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CHAPTER 1

INTRODUCTION

1.1 Motivation

In large organizational structures where the decision making process is too compli-

cated to be handled by a single agent (or decision maker) or where agents are distributed

over a wide geographic area, decentralized decision making paradigm is employed fire-

quently. Examples of such decision making organizations occur in financial institutions,

industrial environments, and military surveillance systems etc. In order to make the

group's decision more efficient and to avoid the dominance of an individual member over

the rest, the group is divided into smaller decision making units consisting of one or more

members (experts). Decisions of these smaller units are conveyed to the head of the orga-

nization who is responsible for decision combining and reaching the final decision.

One interesting application of group decision making that has received an increasing

interest in recent years is the design and analysis of distributed sensor networks for signal

detection (decentralized detection systems). This is due to the advantages that these sys-

tems have over their centralized counterparts like reliability, survivability, and shorter de-

cision times. In a decentralized detection system there is a group of remotely located local

detectors that monitor a common phenomenon. These detectors are linked to a primary de-

tector (also known as the global decision maker or data fusion center) through bandlimited

channels. Due to this limitation on the bandwidth,the local detectors are not able to convey

to the primary detector all the information available to them about the phenomenon. In-

stead, they provide the primary detector with a compressed version of their data. The role

of the primary detector is to combine the preliminary decisions of the local detectors

along with any locally received observation to make the final decision. For a given opti-

mality criterion, the design of a decentralized detection system involves specifying both

the local decision rules and the global decision rule. Due to the constraints on the trans-



mission capacity of the communication channels, the system experiences performance

degradation and computational difficulty in the design of the optimal system. In the ab-

sence of these constraints, the configuration reduces to a centralized system for which a

well developed theory exists [1-3]. Because of the full utilization of the raw observations

in the centralized system, its performance is used as a benchmark for comparing the per-

formance of different decentralized detection network structures based on different design

criteria. In general, the design of an optimum decentralized detection configuration is a

computationally difficult task [4]. Therefore, rather than resorting to the optimum design

criterion, suboptimum design criteria may be used instead. A design criterion A is said to

be "better" than a design criterion B if the performance of the system when criterion A is

employed is closer to the performance of the centralized system than the performance of

the system when criterion B is employed.

Figures 1.1 - 1.4 show four decentralized detection configurations that are treated in

this dissertation. The parallel fusion system shown in Fig. 1. 1 represents the simplest type

of decentralized detection structure. It consists of n local detectors and a fusion center.

Due to the simplicity of its structure, the design of the system subject to different design

criteria has received most of the interest in the literature. This system is used for hypothe-

sis testing. In this dissertation, we restrict our attention to binary hypothesis testing prob-

lems where the null hypothesis H0 is tested against the alternative hypothesis H1. The

system receives n observations X1 , X2 ,..., Xn in which Xi is the observation received by

the local detector LDi (in the classical detection theory, it is assumed that all these raw ob-

servations are available at one central location and that the decision is made based on the

entire set of observations). Due to the presence of noise in a practical system, these obser-

vations are assumed to be continuous random variables with conditional density functions

pj(xi) ; j--O, 1 , i=O, 1 ,...,n. From an information theoretic point of view, the transmission of

the information in these observations from the local detectors to the global decision maker

requires infinite capacity channels. A requirement which is not practically attainable. To

overcome this problem, each local detector processes the locally received observation Xi

and transmits a compressed version zi of the data to the global decision maker. The way in
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which data reduction takes place can be in the form of a hard decision or a soft decision. In

the first case, the local decision zi takes on one of two possible values indicating the pres-

ence of hypothesis H0 or hypothesis H1 as determined by the local detector LDi. In the

second case, the observation space of each observation Xi is partitioned into M nonover-

lapping regions. The local decision zi, correspondingly, takes on one of M possible values

depending upon the region in which the observation Xi falls in. In this case, the local deci-

sion zi does not contain explicit information about the hypothesis present. In both the hard

decision and the soft decision cases, the output alphabet is finite and each element in this

alphabet has a finite probability of occurrence. This means that the entropy of the alphabet

is finite and, therefore, a finite capacity channel can be employed. The local decisions

(hard or soft) are sent over the bandlimited channels to the global decision maker, which is

also referred to as the fusion center. Based on the decision vector U=[z 1 , z2,...,Znl] whose

elements are the decisions made by the individual sensors, the fusion center makes the fi-

nal decision on whether hypothesis Ho or hypothesis H1 is true.

Figure 1.2 shows a variation of the parallel fusion system shown in Figure 1.1. Here,

the global decision maker receives a local observation of its own (side information) in ad-

dition to the local decisions zi, i=1,2,...,n. The observation vector based on which the fu-

sion center makes the final decision is the augmented vector [LXo] of the local decisions

zi and the observation X0 at the fusion center. Intuitively, the performance of this system is

expected to be better than the performance of the parallel fusion system with n local detec-

tors. Here the information in the observation X0 is fully utilized by the fusion center and is

not compressed by a local detector. In the interesting special case when n =1, the system

reduces to a two-stage decentralized serial configuration.

Figure 1.3 shows a hierarchical system with local and regional decision makers. The

system consists of 2n local decision makers, n regional decision makers (RD's) and a glo-

bal decision maker. Local detectors LD2 i. 1 and LD2 i process their locally received obser-

vations X2ij.1 and X2i and forward their decisions z2ij.1 and z2i to an intermediate regional

decision maker RDi , i=l,...,n. The regional detector RDi combines the two local deci-

sions along with its directly received observation Yi to make the regional decision ui. The

7



decision vector UI=[ul...un] is used by the global decision maker to make the final decision

u0 . The case of more than two local detectors per regional decision maker can also be con-

sidered but is not treated in this dissertation. Figure 1.4 shows another hierarchical decen-

tralized system. The difference between this system and the one shown in Figure 1.3 is

that the regional decision makers receive no observations of their own. Therefore, they

have to make their decisions solely on the basis of the local decisions they receive. The lo-

cal decisions are made on the basis of the local observations and the global decision is

made on the basis of the decisions received from the regional decision makers. However,

due to the unavailability of observations at the regional detectors, the performance of this

system is expected to be inferior to the performance of the hierarchical system with side

information at the regional level.

1.2 Literature Survey

In this section, we briefly review related work on some topics that are treated in this

dissertation.

1.2.1 Decentralized Detection Systems

The design of decentralized detection systems has been dealt with by a number of

authors, e.g. [4-29]. The parallel fusion system, in particular, has gained most of the inter-

est in the literature. Tenney and Sandell [5] addressed the problem of structuring a set of

decision makers and communication links in a manner which leads to effective manage-

ment of a complex, large scale system in real time. In a follow up paper [6], they devel-

oped mechanisms based on the interactions between subsystems to coordinate the making

of decisions which are "best" in some system-wide sense. One interesting application of

their work is the area of distributed detection systems. Tenney and Sandell [7] treated the

two-sensor decentralized detection problem with no data fusion from a Bayesian point of

view. Costs were assigned to reflect the course of action of each local detector. The local

decision rules were chosen such that the average cost is minimized. The local decision

rules were shown to be likelihood ratio tests of the sensor observations for conditionally

independent observations. Sadjadi [8] extended the theory in [7] to encompass the M hy-

8



pothesis testing problem with n local detectors. Here again, the fusion center was not a

part of the optimization. Assuming known sensor thresholds, Chair and Varshney [9] de-

veloped a minimum average cost algorithm for combining the sensor decisions in an n-

sensor system at the fusion center. Optimization of the entire system was considered by

Hoballah and Varshney [10] where they obtained a person-by-person optimal solution to

the parallel network with n local detectors and a fusion center. The person-by-person opti-

mal design for the binary hypothesis testing problem requires the joint solution of (2n+n)

simultaneous nonlinear equations. An iterative algorithm for the solution of the person-

by-person optimality equations was proposed in [11]. This algorithm is based on the

Gauss-Siedel method for the solution of coupled nonlinear equations. The optimization of

the entire system was also considered by Reibman and Nolte [12] where an exhaustive

search is performed over all the fusion rules in order to determine the overall minimum

cost solution. In the exhaustive search method, the fusion center is fixed at a particular fu-

sion rule and a set of n coupled nonlinear equations are solved to determine the n local

thresholds. This process has to be repeated for all the permissible fusion rules. The fusion

rule along with the n local thresholds that yield the smallest possible cost are the optimum

system design parameters. The number of fusion rules grows quite rapidly with n. Tho-

mopoulos, Viswanathan, and Bougoulias [ 13] showed that the number of fusion rules to

be examined for various values of n is given as shown in the following table.

Number of local detectors Number of permissible fusion rules

2 2

3 9

4 114

5 6894

Table 1.1

In both the exhaustive method and the person-by-person optimization approach, the

9



amount of computation required grows exponentially. This makes the above design proce-

dures computationally difficult and, therefore,the study of decentralized detection systems

has been limited to small networks and very few topologies. In this dissertation, we

present a computationally simpler approach for the design of decentralized Bayesian de-

tection systems. Using this approach, we show that the design of the optimum decentral-

ized parallel fusion system reduces to the optimization of a single function of n variables.

Chair and Varshney [14] considered the problem of distributed Bayesian hypothesis test-

ing with distributed data fusion in which data fusion is performed at each site.

The Neyman -Pearson criterion has also been used in the design of decentralized de-

tection systems where neither the costs nor the a priori probabilities need to be available to

the designer. Srinivasan [15] used the Neyman-Pearson criterion to obtain the local deci-

sion rules in the parallel fusion network assuming that the fusion center is a combinational

logic circuit. Hoballah and Varshney [ 16] treated the problem in two respects. First, when

the fusion rule is known and the objective is to find the local decision rules. Second, when

the decision rules at the detectors are given, and the objective is to find the optimum fusion

rule. Thomopoulos, Viswanathan, and Bougoulias [ 17] employed the Neyman-Pearson

criterion where both the decision made by each individual sensor and the global decision

made by the fusion center axe based on the Neyman-Pearson test. Tsitsiklis [18] addressed

the question of concavity of the receiver operating characteristic of the system. He found

that for a given strategy, the receiver operating characteristic is not necessarily a concave

function (a numerical example is provided in [191 ). However, concavity can be achieved

by randomizing with respect to the possible strategies. A similar result was obtained by

Willet and Warren [20]. Viswanathan, Thomopoulos, and Tumuluri [21] applied the Ney-

man-Pearson criterion to the design of the serial decentralized configuration. They found

that for the case of two sensors, the optimal serial network has a better performance than

the parallel scheme ( better here refers to higher probability of detection for the same false

alarm probability). While this interesting result is true for the case of two sensors, the nu-

merical examples provided by [21] show that this result is not true, in general, for systems

with more than two sensors.

10



The Bayesian formulation has also been applied to the design of decentralized detec-

tion structures other than the parallel fusion network. Ekchian and Tenney [22] derived the

necessary conditions for the thresholds to satisfy in order to minimize a given cost func-

tion for a number of configurations including the tandem and the tree-hierarchical topolo-

gies. No numerical results were provided. Reibman and Nolte [23] applied the exhaustive

search method to design specific decentralized detection configurations. Tsitsiklis [24] and

Varshney [25] provided an overview of the recent advances in the theory of decentralized

detection systems.

1.2.2 The Class of Ali-Silvey Distance Measures and the Detection

Problem

The class of Ali-Silvey distance measures has played an important role in the design

of quantizers for hypothesis testing. Recently, it has also been employed in the design of

decentralized detection systems. In this dissertation, we apply members of the class of Ali-

Silvey distance measures to design suboptimum decentralized detection systems, and

compare their performance to that of the optimum decentralized detection system. For the

sake of completeness we now define the class of Ali-Silvey distance measures and provide

examples of members of this class.

Let p0 (x) and pl(x) be the conditional probability density functions of the random

variable X under hypotheses H0 and H1 respectively. A measure of dissimilarity between

these density functions can be expressed in terms of the general class of Ali-Silvey dis-

tance measures (or the class of f-divergences) which is defined as [30]

D(po(x),pj(x)) =f{Eo[g(1)]} (1.1)

where

E0 is the expectation under the hypothesis Ho

g is a convex real-valued function defined on (0,0-)

11



f is an increasing function

1 = pI(x) / po(x) is the likelihood ratio function

Examples of measures from this class include

1) The Bhattacharyya distance

DB = -lnfJpo(x)p 1 (x)dx (1.2)
x

2) The discrimination distance measure

,P0 (x).

DD = fpo (x)In d,• ax (1.3)
p1 (x

3) The Kolmogorov variational distance

DK J=f1p (x) -po(x)Idx (1.4)

4) The J-divergence

P1 (x) (1.5
Di = f [P1 (x) -po (x) ] In -- W-d (1.5)

X

The class of Ali-Silvey distance measures has received an increasing interest in the

design of quantizers for hypothesis testing. This is due to the strong link between these

distance measures and the probability of error (POE). Let 7t = {[t0, 7c,) be the set of all

permissible pairs of the prior probabilities in a binary hypothesis testing problem. Then,

there exists a subset of ic for which if the distance between a given set of conditional

densities is larger than the distance between another set of conditional densities, then the

POE corresponding to the first set is less than the POE corresponding to the second set.

12



This result is known as the Blackwell theorem [31]. Poor and Thomas [32] applied the

general class of Ali-Silvey distance measures to the design of a generalized quantizer for

binary decision systerrs. Poor [33] also used these measures as criteria for analyzing the

effects of fine data quantization on inferential procedures and for designing quantizers to

minimize these detrimental effects. Benitz and Bucklew [34] applied the Chemoff

theorem to the design of quantizers that asymptotically minimize the probability of error

(The Chernoff theorem differs from the traditional Chernoff bound in that the theorem

clearly exhibits the exponential dependence of the bound). A number of authors have

applied members of the class of Ali-Silvey distance measures in the design of

decentralized detection systems. For example, Longo, Lookabaugh, and Grav [35] have

employed the Bhattacharyya distance, whereas Lee and Chao [36] have used the J-

divergence to subpartition the decision space when a quality bit is transmitted along with

the decision to the fusion center.

1.2.3 Information Theoretic Measures for Quantization and Detection

The quantization of a random variable X for minimum distortion has been studied

extensively in the literature (see [39] for a survey of results). When the entropy of the

quantizer output is restricted not to exceed a given prescribed value, the problem becomes

that of quantization under entropy constraint. The quantization of the random variable X

for minimum distortion under entropy constraint was considered by Noll and Zelinski [40]

and Farvardin and Modestino [41]. It is known that in detection and estimation problems,

quantization for minimum distortion is not the appropriate criterion to use for designing an

optimum inferential system [42,43]. The problem of adjusting the threshold in a simple bi-

nary hypothesis testing problem under the condition of maximizing the mutual informa-

tion between the decision and the state of nature was considered by Middleton [44] and

Gabriele [45]. Martinez [46] and Hoballah and Varshney [47] have shown that the prob-

lem of maximizing the mutual information between the decision and the state of nature is

equivalent to applying the Neyman-Pearson criterion for signal detection. As a result, the

maximum mutual information detector is a likelihood ratio detector. Hoballah and Varsh-

13



ney [47] have made use of this result to design a maximum mutual information decentral-

ized detector under the assumption that each local detector makes a single hard decision.

1.2.4 Bounds on the Probability of Error of Optimum Receivers

In hypothesis testing, the performance of optimum receivers is usually expressed in

terms of the probability of error. It is well known that the optimum receiver which mini-

mizes the probability of error is the maximum a posteriori probability (MAP) receiver [3].

When an observation x is received, the MAP receiver computes the a posteriori probabili-

ties P(H-0 I x) and P(H1 I x) of the two hypotheses and chooses the hypothesis with the larg-

er a posteriori probability. The probability of making an error based on the observation x is

given as

P (Errorlx) = min (P (Holx), P (H 11x)) (1.6)

Analytic evaluation of the probability of error is very difficult in most applications be-

cause it involves the evaluation of the discontinuous function min (.). Instead of evaluat-

ing the exact probability of error, tight upper and / or lower bounds can often be

determined analytically making it possible to compare the performance of optimum re-

ceivers based on these bounds.

A number of upper and lower bounds have been proposed in the literature [51-63].

Because of the indirect relationship between the probability of error and the class of Ali-

Silvey distance measures discussed above, a number of the bounds available are expressed

in terms of these distance measures. The idea behind this lies, of course, in the Blackwell

theorem. Boekee and Van der Lubbe [51] provided upper bounds on the probability of er-

ror by considering the f-divergence between the conditional densities under the two hy-

potheses. They have shown that this upper bound includes many well known bounds in

terms of other distance measures. The Bhattacharyya bound [31] is the simplest bound to

evaluate. Its simplicity and the fact that closed form expressions for the bound exist for

many commonly used distributions, made it an attractive tool. The most common applica-

14



tions are the design of quantizers for hypothesis testing [32,35] and signal selection [311.

The main disadvantage of the Bhattacharyya bound is that it is a loose bound. The

Chernoff bound [52,53] provides an upper bound on the probability of error in terms of a

scalar s, O<s<l. The tightest bound is obtained by optimizing the upper bound with respect

to the scalar s. The difficulty in evaluating the Chemoff bound makes it less attractive than

the Bhattacharyya bound. In addition, the Chernoff bound which reduces to the Bhatta-

charyya bound when s=0.5 does not, in general, provide tighter error bounds than the

Bhattacharyya bound [54]. A tighter bound on the probability of error than the Bhatta-

charyya bound is in terms of the equivocation function [55,53]. Devijver [56] introduced

another bound in terms of the so called Bayesian distance. This bound is known to be

tighter than both the Bhattacharyya bound and the equivocation bound. As applied to de-

centralized systems, few results are available in the literature. Kazakos [57] employed the

concept of distance measures to obtain bounds on the performance of distributed detection

systems. Tsitsiklis [58] considered the decentralized problem when the number of sensors

tends to infinity. He showed that it is asymptotically optimal for the sensors to use the

same decision rule if they are operating under identical circumstances.

1.3 Dissertation Outline

In this dissertation, we consider some design and analysis aspects of a number of

decentralized detection structures. Our main focus is on the Bayesian approach to the de-

sign of these systems. The design of these systems involves the design of local and global

decision rules. The design of optimum decentralized detection systems based on the Baye-

sian formulation is considered in detail. The performance of the optimum systems is com-

pared to the performance of suboptimum systems designed based on criteria other than the

global optimum Bayesian cost. Upper and lower bounds on the minimum probability of

error and the minimum achievable cost are derived for the conventional centralized detec-

tion system. A new tight upper bound on the minimum probability of error is presented

and applied to design a nearly optimum decentralized detection system. The role of ran-

domization of the global decision rule in the Bayesian problem and in the related Neyman-

Pearson problem is also discussed.
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In Chapter 2, we study the problem of optimum receivers from a Beyesian view-

point. We derive an alternate representation of the minimum achievable cost of an opti-

mum receiver in terms of a modified form of the Kolmogorov variational distance. Using

this representation, we show that randomization of the decision rule is not necessary in the

case when the observations assume discrete values.

In Chapter 3, we generalize some known upper and lower bounds on the minimum

probability of error to the general Bayesian problem ,i.e., we obtain upper and lower

bounds on the minimum average cost of optimum Bayesian receivers. These bounds in-

clude the Chernoff bound and the Bhattacharyya bound. We derive a new tight upper

bound on the minimum probability of error and generalize it to the general Bayesian prob-

lem. New tight lower bounds on the probability of error and minimum average cost of an

optimum receiver are also obtained.

In Chapter 4, we consider the analysis and the design of the parallel fusion system

from a Bayesian point of view assuming identical local detectors. The analysis and the de-

sign of the system are based on the representation of the minimum achievable cost of opti-

mum receivers derived in Chapter 2. Both the hard and the soft decision cases are

considered. Using this representation we show that the design of the optimum decentral-

ized detection system reduces to the optimization of a single function of a given number of

variables that depend upon the number of quantization levels. The design of suboptimum

decentralized detection systems based upon members of the class of Ali-Silvey distance

measures are also considered. The performance of these systems are compared to the per-

formance of the optimum system. The design of the decentralized detection system based

on the new upper bound on the minimum probability of error is also discussed.

In Chapter 5, we consider the design of the four decentralized detection structures

shown in Figures 1.1 - 1.4 based on the Bayesian formulation. The local detectors are as-

sumed to yield hard decisions but are not assumed to be identical. The optimum design of

each configuration is shown to reduce to the optimization of a single function of a given

number of variables depending upon the configuration.

In Chapter 6, we examine the problem of randomization of the decision rule for de-
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tection systems designed based on the Neyman-Pearson criterion. When neither the a prio-

ri probabilities nor the costs are known, the Neyman-Pearson criterion becomes useful.

We show that when the objective is to design a decentralized detection system that maxi-

mizes the global probability of detection for a given global false alarm probability, ran-

domization of the decision rule at the fusion center is not necessary and, in fact, if used

deteriorates the system performance.

In Chapter 7 we present a summary of the results obtained in this dissertation plus

some concluding remarks. We also discuss some of the problems related to the topics dis-

cussed in the dissertation that need to be addressed in the future.
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CHAPTER 2

MINIMUM AVERAGE COST RECEIVERS

2.1 Introduction

As indicated in Chapter 1, one of the objectives of this dissertation is to consider the

design of decentralized Bayesian detection systems. In order to facilitate the design of

these systems we first consider centralized Bayesian detection systems, i.e., the systems in

which all the raw observations are processed at one central location. A system (centralized

or decentralized) that minimizes the Bayesian cost will be referred to as a minimum aver-

age cost (MAC) receiver. In this chapter we will derive some important properties of the

classical centralized optimum receiver. These are generalizations of the results available in

the literature for the minimum probability of error receiver [31,37]. These results wi!l then

be applied to the design and performance evaluation of decentralized detection structures

in the following chapters.

Letf 0 (x) andfl(x) be the conditional probability density functions of the random ob-

servations X under the two hypotheses H0 and H1 to be tested at the receiver. Also, let no

and 7c1 be the corresponding a priori probabilities of H0 and H1 respectively. If Cij; iJ--O,

1, denotes the cost of deciding Hi when Hj is true, then the average cost per decision made

by the receiver is given by

1 1

R = • XCliP(HiHi) (2.1)
i =Oj 0

where P(Hj, Hi) is the probability of the joint event that Hj is true and Hi is decided. It is

well known [1] that the cost given by (2.1) is mirimized when the following decision rule

is used
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H1

f, (x) > T (C10- coo)

S f 0 (x) < nit(C 0 1 -C 11 ) = (2.2)
H0

This decision rule partitions the observation space of X into two optimum decision regions

Zk*; k = 0, 1, such that when x e Zk*, Hk is declared true. The minimum average cost can

be determined from (2.1) using the optimum decision regions Z7k*.

