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ABSTRACT

A graph G is 2-extendable if it has at least six vertices and every pair
of independent edges extends to (i.e., is a subset of) a perfect matching. In
this paper two classes of claw-free graphs are discussed: those which are 3-
regular and 3-connected and those which are 4-regular and 4-connected (as
well as even). None of the first class is 2-extendable, whereas those of the
second class which are 2-extendable are determined. More particularly, in
the graphs belonging to these classes, those pairs of independent edges which
extend to a perfect matching are determined.

1. Introduction

A graph G is claw-free if it contains no induced subgraph isomorphic
to the complete bipartite graph K; 3. Claw-free graphs have been widely
studied in graph theory in connection with such diverse concepts as indepen-
dent sets, perfect graphs, Hamiltonian (and other traversability) properties,
reconstruction and matching. (For a selected set of references in each of these
areas, see the Introduction in [P4].)

The subject of this paper is matching in claw-free graphs. Sumner [Sul,
Su2] and Las Vergnas [La] began the study of perfect matchings in claw-free
graphs. In particular, they showed, independently, that any connected claw-
free graph with an even number of vertices must contain a perfect matching.

Let G be a graph containing a perfect matching and let n be a positive
integer, 1 < n < (|V(G)}—~2)/2. Graph G is said to be n-extendable if every
matching of sise n extends to (i.e., is a subset of) a perfect matching. A graph
G is bicritical if G — u — v contains a perfect matching for every pair of ver-
tices u and v in V(G). (Clearly, then, every bicritical graph is 1-extendable.)
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A 3-connected bicritical graph is called a brick. Bicritical graphs—and more
especially bricks—have emerged as an important special class in the study
of graphs with perfect matchings and their structure remains far from com-
pletely understood. (See [LP], [ELP], Lo} and [LR].)

In [P1], it was shown that any non-bipartite 2-extendable graph is bicriti-
cal. Partly because of this implication, the author and others have continued
the study of n-extendable graphs—and of 2-extendable graphs in particular.
For a recent survey of much of this work, see [P3] and the references contained
therein.

In [P4], the author focused upon matching extension in claw-free graphs.
In particular, it was show there that any 3-connected claw-free graph (with
an even number of vertices) must be a brick (and hence 1-extendable). More
generally, it was shown that for any integer n > 2 if G is (2n + 1)-connected,
claw-free and even, then G must be n-extendable. (Thus for example, every
5-connected graph of this kind must be 2-extendable.)

In the present paper, we consider two special classes of claw-free graphs:
those which are 3-regular (ie., cubic) and 3-connected and those which are
4-regular and 4-connected. By the remark in the preceding paragraph, clearly
all such graphs are bricks. On the other hand, it is easy to see that no graph
in the first class is 2-extendable, but in the second class, some graphs are 2-
extendable, while others are not. We characterise those that are 2-extendable.
Perhaps the most important idea pursued in this paper is that for the first
time a study is undertaken as to just which pairs of independent edges are
extendable to a perfect matching and which are not. In the cases of these
two families of claw-free graphs we are able to characterise precisely those
pairs of edges which are 2-extendable. It is an easy matter to characterise all
3-connected cubic claw-free graphs; they are just those cabic graphs obtained
from other 3-connected cubic graphs by inserting a single triangle ai each
vertex in such a manner so as to preserve 3-regularity. The 4-connected
4-regular claw-free graphs are not so easily characterised, but we are able
to obtain a complete characterisation using matching extendability of pairs
of edges. More particularly, it is shown that such graphs belong to one of
precisely three classes of graphs and of these three classes, one consists of all
those which are 2-extendable.

2. The S-regular S-connected Case

We begin with a property of general 3-connected claw-free graphs (ie.,
those which are not necessarily cubic) having an even number of vertices.
To deal with this, we introduce the concept of a generalized moth (or more
succinctly, gmoth). (This concept is closely related to, but different from,
that of a generalized butterfly first introduced in [P2].) Let G be a connected
graph and let ¢; = a;b;, s = 1,2 be two independent edges in G. Then G is




called a generalised moth (or gmoth for short) if G — s, — by — a3 — b
consists of precisely two components and both are of odd cardinality. For
the sake of brevity, we shall call such components odd. The subgraph of G
induced by V'(e;) UV (e3) is called the body of the gmoth at {e;,ez} and
the two odd components are called the wings of the gmoth at {e;,e3}. Of
course a given graph can be viewed as a gmoth in many different ways; that
is, there may be many pairs of independent edges which form the body of a
gmoth structure for G.

It is easy to characterise 3-connected claw-free even graphs which are not
2-extendable in terms of gmoths.

Theorem 3.1. Let G be 3-connected, claw-free and even. Then G is
2-extendable if and only if G is not a gmoth.

Proof. The left-to-right implication is clear.

Let us therefore suppose that G is 3-connected, claw-free and even. but
that G contains a pair of edges {e, = a1b;, 2 = a3b3} which do not extend to
a perfect matching. Let G' = G—a;—b;—a3—b2. Then by Tutte’s Theorem on
perfect matchings, there exists a set S’ C V(G') such that |S'| < ¢c,(G' - '),
where ¢,(G’ — S’) denotes the number of odd components of G’ — S’. Let
s' =|S'| and let C;,...,Cpr41,... be these odd components. By parity, since
G is even, we must have s’ < ¢c,(G’ — S’) ~ 2. By Theorem 1.1 of [P4], graph
G is a brick and hence is 1-extendable. But then it follows that G’ — S’ has
exactly s’ + 2 components.

Now among all sets S’ with the above properties, choose one which is
minimal. Suppose S’ is not empty. Then suppose u € S’. But then, by
Corollary 1 of [Su2, u is a claw-center which is impossible in G’ since G—
and therefore G'—are ciav>-free. Thus S' = @ and hence G’ has exactly two
odd components.

