

bombardment at low substrate temperatures (300 - 630 K).

In all cases, facile elimination of the hydrogen halide

occurs, and the coverage of halogen may be driven to zero

by moderate exposure to atomic hydrogen. The halogen

extraction process is almost non-activated, suggesting

that the chemical reaction to produce hydrogen halide

species is driven by the potential energy carried by the

atomic hydrogen species. This is an example of an Eley-

Rideal reaction process and provides a potentially useful

new approach for controlling atomic layer chemistry on

semiconductors.
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1. Introduction

The development of low temperature surface processes

to manipulate adsorbed species on semiconductor surfaces

provides the basis for new etching and thin film

deposition methods to produce heterostructure

semiconductor devices. Our knowledge of the fundamentals

governing chemistry on semiconductor surfaces is in its

infancy, and mechanistic understanding of elementary

semiconductor surface processes is needed[l]. In this

paper, the bonding structure of Cl on Si(lO0) and a new

class of surface reaction, involving atomic hydrogen as a

reagent, are described.

II. Experimental Details

The ultrahigh vacuum apparatus and methods used for

this research have been described previously[2,3]. The

methods employed include temperature programmed

desorption(TPD), Auger electron spectroscopy(AES), high

resolution electron energy loss spectroscopy(HREELS), and

digital electron-stimulated desorption ion angular

distribution (ESDIAD)[4]. Halogens are adsorbed on the

single crystal surface using collimated molecular beam

dosers which deliver an absolutely known flux of gas,

permitting quantitative exposures and uptake measurements

to be made(4].
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I1. Results and Discussion

A. Structure of Chemisorbed Cl on Si(100)-(2 z 1)

Figure 1 shows a schematic diagram of the digital

ESDIAD apparatus employed for this work(3]. An electron

beam excites surface species on the Si(100) single

crystal, producing beams of positive ions which are

spatially detected by the microchannelplate detector

system. The pattern of ion emission angles is closely

related to the direction of the surface chemical bonds

which are ruptured by the electronic excitation

process(5]. These ion emission directions are modified by

final state image and reneutralization effects(6], as well

as by the electrical bias applied to the crystal for

pattern compression. Corrections for all three of these

effects have been made in the estimation of the Si-Cl bond

angle on Si(100)-(2xi)[7,8].

Because the ion emission dynamics are governed by

rapid Franck-Condon excitation from the ground state to a

repulsive upper state, the statistical summation of

millions of ion emission directions from an ensemble of

adsorbate species on a single crystal will provide a

statistical measurement of the distribution of chemical

bond angles caused by thermal disorder at the measurement

temperature. This permits digital ESDIAD to be used also
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as a powerful tool for the study of the dynamical behavior

of adsorbates(5].

Figure 2 shows a sequence of Cl+ ESDIAD patterns from

chlorine adsorption on Si(100)-(2 x 1)[7,8]. At an

adsorption temperature of 120 K, a normal Cl+ beam is

observed to overlap an underlying Cl+ pattern exhibiting

two-fold symmetry. Upon annealing the chlorine-covered

surface to temperatures above 120 K, the central Cl+ beam

is seen to disappear, revealing the inclined beams which

become more pronounced. This process culminates at about

673 K. The normal Cl+ beam is caused by a minority of

adsorbed Cl atoms which bridge the symmetric Si dimer

sites. These species have a high cross section for ESD

production of Cl+, and the normal emission from these

bridged-Cl species therefore dominates the low temperature

ESDIAD pattern. As the system is heated, the bridged-Cl

species convert to terminal-Cl species, with the inclined

Si-Cl bonds oriented in the vertical plane which includes

the [011] crystallographic axis. This azimuthal plane

corresponds to the Si-Si bond directions in the Si2

surface dimers on a Si(100) terrace. The orthogonal Si-Cl

beam directions correspond to inclined Si-Cl bonds on the

mixture of two types of crystal terraces present on the

slightly misaligned Si(100) crystal. The Si-Cl bonds are

inclined 250±40 from the normal [7,8].

Figure 3 shows the vibrational behavior of the

surface as a chlorine layer is heated over the same

5



temperature range as used in the ESDIAD experiments[8]. At

100 K, two Cl-related vibrational modes are observed at

600 cm-1 and at about 300 cm-1 . The 600 cm-I mode is due

to the Si-Cl stretching mode of the inclined Si-Cl bonds.

Its frequency and intensity remains almost constant as the

heating process occurs. The weak mode at about 300 cm-1

is assigned to a bridging-Cl species, linked between two

Si atoms in a dimer pair on the Si(100)-(2 x 1) surface.

