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ABSTRACT

A graph G is 2-extendable if it has at least six vertices and every pair
of independent edges extends to (i.e., is a subset of) a perfect matching. In
this paper two classes of claw-free graphs are discussed: those which are 3-
regular and 3-connected and those which are 4-regular and 4-connected (as
well as even). None of the first class is 2-extendable, whereas those of the
second class which are 2-extendable are determined. More particularly, in
the graphs belonging to these classes, those pairs of independent edges which
extend to a perfect matching are determined.

1. Introduction

A graph G is claw-free if it contains n' induced subgraph isomorphic
to the complete bipartite graph K1,3. Claw-free graphs have been widely
studied in graph theory in connection with such diverse concepts as indepen-
dent sets, perfect graphs, Hamiltonian (and other traversability) properties,
reconstruction and matching. (For a selected set of references in each of these
areas, see the Introduction in [P41.)

The subject of this paper is matching in claw-free graphs. Sumner [Sul,
Su2] and Las Vergnas fLl began the study of perfect matchings in claw-free
graphs. In particular, they showed, independently, that any connected claw-
free graph with an even number of vertices must contain a perfect matching.

Let G be a graph containing a perfect matching and let n be a positive
integer, 1 : n < (IV(G)I -2)/2. Graph G is said to be n-extendable if every
matching of sise n extends to (i.e., is a subset of) a perfect matching. A graph
G is bicritical if G - u - v contains a perfect matching for every pair of ver-
tices u and v in V(G). (Clearly, then, every bicritical graph is 1-extendable.)
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A 3-connected bicritical graph is called a brick. Bicritical graphs-and more
especially bricks-have emerged as an important special class in the study
of graphs with perfect matchings and their structure remains far from com-
pletely understood. (See [LP], [ELPI, [Lo] and [LRJ.)

In [P11, it was shown that any non-bipartite 2-extendable graph is bicriti-
cal. Partly because of this implication, the author and others have continued
the study of n-extendable graphs-and of 2-extendable graphs in particular.
For a recent survey of much of this work, see [P3] and the references contained
therein.

In [P41, the author focused upon matching extension in claw-free graphs.
In particular, it was show there that any 3-connected claw-free graph (with
an even number of vertices) must be a brick (and hence .-extendable). More
generally, it was shown that for any integer n _ 2 if C is (2n + 1)-connected,
claw-free and even, then G must be n-extendable. (Thus for example, every
5-connected graph of this kind must be 2-extendable.)

In the present paper, we consider two special classes of claw-free graphs:
those which are 3-regular (i.e., cubic) and 3-connected and those which are
4-regular and 4-connected. By the remark in the preceding paragraph, clearly
all such graphs are bricks. On the other hand, it is easy to see that no graph
in the first class is 2-extendable, but in the second class, some graphs are 2-
extendable, while others are not. We characterize those that are 2-extendable.
Perhaps the most important idea pursued in this paper is that for the first
time a study is undertaken as to just which pairs of independent edges are
extendable to a perfect matching and which are not. In the cases of these
two families of claw-free graphs we are able to characterise precisely those
pairs of edges which are 2-extendable. It is an easy matter to characterize all
3-connected cubic claw-free graphs; they are just those cubic graphs obtained
from other 3-connected cubic graphs by inserting a single triangle at each
vertex in such a manner so as to preserve 3-regularity. The 4-connected
4-regular claw-free graphs are not so easily characterized, but we are able
to obtain a complete characterization using matching extendability of pairs
of edges. More particularly, it is shown that such graphs belong to one of
precisely three classes of graphs and of these three classes, one consists of all
those which are 2-extendable.

2. The 3-regular 3-connected Cae

We begin with a property of general 3-connected claw-free graphs (Le.,
those which are not necessarily cubic) having an even number of vertices.
To deal with this, we introduce the concept of a genmraized moth (or more
succinctly, gmot.). (This concept is closely related to, but different from,
that of a generalized butterfly first introduced in [P2].) Let C be a connected
graph and let ei = ajbi, i = 1, 2 be two independent edges in 0. Then G is
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called a generalized moth (or gmoth for short) if C - a, - b, - a2 - b2
consists of precisely two components and both are of odd cardinality. For
the sake of brevity, we shall call such components odd. The subgraph of G
induced by V(el) U V(e2 ) is called the body of the gmoth at (el, e2} and
the two odd components are called the wings of the gmoth at (el, e2}. Of
course a given graph can be viewed as a gmoth in many different ways; that
is, there may be many pairs of independent edges which form the body of a
gmoth structure for G.

It is easy to characterize 3-connected claw-free even graphs which are not
2-extendable in terms of gmoths.

Theorem 2.1. Let G be 3-connected, claw-free and even. Then G is
2-extendable if and only if G is not a gmoth.

Proof. The left-to-right implication is clear.
Let us therefore suppose that G is 3-connected, claw-free and even. but

that G contains a pair of edges ({e = alb1 , e2 = a2b2 J which do not extend to
a perfect matching. Let G' = G-a-b-0 2 -b 2. Then by Tutte's Theorem on
perfect matchings, there exists a set 5' C V(G') such that I$' < co(G' - S%
where co(G' - S') denotes the number of odd components of G' - S'. Let
a' = JS' and let C1 ,..., C.,+.,... be these odd components. By parity, since
G is even, we must have s' < co(G' - S') - 2. By Theorem 1.1 of [P4], graph
o is a brick and hence is 1-extendable. But then it follows that G' - S' has
exactly a' + 2 components.

Now among all sets S' with the above ptoperties, choose one which is
minimal. Suppose S' is not empty. Then suppose u E S'. But then, by
Corollary 1 of [Su2j, u is a claw-center which is impossible in G' since G-
and therefore G'-are cia,.'-free. Thus S' = 0 and hence G' has exactly two
odd components.