It remains only to show that G’ has no even components. Suppoee G,
were such an even component and denote the two odd components of G' by
C; and C3. By 3-connectivity, there are at least three edges from C; to the set
S = {a1,b1,0a3,b3}. Without loss of generality, assume that there are edges
from C) to vertices a1,b; and a;3. (For the duration of this paper we will
denote the relation of adjacency between two vertices by the symbol “~*.)
Suppose a; is adjacent to no vertex in C;. Then each of b, a3 and b; must be
adjacent to C3 by 3-connectivity. Also by 3-connectivity, component C, has
edges to at least three vertices of S and hence to at least one of §; and a3.
Without loss of generality, assume that there is an edge from b, to C,. But
then b; must be a claw-center in G which is impossible. So we may suppose
that vertex a; is adjacent to a vertex of C; and by symmetry, so is vertex §,.
Again, by 3-connectivity, there must be an edge from C, to at least one of
a; and b; and hence again we get a claw-center, contradicting our claw-free
hypothesis. Thus there are no even components C, of G'. [ |
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We now proceed to give a characterisation of those 3-connected claw-free
graphs which are 3-regular. (We shall call 3-regular graphs cubsc.) In order
to do this, we shall need the following concept. Let G be an r-regular graph
for any r > 3. The r-inflation of G, denoted by G(r), is the graph obtained
from G by inserting at each vertex of G a copy of the complete graph on r
vertices, K., and joining each “half edge” resulting from the removal of the
vertices of G to a different vertex of the K, which replaced the vertex of
G. Thus the r-inflation of G is also r-regular and the original graph G can
easily be recovered from G{(r) by contracting each of the inserted K,’s to a
single vertex. In the case r = 3, this use of the word “inflation” is due to V.
Chvital.

Finally, let us denote by Ry the the six-vertex cubic graph formed by
joining the vertices of two disjoint triangles with a perfect matching. (This
graph is commonly called the triangular prism.)

Theorem 2.2. Graph G is cubic 3-connected and claw-free if and only if
G = K,, Rs or is the 3-inflation of a cubic 3-connected graph H.

Proof. The right-to-left implication is clear.

Conversely, suppose G # K,, R3. Since G is cubic, 3-connected and <law-
free, each vertex of G lies on precisely one triangle. For suppose two dii.erent
triangles in G have a vertex in common. Since G is cubic, they must also
have an edge in common. But then, since G is 3-connected, G = K, a
contradiction.

Thus the triangles in G partition the set V(G). Suppose there are only two
triangles in G. Then G = Ry. So suppose there are at least three triangles in
G. By parity, there cannot be exactly three such triangles, so we may assume
that there are at least m such where m > 4 and even.

Denote by H the graph obtained from G by shrinking all triangles to
single vertices. (Note that there are no parallel edges in H since G # Rs.)

Clearly, graph H is cubic.

It remains only to show that H is 3-connected. Let v’ and o’ be two
non-adjacent vertices in H. Then in G there are two vertex-disjoint triangles
T(u') and T(v') corresponding to vertices u' and v’ respectively in H. Since
u' % o in H, there is no edge in G joining T(u') and T(v'). Choose any
two vertices u € T(u') and v € T(v') in G. Then u # v in G and since G
is 3-connected, there are at least three openly disjoint u~v paths in G; say
P,, P; and P;. Now if T is any triangle in G such that T # T(u'), T(v’), then
at most one of the P;’s meets T. Thus if, for each s = 1,2,3, P{ is the path in
H resulting from shrinking triangles T'(u’) and T'(v) in G, the paths P{, P}
and Pj are openly disjoint u—v paths in H. Thus H is 3-connected. |

Let G be any cubic graph and let T be any triangle in G with V(T) =
{a,b,¢}. We will call any edge lying in such a triangle in a cubic graph
triangular. A pair of independent edges {¢; = a,b1,e3 = a3b3} in any




connected graph G will be called a singleton isolator if graph G —a; — b, —
a3 — by is disconnected and moreover one of the components of G — a; — b; —
az — b is a single vertex. Clearly, if {e;,e3} is a singleton isolator in any
graph, then {e;, 3} does not extend to a perfect matching. In a 3-connected
cubic graph it is clear that if {e;,e2} is a singleton isolator, then one of the
e;—say ¢,—is triangular and if ¢, lies in triangle T where V(T) = {a,b, ¢}
and e; = ab, then edge e3 does not lie in T and in fact ¢z = de where
{d,e} N {a,b,c} = B and precisely one of the vertices d and ¢ is adjacent to
vertex c.

It is also obvious that every 3-connected cubic claw-free graph different
from K, has singleton isolators and hence no such graph is 2-extendable.

On the other hand, it is an interesting consequence of the next theorem
that if {e1,e3} is not a singleton isolator in a 3-connected cubic claw-free
graph, then, in fact, {e1, ¢2} does extend to a perfect matching.

Theorem 2.3. Let G be a 3-connected cubic claw-free graph # R;.
Suppose G is a gmoth with body {e;,e3}. Then:
(a) no edges of G join edges e; and e3,
(b) precisely one wing of the gmoth at {e;, ez} is a singleton and
(c) the other wing of the gmoth has exactly four vertices of attachment to
{eli e2}'

Proof. As before, let ¢; = a;b; for ¢« = 1,2. Since each of the wings C;
and C; send at least three edges to the body by 3-connectivity, then since G
is cubic, there can be at most one additional edge in the body; that is, there
can be at most one edge joining ¢, and e;.

Suppose there is such an edge es. Then without loss of generality, we may
assume that es = b;a;. But then each wing C; sends ezactly three edges
to set S. If a; sends two edges to C; or two edges to Cj3, then G is not
3-connected. So we may assume that a; sends one edge to C; and one edge
to C;. Similarly for b;. Let a; be adjacent to u, € C; and u; € Cj. But a,
is not a claw-center, so either by ~ u; or b; ~ uz. Without loss of generality,
assume that b; ~ u;.

Now suppose by ~ u; also. Then V(C;) = {u}. Suppose that V(C3) is
also a singleton. Then it follows that G = Rs, a contradiction. So we may
suppose that |V (C3)| 2 3. But then a;,a; and b; must be matched into
C5 by 3-connectivity and it follows that a; is a claw-center, a contradiction.
So we may assume that bz # u;. More specifically, suppose b3 ~ us # u;
where ug € V(C1). Then by 3-connectivity, a; is also adjacent to a vertex
uq € V(C1), uq ¢ {u1,us}. But then {a;,53} is a vertex cut of sise 2in G, a
contradiction. This proves part (a).

There are, then, eight edges from {e;,e;} to wings C; and C;. Since both
wings are odd, and since G is 3-connected, parity dictates that precisely one
wing is attached to the body by three edges and the other by five. Without




loes of generality, assume that there are precisely three edges joining C; to
the body. Clearly, then, wing C; # K.