2.2 An Alternate Representation for the Minimum Average Cost

To present our approach for the design of minimum average cost (MAC) receivers,

we express the optimum decision rule (2.2) and the corresponding minimum average cost

given in (2.1) in an alternate way. We begin by expressing (2.1) as

i 1
R = , , Ci 1rP(Hi Hj) (2.3)

£ = 0] = 0

where P (Hi I Hj) is the conditional probzhility of deciding H; when Hj is true. Let Zk , k =

0, 1, be the decision region corresponding tr' Mk . suhi that when the observation x £ Zk,

Hk is declared true. The a r'"steric. p;obabilities P (Hi I Hj) are given as

P (Hi- hj) = ffj (x) dx (2.4)
z.

Sr' iuting (2.4) into (2.3) we get

1 1

R I I XCni -~ff1(x) dx (2.5)
=Oj =0 Z,

Using Bayes rule, we have

n/. (x) = P (Hjlx)f(x) (2.6)
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where

f(x) = nt0Jo (X) + 7rlf 1 (X) (2.7)

is the unconditional density function of X. Using (2.6), we express (2.5) as

1 1

R = I C.ijfP (Hjl x)f(x) dx (2.8)
i=Oj=0 Zi

Since Cij is a constant, we interchange the order of integration and the inner summation as

1 1

R = f 1: Cj1P (HI x)f (x) dx (2.9)
S= Ozj = 0

Expanding (2.9) over the outer summation, we get

R = 1o(x)f (x)dx+ fP 1 (x)f(x)dx (2.10)
Zo ZI

where

o (x)= CooP (Hojx) + CoIP (HIlx) (2.11)

3 (x) = CoP (Holx) + C1IP (HI1 x) (2.12)

The result in (2.10) reveals that the average cost given by (2. 1) can, equivalently, be repre-

sented as the expected value of the random variable P(x) defined as
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PO (X) if x e ZO
[()= t (2.13)

(X 01(x) if x e Z(

The quantities 030 (x) and P1l(x) represent the conditional costs assigned to each point x in

the observation space. When an observation x is received, the receiver computes the con-

ditional costs 1]0(x) and 1(x). If the objective at the receiver is to minimize the cost, then

it should select the hypothesis with the smaller conditional cost. The optimum decision

rule (2.2) based on the conditional cost formulation becomes

H1

PO (X) > Pi(x) (2.14)

H0

Denote by r(x) the conditional cost of the MAC receiver based on an observation x. Then

r(x) can be expressed as

r (x) = min (30 (x), P11 (x)) (2.15)

Using the mathematical identity

1 1
min (a, b) = (a + b) -1 la- bi (2.16)

we can rewrite (2.15) as

r(x) = [D]o(X) +01(x)I- II0o(x)-0 1 l(x)) (2.17)

Substituting (2.11) and (2.12) into (2.17) we get
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1
r(x) = [CooP(HO0x) +C 1oP(H 0jx) +ColP(Hllx) +ClIP(Hllx)]

-CooP (Hol x) - CloP (Holx) + Co0 P (Hlfx) - C11P (Hinx) 1 (2.18)

The minimum average cost Rm is the expected value of the conditional cost r(x), that is

Rm = Jr(x) [iyofo (x) + it If(x) ldx (2.19)

For notational simplicity, the subscript m will be omitted from Rm in the rest of this disser-

tation. Using (2.6), we can evaluate the a posteriori probabilities as

P (H:jx) - icx) (2.20)

Substituting (2.20) into (2.18) we obtain

1
r (x) fx) [(C°O+CIO)T7C°(x) + (C0 1+C 1) flW(x)]

I I (coo -C IO) C O) f° (x) + (C - C 11 ) nf 1 (x)W (2.21)
2f (_x)

Substituting (2.21) into (2.19) and integrating term by term we obtain the following ex-

pression for the minimum average cost R

R = RO- lfICIf, (x) -CJo (x) dx (2.22)
x
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where

1 1Ro • CooC0) i 0 + (Co1 + C11) it

C 1 = (Cot-C 1 0)7t1

CO = (C1o- coo) Io

When the random variable X assumes discrete values, the MAC, R, becomes

R = Ro- I•C 1 P(X= xi4H!) -COP(X= x4 Ho)j (2.23)

2.3 Randomization in Minimum Average Cost Receivers

When the random variable X assumes continuous values, the contribution to the

minimum average cost of those values of X that satisfy equality in the decision rule (2.14)

is zero. This is because these values occur with zero probability. Therefore, they can be as-

signed to either one of the decision regions without affecting the minimum average cost.

When X is discrete, the values of X that satisfy equality in (2.14) occur with finite proba-

bility. Therefore, randomization of the decision rule may become necessary. While parti-

tioning the observation space of the discrete random variable X into the decision regions

corresponding to H0 and H1 , the receiver uses the decision rule (2.2) with

A (xi) = P (X= xil HI) (2.24)
P (X= xilHO)

Let K=(kj,k 2,...,kj} be the set of those values of X that satisfy the relation
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P (X= kij Hl) n t0 (C 10 - Coo)

P (X= kil HO) 7t1 (C01 - C11)

The complement set Kc represents all the remaining values that the random variable X as-

sumes. Using Bayes rule we can express (2.25) as

P (HiIX= ki) (CO- Coo) (2.26)
P (Hol X= ki) (Co, -- C11)

The conditional costs 130(x) and D1 (x) for the outcomes that satisfy (2.26) are given by

Po (ki) = COOP (HonX= ki) + CoP (HI X= kj) (2.27)

I1 (ki) = CIoP (HoIX= ki) + C1 1P (H1 X= ki) (2.28)

Using (2.26) we get

(C 1o - Co)
P(HIlX= ki) = P(HolX= ki) (CIO- COO) (2.29)

Substituting (2.29) into (2.27) and (2.28) , and simplifying we get

(C10C01 - ClIC~o)PO (k i) = P31  (k i) = P (H o lX = ki) C OI _ C1-C 1 CE)K (2 .30K

C0 1 -C 11 (2.30)

The result in (2.30) indicates that such boundary outcomes are equally costly and can be

assigned arbitrarily to any one of the decision regions. Using (2.23) we will show that the

contribution of these outcomes to the MAC is zero. This can be done by expanding (2.23)

as
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R = Ro- 1.• CtP(X= kjlHI) -COP(X= kilHo)I

1=

- X eiP (X= xilHI) -COP (X= xIHO)1 (2.31)
x.• KC

In (2.31), the second term on the right hand side is the sum over all those values of X that

are elements of K, and the third term is the sum over all the values that are elements of Kc.

Using (2.25) we get

XfC 1 P(X= kilH 1) -COP (X= kiHo) I = 0 (2.32)

The result in (2.32) shows that it is, in fact, immaterial as to whether the outcomes that sat-

isfy (2.25) are assigned to the decision space of H0 or to the decision space of H1 since

their contribution to the MAC is zero. Thus, randomization is not necessary. Therefore,

whether the random variable X is continuous or discrete, the minimum average cost is not

affected by those values of X that satisfy equality in the likelihood ratio test.

2.4 Minimum Probability of Error Receivers

As an important application of the general Bayesian formulation developed in Sec-

tion 2.2, we consider the special cost assignment COO = C11 = 0 and C01 = C10 = 1. This

corresponds to the minimum probability of error criterion which is widely used. In this

case, the conditional costs P3o(x) and P31(x) given by (2.11) and (2.12) become

Po(x) = P(HnIx) (2.33)
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P3 (x) = P (H0o x) (2.34)

and the decision rule (2.14) becomes

H1

P (H Ix) >P(Holx) (2.35)

HO

Decision rule (2.35) indicates that the MAC receiver reduces to a maximum a posteriori

probability (MAP) receiver in this special case. When an observation x is received, the re-

ceiver computes the a posteriori probabilities P (H0ix) and P (HIIx) and chooses the hy-

pothesis with the larger a posteriori probability. The function r(x) defined in (2.15)

representing the conditional cost of the MAC receiver based on an observation x becomes

r (x) = min (P (Holx), P (H"I x) ) (2.36)

This function now defines the probability that the MAP receiver makes an error based on

an observation x. The minimum probability of error (MPOE) is obtained from (2.22) and

is given by

1 1r
P(E) = I- IfInf ) -7CJW(x) Idx (2.37)

which is the same expression as obtained by Kailath [31] and Toussaint [37] using a differ-

ent approach.

In this chapter, we have obtained an expression for the minimum average cost for an

optimum receiver. This result is a generalization of a similar result for the minimum prob-

ability of error based on the Kolmogorov variational distance. The result obtained here

will be employed in the next few chapters for decentralized detection systems.
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CHAPTER 3

BOUNDS ON THE PERFORMANCE OF OPTIMUM

RECEIVERS

3.1 Introduction

In hypothesis testing, the performance of optimum receivers is usually expressed in

terms of the probability of error. In this chapter, we concentrate on some performance as-

pects of optimum receivers. We consider the binary hypothesis testing problem in which

hypothesis H0 with a priori probability nr0 is tested against hypothesis H1 with a priori

probability 7cj. The decision is made based on a random observation X with conditional

probability density functions f0 (x) and fI(x) when H0 and H1 are true respectively. It is

well known that the optimum receiver which minimizes the probability of error is the

maximum a posteriori probability (MAP) receiver [3]. When an obsei-vation x is re-

ceived,the MAP receiver computes the a posteriori probabilities P(H0Ix) and P(H I-Ix) and

chooses the hypothesis with the larger a posteriori probability. In Chapter 2, we derived

closed form expressions for the minimum probability of error (MPOE) and the general

minimum average cost (MAC) of the optimum receiver. Analytic evaluation of these ex-

pressions is very difficult in most cases because it involves the evaluation of the discontin-

uous function min(.). Instead of evaluating the exact minimum probability of error and the

exact minimum average cost, tight upper and / or lower bounds can often be determined

analytically in an easier fashion making it possible to compare the performance of opti-

mum receivers based on these. bounds.

A number of upper and lower bounds on the MPOE of optimum receivers have been

proposed in the literature [51-63]. Because of the indirect relationship between the proba-

bility of error and the class of Ali-Silvey distance measures (or the f-divergence) [31], a

number of the bounds available are expressed in terms of these distance measures. The

idea behind this relation lies in the result known as the Blackwell theorem.This theorem
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states the following. Let it be the set of all permissible pairs of the prior probabilities ito

and 7t, in a binary hypothesis testing problem. Then there exists a subset of it for which if

the distance between a given set of conditional density functions is larger than the distance

between another set of conditional density functions,then the probability of error corre-

sponding to the first set is less than the probability of error corresponding to the second

set. Boekee and Van der Lubbe [51] provided upper bounds on the MPOE of optimum re-

ceivers by considering the f-divergence between the conditional densities under the two

hypotheses. They have shown that this upper bound includes many well known bounds in

terms of other distance measures.

As discussed before, almost all of the literature in this area has been limited to find-

ing bounds on the MPOE, and little can be found on the general Bayesian problem in

which arbitrary costs are assigned to each course of action in the decision process. In this

chapter we extend some of the known bounds on the MPOE to the general Bayesian prob-

lem. In addition, we obtain a new upper bound on the MPOE which is tighter than the pre-

viously available bounds. We also obtain a tight lower bound on MPOE. In Section 3.2,

we derive an upper bound on the MAC which is a generalization of the Chernoff bound on

the MPOE. In Section 3.3, we derive simple upper and lower bounds on the MAC in terms

of the Bhattacharyya coefficient. In Section 3.4, we introduce our new upper bound on the

MPOE. This bound is shown to be tighter than the available bounds such as the Bhatta-

charyya bound and the equivocation bound. In Section 3.5, we extend this bound to the re-

stricted Bayesian problem in which Coo = Cll and CI0 = C0 1 . In Section 3.6, we use the

upper bound derived in Section 3.4 to obtain a new tight lower bound on the MPOE. In

Section 3.7, we present a numerical example where we compare the exact minimum prob-

ability of error with the new upper and lower bounds on the minimum probability of error.

Section 3.8 contains a summary of the results obtained in this chapter.

3.2 Generalized Chernoff Bound

In this section we derive a new upper bound on the system MAC which is a general-

ization of the Chemoff bound on the MPOE available in the literature [52,53]. We begin
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with (2.11) and (2.12) which are repeated here for convenience

Po (x) = COOP (Holx) + CoIP (HIIx) (3.1)

31 (x) = CIoP (Holx) + CiiP (Hijx) (3.2)

Using Bayes rule we can express the a posteriori probabilities P(Ho0 x) and P(H1 Ix) as

P (Ho] x) = t ofo(x) W (3.3)
IEc)o (X) + IcIf,(X)

/tf1 (x)
P(q~ x) = 1tJ°(x) +/tlf1 (x) (3.4)

Using (3.3) and (3.4), the expressions for 130(x) and 131(x) in (3.1) and (3.2) become

C00/t0f0 (x) + C0 / tlf/ (X)
W30(x) = 00fo (x) + t 1f1 (x) (3.5)

C10 fto (x) + C11Itlf, (x)=3 (x - Jt0 (x) +/tr~f1 (x) (3.6)

The MAC receiver computes the quantities 13O(x) and 131(x) and makes the decision ac-

cording to decision rule (2.14). The conditional cost based on an observation x is given by

r (x) = min (3o (x), 31 (x)) (3.7)

For any two positive real numbers a and b, we have the following inequality
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min(a,b) <aSbI- S, Os 1 (3.8)

Making use of (3.8) we can obtain an upper bound on the conditional cost r(x) given in

(3.7) as

r (x) :_ (P~o(x))s ( 1 (x) )1- S, 1 (3.10)

The unconditional cost, R, is given by

R = Jmin(Do(x),01 (x)) (7r 0]0 (x) + 7 1f 1 (x))dx (3.11)
x

Therefore, an upper bound on R is

R:5(0o(x))s(f 1 (x))-s(tofo(x) + t1f1 (x))dx, 0s5 1. (3.12)

Substituting (3.5) and (3.6) in (3.12) we get

R 5f (C.oJof0 (x) + Co01 tlf 1 (x))S (C107rE 0 (x) + C11itlf1 (x)) 1 -sdx, 0< s 1.
x

(3.13)

The upper bound in (3.13) is true for any value of s in the range 0 < s 5 1. The tightest

bound is obtained by finding the particular value of s which minimizes the right hand side

of (3.13). Therefore, the tightest upper bound of this form on MAC is given as

R < min f (Coorofo (x) + CO, xr1f (x) )S (Cloitoo (x) + C117r1f1 (x)) -Sdx

(3.14)
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This is a generalization of the well known Chernoff bound on the minimum probability of

error. Using the special cost assignments Coo = C11 = 0 and C10 =C0 = 1, we can obtain

it from (3.14) as

P(E) <min f (vt f((x) )S(i (x)) -sdx (3.15)
x

Let s* be the specific value of s that achieves the minimum in (3.15).It has been shown in

[53] that (3.15) can be written as

(E) <5 7ct 7 Po (3.16)

where

p = min f (f(x))s(fo(X))- sdx (3.17)O<s<j
x

is the Chernoff coefficient. Equation (3.16) represents the usual form of the Chernoff

bound on the minimum probability of error.

3.3 Upper and Lower Bounds on the Minimum Average Cost in Terms of

the Bhattacharyya Coefficient

The evaluation of the generalized Chernoff bound in (3.14) is a difficult task. There-

fore it is worthwhile to derive upper and lower bounds on the MAC that are simpler to

evaluate. Here we derive bounds in terms of the Bhattacharyya coefficient. This coeffi-

cient is obtained from (3.17) by using the specific value of s = 0.5, i.e., the Bhattacharvya

coefficient is given as

PB = fFfl (x)fo(x)dx (3.18)
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The Bhattacharyya coefficient is relatively simple to evaluate and has closed form expres-

sions for many commonly used distributions. These advantages made the Bhattacharyya

bound on the minimum probability of error an attractive tool in the design of communica-

tion systems. The most common applications are the design of quantizers for hypothesis

testing [32] and signal selection [31]. The main disadvantage of the Bhattacharyya bound

is that it is a loose bound. In this section we derive upper and lower bounds on the MAC

based on the Bhattacharyya coefficient which are generalizations of the available bounds

on the MPOE. These generalized bounds are based upon the following representation of

the MAC derived in Chapter 2

R = Ro- 12C1Cf, (x) -Cofo(x)Idx (3.19)
x

Here we make the usual assumption that an incorrect decision is more costly than a correct

decision, i.e., we assume that C10 > Coo and C0 1 > C1 l. Equation (3.19) can also be writ-

ten as

fICifi (x) -Colo (x) Idx = 2R 0 - 2R (3.20)
X

Next, we obtain the upper and lower bounds on the MAC.

3.3.1 Upper Bound on the MAC

To find an upper bound on the MAC we make use of the following inequality which

is true for any two positive real numbers a and b

-a -bi 3.,[-21Fl

With the aid of (3.21),the left hand side of (3.20) can be bounded as
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fICW(x) -CAW(x)dx--f[/CAfW(x) - FCo(X)] dx (3.22)
X X

Expanding the right hand side of (3.22) we get

J C~f• (x) - Cfo (x)]dx = J (CAf (x) + Cfo (x) -2 2c-c0J1  (x)fo (x))dx
x x

(3.23)

Integrating term by term on the right hand side of (3.23) we get

JfI (x) - jCoJ0 (X)1 dx = C1 + Co-2 CCýC0p• (3.24)
X

where PB is the Bhattacharyya coefficient defined in (3.18). From (3.20) and (3.22) we get

2
2Ro- 2R f [4Clf 1 (x) 0 (x) ] dx (3.25)

x

Substituting (3.24) into (3.25) we obtain

2Ro - 2R > C1 + Co - 2,,I copB (3.26)

Rearranging the terms in (3.26) we obtain the following upper bound on R

R < Ro - I (C1 + CO) +JA7Cp, (3.27)

Using the definitions of R0 , C1 and CO in (2.2), the upper bound in (3.27) becomes

R < C007t 0 + C117t1 + A/ltot 1 (Col - CI1) (CIO- COO) PB (3.28)
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which is the desired upper bound.

3.3.2 Lower Bound on the MAC

In this subsection we derive a lower bound on the MAC in terms of the Bhatta-

charyya coefficient. Here we make use of the Schwartz's inequality

Jff(t) g (t)dr• J(f(t))dtJQ(() (3.29)
t t

Squaring both sides of (3.29) we get

[J(t) g (t) dt] < [f (f (t) ) 2dt] [f (g (t) ) 2 dt] (3.30)

For any two real numbers a and b, we have the following equality

(a- b) (a + b) = a2 - b2  (3.31)

Let

a = f1CIf 1 (x) (3.32)

b = jCo0 (x) (3.33)

Then (3.31) can be written as

(jQc1 (x) - FCoJf (X)) (JCi,/cT(U ) + /CJo0o(x)) = C1 If(x) -Co0 (X)
(3.34)

Taking the absolute value of both sides of (3.34) and integrating with respect to x we get
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f JCIf, (x) - .XfCo (x)I ýClf 1 (x) + Jofo (X) ]dx C JClfl (x)- Cofo(x)Idx
x x

(3.35)

Squaring both sides of (3.35) we get

[fjCjj W -,C~o~fl 0 IC~f1 (x) + Jc0o 7x) dx]2 = [fj~Cfj Wx ~Cfo(x)ldx]22 2

(3.36:

Let us make the following substitutions in equation (3.30)

f(t) = ý[Cif1 (t) - ,Co o(t)0 (3.37)

g (t) = /Clf1 (t) + C 0oo (t) (3.38)

Applying Schwartz's inequality (3.30) to the left hand side of (3.36) with the proper sub-

stitutions from (3.37) and (3.38) we get

[f ICif, (x) - JCof (x)I [Cif, (x) + FCofo (x)Wdx]2II 12  (3.39)

where

I, = J FC1f1 (x) - FCOfO (x) Idx (3.40)
x

12 = -- jCif1 (x) + /Cofo (x)2 dx (3.41)
x
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Expanding the right hand side of (3.40) and (3.41) and integrating we get

I1 = C, + C0 -2 C'T0C, J1 (x)fo (x) dx (3.42)
x

I2 = C 1 + CO + 2j C-Co•,f 1 (x)fo (x) dx (3.43)
X

It is easily recognized that the integral on the right hand side of (3.42) and (3.43) is the

Bhattacharyya coefficient PB. But the left hand side of (3.39) is equal to the right hand side

of (3.36). Therefore, we have

[f C jf1 (X) _ CJ0O (X) I dx] 2•: (C I + CO - 2pýCl5 -IC-) (C1I + C0 + 2pI )

(3.44)

Taking the square root of both sides of (3.44) and simplifying we get

fIClfl (x) - Cfo (x) ldx< j[C1 + Co] 2 4C 1Cop 2  (3.45)

X

Using (3.20) we obtain

2R 0 -2R <j[C1 +Co] 2 -4C 1 COP2 (3.46)

Rearranging the terms in (3.46) we obtain the following lower bound on R

RŽRO- 2 + CO] - 4C1 COP (3.47)

Substituting for R0 , CO and C1 from (2.22), we have
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1 1
R_ (CO0+ CIo) 7r0 + (Co1 + C1 1 ) 71r

2 2

(3.48)

3.3.3 Minimum Probability of Error Bounds

Here, we consider the minimum probability of error case, i.e., when COO = CII = 0,

CI 0 = CO, = 1 and show that the above upper and lower bounds in terms of the Bhatta-

charyya coefficient reduce to the results available in the literature. In this case, the upper

bound in (3.28) simplifies to

P (E) < AI07pB (3.49)

and the lower bound in (3.48) becomes

1 1

P(E) 2_ -• - 4 ,oc1PB (3.50)

Equations (3.49) and (3.50) represent the upper and lower bounds on the probability of er-

ror which are well known [31]. These bounds are convenient from a computational stand-

point but are rather loose. Therefore, we derive tighter upper and lower bounds on the

MPOE in the rest of this chapter.

3.4 A Tight Upper Bound on the Probability of Error for Optimum

Receivers

For the MAP receiver discussed in Chapter 2, the conditional probability of error

based on an observation x is given by
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P (EIx) = min (P (Hx),P (HIjx)) (3.51)

For notational convenience we let

p = P (HO x), 0O<p < 1 (3.52)

Then we have

P (Elx) = min (p, 1 -p) g (p) (3.53)

The function g(p) is plotted in Fig. 3.1 as a function of p. The unconditional probability of

error is the expected value of P(E I x) with respect to x, i.e.,

P(E) = E,{P(Lx)} =EI{g(p)}

Sfg (p) (0o (x) + if1 (x) ) dx (3.54)
x

The expression for the minimum probability of error given in (3.54) is exact but is compu-

tationally undesirable in many applications due to the discontinuity of the function g(p) at

p = 0.5. Therefore, we attempt to find a computationally desirable function of p, g*(p),

which when substituted for g(p) in (3.54), will provide a close approximation or a tight

bound on the probability of error. Let B(g*) denote a bound on the probability of error

B(g*) =fg* (p)(7cf 0 (x) +71fl (x))dx (3.55)
X
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The closer the function g*(p) is to g(p), the tighter is the bound. In this section, we find an

upper bound on the minimum probability of error based on the function g*(p) which satis-

fies the following conditions

1) g*(p) Ž g(p) for all values ofp in the range 0:< p _ 1 such that g*(p = 0) = g*(p = 1) = 0.

