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CHAPTER 1
INTRODUCTION

1.1 Motivation

In large organizational structures where the decision making process is too compli-
cated to be handled by a single agent (or decision maker) or where agents are distributed
over a wide geographic area, decentralized decision making paradigm is employed fre-
quently. Examples of such decision making organizations occur in financial institutions,
industrial environments, and military surveillance systems etc. In order to make the
group’s decision more efficient and to avoid the dominance of an individual member over
the rest, the group is divided into smaller decision making units consisting of one or more
members (experts). Decisions of these smaller units are conveyed to the head of the orga-

nization who is responsible for decision combining and reaching the final decision.

One interesting application of group decision making that has received an increasing
interest in recent years is the design and analysis of distributed sensor networks for signal
detection (decentralized detection systems). This is due to the advantages that these sys-
tems have over their centralized counterparts like reliability, survivability, and shorter de-
cision times. In a decentralized detection system there is a group of remotely located local
detectors that monitor a common phenomenon. These detectors are linked to a primary de-
tector (also known as the global decision maker or data fusion center) through bandlimited
channels. Due to this limitation on the bandwidth,the local detectors are not able to convey
to the primary detector all the information available to them about the phenomenon. In-
stead, they provide the primary detector with a compressed version of their data. The role
of the primary detector is to combine the preliminary decisions of the local detectors
along with any locally received observation to make the final decision. For a given opti-
mality criterion, the design of a decentralized detection system involves specifying both

the local decision rules and the global decision rule. Due to the constraints on the trans-




mission capacity of the communication channels, the system experiences performance
degradation and computational difficulty in the design of the optimal system. In the ab-
sence of these constraints, the configuration reduces to a centralized system for which a
well developed theory exists [1-3]. Because of the full utilization of the raw observations
in the centralized system, its performance is used as a benchmark for comparing the per-
formance of different decentralized detection network structures based on different design
criteria. In general, the design of an optimum decentralized detection configuration is a
computationally difficult task [4]. Therefore, rather than resorting to the optimum design
criterion, suboptimum design criteria may be used instead. A design criterion A is said to
be “better” than a design criterion B if the performance of the system when criterion A 1s
employed is closer to the performance of the centralized system than the performance of

the system when criterion B is employed.

Figures 1.1 - 1.4 show four decentralized detection configurations that are treated in
this dissertation. The parallel fusion system shown in Fig. 1.1 represents the simplest type
of decentralized detection structure. It consists of n local detectors and a fusion center.
Due to the simplicity of its structure, the design of the system subject to different design
criteria has received most of the interest in the literature. This system is used for hypothe-
sis testing. In this dissertation, we restrict our attention to binary hypothesis testing prob-
lems where the null hypothesis Hy is tested against the alternative hypothesis H;. The
system receives n observations X1, X»,..., X;, in which X; is the observation received by
the local detector LD; (in the classical detection theory, it is assumed that all these raw ob-
servations are available at one central location and that the decision is made based on the
entire set of observations). Due to the presence of noise in a practical system, these obser-
vations are assumed to be continuous random variables with conditional density functions
pj(xy) ; j=0,1,i=0,1,...,n. From an information theoretic point of view, the transmission of
the information in these observations from the local detectors to the global decision maker
requires infinite capacity channels. A requirement which is not practically attainable. To
overcome this problem, each local detector processes the locally received observation X;

and transmits a compressed version z; of the data to the global decision maker. The way in
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which data reduction takes place can be in the form of a hard decision or a soft decision. In
the first case, the local decision z; takes on one of two possible values indicating the pres-
ence of hypothesis Hg or hypothesis H, as determined by the local detector LD;. In the
second case, the observation space of each observation Xj is partitioned into M nonover-
lapping regions. The local decision z;, correspondingly, takes on one of M possible values
depending upon the region in which the observation X; falls in. In this case, the local deci-
sion z; does not contain explicit information about the hypothesis present. In both the hard
decision and the soft decision cases, the output alphabet is finite and each element in this
alphabet has a finite probability of occurrence. This means that the entropy of the alphabet
is finite and, therefore, a finite capacity channel can be employed. The local decisions
(hard or soft) are sent over the bandlimited channels to the global decision maker, which is
also referred to as the fusion center. Based on the decision vector U=[z;, z,...,z;] whose
elements are the decisions made by the individual sensors, the fusion center makes the fi-

nal decision on whether hypothesis Hy or hypothesis H; is true.

Figure 1.2 shows a variation of the parallel fusion system shown in Figure 1.1. Here,
the global decision maker receives a local observation of its own (side information) in ad-
dition to the local decisions z;, i=1,2,...,n. The observation vector based on which the fu-
sion center makes the final decision is the augmented vector [UX] of the local decisions
z; and the observation X, at the fusion center. Intuitively, the performance of this system is
expected to be better than the performance of the parallel fusion system with n local detec-
tors. Here the information in the observation X is fully utlized by the fusion center and is
not compressed by a local detector. In the interesting special case when n =1, the system

reduces to a two-stage decentralized serial configuration.

Figure 1.3 shows a hierarchical system with local and regional decision makers. The
system consists of 2n local decision makers, n regional decision makers (RD’s) and a glo-
bal decision maker. Local detectors LD5;_; and LD,; process their locally received obser-
vations X»; ; and X,; and forward their decisions z;;_; and z; to an intermediate regional
decision maker RD; , i=1,...,n. The regional detector RD; combines the two local deci-

sions along with its directly received observation Y; to make the regional decision u;. The




decision vector U=[u,...u,] is used by the global decision maker to make the final decision
ug. The case of more than two local detectors per regional decision maker can also be con-
sidered but is not treated in this dissertation. Figure 1.4 shows another hierarchical decen-
tralized system. The difference between this system and the one shown in Figure 1.3 is
that the regional decision makers receive no observations of their own. Therefore, they
have to make their decisions solely on the basis of the local decisions they receive. The lo-
cal decisions are made on the basis of the local observations and the global decision is
made on the basis of the decisions received from the regional decision makers. However,
due to the unavailability of observations at the regional detectors, the performance of this
system is expected to be inferior to the performance of the hierarchical system with side

information at the regional levei.

1.2 Literature Survey

In this section, we briefly review related work on some topics that are treated in this

dissertation.
1.2.1 Decentralized Detection Systems

The design of decentralized detection systems has been dealt with by a number of
authors, e.g. [4-29]. The parallel fusion system, in particular, has gained most of the inter-
est in the literature. Tenney and Sandell [5] addressed the problem of structuring a set of
decision makers and communication links in a manner which leads to effective manage-
ment of a complex, large scale system in real time. In a follow up paper [6], they devel-
oped mechanisms based on the interactions between subsystems to coordinate the making
of decisions which are “best” in some system-wide sense. One interesting application of
their work is the area of distributed detection systems. Tenney and Sandell [7] treated the
two-sensor decentralized detection problem with no data fusion from a Bayesian point of
view, Costs were assigned to reflect the course of action of each local detector. The local
decision rules were chosen such that the average cost is minimized. The local decision
rules were shown to be likelihood ratio tests of the sensor observations for conditionally

independent observations. Sadjadi [8] extended the theory in [7] to encompass the M hy-




pothesis testing problem with n local detectors. Here again, the fusion center was not a
part of the optimization. Assuming known sensor thresholds, Chair and Varshney [9] de-
veloped a minimum average cost algorithm for combining the sensor decisions in an n-
sensor system at the fusion center. Optimization of the entire system was considered by
Hoballah and Varshney [10] where they obtained a person-by-person optimal solution to
the parallel network with n local detectors and a fusion center. The person-by-person opti-
mal design for the binary hypothesis testing problem requires the joint solution of (2"+n)
simultaneous nonlinear equations. An iterative algorithm for the solution of the person-
by-person optimality equations was proposed in [11]. This algorithm is based on the
Gauss-Siedel method for the solution of coupled nonlinear equations. The optimization of
the entire system was also considered by Reibman and Nolte [12] where an exhaustive
search is performed over all the fusion rules in order to determine the overall minimum
cost solution. In the exhaustive search method, the fusion center is fixed at a particular fu-
sion rule and a set of n coupled nonlinear equations are solved to determine the n local
thresholds. This process has to be repeated for all the permissible fusion rules. The fusion
rule along with the n local thresholds that yield the smallest possible cost are the optimum
system design parameters. The number of fusion rules grows quite rapidly with n. Tho-
mopoulos, Viswanathan, and Bougoulias [ 13] showed that the number of fusion rules to

be examined for various values of n is given as shown in the following table.

Number of local detectors Number of permissible fusion rules
2 2
3 9
4 114
5 6894
Table 1.1

In both the exhaustive method and the person-by-person optimization approach, the




amount of computation required grows exponentially. This makes the above design proce-
dures computationally difficult and, therefore,the study of decentralized detection systems
has been limited to small networks and very few topologies. In this dissertation, we
present a computationally simpler approach for the design of decentralized Bayesian de-
tection systems. Using this approach, we show that the design of the optimum decentral-
ized parallel fusion system reduces to the optimization of a single function of n variables.
Chair and Varshney [14] considered the problem of distributed Bayesian hypothesis test-

ing with distributed data fusion in which data fusion is performed at each site.

The Neyman -Pearson criterion has also been used in the design of decentralized de-
tection systems where neither the costs nor the a priori probabilities need to be available 1o
the designer. Srinivasan [15] used the Neyman-Pearson criterion to obtain the local deci-
sion rules in the parallel fusion network assuming that the fusion center is a combinational
logic circuit. Hoballah and Varshney [16] treated the problem in two respects. First, when
the fusion rule is known and the objective is to find the local decision rules. Second, when
the decision rules at the detectors are given, and the objective is to find the optimum fusion
rule. Thomopoulos, Viswanathan, and Bougoulias [17] employed the Neyman-Pearson
criterion where both the decision made by each individual sensor and the global decision
made by the fusion center are based on the Neyman-Pearson test. Tsitsiklis [18] addressed
the question of concavity of the receiver operating characteristic of the system. He found
that for a given strategy, the receiver operating characteristic is not necessarily a concave
function ( a numerical example is provided in [19] ). However, concavity can be achieved
by randomizing with respect to the possible strategies. A similar result was obtained by
Willet and Warren [20]. Viswanathan, Thomopoulos, and Tumuluri [21] applied the Ney-
man-Pearson criterion to the design of the serial decentralized configuration. They found
that for the case of two sensors, the optimal serial network has a better performance than
the parallel scheme ( better here refers to higher probability of detection for the same false
alarm probability). While this interesting result is true for the case of two sensors, the nu-
merical exampies provided by [21] show that this result is not true, in general, for systems

with more than two sensors.

10




The Bayesian formulation has also been applied to the design of decentralized detec-
tion structures other than the parallel fusion network. Ekchian and Tenney [22] derived the
necessary conditions for the thresholds to satisfy in order to minimize a given cost func-
tion for a number of configurations including the tandem and the tree-hierarchical topolo-
gies. No numerical results were provided. Reibman and Nolte [23] applied the exhaustive
search method to design specific decentralized detection configurations. Tsitsiklis [24] and
Varshney [25] provided an overview of the recent advances in the theory of decentralized

detection systems.

1.2.2 The Class of Ali-Silvey Distance Measures and the Detection

Problem

The class of Ali-Silvey distance measures has played an important role in the design
of quantizers for hypothesis testing. Recently, it has also been employed in the design of
decentralized detection systems. In this dissertation, we apply members of the class of Ali-
Silvey distance measures to design suboptimum decentralized detection systems, and
compare their performance to that of the optimum decentralized detection system. For the
sake of completeness we now define the class of Ali-Silvey distance measures and provide

examples of members of this class.

Let po(x) and py(x) be the conditional probability density functions of the random
variable X under hypotheses Hy and H, respectively. A measure of dissimilarity between
these density functions can be expressed in terms of the general class of Ali-Silvey dis-

tance measures (or the class of f-divergences) which is defined as [30]

D(py(x),p,(x)) = f{Eylg(D]} (1.1)

where
Eg is the expectation under the hypothesis Hy

g is a convex real-valued function defined on (0,e0)




f is an increasing function
I = py(x) / po(x) is the likelihood ratio function
Examples of measures from this class include

1) The Bhattacharyya distance

Dy = -Inj Pg (x) py (x)dx

P 4

2) The discrimination distance measure

_ po (x)
DD = ipo (X) Iin(x—)dx

3) The Kolmogorov variational distance

Dy = [|py (¥) —py (x)|dx

4) The J-divergence

1 (x)

p
D; = [lpy(x) =po(x) Vin——=dx

o (X)

(1.2)

(1.3)

(1.4)

(1.5)

The class of Ali-Silvey distance measures has received an increasing interest in the

design of quantizers for hypothesis testing. This is due to the strong link between these

distance measures and the probability of error (POE). Let & = {mg, 71} be the set of all

permissible pairs of the prior probabilities in a binary hypothesis testing problem. Then,

there exists a subset of «t for which if the distance between a given set of conditional

densities is larger than the distance between another set of conditional densities, then the

POE corresponding to the first set is less than the POE corresponding to the second set.

12




This result is known as the Blackwell theorem [31]. Poor and Thomas [32] applied the
general class of Ali-Silvey distance measures to the design of a generalized quantizer for
binary decision systems. Poor [33] also used these measures as criteria for analyzing the
effects of fine data quantization on inferential procedures and for designing quantizers to
minimize these detrimental effects. Benitz and Bucklew [34] applied the Chernoff
theorem to the design of quantizers that asymptotically minimize the probability of error
(The Chernoff theorem differs from the traditional Chernoff bound in that the theorem
clearly exhibits the exponential dependence of the bound). A number of authors have
applied members of the class of Ali-Silvey distance measures in the design of
decentralized detection systems. For example, Longo, Lookabaugh, and Gray [35] have
employed the Bhattacharyya distance, whereas Lee and Chao [36] have used the J-
divergence to subpartition the decision space when a quality bit is transmitted along with

the decision to the fusion center.

1.2.3 Information Theoretic Measures for Quantization and Detection

The quantization of a random variable X for minimum distortion has been studied
extensively in the literature (see [39] for a survey of results). When the entropy of the
quantizer output is restricted not to exceed a given prescribed value, the problem becomes
that of quantization under entropy constraint. The quantization of the random variable X
for minimum distortion under entropy constraint was considered by Noll and Zelinski {40]
and Farvardin and Modestino [{41]. It is known that in detection and estimation problems,
quantization for minimum distortion is not the appropriate criterion to use for designing an
optimum inferential system [42,43]. The problem of adjusting the threshold in a simple bi-
nary hypothesis testing problem under the condition of maximizing the mutual informa-
tion between the decision and the state of nature was considered by Middleton [44] and
Gabriele [45]. Martinez [46] and Hoballah and Varshney {47] have shown that the prob-
lem of maximizing the mutual information between the decision and the state of nature is
equivalent to applying the Neyman-Pearson criterion for signal detection. As a result, the

maximum mutual information detector is a likelihood rato detector. Hoballah and Varsh-
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ney [47] have made use of this result to design a maximum mutual information decentral-

ized detector under the assumption that each local detector makes a single hard decision.

1.2.4 Bounds on the Probability of Error of Optimum Receivers

In hypothesis testing, the performance of optimum receivers is usually expressed in
terms of the probability of error. It is well known that the optimum receiver which mini-
mizes the probability of error is the maximum a posteriori probability (MAP) receiver [3].
When an observation  is received, the MAP receiver computes the a posteriori probabili-
ties P(Hg | x) and P(H; | x) of the two hypotheses and chooses the hypothesis with the larg-
er a posteriori probability. The probability of making an error based on the observation x is

given as

P (Errorix) = min(P (Holx) , P (H1|x) ) (1.6)

Analytic evaluation of the probability of error is very difficult in most applications be-
cause it involves the evaluation of the discontinuous function min (.). Instead of evaluat-
ing the exact probability of error, tight upper and / or lower bounds can often be
determined analytically making it possible to compare the performance of optimum re-

ceivers based on these bounds.