We claim then that wing C; is a singleton.

Since G is 3-connected, there is a matching from S into C; of size = 3.
Without loss of generality, let us assume it contains {b,u;, aguz,bzus}. Also
without loss of generality, by 3-comnectivity we may assume that az ~ v;
where v; € V(C,). But a; is not a claw-center, so either bz ~ vy or b3 ~ u,.

Suppose first that b3 ~ v,. But then, again by 3-connectivity, the third
edge into C; from S—that is, the edge different from azv; and b3v;—must
be incident with vertex v;. Thus C, is a singleton.

So suppose that b3 % v, and hence b3 ~ uz;. Suppose C, is not a singleton.
Then there exists a matching from S into Cy and, moreover, this matching
must be incident with vertices ai,b; and a3z (and hence one of the edges of
the matching is via3). Now if a1 ~ uy, then {uy,a3} is a vertex cutset of
size 2 in G, a contradiction. So a; is adjacent to a vertex of C; other than
u;. But then a, is a claw-center in G, a contradiction. Thus again C, is a
singleton and part (b) is proved.

To prove part (c), we begin by observing that by 3-connectivity and an
edge count, the non-trivial wing (C,, say) has at least three vertices of at-
tachment and no more than five. Assume V{C,) = {v;}. Without loss »f
generality, we may assume that v, is adjacent to all of a,,b; and a,. Also by
3-connectivity, there must be a matching of S into C; of size 3. Without loss
of generality, we may assume that one edge of this matching is incident with
a;. Call this edge a,u;.

(i) Suppose first that the other two matching edges are uzd; and uaaj.
Since a3 is not a claw-center, it follows that b3 ~ us. Suppose by ~ u;. Let
u;w be the edge of C; incident with u;. Then since u; is not a claw-center,
w = ug. But then C; cannot be connected; that is, u; is not joined to u; or
to uz by any path in Cz. This is a contradiction. So b3 # u;. By symmetry,
we may also suppose that b # u;. But then b3 must be adjacent to a fourth
vertex of attachment in C3; call it u,. But a3 is not a claw center, s0 b5 ~ us
and hence C; has exactly four vertices of attachment as claimed.

(ii) Suppose the other two edges of the matching are uzd; and usd;. Con-
sider the third neighbor of a; in C;3. Suppose it is ;. Then u; is a claw-center,
contrary to hypothesis. So a3 # u; and by symmetry we may also assume
that a; 7% uz. So suppose a; ~ uj.

First suppose b3 ~ u;. Then since u, is not a claw-center, the third
neighbor of u; must be us. But then again wing C, is not connected, a
contradiction. So b3 % u; and by symmetry, we may also suppose that
ba % uz. Thus b3 must be adjacent to a fourth vertex of C; different from
u;,43 and us and we have precisely four vertices of attachment on C; as
claimed.

So suppose the third neighbor of a; in C; is none of u;,u; or us. Say it is




tq. Then a3 is not a claw-center, so b; ~ u4. So again we have four vertices
of attachment as claimed.

(iii) So finally assume that the matching from C; to S is a;u;, aguz and
baus. But a3 is not 2 claw-center, so b3 ~ uz. Then if b, ~ uy, set {u;, a3}
i8 a 2-cut, contrary to 3-connectivity. If by ~ u; then C; is disconnected, a
contradiction. Suppose b; ~ u3. Then us is a claw center, a contradiction.
Thus b, is adjacent to a fourth point of attachment u4 in C3, uy & {u;, uz, u3}.
This proves part (c) and hence the theorem. ]

The next result now follows from Theorems 2.1 and 2.3(b).

Corollary 2.4. If G is 3-connected, cubic, claw-free and even, and
{e1,e2} is any set of two independent edges in G, then {e;,ez} extends to a
perfect matching of G if and only if {¢1, 3} is not a singleton isolator. ]

It is now obvious to see that by far the large proportion of independent
pairs of edges in a 3-connected cubic claw-free graph do extend to perfect
matchings. We can, in fact, determine such proportions. There are two types
of pairs of adjacent edges. The first type consist of those pairs both of which
share a triangle and the second type consist of one edge on a triangle and the
other not on a triangle. Since there are three pzirs per triangle of the first
type, there are a total of 3-p/3 = p pairs of the first type and since there are
six pairs per triangle of the second type, there are 6 - p/3 = 2p of the second
type in total. (Here p is the number of vertices in G.) Hence there are a total
of 3p pairs of adjacen: edges altogether.

On the other hand, there are (%) = (*/?) distinct pairs of edges in G and
hence the number of pairs of sndependent edges is (3’,/ 2) —3p = (9p? —30p)/8.
(Here g denotes the number of edges in G.)

So the proportion of non-adjacent pairs of edges to all pairs of edges in G
is:

3(9p® — 30p) 8

If G # Ry, K4, then the non-triangular edges form a perfect matching
of G each edge of which joins a pair of triangles in G. Thus there are p/2
such pairings of triangles. Moreover, each edge of this perfect matching cor-
responds to four different singleton isolator pairs one edge of which belongs
to each triangle joined by the matching edge. Thus there are p/2 - 4 = 2p
different singleton isolator pairs. Thus the proportion of singleton isolator
pairs to all pairs is 16/(9p — 6) and the proportion of singleton isolator pairs
to all sndependent pairs is 16/(9p — 30).




3. The 4-regular 4-connected Case

Although no 3-connected cubic claw-free graph is 2-extendable, this is
not true in general for 4-connected 4-regular claw-free graphs. Our first task
in this section is to prove that those 4-connected 4-regular claw-free graphs
which contain a K are, except for one trivial exception, partitionable into
vertex-disjoint K’s which are then joined together by a perfect matching.

Theorem 38.1. If G is is 4-connected 4-regular claw-free and contains
a K4, then either G = Kz or the vertex set V(G) can be partitioned into
disjoint sets of four vertices each such that each four-vertex set induces a K
in G.