It remains only to show that G' has no een components. Suppose G.
were such an even component and denote the two odd components of C' by
C1 and C2 . By 3-connectivity, there are at least three edges from Ci to the set
S = {a,, b1, 2., b2 ). Without Ios of generality, assume that there are edges
from C to vertices al,bl and a. (For the duration of this paper we will
denote the relation of adjacency between two vertices by the symbol '*.)
Suppose a is adjacent to no vertex in C2 . Then each of bl,a 2 and b2 must be
adjacent to C2 by 3-connectivity. Also by 3-connectivity, component C. has
edges to at least three vertices of S and hence to at least one of b, and a2. A s "
Without los of generality, assume that there is an edge from b, to C'. But
then b, must be a claw-center in G which is impossible. So we may suppose I S C PA&,
that vertex a, is adjacent to a vertex of C-2 and by symmetry, so is vertex 6b. Cri. rA
Again, by 3-connectivity, there must be an edge from C. to at least one of L ". ;1 . i
a, and b1 and hence again we get a claw-center, contradicting our claw-free J' -"L;! t. ,
hypothesis. Thus there are no even components C. of G'. .
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We now proceed to give a characterisation of those 3-connected claw-free
graphs which are 3-regular. (We shall call 3-regular graphs cubic.) In order
to do this, we shall need the following concept. Let G be an r-regular graph
for any r > 3. The r-inflation of G, denoted by G(r), is the graph obtained
from G by inserting at each vertex of G a copy of the complete graph on r
vertices, K,, and joining each "half edge" resulting from the removal of the
vertices of G to a different vertex of the Kr which replaced the vertex of
G. Thus the r-inflation of G is also r-regular and the original graph C can
easily be recovered from G(r) by contracting each of the inserted Kr's to a
single vertex. In the case r = 3, this use of the word "inflation" is due to V.
Chv1tal.

Finally, let us denote by R3 the the six-vertex cubic graph formed by
joining the vertices of two disjoint triangles with a perfect matching. (This
graph is commonly called the triangular prism.)

Theorem 2.2. Graph G is cubic 3-connected and claw-free if and only if
G = K4 , R3 or is the 3-inflation of a cubic 3-connected graph H.

Proof. The right-to-left implication is clear.
Conversely, suppose G # K4 , R3. Since G is cubic, 3-connected and claw-

free, each vertex of G lies on precisely one triangle. For suppose two diierent
triangles in G have a vertex in common. Since G is cubic, they must also
have an edge in common. But then, since C is 3-connected, C = K 4 , a
contradiction.

Thus the triangles in C partition the set V(G). Suppose there are only two
triangles in C. Then G = Rs. So suppose there are at least three triangles in
G. By parity, there cannot be exactly three such triangles, so we may assume
that there are at least m such where m > 4 and even.

Denote by H the graph obtained from C by shrinking all triangles to
single vertices. (Note that there are no parallel edges in H since C 9 R3.)

Clearly, graph H is cubic.
It remains only to show that H is 3-connected. Let u' and v' be two

non-adjacent vertices in H. Then in G there are two vertex-disjoint triangles
T(u') and T(t/) corresponding to vertices u' and V respectively in H. Since
u' -A V in H, there is no edge in C joining T(u') and T(V). Choose any
two vertices u 6 T(u') and v E T(V') in C. Then u v in C and since C
is 3-connected, there are at least three openly disjoint u-v paths in G; say
P>1, P2 and Ps. Now if T is any triangle in G such that T 0 T(u'), T(v'), then
at most one othe Pi's meets T. Thus if, for each i = 1,2,3, P is the path in
H resulting from shrinking triangles T(u') and T(v) in G, the paths P, P2
and P3' are openly disjoint u--v paths in H. Thus H is 3-connected. U

Let G be any cubic graph and let T be any triangle in G with V(T) =
(a, b, c). We will call any edge lying in such a triangle in a cubic graph
triangular. A pair of independent edges (e, = albi, e2 = a2 b2) in any
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connected graph G will be called a singleton isolator if graph G- a, - b, -
a2 - b2 is disconnected and moreover one of the components of G - a, - 61 -
a 2 - b2 is a single vertex. Clearly, if {el,e 2 } is a singleton isolator in any
graph, then {a, e2 } does not extend to a perfect matching. In a 3-connected
cubic graph it is clear that if {e1, e2} is a singleton isolator, then one of the
e--say el-is triangular and if el lies in triangle T where V(T) = (a, b, c
and el = ab, then edge e2 does not lie in T and in fact e2 = de where
{d, e} n {a, b, c) 0 and precisely one of the vertices d and e is adjacent to
vertex c.

It is also obvious that every 3-connected cubic claw-free graph different
from K4 has singleton isolators and hence no such graph is 2-extendable.

On the other hand, it is an interesting consequence of the next theorem
that if {el, e2} is not a singleton isolator in a 3-connected cubic claw-free
graph, then, in fact, (Cl, e2) does extend to a perfect matching.

Theorem 2.3. Let G be a 3-connected cubic claw-free graph 0 R3 .
Suppose G is a gmoth with body {el, e2 }. Then:
(a) no edges of G Join edges el and e2,
(b) precisely one wing of the gmoth at {eI, e2} is a singleton and
(c) the other wing of the gmoth has exactly four vertices of attachment to
{ el, e2}.

Proof. As before, let ei = aibi for i = 1, 2. Since each of the wings C
and C2 send at least three edges to the body by 3-connectivity, then since G
is cubic, there can be at moat one additional edge in the body; that is, there
can be at most one edge joining el and e2 .

Suppose there is such an edge es. Then without loss of generality, we may
assume that 93 = bia2 . But then each wing Ci sends ezactly three edges
to set S. If a, sends two edges to C1 or two edges to C2 , then G is not
3-connected. So we may assume that a1 sends one edge to C1 and one edge
to C2 . Similarly for b2 . Let a, be adjacent to ut E C, and u2 E C 2 . But a,

is not a claw-centtr, so either b, - ul or b, - u2. Without loss of generality,
assume that b, - ul.

Now suppose b2 - ul also. Then V(CI) = {u}. Suppose that V(C 2 ) is

also a singleton. Then it follows that G = RS, a contradiction. So we may
suppose that IV(C2 )1 3. But then a,, a2 and b2 must be matched into
C2 by 3-connectivity and it follows that a2 is a claw-center, a contradiction.
So we may assume that b2 ' u1 . More specifically, suppose b2 - uS 0 U1

where us E V(CI). Then by 3-connectivity, a2 is also adjacent to a vertex
ui4  V(C 1 ), u4 f {ul, us}. But then (al, b2 } is a vertex cut of sise 2 in G, a
contradiction. This proves part (a).