A number of upper and lower bounds have been proposed in the literature [51-63].
Because of the indirect relationship between the probability of error and the class of Ali-
Silvey distance measures discussed above, a number of the bounds available are expressed
in terms of these distance measures. The idea behind this lies, of course, in the Blackwell
theorem. Boekee and Van der Lubbe [51] provided upper bounds on the probability of er-
ror by considering the f-divergence between the conditional densities under the two hy-
potheses. They have shown that this upper bound includes many well known bounds in
terms of other distance measures. The Bhattacharyya bound [31] is the simplest bound to
evaluate. Its simplicity and the fact that closed form expressions for the bound exist for

many commonly used distributions, made it an attractive tool. The most common applica-
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tions are the design of quantizers for hypothesis testing {32,35] and signal selection [31].
The main disadvantage of the Bhattacharyya bound is that it is 2 loose bound. The
Chemoff bound [52,53] provides an upper bound on the probability of error in terms of a
scalar s, 0<s<1. The tightest bound is obtained by optimizing the upper bound with respect
to the scalar s. The difficulty in evaluating the Chernoff bound makes it less attractive than
the Bhattacharyya bound. In addition, the Chernoff bound which reduces to the Bhatta-
charyya bound when s=0.5 does not, in general, provide tighter error bounds than the
Bhattacharyya bound [54]. A tighter bound on the probability of error than the Bhata-
charyya bound is in terms of the equivocation function {55,53]. Devijver [56] introduced
another bound in terms of the so called Bayesian distance. This bound is known to be
tighter than both the Bhattacharyya bound and the equivocation bound. As applied to de-
centralized systems, few results are available in the literature. Kazakos [57] employed the
concept of distance measures to obtain bounds on the performance of distributed detection
systems. Tsitsiklis [58] considered the decentralized problem when the number of sensors
tends to infinity. He showed that it is asymptotically optimal for the sensors to use the

same decision rule if they are operating under identical circumstances.

1.3 Dissertation Outline

In this dissertation, we consider some design and analysis aspects of a number of
decentralized detection structures. Our main focus is on the Bayesian approach to the de-
sign of these systems. The design of these systems involves the design of local and global
decision rules. The design of optimum decentralized detection systems based on the Baye-
sian formulation is considered in detail. The performance of the optimum systems is com-
pared to the performance of suboptimum systems designed based on criteria other than the
global optimum Bayesian cost. Upper and lower bounds on the minimum probability of
error and the minimum achievable cost are derived for the conventional centralized detec-
tion system. A new tight upper bound on the minimum probability of error is presented
and applied to design a nearly optimum decentralized detection system. The role of ran-
domization of the global decision rule in the Bayesian problem and in the related Neyman-

Pearson problem is also discussed.
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In Chapter 2, we study the problem of optimum receivers from a Beyesian view-
point. We derive an alternate representation of the minimum achievable cost of an opti-
mum receiver in terms of a modified form of the Kolmogorov variational distance. Using
this representation, we show that randomization of the decision rule is not necessary in the

case when the observations assume discrete values.

In Chapter 3, we generalize some known upper and lower bounds on the minimum
probability of error to the general Bayesian problem ,i.c., we obtain upper and lower
bounds on the minimum average cost of optimum Bayesian receivers. These bounds in-
clude the Chernoff bound and the Bhattacharyya bound. We derive a new tight upper
bound on the minimum probability of error and generalize it to the general Bayesian prob-
lem. New tight lower bounds on the probability of error and minimum average cost of an

optimum receiver are also obtained.

In Chapter 4, we consider the analysis and the design of the parallel fusion system
from a Bayesian point of view assuming identical local detectors. The analysis and the de-
sign of the system are based on the representation of the minimum achievable cost of opti-
mum receivers derived in Chapter 2. Both the hard and the soft decision cases are
considered. Using this representation we show that the design of the optimum decentral-
ized detection system reduces to the optimization of a single function of a given number of
variables that depend upon the number of quantization levels. The design of suboptimum
decentralized detection systems based upon members of the class of Ali-Silvey distance
measures are also considered. The performance of these systems are compared to the per-
formance of the optimum system. The design of the decentralized detection system based

on the new upper bound on the minimum probability of error is also discussed .

In Chapter 5, we consider the design of the four decentralized detection structures
shown in Figures 1.1 - 1.4 based on the Bayesian formulation. The local detectors are as-
sumed to yield hard decisions but are not assumed to be identical. The optimum design of
each configuration is shown to reduce to the optimization of a single function of a given

number of variables depending upon the configuration.

In Chapter 6, we examine the problem of randomization of the decision rule for de-

16




tection systems designed based on the Neyman-Pearson criterion. When neither the a prio-
ri probabilities nor the costs are known, the Neyman-Pearson criterion becomes useful.
We show that when the objective is to design a decentralized detection system that maxi-
mizes the global probability of detection for a given global false alarm probability, ran-
domization of the decision rule at the fusion center is not necessary and, in fact, if used

deteriorates the system performance.

In Chapter 7 we present a summary of the results obtained in this dissertation plus
some concluding remarks. We also discuss some of the problems related to the topics dis-

cussed in the dissertation that need to be addressed in the future.
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CHAPTER 2
MINIMUM AVERAGE COST RECEIVERS

2.1 Introduction

As indicated in Chapter 1, one of the objectives of this dissertation is to consider the
design of decentralized Bayesian detection systems. In order to facilitate the design of
these systems we first consider centralized Bayesian detection systems, i.c., the systems in
which all the raw observations are processed at one central location. A system (centralized
or decentralized) that minimizes the Bayesian cost will be referred to as a minimum aver-
age cost (MAC) receiver. In this chapter we will derive some important properties of the
classical centralized optimum receiver. These are generalizations of the results available in
the literature for the minimum probability of error receiver [31,37]. These results wi'l then
be applied to the design and performance evaluation of decentralized detection structures

in the following chapters.

Let fo(x) and f(x) be the conditional probability density functions of the random ob-
servations X under the two hypotheses Hy and H; to be tested at the receiver. Also, let g
and 7, be the corresponding a priori probabilities of H and H, respectively. If C;; ; i, j=0,

1, denotes the cost of deciding H; when Hi is true, then the average cost per decision made

by the receiver is given by

1 1

i=0j=0

where P(H;, Hj) is the probability of the joint event that H; is true and H; is decided. It is

well known [1] that the cost given by (2.1) is mirimized when the following decision rule

1s used
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fi (%) > ng(clo‘coo) _
T L™ < mCu-Cpp)
Hy

This decision rule partitions the observation space of X into two optimum decision regions

(2.2)

Z*; k =0, 1, such that when x € Z*, Hy is declared true. The minimum average cost can

be determined from (2.1) using the optimum decision regions Zy*.

2.2 An Alternate Representation for the Minimum Average Cost

To present our approach for the design of minimum average cost (MAC) receivers,
we express the optimum decision rule (2.2) and the corresponding minimum average cost
given in (2.1) in an alternate way. We begin by expressing (2.1) as

i 1

R = .20 .ZOC"J'“!'P (H|H) ‘ (2.3)
1= J =

where P (H; | H)) is the conditional probehility of deciding H; when H; is true. Let Zy , k =
0, 1, be the decision region corresponding tr Jy, . su_i1 that when the observation x € Zy,

Hy is declared true. The a rosteric. probabilities P (H; | Hy) are given as

P(H{H) = [f;(x)dx (2.4)
z

Sv’  .uting (2.4) into (2.3) we get

1 1
R=3 Y Cyn[f(x)adx (2.5)
i=0;j=0 Z,
Using Bayes rule, we have
nf(x) = P(H|x)f(x) (2.6)
o
o

19 ~




where

f(x) = nfy (x) +7.f) (x) (2.7)

is the unconditional density function of X. Using (2.6), we express (2.5) as

1 1

R=73 3 C;[PH|0fx)ax (2.8)

i=0j=0 Z;

Since G;; is a constant, we interchange the order of integration and the inner summation as
1 1

R=Y[Y C;P(Hjx)f(x)dx (2.9)

i=0Z45=0

Expanding (2.9) over the outer summation, we get

R= [By()f(x)dx+ [B, (0f(x)dx (2.10)
ZO Zl
where
Bo (x) = CooP (H0|x) +Cy P (Hllx) (2.11)
B, (x) = CyoP (Ho|x) +C,,P (H,]%) (2.12)

The result in (2.10) reveals that the average cost given by (2.1) can, equivalently, be repre-

sented as the expected value of the random variable B(x) defined as
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Bo(x) if x€Zy

B(x) = (2.13)

{ Bi(x) if xeZ;

The quantities By(x) and B, (x) represent the conditional costs assigned to each point x in
the observation space. When an observation x is received, the receiver computes the con-
ditional costs Bg(x) and By (x). If the objective at the receiver is to minimize the cost, then
it should select the hypothesis with the smaller conditional cost. The optimum decision
rule (2.2) based on the conditional cost formulation becomes

H,

B, (x) Z B (x) (2.14)
Hy

Denote by r(x) the conditional cost of the MAC receiver based on an observation x. Then

1(x) can be expressed as

r(x) = min(B,(x),B, (x)) ’ (2.15)

Using the mathematical identity

min (a,b) = %—(a+b) -%la—bl (2.16)

we can rewrite (2.15) as

r(x) = %[Bo(x) +B, (0] —%mou) ~B, ()] 2.17)

Substituting (2.11) and (2.12) into (2.17) we get
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[CooP (Ho| %) + C1oP (Ho| x) + Coy P (Hy| x) + Cyy P (H,| %))

rix) = %

_%Icmp (Ho|x) = C1oP (Hg|x) + CyP (Hy|x) = Cyy P (H\| )| (2.18)

The minimum average cost Ry, is the expected value of the conditional cost r(x), that is

R, = [r(x) [refy (x) +7,f; (x)]dx (2.19)

For notational simplicity, the subscript m will be omitted from Ry, in the rest of this disser-

tation. Using (2.6), we can evaluate the a posteriori probabilities as

rf. (x)
P(Hj|x) = %—)— (2.20)

Substituting (2.20) into (2.18) we obtain

1
r(®) = 5y [(Con+ Clo) Tefy (1) + (Cop + Cry) 1y (9]

57551 (Coo = Cio) Tefo () + (Cyy = Cr) mfy ()] @2

Substituting (2.21) into (2.19) and integrating term by term we obtain the following ex-

pression for the minimum average cost R

1
R=Ry~> JICWA () = Cofy (x) |dx (2.22)
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where

1
Ry = %(Coo’* Cip) My + 5 (Cor +Cip) T,
Ci=(Cu-Cim,

Co = (Cyp=Coo) Ty

When the random variable X assumes discrete values, the MAC , R, becomes

R = Ry- %2|C1P (X= x{H)) = CoP (X= x| Hy)| (2.23)
i i

2.3 Randomization in Minimum Average Cost Receivers

When the random variable X assumes continuous values, the contribution to the
minimum average cost of those values of X that satisfy equality in the decision rule (2.14)
is zero. This is because these values occur with zero probability. Therefore, they can be as-
signed to either one of the decision regions without affecting the minimum average cost.
When X is discrete, the values of X that satisfy equality in (2.14) occur with finite proba-
bility. Therefore, randomization of the decision rule may become necessary. While parti-
tioning the observation space of the discrete random variable X into the decision regions

corresponding to Hy and H;, the receiver uses the decision rule (2.2) with

P (X= x| H,)
VT P(X= xi, H,) (2.24)

Let K={kj,kj,....k;} be the set of those values of X that satisfy the relation
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P(X= kiIHO) - “1(C01‘C11)

(2.25)

The complement set K° represents all the remaining values that the random variable X as-

sumes. Using Bayes rule we can express (2.25) as

P(H\|X= k) _ (Cyy—Cep)
P(H0|X= k‘) - (COI—CII)

(2.26)

The conditional costs Bg(x) and B;(x) for the outcomes that satisfy (2.26) are given by

By (k) = CooP (Ho|X= k;) + Coy P (Hy|X= k) (2.27)
B, (k) = CoP (Ho|X= k;) +C P (H|X= k) (2.28)
Using (2.26) we get
P(H|X= k) = P(HX= k) %g—,:::—?:; (2.29)
Substituting (2.29) into (2.27) and (2.28) , and simplifying we get
Bo (k) = B, (k) = P (HyX= k) (C“’gzizgiicm) ke K
(2.30)

The result in (2.30) indicates that such boundary outcomes are equally costly and can be
assigned arbitrarily to any one of the decision regions. Using (2.23) we will show that the
contribution of these outcomes to the MAC is zero. This can be done by expanding (2.23)

as
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l
1
R =Ry=3 > |C1P (X= k|H)) = CoP (X= k| H,)|

i=1

1
-5 2, |CiP (X= x{H,) - CoP (X= x{H,)| (2.31)
x; e K*
In (2.31), the second term on the right hand side is the sum over all those values of X that
are elements of K, and the third term is the sum over all the values that are elements of K°.
Using (2.25) we get
!

> |C1P (X= k|H)) —CoP (X= kjHg)| = 0 (2.32)

i=1

The result in (2.32) shows that it is, in fact, immaterial as to whether the outcomes that sat-
isfy (2.25) are assigned to the decision space of Hy or to the decision space of H; since
their contribution to the MAC is zero. Thus, randomization is not necessary. Therefore,
whether the random variable X is continuous or discrete, the minimum average cost is not

affected by those values of X that satisfy equality in the likelihood ratio test.

2.4 Minimum Probability of Error Receivers

As an important application of the general Bayesian formulation developed in Sec-
tion 2.2, we consider the special cost assignment Cyg = C;; =0 and Cy; = Cyg = 1. This
corresponds to the minimum probability of error criterion which is widely used. In this

case, the conditional costs B(x) and B;(x) given by (2.11) and (2.12) become

By (x) = P(H,|x) (2.33)
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B, (x) = P(Hgy|x) (2.34)

and the decision rule (2.14) becomes
H,
P (Hy|x) : P(Hg|x) (2.35)
Hy

Decision rule (2.35) indicates that the MAC receiver reduces to a maximum a posteriori
probability (MAP) receiver in this special case. When an observation x is received, the re-
ceiver computes the a posteriori probabilities P (Hplx) and P (H;Ix) and chooses the hy-
pothesis with the larger a posteriori probability. The function r(x) defined in (2.15)

representing the conditional cost of the MAC receiver based on an observation x becomes

r(x) = min (P (Hyx), P (H,|x)) (2.36)

This function now defines the probability that the MAP receiver makes an error based on
an observation x. The minimum probability of error (MPOE) is obtained from (2.22) and

is given by

P(E) = 5= 2[[mfy (1) = ofy (0)|dx 237

which is the same expression as obtained by Kailath [31] and Toussaint [37] using a differ-

ent approach.

In this chapter, we have obtained an expression for the minimum average cost for an
optimum receiver. This result is a generalization of a similar result for the minimum prob-
ability of error based on the Kolmogorov variational distance. The result obtained here

will be employed in the next few chapters for decentralized detection systems.
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CHAPTER 3

BOUNDS ON THE PERFORMANCE OF OPTIMUM
RECEIVERS

3.1 Introduction

In hypothesis testing, the perforrance of optimum receivers is usually expressed in
terms of the probability of error. In this chapter, we concentrate on some performance as-
pects of optimum receivers. We consider the binary hypothesis testing problem in which
hypothesis Hy with a priori probability n is tested against hypothesis H; with a priori
probability mt;. The decision is made based on a random observation X with conditional
probability density functions f5(x) and f)(x) when Hy and H, are true respectively. It is
well known that the optimum receiver which minimizes the probability of error is the
maximum a posteriori probability (MAP) receiver {3]. When an observation x is re-
ceived,the MAP receiver computes the a posteriori probatilities P(Hg!x) and P(H,Ix) and
chooses the hypothesis with the larger a posteriori probability. In Chapter 2, we derived
closed form expressions for the minimum probability cf error (MPOE) and the general
minimum average cost (MAC) of the optimum receiver. Analytic evaluation of these ex-
pressions is very difficult in most cases because it involves the evaluation of the discontin-
uous function min(.). Instead of evaluating the exact minimum probability of error and the
exact minimum average cost, tight upper and / or lower bounds can often be determined
analytically in an easier fashion making it possible to compare the performance of opti-

mum receivers based on these: bounds.

A number of upper and lower bounds on the MPOE of optimum receivers have been
proposed in the literature [51-63]. Because of the indirect relationship between the proba-
bility of error and the class of Ali-Silvey distance measures (or the f-divergence) [31], a
number of the bounds available are expressed in terms of these distance measures. The

idea behind this relation lies in the result known as the Blackwell theorem.This theorem
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states the following. Let ©t be the set of all permissible pairs of the prior probabilities 1y
and 7, in a binary hypothesis testing problem. Then there exists a subset of © for which if
the distance between a given set of conditional density functions is larger than the distance
between another set of conditional density functions,then the probability of error corre-
sponding to the first set is less than the probability of error corresponding to the second
set. Boekee and Van der Lubbe [51] provided upper bounds on the MPOE of optimum re-
ceivers by considering the f-divergence between the conditional densities under the two
hypotheses. They have shown that this upper bound includes many well known bounds in

terms of other distance measures.