The good analogy to the vibrational frequency of bridging-

Cl in compounds such as A12C16 was employed to make this

assignment[8,9]. The vibrational behavior suggests that

the bridging-Cl species is a minority species, since the

intensity of the 600 cm- 1 mode does not vary significantly

during the heating process as the 300 cm-1 mode decreases

in intensity. The bridging-Cl species is metastable with

respect to the inclined Si-Cl species, which is the most

stable species on Si(100). Similar behavior was observed

in the theoretical calculations of Wu and Carter[10] for F

on Si(100), except that an energy barrier for the bridge-

to-inclined Si-F structure was predicted to be negligible

theoretically. The large change observed in the Cl+

ESDIAD pattern for the heating range 100 K - 673 K is

related to the high ESD cross section for Cl+ production

from the small surface coverage of bridged-Cl which exists

below 673 K.
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B. Facile Extraction of Chemisorbed Halogen Atoms by

Atomic Hydrogen

The silicon-halogen bond may be broken easily by

bombarding the surface with atomic hydrogen, produced on a

hot tungsten filament in the ultrahigh vacuum system

containing a low pressure of molecular hydrogen[ll].

Figure 4 shows the behavior of the Cl surface coverage at

a surface temperature of 300 K, along with similar

measurements made for adsorbed Br and adsorbed I on

Si(100). These measurements have been made in a way in

which the small effect of the Auger electron beam on the

halogen coverage has no effect on the interpretation. The

fitted curves are best fits to first-order kinetics in

halogen surface coverage. It is seen that the relative

rate of halogen extraction is I > Br > Cl. A similar

trend has been observed in gas phase studies for the

reaction of atomic hydrogen with the methyl halides to

produce hydrogen halide species(12].

The bromine extraction rate was studied as a function

of the pressure of H2 used in the chamber, as seen in

Figure 5. The flux of atomic hydrogen is known to be

proportional to the H2 pressure under these

conditions[13]. As the hydrogen pressure is increased,

the rate of Br extraction increases at a surface

temperature of 430 K; the inset shows that the Br

extraction rate is linearly proportional to the atomic H
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flux employed. This provides direct evidence for the

first-order dependence of the extraction rate on the

atomic H flux.

The temperature dependence of the atomic-H induced

extraction of bromine was measured as shown in Figure 6.

An activation energy for this process of only 1.6 ± 0.2

kcal/mol was measured over the range 300 K - 630 K, as

shown in the inset to Figure 6. Similar studies of the

kinetics of extraction of adsorbed Cl gave an activation

energy of 2.1 ± 0.2 kcal/mol for Cl/Si(100). These low

activation energies are indicative that the thermal

excitation of the surface species is of little importance

in governing the rate of the halogen extraction process.

Considered together, the kinetic behavior of the

halogen extraction process induced by atomic hydrogen

corresponds to the well known, but infrequently observed,

Eley-Rideal kinetic process[11]. The process involves the

use of the potential energy carried by the atomic H to

produce the active complex involved in the removal of

surface halogen. An active complex, Si...X...H is

produced when atomic H collides with the covalently-bonded

halogen atom, X. Accomodation of the incoming H atom by

the silicon surface is not required in this mechanism.

The potential energy of the atomic hydrogen is 52 kcal/mol

compared to 1/2 H2 (g), and this energy is the primary

driver for the halogen extraction process observed. Such

a process, occuring at low surface temperatures, could be
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of significance in a variety of semiconductor

technologies.

The Eley-Rideal process observed for atomic hydrogen

as a reagent is potentially important for a wide range of

surface chemistry. Other gas phase free radical species

may be expected to be active in similar extraction

processes on surfaces, and we will have to await future

experiments before knowing the full implications of these

first observations involving the most simple free radical

species, atomic hydrogen. In particular, the use of

atomic hydrogen extraction procedures for removal of

surface halogen ligands (present in atomic layer epitaxy

processes involving monolayers of group IV halide species)

is expected to be of importance.

IV. Summary

This is a brief review of the bonding structure of

chlorine on Si(100)-(2xl) and use of atomic hydrogen as a

reagent for inducing halogen extraction reactions on

silicon.

1. The Si-Cl bonds are inclined 250±40 from the

normal in a perpendicular plane parallel to the

Si-Si bonds in the (2xl) reconstruction of

Si(100).
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2. It has been shown that covalently-bonded halogen

atoms may be efficiently removed from Si(100) by

atomic hydrogen via an Eley-Rideal process

yielding volatile hydrogen halide species. The

rate of the Eley-Rideal process is almost

temperature independent, indicating tiat thermal

activation from the substrate is of little

importance compared to the activation induced by

the potential energy of the incident atomic

hydrogen itself.
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Figure Captions

Figure 1. Digital ESDIAD apparatus for imaging chemical

bond directions in adsorbed species.

Figure 2. ESDIAD patterns of Cl+ from Si(100) as a

function of annealing temperature. The initial

Cl coverage is near 1 monolayer.

Figure 3. HREELS study of the spectral changes as a

function of annealing temperature for

Cl/Si(100).

Figure 4. Atomic hydrogen extraction for halogen

adsorbates from Si(100).

Figure 5. Hydrogen pressure dependence of Br extraction

rate from Si(l00).

Figure 6. Temperature dependence of Br extraction rate

from Si(100).
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ESDIAD Patterns of CI on Si(100)
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HREELS Study of Spectral Changes

During Annealing-CI/Si(100)-(2xl)
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