This condition is consistent with the requirement that g*(p) be an upper bound function.

2) g*(p) should be continuous and differentiable. This condition is desirable to avoid the

same computational difficulties as associated with the exact expression based on g(p).

3) g*(p) should be symmetrical about the point p = 0.5. This condition is desirable since

g(p) is symmetrical about the point p = 0.5.

4) g*(p = 0.5) = 0.5. This condition is needed since the conditional probability of error

P(EIx) cannot be larger than 0.5 and it is equal to 0.5 only when p = 0.5.

5) dg*/dp (p = 0) > 1 and dg*/dp (p = 1) < -1. This condition ensures that the function se-

lected lies above the function g(p) for all values of p in the range 0•_ p < 1.

Now we demonstrate that several upper bounds on the minimum probability of error

proposed in the literature can be interpreted using the above framework. A similar idea

has been pursued by Chen [59]. First, we consider the upper bound based on the Bhatta-

charyya coefficient and given in (3.49). It can be written as

P (E) •J tf If, (X) 7 (x) dx (3.56)
X

From Bayes rule and the definition of p in (3.52) we have

n00 (x) = p (0fo (x) + ntif 1 (x)) (3.57)

ntIf, (x) = (1 -p) (r 0]0 (x) +7tIf 1 (x)) (3.58)
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Substituting (3.57) and (3.58) into (3.56) we get

" f)• F _ p(l-p)( fo w(x)+n 1fw(x))dx

= Jg8 (p) (irofo (x) + 7tf, (x) )dx (3.59)
x

where

gB (P) = [P( I -- p) (3.60)

Thus, this upper bound is obtained by replacing g(p) by gB (p). The function gB (p) will be

referred to as the Bhattacharyya function and is plotted in Fig. 3.1. From Fig. 3.1, we see

that gB(P) is a fairly poor approximation to the function g(p) and, therefore, the Bhatta-

charyya bound is a loose one.It can be easily verified that the function gB (p) satisfies all

the five conditions for g*(p) listed above.

Another upper bound on the probability of error that is available in the literature is in

terms of the equivocation (an information theoretic measure). This upper bound is given

as

P (E) <-J0.5 [P (H04x) logP (HoIx) + (1 -P (Ho~x)) log (I -P (Hoix)) ]f (x) dx
x

(3.61)

In this case, the function g(p) is replaced by the equivocation function gE(p) given by

gE (p) = -0.5 [plogp + (1 - p) log (1 - p)I (3.62)
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Fig. 3.1 . The exact minimum probability of error, the new upper bound, the sinusoidal,

and the Bhattacharyya functions plotted as a function of p.
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This function also satisfies the five conditions listed above. It has been shown in [55] that

the equivocation bound given by (3.61) gives a tighter bound on the probability of error

than the Bhattacharyya bound. Devijver [56] introduced a new bound on the probability of

error in terms of what is called the Bayesian distance. This distance is defined as

1

= , [P (Hilx) (3.63)
i=O

which in our notation reduces to

By = EX{p2+ (l-p) }

= E,{ 1 - 2p (1 - p) } (3.64)

The probability of error is related to the Bayesian distance through the relation

P (E) < 1 -By

<5 E_{2p(l-p)} (3.65)

In this case, the function g(p) is replaced by the function

gy(p) = 2 p (l-p) (3.66)

This function will be called the Bayesian bound function. It has been verified in [56] that

the Bayesian bound function yields a tighter bound on the probability of error than the

equivocation function. As shown in Fig. 3.1, the function gy (p) approximates g(p) much

more closely than gB (p). We have not shown gE (p) in Fig. 3.1 but it falls between the

functions gB (p) and gy (p). Next, we develop a new function that satisfies the desirable

conditions indicated earlier and approximates g(p) even more closely. The resulting func-
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tion will yield a tighter upper bound on the minimum probability of error.

Consider the sinusoidal function

gs (p) = 0.5 sinlrp (3.67)

This function satisfies the desired properties of the approximating function as described

earlier. Furthermore, for all values of p in the range 0•< p < 1, we have gs (p) < gy (p), i.e.,

0.5 sin7tp• 2p (1 -p) (3.68)

The result in (3.68) indicates that the sinusoidal function gs(p) will lead to a tighter upper

bound than the Bayesian bound since it is closer to the minimum probability of error func-

tion g(p). Differentiating the sinusoidal function in (3.67) and evaluating the derivative at

p = 0, we see that the slope at p = 0 is 1.57. This value of the slope is much larger than the

slope of g(p) at p = 0 which is equal to 1. We can tighten the bound obtained from (3.67)

by weighting the sinusoidal function by a Gaussian function, and we assume that the ap-

proximation function is

gN (P) = 0.5 (sin tp) exp [-a (p - 0.5) 2] (3.69)

The Gaussian function is continuous, differentiable, and symmetrical about the point p =

0.5 as required for the approximating function. The reason for including the Gaussian

function in gN (p) is that it exhibits exponential decay. This property makes it possible to

better approximate the exact function g(p) with the sinusoidal and the Gaussian functions

combined than with the sinusoidal function alone. The parameter ax determines the rate of

decay of the Gaussian function. This parameter is to be chosen so that the derivative of

gN(p) at p = 0 is equal to 1. We recall that the derivative of the function g(p) at p = 0 is

equal to 1. Therefore, by letting the derivative of gN(P) at p = 0 to be equal to 1, we are
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forcing both functions gN(p) and g(p) to have the same slope at the points p = 0 and p = 1.

Furthermore, the values of the two functions at the points p = 0 and p = 1 are equal to zero.

Therefore, by having equal values of the two functions as well as equal slopes at the points

p = 0 and p = 1, we can obtain the best approximation possible for the function considered.

Differentiating (3.69) with respect to p, setting the derivative at zero equal to one, and

solving for ca we get a = 1.8063. So our new approximating function to obtain the upper

bound is

gN (P) = 0.5 (sinicp) exp [-1.8063 (p - 0.5) 21 (3.70)

This function is plotted in Fig. 3.1. In Fig. 3.2, we plot the functions g(p) and gs(p) versus

p. We also plot the function gN(p) to show the improvement gained by weighting the sinu-

soidal function gs(p) by the Gaussian function. By comparing the various approximation

functions in Figures 3.1 and 3.2, we see that the new function given in (3.70) approxi-

mates the exact function g(p) quite closely, and that it is significantly better than the Baye-

sian bound function. The probability of error is now upper bounded by

P (E) _< f (0.5 (sin7rp)exp [-1.8063 (p- 0.5)2] ) (7t0f0 (x) +ritf 1 (x))dx
x (3.71)

In this section we have presented a new upper bound on the minimum probability of

error which is shown to be tighter than the presently available bounds such as the Bhatta-

charyya, the equivocation, and the Bayesian bounds. Some applications of the new bound

in the design of decentralized detection systems will be considered in the next chapter.

3.5 A Tight Upper Bound on the Minimum Average Cost

In the previous section, we derived a tight upper bound on the probability of error for

optimum receivers. This is a special case of the general Bayesian problem where the costs
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are assigned as Coo = C11 = 0 and C10 = Col = 1. In this section we extend the bound to the

more general Bayesian hypothesis testing problem with symmetrical costs, i.e., with costs

satisfying Coo = CI1 and C10 = C0 1. Expressing P30(x) in (3.1) and 11(x) in (3.2) in terms

of P(H 0 I x),we get

Po (x) = COOP (Hol x) +Col (1 - P (Hol x) ) (3.72)

011 (x) = CloP (HoI x) + Cll ( 1 - P (Hoj x) ) (3.73)

Rearranging terms in (3.72) and (3.73) we get

0o (x) - Col = (Coo - Col) P (Hol x) (3.74)

PI (x) - Cla = (CIO - ClI) P (Hojx) (3.75)

Dividing (3.74) by (3.75) we get

O (x) - Col Coo - Col
p() -c1  c -c 1 (3.76)PI1 Wx - Cil CIO - Cil

From (3.76) we express 13o(x) in terms of 131(x) as

o0 (x) = -A 1P (x) +B (3.77)

where
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A - (3.78)

ColC 0 - CooCl

B = C1 0- (3.79)

Using (3.77), the conditional cost in (3.7) becomes

r (x) = min (-API (x) +B, PI (x)) (3.80)

As P(H0 I x) varies over the range 0•< P(H0 lx) _ 1, P30(x) in (3.72) varies over Co1 < P30(x)

< Coo and (31(x) in (3.73) varies over C 1: _ (31(x) < C10 . For an arbitrary cost assignment

the functions f31(x) and -A(31(x)+B as a function of (31(x) are sketched in Fig. 3.3 . Also

shown in this figure is the minimum of the two functions which represents r(x). The lack

of symmetry of the conditional cost function makes it difficult to extend the upper bound

obtained in Section 3.4 to the general Bayesian case. Therefore, we consider the restricted

problem with symmetrical costs in which Coo = C1 l and C10 = Co1. In this case A = 1 and

B = C0 1+Cll. The conditional cost in (3.80) becomes

r (x) = min (- PI (x) + Co,+ C11, P3I (x)) (3.81)

The functions 031(x) and -J31(x)+C 01+C 1I are sketched in Fig. 3.4 alongwith the minimum

of the two functions. As can be seen from Fig. 3.4, the conditional cost r(x) is a scaled and

translated version of the minimum probability of error function g(p). Figure 3.5-a shows

the function r(x) - C11 resulting from the translation of the function r(x) along the vertical

axis. Figure 3.5-b shows the function resulting from translating the function r(x) - Ca1

along the horizontal axis to the origin by Cl1 . The function g, (P 1) sketched in Fig. 3.5-b is

represented in terms of g(531) as
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Fig. 3.3. The functions PI(x) and - [31(x)+C 10 +Cll for arbitrary cost assignment.
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Fig. 3.4. The functions P11(x) and - PI(x)+CI 0 +Cll for the case of symmetrical costs.
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Fig. 3.5-a. Shift the function r(x) in Fig. 3.4 down along the vertical axis by C11 .

0.5(C 1 o -C11 )

0.5(C10 -C11) (C10 -Cl 1 ) P1- C11

Fig. 3.5-b. Shift the function of Fig. 3.5-a along the horizontal axis to the left by C1 l.
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g9(13 1) =\(CIO-Cll)g (CjojC11 (3.82)

while the function sketched in Fig. 3.5-a is represented as

r (x) - C11 = (CIO- C11) j (CIO- I1 (3.83)
'\I

Using (3.83), the function sketched in Fig. 3.4,can be expressed as

r(x) = CI1 + (C 1O-C 1 )gI,) g C1) (3.84)

Therefore, using (3.70), we can upper bound the conditional cost r(x) using the function

gR(5 1) C11+ (C1O-C11) ÷(C ' (3.85)

which can explicitly be expressed as

gR ( 1 ) = C1 1 + 0.5 (CO - C1 1) sin . .iojc- e -P. 1.8063 Pc -0.5

(3.86)

But P3 is a function of the random variable X as sein from (3.73). We emphasize this by

expressing f1 as PI(x). Therefore, the MAC is upper bounded by

R<E1{g(.E 1R (x))} = fgR(01 (x)) (ofo(x) + lfl (x))dx (3.87)
x

Next, we derive a lower bound on the minimum probability of error.
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3.6 A Tight Lower Bound on the Probability of Error for Optimum Re-

ceivers

In Section 3.5, we obtained a tight upper bound on the probability of error for opti-

mum receivers. We listed several desirable conditions which an approximating function

g*(p) should satisfy in order to find a suitable upper bound. Now we present a similar set

of conditions that an approximating function g**(p) should satisfy in order to find a lower

bound. These conditions are

1) g**(p) should be continuous and differentiable.

2) g**(p) should be symmetrical about the point p = 0.5. This condition is desirable since

g(p) is symmetrical about the point p = 0.5.

3) g**(p = 0) g**(p = 1) = 0.

4) dg**/dp (p = 0) < 1 and dg**/dp (p = 1) Z -1.

5) g**(p)•< g (p) for all values of p in the range 0:< p5 _1.

A lower bound on the minimum probability of error can be derived in terms of the

new upper bound function gN(p) discussed in Section 3.5. The first, second, and third de-

sirable conditions for the lower bound given above are satisfied by the function gN(p)- The

fourth condition in conjunction with the fifth are needed to guarantee that the lower bound

function is below the function g(p) for all values of p in the range 0 < p < 1. Now we pro-

pose a lower bound function of the form

gL (P) = £ x 0.5 (sinitp) exp [-1.8063 (p - 0.5) 2] (3.88)

The scaling factor E is a constant yet to be determined whose value is less than unity. With

the value of c < 1, the fourth condition is satisfied. The fifth condition is satisfied when

EO.5 (sin~rp) exp [-1.8063 (p - 0.5) 2] <p, 0 <p < 0.5 (3.89)
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Our objective is to determine those values of £ for which (3.89) is satisfied. A detailed ex-

amination of (3.89) shows that it is satisfied for the following values of E

0• e5 <0.79 (3.90)

With the value of e = 0.79, (3.89) is achieved with equality for a specific value of p. The

point p at which this happens is p = 0.275. The tightest lower bound is achieved by using

E = 0.79. Using this value of e, we see that the lower bound on the minimum probability of

error is given by

P (E) f (0.395 (sinirp) exp [-1.8063 (p - 0.5) 2] ) (to (x) + rtf 1 (x)) dx
X (3.91)

Comparing (3.91) and (3.71), we see that the relationship between the upper bound and

the lower bound can be stated as

Lower bound = 0.79 x Upper bound (3.92)

In Fig. 3.6 we plot the functions gL(P), gN(P), and g(p) as a function of p. As seen from

this figure, the lower bound function closely approximates the function g(p) for most of

the values of p except around the point p = 0.5. The tightness of the bounds can also be

expressed as the ratio of the upper bound to the lower bound. This ratio should be as close

to unity as possible. For the new bounds derived in this chapter this ratio is equal to 1.265

indicating that both the upper and the lower bounds are tight bounds.

The same argument as above applies to the case of symmetrical cost assignment, i.e.,

a lower bound function on the cost can be defined in terms of the upper bound function

gR(1 I) as

RL = 0.7 9 gR(13
1) (3.93)
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The MAC can therefore be lower bounded by

R E {gRL ( 3
1(x))1 = 0.79fgR (3 1 (x)) (ir 0f0 (x) + 7tf 1 (x)) dx

x (3.94)

3.7 Example

In this section we present a numerical example where we compare the exact mini-

mum probability of error in a hypothesis testing problem with the new upper and lower

bounds on the minimum probability of error derived in this chapter. For the sake of com-

parison we also consider the Bhattacharyya upper and lower bounds.

Consider the hypothesis testing problem in which the observation X under H0 is a

Gaussian random variable with mean m0 and variance a0 2 and when H1 is true the obser-

vation X is a Gaussian random variable with mean m1 and variance O1
2. The hypothesis

testing problem can be represented zs

H 0 : Xi - N(m0 , 002 )

HI :"Xi - N(ml, CF12 )

We assume that no = it1 --0.5. The probability of error is minimized using the likelihood

ratio test given by (2.2)

H1

fA(x) >
(3.95)

fo(x) <

rio
where

I ~xp (x-mi) 21"ifix -- -.. exp (X---d2]'i=O'l (.6
_2____ 20___ = , (3.96)

For the Gaussian density functions given by (3.96), the Bhattacharyya coefficient is given

by [31]
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( 2  o1(o+2

+ +- _ _ Y_ 2PB=expI[4(m, 2M) 2+ In ° (3.97)

We consider two cases. In the first case we assume that -02= CY12 = 1, m0 = 0 and m1 is a

variable. In Fig. 3.7 we plot the exact minimum probability of error as a function of m1

when decision rule (3.95) is employed alongwith the new upper and lower bounds on the

minimum probability of error determined from (3.71) and (3.91). We also plot the Bhatta-

charyya upper and lower bounds determined from (3.49) and (3.50). In the second case,

we assume that m0 = 0, m1 = 2, a02 =1 and oY12 is a variable. The exact minimum proba-

bility of error, the new upper and lower bounds, and the Bhattacharyya upper and lower

bound as a function of oY2 are plotted in Fig. 3.8. Figures 3.7 and 3.8 exhibits the tight-

ness of the new upper and lower bounds.

3.8 Summary

In this chapter we derived upper and lower bounds on the minimum probability of

error and the minimum average cost for optimum receivers. Some of the bounds on the

MAC are generalizations of the known bounds on the minimum probability of error in

terms of the Bhattacharyya bound and the Chernoff bound. Furthermore, we derived a new

upper bound on the probability of error which is tighter than the previously available

bounds. This bound was generalized to the Bayesian problem with symmetrical costs.

Tight Lower bounds on the probability of error and the MAC were also derived in terms of

the new upper bound. These bounds are used for the performance characterization of opti-

mum receivers. In addition, these bounds can be employed for the design of quantizers in

signal detection systems, for the design of decentralized detection systems, for signal de-

sign and other related problems in communication systems.
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CHAPTER 4

PERFORMANCE ANALYSIS AND DESIGN OF THE

BAYESIAN PARALLEL FUSION SYSTEM

4.1 Introduction

As discussed in Chapter 1, in a decentralized detection system with data fusion, a

group of local detectors process the observations they receive regarding the status of a cer-

tain phenomenon, and transmit their decisions to a fusion center where the final decision is

made. The design of this system involves specifying both the local decision rules and the

fusion rule. Several authors have dealt with the design of such a system using different cri-

teria. Tenney and Sandell [7] treated the decentralized detection problem with no data fu-

sion from a Bayesian point of view. Costs were assigned to reflect the various courses of

actions of each local detector. The local decision rules were chosen such that the average

cost is minimized. Assuming known sensor thresholds, Chair and Varshney [9] developed

a minimum average cost algorithm for combining the sensor decisions at the fusion center.

Optimization of the entire system was considered by Hoballah and Varshney [10] where

they obtained a person-by-person optimal solution to the problem. The optimization of the

entire system was also considered by Reibman and Nolte [12] where an exhaustive search

has to be done over all the possible fusion rules in order to determine the overall minimum

cost solution. Chair and Varshney [14] considered the problem of distributed Bayesian hy-

pothesis testing with distributed data fusion in which data fusion is performed at each site.

Distance measures from the class of Ali-Silvey distance measures have recently

been used for the design of decentralized detection systems [35,38]. In fact, this class has

received an increasing interest in the design of quantizers for hypothesis testing because of

its strong link to the probability of enor (POE). Let n = {(C0, n I be the set of all permissi-

ble pairs of the prior probabilities in a binary hypothesis testing problem. Then,there exists

a subset of n for which if the distance between a given set of conditional densities is larger
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than the distance between another set of conditional densities, then the POE corresponding

to the first set is less than the POE corresponding to the second set. This result is known as

the Blackwell theorem [31]. Poor and Thomas [32] applied the general class of Ali-Silvey

distance measures to the design of a generalized quantizer for binary decision systems.

Poor [33] also used these measures as criteria for analyzing the effects of fine data quanti-

zation on inferential procedures and for designing quantizers to minimize these deterimen-

tal effects. A number of authors have applied members of the.class of Ali-Silvey distance

measures into the design of decentralized detection systems. For example, Longo, Looka-

baugh, and Gray [35] have employed the Bhattacharyya distance, whereas Lee and Chao

[36] have used the J-divergence to subpartition the decision space when a quality bit is to

be transmitted along with the decision to the fusion center. Kazakos [57] has employed

these distance measures to obtain bounds on the performance of distributed detection sys-

tems.

In this chapter we employ the minimum average cost (MAC) as the system perfor-

mance measure for the parallel fusion system shown in Fig. 1.1. Here our objectives are

threefold. First, we shall examine the improvement in the system performance as a func-

tion of the number of sensors. To achieve this objective, we need an explicit relationship

between the minimum average cost and the number of sensors. Second, we shall obtain

optimum local thresholds which minimize the global average cost for a given number of

sensors. Third, as an example, we consider the design of the minimum pz')bability of error

(MPOE) detection system where we compare the performance of the optimum system t

several suboptimum systems.

The chapter is organized in six sections. Section 4.2 contains the system description,

terminology, and notation. In Section 4.3, we examine a two-sensor system and derive a

condition under which the performance of this system is identical to that of a single sensor.

We also derive relationships for the minimum cost of an n-sensor system in terms of the

sensor decisions for the hard and the soft decision cases. In Section 4.4, we make use of

the results derived 'n Section 4.3 to design a system with minimum average cost. In Sec-

tion 4.5, we consider the design of the global minimum probability of error systems. In ad-
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dition, we discuss a suboptimum system design in which all the system components are

MAP receivers. Then, we discuss two suboptimum systems designed based on the dis-

crimination and the Bhattacharyya distance measures. Next, we employ the new upper

bound on the minimum probability of error derived in Chapter 3 to design a nearly opti-

mum decentralized detection system. Finally, we present numerical examples in which we

compare the performance of the various suboptimum systems to that of the optimum sys-

tem. We also compare the performance of the nearly optimum system to that of the opti-

mum system. Section 4.6 contains a summary of the work reported in this chapter.

4.2 Preliminaries

Let us consider the system shown in Figure 1.1 consisting of n local detectors and a

fusion center. Here, we consider the simple binary hypothesis testing problem. The hy-

pothesis H0 with a priori probability nt0 is tested against the alternative hypothesis H1 with

a priori probability nt1. The system receives n observations X 1, X2,.... Xn where Xi denotes

the observation received by local detector LDi. We limit our treatment to the case when Xi

is a scalar observation. The generalization to the vector case is straightforward. We as-

sume that these observations are independent and identically distributed random variables

with conditional probability density functions pj(xi) ; j = 0, 1, i = 1, ..., n. The local detec-

tors LD1, ..., LDn are linked to the global decision maker (also known as the fusion center)

through bandlimited channels. Due to this constraint on the channel capacities, the local

detectors transmit a compressed version of the observed data to the fusion center. The

compressed data can be in the form of a hard decision or a soft decision. In the first case,

the local decision zi takes on one of two possible values depending upon the local decision

of local detector LDi. In the second case, the observation space of Xi is partitioned into M

nonoverlapping regions. The transmitted local decision zi, correspondingly, takes on one

of M possible values. In both cases the fusion center is responsible for making the final de-

cision.

For M > 2, let Ti0 < Til <... < TiM be the local thresholds of local detector LDi with

Ti= -o and TiM = co. Also, let fail, ..., aiM) be the set of values that zi may' assume.
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These outcomes occur with the following probabilities

TiA

Pikj = P(zU= aj4Hj) = J p,(xi)dxi, 1 _i_.n, 1 k:5_M,j = 0,1.

Ti(A 1) (4.1)

We assume that the decision rules at the local detectors are identical. This means that Tik =

Tk and Pikj = Pkj for 1 < i < n. It should be pointed out that the theory presented here can

be easily generalized to the case where local decision rules are not identical. For simplicity

of presentation, we limit our discussion in this chapter to the identical local detector case.