As discussed before, almost all of the literature in this area has been limited to find-
ing bounds on the MPOE, and little can be found on the general Bayesian problem in
which arbitrary costs are assigned to each course of action in the decision process. In this
chapter we extend some of the known bounds on the MPOE to the general Bayesian prob-
lem. In addition, we obtain a new upper bound on the MPOE which is tighter than the pre-
viously available bounds. We also obtain a tight lower bound on MPOE. In Section 3.2,
we derive an upper bound on the MAC which is a generalization of the Cheroff bound on
the MPOE. In Section 3.3, we derive simple upper and lower bounds on the MAC in terms
of the Bhattacharyya coefficient. In Section 3.4, we introduce our new upper bound on the
MPOE. This bound is shown to be tighter than the available bounds such as the Bhatta-
charyya bound and the equivocation bound. In Section 3.5, we extend this bound to the re-
stricted Bayesian problem in which Cgg = C;; and Cyg = Cg;. In Section 3.6, we use the
upper bound derived in Section 3.4 to obtain a new tight lower bound on the MPOE. In
Section 3.7, we present a numerical example where we compare the exact minimum prob-
ability of error with the new upper and lower bounds on the minimum probability of error.

Section 3.8 contains a summary of the resulits obtained in this chapter.

3.2 Generalized Chernoff Bound

In this section we derive a new upper bound on the system MAC which is a general-

ization of the Chernoff bound on the MPOE available in the literature [52.53]. We begin
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with (2.11) and (2.12) which are repeated here for convenience

Bo(x) = CooP (Hy|x) +Cpy P (H,|x) (3.1)

B, (x) = CyP (Hg|x) +Cy P (H|x) (3.2)

Using Bayes rule we can express the a posteriori probabilities P(Hpix) and P(HIx) as

P(Hx) = n(}fo(x)

e AR RAC) (3.3)
n.f, (x)

P{Hyx) = Vi (3.4)

Rofo () + 7,1 (x)

Using (3.3) and {3.4), the expressions for Bg(x) and B(x) in (3.1) and (3.2) become

CooTofo () + Coy T,y (1)

Bo(x) = T () F .7, ()

(3.5)

Ciomgfo (X) +Cpymyfy (%)
Tofo (X) + 7.} (%)

B,(x) = (3.6)

The MAC receiver computes the quantities Bo(x) and B;(x) and makes the decision ac-

cording to decision rule (2.14). The conditional cost based on an observation x is given by

r(x) = min(By(x), B, (x)) (3.7)

For any two positive real numbers a and b, we have the following inequality
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min(a,b) <a'h' ~%,0<s<1 (3.8)

Making use of (3.8) we can obtain an upper bound on the conditional cost r(x) given in
(3.7) as

r(x) € (By(0))° (B, (x)) %,0<s<1 (3.10)

The unconditional cost, R, is given by

R = [min (By(x), By (x)) (mefy (X) +7,f; (x)) dx (3.11)

Therefore, an upper bound on R is

R<[(By ()7 (B, () ™ (mofy (1) +1,f, (1)) dx, 051 (3.12)

Substituting (3.5) and (3.6) in (3.12) we get

R < [(Cogmofy (x) + Coiyfy (x))° (Cyamofy (X) + Cpymufy (1)) ~*dx, 0S5 <1,
’ (3.13)

The upper bound in (3.13) is true for any value of s in the range 0 < s < 1. The tightest
bound is obtained by finding the particular value of s which minimizes the right hand side

of (3.13). Therefore, the tightest upper bound of this form on MAC is given as

R Smt')nSs<l J(Coo“ofo (x) +Co 7, f) (x))s(CmnOfo (x) +Cy 1. f (X))~ *dx
(3.14)

X
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This is a generalization of the well known Chemoff bound on the minimum probability of
error. Using the special cost assignments Co = C; = 0 and Cy = Cp; = 1, we can obtain
it from (3.14) as

P(E) Smin - [(myf; (1)) (mefy () ) " tdx (3.15)

Let s* be the specific value of s that achieves the minimum in (3.15).1t has been shown in

[53] that (3.15) can be written as

P(E)<m my~* p* (3.16)

where

* =min__ [(L0) () Cax (3.17)

0<s<l

is the Chernoff coefficient. Equation (3.16) represents the usual form of the Chernoff

bound on the minimum probability of error.

3.3 Upper and Lower Bounds on the Minimum Average Cost in Terms of

the Bhattacharyya Coefficient

The evaluation of the generalized Chernoff bound in (3.14) is a difficult task. There-
fore it is worthwhile to derive upper and lower bounds on the MAC that are simpler to
evaluate. Here we derive bounds in terms of the Bhattacharyya coefficient. This coeffi-
cient is obtained from (3.17) by using the specific value of s = 0.5, i.e., the Bhattacharyya

coefficient is given as

P =j L (X) fy (x) dx (3.18)
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The Bhattacharyya coefficient is relatively simple to evaluate and has closed form expres-
sions for many commonly used distributions. These advantages made the Bhattacharyya
bound on the minimum probability of error an attractive tool in the design of communica-
tion systems. The most common applications are the design of quantizers for hypothesis
testing [32] and signal selection [31]. The main disadvantage of the Bhattacharyya bound
is that it is a loose bound. In this section we derive upper and lower bounds on the MAC
based on the Bhattacharyya coefficient which are generalizations of the available bounds
on the MPOE. These generalized bounds are based upon the following representation of

the MAC derived in Chapter 2

R = Ry= 3 [|C1f; (x) = Cofy ()] dx (3.19)

Here we make the usual assumption that an incorrect decision is more costly than a correct

decision, i.e., we assume that C;q > Cqg and Cy; > C;;. Equation (3.19) can also be writ-

ten as

fICufy () = Cofy (x)|dx = 2Ry - 2R (3.20)

Next, we obtain the upper and lower bounds on the MAC.

3.3.1 Upper Bound on the MAC

To find an upper bound on the MAC we make use of the following inequality which

is true for any two positive real numbers a and b

2
la—bl2 [Ja-Jb] (3.21)

With the aid of (3.21),the left hand side of (3.20) can be bounded as
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fled, @) = Cofg (0 jax 2 [LJC S, () - [Cofg 01 dx (622

Expanding the right hand side of (3.22) we get

[LCA® - fCofg @1 dx = [(C,fy (1) + Cofy () = 2,JC,CoufFy (o () dx
” ; (3.23)

Integrating term by term on the right hand side of (3.23) we get

[LCH @ = fCofo @1 dx = €, +Cy=2./CCop, (324)

where pg is the Bhattacharyya coefficient defined in (3.18). From (3.20) and (3.22) we get

2Ry~ 2R 2 [ [JC,f; (%) = [Cofg ()] 2 dx (3.25)

Substituting (3.24) into (3.25) we obtain

Rearranging the terms in (3.26) we obtain the following upper bound on R

1 =

Using the definitions of Ry, C; and Cg in (2.2), the upper bound in (3.27) becomes

R<Cymy+ C 7y + Jrgm, (Co = Cyy) (Cio—Coo) Py (3.28)
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which is the desired upper bound.

3.3.2 Lower Bound on the MAC

In this subsection we derive a lower bound on the MAC in terms of the Bhatta-

charyya coefficient. Here we make use of the Schwartz’s inequality

05
[fogmars [J' (F(0)%def (g (9) )2{1!:| (3.29)
4 { t
Squaring both sides of (3.29) we get
2 2 2
Uf(t)g(t) dr} < U @) d:} U (8 () d:} (3.30)
14 t t
For any two real numbers a and b, we have the following equality
(a-b) (a+b) = a*-b° : (3.31)
Let
a= -/C1f1 (x) (3.32)
b = JCyfp(x) (3.33)

Then (3.31) can be written as

(JCf; (¥) = JCofa (X)) (JC Sy (x) + JCofy (X)) = Cif; (x) = Cofyy ()
(3.34)

Taking the absolute value of both sides of (3.34) and integrating with respect to x we get




flJCF, ) = JCofy D|.JC,f, () + JCofy ()] dx = [|C1f, (x) = Cofy (x)|dx

(3.35)
Squaring both sides of (3.35) we get

2 2
[ flCH ) = JEofy WI|JCofy &) +.[Cofy (x)ldx] = [ ficuf 0 - Cof (x)ldx}

(3.36,
Let us make the following substitutions in equation (3.30)
() = |JCfy () = JCofy (D] (3.37)
g (1) = |JCufy (1) + .[Cofo (1)) (3.38)

Applying Schwartz’s inequality (3.30) to the left hand side of (3.36) with the proper sub-

stitutions from (3.37) and (3.38) we get

2
[Jlfclfl (x) = JCofy (xﬂljclfl (x) +JCofy (x)]dx] <L, (3.39)

where

I, = J‘] JC.f1 (x) = JCofo (x)lzdx (3.40)

2
I, = {|JC.f; 0 +.[Cofy ()] dx (3.41)
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Expanding the right hand side of (3.40) and (3.41) and integrating we get

Iy = Cy+Co=2,JC,Co[ Jf, (1) fy (x) dx (3.42)

~
%)
|

= C;+Co+2,JC,Cof Jf; (1) (x) dx (3.43)

It is easily recognized that the integral on the right hand side of (3.42) and (3.43) is the
Bhattacharyya coefficient pg. But the left hand side of (3.39) is equal to the right hand side
of (3.36). Therefore, we have

2 .
U|C1f1 (x) = Cyfy (x)|dx:| < (Cy+Co=2pgJCiCy) (Cy+Cy+2p,.,[C,Co)

(3.44)
Taking the square root of both sides of (3.44) and simplifying we get
Jicui @ - Cofy ()]dx < [1C, + Co1* - 4C,Cop} (3.45)
X
Using (3.20) we obtain
2 2
2Ry~ 2R < [[C, +Co) = 4C,Cop? (3.46)
Rearranging the terms in (3.46) we obtain the following lower bound on R
R2Ry- 1 [[C,+Col>=4C,Cop?
=Ro~ 341 +6y 1C0Pp (3.47)

Substituting for Ry, Cp and C; from (2.22), we have
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1 1

1
‘§J[ (Cor=C11) Wy + (Cig= Coo) o) * = 41y, (Coy = C1y) (Cro=Coo) P

(3.48)
3.3.3 Minimum Probability of Error Bounds

Here, we consider the minimum probability of error case, i.e., when Cpp = C; =0,
Ci0 = Copy = 1 and show that the above upper and lower bounds in terms of the Bhatta-
charyya coefficient reduce to the results available in the literature. In this case, the upper

bound in (3.28) simplifies to

P(E) £ /nonlpB (3.49)

and the lower bound in (3.48) becomes

11
P(E) 25 =51 -4mym,p; (3.50)

Equations (3.49) and (3.50) represent the upper and lower bounds on the probability of er-
ror which are well known [31]. These bounds are convenient from a computational stand-
point but are rather loose. Therefore, we derive tighter upper and lower bounds on the

MPOE in the rest of this chapter.

3.4 A Tight Upper Bound on the Probability of Error for Optimum

Receivers

For the MAP receiver discussed in Chapter 2, the conditional probability of error

based on an observation x is given by
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P (E|x) = min(P(Hyx),P (H)|x)) (3.51)

For notational convenience we let

p=P(Hyx),0<sps] (3.52)

Then we have

P(Elx) = min(p,1-p) £ g(p) (3.53)

The function g(p) is plotted in Fig. 3.1 as a function of p. The unconditional probability of

error is the expected value of P(E | x) with respect to x, i.e.,

P(E) =E, {P(Ex)} = E {g(p)}

= [8 ) (mefy(x) +m,f; (x)) ax (3.54)

The expression for the minimum probability of error given in (3.54) is exact but is compu-
tationally undesirable in many applications due to the discontinuity of the function g(p) at
p = 0.5. Therefore, we attempt to find a computationally desirable function of p, g*(p),
which when substituted for g(p) in (3.54), will provide a close approximation or a tight
bound on the probability of error. Let B(g*) denote a bound on the probability of error

B(g") = [8" @) (myfy (x) +1,f; () dx (3.55)
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The closer the function g*(p) is to g(p), the tighter is the bound. In this section, we find an
upper' bound on the minimum probability of error based on the function g*(p) which sats-

fies the following conditions

1) g*(p) 2 g(p) for all values of pin therange 0 <p < 1such thatg*(p=0)=g*(p=1)=0.

This condition is consistent with the requirement that g*(p) be an upper bound function.

2) g*(p) should be continuous and differentiable. This condition is desirable to avoid the

same computational difficulties as associated with the exact expression based on g(p).

3) g*(p) should be symmetrical about the point p = 0.5. This condition is desirable since
g(p) is symmetrical about the point p = 0.5.

4) g*(p = 0.5) = 0.5. This condition is needed since the conditional probability of error

P(EIx) cannot be larger than 0.5 and it is equal to 0.5 only when p = 0.5.

5)dg*/dp (p =0) 2 1 and dg*/dp (p = 1) £ -1. This condition ensures that the function se-

lected lies above the function g(p) for all values of p in therange 0 <p<1.

Now we demonstrate that several upper bounds on the minimum probability of error
proposed in the literature can be interpreted using the above framework. A similar idea
has been pursued by Chen [59]. First, we consider the upper bound based on the Bhatta-

charyya coefficient and given in (3.49). It can be written as

P(E) <[ [r,f, (x) —of, (%) dx (3.56)

From Bayes rule and the definition of p in (3.52) we have

Tofy () = p(|pfy (X) +70,f1 (%)) (3.57)

Tf, (x) = (1=p) (mefp (x) + 7,1, (x)) (3.58)
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Substituting (3.57) and (3.58) into (3.56) we get

") <[ (T=p) (nfy (0 +1,f, (x)) dx

= [85(P) (refy (x) +7,f, (1)) dx (3.59)

where

gg(P) = Jp(1-p) (3.60)

Thus, this upper bound is obtained by replacing g(p) by gg (p). The function gg (p) will be
referred to as the Bhattacharyya function and is plotted in Fig. 3.1. From Fig. 3.1, we see
that gg(p) is a fairly poor approximation to the function g(p) and, therefore, the Bhatta-
charyya bound is a loose one.It can be easily verified that the function gg (p) satisfies all

the five conditions for g*(p) listed above.

Another upper bound on the probability of error that is available in the literature is in
terms of the equivocation (an information theoretic measure). This upper bound is given

as

P (E) <=[0.5 [P (Hg|x)logP (Ho|x) + (1~ P (Hy|x))log (1 - P (Hq|x))1f (x) dx
’ (3.61)

In this case, the function g(p) is replaced by the equivocation function gg(p) given by

gep(p) = -05[plogp+ (1-p)log(1-p)] (3.62)
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Fig. 3.1 . The exact minimum probability of error, the new upper bound, the sinusoidal,

and the Bhattacharyya functions plotted as a function of p.
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This function also satisfies the five conditions listed above. It has been shown in [55] that
the equivocation bound given by (3.61) gives a tighter bound on the probability of error
than the Bhattacharyya bound. Devijver [56] introduced a new bound on the probability of

error in terms of what is called the Bayesian distance. This distance is defined as

1
By = E{Y [P(H|0]"} (3.63)
i=0

which in our notation reduces to
By = E.{p*+ 1-p?%}
SE{1-2p(1-p)} (3.64)

The probability of error is related to the Bayesian distance through the relation

P(E)<1-By
< E{2p(1-p)} (3.65)

In this case, the function g(p) is replaced by the functior

gy(p) =2p(1-p) (3.66)

This function will be called the Bayesian bound function. It has been verified in [56] that
the Bayesian bound function yields a tighter bound on the probability of error than the
equivocation function. As shown in Fig. 3.1, the function gy (p) approximates g(p) much
more closely than gg (p). We have not shown g (p) in Fig. 3.1 but it falls between the
functions gg (p) and gy (p). Next, we develop a new function that satisfies the desirable

conditions indicated earlier and approximates g(p) even more closely. The resulting func-
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tion will yield a tighter upper bound on the minimum probability of error.