Proof. Assume G is not Ks. First we prove that if two K,’s intersect,
they must be identical. Suppose K4(1) and K((2) are two K;’s in G having a
vertex in common. Call the common vertex v. Now if they have ezactly one
vertex in common, deg v = 6 which is impossible, while if they have exactly
two vertices in common, the degree of each must be 5 which is also impossible.
So suppose they have exactly three vertices in common. Then let a be the
vertex of V(K (1)) =V (K4(2)) and let b be the vertex of V(K ((2)) -V (K(1)).
Since G # K5, a % b. But then it follows that {a,}} must be a cutset of sise
two in G, a contradiction.

Now we prove that if one vertex of G lies on a K, they all do. It will
suffice to show that if a vertex v lies in a K, then so do all of its neighbors.
Clearly this is true for K5, so suppose G # Kg.

So suppose N(v) = {a, b, ¢c,d} and that {v,b, c,d} all lie on a common Kj.
If a is adjacent to any of b, ¢ or d, then, since G is not Kz, we get vertex cuts
of sizse three in G, a contradiction. So a is adjacent to none of these three
vertices. Hence let the neighbors of a different from v be {e, f,g}. But since
a is not a claw-center, it follows that e ~ f, f ~ g and ¢ ~ g. In other words,
the vertices {a, e, f, g} induce a Kj. ]

Let us denote the class of 4-connected 4-regular claw-free graphs which
contain a K, by Go.

Theorem 8.3. Every graph in class o, except Kj, is 2-extendable.

Proof. From the preceding theorem, we know that G is partitioned into
K¢’s. Thus there are two kinds of edges in G: type A edres which lie in a
K, and type B edges which do not. All type B edges together form a perfect
matching of G and hence any two type B edges (in fact, any number of type
B edges) extend to a perfect matching of G.

Similarly, any two independent type A edges (in fact, any number of
independent type A edges) also extend to a perfect matching of G. This
perfect matching contains precisely two type A edges from each of the K,'s
in G.




So it remains to treat the case of two independent edges, one type A, the
other type B. Let ¢; = ab be a type A edge and let ¢; be a type B edge. Let ¢3
be the edge in the same K4 as ¢, but not adjacent toe,. Let G' =G —a-b.
Then G’ is 2-connected and hence there is a cycle C in G’ which contains
edges ¢; and e3. Among all such cycles, choose C to be a shortest one. Then
le* K4(1), Ki(2),..., K4{r) be the K,'s in G through which cycle C passes,
where ¢; € E(K,(1)).

N»>w since C was chosen to be shortest, we may assume that it alternates
between A edges and B edges. To see this, it is necessary only to note how
C can intersect each K¢ in G'. So let choose an arbitrary K, in G'. Let the
four vertices of this K4 be w,z,y and z and assume cycle C enters K, on a
B edge at vertex w. Then C must pass through at least one vertex of the K
other than w. Suppose C passes through w, z and y of K, but not z. Then
C' = C — wz — zy + wy is another cycle passing through e, and ¢3, but is
shorter than C, a contradiction. If C passes through all four vertices of the K,
before exiting, (say through wz, zy and yz), then C" = C - wz—zy—yz+wz
still passes through the K, as well as edges E; and e;, but is shorter thaa C,
again a contradiction.

Thus we may assume that cycle C either

(a) encounters K, only in edge wz,

(b) encounters K, twice—say in edge wz and later through edge yz, (but
then C is not a shortest cycle} or

(c) misses K, altogether.

Thus C is an even cycle the edges of which alternate between type A and
type B. Also one of its type B edges is e;.

We now build a perfect matching F for G as follows. Insert all type B
edges of cycle C into F. (This includes ez of course.) The remaining edges
of F will all be type A and are chosen as follows. From K,(1) choose edge
e;. Foreach i =1,...,r, if C meets Ky(s) in a single edge—say wz—where
V(K4(3)) = {w,2,y,3}, add edge yz to F. If V(C) NV (K,) = @ for any
arbitrary K, in G, insert any two independent edges from this K into F. §

In view of Theorem 3.1 the structure of the graphs in class Gy is quite
clear. However, let us not. that all the graphs in this class have an alternate
description as line-graphs. More particularly, K5 = L(K)s) and each of the
other graphs in class Go is a line-graph L(H) of a bipartite graph H with
bipartition V(H) = AU B, each vertex of A having degree 4 and each vertex
of B having degree 2. Moreover, H must be 2-connected and every vertex
cut of H of sise 2 must consist of two vertices of degree 4, while each vertex
cut of sise 3 must contain at least one vertex of degree 4.

We mention this line-graph description of class Go primarily in view of
Theorem 3.4 below.

Next let us study those 4-connected 4-regular claw-free graphs which con-
tain no K‘.




Let us denote by G, the infinite class of graphs defined as follows. Con-
sider two vertex-disjoint cycles C; and C; both of length k > 3 denoted by
U U3z - - ugty and viyg - - - Ugu; respectively. Now join each u; to each of v;_,
and v;, where the subscripts are taken modulo k. Call the resulting graph on
2k vertices G and let G, be defined as §, = {G3}32 4.

Note that each member of G, is 4-connected, 4-regular and claw-free. In
fact each is also planar, even and for k > 4 each vertex lies on precisely three
triangles. (Note also that G¢—the octahedron—has all of these properties
except the last.)

Let us call all edges of the form u;v,; rungs. Note that two independent
rungs in Gg; which have the property that the deletion of all four of their
endvertices results in a disconnected graph consisting of two odd components
will not extend to a perfect matching. Such pairs are either of the form
{vivis+1,v;u5} or {viu, vyus;41}, where 5 # 4,4 + 1 and again all subscripts
are taken modulo k. For brevity below, let us call any such pair of edges which
do not extend a red pair. Note also that, by the proof of Theorem 2.1, all
other pairs of independent edges in G2 do extend to perfect matchings.

Theorem 3.3. Suppose G is a 4-connected, 4-regular claw-free graph
with an even number of vertices. Suppose further that G contains a non-
extendable pair of edges e; = a1 by, e3 = azbs which have a third edge joining
them.

Then G = G3x € G, for some k > 3 and {e;,e;} is a red pair in G.
Furthermore, then, a pair of independent edges in G = G35 extends to a
perfect matching iff the pair is not a red pair.

Proof. The proof is by induction on |V (G)|. Without loss of generality,
suppose that b; ~ a3. Since {e;,e3} does not extend, by Theorem 2.1 we know
that graph G’ = G—{a), b1, a3, b3} consists of precisely two odd components.
Let us call them C; and C;.