There are, then, eight edges from (el, e2) to wings C and C2 . Since both
wings are odd, and since G is 3-connected, parity dictates that precisely one
wing is attached to the body by three edges and the other by five. Without



loss of generality, assume that there are precisely three edges joining C, to
the body. Clearly, then, wing C2 0 K1 .

We claim then that wing C1 is a singleton.
Since G is 3-connected, there is a matching from S into C2 of size = 3.

Without loss of generality, let us assume it contains (bul, a2 u2 ,b2 u 3}. Also
without loss of generality, by 3-connectivity we may assume that a-2  v,
where vi E V(C 1 ). But a2 is not a claw-center, so either b2 - V1 or b2  U-

Suppose first that b2 - v1 . But then, again by 3-connectivity, the third
edge into C1 from S--that is, the edge different from a2 v1 and b2 vL-must
be incident with vertex vI. Thus C is a singleton.

So suppose that b2 7 VI and hence b2 - U2. Suppose C 1 is not a singleton.
Then there exists a matching from S into C, and, moreover, this matching
must be incident with vertices at, bt and a2 (and hence one of the edges of
the matching is via2). Now if at - ul, then {ul, a2} is a vertex cutset of
sixe 2 in G, a contradiction. So a, is adjacent to a vertex of C2 other than
ul. But then a, is a claw-center in G, a contradiction. Thus again C, is a
singleton and part (b) is proved.

To prove part (c), we begin by observing that by 3-connectivity and an
edge count, the non-trivial wing (C2 , say) has at least three vertices of at-
tachment and no more than five. Assume V(C 1 ) = {v}. Without loss -'f
generality, we may assume that v, is adjacent to all of a,,b, and ag. Also by
3-connectivity, there must be a matching of S into C2 of size 3. Without los
of generality, we may assume that one edge of this matching is incident with
a,. Call this edge alul.

(i) Suppose first that the other two matching edges are u2 b, and usa2.
Since a2 is not a claw-center, it follows that b2 - us. Suppose b2 - u1 . Let
ulw be the edge of C2 incident with ul. Then since ul is not a claw-center,
w = us. But then C2 cannot be connected; that is, u2 is not joined to ul or
to Us by any path in C2 . This is a contradiction. So b2 ? ul. By symmetry,
we may also suppose that b2 7k U2. But then b2 must be adjacent to a fourth
vertex of attachment in C2 ; call it u4 . But a2 is not a claw center, so b2 - us
and hence C2 has exactly four vertices of attachment as claimed.

(ii) Suppose the other two edges of the matching are u2 b, and u3 b2 . Con-
sider the third neighbor of a2 in C2 . Suppose it is ul. Then ul is a claw-center,
contrary to hypothesis. So a2 7 ul and by symmetry we may also assume
that a2 7 u2. So suppose a2 - us.

First suppose b2 - ul. Then since u1 is not a claw-center, the third
neighbor of ul must be us. But then again wing C2 is not connected, a
contradiction. So b2 96 ul and by symmetry, we may also suppose that
b2 0 u2. Thus b2 must be adjacent to a fourth vertex of C 2 different from
ul, u2 and Us and we have precisely four vertices of attachment on C2 as
claimed.

So suppose the third neighbor of a2 in C 2 is none of u l , u or us. Say it is
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u4 . Then a2 is not a claw-center, so b2 - u4. So again we have four vertices
of attachment as claimed.

(iii) So finally assume that the matching from C2 to S is aul, a2 u2 and
b2 u3 . But a 2 is not a claw-center, so b2 - u2. Then if b, - ul, set {ul, a 2 l}

is a 2-cut, contrary to 3-connectivity. If b, - u2 then C 2 is disconnected, a
contradiction. Suppose b1 - u 3 . Then u3 is a claw center, a contradiction.
Thus b, is adjacent to a fourth point of attachment U4 in C 2 , U4 0 {U1, U2, u3 }.
This proves part (c) and hence the theorem. I

The next result now follows from Theorems 2.1 and 2.3(b).

Corollary 2.4. If G is 3-connected, cubic, claw-free and even, and
{Cl, C2} is any set of two independent edges in G, then {e 1 , e2} extends to a
perfect matching of G if and only if {el, eC2} is not a singleton isolator. I

It is now obvious to see that by far the large proportion of independent
pairs of edges in a 3-connected cubic claw-free graph do extend to perfect

matchings. We can, in fact, determine such proportions. There are two types
of pairs of adjacent edges. The first type consist of those pairs both of which
share a triangle and the second type consist of one edge on a triangle and the
other not on a triangle. Since there are three pairs per triangle of the first
type, there are a total of 3. p/3 = p pairs of the first type and since there are
six pairs per triangle of the second type, there are 6 . p/3 = 2p of the second
type in total. (Here p is the number of vertices in G.) Hence there are a total
of 3p pairs of adjacent edges altogether.

On the other hand, there are ( ) ) distinct pairs of edges in G and

hence the number of pain of indepemndent edges is (3s/) 2 3p = (9p2 - 30p)/8.
(Here q denotes the number of edges in G.)

So the proportion of non-adjacent pairs of edges to all pairs of edges in G
is:

-2 .30p) 8

3p/2 3p- 2"

If G i R3 , K 4 , then the non-triangula edges form a perfect matching

of G each edge of which joins a pair of triangles in G. Thus there are p/2
such pairings of triangles. Moreover, each edge of this perfect matching cor-
responds to four different singleton isolator pairs one edge of which belongs
to each triangle joined by the matching edge. Thus there an p/2 • 4 = 2p
different singleton isolator pairs. Thus the proportion of singleton isolator
pairs to all pairs is 16/(9p - 6) and the proportion of singleton isolator pairs
to all independent pairs is 16/(9p - 30).
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3. The 4-regular 4-connected Case

Although no 3-connected cubic claw-free graph is 2-extendable, this is
not true in general for 4-connected 4-regular claw-free graphs. Our first task
in this section is to prove that those 4-connected 4-regular claw-free graphs
which contain a K4 are, except for one trivial exception, partitionable into
vertex-disjoint K 4 's which are then joined together by a perfect matching.

Theorem 3.1. If G is is 4-connected 4-regular claw-free and contains
a K4, then either G = K5 or the vertex set V(G) can be partitioned into
disjoint sets of four vertices each such that each four-vertex set induces a K4

inG.