Consider the sinusoidal function

g,(p) = 0.5sinmp (3.67)

This function satisfies the desired properties of the approximating function as described

earlier. Furthermore, for all values of p in the range 0 <p < 1, we have g (p) < gy (p), i.e.,

0.5sintp <2p(1-p) (3.68)

The result in (3.68) indicates that the sinusoidal function g(p) will lead to a tighter upper
bound than the Bayesian bound since it is closer to the minimum probability of error func-
tion g(p). Differentiating the sinusoidal function in (3.67) and evaluating the derivative at
p =0, we see that the slope at p =0 is 1.57. This value of the slope is much larger than the
slope of g(p) at p = 0 which is equal to 1. We can tighten the bound obtained from (3.67)
by weighting the sinusoidal function by a Gaussian function, and we assume that the ap-

proximation function is

gn(p) = 0.5 (sinmp) exp [~ (p —0.5)%] (3.69)

The Gaussian function is continuous, differentiable, and symmetrical about the point p =
0.5 as required for the approximating function. The reason for including the Gaussian
function in gy (p) is that it exhibits exponential decay. This property makes it possible to
better approximate the exact function g(p) with the sinusoidal and the Gaussian functions
combined than with the sinusoidal function alone. The parameter o determines the rate of
decay of the Gaussian function. This parameter is to be chosen so that the derivative of
gn(p) at p = 0 is equal to 1. We recall that the derivative of the functon g(p) atp =0 is

equal to 1. Therefore, by letting the derivative of gn(p) at p = 0 to be equal to 1, we are
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forcing both functions gn(p) and g(p) to have the same slope at the pointsp=0andp = 1.
Furthermore, the values of the two functions at the points p =0 and p = 1 are equal to zero.
Therefore, by having equal values of the two functions as well as equal slopes at the points
p =0and p =1, we can obtain the best approximation possible for the function considered.
Differentiating (3.69) with respect to p, setting the derivative at zero equal to one, and
solving for o we get o = 1.8063. So our new approximating function to obtain the upper

bound is

gy (P) = 0.5 (sinmp) exp [~1.8063 (p — 0.5)%] (3.70)

This function is plotted in Fig. 3.1. In Fig. 3.2, we plot the functions g(p) and g¢(p) versus
p. We also plot the function gn(p) to show the improvement gained by weighting the sinu-
soidal function gy(p) by the Gaussian function. By comparing the various approximation
functions in Figures 3.1 and 3.2, we see that the new function given in (3.70) approxi-
mates the exact function g(p) quite closely, and that it is significantly better than the Baye-

sian bound function. The probability of error is now upper bounded by

P(E) < j (0.5 (sinmp) exp [~1.8063 (p— 0.5)]) (mfy (x) + T, f, (%)) dx
* (3.71)

In this section we have presented a new upper bound on the minimum probability of
error which is shown to be tighter than the presently available bounds such as the Bhatta-
charyya, the equivocation, and the Bayesian bounds. Some applications of the new bound

in the design of decentralized detection systems will be considered in the next chapter.

3.5 A Tight Upper Bound on the Minimum Average Cost

In the previous section, we derived a tight upper bound on the probability of error for

optimum receivers. This is a special case of the general Bayesian problem where the costs
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Fig. 3.2 . Sinusoidal and the Gaussian weighted sinuso*dal functions.
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are assigned as Cgg=C;; =0and Cyg = Cq; = 1. In this section we extend the bound to the

more general Bayesian hypothesis testing problem with symmetrical costs, i.e., with costs

satisfying Copp = Cy7 and Cy9= Cg;. Expressing Bo(x) in (3.1) and By(x) in (3.2) in terms

of P(Hy ! x),we get

By (x) = CooP (Ho|x) + Coy (1= P (Hg2))

B, (x) = CyoP (Ho|x) +Cyy (1= P (Hy|x))

Rearranging terms in (3.72) and (3.73) we get

By (x) =Coy = (Cpg—Co1) P (Hy|x)

]

By(x) =Cyy = (Cyp—Cy) P (Hylx)

Dividing (3.74) by (3.75) we get

Box) =Cqy  Cgo—Coy
B, (x) =Cy, T Cyp-Cy

From (3.76) we express Bp(x) in terms of B(x) as

Bo(x) = —AB, (x) +B

where
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Cor—Coo

A= - (3.78)
Cio-Cn
C01C10 - Coocu
B = (3.79)
Cio—-Cni
Using (3.77), the conditional cost in (3.7) becomes
r(x) = min(-AB, (x) +8,B,(x)) (3.80)

As P(Hy | x) varies over the range 0 < P(Hplx) < 1, Bg(x) in (3.72) varies over Cy < Bg(x)
< Cog and By(x) in (3.73) varies over Cq; < B1(x) £ Cyg . For an arbitrary. cost assignment
the functions f3;(x) and -AB(x)+B as a function of P,(x) are sketched in Fig. 3.3 . Also
shown in this figure is the minimum of the two functions which represents r(x). The lack
of symmerry of the conditional cost function makes it difficult to extend the upper bound
obtained in Section 3.4 to tixe general Bayesian case. Therefore, we consider the restricted
problem with symmetrical costs in which Cpg = Cq; and Cjg = Cy;. In this case A =1 and
B = C1+Cy1. The conditional cost in (3.80) becomes

r(x) = min (=B, (x) + Co+ Cyp, By (X)) (3.81)

The functions By(x) and -B;(x)+Cq;+Cy; are sketched in Fig. 3.4 alongwith the minimum
of the two functions. As can be seen from Fig. 3.4, the conditional cost 1(x) is a scaled and
translated version of the minimum probability of error function g(p). Figure 3.5-a shows
the functon r(x) - C;; resulting from the translation of the function r(x) along the vertical
axis. Figure 3.5-b shows the function resulting from translating the functi(\m r(x) - Ciy
along the horizontal axis to the origin by C;;. The function g; (B,) sketched in Fig. 3.5-b is

represented in terms of g(B,) as
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B
Cor [P AB) = - ABy+B
/f(Bl) = By(x)
Cn
—
Cn Cio By(x)

Fig. 3.3. The functions B;(x) and — B;(x)+C,o+C;; for arbitrary cost assignment.
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fBy) A

Ci1+Cyo

f(By) = = B1(x)+Cyp+Cyy

/f(Bl) = By(x)

0.5(C19-Cyp)

Ci B1(x)

X

Cn 0.5(Cyo +C11) Cio Cu+Cyo

Fig. 3.4. The functions B;(x) and — B,(x)+C;+Cy; for the case of symmetrical costs.
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r(x) - Cll

0.5(Cy0-C11)

X >
Cn 0.5(Cy0 -Cy1) Cio Br

Fig. 3.5-a. Shift the function r(x) in Fig. 3.4 down along the vertical axis by Cy; |

g(By)

0.5(Cy0-Ci1)

X ~ e
0.5(Cy9 -Cq1) (C10-C11) B1- Cn

Fig. 3.5-b. Shift the function of Fig. 3.5-a along the horizontal axis to the left by C;; .




'\.2 B
81(51) =\\(C10‘C11)8(C10—_1C—u') (3.82)

while the function sketched in Fig. 3.5-‘21 is represented as

\

B
r(x) -Cy = (Cxo Cu)g(a—l—f) (3.83)
X 10— Cn

Using (3.83), the function sketched in Fig. 3.4 can be expressed as

B,-Cn )
(3.84)

r(x) = Cll + (Clo_cn)g(c—lot'a—l;

Therefore, using (3.70), we can upper bound the conditional cost r(x) using the function

. (B

gR(B )y =Ch+ (CIO Cu)g]v(cl -C ) (3.85)

0~ %n
which can explicitly be expressed as A\
b )
n(B,-Cy)y B,-C
gr(B)) =C,;;+0.5(C,-C )sm—-——exp 1.8063(—-——05)
RO H 10 1 Clo'cu, | ClO_Cll

, \ (3.86)

)
But B is a function of the random variable X as segn from (3.73). We emphasize this by

expressing B as By(x). Therefore, the MAC is upper bounded by

RSE {gp(B,(x)} = [gr(By (0) (mpfy(x) +m,f, (X)) dx  (3.87)
X
Next, we derive a lower bound on the minimum probability of error.
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3.6 A Tight Lower Bound on the Probability of Error for Optimum Re-
ceivers

In Section 3.5, we obtained a tight upper bound on the probability of error for opti-
mum receivers. We listed several desirable conditions which an approximating function
g*(p) should satisfy in order to find a suitable upper bound. Now we present a similar set

of conditions that an approximating function g**(p) should satisfy in order to find a lower

bound. These conditions are
1) g**(p) should be continuous and differentiable.

2) g**(p) should be symmetrical about the point p = 0.5. This condition is desirable since
g(p) is symmetrical about the point p = 0.5.

3 g**(p=0)=g**(p=1)=0.
4) dg**/dp (p=0) <1 anddg**/dp (p=1)2-1.
5) g**(p) < g (p ) for all values of p in the range 0 < p < 1.

A lower bound on the minimum probability of error can be derived in terms of the

new upper bound function gn(p) discussed in Section 3.5. The first, second, and third de-
sirable conditions for the lower bound given above are satisfied by the function gn(p). The
fourth condition in conjunction with the fifth are needed to guarantee that the lower bound
function is below the function g(p) for all values of p in the range 0 < p < 1. Now we pro-

pose a lower bound function of the form

g, (p) = €x0.5 (sinmp) exp [-1.8063 (p — 0.5)%] (3.88)

The scaling factor € is a constant yet to be determined whose value is less than unity. With

the value of € < 1, the fourth condition is satisfied. The fifth condition is satisfied when

€0.5 (sinmp) exp [-1.8063 (p - 0.5)] <p,0<p<0.5 (3.89)
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Our objective is to determine those values of € for which (3.89) is satisfied. A detailed ex-

amination of (3.89) shows that it is satisfied for the following values of €

0<e<0.79 (3.90)

With the value of € = 0.79, (3.89) is achieved with equality for a specific value of p. The
point p at which this happens is p = 0.275. The tightest lower bound is achieved by using
€ =0.79. Using this value of €, we see that the lower bound on the minimum probability of

error is given by

P(E)2 j (0.395 (sinntp) exp [—1.8063 (p - 0.5)2] ) (nofo (x) + 7t1f1 (x))dx
* (3.91)

Comparing (3.91) and (3.71), we see that the relationship between the upper bound and

the lower bound can be stated as
Lower bound = 0.79 x Upper bound (3.92)

In Fig. 3.6 we plot the functions gp (p). gn(p), and g(p) as a function of p. As seen from
this figure, the lower bound function closely approximates the function g(p) for most of
the values of p except around the point p = 0.5. The tightness of the bounds can also be
expressed as the ratio of the upper bound to the lower bound. This ratio should be as close
to unity as possible. For the new bounds derived in this chapter this ratio is equal to 1.265

indicating that both the upper and the lower bounds are tight bounds.

The same argument as above applies to the case of symmetrical cost assignment, i.e.,
a lower bound function on the cost can be defined in terms of the upper bound function

gr(By) as

gRL(Bl) = 0-798R(B1) (3.93)
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g(p)

........

Fig. 3.6. The exact mimimum probability of error, the new upper bound, and the new

lower bound functions plotted as a function of p.
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The MAC can therefore be lower bounded by

R2E, {gp, (B, (x))} = 0.79[gg (B, (x)) (Mefo (x) +T,f, (x))dx
* (3.94)

3.7 Example

In this section we present a numerical example where we compare the exact mini-
mum probability of error in a hypothesis testing problem with the new upper and lower
bounds on the minimum probability of error derived in this chapter. For the sake of com-

parison we also consider the Bhattacharyya upper and lower bounds.

Consider the hypothesis testing problem in which the observation X under Hy is a
Gaussian random variable with mean mg and variance 0'02 and when H, is true the obser-
vation X is a Gaussian random variable with mean m; and variance 012. The hypothesis

testing problem can be represented as
Hp : X; ~ N(mg, 607
H; : X; ~ N(m;, 6;2)

We assume that ng = my =0.5. The probability of error is minimized using the likelihood

ratio test given by (2.2)

H,;
H&x) >
1 (3.95)
for) <
Hy
where
1 x-m)*)
fi(x) = exp|———— /i =0,1 (3.96)
21:6? 2¢;

For the Gaussian density functions given by (3.96), the Bhattacharyya coefficient is given
by [31]
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2 2. 2
(my=mg)”~ 1 ("1 + oo)
Pp = exp{— —_—tin| — (3.97)
B | me_*_og) 2 20100

2-6,2=1,my=0and m; isa

We consider two cases. In the first case we assume that 6
variable. In Fig. 3.7 we plot the exact minimum probability of error as a function of my
when decision rule (3.95) is employed alongwith the new upper and lower bounds on the
minimum probability of error determined from (3.71) and (3.91). We also plot the Bhatta-
charyya upper and lower bounds determined from (3.49) and (3.50). In the second case,
we assume thatmg=0,m; =2, 0‘02 =] and 012 is a variable. The exact minimum proba-
bility of error, the new upper and lower bounds, and the Bhattacharyya upper and lower

bound as a function of 012 are plotted in Fig. 3.8. Figures 3.7 and 3.8 exhibits the tight-

ness of the new upper and lower bounds.

3.8 Summary

In this chapter we derived upper and lower bounds on the minimum probability of
error and the minimum average cost for optimum receivers. Some of the bounds on the
MAC are generalizations of the known bounds on the minimum probability of error in
terms of the Bhattacharyya bound and the Chernoff bound. Furthermore, we derived a new
upper bound on the probability of error which is tighter than the previously available
bounds. This bound was generalized to the Bayesian problem with symmetrical costs.
Tight Lower bounds on the probability of error and the MAC were also derived in terms of
the new upper bound. These bounds are used for the performance characterization of opti-
mum receivers. In addition, these bounds can be employed for the design of quantizers in
signal detection systems, for the design of decentralized detection systems, for signal de-

sign and other related problems in communication systems.
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Fig. 3.7. Comparison of the new bounds, the Bhattacharyya bounds, and the exact

minimum probability of error when m is varied.
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CHAPTER 4

PERFORMANCE ANALYSIS AND DESIGN OF THE
BAYESIAN PARALLEL FUSION SYSTEM

4.1 Introduction

As discussed in Chapter 1, in a decentralized detection system with data fusion, a
group of local detectors process the observations they receive regarding the status of a cer-
tain phenomenon, and transmit their decisions to a fusion center where the final decision is
made. The design of this system involves specifying both the local decision rules and the
fusion rule. Several authors have dealt with the design of such a system using different cri-
teria. Tenney and Sandell (7] treated the decentralized detection problem with no data fu-
sion from a Bayesian point of view. Costs were assigned to reflect the various courses of
actions of each local detector. The local decision rules were chosen such that the average
cost is minimized. Assuming known sensor thresholds, Chair and Varshney [9] developed
a minimum average cost algorithm for combining the sensor decisions at the fusion center.
Optimization of the entire system was considered by Hoballah and Varshney [10] where
they obtained a person-by-person optimal solution to the problem. The optimization of the
entire system was also considered by Reibman and Nolte [12] where an exhaustive search
has to be done over all the possible fusion rules in order to determine the overall minimum
cost solution. Chair and Varshney [14] considered the problem of distributed Bayesian hy-

pothesis testing with distributed data fusion in which data fusion is performed at each site.

Distance measures from the class of Ali-Silvey distance measures have recently
been used for the design of decentralized detection systems [35,38]. In fact, this class has
received an increasing interest in the design of quantizers for hypothesis testing because of
its strong link to the probability of erior (POE). Let &t = {mg, 1} be the set of all permissi-
ble pairs of the prior probabilities in a binary hypothesis testing problem. Then,there exists

a subset of ©t for which if the distance between a given set of conditional densities is larger

59




than the distance between another set of conditional densities, then the POE corresponding
to the first set is less than the POE corresponding to the second set. This result is known as
the Blackwell theorem [31]. Poor and Thomas [32] applied the general class of Ali-Silvey
distance measures to the design of a generalized quantizer for binary decision systems.
Poor [33] also used these measures as criteria for analyzing the effects of fine data quant-
zation on inferential procedures and for designing quantizers to minimize these deterimen-
tal effects. A number of authors have applied members of the class of Ali-Silvey distance
measures into the design of decentralized detection systems. For example, Longo, Looka-
baugh, and Gray [35] have employed the Bhattacharyya distance, whereas Lee and Chao
[36] have used the J-divergence to subpartition the decision space when a quality bit is to
be transmitted along with the decision to the fusion center. Kazakos [57] has employed
these distance measures to obtain bounds on the performance of distributed detection sys-

tems.