Suppose first that |[V(C;)| = 1 = |[V(C2)|. Then since G is 4-regular,
a; ~ by. But then G = Gg, the octahedron.

Suppose next that |V (C;)| = 1 and [V (C3)| = 3. Let V(C1) = {¢1} and
V(C3) = {u1,u3, us}. since C; is connected, we may assume, without loss of
generality, that u; ~ uz and u; ~ us.

1. Suppose u; ~ a;. Since there is no claw at u;, we may assume that
either uz ~ ug or a, is adjacent to at least one of u; and u,.

1.1. Suppose u; ~ us.

1.1.1. Suppose also that u; ~ b,.

1.1.1.1. Suppose further that u3 ~ a;. Then us ~ a3, us ~ b3 and
Uz ~ b3. But then G =G € §;.

1.1.1.2. So suppose that ug # a,.

1.1.1.2.1. Suppose uz ~ a3. Then since there is no claw at a3, u3 ~ b3.
Thus u3 ~ a, and us ~ b3. But then again G = Gs € 1.
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1.1.1.2.2. So we may suppose that uz # a;. But then degus; < 3, a
contradiction.

1.1.2. So suppose that u; # &;.

1.1.2.1. Suppose u; ~ a3. Then, since G is 4-connected, by # b;. So b, is
adjacent to one of up or ua; without loss of generality, assume b; ~ u,.

1.1.2.1.1. Suppose uz ~ a;. Then degus < 3, again a contradiction.

1.1.2.1.2. So we may assume that u; 7 a;. But then we get a claw at u,,
a contradiction.

1.1.2.2. So suppose u; % a3. Then u; ~ b3.

1.1.2.2.1. Suppose uz ~ a;. Since there is no claw at u;, we may also
suppose that us ~ b;.

1.1.2.2.1.1. Suppose uz ~ b;. Then it follows that us ~ az and we see
that G = G € §, once again.

1.1.2.2.1.2. So we may suppose that uz % b;. Thus uz ~ a3 and us ~ b;.
But then we have claws at both b, and a3, a contradiction.

1.1.2.2.2. So suppose uz # a; and by symmetry, that ug # a,,us # b3
and uz # b3. Thus uj is adjacent to one of the two vertices az,b; and us is
adjacent to the other. But then deguj,degus < 3, a contradiction.

1.2. So suppose tkat «3 7 ug. Since there is no claw at u,, either a; ~ uj
or a; ~ ug. Without loss of generality, suppose that a; ~ u3.

1.2.1. Suppose ug ~ b;.

1.2.1.1. Suppose further that uz ~ a3. Then degu; = 4 implies that
u) ~ bz. But then degus < 2, a contradiction.

1.2.1.2. So suppose that u; # a3. Thus uz ~ b32. Then since there is no
claw at uy, it follows that u; ~ b3. Thus again degus < 2, a contradiction.

1.2.2. Suppose u; ~ a3. Now if b; ~ bs, then {a;, az, b3} is a 3-cut in G,
a contradiction. So by 4 bz. So by ~ u; or b; ~ us.

1.2.2.1. Suppose b; ~ u;. Then we have a claw at u;, a contradiction.

1.2.2.2. Thus b; % u; and hence b; ~ us. Then uz ~ bz,u; ~ bz and
u3 ~ ba. But then degb; > 5, a contradiction.

2. So we may suppose that u; 7% a, and by symmetry, that u; # b,
also. Thus u; ~ b; and u; ~ a;. Moreover, since there is no claw at u;, we
have uz ~ us. Now without loss of generality, we may assume that a; ~ uj.
Suppose b3 # us. Then b3 ~ a; and b ~ uz. But then degous = 2, a
contradiction.

Thus b3 ~ us. Now if a; ~ b3, then degus = deg us = 3, a contradiction.
S0 a; # b;. But then a; ~ ug and b3 ~ uz. But then both u; and uj are
claw centers, a contradiction.

So if [V(C1)| =1 and |[V{C3)| = 3 we must have G = Gjs.

Next suppose [V (C;)| = [V(C3)| = 3. Then each of C; and C; must send
at least six edges to {;,b;,a;,b3}, contradicting the 4-regularity of G. So
there is no graph when |V (C;)| = [V(C3)| = 3. (We remark that there u
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such a graph on ten vertices in the case when edges ¢; and e; are not joined
by an edge; namely, graph Gio.)

So now suppose that at ieast one of the components C;,C; has at least
five vertices. Without loss of generality, suppose that C; has at least five
vertices. Then by 4-connectivity, there is a matching of {a;,6;, az, b3} into
V(C3), say ayuy, byug, agus, bauy.

1. Tirst suppose that |V(C})| = 1. Since there is no claw at b;, we must
have a; ~ uz and since there is no claw at a3, we also have b2 ~ u3. But
then no a; claw implies u; ~ uz and no b; claw implies u3 ~ u. Also since
G is 4-connected, it follows that u; # us,uz # ¥y and uz % u,.

1.1. Suppose that u; ~ us. Then since there is no claw at uz, it fol-
lows that u; and uz; have a common neighbor in C%, where C; = C; —
{u1,u3,us, us}. Call this common neighbor us. But then {us, uq,ug} is not
a 3-cut, so it follows that V(C%) = {us}. Thus G = G, € §:.

1.2. So suppose that u; # u(. Thus [V(C3)| > 7.

1.2.1. Suppose [V (C;)| = 7. Hence [V (C3)}| = 3. Let V(C}) = {us, ug, u7}-
Note that C is connected, so without loas of generality, assume that us ~ ug
and ug ~ ur7.

1.2.1.1. Suppose ug # u7.

1.2.1.1.1. Suppose ug ~ u;. Then since there is no claw at ug, by symme-
try we may assume, without loss of generality, that u; ~ ug. If us ~ ug, then
it is impossible for all of ugs, uy, ug and uy to have degree 4, a contradiction.
So ug 7(' u3z.