Proof. Assume G is not Ks. First we prove that if two K4's intersect,
they must be identical. Suppose K4(1) and K4(2) are two K4's in G having a
vertex in common. Call the common vertex v. Now if they have ezactly one
vertex in common, deg v = 6 which is impossible, while if they have exactly
two vertices in common, the degree of each must be 5 which is also impossible.
So suppose they have exactly three vertices in common. Then let a be the
vertexof V(K 4 (1))-V(K 4 (2)) and let b be the vertex of V(K 4(2))-V(K4 (1)).
Since G $ Kr, a 0 b. But then it follows that {a,b} must be a cutset of sise
two in G, a contradiction.

Now we prove that if one vertex of G lies on a K4, they all do. It will
suffice to show that if a vertex v lies in a K4, then so do all of its neighbors.
Clearly this is true for K5, so suppose G - K6 .

So suppose N(v) = {a, b, c, d} and that {v, b, c, d} all lie on a common K4 .
If a is adjacent to any of b, c or d, then, since G is not Ks, we get vertex cuts
of size three in G, a contradiction. So a is adjacent to none of these three
vertices. Hence let the neighbors of a different from v be {e, f, g}. But since
a is not a claw-center, it follows that e - f, f - g and e '- g. In other words,
the vertices (a, e, f, g} induce a K 4 . I

Let us denote the class of 4-connected 4-regular claw-free graphs which
contain a K4 by go.

Theorem 3.2. Every graph in class go, except K6, is 2-extendable.

Proof. From the preceding theorem, we know that G is partitioned into
K4's. Thus there are two kinds of edges in G: type A edges which lie in a
K4 and type B edges which do not. All type B edges together form a perfect
matching of G and hence any two type B edges (in fact, any number of type
B edges) extend to a perfect matching of G.

Simil&rly, any two independent type A edges (in fact, any number of
independent type A edges) also extend to a perfect matching of G. This
perfect matching contains precisely two type A edges from each of the K4 's
inG.



So it remains to treat the case of two independent edges, one type A, the
other type B. Let el = ab be a type A edge and let C2 be a type B edge. Let e3
be the edge in the same K4 as el, but not adjacent to el. Let G' = G-a-b.
Then G' is 2-connected and hence there is a cycle C in G' which contains
edges e2 and e3. Among all such cycles, choose C to be a shortest one. Then
le* K4(1),K4(2),.. . ,K 4 (r) be the K4 's in G through which cycle C passes,
where el E E(K 4 (1)).

N,'w since C was chosen to be shortest, we may assume that it alternates
between A edges and B edges. To see this, it is necessary only to note how
C can intersect each K4 in G'. So let choose an arbitrary K 4 in G'. Let the
four vertices of this K4 be w, z, y and z and assume cycle C enters K4 on a
B edge at vertex w. Then C must pass through at least one vertex of the K4
other than w. Suppose C passes through w, z and y of K4 , but not z. Then
C' = C - wz - zy + wy is another cycle passing through el and e2, but is
shorter than C, a contradiction. If C passes through all four vertices of the K4
before exiting, (say through wz, zy and yz), then C" = C - wz - zy - yz + wz
still passes through the K4 as well as edges E, and e2, but is shorter than C,
again a contradiction.

Thus we may assume that cycle C either
(a) encounters K4 only in edge wz,
(b) encounters K4 twice--say in edge wz and later through edge yz, (but

then C is not a shortest cycle) or
(c) misses K4 altogether.
Thus C is an even cycle the edges of which alternate between type A and

type B. Also one of its type B edges is e2.
We now build a perfect matching F for G as follows. Insert all type B

edges of cycle C into F. (This includes e2 of course.) The remaining edges
of F will all be type A and are chosen as follows. From K4(1) choose edge
e1. For each i = 1,... , r, if C meets K4 (i) in a single edge-say wz-where
V(K 4 (i)) = (w,z,y,z}, add edge yz to F. If V(C) n V(K 4 ) = 0 for any
arbitrary K4 in 0, insert any two independent edges from this K4 into F. I

In view of Theorem 3.1 the structure of the graphs in class 9o is quite
clear. However, let us not. that all the graphs in this class have an alternate
description as line-graphs. More particularly, K5 = L(KI,s) and each of the
other graphs in class 9o is a line-graph L(H) of a bipartite graph H with
bipartition V(H) = AU B, each vertex of A having degree 4 and each vertex
of B having degree 2. Moreover, H must be 2-connected and every vertex
cut of H of sue 2 must consist of two vertices of degree 4, while each vertex
cut of sise 3 must contain at least one vertex of degree 4.

We mention this line-graph description of class 9o primarily in view of
Theorem 3.4 below.

Next let us study those 4-connected 4-regular claw-free graphs which con-
tain no K4.



Let us denote by g1 the infinite class of graphs defined as follows. Con-
sider two vertex-disjoint cycles C1 and C2 both of length k > 3 denoted by
ulu2. ,- uul and viv2 ... vkvl respectively. Now join each u1 to each of vi-I
and vi, where the subscripts are taken modulo k. Call the resulting graph on
2k vertices G2k and let 91 be defined as 9' = {G 2 }l=s.

Note that each member of 91 is 4-connected, 4-regular and claw-free. In
fact each is also planar, even and for ic > 4 each vertex lies on precisely three
triangles. (Note also that Ge-the octahedron-has all of these properties
except the last.)

Let us call all edges of the form utvi rungs. Note that two independent
rungs in Ge,, which have the property that the deletion of all four of their
endvertices results in a disconnected graph consisting of two odd components
will not extend to a perfect matching. Such pairs are either of the form
{Viui++1 V,u} or {u,uj,v'u-+.I}, wherej 3 i,s + 1 and again all subscripts
are taken modulo k. For brevity below, let us call any such pair of edges which
do not extend a red pair. Note also that, by the proof of Theorem 2.1, all
other pairs of independent edges in G, do extend to perfect matchings.

Theorem 3.3. Suppose G is a 4-connected, 4-regular claw-free graph
with an even number of vertices. Suppose further that G contains a non-
extendable pair of edges el = abl, e2 = a2b2 which have a third edge joining
them.

Then C = 02t, E 9L for some k 2 3 and {el,e 2 )} is a red pair in G.
Furthermore, then, a pair of independent edges in G = Gzj extends to a
perfect matching iff the pair is not a red pair.