In this chapter we employ the minimum average cost (MAC) as the system perfor-
mance me;asum for the parallel fusion system shown in Fig. 1.1. Here our objectives are
threefold. First, we shall examine the improvement in the system performance as a func-
tion of the number of sensors. To achieve this objective, we need an explicit relationship
between the minimum average cost and the number of sensors. Second, we shall obtain
optimum local thresholds which minimize the global average cost for a given number of
sensors. Third, as an example, we consider the design of the minimum probability of error
(MPOE) detection system where we compare the performance of the optimum system t'

several suboptimum systems.

The chapter is organized in six sections. Section 4.2 contains the system description,
terminology, and notation. In Section 4.3, we examine a two-sensor systemn and derive a
condition under which the performance of this system is identical to that of a single sensor.
We also denve relationships for the minimum cost of an n-sensor system in terms of the
sensor decisions for the hard and the soft decision cases. In Section 4.4, we make use of
the results derived .n Section 4.3 to design a system with minimum average cost. In Sec-

tion 4.5, we consider the design of the global minimum probability of error systems. In ad-




dition, we discuss a suboptimum system design in which all the system components are
MAP receivers. Then, we discuss two suboptimum systems designed based on the dis-
crimination and the Bhattacharyya distance measures. Next, we employ the new upper
bound on the minimum probability of error derived in Chapter 3 to design a nearly opti-
mum decentralized detection system. Finally, we present numerical examples in which we
compare the performance of the various suboptimum systems to that of the optimum sys-
tem. We also compare the performance of the nearly optimum system to that of the opti-

murm system. Section 4.6 contains a summary of the work reported in this chapter.

4.2 Preliminaries

Let us consider the system shown in Figure 1.1 consisting of n local detectors and a
fusion center. Here, we consider the simple binary hypothesis testing problem. The hy-
pothesis Hg with a priori probability g is tested against the alternative hypothesis H; with
a priori probability ©t;. The system receives n observations X, X»,..., X, where X; denotes
the observation received by local detector LD;. We limit our treatment to the case when X
is a scalar observation. The generalization to the vector case is straightforward. We as-
sume that these observations are independent and identically distributed random variables
with conditional probability density functions pj(xj) ; j =0, 1,i =1, .., n. The local detec-
tors LDy, ..., LD,, are linked to the global decision maker (also known as the fusion center)
through bandlimited channels. Due to this constraint on the channel capacities, the local
detectors transmit a compressed version of the observed data to the fusion center. The
compressed data can be in the form of a hard decision or a soft decision. In the first case,
the local decision z; takes on one of two possible values depending upon the local decision
of local detector LD;. In the second case, the observation space of X; is partitioned into M
nonoverlapping regions. The transmitted loca! decision z;, correspondingly, takes on one
of M possible values. In both cases the fusion center is responsible for making the final de-

cision.

For M > 2, let Tjq < Tj; <... < Tj\ be the local thresholds of local detector LD; with

Tjg = - e and Tjpq = e=. Also, let {a;y, ..., 3y} be the set of values that z; may assume.
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These outcomes occur with the following probabilities
Til
Py = PGz= aylH) = [ pj(x)dx,1<i<n,1SkSM,j=0,1.
Ty 4.1

We assume that the decision rules at the local detectors are identical. This means that Tj, =
Ty and Py = Py; for 1 <i < n. It should be pointed out that the theory presented here can
be easily generalized to the case where local decision rules are not identical. For simplicity
of presentation, we limit our discussion in this chapter to the identical local detector case.
It is worth mentioning that it has been observed in [24] that for decentralized Bayesian de-
tection, identical decision rule assumption often results in little or no loss of optimality. In
the next chapter we deal with the situation where the local decision z; is either O or 1 and
where the observations are not identical. We also assume that the decision made by local
detector LD; is independent of the decisions made by the other local detectors. Based on
these assumptions, the decisions z,, ..., z, form a sequence of i.i.d generalized Bernoulli
trials with parameters (Pyj, Py;, ..., P;) when H; is true. These decisions are sent over
bandlimited chfmncls to the fusion center. The fusion center which is the global decision
maker bases its decision on the decision vector U=[z,, ... z;]. To optimally partition the
observation space formed by the discrete random vector U into the decision regions corre-
sponding to Hg and H;, the fusion center performs a likelihood ratio test. Our treatment in
this chapter is based on the assumption that the fusion center is a minimum average cost
(MAC) receiver. If Cy; ; k, j =0, 1, denotes the overall cost of deciding Hy when Hj is true

then the global decision rule corresponding to this choice of the fusion center is
1 ifA@)>n
ug= { 4.2)

0 otherwise

where

PUIH)  PU= 2. 2,|H))
P(UHy) = P(U=z,...2,|Hy)

AW =
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Ty (C1o—Coo)

n= 1, (Co=Cyy)

and ug = k means that the fusion center decides in favor of Hy. Making use of the indepen-

dence assumption between the decisions z;, A(U) can be expressed as

[1P (z4H))
AU = S4—no @.3)
[1P zjHy)

i=1

Using (2.29), the MAC of the system can be expressed as

R = Ry=05Y |C, [[P(z|H)) - Co[] P (z|Hy) (4.4)
U

LY i=1 i=1

where the summation is taken over all values assumed by the vector U=z, zy, ... Z,] with
each element z; taking one of the M possible values. For the interesting case of M = 2,

hard decisions are made at the local detectors based on the following decision rule

Lif py(x;)ipo(x;) 2T
7= { i=1,2,...n 4.5)

0 otherwise

where z; = 1 means that H; is declared true and z; = 0 means that Hy, is declared true by lo-
cal detector LD;. It should be pointed out that the decision rule (4.5) is a threshold test due
to the independence assumption made earlier. This decision rule thus characterizes each
local detector in terms of its probabilities of detection Pp and of false alarm Pg. The deci-
sion z; has the following conditional density functons under the two hypotheses

4

folz) = Pi(l-pPp)' % (4.6)

2.

Pi(1-Py)' " 4.7)

fo(zi)
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and the global likeiihocd function (4.3) becomes

Hfl (Z,')

AU = S—0 (4.8)
Hf olz )
i=1
Based on the likelihood ratio test (4.2) and using (4.3) and (4.8), we derive in Appendix A
the algorithm based on which the fusion center combines the decisions received from the

local detectors in order to make the global decision.
At this point we need to make a few remarks regarding (4.2) and (4.4).

1) The specific values of U that satisfy equality in the likelihood ratio test (4.2) can be as-
signed to either one of the decision regions corresponding to Hy and H; without affecting

the MAC,i.e., no randomization is necessary.

2) Of all the possible fusion rules, (4.2) specifies the fusion rule that can achieve the small-
est MAC for given local decision rules. Equation (4.4) spcc;\iﬁes the cost corresponding to
this (best) fusion rule. It should be pointed out that an explicit knowledge of the fusion
rule is not required to determine the MAC given in (4.4). The following example which
deals with the binary decision case illustrates this point. |
Example 4.1

Consider the decentralized detection system of Fig. 1.1 with three local detectors.
Let us consider the hypothesis testing problem in which the observations X; are normally
distributed with unit variance, zero mean when Hy is true and unit mean when H; is true,
i.e., we test
Hyp: X; ~N(0,1)

versus

Hy:X;~N(1,1) ,i=1,2,3.




Assume that ty = 0.5, C1) = Cog= 0 and Cg= Cyy; = 1. Let us consider the case where the
local detectors are designed so as to minimize their own probability of error. It can be eas-
ily seen that the probability of detection for each local detector is Pp =0.6915 (or the
probability of miss Pys = 0.3085) and the probability of false alarm Pr = 0.3085. The local
decisions are sent to the fusion center for decision combining and for yielding a final deci-
sion. The possible fusion rules for the system are the AND fusion rule, the OR fusion rule,
and the majority logic rule. The probability of error achieved by each one of these fusion

rules is given by

P(Eyanp = Tig PF> + T (3Pp-3Pp2+P ) = 0.41335
PE)yas = TB3Pr2-2PF3) +1y(3PpP-2Ppp) = 0.22679

P(EYoR = My(3Pp-3Pp2+Pg3) + T Ppp = 0.28534

As will be seen later, applying equation (4.4), the minimum probability of error can be

computed to be

3
P(E) =05-05Y (2)|nop’;.(1 -Pp)3k-m P (1-Pp)3H
k=0

which results in
P(E)=0.22679 |

As can be seen from Example 4.1, equation (4.4) resulted in the probability of error
(POE) corresponding to the best fusion rule, namely, the majority logic. As illustrated in
Section 4.4, this fact can be used to drastically reduce the complexity of the design of op-

timum decentralized detection systems.

4.3 Performance of Decentralized MAC Receivers

In this section, we investigate the performance of decentralized detection systems as
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a function of number of detectors with minimum average cost as the performance mea-
sure. Initially, we consider the case of hard decisions where the local observations are
quantized into two levels and the quantized value is transmitted to the fusion center. First,
results are derived for a two-sensor system and then they are extended to three and n sen-
sor systems respectively. The treatment is valid for any operating point (Pp, Pg) on the re-
ceiver operating characteristic of the local detectors, i.e., system is not necessarily the
optimum system. The resulits are further generalized to the soft decision case, i.e., to the
case with n sensors and M quantization levels at the local detectors. Once again, the re-

sults are valid for any set of local thresholds T < T; < ... < Tpq which are used to perform

quantization.

4.3.1 Performance of a Two-sensor System

Let us consider a two-sensor system. The fusion rules for this structure are limited to
two, the AND fusion rule and the OR fusion rule (the trivial cases of always deciding in
favor of Hy or always deciding in favor of H; are not considered). Using (2.1) we compute

the system average cost for each fusion rule as

Rynp = Cooty (1= PE) +ComyPi+Coymt, (1-PB) + c, 7P

(4.9)

Rop= CooRy (1= Pp)2+Cygmy (2P~ P}) + Cyy %, (1= Pp) 2+ Cym, (2P~ P3)
(4.10)

If we denote by R, the MAC of the two sensor system, then

Ry, = min (Ryyp, Rop) (4.11)

Substituting (4.9) and (4.10) in (4.11) and using (2.16) we get




4.12)
where

The first term on the right hand side of (4.12), R, represents the average cost for a single
sensor system. The second term, which is a positive quantity, represents the improvement
in performance when two sensors are used with the same cost assignment as before at the

fusion center. An interesting situation arises when

In this case, the improvement term in (4.12) vanishes and, consequently, the performance
of th two sensor system reduces to that of a single sensor.
4.3.2 Performance of a Three-sensor System

When the number of local detectors is three, the possible fusion rules for the system
are t.:e AND fusion rule, the MAJORITY logic fusion rule, and the OR fusion rule. These

fusion rules yield the following average costs

Enp = Coolty (1= P3) +CyomPr+Cor, (1= (1=Py)3) +C 1, (1= P,,)3

(4.14)

Rop = Cooty (1=Pp)3+ Comy (1= (1=Pp)3) +Co 1, Pay+ Cp i, (1= P3p)

(4.15)

67




Ryas = CooTo (1= 3P2+2P3) + Cigmy (3P%—2P}) + Cyym, (3Ph;— 2Ppy)

+ Cym, (1-3P% +2P3) (4.16)
As in the two sensor case, the MAC for this system is

Ry = min(min (R np, Rop) s Rygay) (4.17)

Substituting (4.14), (4.15), and (4.16) in (4.17) we get (see Appendix B for details)

Ry = Ry~ 3 [B+3lAI+3B - All] = R, =4, (4.18)

where B and |Al are given by

B = nyPr(1-3Pp+2P%) (Cjg—Coy) + T, Py (1 =3Py +2P3) (Coy - Cyy)

Al = |7, Py (1=Py) (Cqy —Cyy) =nyPr(1-Pp) (Cy1p—Cpp)|

The term between brackets on the right hand side of (4.18) represents the improvement
that the three-sensor system has over the single -sensor system. Now we show that this
term is always positive indicating that an improvement in system performance is guaran-

teed as we go from a single-sensor system to a three-sensor system.

We start first with the interesting case where 0 < Pg < 0.5 and 0 < Py < 0.5. Now

consider the function
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w(x) = 1-3x+2x (4.19)

This function is plotted in Fig. 4.1. As is clear from this figure, the function u(x) is positive
for values of x in the range 0 < x < 0.5. By examining the expression for B in equation
(4.18), we sce that both the first and the second term contain functions of P and P)q of the
form (4.19). Therefore, for values of Pg and Py, in the ranges specified above, the value of
B is positive. When B is positive, all three terms between brackets on the right hand side
of (4.18) are positive, indicating that the improvement term A3 is positive and, theretore,
it is obvious that R3 < R}. For other values of Pg and Py that make B negative, we make
the change of variables B = - D in which D is positive. Now consider the quantity A3 giv-
en in (4.18) that represents the improvement in performance of the three-sensor system
over that of the single-scnsor system. In terms of IAl and D, the improvement A3 can be

written as

Dy = Ry =Ry = 3 31D +1All =D+ 31A]) (4.20)

But

1D +|All = D+ A (4.2

Making use of (4.21),we scc that

!
By = 5 [D+31A1) (4.22)

which clearly shows that A3 2 0. To examine whether a condition similar to (4.13) exists
in which the performance of the three-sensor system is the same as the performance of a

single-sensor system, we nced the improvement term Ay3 in (4.22) to be equal to 0.This

6Y




1.0
0.94
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Y 0.0

0.1
-0.2!
0.3/
0.4
~0.5]
0.6
0.7
-0.84
0.8
1.0

0.0

0.1

0.2 0.3 0.4 0.3 0.8 0.7
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happens when IAl =0 and D = - B = 0. The condition IAl = 0 leads to the requirement that

7, Py (1=Pyy) (Coy=Cyp) = MPr(1=Pp) (Cio=Cop) (4.23)

while the condition B = 0 requires that

ToPr (1 =3Pc+2P}) (C1y—Coy) = =T, Py (1 =3Py +2P%) (Co - Cyy)
(4.24)
Equation (4.24) can also be rewritten as

ToPr(1=Pp) (1-2Pf) (C1y—Cqp) = =Py (1=Py) (1-2P,) (Cy, =Cyy)
(4.25)

Substituting (4.23) into (4.25) we get

TP (1= Pg) (1=2Pg) (Cig=Cop) = —MyPp(1=Pp) (1=2P,) (C1o— Coo)

(4.26)

By cancelling common terms on both sides of (4.26) we obtain
(1-2Pp) =-(1-2Py) (4.27)

Simplifying (4.27) we get a relationship between Pg and Py as
Pp=1-Py=Pp (4.28)

Therefore, a simultaneous solution to (4.23) and (4.24) exists only when Pg = Ppy which by
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the virtue of (4.23) requires that

T (Cop—Ciy) = 1y (Cyp=Coy) (4.29)

As is well known from detection theory [1], the requirement Pr = Pp in (4.28) contradicts
the concavity property of receiver operating characteristics of optimum receivers. There-
fore, a simultaneous solution to (4.23) and (4.24) does not exist and, consequently, we

conclude that the improvement term in (4.18) and (4.20) cannot vanish for all values of Pp
in the range 0 < P < 1 and Pg in the range 0 < P < 1 and a three-sensor system is always

superior to a single sensor system.

It is also of interest to compare the performance of the three-sensor system to the
performance of the two-sensor system. In terms of the quantities |Al and B introduced in

(4.18), we can express (4.12) as

R, = R, - A (4.30)

Denote by Aj3 the improvement in performance of the three-sensor system over the two-

sensor system. Subtracting (4.18) from (4.30) we get

Ay = Ry=Ry = 7 [31l41 - Bl - (141 - B)] 431)

It is evident from (4.31) that A3 2 0. The improvement term Aj3 vanishes when lAl = B.

This happens in two cases

Casel.A=B

Using the values of |Al and B defined in (4.18) we get the condition
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1 (Cn=Cy) _ Pr(1-Pp)?

= 4.32
7 (Cio-Cw)  Pp(1-Pp)? (#-32)
Case2. -A=B
This condition leads to the requirement
1, (Cy—C1) Pi(1-Pp)
Sl A (4.33)

7 (Co=Co0) ~ P (1-Pp)

We conclude that if either condition (4.32) or (4.33) is satisfied, then, the perfor-
mance of the three-sensor system is identical to the performance of the two-sensor system.