1.2.1.1.1.1. Suppose us ~ us. Then we get a claw at us, a contradiction.
So ug % uj.

1.2.1.1.1.2. Suppose ug ~ uy. Then since there is no claw at ug, either
Uy ~ Ug OT Ugq ~ U7,

1.2.1.1.1.2.1. Suppose uq ~ ug. Then we get a claw at ug, a contradiction.

1.2.1.1.1.2.2. So we may suppose that u, # ug and hence uy ~ uy. Then
if ug ~ uga, we get a claw at ug, 80 ug ~ ug and by symmetry uy ~ u3. But
then deg ug = degur = 3, contradictions both.

1.2.1.1.2. So we may suppose that us % u; and by symmetry that us # u,
also. Thus ug ~ ug and ug ~ us. But then it is easy to see that both ue and
u7 have degree at most 3, a contradiction.

1.2.1.2. So suppose ug ~ u7. Then without loss of generality, we may
suppose that u; ~ ug and u; ~ ue.

1.2.1.2.1. Suppose ug ~ 4. If ug ~ uy, we have a claw at ug, 80 ug % us.
So ug ~ uq. But then uy ~ us and u7 ~ uq and G = G2 € §G,.

1.2.1.2.2. So suppose that ug o ug. If ug ~ ug, we get a claw at ug, so
us # us. Thus ug ~ ug. Since there is no claw at ug, it follows that ug ~ uy.
If ug ~ us, we have a claw at ug, s0 ug 7% us. Hence ug ~ uz and u7 ~ uy
and once again we have that G = G3.

1.2.2. Suppose now that |V (C3)| = 9. Hence [V(C})| > 5. Thus, since
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G is 4-connected, we must have a matching {u, vy, uzvz, uavs, uque} for some
set of vertices {vy,vq,vs,v4} € V(Cj;). Now since there is no claw at us,
u) ~ vg and since there is no claw at us, uy ~ vs. But then since there is no
claw at uy, v; ~ vz and since there is no claw at uy, vs ~ vq.

Now build a new graph G’ from 7 by deleting vertices ¢y,a,,5;,32 and
b2 and replacing them with one new vertex w; which we join to each of
u1,u2,u3 and uq. Finally, join vertices uz and us. Then {u;us, uauy} are a
non-extendable pair in G’ and G’ is 4-connected, 4-regular, claw-free and even,
But [V(G')| = [V(G)| — 4. So by ike induction hypothesis, G' = G,; € G,
for some 5 > 3. But then clearly G = G2544-

2. Now suppose [V(C,)| = 3. Let V(Ci) = {w1,ws,w3}. Recall that
|[V{C32)| > 5 and so there must be a matching [a,u;,b1u3,83u3, baus} where
{u1,u3,u3,u4} € V(C3). This is a consequence of the fact that G is 4-
connected. Since C; is connected, we may assume that w; is adjacent to
both wy and w;.

2.1. Suppose wq % ws.

2.1.1. Suppose also that a; ~ wy.

2.1.1.1. Suppoee even further that w; ~ b;. Then we get a claw at wy, a
contradiction. So wy # b;.

2.1.1.2. Suppose wy ~ a3. Then we get a claw at w; again and again we
have a contradiction. so w, # aj3.

2.1.1.3. So since w; % b;,az, we must have wy; ~ b3. By symmetry
and 4-connectivity, we may assume, without loss of generality, that wq ~ b;.
Moreover, a; # az also by 4-connectivity, 80 az ~ wg or az ~ ws.

2.1.1.3.1. Suppose a; ~ wy. Then since there is no w; claw, wg ~ b2. But
then deg wy = 3, a contradiction.

2.1.1.3.2. So we may suppose that a3 # w3 and hence a3 ~ wy. But then
at least one of w; and wy has degree at most 3, a contradiction.

2.1.2. So assume a; ¥ w; and by symmetry that b3 % w;. Thus w, is
adjacent to both b; and a3. But then {a;,w;,b3} is a 3-cut in G which is
impossible.

2.2. So suppose that wy ~ wy. Then without loss of generality, we may
suppose that b; ~ w;. But then if wy, ~ a3, {a1,wy, b3} is a 3-cut which is
impossible. Thus w; # a3. Now by 4-connectivity, a; is adjacent to at least
one of wg and ws. By symmetry, without loss of generality we may assume
that a3 ~ wy.

2.2.1. Suppose a; ~ w;. Then if a; ~ w, it follows that {w;, wy, b3} is a
3-cut which is impossible. So a; % wy. On the other hand, if a; ~ w3, then
wa ~ by and ws ~ b3. But then we have a claw at b;. So a; # wy. But then
deg ws < 3, a contradiction.

2.2.2. So a1 # w;. By symmetry, we may also suppose that 83 % ws. Bat
then a; ~ ws and by symametry w; ~ b;. But then w; is adjacent to both a,
and b;. But then we have claws at w; and at wy, a contradiction.
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So we have shown that it is impossible to have |V(C,}| = 3.

3. So suppose that |V(C;)| > 5. Recall that we also have [V (C;)| >
5 as well. So by 4-connectivity, there must be a matching of vertex set
{a1,b1,a83,b2} into component C; and another into componeni C;. But then
we st have claws at both b; and a3, a contradiction.

Ivow that we know that G = Gz, it is easy to verify that the only pairs
of independent edges which do not extend to a perfect matching are indeed
the red pairs. [ |

Now let us proceed to characterise yet another class of 4-connected 4-
regular claw-free graphs. These turn out to be a class of line-graphs. Denote
by Ga the class of all 4-connected 4-regular claw-free graphs in which each
vertex liee on ezactly two triangles.

In order to formulate the next result, we need the concept of cyclic con-
nectivity. Let us define the cyclic (edge) connectivity of a graph G to be
minimum taken over the cardinalities of all edge cuts F of G which separate
G and such that at least two components of G — F contain cycles. Denote
the cyclic connectivity of G by ¢A(G). Now let us say that G is cyclically
k-edge connected for all k < cA(G).

If a graph has no cycle-separating edge cut, we shall define the cyclic
connectivity to be 0. For example, both K, and K3 3 are examples of cubic
graphs with cyclic connectivity 0. (The reader is warned that some authors
define the cyclic connectivity of such graphs to be +oco and others say that
the cyclic connectivity of these graphs is not defined!)

Wormald W] showed that if graph G is cubic, but different from either
K¢ or K33, then G is 3-connected if and only if G is cyclically 3-connected.
Let us now call any vertex cut S in a connected graph G star-like if at least
one component of G — S is a singleton. Fouquet and Thuillier [FT| showed
that, if G is 3-connected and cubic, then G is cyclically 4-connected if and
only if all 3-edge cutsets are incident with one common vertex. For cubic
graphs this is clearly equivalent to saying that all 3-vertex cuts are star-like.