Proof. The proof is by induction on IV(G)I. Without loss of generality,
suppose that b -- a2. Since (e1, e2 } does not extend, by Theorem 2.1 we know
that graph G' = G- {Ja, b5, a2 , b2) consists of precisely two odd components.
Let us call them C1 and C2 .

Suppose first that IV(C,)I = 1 = IV(C2 )1. Then since G is 4-regular,
a, - b2. But then G = G4, the octahedron.

Suppose next that IV(C,)l = 1 and IV(C 2 )I = 3. Let V(C 1 ) = {Ic} and
V(C 2 ) = (ul, 2, us). since C2 is connected, we may assume, without loss of
generality, that U1 - U2 and ul - us.

1. Suppose u1 - a,. Since there is no claw at ul, we may assume that
either U2 - us or a, is adjacent to at least one of u2 and us.

1.1. Suppose U2 - Us.

1.1.1. Suppose also that ul - b,.
1.1.1.1. Suppose further that u2 - a,. Then us - a2, uS - b2 and

u - b2. But then C = Gs E gi.
1.1.1.2. So suppose that u2 7 a,.
1.1.1.2.1. Suppose u2 - a2. Then since there is no claw at a2, U2 - b.

Thus us - a, and us - b2. But then again G = Gs 9 ,1.
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1.1.1.2.2. So we may suppose that U2 74 a 2 . But then degu2 !_ 3, a
contradiction.

1.1.2. So suppose that ul ( bl.
1.1.2.1. Suppose ul - a 2 . Then, since G is 4-connected, b, ,' b2. So b, is

adjacent to one of u2 or u3 ; without loss of generality, assume b, - u2 .
1.1.2.1.1. Suppose u2 - a1 . Then degus < 3, again a contradiction.
1.1.2.1.2. So we may assume that u2 ?4 a,. But then we get a claw at ul,

a contradiction.
1.1.2.2. So suppose ul 6 a2. Then ul - b2.

1.1.2.2.1. Suppose u 2 "- a 1 . Since there is no claw at ul, we may also
suppose that us - b2 .

1.1.2.2.1.1. Suppose u2 - b. Then it follows that us - a 2 and we see
that G = Ga E 91 once again.

1.1.2.2.1.2. So we may suppose that u2 7 bl. Thus u2 '- a2 and us - bl.
But then we have claws at both b, and a 2 , a contradiction.

1.1.2.2.2. So suppose u2 76 a1 and by symmetry, that us 7 al, us 6 b2
and U2 7 b2 . Thus u2 is adjacent to one of the two vertices a2, b, and Us is
adjacent to the other. But then deg u2, deg us : 3, a contradiction.

1.2. So suppose that u- 7 us. Since there is no claw at ul, either a, - u2
or a1 - us. Without loss of generality, suppose that a, - U2.

1.2.1. Suppose u2 - bl.
1.2.1.1. Suppose further that ul - a2. Then degul = 4 implies that

ul - b2. But then deg us : 2, a contradiction.
1.2.1.2. So suppose that u2 6 a 2 . Thus u2 - b2. Then since there is no

claw at u2 , it follows that ul - b2 . Thus again deg us 5 2, a contradiction.
1.2.2. Suppose u2 -a 2. Now if b, - b2 , then {a,, a2, b2} is a 3-cut in G,

a contradiction. So b1 7b 62. So bl - u1 or bl - Us.

1.2.2.1. Suppose b, ". ul. Then we have a claw at ul, a contradiction.

1.2.2.2. Thus b1 - ul and hence b, - us. Then u2 - b2 , u1 - b2 and
U3 ~ b2. But then deg b2 _: 5, a contradiction.

2. So we may suppose that ul 7 at and by symmetry, that ul 6,2
also. Thus ul - b, and ul - a2. Moreover, since there is no claw at ul, we
have u2 - us. Now without loss of generality, we may assume that a1 - u2.
Suppose b2 ' us. Then b2 a ,x and b2 ~ u2. But then dego us = 2, a
contradiction.

Thus b2 , us. Now if a, , b2 , then degu2 = deg us = 3, a contradiction.
So a, #6 b2 . But then a, - Us a!: b2  ug. But then both u2 and us are
claw centers, a contradiction.

So if IV(C)J = 1 and jV'C2)I = 3 we must have G = Gs.
Next suppose IV(CI)I = IV(C 2 )1 = 3. Then each of C1 and C2 must send

at least six edges to {I 1 , bl,a2,b2}, contradicting the 4-regularity of G. So
there is no graph when jV(C 1)I = IV(C 2 )1 = 3. (We remark that there is
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such a graph on ten vertices in the case when edges el and e2 are not joined
by an edge; namely, graph Gao.)

So now suppose that at least one of the components C1, C2 has at least
five vertices. Without loss of generality, suppose that C2 has at least five
vertices. Then by 4-connectivity, there is a matching of {a,, b1 , ft, b2 } into
V(C 2), say a1u1 ,b1u2,a2u3,b2 u4.

1. first suppose that IV(CJ) = 1. Since there is no claw at bl, we must
have a, - u2 and since there is no claw at a2 , we also have b2 - U3. But
then no a, claw implies Ul - Ut2 and no b2 claw implies -~ u4. Also since
G is 4-connected, it follows that ul ' us, U2 / us and u 2 9 u4.

1.1. Suppose that ul - u 4 . Then since there is no claw at u 2 , it fol-

lows that u, and u2 have a common neighbor in C2, where C2 = C2 -

{u 1 3 u 2 , us, u4 }. Call this common neighbor us. But then {us, u4, us} is not
a 3-cut, so it follows that V(C2) = {us). Thus G = G2 o E 91.

1.2. So suppose that u, / u4 . Thus IV(C 2)I > 7.
1.2.1. Suppose IV(C 2 )1 = 7. Hence IV(C2)I = 3. Let V(C) =-{us, U7s}.

Note that C2 is connected, so without loss of generality, assume that us - u
and Us - UT.

1.2.1.1. Suppose us 74 u.
1.2.1.1.1. Suppose us - ul. Then since there is no claw at us, by symme-

try we may assume, without loss of generality, that ul s us. If Us ~ U2 , then
it is impossible for all of us, us, us and u7 to have degree 4, a contradiction.
So US 7 U2.