Otherwise, the three-sensor system outperforms the two-sensor system.

4.3.3 Performance of an n-sensor System

For n > 3 listing all possible fusion rules and repeated application of (2.16) to find
the minimum average cost of the system using the best fusion rule becomes tedious. How-
ever, we are able to find the minimum average cost of the system with the best fusion rule
in an alternative way. Recall that z;, the decision of local detector LD; has a Bernoulli dis-
tribution with parameter Pg when Hy is true and parameter Pp when H; is true. Under our
assumption of independence and identical sensors, the vector U is a sequence of Bernoulli
trials. If K represents the number of sensors that decide in favor of Hy, i.e., the number of

1’s in the vector U, then K has the following conditional distributions

Py (k) (Z)P,’é(l -Pp)nk (4.34)

PL(k) = (;;)P;; (1-Pp)"* (4.35)

The system minimum average cost based on the vector U is found with the aid of (2.22) as
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R,=Ry-05Y (’,:)|C1P'L‘,(l P E-CPr(1-PR" Y (a36)
k=0

Equation (4.36) 1s an explicit relationship between the system MAC and the number of
sensors. It also represents the minimum system average cost corresponding to the best fu-
sion rule implemented by the fusion center. Let m be an integer larger than n, then the
quantity R}, - R, represents the improvement in system performance when (m-n) new sen-

sors are added to a system originally having n sensors.

4.3.4 Performance of an M-level Quantized System

In the preceding subsection, the performance evaluation was carried out for the case
when LD; transmits a single hard decision to the fusion center. In that case the probabili-
ties of detection and false alarm can be appropriately defined. In this section we will gen-
eralize the results to the case where local detector LD; transmits one of the M possible soft

decisions to the fusion center.

Recall from Section 4.1 that for the case M > 2, the vector U is a sequence of n i.i.d
generalized Bernoulli trials. Let Xy, 1 £k <M, represent the number of sensors that have
decided in favor of symbol ay. The number of such symbols in U follows the following

conditional densities

M X
n k
P(X\= x, ... Xy= X Hy) = (xlxz...xM)HPkO (4.37)
k=1
n *r
POG= Xy Xy= 2y Hy) = (Xxxz...xM]HPkl (4.38)
k=1

where
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n ) _ n!
QS AR Y] xttxy, !

M
Zxk =n

k— 1

and Py ; j=0,1 in the case of identical sensors are given by (4.1). The MAC for this system

is found using (2.21) as

Mo 5 Mo
- n k k
Ry (n) = Ry=0.5 Z (—‘y‘z----‘w) ¢ ] I Py _C()l l Pk“i (4.39)
Koy ooy Xy ) k=1 k=1 !

The summation on the right hand side of (4.39) is taker. .+ rall possible values of xy, X3,
...y XM Such that xj+xp+...+X)y = n. Analogous to the case M = 2, the quantity Ry4(n) -
Ryp(m) represents the improvement in the system performance when (mm-n) new local de-

tectors are added to a system originally composed of n sensors.

4.4 Design of the Optimum Decentralized MAC Detection System

The two major problems encountered in the design of a decentralized detection sys-
tem with data fusion for a given number of ! -~al detectors are the determination of the op-
timum fusion rule and the optimum local decision rules. For the first part of the design
problem, we assume the fusion center to be a minimum average cost receiver with (4.2) as
the decision rule. This decision rule when implemented at the fusion center optimally par-
titions the observation space of the decision vector U into two mutually exclusive decision
regions corresponding to hypothieses Hy and Hy. This partitioning yields the smallest
achievable average cost for any given arbitrary local decision rules. The partitionning cor-
responds to a specific fusion rule ( see Appendix A for the algorithm used by the fusion
center to corbine the local decisions and to make the global decision). In the previous

section wc derived the expression for the minimum average cost for an n-sensor system
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with two quantization levels as well as M quantization levels. For the second part of the
design problem, our objective is to select the local decision rules such that the average cost

is globally minimized resulting in the optimum decentralized MAC system.

Let T = [T},T5,...,T\.1] be the vector consisting of local thresholds at any of the
identical detectors. The probabilities ij, j=0, 1, given by (4.1) are functions of the

thresholds. We stress this by expressing Py and Py, as

Py =P (TpT,_1),j =01 (4.40)

for 1 £k <M. For a given threshold vector T, the global decision rule (4.2) expressed as an

explicit function of T becomes

1 ifA(D>n
UO®= { (4.41)

0 otherwise

where

HP(Zi(T)IHl)

AD = =1
[12 G (D|Hy

i=1

For a given value of T the decision rule (4.41) yields the smallest average cost among all
other decision rules (fusion rules). The resulting system MAC as a function of T can be

expressed as

id o id ol
Cl HPI:I (Tlc’Tk—l) -COHPkO(Tk’ Tk—l)
k=1 k=1

n
RMn(T)— Ro"o'i Zx (xlxz...xM)

19 oo R gy

It should be reemphasized that, for a fixed T, if one evaluates the system average cost for

all possible fusion rules, then (4.42) gives the minimum among all of the above system av-
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erage costs and the fusion rule which yields the minimum is specified by (4.41). For a dif-
ferent value of T, say T", the entire process needs to be repeated, i.e., equations (4.42)
and (4.41) provide the minimum system average cost for the local threshold vector T", and
the corresponding fusion rule respectively. Therefore, to design the overall system,
Ryn(D should be minimized with respect to T and the corresponding fusion rule can be
determined from (4.41 ). The resulting system, i.e., the resulting value of T and the corre-

sponding fusion rule, yields the minimum achievable cost for the system.

Note that the above design procedure requires the minimization of a single function
of (M-1) variables. Also, even when the assumption of identical thresholds at the local de-
tectors is relaxed, we need to minimize a single function of n(M-1) variables. This means
that for the binary case (M=2), we need to minimize a function of n variables only. This
case of non identical thresholds will be considered in the next chapter. Our procedure is
computationally simpler than the design procedures available in the literature wheie opt-
mization needs to be carried out for all possible fusion rules. Two methods that deal with
the design of binary decentralized Bayesian detection systems are reported in the litera-
ture. In the first method [12], the fusion center is fixed and a set of n coupled nonlinear
equations are solved to determine the n local thresholds. This has to be repeated for all the
permissible fusion rules. The solution with the smallest overall cost is finally selected as
the optimum system. The exponential growth of the number of fusion rules to be searched
makes the use of this method impractical. The other method is the person-by-person opti-
mization procedure [10] where conditions are determined for each local detector and the
fusion center so as to minimize the system cost when the other system components are as-
sumed to be fixed. The resulting equations are solved simultaneously to yield the person-
by-person optimal solution. This solution is not necessarily the optimum solution. This
procedure requires a simultaneous solution of (2"+n) coupled nonlinear equations for the
binary nypothesis testing problem. Thus, our design procedure is computationally efficient
and yields the optimum solution. It can be employed for the design and performance eval-

uation of relatively large detection networks as shown in the next chapter.

In our design procedure when M = 2, the n-dimensional vector T reduces to a scalar.
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In this case the local detectors perform their likelihood ratio tests with respect to a com-
mon threshold Tt (see equation 4.5). For a given value of t, the local detection probability
Pp and the local false alarm probability Pg are functions of T. We emphasize this by ex-
pressing Pp as Pp(1) and Pg as Pe(t). Therefore, we can express the conditional distribu-

tions given by (4.6) and (4.7) of the local decision z; in terms of T as

folzi(®) = PR [1-Pp(0)] 7 (4.43)

f1(zi®) = [PpYi [1-Pp(0)] i (4.44)

The conditional densities of the decision vector U correspondingly can be expressed as

W) = [1fiGw).j=01 (4.45)

i=1

The likelihood function in (4.41) expressed as a function of T is

LW (D)
AU(M) = m (4.46)

As pointed out in remark 2 in Section 4.2, the decision rule (4.8) with A(U(t)) as given in
(4.46) specifies the fusion rule with the smallest MAC for a given value of t. The MAC

corresponding to this fusion rule with n incoming decisions expressed in terms of T is

n

R, (1) = RO—% y (Z]ICIP"D(t) (1-Pp (1) ¥ = CoPr (1) (1 =P (1)) 4

(4.47)

To obtain the system with global optimum cost (least achievable MAC), R, (1) should be
minimized with respect to the threshold t. The resulting local threshold alongwith the cor-
responding fusion rule specified by (4.46) and (4.41) will yield the optimum system.
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4.5 Minimum Probability of Error Systems

In this section we consider the design of the global minimum probability of error
(MPOE) systems which is a special case of the results obtained in the previous section. In
addition, we consider the design of several suboptimum decentralized detection systems
and compare their performances. The first suboptimum system is based on local optimiza-
tion in that each system component is an MAP receiver. The next two suboptimum sys-
tems are based on the discrimination and the Bhattacharyya distance measures. While
these two measures have been utilized before in the design of decentralized detection sys-
tems [35,38], here we employ them in a different manner. Finally, we present a subopti-
mum design procedure based on our new tight upper bound on the probability of error
developed in Chapter 3. For simplicity, we restrict our attcntion to the case M = 2 in this
section. We conclude this section with two numerical examples that compare the perfor-

mance of the optimum system to the performances of the various suboptimum systems.
4.5.1 Global MPOE System Design

As an important application of the general Bayesian formulation developed in the
previous section, we consider the cost assignment Cyg = Cy; =0 and Cy; = C;g = 1. This
corresponds to the minimum probability of error critcrion which is widely used. When the
decentralized system is to be designed using the probability of error as the system perfor-
mance measure, the expression for the minimum probability of error as a function of the

local threshold t is given by
1 « _ ek
Py(1) = ().s—ikgo(z)*nli’f)(r) (1-P,(1))" "—nOP’;(r) (1-Pr(0))"*
(4.48)

To design the global MPOE system, we need to determine the value of T that minimizes
Pg(7) given by (4.48) and then determine the fusion rule which corresponds to that value

of the probability of error using (4.41) (see also Appendix A).
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4.5.2 System Design Based on Local Optimization

In this section we assume that the strategy of the local detectors is to select the
threshold that minimizes the POE at the local level.Let py(x;) and p;(x;) be the conditional
densities of the observation X; received by local detector LD;. The decision rule (4.5) that

determines the decisions z; becomes

1 if p1(x;)/po(x;) 2Ny/®y
2= { (4.49)

0 otherwise

It is clear from (4.49) that the threéhold L= My/M,y and the system POE is Pg(t;). When
decision rule (4.49) is implemented at the local level, all the system components in Fig.1.1
become MAP receivers. Even though each component is individually optimized, the sys-

tem as a whole can be far from optimum, since the sensor decisions are made independent-

ly of the global decision.

4.5.3 System Design Based on Discrimination

Here, we describe the design procedure based on the discrimination measure. The
discrimination between two conditional probability density functions fo(x) and fy(x) of a
continuous random variable X is defined as

fo(x )
J = jfo () Iz dx (4.50)

When the random variable X is discrete,the integration in (4.50) is replaced by a summa-

tion and the probability density functions are replaced by probability mass functions. In

this case the discrimination J becomes

P (X= x|Hy)

Several important properties of the discrimination measure are listed in [67)]. Since the fi-
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nal decision in the decentralized detection system is based on the vector U=[z;,2,,...,2,],
we will examine the discrimination between the conditional distributions of the vector U
under the two hypotheses. This is given by

_ P (U= P (U= 21---anH0)
J,(Pp, Pp) = Eyl (U= zy...2,| Hy) lnP(L]= NI

(4.52)

The local decisions z; are Bernoulli random variables with conditional density functions
given by (4.43) and (4.44). Recognizing that U is a sequence of n independent and ident-

cal observations, then using the additivity property of the discrimination measure we get

J,(Pp(1),Pp(T)) = nJ(7) (4.53)

Here, J|(7) is the discrimination between the conditional distributions of a single local de-

cision z; under the two hypotheses. Using (4.43) and (4.44) we get

(1-Pr (1))

=P, (D) (4.54)

1) = PrmyinsE Dy (1=P ()
1 (D) = Pe(1) nm"‘( —Pr(7))In

As an explicit function of the local threshold 1, the discrimination between the conditional

densites of U can be expressed as

Pr (1) (I_PF(T))J (4.55)

J, (1) = nl:PF(T)InW'*' (I‘PF(I))I"H———PW

By making use of the Blackwell theorem we observe that an indirect way of minimizing
the POE is to maximize the discrimination.Denote by 1y, the specific value of the local
threshold t that maximizes J,(t). The system POE in this case is Pg(Tp) where Pg(T) is
given by (4.48).Two factors make this system suboptimum. First, The discrimination as

defined in (4.50) is independent of the prior probabilities. This fixes the local thresholds
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and consequently the values of Pg and Ppy to be used during the system design. Designing
the system based on this measure when the prior probabilities are known, in fact, means
that part of the information available about the system is not exploited. Second, the dis-
crimination measure is independent of the fusion rule and, therefore, it is not a part of the

overall optimization process. This leads to the suboptimum system.

4.5.4 System Design Based on Bhattacharyya Distance

Now, we consider the design procedure based on the Bhattacharyya distance. Let X
be the random observation in a hypothesis testing problem with corresponding conditional

densities fo(x1) and f;(x;). The Bhattacharyya coefficient is given by

p, = [ o) fy (x)) dx, (4.56)

When the random variable X is discrete, the Bhattacharyya coefficient is defined as

Py = 2P (X= x| Ho) P (X;= x| Hy) (4.57)

The Bhattacharyya distance (see Chapterl) is defined as

Dy = =In py=~in [ [fy ) f, (x)) dx, (4.58)

If X is a sequence of n independent and identically distributed observations, then the Bhat-
tacharyya coefficient and the Bhattacharyya distance corresponding to the conditional

densities of X become

p, =P} (4.59)

82




p, = —nin ol 4.60)

The Bhattacharyya coefficient for the conditional densities of U is

P, (PePp) = Y J(P(U= zy...2/Hy)) (P (U= z,...2]H}))  (4.61)
U

The Bhattacharyya distance between the conditional densities of the local decision z; is

D,(Pr, Pp) = ~In[JP:Pp+ [(1-Pp) (1-Pp))] (4.62)

Expressing Pp as Pp(t) and Pg as Pe(t) and making use of (4.60) we can express the Bhat-

tacharyya distance between the conditional densities of U in terms of T as

D, (v) = =nin[Pp(D)Pp (1) + J(1-Pp (D)) (1-Pp (1))  (4.63)

Again, making use of the Blackwell theorem we see that an indirect way of minimizing
the POE is to maximize the Bhattacharyya distance. Denote by tg the specific value of t
that maximizes D,(7). The system POE in this case is Pg(tg). Again, the resulting system
is suboptimum and the reasons for this are the same ones as discussed in the previous sub-

section.

4.5.5 System Design Based on the New Upper Bound on the MPOE

In this section we apply the new upper bound derived in Chapter 3 to the design of
decentralized detection systems. Let K be the random variable representing the number of
local detectors that decide in favor of hypothesis Hy. Then K has the conditional density
functons given by (4.34) and (4.35) under hypotheses Hy and H; respectively. Since K is

a discrete random variable then, in order to find an upper bound on the probability that the
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fusion center makes an error, we need to express the new upper bound given by (3.71) ina

discrete form. This is given as

P(E) < Y (0.5(sinnp,)exp [~1.8063 (p, = 0.5)%1) (rPq (k) + 7 P, (K))
k=0 (4.64)

where

_ 7ty P (k) ‘=
Pe= g o) +m P (R T

01,..,n

is the a posteriori probability of hypothesis Hy given that K = k. Substituting (4.34) and
(4.35) into the above expression for py, we get
nPr(1-Pp)" "

D, = — —,k=0,1,...,n (4.65)
“ T mPE(1-Pp " Fen P (1-Pp)"E

The upper bound in (4.64) applies for any arbitrary point (Pg, Pp) on the receiver operat-
ing characteristic of the local detectors, i.e., for any value of the local threshold. Let t be
the common threshold of the local detectors (see equation (4.5)). Expressing Pg as Pg(T)

and Pp as Pp(T), we can write the a posteriori probabilities py in terms of T as

o (P (1)) (1=Pp(1))"*

pi(1) = - py
¢ no (Pr (1) (1 =Pp(1)" *4m, (Pp (1) (1-Pp (1) *
(4.66)
The upper bound on the MPOE in terms of T becomes
P(E) < 2 0.5 (Z)simtp,‘(t) (exp [—1.8063 (p, (1) -0.5)?])
k=0
k n—k k n-k
x [7y (Pp(T)) (1=Pp(1))" "+m, (Pp(t)) (1-Pp(1))" ]
(4.67)




The design of the system using the new upper bound calls for determining the local thresh-
old t* which minimizes the right hand side of (4.67). Therefore, a suboptimum system
that is designed to minimize the upper bound on the probability of error is one in which
the local detectors use the threshold t*. The resulting POE is given by Pg(t*). Because of
the tightness of the new upper bound, systems using this bound as the design criterion are
nearly optimum. Example 4.3 demonstrates the utility of the new upper bound in the de-
sign of decentralized detection systems. Note that the knowledge of the prior probabilities

is used in this approach but it is still independent of the fusion rule.