It will also be helpful to recall that a cyclically 4-connected cubic graph
is necessarily triangle-free.

Theorem 3.4. Graph G is a member of class §; if and only if G = L(H)
where either H is a 3-connected cyclically 4-connected cubic graph, or else
H =Ky 3.

Proof. Suppose first that graph G belongs to class G3. Clearly, L( Ky 3) is
in g3, so suppose that G # L(K3 3). Note immediately that graph G cannot
contain a K,. Let v be any vertex of G. We claim that the two triangles
containing v must be edge-disjoint. Suppose not. Say, for example, that
N(v) = {a,b,¢,d} and that a ~ b ~ c. Then by the condition on triangles
given in the definition of class §3, d % a,d % ¢ and a # c. But then we have
a claw at v, a contradiction.
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So G cannot contain any of the nine induced subgraphs forbidden in line-
graphs. (See the well-known theorem due independently to Beineke [Bei| and
to Robertson (unpublished).) Thus G = L(H) for some graph H. Note that
the definition of class 3 implies that graph H is cubic and triangle-free.

Now if x(H) = 1, clearly x(G) = 1 also.

Suppose that x(H) = 2. Let {u, v} be a vertex cut of size two in H. First
suppose that {u, v} is independent. Then H — u — v has either two or three
components. Suppose one of these components {call it C) has only two edges
ey and ej joining it to the cutset {u,v}. Then {e1,e2} is a 2-cutset of vertices
in G = L(H), a contradiction.

So we may suppose that each component of H' has three edges incident
with {u,v}. Thus H’ has precisely two components C; and C; and we may
assume that edges ¢;, and e; join u to C) and e3 joins u to C3 while edges ¢,
and ¢5 join v to C; and edge ¢q joins v to C;. But then {e3,eq} is a 2-cut of
vertices in G, a contradiction.

Now assume that vertices u and v are adjacent. Br* then H’ has exactly
two components and each is joined to the cutset with precisely two edges.
Say, for example, that component C, is joined to the cutset via the two edges
ey and e;. Now H is cubic, so C; must contain an edge. Hence {e;,ez} is a
cut set of two vertices in G, a contradiction.

So x(H) 2 3.

By the result of Fouquet and Thuillier [FT1] mentioned just before this
theorem, it remains only to show that all vertex cuts of sise three in H are
star-like. To this end, let {u,v,w} be a 3-cut in H. Suppose no component
of H” = H - u— v — w is a singleton. Since H is 3-connected and cubic,
induced subgraph H{[u, v, w] either contains exactly one edge or none.

Suppose H(u,v,w| contains an edge, say uv. Without loss of generality,
assume that there are four edges attaching C; to {u,v,w} and three edges
attaching C; to this cutset. Let the three edges of attachment to Cz be ¢;, ¢5
and e3. Since C; is not a singleton, it must contain an edge, so {1, e3,¢s} is
a cutset of three vertices in G, a contradiction.

So we may suppose that the cutset {u, v, w} is independent. Suppose one
of the components of H” is joined to the cutset by exactly three edges. Say
component C; is joined to the cutset via edges ¢;,¢2 and e¢s. But then since
C, is not a singleton, it contains an edge and again {e;,e3,¢s} is a cutset of
three vertices in G, a contradiction.

So we may assume without loss of generality that H” has exactly two
components C, and C;, that C; has five edges joining it to the cutset and
that C3 has four edges joining it to the cutset. Without loss of generality, we
may suppose that u and v are joined by two edges each to C; and by edges
e1 and e3 to C3. Then vertex w must be joined to component C; by one edge
¢3. Then since neither component is a singleton, {e;, ez, ¢s} is another cutset
of three vertices in G and once more we have a contradiction.
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Thus all 3-cuts of vertices in H are star-like.

To prove the converse, we note, to begin with, that L(K3 3) is in class Ga.
Let us suppose that G = L(H), where graph H is 3-connected, cubic and
cyclically 4-connected, hence all the 3-cuts of vertices in H are star-like.

Since H is cubic, G is 4-regular and since H is triangle-free, each vertex
of G lies on exactly two triangles which intersect only in this vertex. Since
G is a line~-graph, G is claw-free by the aforementioned result of Beineke and
Robertson.

It remains only to show that G is 4-connected. Since H is 3-connected,
s0 is G by a result of Chartrand and Stewart [CS|. So suppose x(G) = 3 and
that {¢1,e3,¢3} is a vertex cut in G. Let C; and C; be any two components
of G = G—-2¢, —eg—es. Soin H, if D; denotes the component of H
corresponding to C;, for ¢ = 1,2, the edge set {ey, 3,3} separates D, from
Dj;. But H is 3-connected and cubic, 20 at least one of D; and D; is a
singleton or else {¢;,¢3,¢s} is a matching in H. But since both C; and C;
are non-empty ‘n /7, each of D; and D, contains at least one edge in H and
hence :.either is a singleton.

So {21, 3,3} is a matching in H. But then each component D; and D,
has minimum degree 2 and hence each contains a cycle. Thus {e;,e3,¢3} is
a cyclic 3-cut in H, a contradiction.

So x(G) > 4 and the proof of the theorem is complete. [ ]

Note that class G; contains some graphs with an odd number of vertices;
for example, L(K3 3) is such a graph. Another example is G = L(Rg), where
Rg is the so-called “pentagonal prism”®; i.e., the cubic graph on ten vertices
obtained by taking two disjoint pentagons and joining them with a perfect
matching. More generally, we observe that the 0odd members of class §; arise
as line-graphs of 3-connected cubic triangle-free graphs H which have only
starlike 3-cuts and such that [V(H)| is not divisible by 4.

In view of these observations, let us denote those graphs in G; having an
even number of vertices by G;z.

We now proceed to determine exactly which pairs of independent edges
in a graph belonging to class Gzx extend to perfect matchings.