It is worth mentioning that it has been observed in [24] that for decentralized Bayesian de-

tection, identical decision rule assumption often results in little or no loss of optimality. In

the next chapter we deal with the situation where the local decision zi is either 0 or I and

where the observations are not identical. We also assume that the decision made by local

detector LDi is independent of the decisions made by the other local detectors. Based on

these assumptions, the decisions z1, ..., zn form a sequence of i.i.d generalized Bernoulli

trials with parameters (Plj, P2j,.... PMj) when Hj is true. These decisions are sent over

bandlimited channels to the fusion center. The fusion center which is the global decision

maker bases its decision on the decision vector U=[z1, ... Zn]. To optimally partition the

observation space formed by the discrete random vector U into the decision regions corre-

sponding to H0 and H1 , the fusion center performs a likelihood ratio test. Our treatment in

this chapter is based on the assumption that the fusion center is a minimum average cost

(MAC) receiver. If Ckj ; k, j = 0, 1, denotes the overall cost of deciding Hk when Hj is true

then the global decision rule corresponding to this choice of the fusion center is

1 ifA_) > T

u0= f (4.2)

0 otherwise

where

A (LI) P(LU]HI) P(.U= z 1.. zl H)

P (Q Ho) P (U_= z ... z.1 Ho)
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Tj 1o (CIO - COO)
7t1 (COl - Cll)

and u0 = k means that the fusion center decides in favor of Hk. Making use of the indepen-

dence assumption between the decisions zi, AQ_) can be expressed as

fl-P(z,]H1

A-.r _i (4.3)
n

JJ P (zj Hj)
A (L) -i=1

Using (2.29), the MAC of the system can be expressed as

R = R0 -0.5X C1 fTP(zijHl) -CofjP(zijjHo) (4.4)
_U i=1 i=1

where the summation is taken over all values assumed by the vector U=[z1 z2, ... zn] with

each element zi taking one of the M possible values. For the interesting case of M = 2,

hard decisions are made at the local detectors based on the following decision rule

1 if Pi (Xi)/Po(Xi) >t
zi= h i=1,2,...,n (4.5)

', 0 otherwise

where zi = 1 means that H1 is declared true and zi = 0 means that H0 is declared true by lo-

cal detector LDi. It should be pointed out that the decision rule (4.5) is a threshold test due

to the independence assumption made earlier. This decision rule thus characterizes each

local detector in tcrms of its probabilities of detection PD and of false alarm PF The deci-

sion zi has the following conditional density functions under the two hypotheses
fo(Zi) •(1 PF -z`

f0 (Z) = Pi(1 - (4.6)

fo(Zi) = PD3(1 -PD)I-z (4.7)
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and the global likelihood function (4.3) becomes

n

Hflf (z/)
A (_) - '= 1 (4.8)n

flfo (zi)
i--1

Based on the likelihood ratio test (4.2) and using (4.3) and (4.8), we derive in Appendix A

the algorithm based on which the fusion center combines the decisions received from the

local detectors in order to make the global decision.

At this point we need to make a few remarks regarding (4.2) and (4.4).

1) The specific values of U that satisfy equality in the likelihood ratio test (4.2) can be as-

signed to either one of the decision regions corresponding to H0 and H1 without affecting

the MAC,i.e., no randomization is necessary.

2) Of all the possible fusion rules, (4.2) specifies the fusion rule that can achieve the small-

est MAC for given local decision rules. Equation (4.4) specifies the cost corresponding to

this (best) fusion rule. It should be pointed out that an explicit knowledge of the fusion

rule is not required to determine the MAC given in (4.4). The following example which

deals with the binary decision case illustrates this point.

Example 4.1

Consider the decentralized detection system of Fig. 1. 1 with three local detectors.

Let us consider the hypothesis testing problem in which the observations Xi are normally

distributed with unit variance, zero mean when Ho is true and unit mean when H, is true,

i.e., we test

H0• Xi - N(0, 1)

versus

H1" Xi - N(1,1) , i = 1, 2, 3.
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Assume that no = 0.5, CI1 = Coo = 0 and C10 = C0 1 = 1. Let us consider the case where the

local detectors are designed so as to minimize their own probability of error. It can be eas-

ily seen that the probability of detection for each local detector is PD = 0.6915 (or the

probability of miss PM = 0.3085) and the probability of false alarm PF = 0.3085. The local

decisions are sent to the fusion center for decision combining and for yielding a final deci-

sion. The possible fusion rules for the system are the AND fusion rule, the OR fusion rule,

and the majority logic rule. The probability of error achieved by each one of these fusion

rules is given by

P(E)AND = ,o PFF3 + 7ic(3PM-3PM2+PM3) = 0.41335

P(E)MAj = 7t0(3PF2 -2PF3) + 7tl(3PM2 -2PM3 ) = 0.22679

P(E)OR = 7ro(3PF-3PF2+pF3) + n1PM3 = 0.28534

As will be seen later, applying equation (4.4), the minimum probability of error can be

computed to be

P (E) = 0 .5 -- 0 .5  (3 1oPk(1-PF)3-k-- PD PD)3-1

k=O

which results in

P(E) = 0.22679 U

As can be seen from Example 4.1, equation (4.4) resulted in the probability of error

(POE) corresponding to the best fusion rule, namely, the majority logic. As illustrated in

Section 4.4, this fact can be used to drastically reduce the complexity of the design of op-

timum decentralized detection systems.

4.3 Performance of Decentralized MAC Receivers

In this section, we investigate the performance of decentralized detection systems as
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a function of number of detectors with minimum average cost as the performance mea-

sure. Initially, we consider the case of hard decisions where the local observations are

quantized into two levels and the quantized value is transmitted to the fusion center. First,

results are derived for a two-sensor system and then they are extended to three and n sen-

sor systems respectively. The treatment is valid for any operating point (PD, PF) on the re-

ceiver operating characteristic of the local detectors, i.e., system is not necessarily the

optimum system. The results are further generalized to the soft decision case, i.e., to the

case with n sensors and M quantization levels at the local detectors. Once again, the re-

suits are valid for any set of local thresholds To < T, < ... < TM which are used to perform

quantization.

4.3.1 Performance of a Two-sensor System

Let us consider a two-sensor system. The fusion rules for this structure are limited to

two, the AND fusion rule and the OR fusion rule (the trivial cases of always deciding in

favor of H0 or always deciding in favor of H1 are not considered). Using (2.1) we compute

the system average cost for each fusion rule as

(4.9)

RoR= Coo7C ( 21 - ) + C10 oro (2PF -_ p) + C012t1 (1 - PD) 2+ Cllt (2 PD D PD)

(4.10)

If we denote by R2 the MAC of the two sensor system, then

R2 = min (RAND, ROR) (4.11)

Substituting (4.9) and (4.10) in (4.11) and using (2.16) we get
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R2 = Rl -]I PM (1 - PM) (C 0 1 - C 1 l) - nOPF (1 - PF) (CIO - Coo)I

(4.12)
where

R1 = Coo00 ( 1 -PF) +CIO7COPF+COI7IlPM+CllrI (I -PM)

The first term on the right hand side of (4.12), R1, represents the average cost for a single

sensor system. The second term, which is a positive quantity, represents the improvement

in performance when two sensors are used with the same cost assignment as before at the

fusion center. An interesting situation arises when

7IPM(1- PM) (COI-C C) = OPF( 1 -PF) (CIO-COO) (4.13)

In thi,: case, the improvement term in (4.12) vanishes and, consequently, the performance

of th two sensor system reduces to that of a single sensor.

4.3.2 Performance of a Three-sensor System

When the number of local detectors is three, the possible fusion rules for the system

are t;ýe AND fusion rule, the MAJORITY logic fusion rule, and the OR fusion rule. These

fusion rules yield the following average costs

, AND 0 Co0IPF 3+ ýClo oP3F +COjl (I1 - (1 -PM)3) +CllII1 (1 -PM)3

(4.14)

ROR = CO•E0 (1 3 + Clo7CO (I - (1 3F)) + Col/tiP3 + C1 7E (1 - P3)

(4.15)
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RMAJ ý Co0o (I - 3P ' + 2P') + Cl (3P.- 2(P ) -Co2P) 1 (3P%,- 2P()

+ C117, ( I - 3P2 + 2p) (4.16)

As in the two sensor case, the MAC for this system is

R3 = min (min (RAND, ROR), RMAJ) (4.17)

Substituting (4.14), (4.15), and (4.16) in (4.17) we get (see Appendix B for details)

1
R 3 = R,- [B+31AI+31B-IAII] = Ri-A 1 3  (4.18)

where B and 1Al are given by

B = P - 3P + 2p2 (Clo - coo) + +EIPM (1 - 3PM + 2P) (Col _ C11)

JAI = I'IPM( 1 -PM) (Col-Cll)-•oPF(1 -PF) (CIO-C00)I

The term between brackets on the right hand side of (4.18) represents the improvement

that the three-sensor system has over the single -sensor system. Now we show that this

term is always positive indicating that an improvement in system performance is guaran-

teed as we go from a single-sensor system to a three-sensor system.

We start first with the interesting case where 0 < PF < 0.5 and 0 < PM < 0.5. Now

consider the function
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u (x) = 1- 3x+ 2x 2  (4.19)

This function is plotted in Fig. 4. 1. As is clear from this figure, the function u(x) is positive

for values of x in the range 0 < x < 0.5. By examining the expression for B in equation

(4.18), we see that both the first and the second term contain functions of PF and PM of the

form (4.19). Therefore, for values of PF and PM in the ranges specified above, the value of

B is positive. When B is positive, all three terms between brackets on the right hand side

of (4.18) are positive, indicating that the improvement term A13 is positive and, therefore,

it is obvious that R3 < R I. For other values of PF and PM that make B negative, we make

the change of variables B = - D in which D is positive. Now consider the quantity A13 giv-

en in (4.18) that represents the improvement in performance of the three-sensor system

over that of the single-sensor system. In terms of IAI and D, the improvement A13 can be

written as

A13 = R I -R3 [31D+lA41-D+31AJI (4.20)

But

ID + 1All = D + 1,41 (4.21)

Making use of (4.21),we see that

A [D + 31AII (4.22)
A13 =

which clearly shows that A13 > 0. To examine whether a condition similar to (4.13) exists

in which the performance of the three-sensor system is the same as the performance of a

single-sensor system, we need the improvement term A13 in (4.22) to be equal to O.This
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happens when IAI = 0 and D = - B = 0. The condition IAI = 0 leads to the requirement that

ilPM( 1 -PM) (COl-C 11) = 0oPF( 1-PF) (CIO-COO) (4.23)

while the condition B = 0 requires that

7EoPF - 3PF + 2p2) (CIO _ COO) --- -I PM (I1 - 3Pn + 2p2 ) (Col _ CJ)

(4.24)

Equation (4.24) can also be rewritten as

topF (1 - PF) (1 - 2 PF) (CIO - COO) = -ipM (1 - PM) (1 - 2PM) (Co, - C11 )

(4.25)

Substituting (4.23) into (4.25) we get

7Eo PF ( 1 - PF) ( 1 - 2PF) (CIO -COO) = -[OPF (1 - PF) ( 1 - 2PM) (CIO - COO)

(4.26)

By cancelling common terms on both sides of (4.26) we obtain

(1 - 2PF) = -( 1 - 2PM) (4.27)

Simplifying (4.27) we get a relationship between PF and PD as

"PF = 1-PM = PD (4.28)

Therefore, a simultaneous solution to (4.23) and (4.24) exists only when PF = PD which by
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the virtue of (4.23) requires that

7C1 (C01 -Cll) = (C10 - COO) (4.29)

As is well known from detection theory [1], the requirement PF = PD in (4.28) contradicts

the concavity property of receiver operating characteristics of optimum receivers. There-

fore, a simultaneous solution to (4.23) and (4.24) does not exist and, consequently, we

conclude that the improvement term in (4.18) and (4.20) cannot vanish for all values of PD

in the range 0 < PD < 1 and PF in the range 0 < PF < 1 and a three-sensor system is always

superior to a single sensor system.

It is also of interest to compare the performance of the three-sensor system to the

performance of the two-sensor system. In terms of the quantities IAI and B introduced in

(4.18), we can express (4.12) as

R2 = R1 -IAI (4.30)

Denote by A23 the improvement in performance of the three-sensor system over the two-

sensor system. Subtracting (4.18) from (4.30) we get

1A23 = R2-R3 = 4 [3tIAI-BI- (IAI-B)] (4.31)

It is evident from (4.31) that A23 2t 0. The improvement term A23 vanishes when IAI = B.

This happens in two cases

Case 1. A = B

Using the values of IAI and B defined in (4.18) we get the condition
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7t1 (C01 - C11 ) PF(1 -PF) 2

Ito (CIO - Coo) PD ( 1 - PD )2

Case 2. -A = B

This condition leads to the requirement

I[, (CO, - C11) P2 ( 1 _p PF)
= (4.33)7EO(Clo -Coo) p2 (I1-p)

We conclude that if either condition (4.32) or (4.33) is satisfied, then, the perfor-

mance of the three-sensor system is identical to the performance of the two-sensor system.

Otherwise, the three-sensor system outperforms the two-sensor system.

4.3.3 Performance of an n-sensor System

For n > 3 listing all possible fusion rules and repeated application of (2.16) to find

the minimum average cost of the system using the best fusion rule becomes tedious. How-

ever, we are able to find the minimum average cost of the system with the best fusion rule

in an alternative way. Recall that zi, the decision of local detector LDi has a Bernoulli dis-

tribution with parameter PF when H0 is true and parameter PD when H1 is true. Under our

assumption of independence and identical sensors, the vector U is a sequence of Bernoulli

trials. If K represents the number of sensors that decide in favor of H1, i.e., the number of

1 's in the vector U, then K has the following conditional distributions

Po(k) = (Pk P(1PF)nk (4.34)

P1 (k) = (n)P (1-PI )n-k (4.35)

The system minimum average cost based on the vector U is found with the aid of (2.22) as
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nf

R = R0-0"5 ( k CP(1-P )n-C- (4.36)

Equation (4.36) is an explicit relationship between the system MAC and the number of

sensors. It also represents the minimum system average cost corresponding to the best fu-

sion rule implemented by the fusion center. Let m be an integer larger than n, then the

quantity Rn - Rm represents the improvement in system performance when (m-n) new sen-

sors are added to a system originally having n sensors.

4.3.4 Performance of an M-level Quantized System

In the preceding subsection, the performance evaluation was carried out for the case

when LDi transmits a single hard decision to the fusion center. In that case the probabili-

ties of detection and false alarm can be appropriately defined. In this section we will gen-

eralize the results to the case where local detector LDi transmits one of the M possible soft

decisions to the fusion center.

Recall from Section 4.1 that for the case M > 2, the vector U is a sequence of n i.i.d

generalized Bernoulli trials. Let Xk, 1 < k ! M, represent the number of sensors that have

decided in favor of symbol ak. The number of such symbols in U follows the following

conditional densities

P (X = x1, .... XM= x HO) = .. xM Pk (4.37)

P(X= x1, ... ,XM= XMIHI) = ... XX ) Mpk (4.38)

where

74



yt1 Yi-2 .. .x xI!x 2 !...xI!

M

I Xk = 11

k - I

and Pkj ; j=O, I in the case of identical sensors are given by (4. 1).The MAC for this system

is found using (2.21) as

R,(,L R 0 -0.5 .... C 1-I PkI - CO -I P (4.39)
x A....x k = I k= I

The summation on the right hand side of (4.39) is taker.,, r ,ll possible values of xI, x2 ,

.... xM such that Xl+X2+...+xM = n. Analogous to the case M = 2, the quantity RMI(n) -

RM(m) represents the improvement in the system performance when (rn-n) new local de-

tectors are added to a system originally composed of n sensors.

4.4 Design of the Optimum D)ecentralized MAC Detection System

The two major problems encountered in the design of a decentralized detection sys-

tem with data fusion for a given number of I --al detectors are the determination of the op-

timum fusion rule and the optimum local decision rules. For tW'e first part of the design

problem, we assume the fusion center to be a minimum average cost receiver widt (4.2) as

the decision rule. This dccision rule when implemented at the fusion center optimally par-

titions the observation space of the decision vector U into two mutually exclusive decision

regions corresponding to hypotheses 110 and H 1. This partitioning yields the smallest

achievable average cost for any given arbitrary local decision rules. The partitionning cor-

responds to a specific fusion rule ( see Appendix A for the algorithm used by the fusion

center to combine the local decisions arn' to make the global decision). In the previous

section wc derived the exprcssion [Or the minimum average cost for an n-sensor system
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with two quantization levels as well as M quantization levels. For the second part of the

design problem, our objective is to select the local decision rules such that the average cost

is globally minimized resulting in the optimum decentralized MAC system.

Let T = [T1,T 2,...,TMI] be the vector consisting of local thresholds at any of the

identical detectors. The probabilities Pkj, j = 0, 1, given by (4.1) are functions of the

thresholds. We stress this by expressing PkO and Pk1 as

Pikj = Pkj(Tk, Tk-1)),i = 0, 1 (4.40)

for 1 < k < M. For a given threshold vector T, the global decision rule (4.2) expressed as an

explicit function of T becomes

1 if A2_) > rilu0•_)= {(4.41)

UD 0 otherwise

where

n

TIP (zi (T)I H)
A(T) = -

n

IP (zi (T) HO)
i=lI

For a given value of T,the decision rule (4.41) yields the smallest average cost among all

other decision rules (fusion rules). The resulting system MAC as a function of T can be

expressed as

RMfl (T) = R 0 -0.5 X C1 f Pk (Tk, Tk- 1) - CO PkO (Tk, Tk -)
Xk, ... X= 1 =I k= 1

It should be reemphasized that, for a fixed T, if one evaluates the system average cost for

all possible fusion rules, then (4.42) gives the minimum among all of the above system av-
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erage costs and the fusion rule which yields the minimum is specified by (4.4 1). For a dif-

ferent value of T say T", the entire process needs to be repeated, i.e., equations (4.42)

and (4.41) provide the minimum system average cost for the local threshold vector T", and

the corresponding fusion rule respectively. Therefore, to design the overall system,

RMnO should be minimized with respect to T and the corresponding fusion rule can be

determined from (4.41 ). The resulting system, i.e., the resulting value of T and the corre-

sponding fusion rule, yields the minimum achievable cost for the system.

Note that the above design procedure requires the minimization of a single function

of (M-1 ) variables. Also, even when the assumption of identical thresholds at the local de-

tectors is relaxed, we need to minimize a single function of n(M- 1) variables. This means

that for the binary case (M=2), we need to minimize a function of n variables only. This

case of non identical thresholds will be considered in the next chapter. Our procedure is

computationally simpler than the design procedures available in the literature wheie opti-

mization needs to be carried out for all possible fusion rules. Two methods that deal with

the design of binary decentralized Bayesian detection systems are reported in the litera-

ture. In the first method [121, the fusion center is fixed and a set of n coupled nonlinear

equations are solved to determine the n local thresholds. This has to be repeated for all the

permissible fusion rules. The solution with the smallest overall cost is finally selected as

the optimum system. The exponential growth of the number of fusion rules to be searched

makes the use of this method impractical. The other method is the person-by-person opti-

mization procedure [10] where conditions are determined for each local detector and the

fusion center so as to minimize the system cost when the other system components are as-

sumed to be fixed. The resulting equations are solved simultaneously to yield the person-

by-person optimal solution. This solution is not necessarily the optimum solution. This

procedure requires a simultaneous solution of (2n+n) coupled nonlinear equations for the

binary hypothesis testing problem. Thus, our design procedure is computationally efficient

and yields the optimum solution. It can be employed for the design and performance eval-

uation of relatively large detection networks as shown in the next chapter.

In our design procedure when M = 2, the n-dimensional vector T reduces to a scalar.
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In this case the local detectors perform their likelihood ratio tests with respect to a com-

mon threshold T (see equation 4.5). For a given value of t, the local detection probability

PD and the local false alarm probability PF are functions of c. We emphasize this by ex-

pressing PD as PD(t) and PF as PF(T). Therefore, we can express the conditional distribu-

tions given by (4.6) and (4.7) of the local decision zi in terms of t as

f0 (zi(r)) = [PF(')]zi [1-PF('t)]l'zi (4.43)

fl(zi(C)) = [PD(t)Izi [1-PD(r)l'zi (4.44)

The conditional densities of the decision vector U correspondingly can be expressed as

n

fj(W(Qt)) = 7fj (zT(t)),j = 0,1 (4.45)
i= 1

The likelihood function in (4.41) expressed as a function of t is

.f (LI))
A 1 ( f(U(f)) (4.46)

As pointed out in remark 2 in Section 4.2, the decision rule (4.8) with A&(Lt)) as given in

(4.46) specifies the fusion rule with the smallest MAC for a given value of T. The MAC

corresponding to this fusion rule with n incoming decisions expressed in terms of r is

1 n ('n] C k )n-to Cokc( P())n-•
Rn ('t) = Ro - 2 k: C D (-C) ( 1 - PD (.0) - O FC)( F(

k=O
(4.47)

To obtain the system with global optimum cost (least achievable MAC), Rn('E) should be

minimized with respect to the threshold r. The resulting local threshold alongwith the cor-

responding fusion rule specified by (4.46) and (4.41) will yield the optimum system.
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4.5 Minimum Probability of Error Systems

In this section we consider the design of the global minimum probability of error

(MPOE) systems which is a special case of the results obtained in the previous section. In

addition, we consider the design of several suboptimum decentralized detection systems

and compare their performances. The first suboptimum system is based on local optimiza-

tion in that each system component is an MAP receiver. The next two suboptimum sys-

tems are based on the discrimination and the Bhattacharyya distance measures.While

these two measures have been utilized before in the design of decentralized detection sys-

tems [35,38], here we employ them in a different manner. Finally, we present a subopti-

mum design procedure based on our new tight upper bound on the probability of error

developed in Chapter 3. For simplicity, we restrict our attention to the case M = 2 in this

section. We conclude this section with two numerical examples that compare the perfor-

mance of the optimum system to the performances of the various suboptimum systems.