4.5.6 Examples

In this subsection, we present two numerical examples where the system perfor-

mances achieved by using the different design approaches is compared.

Example 4.2

Consider a two sensor decentralized detection system used for the detection of a con-
stant signal of level m embedded in a zero-mean Gaussian noise with variance 2. The
null hypothesis corresponding to noise alone and the alternative hypothesis corresponding

to signal plus noise are expressed as
Hy : X; ~ N(0, 69
H; : X; ~ N(m, 69
For this binary hypothesis testing problem we will compare the performance of the
various suboptimum systems considered previously to the performance of the optimum
decentralized system as well as the optimum centralized system. Also, we will see how the
performance of the optimum decentralized system improves as the number of quantization

levels increases. For the one dimensional Gaussian problem the likelihood ratio test (4.5)

at the local level becomes
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H,
rilx) >
T (4.68)
poxp) <
Hy
where
(x) 1 [ (Xi—M)Z:l 4.69)
p,(x;) = exp| ————— .
1 JZn:cz 20'2
(x) = — { x"zl (4.70)
po(x;) = —=¢€xp|— ,
%= T2

Substituting (4.69) and (4.70) into (4.68) and simplifying we get the equivalent test

H,
>
X; 6%/m logt+m2 =T 4.71)

& A

In this and future examples we find it more useful to evaluate the equivalent threshold T
defined in (4.71) than to evaluate the threshold 1. This is because (4.71) gives us the deci-
sion regions corresponding to Hg and H; in terms of the observation x, while (4.68) gives
the decision regions in terms of the likelihood function.The probabilities of false alarm

and detection expressed in terms of T are given by

_ logt m

Pr(t) = erfc (G—m_ + %) 4.72)
lOgT m

PD(T) = e"fC(G—;n—"‘z—a) 4.73)
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where erfc (u) is the complementary error function defined as

- 2
erfc(u) = j—J;——;exp (-5 du 4.74)

For parameter values m = 1 and o2=1, the ciesign is carried out for all values of the a pri-
ori probability 7ty. The optimum decentraiized MPOE system with M > 2 is designed ac-
cording to (4.42), while for the case M = 2, the system is designed according to (4.48).
The suboptimum systems based on the optimization of the POE at the local levels, maxi-
mum discrimination, and maximum Bhattacharyya distance are designed according to
(4.49), (4.55),and (4.63) respectively. In Fig. 4.2, we present the performance of the vari-
ous suboptimum systems as compared to the optimum decentralized system and the opti-

mum centralized system. Several observations can be drawn from this graph

1) The graph shows clearly that the optimum decentralized system significantly outper-

forms all three suboptimum systems over a wide range of m.

2) Of special interest is the point with g = 0.5.At this point the local decision rule (4.49)

becomes

Lif py(x;)/po(x;) 21
2= { (4.75)

0 otherwise

Using (4.75) we find that the threshold 1; =1 and the corresponding local threshold in
terms of the observations X; is Ty, =0.5 (see equation (4.71)). The values of Pp and Pg are
0.6915 and 0.3085 respectively. The POE for any one of the local detectors is Py(E) =
0.3085. Using (4.48) we find the POE of the two-sensor system to be Pg(t = 1) or Pg(T}_ =
0.5) = 0.3085. These results indicate that a single sensor system =nd a decentralized two-
sensor system are identical in terms of performance.It is to be noted that in this case the

point (PEPp) satisfies condition (4.13).

3) In Fig. 4.2, we notice that over some range of n the performance of the system de-

signed based on the Bhattacharyya distance is better than that designed based on the dis
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mum systems when each local detector processes one observaton.
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crimination, and over another range the opposite is true. In fact, this is consistent with the

observations made in [31,32] regarding the selection of the "best" distance measure.

4) The performance curves for the systems employing maximum discrimination and max-
imum Bhattacharyya distance have straight line segments with different slopes. This can

best be explained by substituting Cog = C;; =0and Cj9=Cp; =1 into (4.9) and (4.10) and
rewriting them as functions of ©ty. The POE corresponding to the AND fusion rule and the

OR fusion rule are, therefore, expressed as

P(E) ;up = (PE+Py—2P)) T+ (2P}, — Py (4.76)

P(E)pp = (2Pp—Py—PEym +Py 4.77)

As pointed out earlier, when we design the system based on members of the class of Ali-
Silvey distance measures, we find the local thresholds that maximize the distance between
the conditional densities of the decision vector U. These local thresholds are independent
of the prior probabilities and, consequently, the values of Pg and Pp of the individual sen-
sors are independent of these probabilities. This means that both (4.76) and (4.77) reduce
to linear functions of . For a given value of ng, the fusion center computes the probabil-
ity of error corresponding to each one of the fusion rules and selects the fusion rule having
the smallest POE. Since the fusion center is a MPOE receiver, we see that over some range
of mg, the AND fusion rule is implemented and over another range, the OR fusion rule is

implemented depending on which fusion rule has the smaller POE.

Fig. 4.3 shows the same kind of comparison considered above but assuming that
each local detector processes two observations to come up with the local decision z;. As
can be seen from this figure, the relative gap between the optimum system and the subop-
timum systems widens for 0 < g < 1. For the rest of the figures, single observations at the

sensors are assumed. In Fig. 4.4, we plot the optimum local threshold given by (4.71) ver
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sus 7g. In Fig. 4.5, we plot the optimum fusion rule for the optimum decentralized detec-
tion system as a function of n. As can be observed from Fig. 4.5, for 1y < 0.5 the OR fu-
sion rule performs better than the AND fusion rule and for ®tp > 0.5 the reverse is true. The
abrupt change in the value of the optimum local threshold in Fig. 4.4 is a manifestation of
the fact that the system always selects the fusion rule leading to the smallest cost. The
variation of the optimum local threshold given by (4.71) and the optimum fusion rule as a
function of my for the optimum three-sensor decentralized system is shown in Figures 4.6
and 4.7 respectively. In this case the majority logic has the best performance over most of
the region of my, i.e., for 0.095 < 1ty < 0.905. In Fig. 4.8, we compare the performance of
the optimum decentralized MFOE system with M = 2, 3 and 4 to the performance of the
optimum centralized system. At the point 1t = 0.5 we observe that the POE of the opti-
mum decentralized system with M = 4 is only 2.36% higher than the POE of the optimum
centralized system. In Fig. 4.9, we show the resulting MPOE as a function of the signal

level m (small values of m) for the four systems when 1g = 0.5 is assumed.

Example 4.3

The objective of this example is to design the decentralized system based on the new
upper bound for the same problem as considered in Example 4.2 and compare the perfor-
mance with that of the optimum decentralized detection system. We further assume that m
= 1.5. The probabilities of false alarm and detection expressed in terms of T are given by
(4.72) and (4.73). The design equation for this system will be (4.67) with n = 2. In Fig.
4.10, we plot the probability of error for the system resulting from the minimization of the

‘ew upper bound as a function of wg (dotted curve). Also plotted in this figure is the opti-
mum probability of error resulting from the design of the system based on equation (4.48)
(solid curve). As observed from the figure, the difference between the two curves can be
hardly noticed. Therefore, we also provide numerical results in Table 4.1. Due to the sym-
metry of the curve, numerical results for for only the values of gy 2 0.5 are presented.

Note that the thresholds in Table 4.1, are those specified by (4.71).
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Threshold that POE obtained from  Optimum Threshold Optimum

Ty  minimizes the the upper bound for the decentralized MPOE
upper bound minimization approach detection system
0.5 0.2843 0.1810 0.2268 0.1804
0.6 0.4461 0.1726 0.4047 0.1723
07 0.6167 0.1529 0.5925 0.1528
0.8 0.8185 0.1209 0.815 0.1209
0.9 1.1177 0.07353 1.1375 0.0735
Table 4.1

4.6 Summary

In this chapter the design and perfc mance of minimum average cost decentralized
detection system was considered.The analysis was based on the expression derived in
Chapter 2 for the minimum average cost of an optimum receiver in terms of the Kolmog-
orov variational distance. Both hard decision and soft decision systems were considered.
Performance enhancement when additional detectors are added was determined.A design
approach for the MAC decentralized detection system based on the above results was pre-
sented.This computational procedure is much simpler than the previously availabie meth-
ods.As an example,design of distributed detection systems fo: MPOE criterion was
considered in detail.Its performance was compared to the suboptimum systems designed
based on some Ali-Silvey distance measures.The performance degradation of distributed
detection systems relative to the cen.."lized system was also determined.It was also shown
that the perfczmance of the decentralized system approaches the performance of the cen-

tralized system very quickly as a function of the number of quantization levels.




CHAPTER 5

PERFORMANCE EVALUATION OF DISTRIBUTED
BAYESIAN DETECTION STRUCTURES

5.1 Introduction

We have previcusly discussed the computational difficulties assoc ated with the pro-
cedures for the design of optimum decentralized detection systems. Therefore, the study
of decentralized detection systems has been limited to small networks and very few topol-
ogies. A computationally simpler approach for the design of decentralized Bayesian detec-
tion systems was presented in Ciiapter 4. This approach is based upon the alternative
expression for the minimum average cost derived in Chapter 2. The main objective of this
chapter is to apply this approach to the design and study of four decentralized detection
topologies. It is demonstrated by means of illustrative examples that relatively large net-
works can be handled rather easily. For these systems, we show that the design of the opti-
mum systemn can be reduced to the optimization of a single function of a certain number of
variables that depend upon the configuration considered. In Section 5.2, we briefly formu-
late the problem. In Section 5.3, we revisit the parallel fusion network with n local detec-
tors discussed in Chapter 4. Here we deal with the more general situation where the
observations received by the local detectors are not necessarily identical and where the lo-
cal thresholds are not assumed to be idenical. Under these conditions, we show that the
design of the optimum system reduces to the optimization of a single function of n vari-
ables. This optimization is performed only once with no need to sea~ch over ¢ i the possi-
ble fusion rules, i.e., the optimization procedure is not exhuastive. In Section 5.4, we
consider a variation of the parallel system where we allow the fusion center to make its
judgement based on the received local decisions as well as its directly received observa-
tion (side information). While for the parallel fusion system there, the number of possible

fusion rules grows exponentially with n (see Table 1.1), there are 2" decision thresholds
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for the system with side information. These decision thresholds span the entire observa-
tion space of the local observations. For this structure we show again, that the design of
the optimal system reduces to the optimization of a single function of n variables. In Sec-
tion 5.5, we consider the design of a hierarchical system with 2n local detectors and n re-
gional decision makers. The regional decision makers are assumed to make their decisions
based on the decisions received from the local decision makers and also on their own ob-
servations, i.e., side information. The design of the optimum system for this structure re-
duces to the optimization of a function of 3n variables. In Section 5.6, we discuss the
design of the hierarchical system in which the regional decision makers do not have obser-
vations of their own. In Section 5.7 we present several examples along with some numeri-

cal results. Section 5.8 contains a discussion and some concluding remarks.
5.2 Problem Formulation

In Chapter 4, we developed a computationally simple approach to the design of
decentralized detection systems. This procedure is based upon an alternative
representation of the minimum average cost in terms of a modified form of the
Kolmogorov variational distance. The procedure was applied to the design of the parallel
fusion network when the incoming observations were assumed independent and
identically distributed and the local thresholds were assumed to be identical. The cases of
hard decisions and soft decisions were analyzed. In this Chapter we apply the design

procedure to the design of a number of decentralized detection structures including the

parallel fusion network. These structures are used for the binary hypothesis testing
problem. The null hypothesis Hy with a priori probability n is tested against the
alternative hypothesis H, with a priori probability ;. The criterion we adopt is the
minimization of the system average cost. We consider the case when the local as well as
the regional decisions are either 0 (corresponding to Hyp) or 1 (corresponding to H,), i.e.,
we only treat the case of hard decisions. Here, we assume that the incoming observations
are independent but not necessarily identical . Let Cij: 1,7 =0, 1, be the overall cost of

deciding, H; when Hj is true. Since the final decision is made at the fusion center, these
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costs are applicable there, and the fusion center can be looked upon as a minimum average
cost receiver. Therefore, the minimum average cost at the fusion center can be represented
as given in (2.21). Now we apply our computationally simple approach to the design of

several network topologies.
5.3 Parallel Fusion Network

Let us consider the system S; shown in Fig. 1.1 consisting of n local detectors and a
global decision maker. The system receives n observations Xj.,...,X;, in which X; denotes
the observation received by the local detector LD;, 1 <1i < n. We assume that these obser-
vations are independent with conditional pdf’s pp(x;) and p1(x;) under hypotheses Hg and
H; respectively. Due to the bandwidth constraints on the channels linking the local detec-
tors to the global decision maker, the local detector LD; compresses its raw observation X;
to a single hard decision, z;, indicating whether Hg or H; is true and transmits it to the fu-
sion center. The design procedure employed here can be easily extended to the design of
decentralized detection systems employing soft decisions, but this case will not be consid-
ered here. We assume that the decision made by the local detector LD; is independent of
the decisions made by the other local detectors. Due to the independence assumption, in
the optimum system, each local detector LD; performs a local likelihood ratio test with re-
spect to some local threshold T;. That is, the decisions z; are made based on the following

rule

1 if py(xp/po(xy) 214
z= { i=1,...,n (5.1)

0 otherwise
where z; = 1 means that H; has been declared true and z; = 0 means that Hy has been de-
clared true by the local detector LD;. The decision rule (5.1) thus characterizes each local
detector LD; by a local probability of detection PDL; and a local probability of false alarm
PFL;. Each element of the local decision vector U = [z;...z,] is a Bernoulli random vari-

able having the following density functions under the two hypothesis

fo(z)=PFLFi(1-PFL)% (5.2)
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fiz)=PDL{i(1 -PDL,-)I'zi (5.3)

It is to be noted that unlike the case considered in Chapter 4 where the decisions z, z5, ...,
z, were independent and identically distributed, the decisions z;, zj, ..., z, here are inde-
pendent but are not assumed to be identically distributed. This is a result of our earlier as-
sumption that the observations X, X,, ..., X;, are not necessarily identically distributed.

Using the assumption of independence between the local decisions z;, the decision vector

U has the following density function under the two hypotheses

LW = [IfG).0 =01 (5.4)

i=1

These decisions are sent over bandlimited channels to the global decision maker. The glo-
bal decision ug is obtained by the fusion center based on the vector U by performing the
likelihood ratio test (4.2) with AU = f1(LD) / f(L). Using (2.21),ws c2x find the MAC

of the system as

R = Ry- %%Jlel (V) = Cofp (V)| (5.5)

We should point out that of all the possible fusion rules, (4.2) specifies the fusion rule that
achieves the smallest MAC for a given set of local decision rules. The cost corresponding
to this (best) fusion rule is specified by equation (5.5).We also emphasize that an explicit
knowledge of the fusion rule is not required to determine the MAC given in (5.5). This

point was illustrated by means of an example in Section 4.4.

While (5.5) determines the MAC for given a priori probabilities, cost assignments,
and local decision rules, it can also be used for designing the optimum system. In order to
use (5.5) for this objective we let T = [1,...T,] denote the vector whose elements are the lo-
cal thresholds, where 7; is the threshold of local detector LD; as defined in (5.1).The local
detection probability PDL; and the local false alarm probability PFL; of local detector LD;
are functions of 7;. We stress this by expressing PDL; as PDL,(t;) and PFL; as PFL(T;).