1.2.1.1.1.1. Suppose us us. Then we get a claw at us, a contradiction.
So us 7 U43

1.2.1.1.1.2. Suppose us u4 . Then since there is no claw at us, either
U4 - us or U4 - U7 -

1.2.1.1.1.2.1. Suppose u, - u4. Then we get a claw at us, a contradiction.
1.2.1.1.1.2.2. So we may suppose that u4 / us and hence U4 - U7. Then

if us - Us, we get a claw at us, so " - u 2 and by symmetry ur - Us. But
then deg "s = deg U7 = 3, contradictions both.

1.2.1.1.2. So we may suppose that us 4 ul and by symmetry that us 6 U4
also. Thus us - u2 and us - us. But then it is easy to see that both u and
U7 have degree at most 3, a contradiction.

1.2.1.2. So suppose u6 - U7. Then without loss of generality, we may
suppose that ul - us and ul - "ts.

1.2.1.2.1. Suppose 4 - ug. If us - us, we have a claw at us, so us ' us.
So us - u4. But then u7 - us and u7 - u 4 and C = G12 E 91.

1.2.1.2.2. So suppose that Us 7 02. If us - us, we get a claw at us, so
Us 74 us. Thus us - U4 . Since there is no claw at us, it follows that u4  u7,.
If "s - us, we have a claw at us, so Us Y us. Hence us ~ u2 and u - 1Us

and once again we have that G = G, 2.
1.2.2. Suppose now that IV(C 2)I 9. Hence IV(C2)I _ 5. Thus, since
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G is 4-connected, we must have a matching (ulvI, u2 v2 , s 3 V3, U4 u4 } for some
set of vertices {v,, v2 , vs, v4) 9 V(C2). Now since there is no claw at u2,
ul - v2 and since there is no claw at U3, u 4 - v3. But then since there is no
claw at u1 , v, - t2 and since there is no claw at u4 , V3 - V4 .

Now build a new graph G' from G by deleting vertices C1,at,b,a 2 and
b2 and replacing them with one new vertex w, which we join to each of
ul,u 2 , u3 and u4. Finally, join vertices u2 and Ut3. Then {tUxU2, U3tU 4 are a
non-extendable pair in G' and G' ii 4-k.onnected, 4-regular, claw-free and even,
But IV(G')I = IV(G)I - 4. So by tLe induction hypothesis, G' = G 2 " E 91
for some j _> 3. But then clearly G = Gi+4.

2. Now suppose IV(Ci)I = 3. Let V(C 1 ) = {wi,w2,w3}. Recall that
IV(C 2 )I 2: 5 and so there must be a matching 'aiui, blu2 , auS, b2 u 4} where
{u 1 ,u 2 , U3, U4} 9 V(C 2 ). This is a consequence of the fact that G is 4-
connected. Since C1 is connected, we may assume that wt is adjacent to
both t 2 and w 3 .

2.1. Suppose wo2 6 w3 .

2.1.1. Suppose also that a1 , -t.
2.1.1.1. Suppose even further that wt - b1. Then we get a claw at w, a

contradiction. So w1 ? bl.
2.1.1.2. Suppose w, - a2 . Then we get a claw at wt again and again we

have a contradiction. so w, 6 a2 .
2.1.1.3. So since w1 # bl, a2 , we must have w, - b2. By symmetry

and 4-connectivity, we may assume, without loss of generality, that u - t.
Moreover, a1 / a2 also by 4-connectivity, so a2 .- w 2 or a2 - W 3.

2.1.1.3.1. Suppose a2 - w 2.Then since there is no tw1 claw, w 3 - b2 . But
then deg to3 = 3, a contradiction.

2.1.1.3.2. So we may suppose that a2 7 to2 and hence a2 - ws. But then
at least one of to2 and to3 has degree at most 3, a contradiction.

2.1.2. So assume a, 6 to1 and by symmetry that b2 0 wl. Thus w1 is
adjacent to both b, and a2. But then {atoi, b2) is a 3-cut in G which is
impossible.

2.2. So suppose that w 2 - to. Then without loss of generality, we may
suppose that bI - to1 . But then if w - a2, {a,, wi,b 2} is a 3-cut which is
impossible. Thus to1 A a2. Now by 4-connectivity, a2 is adjacent to at leant
one of w2 and w3. By symmetry, without loss of generality we may assume
that a2 - W3.

2.2.1. Suppose a, . w 1 .Then if a1 " to3 it follows that (to1 , W3, b2} is a
3-cut which is impossible. So a, 7 to. On the other hand, if a, - w2, then
w2 - b2 and W3 - b2. But then we have a claw at bl. So a, 7 to2. But then
deg w$ < 3, a contradiction.

2.2.2. So a, to1 . By symmetry, we may also suppose that b2 - ws. But
then a1 - W3 and by symetry w - b2. But then w2 is adjacent to both a1
and b2. But then we have claws at is' and at o3 , a contradiction.
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So we have shown that it is impossible to have IV(Cj)I = 3.
3. So suppose that !V(C)I 2! 5. Recall that we also have IV(C2 )I 2!

5 as well. So by 4-connectivity, there must be a matching of vertex set
(a,, bl, a2 , b2} into component C and another into component C2 . But then
we wst have claws at both b1 and aj, a contradiction.

liow that we know that G = G2h, it is easy to verify that the only pairs
of independent edges which do not extend to a perfect matching are indeed
the red pairs. I

Now let us proceed to characterize yet another class of 4-connected 4-
regular claw-free graphs. These turn out to be a class of line-graphs. Denote
by 92 the class of all 4-connected 4-regular claw-free graphs in which each
vertex liet on exactly two triangles.

In order to formulate the next result, we need the concept of cyclic con-
nectivity. Let us define the cyclic (edge) connectivity of a graph G to be
minimum taken over the cardinalities of all edge cuts F of G which separate
G and such that at least two components of G - F contain cycles. Denote
the cyclic connectivity of G by cA(G). Now let us say that G in cyclically
k-edge connected for all k_5 cA(G).

If a graph has no cycle-separating edge cut, we shall define the cyclic
connectivity to be 0. For example, both K4 and K3 ,3 are examples of cubic
graphs with cyclic connectivity 0. (The reader is warned that some authors
define the cyclic connectivity of such graphs to be +0o and others say that
the cyclic connectivity of these graphs is not defined)

Wormald [W] showed that if graph G is cubic, but different from either
K 4 or K3 ,3 , then G is 3-connected if and only if G is cyclically 3-connected.
Let us now call any vertex cut S in a connected graph C etar-like if at least
one component of G - S is a singleton. Fouquet and Thuillier [FTJ showed
that, if G is 3-connected and cubic, then G is cyclically 4-connected if and
only if all 3-edge cutsets are incident with one common vertex. For cubic
graphs this is clearly equivalent to saying that all 3-vertex cuts are star-like.