4.5.1 Global MPOE System Design

As an important application of the general Bayesian formulation developed in the

previous section, we consider the cost assignment Coo = Cll = 0 and CO1 = CI 0 = 1. This

corresponds to the minimum probability of error criterion which is widely used. When the

decentralized system is to be designed using the probability of error as the system perfor-

mance measure, the expression for the minimum probability of error as a function of the

local threshold t is given by

5~~~-i (nfl T T ak Pk()( n-kj

~~~k = 0.5 - t
k=O

(4.48)

To design the global MPOE system, we need to determine the value of t that minimizes

PE(t) given by (4.48) and then determine the fusion rule which corresponds to that value

of the probability of error using (4.41) (see also Appendix A).
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4.5.2 System Design Based on Local Optimization

In this section we assume that the strategy of the local detectors is to select the

threshold that minimizes the POE at the local level.Let p0(xi) and pl(xi) be the conditional

densities of the observation Xi received by local detector LI)1 . The decision rule (4.5) that

determines the decisions zi becomes

1 if P (xI)/ 0(xi) ->70/It

Zi = f(4.49)
0 otherwise

It is clear from (4.49) that the threshold tL= •7t/r and the system POE is PE(CL). When

decision rule (4.49) is implemented at the local level, all the system components in Fig. 1. 1

become MAP receivers. Even though each component is individually optimized, the sys-

tem as a whole can be far from optimum, since the sensor decisions are made independent-

ly of the global decision.

4.5.3 System Design Based on Discrimination

Here, we describe the design procedure based on the discrimination measure. The

discrimination between two conditional probability density functions fo(x) and f, (x) of a

continuous random variable X is defined as

J = fo (x) nfo (W dx (4.50)

When the random variable X is discrete,the integration in (4.50) is replaced by a summa-

tion and the probability density functions are replaced by probability mass functions. In

this case the discrimination J becomes

XPX=P (X= xjHno)J= P (X= l Ho) lnP (X= xI H 1 ) (4.51)

Several important properties of the discrimination measure are listed in [67]. Since the fi-
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nal decision in the decentralized detection system is based on the vector U=[zl,z 2,...,zn],

we will examine the discrimination between the conditional distributions of the vector U

under the two hypotheses. This is given by

in (PD, PF) = IP (U= z "...znj Ho) InP (_CJ= zI.. .zn HO) (4.52)

ZI.n H P '~(V= z, ... znjHI)

The local decisions zi are Bernoulli random variables with conditional density functions

given by (4.43) and (4.44). Recognizing that U is a sequence of n independent and identi-

cal observations, then using the additivity property of the discrimination measure we get

Ji (PD (t), PF (t)) = nJj (t) (4.53)

Here, Jj(C) is the discrimination between the conditional distributions of a single local de-

cision zi under the two hypotheses. Using (4.43) and (4.44) we get

PF(0() (-_P_(_0))
J I(T) = PF(t) lnM + (1-PF(O) )In ( -PD(t) ) (4.54)

As an explicit function of the local threshold t, the discrimination between the conditional

densities of U can be expressed as

F _ PF(tC) (1-PF(t))1

in(T¢) = n PFD(0 Inp--M+ (1-PF)(T))In (I-PD(t)) (4.55)

By making use of the Blackwell theorem we observe that an indirect way of minimizing

the POE is to maximize the discrimination.Denote by tD the specific value of the local

threshold -r that maximizes Jn('C). The system POE in this case is PE(tD) where PE(C) is

given by (4.48).Two factors make this system suboptimum. First, The discrimination as

defined in (4.50) is independent of the prior probabilities. This fixes the local thresholds
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and consequently the values of PF and PD to be used during the system design. Designing

the system based on this measure when the prior probabilities are known, in fact, means

that part of the information available about the system is not exploited. Second, the dis-

crimination measure is independent of the fusion rule and, therefore, it is not a part of the

overall optimization process. This leads to the suboptimum system.

4.5.4 System Design Based on Bhattacharyya Distance

Now, we consider the design procedure based on the Bhattacharyya distance. Let X1

be the random observation in a hypothesis testing problem with corresponding conditional

densities f0(xl) and fj(xj). The Bhattacharyya coefficient is given by

P1 = foý0(x1 )f1 (x1 )dxl (4.56)
X1

When the random variable X1 is discrete, the Bhattacharyya coefficient is defined as

P,= 14P (Tx= xilHo)P (Xi= xIlHd) (4.57)
x1

The Bhattacharyya distance (see Chapterl) is defined as

D = -In p1= -lnf Fo (xl)fl (x 1) dx, (4.58)
X1

If X is a sequence of n independent and identically distributed observations, then the Bhat-

tacharyya coefficient and the Bhattacharyya distance corresponding to the conditional

densities of X become

pn = P7 (4.59)
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Pn = -npn p, (4.60)

The Bhattacharyya coefficient for the conditional densities of U is

Pn(PF, PD) = I ,(P(E= z ... z, Ho)) (P(U= zI...znIHi)) (4.61)
U

The Bhattacharyya distance between the conditional densities of the local decision zi is

D I(PF, PD) = -In [ PFPD + [( 1 - PF) ( 1 - PD) ] (4.62)

Expressing PD as PD(t) and PF as PF(t) and making use of (4.60) we can express the Bhat-

tacharyya distance between the conditional densities of U in terms of t as

DO(r) = -nln[ /PF (r)PD(rt) +(1--PF(1)) (1-PD (t))) (4.63)

Again, making use of the Blackwell theorem we see that an indirect way of minimizing

the POE is to maximize the Bhattacharyya distance. Denote by TB the specific value of -r

that maximizes Dn(t). The system POE in. this case is PE('tB). Again, the resulting system

is suboptimum and the reasons for this are the same ones as discussed in the previous sub-

section.

4.5.5 System Design Based on the New Upper Bound on the MPOE

In this section we apply the new upper bound derived in Chapter 3 to the design of

decentralized detection systems. Let K be the random variable representing the number of

local detectors that decide in favor of hypothesis H1 . Then K has the conditional density

functions given by (4.34) and (4.35) under hypotheses H0 and H, respectively. Since K is

a discrete random variable then, in order to find an upper bound on the probability that the
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fusion center makes an error, we need to express the new upper bound given by (3.71) in a

discrete form. This is given as

'I

P(E) _< 1: (0.5 ( sinnpt) exp [-1.8063 (Pl,- 0.5)2] (ICoPo (k) + tlP I (k))

(4.64)

where

itoPo (k)
Pk OP =0P(k) + 7t P1 (k)"'k ,1..

is the a posteriori probability of hypothesis H0 given that K = k. Substituting (4.34) and

(4.35) into the above expression for Pk, we get

7oP A(1 (-PF) n-k
Pk F PkF(1-PF)nk+1klPkD(l-PD)nk = 0, 1, ... , n (4.65)

The upper bound in (4.64) applies for any arbitrary point (PF, PD) on the receiver operat-

ing characteristic of the local detectors, i.e., for any value of the local threshold. Let t be

the common threshold of the local detectors (see equation (4.5)). Expressing PF as PF(t)

and PD as PD(C), we can write the a posteriori probabilities Pk in terms of t as

7co (PF (T) ) k ( 1 - Pr (,) )n- k
Pk (n-k

P Io(PFC))(1-PF(C)) n-k+I(PD(t))k(1-PD n'-k

(4.66)

The upper bound on the MPOE in terms of t becomes

P (E) 0.5 ink )sin7Pk (r) (exp [-1. 806 3 (pk (t) - 0.5) 2)

k=O

X [l0 (PF (t))k (1 -PF()) k +I (PD (E))k (1 -PD(t)) k

(4.67)
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The design of the system using the new upper bound calls for determining the local thresh-

old t* which minimizes the right hand side of (4.67). Therefore, a suboptimum system

that is designed to minimize the upper bound on the probability of error is one in which

the local detectors use the threshold t1*. The resulting POE is given by PE('*). Because of

the tightness of the new upper bound, systems using this bound as the design criterion are

nearly optimum. Example 4.3 demonstrates the utility of the new upper bound in the de-

sign of decentralized detection systems. Note that the knowledge of the prior probabilities

is used in this approach but it is still independent of the fusion rule.

4.5.6 Examples

In this subsection, we present two numerical examples where the system perfor-

mances achieved by using the different design approaches is compared.

Example 4.2

Consider a two sensor decentralized detection system used for the detection of a con-

stant signal of level m embedded in a zero-mean Gaussian noise with variance 52. The

null hypothesis corresponding to noise alone and the alternative hypothesis corresponding

to signal plus noise are expressed as

H0 • Xi - N(O, 0&)

H1 : Xi - N(m, a2 )

For this binary hypothesis testing problem we will compare the performance of the

various suboptimum systems considered previously to the performance of the optimum

decentralized system as well as the optimum centralized system. Also, we will see how the

performance of the optimum decentralized system improves as the number of quantization

levels increases. For the one dimensional Gaussian problem the likelihood ratio test (4.5)

at the local level becomes
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H,
Pl(Oi >

1 p((4.68)

PO(Xi) <
H0

where

X2

[(x.- m) (.9
p1 (x5) = - exp .- __ _ _

H1

xi oy2/m log 't +m/2 = T (4.71)

In this and future examples we find it more useful to evaluate the equivalent threshold T

defined in (4.71) than to evaluate the threshold T. This is because (4.71) gives us the deci-

sion regions corresponding to HO and H1 in terms of the observation x, while (4.68) gives

the decision regions in terms of the likelihood function.The probabilities of false alarm

and detection expressed in terms of t are given by

logt m
"PF (r) = erfc (a-- + T-) (4.72)

(.logT m
PD (T) = erjc m --- (4.73)
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where erfc (u) is the complementary error function defined as

" I u2

erfc(u) = 2-.exp(-u) du (4.74)

For parameter values m = 1 and a 2 = 1, the design is carried out for all values of the a pri-

ori probability no. The optimum decentralized MPOE system with M > 2 is designed ac-

cording to (4.42), while ior the case M = 2, the system is designed according to (4.48).

The suboptimnum systems based on the optimization of the POE at the local levels, maxi-

mum discrimination, and maximum Bhattacharyya distance are designed according to

(4.49), (4.55),and (4.63) respectively. In Fig. 4.2, we present the performance of the vari-

ous suboptimum systems as compared to the optimum decentralized system and the opti-

mum centralized system. Several observations can be drawn from this graph

1) The graph shows clearly that the optimum decentralized system significantly outper-

forms all three suboptimum systems over a wide range of nto.

2) Of special interest is the point with 7r0 = 0.5.At this point the local decision rule (4.49)

becomes

1 if PI(Xi)/P0 (Xi) _1
zi- •(4.75)

Z .0 otherwise

Using (4.75) we find that the threshold rL=l and the corresponding local threshold in

terms of the observations Xi is TL = 0.5 (see equation (4.71)). The values of PD and PF are

0.6915 and 0.3085 respectively. The POE for any one of the local detectors is PI(E) =

0.3085. Using (4.48) we find the POE of the two-sensor system to be PE(' = 1) or PE(TL =

0.5) = 0.3085. These results indicate that a single sensor system iý,nd a decentralized two-

sensor system are identical in terms of performance.It is to be noted that in this case the

point (PFPD) satisfies condition (4.13).

3) In Fig. 4.2, we notice that over some range of no0 the performance of the system de-

signed based on the Bhattacharyya distance is better than that designed based on the dis
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Fig. 4.2. Performance comparison of the optimum decentralized system and the subopti-

mum systems when each local detector processes one observation.
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crimination, and over another range the opposite is true. In fact, this is consistent with the

observations made in [31,32] regarding the selection of the "best" distance measure.

4) The performance curves for the systems employing maximum discrimination and max-

imum Bhattacharyya distance have straight line segments with different slopes. This can

best be explained by substituting Coo = Cll = 0 and C10 = C0 1 = 1 into (4.9) and (4.10) and

rewriting them as functions of 7r0 . The POE corresponding to the AND fusion rule and the

OR fusion rule are, therefore, expressed as

P 2 2 2(E) AND F + (2 PM -PM) (4.76)

2 2 2P(E) OR = (2 PF- PM-F) F + M(4.77)

As pointed out earlier, when we design the system based on members of the class of Ali-

Silvey distance measures, we find the local thresholds that maximize the distance between

the conditional densities of the decision vector U. These local thresholds are independent

of the prior probabilities and, consequently, the values of PF and PD of the individual sen-

sors are independent of these probabilities. This means that both (4.76) and (4.77) reduce

to linear functions of no. For a given value of nt0 , the fusion center computes the probabil-

ity of error corresponding to each one of the fusion rules and selects the fusion rule having

the smallest POE. Since the fusion center is a MPOE receiver, we see that over some range

of ic0, the AND fusion rule is implemented and over another range, the OR fusion rule is

implemented depending on which fusion rule has the smaller POE.

Fig. 4.3 shows the same kind of comparison considered above but assuming that

each local detector processes two observations to come up with the local decision Zi. As

can be seen from this figure, the relative gap between the optimum system and the subop-

timum systems widens for 0 < 7r0 < 1. For the rest of the figures, single observations at the

sensors are assumed. In Fig. 4.4, we plot the optimum local threshold given by (4.71) ver
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sus 7r0. In Fig. 4.5, we plot the optimum fusion rule for the optimum decentralized detec-

tion system as a function of 7c0. As can be observed from Fig. 4.5, for 7rc < 0.5 the OR fu-

sion rule performs better than the AND fusion rule and for nr0 > 0.5 the reverse is true. The

abrupt change in the value of the optimum local threshold in Fig. 4.4 is a manifestation of

the fact that the system always selects the fusion rule leading to the smallest cost. The

variation of the optimum local threshold given by (4.71) and the optimum fusion rule as a

function of 7c0 for the optimum three-sensor decentralized system is shown in Figures 4.6

and 4.7 respectively. In this case the majority logic has the best performance over most of

the region of 7r0, i.e., for 0.095 < ir0 - 0.905. In Fig. 4.8, we compare the performance of

the optimum decentralized MPOE system with M = 2, 3 and 4 to the performance of the

optimum centralized system. At the point ico = 0.5 we observe that the POE of the opti-

mum decentralized system with M = 4 is only 2.36% higher than the POE of the optimum

centralized system. In Fig. 4.9, we show the resulting MPOE as a function of the signal

level m (small values of m) for the four systems when 7) = 0.5 is assumed.

Example 4.3

The objective of this example is to design the decentralized system based on the new

upper bound for the same problem as considered in Example 4.2 and compare the perfor-

mance with that of the optimum decentralized detection system. We further assume that m

= 1.5. The probabilities of false alarm and detection expressed in terms of Tr are given by

(4.72) and (4.73). The design equation for this system will be (4.67) with n = 2. In Fig.

4. 10, we plot the probability of error for the system resulting from the minimization of the

•ew upper bound as a function of n0 (dotted curve). Also plotted in this figure is the opti-

mum probability of error resulting from the design of the system based on equation (4.48)

(solid curve). As observed from the figure, the difference between the two curves can be

hardly noticed.Therefore, we also provide numerical results in Table 4. 1. Due to the sym-

metry of the curve, numerical results for for only the values of t 0 > 0.5 are presented.

Note that the thresholds in Table 4.1, are those specified by (4.71).
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Threshold that POE obtained from Optimum Threshold Optimum

NO minimizes the the upper bound for the decentralized MPOE

upper bound minimization approach detection system

0.5 0.2843 0.1810 0.2268 0.1804

0.6 0.4461 0.1726 0.4047 0.1723

0.7 0.6167 0.1529 0.5925 0.1528

0.8 0.8185 0.1209 0.815 0.1209

0.9 1.1177 0.07353 1.1375 0.0735

Table 4.1

4.6 Summary

In this chapter the design and perfe -nance of minimum average cost decentralized

detection system was considered.The analysis was based on the expression derived in

Chapter 2 for the minimum average cost of an optimum receiver in terms of the Kolmog-

orov variational distance. Both hard decision and soft decision systems were considered.

Performance enhancement when additional detectors are added was determined.A design

approach for the MAC decentralized detection system based on the above results was pre-

sented.This computational procedure is much simpler than the previously available meth-

ods.As an example,design of distributed detection systems fmi MPOE criterion was

considered in detail.Its performance was compared to the suboptimumn systems designed

based on some Ali-Silvey distance measures.The performance degradation of distributed

detection systems relative to the cen_ "lized system was also determined.It was also shown

that the perfcnmance of the decentralized system approaches the performance of the cen-

tralized system very quickly as a function of the number of quantization levels.
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CHAPTER 5

PERFORMANCE EVALUATION OF DISTRIBUTED

BAYESIAN DETECTION STRUCTURES

5.1 Introduction

We have previcusly discussed the computational difficulties assoc'ated with the pro-

cedures for the design of optimum decentralized detection systems. Therefore, the study

of decentralized detection systems has been limited to small networks and very few topol-

ogies. A computationally simpler approach for the design of decentralized Bayesian detec-

tion systems was presented in Cihapter 4. This approach is based upon the alternative

expression for the minimum average cost derived in Chapter 2. The main objective of this

chapter is to apply this approach to the design and study of four decentralized detection

topologies. It is demonstrated by means of illustrative examples that relatively large net-

works can be handled rather easily. For these systems, we show that the design of the opti-

mum system can be reduced to the optimization of a single function of a certain number of

variables that depend upon the configuration considered. In Section 5.2, we briefly formu-

late the problem. In Section 5.3, we revisit the parallel fusion network with n local detec-

tors discussed in Chapter 4. Here we deal with the more general situation where the

observations received by the local detectors are not necessarily identical and where the lo-

cal thresholds are not assumed to be identical. Under these conditions, we show that the

design of the optimum system reduces to the optimization of a single function of n vari-

ables. This optimization is performed only once with no need to seaý-ch over , -i the possi-

ble fusion rules, i.e., the optimization procedure is not exhuastive. In Section 5.4, we

consider a variation of the parallel system where we allow the fusion center to make its

judgement based on the received local decisions as well as its directly received observa-

tion (side information). While for the parallel fusion system there, the number of possible

fusion rules grows exponentially with n (see Table 1.1), there are 2n decision thresholds
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for the system with side information. These decision thresholds span the entire observa-

tion space of the local observations. For this structure we show again, that the design of

the optimal system reduces to the optimization of a single function of n variables. In Sec-

tion 5.5, we consider the design of a hierarchical system with 2n local detectors and n re-

gional decision makers. The regional decision makers are assumed to make their decisions

based on the decisions received from the local decision makers and also on their own ob-

servations, i.e., side information. The design of the optimum.system for this structure re-

duces to the optimization of a function of 3n variables. In Section 5.6, we discuss the

design of the hierarchical system in which the regional decision makers do not have obser-

vations of their own. In Section 5.7 we present several examples along with some numeri-

cal results. Section 5.8 contains a discussion and some concluding remarks.

5.2 Problem Formulation

In Chapter 4, we developed a computationally simple approach to the design of

decentralized detection systems. This procedure is based upon an alternative

representation of the minimum average cost in terms of a modified form of the

Kolmogorov variational distance. The procedure was applied to the design of the parallel

fusion network when the incoming observations were assumed independent and

identically distributed and the local thresholds were assumed to be identical. The cases of

hard decisions and soft decisions were analyzed. In this Chapter we apply the design

procedure to the design of a number of decentralized detection structures including the

parallel fusion network. These structures are used for the binary hypothesis testing

problem. The null hypothesis H0 with a priori probability 7,, is tested against the

alternative hypothesis H1 with a priori probability 7t1. The criterion we adopt is the

minimization of the system average cost. We consider the case when the local as well as

the regional decisions are either 0 (corresponding to H0 ) or 1 (corresponding to HI), i.e.,

we only treat the case of hard decisions. Here, we assume that the incoming observations

are independent but not necessarily identical . Let Cij ; i, j = 0, 1, be the overall cost of

decidin.• Hi when Hj is true. Since the final decision is made at the fusion center, these
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costs are applicable there, and the fusion center can be looked upon as a minimum average

cost receiver. Therefore, the minimum average cost at the fusion center can be represented

as given in (2.21). Now we apply our computationally simple approach to the design of

several network topologies.

5.3 Parallel Fusion Network

Let us consider the system S 1 shown in Fig. 1.1 consisting of n local detectors and a

global decision maker. The system receives n observations X1,...,Xn in which Xi denotes

the observation received by the local detector LDi, 1 < i < n. We assume that these obser-

vations are independent with conditional pdf's p0 (xi) and pI(xi) under hypotheses H0 and

H1 respectively. Due to the bandwidth constraints on the channels linking the local detec-

tors to the global decision maker, the local detector LDi compresses its raw observation Xi

to a single hard decision, zi, indicating whether H0 or H1 is true and transmits it to the fu-

sion center. The design procedure employed here can be easily extended to the design of

decentralized detection systems employing soft decisions, but this case will not be consid-

ered here. We assume that the decision made by the local detector LDI is independent of

the decisions made by the other local detectors. Due to the independence assumption, in

the optimum system, each local detector LDi performs a local likelihood ratio test with re-

spect to some local threshold ti. That is, the decisions zi are made based on the following

rule

1 if Pl(Xi)/Po(xi) Žti

zi= f i=l,...,n (5.1)
0 otherwise