Let v be a vertex of any graph G of degree 4 and suppose v lies on
exactly two triangles in G. More precisely, suppose N(v) = {a1,b1,43,b2}
and suppose a; ~ b; and a; ~ ba. Moreover, suppose that no other edges
join any two of these four vertices. Then the 5-vertex (induced) subgraph on
these five vertices will be called a butterfly in G and the two edges ¢; and
ez will be called its wingtips. (The term “butterfly” was first employed in
this manner in (HLP].)

Theorem 8.5. Let G belong to the class G;x and let e; and e; be any
two independent edges in G. Then {e;,e3} extend to a perfect matching if
and only if they are not the wingtips of a butterfly.
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Proof. Clearly G contains a butterfly and the wingtips of any butterfly
do not extend;to a perfect matching.

Conversely, suppose {¢y = ayb1,¢3 = azbd3} do not extend. Then by the
proof of Theorem 2.1, we know that G’ = G — a; — b; — a3 — b3 consists of
two odd components C; and C,;. Moreover, we know that if the edges ¢; and
ez are joined by an edge, then G € G;. But ;N G; = 9, sosince Gis a
member of Gz, the edges ¢; and ¢; are not joined by any edge.

Suppose that neither €y nor C; is a singleton.

1. First suppose that V(C,) = 3. Let V(C,) = {u;, u2, us}. Then without
loss of generality, we may assume that b; ~ u; and uy ~ u; ~ us.

1.1. Suppose that ug ~ us.

1.1.1. Further suppose that a; ~ u;. Since G € §3, it then follows that
a3 % ug, by £ ug, a; % us and us # b;. So it follows that u; ~ az and
uz ~ by and us ~ az and ug ~ by. But then {uj, us,a3,b3} induce a K, a
contradiction.

1.1.2. So we may assume that a; % u;. So without loss of generality,
assume that u; ~ a3. Thus u; # b;. Since G is 4-connected, by symmetry
we may assume that a; ~ ug. Then since uj lies on only two triangles in G,
ug # b;. But then since there is no claw at u;, u3 ~ a3 and uy ~ b;. But
then vertex u; lies on three triangles, a contradiction.

1.2. So suppose that u; # us. Since deguy = 4, we may assume by
symmetry without loss of generality that us ~ b2. Now since there is no claw
at ug, either uz ~ b; or ug ~ &;.

1.2.1. Suppose that u3 ~ b;. Then since G € §3, we have that uz # a;
and u; # a;. But then 4-connectivity implies that a; ~ us. But since there
is no claw at us, u; ~ b3. But again since G € §3, uy o a3. Thus degus = 3,
a contradiction.

1.2.2. So u3 % b; and hence ug ~ b;. Thus uz ~ a;, uz ~ a3 and uz ~ b3.
But since there is no claw at uy, either u; ~ a; or u; ~ a3. But if u; ~ a;,
then u3 ~ ag. But then edge agbg lies on two triangles, contradicting the fact
that G € G3. So u; # a, and hence u; ~ a3. Thus it follows that us ~ a,.
But then there is a claw at uy, a contradiction.

2. Thus |V(C,)| 2 5 and by symmetry [V(C;)| > 5 also. Thus we may
assume that a;,5;,a2 and b3 are matched into C; to, say, uy, u3, us and u,
respectively and also matched into Cj to, say v;, v, vs and vq respectively.
Since there is no claw at a;, we may assume without loss of generality that
uy ~ b;. But then since G € G2, we have a; % v3, u; % u; and a; % u;. But
then we have a claw at b,, a contradiction. |

The even members of class §; can be given an alternative characterisation
to that of the preceding theorem.

17




Theorem 3.8. Let G be a 4-connected 4-regular claw-free even graph.
Then G € Gag if and only if G contains a non-extendable pair of edges and
no pair of non-extendable edges has an edge joining them.

Proof. Suppose first that G € G;g. Then every vertex of G is the body
of a butterfly the wingtips of which are non-extendable. Suppose now that
{e1,e2} are a non-extendable pair which are joined by an edge. Then by
Theorem 3.3, graph G € G,. But every graph in G, has the property that
each of its vertices lies on three triangles and hence G & 3, a contradiction.

To prove the converse, suppose that G has the property that it contains
non-extendable pairs of edges, but no such pair is has an edge joining them.

Let v € V(G) and denote its set of neighbors by N(v) = {a,b,¢, d}. Since
G i claw-free, we may assume without loss of generality that a ~ b. Now
suppose ¢ % d. Then again since there is no claw at v, either b ~c or b ~ d.
By symmetry we may assume without loss of generality that b ~ c. Then
again since G is claw-free, either a ~ c or a ~ d. But if a ~ ¢, G contains a
K, and hence by Theorem 3.2, G is 2-extendable, a contradiction. So a % ¢
and hence a ~ d. But then {ad,bc} are a non-extendable pair and they are
joined by edge ab, contradicting the hypothesis.

So ¢ ~ d. Moreover, by hypothesis it then follows thata % c,a % d, b #£ ¢
and b % d. Thus vertex v lies on exactly two triangles. But the selection of
vertex v was arbitrary, so this property then holds for all v € V(G) and hence
G € Gag. |

Finally, we observe that we have partitioned the set of all 4-connected
4-regular claw-free graphs.

Theorem 3.7. The class of all 4-connected 4-regular claw-free graphs
= Go U §1 U G2, where the classes Gy, G, and §a are pair-wise disjoint.

Proof. In class Go every vertex lies on a K, 8o clearly this class is disjoint
from §; and §;. But a graph in class G; has the property that each of its
vertices lies on three triangles, whereas in class §; vertices lie on precisely
two triangles, so these classes are disjoint as well.

It remains only to show that every graph G which is 4-connected 4-regular
and claw-free lies in one of these three classes. Let v € V(G) and again let
N(v) = {a,b,¢c,d}. By the claw-free property there are at least two triangles
at v. Call two such triangles T} and T;. Either T; and T; share an edge or
they do not.

First suppose that T} and T; do share an edge. Suppose without loss of
generality that T} = vabv and that T; = vbcv. Then if a ~ ¢, graph G lies in
class Go. So suppose a % c. But then since there is no claw at v, eithera ~ d
or ¢ ~ d. But in either case G will then have a non-extendable pair of edges
joined by an edge and thus G € G;.
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So suppose that G has the property that each of its vertices lies on two
triangles which do not share an edge. But then it follows that v lies on

precisely two triangles and hence by definition, G lies in class Gj. 1
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