It will also be helpful to recall that a cyclically 4-connected cubic graph
is necessarily triangle-free.

Theorem 3.4. Graph G is a member of clan 92 if and only if G = L(H)
where either H is a 3-connected cyclically 4-connected cubic graph, or else
H = K3 ,3 .

Proof. Suppose first that graph G belongs to class 92. Clearly, L(K3 .3 ) is
in 92, so suppose that G 96 L(K3,3). Note immediately that graph G cannot
contain a K 4 . Let v be any vertex of G. We claim that the two triangles
containing v must be edge-disjoint. Suppose not. Say, for example, that
N(v) = {(a, 6, c, d) and that a - b - c. Then by the condition on triangles
given in the definition of class 92, d 76 a, d A c and a -A c. But then we have
a claw at v, a contradiction.
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So G cannot contain any of the nine induced subgraphs forbidden in line-
graphs. (See the well-known theorem due independently to Beineke (Beil and
to Robertson (unpublished).) Thus G = L(H) for some graph H. Note that
the definition of class 92 implies that graph H is cubic and triangle-free.

Now if x(H) = 1, clearly -(G) = 1 also.
Suppose that x(H) = 2. Let {u, v} be a vertex cut of size two in H. First

suppose that {u, v} is independent. Then H - u - v has either two or three
components. Suppose one of these components (call it C) has only two edges
el and e2 joining it to the cutset (u, v}. Then {el, C2} is a 2-cutset of vertices
in G = L(H), a contradiction.

So we may suppose that each component of H' has three edges incident
with (u, v}. Thus H' has precisely two components C, and C2 and we may
assume that edges el and e2 join u to C1 and e3 joins u to C2 while edges C4

and e5 join v to C2 and edge ee joins v to C1. But then (es, ee} is a 2-cut of
vertices in G, a contradiction.

Now assume that vertices u and v are adjacent. Brt thon Yl' has exactly
two components and each is joined to the cutset with precisely two edges.
Say, for example, that component C1 is joined to the cutset via the two edges
eI and e2. Now H is cubic, so C1 must contain an edge. Hence {el,e 2 } is a
cut set of two vertices in G, a contradiction.

So rc(H) > 3.
By the result of Fouquet and Thuillier IFTI mentioned just before this

theorem, it remains only to show that all vertex cuts of size three in H are
star-like. To this end, let {u, v, w) be a 3-cut in H. Suppose no component
of H" = H - u - v - to is a singleton. Since H is 3-connected and cubic,
induced subgraph H[u, v, w] either contains exactly one edge or none.

Suppose H(u, v, tol contains an edge, say uv. Without loss of generality,
assume that there are four edges attaching C1 to (u, v, to) and three edges
attaching C2 to this cutset. Let the three edges of attachment to C2 be e, e2
and C3. Since C2 is not a singleton, it must contain an edge, so (el, e2, e3) is
a cutset of three vertices in G, a contradiction.

So we may suppose that the cutset (, v, to) is independent. Suppose one
of the components of H" is joined to the cutset by exactly three edges. Say
component CI is joined to the cutset via edges el, 2 and e3. But then since
C1 is not a singleton, it contains an edge and again (eI,e2,es) is a cutset of
three vertices in G, a contradiction.

So we may assume without loss of generality that H" has exactly two
components C, and C2 , that C, has five edges joining it to the cutset and
that C2 has four edges joining it to the cutset. Without loss of generality, we
may suppose that u and v are joined by two edges each to C, and by edges
e I and e2 to C2 . Then vertex to must be joined to component C1 by one edge
e3. Then since neither component is a singleton, (e1, e2, c3) is another cutset
of three vertices in G and once more we have a contradiction.
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Thus all 3-cuts of vertices in H are star-like.
To prove the converse, we note, to begin with, that L(K 3,3 ) is in class 92.

Let us suppose that G = L(H), where graph H is 3-connected, cubic and
cyclically 4-connected, hence all the 3-cuts of vertices in H are star-like.

Since H is cubic, G is 4-regular and since H is triangle-free, each vertex
of G lies on exactly two triangles which intersect only in this vertex. Since
G is a line-graph, G is claw-free by the aforementioned result of Beineke and
Robertson.

It remains only to show that G is 4-connected. Since H is 3-connected,
so is G by a result of Chartrand and Stewart [CS]. So suppose ic(G) = 3 and
that {eI,e2,e3) is a vertex cut in G. Let C and C 2 be any two components
of G' = G-,- - C2 - 63. So in H, if D denotes the component of H
corresponding to Ci, for i = 1, 2, the edge set (Ci e2, e3) separates D, from
D2. But H is 3-connected and cubic, so at least one of D, and D2 is a
singleton or else {e 1 , e2, es) is a matching in H. But since both C and C2
are non-empty "n r,, each of D, and D2 contains at least one edge in H and
hence -either is a singleton.

So {2, e2, e3) is a matching in H. But then each component D, and D2
has minimum degree 2 and hence each contains a cycle. Thus {e 1, e2 , d3} is
a cyclic 3-cut in H, a contradiction.

So x(G) _> 4 and the proof of the theorem is complete. I

Note that class 92 contains some graphs with an odd number of vertices;
for example, L(K 3,3 ) is such a graph. Another example is G = L(R 6 ), where
R6 is the so-called 'pentagonal prism'; i.e., the cubic graph on ten vertices
obtained by taking two disjoint pentagons and joining them with a perfect
matching. More generally, we observe that the odd members of class 92 arise
as line-graphs of 3-connected cubic triangle-free graphs H which have only
starlike 3-cuts and such that IV(H)I is not divisible by 4.

In view of these observations, let us denote those graphs in 92 having an
even number of vertices by 92g.

We now proceed to determine exactly which pairs of independent edges
in a graph belonging to class 923 extend to perfect matchings.