where zi = 1 means that H1 has been declared true and zi = 0 means that H0 has been de-

clared true by the local detector LDi. The decision rule (5.1) thus characterizes each local

detector LDi by a local probability of detection PDLi and a local probability of false alarm

PFLi. Each element of the local decision vector U = [z1...zn] is a Bernoulli random vari-

able having the following density functions under the two hypothesis

f1o(zi)=PFL02 i(1-PFLi)i (5.2)
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fl (zi)=PDLiZi (l1-PDLi)1 -zi (5.3)

It is to be noted that unlike the case considered in Chapter 4 where the decisions z1, z2, ...

zn were independent and identically distributed, the decisions z1, z2, .... zn here are inde-

pendent but are not assumed to be identically distributed. This is a result of our earlier as-

sumption that the observations X 1, X2, .... Xn are not necessarily identically distributed.

Using the assumption of independence between the local decisions zi, the decision vector

U has the following density function under the two hypotheses

n

A (U) = Hfj(zi),j = 0, 1 (5.4)

These decisions are sent over bandlimited channels to the global decision maker. The glo-

bal decision u0 is obtained by the fusion center based on the vector U by performing the

likelihood ratio test (4.2) with A(O =fl(o Ifo(... Using (2.21),,,,c c•n find the MAC

of the system as

R o-•,IClf1 (=) -Coo(U_)l (5.5)

We should point out that of all the possible fusion rules, (4.2) specifies the fusion rule that

achieves the smallest MAC for a given set of local decision rules. The cost corresponding

to this (best) fusion rule is specified by equation (5.5).We also emphasize that an explicit

knowledge of the fusion rule is not required to determine the MAC given in (5.5). This

point was illustrated by means of an example in Section 4.4.

While (5.5) determines the MAC for given a priori probabilities, cost assignments,

and local decision rules, it can also be used for designing the optimum system. In order to

use (5.5) for this objective we let t = ['tl...tn] denote the vector whose elements are the lo-

cal thresholds, where -ti is the threshold of local detector LDi as defined in (5.1).The local

detection probability PDLi and the local false alarm probability PFLi of local detector LDi

are functions of xi. We stress this by expressing PDLi as PDLi(-ci) and PFLi as PFLi(,ti).

Therefore, we can express the conditional distributions given by (5.2) and (5.3) of the lo-
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cal decisions zi in terms of ;i as

f0(zi(,ci))= [PFLi(,Ti)]zi [1.PFLi(,ri)]l'zi (5.6)

fl (zi(,ri))=[POLi(,ci)]zi [ 1-POLi('Ti)] lzi (5.7)

The conditional densities of the decision vector U correspondingly can be expressed in

terms of _ as
n

fW(Ll(_)) = rJf (zi(,r)),j = 0,1 (5.8)
i= I

For a given vector I of local thresholds,the observation space of _U is optimally par-

titioned using (4.2) with ATU) expressed in terms of the densities given in (5.8) as

A W(s)) -f0 (5.9)

As pointed out in the second remark in Section 4.2, the decision rule (4.2) with A(ý.) as

given in (5.9) specifies the fusion rule with the smallest MAC for the given vector 'r. The

MAC corresponding to this fusion rule with n incoming decisions expressed in terms of -T

is

R, (_) =R - 0.5 C1Clf1 (_U (t)) - CJf0 (_U (t))j (5.10)

where the summation is taken over all the possible values of U. Equation (5.10) is a func-

tion of n variables, namely, the n local thresholds t 1, ... , Tn. For a given value oft, Equa-

tion (5.10) determines the cost corresponding to the best fusion rule among all the possible

fusion rules. Therefore, to optimally design the overall system, Rn(j) should be minimized

with respect to _. The resulting fusion rule can be determined from (5.2) (see also Appen-

dix A).

If the observations X 1, .... Xn are independent and identically distributed under both

hypotheses, then the receiver operating characteristics of the n local detectors are identi-
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cal. That is, if 0t1 and PI are the false alarm and detection probabilities that are achieved at

threshold t for one of the local detectors, then the false alarm and detection probabilities

of all the other detectors at threshold t will also be cc1 and P31. If we assume that these local

detectors when operating in a decentralized system have identical thresholds, then we

have PDLi = PDL and PFLj = PFL for 1 < i 5 n. Eventhough this assumption is intuitively

appealing, a number of counterexamples have been reported in the literature [20,58]

whereby the overall system cost is minimized by nonidentical local decision rules ev-

enthough the local detectors are identical. It has been observed in [24] that for decentral-

ized Beyesian detection systems, the identical local decision rules assumption often results

in little or no loss of optimality. The system design procedure greatly simplifies for the

identical detector case. In this case the vector _r reduces to a scalar t and the n-variable de-

sign equation (5.10), reduces to equation (4.47) which is a function of one variable only.

In Example 5.1, we will use both equations (5.10) and(5.47) to design a system consisting

of six local detectors with identical observation statistics.

5.4 Parallel Fusion Network with Side Information

In this section we consider the distributed detection system S2 shown in Fig. 1.2.

This system is different from the one treated in the previous subsection in that the global

decision maker receives a local observation of its own (or side information) in addition to

the local decisions zi. The observation vector based on which the fusion center makes the

final decision is the augmented vector [LJXo] of the local decisions zi and the observation

X0 at the fusion center. The global decision is made according to the rule

H1

A(x0 ) TI (5.11)
foj <

H0

where

P1 (Xo)
A (x0 ) = - I _ _

Po (Xo)
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and Tj is the global threshold defined in equation (4.2). An equivalent test can be obtained

in terms of the local observation X0 as

HI
> fo(--

A(x0 ) TI =TQ,Q =,... 2Q (5.12)
< f, (---

H0

By using the expressions given in (5.4) forfo(L.) andf1 C_) and taking the logarithm of

both sides of (5.12) we get the following (see Appendix A for details)

AoW() n 1 - PFLi n PFLi (1 - PDLi)
WogT1 (LI) I - PDLi + •log1 0 PDL (I - PFLj) (5.13)

i=1£ i=1

Note that the equivalent test in terms of the logarithm specified by (5.12) and (5.13) is an

extension of the optimum data fusion algorithm developed in [9]. Here, the locally re-

ceived observation X0 has been taken into account. As can be seen from this new equation

(giving the test), there are 2n different decision thresholds to be employed at the global de-

cision maker. Each threshold TIQ, Q = 1, ..., ,2n corresponds to a particular sequence of the

2n possible values that the decision vector U takes. Using (2.20) we can determine the

minimum cost of the system as

R = ICIf, (Ll)pI (x0 ) - C~o( ()p po oIdxO (5.14)
U

where the integration is performed over all values of X0 . When the observations X1...Xn

are independent and identically distributed under both hypotheses, the receiver operating

characteristics of the n local detectors become identical. If we assume, as we did in the

previous subsection, that the local detectors use identical thresholds, then the equivalent

thresholds given in (5.13) simplify to

fA('W) I -PFL • PFL(1-PDL) nlogI •-• = logn ( --- D-) +logpLlP ) (1.15

Equation (5.15) indicates that there are (n+l) decision thresholds employed at the global
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decision maker. If we let K be the number of local thresholds that decide in favor of HI,

then K has the distributions given by (4.34) and (4.35). Using (4.34) and (4.35) the MAC

in (5.14) can be expressed as

T= 1° (n CPDLk(1-PDL) n-kP,(Xo)-CPFLk(1-PFL)n-kPo(X°) dx

(5.16)

As before, we let r = [1 ... n] be the vector of local thresholds. We express PDLi as

PDLi(,ci) and PFLi as PFLi(ti). For any setting of the local thresholds r, the optimum par-

titioning of the observation space of X0 is made according to the decision rule (5.12). The

decision thresholds TiQ expressed explicitly in terms of r are
n

rHfo (Zi (ri))

'nQ (S)_ = 11 i=n ' (5.17)

11fl (zi (i))
i= 1

where the density functions in the numerator and the denominator are those given in

equations (5.6) and (5.7). The resulting system MAC from (5.14) can be expressed as a

function of . as

Rn()= R 0 - 1J(fIC)f (vZ(s) ) p (X,)) - C~of(U (:)) Po(X0)I dxo

(5.18)

If the local threshold vector T is changed to ." it results in a different set of 2n decision

thresholds at the fusion center and, consequently, a different value of the global MAC,

Rn(-."). Our goal is to obtain the best global MAC. Therefore, Rn(l.) should be minimized

with respect to the local threshold vector .. The resulting system, i.e., the resulting local

threshold vector _ and the corresponding 2n decision thresholds specified by (5.12), is op-

timum. It should be emphasized that equation (5.18) is a function of n variables, namely,

the n local thresholds. The explicit dependence of the cost on the 2n decision thresholds at

the fusion center has been avoided.
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The design equation (5.18) simplifies tremendously for the identical thresholds case.

In this case the vector _T reduces to a scalar threshold t. The decision thresholds specified

by (5.17) become

PFLk(C)[ 1 PFL('E)]n-k

rlk = T1 ,k =- 0, ..... n (5.1I9)

PDLk(t,)[ 1-PDL(t)I]n'k

The system MAC in terms of T, Rn(C), is obtained by explicitly expressing PFL as PFL( c)

and PDL as PDL(,c) in equation (5.16). In this case the cost function is a function of one

variable, namely, the common local threshold. The global minimum cost is obtained by

minimizing Rn('t) with respect to the local threshold t. The resulting local threshold along

with the corresponding (n+l) decision thresholds determined by (5.19) specify the opti-

mum system. An example will be presented in Section 5.7.

5.5 Hierarchical System with Side Information at the Regional Detectors

In this subsection we consider the hierarchical decentralized detection system S3

shown in Fig. 1.3. The system consists of 2n local decision makers, n regional decision

makers (RD's) and a global decision maker. Local detectors LD2i.1 and LD2 i process their

locally received observations X2i.1 and X2i and forward their decisions z2i_1 and z2i to an

intermediate regional decision maker RDi, i = 1, ..., n. In the hierarchical system consid-

ered in this chapter, the local decisions of only two detectors are combined at the regional

decision makers. The results can be generalized to the case of more than two local detec-

tors per regional decision maker. However, for simplicity in presentation, we consider the

case of two local detectors only. The regional detector RDi combines the two local deci-

sions along with its directly received observation Yi to make the regional decision ui. The

observations Yj, j = 1, ... , n are assumed to be independent with pdf's po(yj) and P, (Yj) un-

der the hypotheses H0 and H1 respectively. The decision vector UL= [ul...Un] is used by the

global decision maker to make the final decision u0 . The local decisions zi, i = 1, 2,..., 2n

are made based on the decision rule (5.1) and hence, each local detector is characterized

by a local probability of detection PDLi and a local probability of false alarm PFLL. The fi-
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nal decision is made based on the decision rule (4.2) with A(__) to be specified later. Let

mij, i = 1, ..., n be the unknown threshold of the regional detector RDi. The regional deci-

sion ui is made according to the test

H1

P I(YXif (z2i11)fl (z2) >
Tli , i = 1, 2 ... n (5.20)

PO(Yi)fo(z2i.I)fo(zzi) <
H0

wherefj(zi); j = 0, 1, i = 1, 2, ..., 2n are given by equations (5.2) and (5.3). The test (5.20)

can also be expressed in terms of the regional observation Yi as follows

H1
PlI(Yid > fo(z2i-1I)fO(Z2i)

Tli =lik./, k, I = 0, 1 (5.21)
PO(Yi) < hl(z2i- Ohl(Z2i)

Ho

where k is equal to z2i. 1, the decision of local detector LD2i.1, and I is equal to z2i, the de-

cision of local detector LD2i. Depending on the values that z2i. 1 and z2i take, the regional

decision maker RDi employs one of the following thresholds

( 1 - PFL2i _) ( 1 - PFL2 d)
oo= (1 - PDL2i -1) (1 - PDL2i) (5.22-a)

(1 - PFL2i - 1) PFL2 i
7li~i = Ili (1 - PDL2i_ - 1) PDL2i (5.22-b)

PFL2i- 1 ( 1 - PFL2i)
TIi10 = 11riPDL2i- I ( 1 - PDL2i) (5.22-c)
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PFL2 i_ 1PFL2i (5.22-d)"lill = 1liPDL2 i_ lPDL2 .

Let PDRj(Tj 1kl) and PFRi(ildk) denote detection and false alarm probabilities of regional

decision maker RDi for a given threshold ilikI , i.e., when z2i-.1 = k and z2 i = 1. These prob-

abilities are given as

PDRi(TIikl) = P (ui = 1 Iz2i. 1 =k,z2i =1 ,H 1) (5.23-a)

PFRi(7likl) = P (ui =11z2i.1l =k,z2 =1 ,H0 ) (5. 23-b)

Then using the theorem of total probabilitywe can find the unconditional detection and

false alarm probabilities as

PDRi = X X P(z2i.1 = k, z2i = 1 IH1 ) PDRi('7ikl) (5.24-a)

k 1

PFRi = I XP(z2 i-.1 = k, z2i = I IH0) PFRi(7Iikl) (5.24-b)

k 1

Expanding over k and I we can express PDRi and PFR1 as

PDRi = (1 -PDL2i-1 )( 1 -PDL2i)PDRI(T1ioo) + (1 -PDL2 i-I )PDL2i PDRi(CqiO1 )

+PDL2 iI(1-PDL2i)PDRi(tjilo)+PDL2i.IPDL2 i PDRi(71ill) (5.25-a)

PFRi = (1-PFL2i. 1)(J -PFL2i)PFRi(TriOO)+( I-PFL2i.1 )PFL2 i PFRi(lio01 )

+PFL2i..(1-PFL2i)PFRi(Tlilo)+PFL2i.IPFL2i PFRi(qil1 ) (5.25-b)

Each regional detector RDi is characterized by a detection probability PDRi and a false
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alarm probability PFRi. The density functions of the regional decision ui under H0 and H1

are given by the following Bernoulli distributions

fo(ui) = PFRiUi(l-PFRi)1'ui (5.26-b)

fl(ui) = PDRjUi(1-PDRj) 1-ui (5.26-a)

for ui = 0, 1, i = 1, ..., n. Using the independence assumption between the regional deci-

sions, we obtain the following density functions for the decision vector

n

fj (V) = Hfj (ui),j = 0, 1 (5.27)
i=1

The system MAC is computed using (5.5) withfo(._o andfl(__) as given in (5.27). Let T =

[IT... 2n] be the vector of local thresholds and 11 = ['TjI...Tln] be the vector of regional

thresholds. The design of the optimum system calls for the determination of _, I1, and the

fusion rule that minimize the global cost. For a given local threshold tj, j = 1, 2, ..., 2n, the

local detection and false alarm probabilities PDLj and PFLj are functions of Tj as discussed

in the previous sections. For a given regional threshold Tij, i = 1, ..., n, the conditional re-

gional thresholds given in (5.22) are functions of the local thresholds r2i- 1 and T2 i as evi-

dent from the the dependence of the thresholds in (5.22) on the local detection and false

alarm probabilities. These thresholds are also functions of 1i as can be seen from (5.21).

Consequently,the unconditional regional detection and false alarm probabilities given in

(5.25) are functions of the variables T21 -1, •2i, and rii. More explicitly, we write PDRi as

PDRi('T2i-.,J 2 i,1i) and PFRi as PFRi('r2i-..,'T2it1). In terms of the system variables, the sys-

tem MAC in (5.5) becomes

R T ,n n
R0 _-2 C1 Flf( (U("il, '12i- 1 ' 2 i)) -CO lif0 (ui (71i, _2 i -1 p2)

U = i=
(5.28)

Equation (5.28) is a function of 3n variables. In order to obtain the optimum system, equa-
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tion (5.28) has to be minimized with respect to these variables. The fusion rule can be ob-

tained from (4.2) once the optimum local and regional thresholds are determined. With the

identical threshold assumption the design equation (5.28) becomes a function of two vari-

ables, namely, the common local threshold t and the common regional threshold r1.

It should be pointed out that the performance of this system is expected to be inferior

to those in the preceding sections for the same number of observations. The reason for this

is the extra data compression at the regional level, so that the -information available to the

fusion center is less than before. This will be illustrated in Section 5.7 where several nu-

merical examples are considered,

5.6 Hierarchical Decentralized Detection System

In this subsection we consider the hierarchical detection system S4 shown in Fig.

1.4. The difference between this system and the one treated in the previous section is that

the regional decision makers have no observations of their own. Therefore, they have to

make their decisions solely on the basis of the local decisions they receive. The local deci-

sions and the final decisions are still made as in Section 5.5, i.e., the local decisions are

made on the basis of the local observations and the global decision is made on the basis of

the decisions received from the regional decision makers. However, due to the unavail-

ability of observations at the regional detectors, special attention has to be paid to decision

making at the regional decision makers. In the rest of this section, we modify the optimi-

zation procedure of Section 5.5 to take into account the absence of side information at the

regional detectors.

Let 71i be the threshold used by regional decision maker RDi. The regional decision

ui is made based on the test

H1
fl(z2i-1) fl (z2i) >

L(z2i- 1,z2i =li (5.29)

fO(z2i.1)fO(z2i) <
H0
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Substituting the density functions for zk given by (5.), and (5.3) into (5.29) we get

HI
(PDL2 i. 1)z2i- 1 (1 -PDL2 i. 1)1 'z2i-1 (PDL2i)z2i (1 -PDL2 i)1 z2i >

7mi (5.30)
(PFL2i.1)z2i-1 (1-PFL2i..) lz2i-1 (PFL2i)z2i (1-PFL2i)1 z2i <

Ho

Taking the logarithm of both sides of (5.30) and arranging terms we obtain the following

test

H,

A2i.1 z2i. 1 +A2i z2i Ci (5.31)

Ho

where

PDL2i - 1 (1 - PFL2 i - 1)
SlPFL2i- 1 (1 - PDL2i -1 )

A2i = PDL2i (1 - PFL2)
PFL2i ( 1 - PDL2 i)

Ci loT~j( 1 - PFL2i_- 1) ( 1 - PFL2i)
S= logi (1 - PDL2i -1) (1 - PDL2 )

The random variables z2i_1 and z2i are Bernoulli random variables under both hypotheses,

but their linear combination in (5.31) is not. Let

Li = A2 i- Z2i- 1 +A 2 iz 2  (5.32)
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be the sufficient statistic at the regional decision maker RDi. The regional probabilities of

false alarm and detection are

PFRi=P fui= 111-10 is true) =P {Li> CiIH0 } (5.33-a)

PDRi = P {ui = lIH, is true} = P {Li >_ Ci IHI1 (533-b)

Now we show how equation (5.28) can be used to design the system. In Section 5.5, a

likelihood ratio test at the regional detectors was formulated where the likelihood ratio

was obtained using Yi as the observations and the incoming local decisions were used to

modify the threshold ij. In that case, the receiver operating characteristic at the regional

decision maker was continuous and all values of Tli were permissible. Thus it was possible

to express the regional probabilities of detection and false alarm in terms of the regional

threshold i1i and the probabilities of detection and false alarm of the local detectors con-

nected to this regional detector. The optimum system was obtained by optimizing the cost

in (5.28) with respect to the local and regional thresholds. All of these thresholds were as-

sumed to be independent, i.e., the number of independent variables was 3n. The difficulty

in the design ui the system of Fig. 1.4 arises due to the fact that the regional thresholds and

the local thresholds cannot be assumed to be independent, i.e., we do not have 3n indepen-

dent variables. In Appendix C, we show that for given local thresholds T2i_1 and "2i, the re-

gional threshold li may lie in one of five possible regions. These regions are determined in

terms of the local thresholds. If the regional threshold Ti lies in the two outside regions, it

results in maximum possible values of system cost. Therefore, these two regions are not

desirable. In the remaining three regions the system cost does not change as the regional

threshold 71i is varied within any of these regions. Thus it is not possible to express the ,e-

gional probabilities of detection and false alarm in terms of the regional threshold r7i ex-

plicitly. The functional relationship between T2i_1 and T2i and 'i, can be further emphasized

by expressing ili as VTi(2 1.,'2i). The optimization procedure of Section 5.5 can now be

used except that we have only two independent variables 2i.1 and '2i for each regional de-

tector RDi.
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5.7. Examples

In this section we present several numerical examples that illustrate the utility of the

design procedure described in this chapter. Our goals in presenting these examples are

1) To examine the effect on the global MAC of allowing identical local detectors to use

identical local decision rules.

2) To examine the effect of having side information at the regional and global decision

makers.

3) To compare the MPOE of the various systems when the total number of observation re-

ceived by each system is six.

In these examples we assume that under hypothesis H0 , each local and regional observa-

tion is a Gaussian random variable with mean zero and variance ai 2 . While under hypoth-

esis H1, each observation is a Gaussian random variable with mean 4i and variance Gi2. As

discussed in Example 5.2, for the Gaussian hypothesis testing problem, it q more conve-

nient to express the local thresholds in terms of the locNl obvervat-ons as (see equation

(4.71)).

T. = -Zlog.i+ (5.34)
" -i 2

where ';i represent tl.e local thresh wids defined in equation (5.1). Note that the thresholds

that opear in the tables at the end of this section are those given by (5.34). We should

mer that in a11 the systems, the design procedure reduces to the minimization of a cost

function. In performing the optimization we use the method developed by Hooke and

Jeeve [69].

Example 5.1

The objective, of this example is to examine whether optimality is lost by assuming

that the identical local detectors in systems S1 and S2 are using the same threshold.

Consider the system S 1 with six local detectors and the system S2 with five local de-
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tectors so that both the systems have an identical number of local observations, i.e., six lo-

cal observations. Let it0 = 0.5, gti = 2.5, and cyi2 = 1 for all the observations in the two I

systems. Using different cost assignments we perform the design of the systems for two

cases. In the first one, we do not restrict the local detectors to employ an identical thresh-

old, i.e., in obtaining the optimum local thresholds, we assume that each one of the local

detectors employs a different threshold. The appropriate design equations in this case are

(5. 10) for system S1I and (6.18) for system S2 which are functions of six variables and five

variables respectively. In the second case, we assume that all local detectors have identical

thresholds. Ile appropriate design equations are (4.47) for system S 1 and (5.18) for sys-

tem S2. For both systems, the thresholds obtained with and without equal threshold restric-

tion were identical for a variety of cost assignments. In other words, for this example

optimality is not lost if identical threshold assumption is made when observation statistics

at the sensors are identical. Ile values of the optimum local thresholds and the optimum

costs are shown in Tables 5.1 and 5.2. Also shown in Table 5.1 are the optimum fusion

rules for system S 1. These fusion rules are obtained by substituting the optimum local

thresholds in the likelihood ratio hinction (5.9) and using (4.2) (see also Appendix A). In

Table 5.2, we have also included the cost for the optimum centralized system, i.e., where

all six observations are processed centrally. The performance loss due to decentralization

is evident from Table 5.2. Also, note that decentralized detection system with side infor-

mation performs better than the system without side information.

Example 5.2

In this example, we examine the effect of havind one noisy local detector on the per-

formance of the decentralized systems S1 and S2.

Consider the hypothesis testing problem of Example 5.1 for the MEPOE criterion. We

assume that the assumptions and conditions of that example are still valid except for one

of the local detectors where we assume that its noise variance 0.2 is a variable. For S 1, this

means that for five of the local detectors the observation statistics under the two hypothe-

ses are given as
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Coo Cll C10 C0 1  Optimum local threshold Optimum cost Optimum fusion rule

0 0 1 1 1.46 6.059 x10-3  3 out of 6

0 0 1 5 1.30 1.266 x10-2  3 out of 6

0 0 5 1 1.20 1.266 x 10-2  4 out of 6

1 2 4 6 1.43 1.5208 4 out of 6

0 0 30 40 1.01 0.2107 4 out of 6

1 1 2 2 1.037 1.006 4 out of 6

Table 5.1: Results of Example 5.1 for the parallel fusion network S I

Coo C11 C10 C01 Optimum local threshold Optimum cost Optimum cost for the
for system S2 centralized system

0 0 1 1 1.24 5.216 x10-3  1.0998 x10"3

0 0 1 5 1.15 1.119 x10 2  2.3877 x10 3

0 0 5 1 1.36 1.1192 x10"2  2.3877 x10"3

1 2 4 6 1.23 1.518 1.5038

0 0 30 40 1.23 0.18046 0.03806

1 1 2 2 1.247 1.00522 1.0011

Table 5.2 : Results of Example 5.1 for the parallel network S2 with side information
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H0 : Xi - N(O,1)

H1 : Xi- N(2.5,1), i = 1,2,...,5.

while for the sixth local detector the observation statistic is given as

Ho:X 6 - N(O,&a)

H, : X6 - N(2.5,o-)

For S2, the observation statistics under the two hypotheses for four of the local detectors

and the side observation are given as

H0 : Xi - N(0, 1)

H I : Xi - N (2.5, 1) , 0 = 1, 2,...,.4.

while for the fifth local detector the observation statistic is given as

HO: - N(O,&a)

H1 : X5 - N(2.5,a 2 )

The objective is to examine the performance of the systems as a function of the noise level

-2 of one of the detectors when the rest of the system remains fixed, The cost of each sys-

tem is obtained by minimizing the appropriate system cost equation. The solid curves in

Figures 5.1 and 5.2 respectively show the MPOE for systems SI and S2 versus a2. The

broken line in Figure 5.1, shows the MPOE of the parallel fusion system when the noisy

detector is disregarded, i.e., the MPOE when system makes the final decision based on the

five non-noisy detectors. Similarly, the broken line in Figure 5.2 represents the MPOE of

the parallel fusion system with side information when the final decision is made based on

four local detectors (excluding the noisy detector) and the side observation. The broken

lines in Figures 5.1 and 5.2 are constants for all the values of &- because the decision of

the noisy detector is ignored while making the decision.

Example 5.3

In this example we compare the optimum performance of system S1 with n local de-

tectors to the optimum performance of system S2 with (n-1) local detectors for various
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Fig. 5.1. MPOE of system S1 when the variance of the noise at the noisy detector is

varied.
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Fig. 5.2. MPOE of system S2 when the variance of the noise at the noisy detector is

varied
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values of n.

Let j.i = I and ai2 - I for all the observations in the two systems. Also let Coo = C11

= 0 and CI0 = C01 = 1. First, let us compare the performance of system SI to the perfor-

mance of system S2 for the case when n = 2 (see Example 4.2). Note that when n = 2, the

system S2 reduces to the two-stage serial system. The comparison is made for all values of

SEO; 0: <E 0- 1. The optimum minimum probability of error (MPOE) of system SI and S2

as a function of 7E0 is shown in Fig. 5.3. It is clear from this figure that S2 performs better

than SI for all values of ir0 . These results are consistent with the results obtained in [21,

23]. In Figure 5.3, we also present the performance of the optimum centralized system. At

the point 7r0 = 0.5, we see that the MPOE of system SI is 12.9 % more than that of the

centralized system. For system S2 the corresponding percentage is 7.4 % only. Next, we

compare the performance of systems S I and S2 as a function of n for the case when no =

0.5. Based on the observation of the results of Example 5. 1, here we design both systems

under the identical thresholds assumption without loss of optimality. For each value of n,

the systems S I and S2 are designed using (4.48) and (5.16) respectively. The optimum

thresholds and the optimum MPOE are shown in Table 5.3 along with the MPOE of the

centralized system with n observations. As can be seen from Table 5.3, the MPOE of the

parallel system with 2 local detectors is 5.2 % higher than the MPOE of the corresponding

serial system. For other values of n this percentage is smaller. As expected, for large n

both systems have essentially the same performance. As n gets larger, the percentage by

which the MPOE of both systems are higher than that of the centralized system becomes

larger. For the parallel system with n = 2, this percentage as mentioned above is 12.9 %,

while for the case with n = 10 it is 73.6 %. Thus the need for having soft decisions rather

than hard decisions becomes more apparent for larger n if the overall MPOE is to be with-

in some reasonable bounds of the MPOE of the centralized system. This requires the trans-

mission of more bits of information to the fusion center. This problem of soft decisions

was treated in Chapter 4.
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n S1 with n local detectors S2 with (n-1) local detectors Centralized

Threshold MPOE Threshold MPOE MPOE

2 1 0.271 0.5 0.2575 0.2397

3 0.5 0.2268 0.5 0.22244 0.1932

4 0.782 0.2014 0.5 0.19397 0.1586

5 0.5 0.1745 0.5 0.17078 0.13176

6 0.695 0.156 0.5 0.15108 0.11032

7 0.5 0.1373 0.5 0.13434 0.09293

8 0.649 0.1234 0.5 0.1198 0.07864

9 0.5 0.1095 0.5 0.10718 0.0668

10 0.62 0.09881 0.5 0.09608 0.05692

11 0.5 0.08S24 0.5 0.08634 0.04862

12 0.60 0.07979 0.5 0.07769 0.04163

13 0.5 0.07157 0.5 0.07003 0.03571

14 0.5875 0.06484 0.5 0.06319 0.03068

15 0.5 0.05835 0.5 0.05713 0.0264

Table 5.3 : Results of Example 5.3 for the comparison of the MPOE of systems S1

and S2 for various values of the number of local detectors n.
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Example 5.4
Consider the hierarchical system S3 consisting of four local detectors and two region-

al detectors. We compare the MPOE of this system to the MPOE of the hierarchical sys-

tem S4 with six local detectors and three regional detectors such that the number of

observations in both systems is six. Let nro 0.5, ýi = 2.5, and ai 2 = 1 for all the observa-

tions. The optimum system is obtained by minimizing the cost in (5.28). The minimum

cost (MPOE) for system S3 is 1.0809x10"2 . The local thresholds were found to be identi-

cal and equal to 1.47. The regional thresholds were also identical and we obtained III = 112

= 10.09. For system S4, the minimum cost was found to be 1.1874x10-2 . It turns out that

there are two possible solutions that achieve this MPOE. In Table 5.4, the values of the op-

timum local thresholds are given in addition to the fusion rules employed at the regional

detectors. Also given in this table are the permissible regions of the regional threshold at

the regional detectors. These regions are derived in Appendix C. It is to be noted from this

table, that the optimum solutions are achieved with nonidentical local thresholds. Howev-

er, the local thresholds of the detectors linked to the same regional detector were found to

be identical. For the sake of completeness, we summarize below the performance of the

systems S1 , S2, S3, and S4 for the MPOE criterion assuming that gi = 2.5 and -fi2 = 1 for

all of the observation

MPOE of S1 with 6 local detectors 6.0596 x10-3

MPOE of S2 with 5 local detectors 5.2134 x10-3

MPOE of S3 with 4 local detectors and 2 regional detectors 1.0809 x10-2

MPOE of S4 with 6 local detectors and 3 regional detectors 1.1874 x10-2

MPOE of the centralized system with 6 observations 1.0998 x10-3

5.7 Summary and Conclusions

In this chapter we considered the design and performance evaluation of four decen-

tralized Bayesian detection structures. The procedure employed in designing these sys-

tems is based upon an alternate representation of the minimum average cost in terms of a

modified form of the Kolmogorov variational distance. For the parallel fusion networks
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First solution Second solution

Threshold at LD1  1.725 1.77

Threshold at LD2  1.725 1.77

Fusion rule at RD1  OR OR

Threshold at LD3  0.728 0.775

Threshold at LD4  0.728 0.775

Fusion rule at RD 2  AND AND

Threshold at LD 5  0.725 1.77

Threshold at LD6  0.725 1.77

Fusion rule at RD 3  AND OR

Permissible DII = 5.23 x10"3 D12 = 4.228 DII =5.9 X10"2 D12 =4.88

regions ofr1 1 D12 = 4.228 D 13 = 4.228 D12 = 4.88 D 13 =4.88

D13 = 4.228 D 14 = 341.42 D1 3 = 4.88 D 14 = 405.05

Permissible D2 1 = 2.47 x10"3  D22 = 0.2048 D2 1 =2.9 x10-3 D22 --0.236

regions of 12 D22 = 0.2048 D2 3 = 0.2048 D22 =0.236 D23 =0.236

D23= 0.2048 D24 = 16.97 D23 =0.236 D24 =19.09

Permissible D3 1 = 2.47 x10-3  D32 = 0.2048 D3 1 =5.9 X10. 2 D32 -4.88

region of 13 D32 = 0.204 D33= .2048 D32 --4.88 D32 -4.88

D33 = 0.204 D34 =16.97 D3 3=4.88 D34 = 405.05

Table 5.4 : Results of Example 5.4 for the hierarchical system S4
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with and without side information at the fusion center, the design of the optimum system

was shown to reduce to the optimization of a single function of n variables. This optimiza-

tion is performed once and does not require an exhaustive search. The case of identical ob-

servations at the local detectors was considered in detail.It was shown that the design

procedure requires the optimization of a single function of one variable. For the identical

observations case, the validity of the identical decision rule (at local detectors) assumption

was investigated by means of an example. For the example considered, optimality was not

lost when identical decision rules were assumed. For the hierarchical systems with and

without side information at the regional detectors, the design of the optimum system was

shown to reduce to the optimization of a function of 3n variables. For the hierarchical sys-

tem with side information in the identical observations case, the local decision rules and

regional decision rules were found to be identical. However, for the hierarchical system

without side information, this was not true, i.e., the decision rules associated with the same

regional decision maker were identical but decision rules of local detectors associated

with different regional decision makers were not identical. The examples also illustrate the

anticipated result that the performance of hierarchical systems is worse than that of the

parallel systems due to the extra loss of information at the regional decision makers. In

this chapter, the validity of our design methodology was demonstrated by applying it to

four decentralized detection structures. It can also be applied to other decentralized detec-

tion topologies and structures.
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CHAPTER 6

DECENTRALIZED DETECTION SYSTEM DESIGN

USING THE NEYMAN-PEARSON CRITERION

6.1 Introduction

In Chapters 4 and 5 the objective was to design globally optimum minimum average

cost decentralized detection systems. A number of system topologies were considered.

The design procedure required the knowledge of the a priori probabilities and the costs in-

curred by each course of action. When such information is not available, the Neyman-

Pearson criterion may be used for system design. In this case, the probability of false

alarm is restricted not to exceed a prespecified value a., and the objective is to maximize

the probability of detection P3. Srinivasan [15] used the Neyman-Pearson criterion to ob-

tain the local decision rules in the parallel fusion network assuming that the fusion center

is a combinational logic circuit. Hoballah and Varshney [16] treated the problem in two re-

spects. First, when the fusion rule is known and the objective is to find the local decision

rules. Second, when the decision rules at the detectors are given,and the objective is to find

the optimum fusion rule. Thomopoulos, Viswanathan, and Bougoulias [17] employed the

Neyman-Pearson criterion for system design where both the decisions made by the indi-

vidual sensors and the global decision made by the fusion center are based on the Ney-

man-Pearson test. Tsitsiklis [18] addressed the question of concavity of the receiver

operating characteristic of the system. He found that for a given strategy, the receiver op-

erating characteristic is not necessarily a concave function ( a numerical example is pro-

vided in [19] ). However, concavity can be achieved by randomizing with respect to the

possible strategies. A similar result was obtained by Willet and Warren [20]. Viswanathan,

Thomopoulos, and Tumuluri [21] applied the Neyman-Pearson criterion to the design of

the serial decentralized configuration. They found that for the case of two sensors, the op-

timal serial network has a better performance than the parallel scheme ( better here refers
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to higher probability of detection for the same false alarm probability). While :his interest-

ing result is true for the case of two sensors, the numerical examples provided in [21]

show that *his result is not true, in general, for systems with more than two -!nsors.

As mentioned earlier, the final decision in the parallel fusion system of Fig. 1.1 is

based on the decision vector U = [z, z2 ... zn]. The observation space corresponding to this

decision vector is , of course, discrete. When the observation space in a hypothesis tesdng

problem is discrete, questions related to the randomization of the decision rule arise. In

Chapter 2 we addressed the question of randomization whet, the decision maker was as-

sumed to be a minimum average cost receiver. In that chapter we found that randomization

of the decision rule is not necessary. This idea was implemented in Chapters 4 and 5 to de

sign globally optimum minimum average cost decentralized detection systems without the

need to randomize the decision rule. This is not necessarily the case wnen the design crit->

rY.-n is the ,eyman-Pearson criterion. In this chapter. the objective is to investigate wheth-

er randomization is necessary at the fusion center in the design of the Neyman-Pearson

parallel fusion system. Howevei, the objective is not to provide a c )mplete design ap-

proach to the Neyman-Pearson decentralized detc ction system. In Section 6.2 we formu-

late the problem. In Section 6.3 we consider the problem of randomization in detail and

show that randomizatior is not necessary. In Section 6.4 we discuss the results obtained in

this chapter.

6.2 Problem Formulation

Consider the parallel fusion system shown in Figure 1.1 consisting of n local detec-

tors and a fusion center. The system receives n owservations X 1, X2 -.... Xn where Xi de-

notes the observation received by the local detector LDi. We assume that these

observations are independent and identically distributed random variables with condition-

al probability ,lensity functions pj(xi), j = 0, 1, i = 1, ..., n. We make the s .me assumption

that we made in Chapter 4 in that the local detectors are identical, each -ie characterized

by a probability of false alarm PF and a probability of detection PD. The operating point

(PF, PD ) can be anywhere on the receiver npe!ating characteristic of the local detectors.
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Let K be the random variable representing the number of sensors that decide in favor of

H1. The conditional probability density functions of K under hypotheses H0 and H1 are

given by (4.34) and (4.35) respectively. Let O(k) be the probability of accepting H1 after

observing K = k. Then, in general, O(k) is given by (see Appendix A equation (A. 13))

(1 when k >k*

O(k) = y when k=k* (6.1)

0 otherwise

where y is the randomization factor and k* is the threshold. The randomization factor in

(6.1) is introduced so as to achieve the constraint on the global false alarm probability aX.

The probability of false alarm ax is the expected value of O(k) when Ho is true, while the

probability of detection J3 is the expected value of )(k) when H1 is true.These quantities

are therefore expressed as

a = Eo 1{ (k)} (6.2)

P3 = E 1 {o (k)} (6.3)

Using (4.34) and (4.35), we obtain the following expressions for a and 13

a• = yQ nJPF -1PF)nk + ( P.(1--PF)n-k (6.4)
k=k +1

13 = ".),t (1-PD)n-k* + , 1PtD(1--PD)n-k (6.5)

k=k +1

When the local decision rules are known, the randomization factor and the threshold k*

can be easily determined using (6.4) to satisfy the desired probability of false alarm. The

values of k* and y that satisfy (6.4) are used to find the probability of detection in (6.5).
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The resulting 5 is the maximum that can be achieved. When the local decision rules are

not known, and the objective is to design tha system that maximizes 1P for the specified cc,

the problem becomes involved. In this case, only the constraint on the system probability

of false alarm is given while three parameters have to be determined, namely, the thresh-

old k*, the randomization factory, and the local threshold. For this problem, we will in-

vestigate the role of the randomization factor y in the overall design process.

6.3 Randomization in Decentralized Neyman-Pearson Detection Systems

In this section we show that when the global false alarm probability is specified at

some level (x, then the global probability of detection 13 in (6.5) is maximized when the pa-

rameter y is either 0 or 1. We begin by assuming that at some point (say poik, P1 in Fig.

6.1) on the receiver operating characteristic (ROC) of an individual detector, the specified

ax is achieved when the randomization factor in (6.4) is 1. This means that the fusion rule

at the fusion center is a k* out of n rule. In general, a k out of n fusion rule is defined as

follows: The global decision maker decides in favor of hypothesis H1 when the number of

local detectors that decide in favor of hypothesis H1 is greater than or equal to k. It is

shown in Appendix A that when the fusion center is a minimum average cost receiver,

then under the identical detector assumption the optimum fusion rule is a k out of n rule.

Let the local detection and false alarm probabilities at the point P1 be denoted by PD1 and

PF1, and let the local threshold that achieves these probabilities be denoted by ' 1 (see

equation (4.5)). Now, assume that ax is also achieved at two neighboring points P0 and P2

as shown in Fig. 6.1 with corresponding global detection probabilities 130 and fI2 respec-

tively. Let the local thresholds at the points P0 and P2 be denoted by "T0 and T2. Now we

prove the following theorem.

Theorem 6.1

In designing a globally optimum Neyman-Pearson decentralized parallel fusion sys-

tem, the global probability of detection is maximized when the randomization factor at the

fusion center with respect to the local decisions is either 0 or 1, i.e., system without ran-

domization performs better than the ones employing randomization.
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PD

IP

PO

Fig. 6. 1. Receiver operating characteristic of a local detector. The points P0, P1,

and P2 are the points where the global false alarm probability is fixed at a.

131



Proof

To prove the theorem we need to show that 31>p0 and P31>032. The proof will be car-

fled out in two parts. In the first part we show that P1>3 0 and in the second we show that

Part 1 : Pj>0i

Since at point P1, cc is satisfied by a k out of n fusion rule with k = k*, the random-

ization factor in (6.1) is 1.Therefore (6.4) and (6.5) reduce to

a:= •PJFI (1 -- PF1)n-j (6.6)

j=r*
n

•1=• )PjDl (I -PD1 )n-i (6.7)
j =r

J=k*

Now we show that for two positive numbers 0 < Yi < 1 and 0 < Y2 < 1 such that Yi <

Y2, the following inequality is true

S•)Yl (1-y 1 )n-J< y ')A (1-Y 2 )n-J (6.8)

j=k j=k

We prove the inequality in (6.8) by showing that the slope of the following function of y is

positive

g (y) = Z F) ?1 -y)f"-J (6.9)
j=k

Let us define the function gj(y) as

gj (y) -1 y)-i (6.10)
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The derivative of gj(y) is

gy-g.(y) =jy-(1-y)J- (n-j)yi(l-y)3-- (6.11)

Using (6.10) and (6.11), the derivative of the function g(y) defined in (6.9) becomes

dg(y) = S (Y) = EX i fI>.yi-1 (-Y) n-j- (n -j) y )(1 - j) I
9Y- j=t 

(6.12)

It can be shown that the summation S(y) in (6.12) simplifies to

S()n! r* ( I )n-r 6.3
(k*- -)!(n-k*)!y (l-y) (6.13)

The summation in (6.13) is positive for all the values of k* when the values of y are in the

range 0 < y < 1. This result shows that the slope of the function g(y) is positive indicating

that g(y) is an increasing function of y in the range 0 < y < 1. Therefore, for Yi < Y2,

g(Yl) < g(Y2) as claimed in (6.8).

From Fig. 6.1 we see that PF0 < PF1. Therefore, using (6.8) we conclude that

S<P o(1-PFo)-< , (IP (1-PF) n-J (6.14)
j=k* J=k*

Using (6.6), (6.14) can be written as

S )PFo (1- PFo)n-j <aC (6.15)

j=k

In order to maintain a false alarm probability of a at point P0, a randomization term at k =

k*-I has to be added to the left hand side of (6.15) so that equality is achieved. Therefore,

the following decision rule is employed at the point P0
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1 when k>k*-l
Yo {YO when k=k*-1 (6.16)

0 otherwise

Using (6.16) we evaluate the global false alarm and the global detection probabilities at

the point PO as

n Fo1 (1 -PFO)n. +1+ FO(1-PFO)n

(6.17)

nD•o = Yo n P I 0o-P ntl
Do OklIPOPDO I1 X ýPD 0PO

1= e (6.18)

From (6.17), we find that yo is given by

a•- o ( 1O- PFO) n-j
=- j(_ Po)-" (6.19)

* t-(l-P o)n-t
o FOk*l)- FO

Substituting (6.19) into (6.18) we get

n

I00 X PJJFO (I1PDO )n-J
j=

(fly.-j (DO)k -1)nD ~ +
+ {a- _PXo (1 Po)- (P-o _IFO (6.20)

j\rFOI 0

Substituting the value of a given in (6.6) into (6.20) we get

n

00 - E jI O(1-PDO)ni- +
j=

134D - IlPD°
{PF (I ' -~ PFI "-j- "'O'I -P '-),POo) 1i Ir (621

j=r O1 * (.1
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Our objective now is to express the right hand side of (6.21) in terms of P31. For this pur-

pose we recall the following approximation based on Taylor series expansions of a func-

tion g(y)

g (y + Ay) g (y) + g, (y) Ay (6.22)

g (y - Ay) g (y) - g, (y) Ay (6.23)

In the rest of the chapter the approximation sign in (6.22) and (6.23) will be replaced by

equality sign. Let us consider the function g(y) given by (6.9). The derivative of this func-

tion is given by (6.12). Using (6.22) and (6.23) we get the following expansions of the

function g(y)

g(y+Ay) = 1)ý _ II y'(l-Y) +
j= r

{ - y)n--n-j) Iy( )n -- AY (6.24)

j=k

g(Y-AY) = : ýi) ( I(-Y) nJ-

{= j(

Since PFI =PF + APF (refer to Fig. 6.1), then by making use of (6.24) we obtain the fol-
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lowing expansion

nn

I )PJF(I-PF)-J Y, ' •)PJFO(1-PFo)-J +
j=t jj=ke

j = (6.26)

Substituting (6.26) into (6.21) we get

S: °" -I °°n-k" +]
0 n- X P) o(l-P0 o) J1( j-j+ ,Po -o

j=kF

x { • )[P'Fo1 01--PFo) n-'i- (n -j) PJFo (1-PFo )n-J- 1] 1APF

j = (6.27)

Since PDO=PDI-APD, then we can use (6.25) to obtain the following expansion

S')PJDo(a-PDO)) n-J n ý')PJDI(a-PDI)n-J
j~k j=r*

j=k*

(6.28)

It can be easily recognized that the first term on the right hand side of (6.28) is the global

probability of detection at the point P1 as given by (6.7). Substituting (6.28) into (6.27)

and making use of (6.7) we get

PO P •I- S (PD1) APD + S (PFO)APF 'DO I-( -to

(PFO)FO
(6.29)
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where S(.) is given by (6.12). Making use of (6.13), equation (6.29) simplifies to

n!

0 0 1A - (e- 1)! (- O x

(D1 0 -PD1 n-k" _ __PFo -PFo)

(6.30)

In the limit when APD and APF approach zero, (6.30) becomes

n! Ple -1 (1-PD )n-t" APo 1 PD1 A
0o = 0- (k*l)!(nk*)! Di F

(6.31)

But the following inequality is true for any operating point (PFPD) on the receiver operat-

ing characteristic (see Appendix D for a proof)

APD( - PF) > APF ( - PD) (6.32)