Let v be a vertex of any graph C of degree 4 and suppose v lies on
exactly two triangles in G. More precisely, suppose N(v) = (a1 ,bi,ab 2 }
and suppose ad - b1 and a - b2 . Moreover, suppose that no other edges
join any two of these four vertices. Then the 5-vertex (induced) subgraph on

thes five vertices will be called a butterfly in G and the two edges el and
e2 will be called its wingtip.. (The term "butterfly' was first employed in
this manner in [HLPI.)

Theorem 5.5. Let G belong to the clas 923 and let el and e2 be any
two independent edges in G. Then (61,62} extend to a perfect matching if
and only if they are not the wingtips of a butterfly.
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Proof. Clearly G contains a butterfly and the wingtips of any butterfly
do not extend,-to a perfect matching.

Conversely, suppose (el - albl,e2 = atb 2} do not extend. Then by the
proof of Theorem 2.1, we know that G' = G - a, - bi - a2 - b2 consists of
two odd components C1 and C2 . Moreover, we know that if the edges el and
e2 are joined by an edge, then G E 91. But 91 n 9. = 0, so since G is a
member of 92, the edges el and e2 are not joined by any edge.

Suppose that neither C nor C2 is a singleton.
1. First suppose that V(CI) = 3. Let V(CI) = {u1, U2 , us). Then without

loss of generality, we may assume that b, - u1 and u2 - uI - us.
1.1. Suppose that u2 - us.
1.1.1. Further suppose that al "- ul. Since G E 92, it then follows that

a, 74 u2 , bi 74 u2 , a, 74 us and Us 74 bL. So it follows that u 2 - a2 and
u2 - b2 and us - a2 and us - b2 . But then {u2, us, G, b2 ) induce a K 4 , a
contradiction.

1.1.2. So we may assume that a, J' ut. So without loss of generality,
assume that ul - a2 . Thus ui 7' b2 . Since G is 4-connected, by symmetry
we may assume that a, - u2 . Then since u2 lies on only two triangles in G,
u2 76 bl. But then since there is no claw at ul, u2 - a2 and us - bt. But
then vertex u1 lies on three triangles, a contradiction.

1.2. So suppose that u2 74 us. Since deg us = 4, we may assume by
symmetry without loss of generality that us - b2. Now since there is no claw
at ul, either u2 - bt or us - bl.

1.2.1. Suppose that u2 - b1 . Then since G E 92, we have that U2 76 a,
and ul 76 a,. But then 4-connectivity implies that at - Us. But since there
is no claw at us, ul - b2 . But again since C r 92, us 7' a2. Thus deg us = 3,
a contradiction.

1.2.2. So u2 7' b, and hence us - bl. Thus u2 - at, U2 - a2 and u2 - b2 -.
But since there is no claw at u2, either ul ~ a, or ul - a2. But if ui - at,
then Us - a2. But then edge agb2 lies on two triangles, contradicting the fact
that G E 92. So ut 7 at and hence ul '- al. Thus it follows that us - al.
But then there is a claw at u2 , a contradiction.

2. Thus IV(C)I ! 5 and by symmetry IV(C 2 )I >! 5 also. Thus we may
assume that al, bl, a 2 and b2 are matched into C, to, say, u1 , U2, s and U4
respectively and also matched into C2 to, say ii, v2, " and v4 respectively.
Since there is no claw at 41, we may assume without loss of generality that
u - 6b. But then since G G 92, we have al 7' v2, u1 74 u2 and al 7' u2 . But
then we have a claw at bl, a contradiction. I

The ees members of class 92 can be given an alternative characterization
to that of the preceding theorem.
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Theorem 3.6. Let G be a 4-connected 4-regular claw-free even graph.
Then C E 929 if and only if G contains a non-extendable pair of edges and
no pair of non-extendable edges has an edge joining them.

Proof. Suppose first that G E 92n. Then every vertex of G is the body
of a butterfly the wingtips of which are non-extendable. Suppose now that
{e 1 , e2 ) are a non-extendable pair which are joined by an edge. Then by
Theorem 3.3, graph C E 91. But every graph in 91 has the property that
each of its vertices lies on three triangles and hence C 0 92, a contradiction.

To prove the converse, suppose that G has the property that it contains
non-extendable pairs of edges, but no such pair is has an edge joining them.

Let v E V(G) and denote its set of neighbors by N(v) = {a, b, c, d}. Since
G is claw-free, we may assume without loss of generality that a - b. Now
suppose c 9 d. Then again since there is no claw at v, either b - c or b '- d.
By symmetry we may assume without los of generality that b - c. Then
again since G is claw-free, either a - c or a - d. But if a - , G contains a
K 4 and hence by Theorem 3.2, G is 2-extendable, a contradiction. So a A c
and hence a - d. But then {ad, bc4 are a non-extendable pair and they are
joined by edge ab, contradicting the hypothesis.

So c - d. Moreover, by hypothesis it then follows that a A c, a 7 d, b # c
and 6 - d. Thus vertex v lies on exactly two triangles. But the selection of
vertex v was arbitrary, so this pruperty then holds for all v E V(G) and hence
06 929. 1

Finally, we observe that we have partitioned the set of all 4-connected
4-regular claw-free gaphs.

Theorem 3.7. The class of all 4-connected 4-regular claw-free graphs
= go U 9 1 U 92, where the classes go, 91 and 92 are pair-wise disjoint.

Proof. In class go every vertex lies on a K,, so clearly this class is disjoint
from 91 and 92. But a graph in class 91 has the property that each of its
vertices lies on three triangles, whereas in class 92 vertices He on precisely
two triangles, so these classes are disjoint as well.

It remains only to show that every graph G which is 4-connected 4-regular
and claw-free lies in one of these three classes. Let u E V(G) and again let
N(v) = (a, b, c, d}. By the claw-free property there are at least two triangles
at v. Call two such triangles T1 and T2. Either T1 and T2 share an edge or
they do not.

First suppose that T1 and T2 do share an edge. Suppose without loss of
generailty that T = vabv and that T2 = vbcv. Then if 4 - C, graph G lies in
class 9o. So suppose a 0 c. But then since there is no claw at v, either a - d
or c - d. But in either case G will then have a non-extendable pair of edges
joined by an edge and thus G E 91.
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So suppose that G has the property that each of its vertices lies on two
triangles which do not share an edge. But then it follows that v lies on
precisely two triangles and hence by definition, G lies in class 92. I
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