Using this inequality, we see that the term between brackets on the right hand side of

(6.31) is positive, and so we establish the following result

300< 31  (6.33)

This concludes the first part of the proof. Now we consider the second part.

Part 2: 141>12

From Fig. 6.1, we note that the false alarm probability PF2 at point P2 is greater than

the false alarm probability PF1 at point Pl. Therefore, using (6.8) we conclude that

Y, )F2 0 - PF2) - > 3 ( 1 - PF17)-i (6.34)
j~k j~k
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Using (6.6) we can rewrite (6.39) as

)PF2 ( 1P - PF2, n-jn>a (6.35)
j=k

In order to maintain a false alarm probability of a at point P2, the outcome at k = k* on the

left hand side of (6.35) is randomized so as to achieve equality in (6.35). Therefore, the

following decision rule is employed at the point P2

( 1 when k>k*
2(k) = when k=k* (6.36)

0 otherwise

Using (6.36) we evaluate the global false alarm and the global detection probabilities at

the point P2 as

a= Y2 (Pk F(2 -F 2 Yk" + 2 (1 -P2'
j=k +1 (6.37)

n02 -- 2 (2k* D2 D(2-P 2 : ý )P'D2(1-PD2)n-

j=k! +1 (6.38)

From (6.37), we find that y2 is given by

a-j (I- n-

T2 = /: tn ( 1nn- (6.39),k* ),F2 (1 - P F2

Substituting (6.39) into (6.38) we get

n

j-= +1

j=k 41 (, 'PF2) -- S-F2) (6.40)
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Substituting the value of a given in (6.6) into (6.40) we get

P2 jý)rD2('iPD2)J+y P ~ PS2
j = k= + 1

ji=k* j=k +2

As we did in the first part, here our objective is to express f12 in terms of 01. Since PF1 =

PF2 - APF, then by making use of (6.25) we obtain the following expansion

S•)PJI (1PF1)-j • •nPj
ýýPW -F -= i ý '2 ( 1- PF2) -

j=k j=k*

j = k

(6.42)

Substititing (6.42) into (6.41) we get

32 I ý)PD2 (1 - PD2) + I - PF-j=t* +1F22

(n "(1-"

{ F2 F2) APF} (6.43)

where S(.) is given by (6.12). In obtaining (6.43) we have made use of the fact that

n-_ Rj nnk*i n)YI(1-Y)nJ • (?)YJ(1-Y)nJ= (k*0yi(1-y) -

j=k +I
(6.44)

Equation (6.43) can also be written as
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02= X PI 2 (1-PD2) n-j)+ PD2 (1 - PD2 )nk

j=k* +1

-S(PF 2) ,PF -iej-P22 )k APF (6.45)

Using the expression for S(.) given by (6.13), equation (6.45)'reduces to

j=k*

n! Pr (I (.P ~n-k (PD 2 le (I -PD 2 )n- APF
(k* - 1)! (n -k*) !PF2 ( F2) QPF2 -PF2J

(6.46)

Now expand the first term on the right hand side of (6.46) about the point PDI

P½2 X. )P, I (1-PDl)j- . 2 (1 -PD 2)n-k APrj = I?(k 1)! (n - e*) ! PF2

+ U. j[PJDI'l(1 -PDI)n-J(n -j) PoI(1 -PD,)-- AD
j=k*

j = (6.47)

The first term on the right hand side of (6.47) is 01. Using (6.13), equation (6.47) becomes

02 =PPD2 ( 1- Po2) n- k*ApF•2 =[•1-(k*-1)! (n- k.)! PF2

+n! P, -t (I ),,O n- t A
+ (k* -1)!(n-k*)!PD1 -PD APD (6.48)

As point P2 becomes closer and closer to point P1, equation (6.48) can be expressed as
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pk*.11 p~n..k~ PD1n! P - 1)n- e{FA.FAPD}
02 = 01 (k* 7- 1)! (n - k* )! D i I F(

(6.49)

But for any point (PI; PD) on the receiver operating characteristic of an individual sensor,

the following inequality is true (see Fig. 6.2 and Appendix D)

PDAPF > PFAPD (6.50)

Making use of this inequality, we see that the second term on the right hand side of (6.49)

is positive which indicates that

0•2 < [1 (6.51)

This completes the proof that randomization of the observations at the fusion center is not

necessary when the objective is to design a globally optimum Neyman-Pearson decentral-

ized detection system.

6.4 Summary

In this chapter we addressed the problem of randomization with respect to the local

decisions at the fusion center when the objective is to design an optimum Neyman-Pear-

son decentralized detection system. We found that for a prespecified value of the global

probability of false alarm the global probability of detection is maximized when there is

no randomization, i.e., the randomization factor is either 0 or 1. This means that a k out of

n fusion rule is the fusion rule that maximizes the global probability of detection ,i.e., the

global probability of detection has (k+l) local maximum points for the specified false

alarm probability. One remaining aspect of the problem is to determine on theoretical ba-

sis the particular fusion rule with the largest probability of detection.
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PD

1

I P
Fig. 6.2. Due to the concavity of the receiver operating characteristic, 01 < 02

where 01= dPD / dOF is the slope and 02 = PD / PF.
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CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FUTURE

WORK

7.1 Summary

In this dissertation, we considered the design and performance evaluation of distrib-

uted detection networks mainly from a Bayesian viewpoint. In a distributed detection sys-

tem, a group of local detectors process the observations they receive about the status of a

certain phenomenon, and transmit their decisions to a fusion center where the final deci-

sion is made. Due to constraints on the channel capacities linking the local detectors to the

global decision maker, the local detectors compress their local observations to a hard or a

soft decision and transmit this decision to the fusion center where the global decision is

made. The design issues related to the distributed detection systems involve specifying the

local decision rules and the global decision rule. We presented a computationally efficient

approach to the design of decentralized Bayesian detection systems. This procedure is

based upon an alternate representation of the minimum average cost in terms of a modified

form of the Kolmogorov variational distance. We demonstrated the utility of our approach

by applying it to the design and performance evaluation of four decentralized detection

structures. In all these structures, the design of the optimum systems reduced to the opti-

mization of a single function of a certain number of variables. This optimization is per-

formed once and does not need an exhaustive search. Two methods that deal with the

design of binary decentralized Bayesian detection systems are reported in the literature. In

the first method, the fusion center is fixed and a set of n coupled nonlinear equations are

solved to determine the n local thresholds. This has to be repeated for all the permissible

fusion rules. The solution with the smallest overall cost is finally selected as the optimum

system. The exponential growth of the number of fusion rules to be searched makes the

use of this method impractical. The other method is the person-by-person optimization
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procedure which need not yield the globally optimum solution. This procedure requires a

simultaneous solution of (2n+n) coupled nonlinear equations for the binary hypothesis

testing problem. Our design procedure requires the minimization of a single function of n

variables where n is the number of local detectors. This is computationally simpler and ef-

ficient optimization algorithms can be employed to design relatively large decentralized

detection structures.

The performance degradation of distributed detection systems relative to the central-

ized system was determined. It was also shown that the performance of the decentralized

system approaches the performance of the centralized system very quickly as a function of

the number of quantization levels. In addition, the performance of the optimum systems

was compared to the performance of suboptimum systems designed based on criteria other

than the global optimum Beyesian cost.

We derived upper and lower bounds on the minimum probability of error and the

minimum average cost for optimum receivers. Some of the bounds on the minimum aver-

age cost are generalizations of the known bounds on the minimum probability of error in

terms of the Bhattacharyya bound and the Chernoff bound. Furthermore, we derived a new

upper bound on the probability of error which is tighter than the previously available

bounds. This bound was applied to design a nearly optimum decentralized detection sys-

tem. Tight Lower bounds on the probability of error and the minimum average cost were

also derived in terms of the new upper bound.

We addressed the problem of randomization with respect to the local decisions at the

fusion center when the objective is to design an optimum Neyman-Pearson decentralized

detection system. We found that for a prespecified value of the global probability of false

alarm, the global probability of detection is maximized when there is no randomization,

i.e., the randomization factor is either 0 or 1.

7.2 Suggestions for Future Work

In this section, we discuss some of the problems related to the topics treated in this

dissertation and may be pursued in the future.
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1) In Chapter 4, we employed the new upper bound derived in Chapter 3 to design a nearly

optimum decentralized detection system. A generalization of the problem is to employ the

new upper bound for the design of an M-level quantizer for hypothesis testing.

2) In decentralized detection systems, usually there are capacity constraints on the chan-

nels linking the local detectors to the destination. An interesting problem would be to ex-

amine from an information theoretic viewpoint, the design of decentralized detection

systems when capacity constraints are placed on the channels. For example, the output en-

tropy may be restricted to be less than some prespecified value. One then needs to find the

fusion rule and the local decision rules under this constraint.

3) In Chapter 6, we investigated the role of the randomization factor in the decentralized

Neyman-Pearson detection problem. We considered the case when the local detectors

were identical and they employed identical decision rules. We found that randomization

was not necessary in the design of the optimum system. Two problems related to this re-

sult arise. The first is to determine, based on a theoretical basis, the fusion rule with the

highest probability of detection for the specified probability of false alarm. The second is

to show that this result is true for nonidentical local detectors.
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Appendix A

In this appendix, we derive the algorithms based on which the fusion center com-

bines the decisions received from the various local detectors in order to make the global

decision. We consider both the hard decision and the soft decision cases, i.e., the cases

with M = 2 and M > 2.

First Case: M = 2

Let PDi and PFi be the probabilities of detection and false alarm at the local detector

LDi. The local decision zi has the following conditional distributions

fo(zi)=P Fii(l1-P Fi)1-zi (A. 1 )

fl(zi)=PDizi(1-PDdi)1zi ( A.2 )

The global decision u0 is made at the fusion center based on the decision vector U=[zi z2

... zn] by performing the likelihood ratio test
H1

P (bU 1 ) >
A (Z) - P (Lq Ho) < T (A.3)

H0

Taking the logarithm of both sides of (A.3) we get

H1

logA (LI) < logTl (A.4)

H0

Using (A. 1), (A.2), and making use of the independence assumptio" hetween the local de-

cisions zi, we get
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nfI Pi(1 -P,,) -zi

A(.U) - =1, (A.5)
rI- P~i ( 1 -P; d-
i=I

Equation (A.5) can also be written as

A(QM = A6 (PDi) ( (A.6)i=1 tPFi 1 C iPFi (A6

Taking the logarithm of both sides of (A.6) we get

logA(.U) = ' log [,P( n (D I ( -•Di I (A.7)

Expanding the logarithm of the product term on the right hand side of (A.7) and simplify-

ing we get

logA () = n [zlog ,--J+ (1 - zi) log (A.8)

Combining terms in (A.8) we obtain

logA (_) = lo _P i)+ Z lp~ ( 1 -~) (A.9)
g 1i (1a -=

Substituting (A.9) into (A.4) and rearranging terms we get

H1
n PDil_(1PF)> 

n (I1 pFzilog p< logqj+jo log (A.10)i='-~ 1ý i = I1 -PDi

Ho

The equivalent test in (A. 10) suggests that each received local decision zi ; zi --0, 1 is

weighted by a factor that depends upon the probabilities of detection and false alarm cor-
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responding to that detector. The sum is then compared to a threshold.

Under the identical sensor assumption, i.e., when PDi = PD and PFi = PF; i = 1, 2,...,

n, the left hand side and the right hand side of (A. 10) become

PD (I p ) i-PF) n= A1

LHS = logp F1 (A.11)

RHS = logil + nlog F/P) = log 1l PFD (A.12)

Therefore, equation (A.10) can be expressed as

n log -P

_ zi > 1_D(A. 13)

S1log PD (1 - PF)
H0 I~PF (1 -- PD)

Let K be the random variable that represents the number of sensors that decide in favor of

H 1. It is clear that K is nothing but the sum on the left hand side of (A.13). This sum takes

on the values 0, 1, ..., n. A k out of n fusion rule is defined as follows : Decide HI if the

number of sensors that decide in favor of H1 is at least k, i.e., decide H1 if

•zi->k, k = 1,2, ... , ,n (A. 14)
i= 1

It is clear from (A.13) and (A.14) that the fusion rule at the fusion center is a k out of n fu-

sion rule.The case with k = 0 has been excluded because it corresponds to the trivial case

of always deciding H1. Moreover, the case k = 0 violates the validity of (A. 13) since the

right hand side of (A. 13) is a positive quantity and cannot be 0 or negative.
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Second Case : M > 2

For the case when the number of quantization levels M > 2, we restrict our study to

the case of identical detectors. Here we make use of the multinomial distributions derived

in Chapter 4. Using (4.37) and (4.38), we see that

pXI -x2... pXM
P1/'21

A (L) -- (A.15)p X, px2 ... pX
10--20"" MO

Equation (A.15) can also be written as

( (•P1)(P2 ... (pMo (A.16)

Taking the logarithm of both sides of (A. 16) we get

logA(V)= x lo"g . (21; , PM1) (A17
1= XllOg -10)++x21ogP20 +... +XMIOg - (A.17)

Substituting (A. 17) into (A.4) we obtain the test

H1
l (P21 (PM >"(

+lllog ) log P20 +. +xMlog PMo < log (A.18)

H0

The equivalent test in (A. 18) indicates that the fusion center makes the final decision by

counting the number of sensors xk that decide in favor of symbol ak ; k=:1, 2,..., M, weight

xk by a factor that depends upon the probabilities of occurrence of symbol ak under hy-

potheses H0 and HI, sum over all values of xk and compare the sum to a threshold.
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Appendix B

In this appendix we provide a derivation of equation (4.18). The possible fusion

rules for a three-sensor system are the AND fusion rule, the OR fusion rule and the MA-

JORITY lo.ic fusion rule. The cost corresponding to each one of these fusion rules is giv-

en by (4.14), (4.15) and (4.16) respectively. Since the fusion center is a minimum average

cost receiver, it impleuients the 'best' one of the fusion rules, i.e., the fusion rule with the

smallest cost. The cost corresponding to this best fusion rule is given by

R 3 = mi,. (min ' AND, ROR), RMAJ) (BA1)

The minimum of two quantities a and b is given by

1 1
min (a, b) = (a+ b) -. la - bl (B.2)

Making use of (B.2), (B. 1) becomes

1 1
R 3 = 2 (min (RAND, ROR) + RMAJ) - 2 Imin (RAND, ROR) - RMAJ (B.3)

Again applying (B.2) to (B.3) we obtain

R3 (RAND OR) - AN RoRI + RMAJ]

1] 1 _RA
(RA + ROR) - RAND - RORI - RMA(B.4)
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Simplifying (B.4) we get

1 1
R 3 = 4 [RAND + ROR + 2 RMAJ] - 4 IRAND - RORI

-- IRAND + ROR - 2 RMAJ - IRAND - RORI (B.5)

For simplicity of presentation we use the following notation

Q = RAND + ROR + 2 RMAJ (B.6)

Q2 = RAND- ROR (B.7)

Q3 = RAND + ROR - 2 RMAJ (B.8)

Substituting (4.14), (4.15), and (4.16) into (B.6) we get

Ql = Cor 0 [4n+2p3 3 F- 3 p2] + C107t0 [- 2 3+ 3 PF +3P2

2 _ 3 p3 p2+ Co0ltl[ 3 PM+ 3 PM-2PM] +Cll7cl[ 4 + 2 pM- 3 PM- 3P2]

(B.9)

Adding and subtracting PF to the first two terms on the right hand side of (B.9) and PM to

the last two terms we get
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Q = coc,, 3 2- 4P,+ 2 P' - 2P3 + 2 2
1 0~0 [4 ~~ 2 F 3 F + PF1 + C107c0 [4 PF - F 2 F + 1

+ Co~t 1 [4PM - P 2 M3 33P] +2 C1 t1 [4--4PM+2P M3 3PM2+PM)

(B.10)

Dividing (B. 10) by 4 and expanding terms we get

Q= COOCO (1 -PF) + Co7COPF+ COI7IPM+ Cllnl (I -- PM)
4

+ C°T° [2p3- V2p+ p C'] [P
+ 4 F F 4 F F

l1V 2 C + 1 [2P 3P2
4 [ M +4 []M-3P++PM (B.11)

It is to be observed that the first term on the right hand side of (B. 11) is the cost corre-

sponding to a single sensor system. This cost was defined in (4.12). Rearranging terms in

(B.11) we get

Q = Rl - "-T-PF 1 -(l3PF + 2 PF) (CIo- COO)

7ri 2
-'TPm (I - 3PM + 2PM) (CO1 - C1 1 ) (B.12)

Now we consider (B.7). Substituting (4.14), (4.15), and (4.16) into (B.7) we get
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Q2= Coo [ 3PF- 3P21 + C10 7o~ [3P2 - 3 PF]

+ C01In1 [ 3 PM-3P2] +C1 lit 1 [3P2 - 3PM] (B.13)

Rearranging terms in (B. 13) we get

Q2 = 3 tPM (I1 - PM) (Co, - C11 ) - 3oEPF ( 1 - PF) (Co- COO)

(B.14)

Dividing both sides of (B. 14) and taking the absolute value we obtain

1Q21 = 3
4 MlPM(1-PM) (Col-Cll) oPF(1-PF) (Clo-Coo)I

(B.15)

Substituting (4.14), (4.15), and (4.16) into (B.8) we get

3 2 32
Q3 = CooCoI [- 6 PF + 9p2- 3PF] + C10 7CO [6PF + 3PF- 9PF]

3 2 3 2+ C0 17t1 [ 6 pM+ 3PM 9 pM] + C117t1 [- 6 P M+ 9 PM _ 3PM] (B.16)

Rearranging terms in (B.16) and dividing by 4 we get

4= 3 P(1--3PF+2p2) (CIO--COO) +"Pm(1 -3PM+2P2) (C0 l-C 11 )

(B. 17)

Substituting (B. 12), (B. 15), and (B. 17) into (B.5) we readily obtain (4.18).
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Appendix C

In this appendix we derive the relationships between the regional threshold rij and

the local thresholds 't2i.Iand t 2i for the regional decision maker RDi in the hierarchical

system S4 . This relationship is important in carrying out the design of the optimum sys-

tem. We start with (5.32) which is repeated here for convenience

Li = A 2V IZ2i_- +A 2 iz 2 i (C.1)

Recall that the random variables z2 i.1 and z2i take on the values 0 and 1. The random vari-

able Li takes on the value 0 only when z2i_1 = 0 and z2i = 0. Since z2 i-.1 and z2 i are inde-

pendent, we may write

P (Li = 01H 0 ) = P (Z2i- 1 = 01 Ho) P (Z2i = 01H0) (C.2)

P (Li = 01 H) = P (z 2 i- 1 = 0H 1 ) P (z2i = 01 HI) (C.3)

By making use of (5.2) and (5.3), the above two probabilities become

P (Li 01H 0 ) = (1-PFL2i_ 1) (1 -PFL 2 i) (C.4)

P (Li= 01H 1 ) = (1 -PDL 2 i_ ) (1 -PDL 2i) (C.5)

In a similar manner, we can obtain the rest of the values that Li assumes alongwith their

probabilities under H0 and H 1. These are shown in Table Cl below.

160



Li P(IjlH0) P(LjiHI)

0 (1-PFLjI)(1-PFL2i) (1-PDL2i_1 )(1-PDL 2i)

A2i-1 PFL2i-1 (1-PFL2 i) PDL2 i-1 (1-PDL 2i)

A2i (1-PFI.2i.I)PFL2i (I-PDL2i_ I)PDL'2i

A2i-I+A2i PFL 12i-PFL2i PDL2i- IPDL2,

Table C I : Probability distribution of L1

The values that Lj assumes arranged in an ascending order are shown in the figure below.

7i0 zi7 7q 44

x x x xLi

0 min(A2 i.1 , A2 i) max(A2i_1, A2i) A2i.1+A2i

By examining (5.31), we see that both A2i-.1 and A2l are independent of the regional

threshold Tii while the equivalent threshold Ci is a function of Tii. Since at the moment

there are no restrictions on the values assumed by Tjj, then this means that Ci also may as-

sume any value. Therefore, the possible values of Li partition the space of Ci into five re-

gions. If the threshold Ci lies in Zi0, then according to (5.33), PFRi = PDRi 1 (here all the

values of Li are greater than Ci and, therefore, P {Li > Ci } = 1). This also means that 1-

PFR1 = 1-PDRi = 0. Let us assume that regional detector RDi is the only detector with

PFRi = PDRi = 1. All other regional detectors may have other values of the false alarm and

detection probabilities. Substituting these probabilities into (5.4) results in the value of the

product term to be equal to 0. This means that the value of the second term on the right

hand side of equation (5.5) is 0. Therefore, under these conditions the value of the MAC
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,R, is equal to R0 which is the maximum possible value of R. This undesirable situation

occurs when Ci < 0. Using the definition of Ci in (5.31), we obtain

(I1 - PFL2i_ 1 ) ( 1 - PFL2i) <0(C6
logt i (I - PDL2 i- 1 ) (1 -PDL 2 i) -

Expanding the logarithm of the product of two terms and rearranging the terms in (C.6),

we can express the condition Ci _0 in terms of 71i as

(1 - PDL2 i_ 1) ( 1 - PDL2 i) = D

(1 -PFL 2i_-1 ) (1 -PFL 2i) D (C.7)

Similarly, if Ci is such that Ci e Zi4 , then PFRi = PDRi = 0 (in this case all the values of Li

are smaller than Ci and, therefore, P {Li < Ci ) = 0. Using these probabilities in evaluating

(5.4), we see that the product term is 0 and that the second term on the right hand side of

(5.5) is also 0. This situation will lead to the result that the global cost R = R0 which, of

course, is not a desirable result. The values of Ci that lead to this undesirable situation are

given by Ci > A2i. 1 +A2 i. This condition can be expressed as

(oil 1 - PFL2i_- 1) ( 1 - PFL2i)>A +A
l (1 - PDL2i_ 1) ( 1 - PDL2i) 2i-1 2i (C.8)

From the definitions of A2i..1 and A2l in (5.31), we can simplify (C.8) so that we get the

following undesired values of mli

PDL2i- 1 PDL2i
"Ti > PFL2i - 1PFL2i (C.9)

Since Tij < Dil and Thj > Di4 result in the maximum possible value of the MAC, Tli should

not assume values in these regions. If "1i corresponds to the values of C, such that
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0 < Ci5 m<rin (A~i.1, A2i) (C. 10)

then the system MAC remains the same for all possible values of Tli in this region. This is

due to the fact that PFRi and PDRi remain the same in this region. Substituting into (C.10)

the value of Ci given in (5.31) we get

0 < logij + log-( I - PFL2i - 1) ( 1 - PFL2  i A A(
(1 -PDL 2i_-1. ) (1 -PDL 2 .) <min(A2i-'A2i) (C.11)

By using the definition of DiI in (C.7), we can express (C. 11) as

logDil < log11i < logDil + min (A 2i_ 1, A2 i) (C.12)

Therefore, In terms of Tii, the region defined by (C. 10) can be expressed as

Dil < Tii < Di2 (C. 13)

where

Di2 = Dnexp (min (A 2i -, A2i))

The two remaining regions of rii are obtained from the following regions of Ci

min (A 2 i_- 1, A 2 ) < Ci: <max (A 2 i -, A 2 ) (C.14)

max (A 2 i 1 , A2 )< < -C A2 i- I +A 2 i (C. 15)

Similar to what we did above, these two regions can be expressed in terms of 7i as

Di2 <'ii<Dilexp[max(A2i-1, 2i)] = DO (C.16)

Di3 < Tli <5 Di4 (C.17)

The above partitions for rii can be used in the optimization process.
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Appendix D

In this appendix we prove the inequalities given by (6.32) and (6.50). We begin with

the inequality given (6.32). This inequality can be verified as follows. Assume for the mo-

ment that (6.32) is true. This inequality can be written as

APD APF
(I-D> (I )(D).1)

Integrating each side of (D.1) with respect to the variable involved we get

PD dpD P_ dpFfo (I- PD) f (I (- P) (D.2)

Performing the integration in (D.2) we get

-in ( I - PD) > -in ( I - PF) (D.3)

This inequality can be written as

In (I1 - PF) > In (I1 - PD) (DA4)

Since the logarithmic function In (t) is an increasing function of t, then from (D.4) we

readily obtain the following inequality

PD > PF (D.5)

The inequality in (D.5) is known to be true because of the concave nature of the receiver
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operating characteristic of the local detectors indicating that the inequality given by (6.32)

is true indeed

Next, we prove the inequality given by (6.50). This inequality can be verified as fol-

lows. First assume that (6.50) is true and rewrite it in the equivalent form

PD APD-F > P-F (D.6)

The right hand side of (D.6) represents the slope of the receiver operating characteristic of

the local detector, while the left hand side represents the ratio of the detection to the false

alarm probabilities at the point where we evaluate the slope. Since the receiver operating

characteristic is a concave function, it follows that the curve representing the slope lies

above the curve representing the ratio of the detection to the false alarm probabilities for

all points. This is clear from Fig. 6.2. It follows immediately that (D.6) is true, and there-

fore our initial assumption regarding (6.50) is also true.
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