Therefore, we can express the conditional distributions given by (5.2) and (5.3) of the lo-
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cal decisions z; in terms of T; as

folzi(t)= [PFL(t)Y% [1-PFL{(t)1"% (5.6)

fi(zi(x))=[PDLy(t)Y%i [1-PDLy(x)]* i (5.7
The conditional densities of the decision vector U correspondingly can be expressed in
terms of T as

W @) = [1f;G()).j =01 (5.8)

i=1

For a given vector ¢ of local thresholds,the observation space of U is optimally par-
titioned using (4.2) with AQU) expressed in terms of the densities given in (5.8) as

fHLWU@®)

AU((D)) = m (5.9)

As pointed out in the second remark in Section 4.2, the decision rule (4.2) with A(T) as
given in (5.9) specifies the fusion rule with the smallest MAC for the given vector T. The
MAC corresponding to this fusion rule with n incoming decisions expressed in terms of

is
R, (2) = Ry=05Y|C,f; (U (2)) = Cofy (U(D))| (5.10)
U

where the summation is taken over all the possible values of U. Equation (5.10) is a func-
tion of n variables, namely, the n local thresholds 1y, ..., T,. For a given value of z, Equa-

tion (5.10) determines the cost corresponding to the best fusion rule among all the possible
fusion rules. Therefore, to optimally design the overall system, R,(%) should be minimized
with respect to 2. The resulting fusion rule can be determined from (5.2) (see also Appen-

dix A).

If the observations X, ..., X|, are independent and identically distributed under both

hypotheses, then the receiver operating characteristics of the n local detectors are identi-
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cal. That is, if a; and P are the false alarm and detection probabilitiés that are achieved at
threshold T for one of the local detectors, then the false alarm and detection probabilities
of all the other detectors at threshold T will also be & and B,. If we assume that these local
detectors when operating in a decentralized system have identical thresholds, then we
have PDL; = PDL and PFL;= PFL for 1 i < n. Eventhough this assumption is intuitively
appealing, a number of counterexamples have been reported in the literature [20,58]
whereby the overall system cost is minimized by nonidentical local decision rules ev-
enthough the local detectors are identical. It has been observed in [24] that for decentral-
ized Beyesian detection systems, the identical local decision rules assumption often results
in little or no loss of optimality. The system design procedure greatly simplifies for the
identical detector case. In this case the vector t reduces to a scalar T and the n-variable de-
sign equation (5.10), reduces to equation (4.47) which is a function of one variable only.
In Example 5.1, we will use both equations (5.10) and(5.47) to design a system consisting

of six local detectors with identical observation statistics.

5.4 Parallel Fusion Network with Side Information

In this section we consider the distributed detection system S, shown in Fig. 1.2.
This system is different from the one treated in the previous subsection in that the global
decision maker receives a local observation of its own (or side information) in addition to
the local decisions z;. The observation vector based on which the fusion center makes the
final decision is the augmented vector [UX] of the local decisions z; and the observation

X at the fusion center. The global decision is made according to the rule

H)
Ha >
Alxp) n (5.11)
H» <
Hyp
where

Py (xp)
A(XO) B Py (xp)
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and 7 is the global threshold defined in equation (4.2). An equivalent test can be obtained

in terms of the local observation X, as

H,
> JoD
A(x) n —— =19.0=1..2" (5.12)
< H
H,

By using the expressions given in (5.4) for fo(I) and f1(1) and taking the logarithm of
both sides of (5.12) we get the following (see Appendix A for details)

fo (W) " 1-PFL, PFL,(1-PDL))
logn =7y = logn +i§110g—————1 ~PDL +i§lz,-log1,DLi(1 —prLy 13

Note that the equivalent test in terms of the logarithm specified by (5.12) and (5.13) is an
extension of the optimum data fusion algorithm developed in [9]. Here, the locally re-
ceived observation X has been taken into account. As can be seen from this new equation
(giving the test), there are 2" different decision thresholds to be employed at the global de-
cision maker. Each threshold nQ Q=1,...,2" corresponds to a particular sequence of the
2" possible values that the decision vector U takes. Using (2.20) we can determine the

minimum cost of the system as

R = R~ 3[SIC @py (59 ~Cofy Wpoeolldzy (.10

where the integration is performed over all values of Xy. When the observations X;...X,,
are independent and identically distributed under both hypotheses, the receiver operating
characteristics of the n local detectors become identical. If we assume, as we did in the
previous subsection, that the local detectors use identical thresholds, then the equivalent
thresholds given in (5.13) simplify to

o () 1-PFL."™ . PFL(1-PDL) &
logn— 7y = 8N (=ppr) *!8pprioprny 2% (519
1 i=1

Equation (5.15) indicates that there are (n+1) decision thresholds employed at the global
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decision maker. If we let K be the number of local thresholds that decide in favor of Hy,
then K has the distributions given by (4.34) and (4.35). Using (4.34) and (4.35) the MAC

in (5.14) can be expressed as

R= RO—% [> (Z)ICIPDLk(l—PDL)""‘pI (xg) = CoPFL* (1~ PFL)"~*pg (xy) |dx
k=0
(5.16)

As before, we let T =[t;...T,] be the vector of local thresholds. We express PDL; as
PDL(t;) and PFL; as PFL(;). For any setting of the local thresholds 2, the optimum par-
titioning of the observation space of X is made according to the decision rule (5.12). The
decision thresholds 1 expressed explicitly in terms of 1 are

n
[1fozi(x))

n,(3) = N2 (5.17)
I17 G

i=1

where the density functions in the numerator and the denominator are those given in
equations (5.6) and (5.7). The resulting system MAC from (5.14) can be expressed as a

function of t as

R,(3) = Ro— [ (|C4fy (U (1)) p; (xg) = Cofy (U (8)) po (x0)]) dx
2 U
B (5.18)

If the local threshold vector 1 is changed to 1" it results in a different set of 2" decision
thresholds at the fusion center and, consequently, a different value of the global MAC,

R, (2"). Our goal is to obtain the best global MAC. Therefore, R,;(®) should be minimized
with respect to the local threshold vector 1. The resulting system, i.e., the resulting local
threshold vector T and the corresponding 2" decision thresholds specified by (5.12), is op-
timum. It should be emphasized that equation (5.18) is a function of n variables, namely,
the n local thresholds. The explicit dependence of the cost on the 2" decision thresholds at

the fusion center has been avoided.
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The design equation (5.18) simplifies tremendously for the identical thresholds case.
In this case the vector T reduces to a scalar threshold t. The decision thresholds specified
by (5.17) become

PFL¥(t)[1-PFL(T)]"*

M =M k=0,..,n (5.19)
PDLK(0)[1-PDL(D)]™*

The system MAC in terms of T, Ry(t), is obtained by explicitly expressing PFL as PFL(t)
and PDL as PDL(7) in equation (5.16). In this case the cost function is a function of one
variable, namely, the common local threshold. The global minimum cost is obtained by
minimizing R, () with respect to the local threshold t. The resulting local threshold along
with the corresponding (n+1) decision thresholds determined by (5.19) specify the opti-

mum system. An example will be presented in Section 5.7.

3.5 Hierarchical System with Side Information at the Regional Detectors

In this subsection we consider the hierarchical decentralized detection system S,
shown in Fig. 1.3. The system consists of 2n local decision makers, n regional decision
makers (RD’s) and a global decision maker. Local detectors LDy;_; and LD5; process their
locally received observations X»; ; and X,; and forward their decisions z,;_; and z,; to an
intermediate regional decision maker RD;, i = 1, ..., n. In the hierarchical system consid-
ered in this chapter, the local decisions of only two detectors are combined at the regional
decision makers. The results can be generalized to the case of more than two local detec-
tors per regional decision maker. However, for simplicity in presentation, we consider the
case of two local detectors only. The regional detector RD; combines the two local deci-
sions along with its directly received observation Y; to make the regional decision u;. The
observations Yj,j =1, ..., n are assumed to be independent with pdf’s po(yj) and p1(y)) un-
der the hypotheses Hy and H, respectively. The decision vector U = [u;...u,] is used by the
global decision maker to make the final decision ug. The local decisions z;,i =1, 2, ..., 2n
are made based on the decision rule (5.1) and hence, each local detector is characterized

by a local probability of detection PDL; and a local probability of false alarm PFL;. The fi-
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nal decision is made based on the decision rule (4.2) with A(U) to be specified later. Let
M;, 1= 1, ..., n be the unknown threshold of the regional detector RD;. The regional deci-
sion yu; is made according to the test

H,
POz (2y) >

ni.i=1L,2,.,n (5.20)
poOYo(z2i-1Mo(z2) <
Hy
where fi(z)); j=0, 1,i=1, 2, ..., 2n are given by equations (5.2) and (5.3). The test (5.20)

can also be expressed in terms of the regional observation Yj as follows

Hy
P10y > Jo(z2i-1Y0(22))
_— n; =MNiy.k 1=0,1 (5.21)
po() < N1(z25-101(22)
H,

where k is equal to z;_;, the decision of local detector LD»;.;, and [ is equal to zp;, the de-
cision of local detector LD,;. Depending on the values that z,;_; and z,; take, the regional

decision maker RD; employs one of the following thresholds

_ (1=PFLy_,) (1-PFLy)
0 = W T=PDL,,_,) (1-PDL,) (5.22-2)

n

(1-PFL,,_,) PFL,,
o = T (5.22-b)
01— i (1-PDL,,_,)PDL,,

n

PFL,, _,(1-PFL,,)

Nio = NppL, — (T-PDL,) (3.22-¢)
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_ PFLy_,PFL, .y
M = WppL, | PDL,, (5.22-d)

Let PDR;(n;;)) and PFR(M;,)) denote detection and false alarm probabilities of regional
decision maker RD; for a given threshold My, , i.e., when zj;.| = k and z5; = L. These prob-

abilities are given as

PDR (W) = P (u; =1lz;q =k,29; =1 ,H;) (5.23-a)
PFR,(My) = P (u; =llzg;.1 =k,2p; =l .Hy) (5. 23-b)

Then using the theorem of total probability,we can find the unconditional detection and

false alarm probabilities as

PDR; = 2 X P(z9;.) =k, 2; = | IHy) PDR{N;) (5.24-2)
k1

PFR; = 2xp (z9;.1 =k, z9; =1 Hp) PFR,(Myyp) (5.24-b)
k 1l

Expanding over k and / we can express PDR; and PFR; as

PDR; = (I-PDLy; [)(1-PDLy)PDR{N;gp)+(1-PDL;y; ;) )PDL; PDR(M;01)

+PDL2i_1(1—PDLZi)PDRi(Tluo)+PDL2i_1PDL2i PDR,'(T],'”) (5.25-a)

PFR; = (1-PFLy;.1)(1-PFLy))PFR;M;00)+(1-PFLy; 1)PFLj; PFR(M;p;)

+PFL2,;I(]-PFin)PFR"(T]i10)+PFL2i_1PFL2i PFRi(ﬂi]]) (525'b)

Each regional detector RD; is characterized by a detection probability PDR; and a false
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alarm probability PFR;. The density functions of the regional decision u; under Hp and H,

are given by the following Bernoulli distributions

fo(u;) = PFRi(1-PFRy)' i (5.26-b)
fi(u;) = PDRi(1-PDR;)! % (5.26-a)

foru; =0, 1,i=1, ..., n. Using the independence assumption between the regional deci-

sions, we obtain the following density functions for the decision vector

W) = [[fi(w).j =01 (5.27)

i=1

The system MAC is computed using (5.5) with fo(1) and f1(U) as given in (5.27). Let 1=
[T1---T2n] be the vector of local thresholds and 1 = [N;...N,] be the vector of regional
thresholds. The design of the optimum system calls for the determination of z, N, and the
fusion rule that minimize the global cost. For a given local threshold t;,j =1, 2, ..., 2n, the
local detection and false alarm probabilities PDL; and PFL,; are functions of 1; as discussed
in the previous sections. For a given regional threshold n;, 1 = 1, ..., n, the conditional re-
gional thresholds given in (5.22) are functions of the local thresholds 7y;_; and t; as evi-
dent from the the dependence of the thresholds in (5.22) on the local detection and false
alarm probabilities. These thresholds are also functions of n; as can be seen from (5.21).
Consequently,the unconditional regional detection and false alarm probabilities given in
(5.25) are functions of the variables Ty;_1, Tp;, and M;. More explicitly, we write PDR; as
PDR(73;.1,T2;,N;) and PFR; as PFR;(Ty;_1,T2;,N;). In terms of the system variables, the sys-
tem MAC in (5.5) becomes

1 - .
R (3, 1_1) = Ro— E% C1 Hf1 (u;(Tl,-, Tz Tz,')) = CO HfO (ui (ni’ Tiop tzi))
L% i=1 i=1
(5.28)

Equation (5.28) is a function of 3n variables. In order to obtain the optimum system, equa-
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tion (5.28) has to be minimized with respect to these variables. The fusion rule can be ob-
tained from (4.2) once the optimum local and regional thresholds are determined. With the
identical threshold assumption the design equation (5.28) becomes a function of two vari-

ables, namely, the common local threshold T and the common regional threshold 1.

It should be pointed out that the performance of this system is expected to be inferior
to those in the preceding sections for the same number of observations. The reason for this
is the extra data compression at the regional level, so that the information available to the
fusion center is less than before. This will be illustrated in Section 5.7 where several nu-

merical examples are considered.

5.6 Hierarchical Decentralized Detection System

In this subsection we consider the hierarchical detection system S, shown in Fig.
1.4. The difference between this system and the one treated in the previous section is that
the regional decision makers have no observations of their own. Therefore, they have to
make their decisions solely on the basis of the local decisions they receive. The local deci-
sions and the final decisions are still made as in Section 5.5, i.e., the local decisions are
made on the basis of the local observations and the global decision is made on the basis of
the decisions received from the regional decision makers. However, due to the unavail-
ability of observations at the regional detectors, special attention has to be paid to decision
making at the regional decision makers. In the rest of this section, we modify the optimi-
zation procedure of Section 5.5 to take into account the absence of side information at the

regional detectors.

Let m; be the threshold used by regional decision maker RD;. The regional decision

u; is made based on the test

H,
H@i) iz >
L(zyj.1.29) = uf (5.29)
oz fo(zg) <
Hy,
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Substituting the density functions for z; given by (5.2, and (5.3) into (5.29) we get

H,
(PDLy;.1)?2i-1 (1-PDLy; )"22i-1 (PDLy)?2i (1-PDLy) 221 >

n; (5.30)
(PFLy;.1)?2i-1 (1-PFLy; 1) 22i-1 (PFLy)R2i (1-PFLy)'"22i <

H,

Taking the logarithm of both sides of (5.30) and arranging terms we obtain the following

test
H,
>
Ai.1 29i.1 +Ap; 23 G (5.31)
<
Hy
where

2i-1 7= OBpFL — (1-PDL,_,)

Ax = o8 ppr (T=PDL,)

(1=PFLy,_,) (1 -PFL,)

Ci = o8N T =ppL, )y (1=PDL,)

The random variables zj;_ and z;; are Bernoulli random variables under both hypotheses,

but their linear combination in (5.31) is not. Let

L;=Ay 129i1+Ag7 (5.32)
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be the sufficient statistic at the regional decision maker RD;. The regional probabilities of

false alarm and detection are

PFRi=P !u,-: llHoistrue} =P {LiZCi IHo} (5.33-a)

PDRl =P {ui= “Hl istrue} =P {Ll 2 Ci |H]) (5.33-b)

Now we show how equation (5.28) can be used to design the system. In Section 5.5, a
likelihood ratio test at the regional detectors was formulated where the likelihood ratio
was obtained using y; as the observations and the incoming local decisions were used to
medify the threshold 1);. In that case, the receiver operating characteristic at the regional
decision maker was continuous and all values of 1; were permissible. Thus it was possible
to express the regional probabilities of detection and false alarm in terms of the regional
threshold 7; and the probabilities of detection and false alarm of the local detectors con-
nected to this regional detector. The optimum system was obtained by optimizing the cost
in (5.28) with respect to the local and regional thresholds. All of these thresholds were as-
sumed to be independent, i.e., the number of independent variables was 3n. The difficulty
in the design or the system of Fig. 1.4 arises due to the fact that the regional thresholds and
the local thresholds cannot be assumed to be independent, i.e., we do not have 3n indepen-
dent variables. In Appendix C, we show that for given local thresholds T5;_| and 1y;, the re-
gional threshold 1; may lie in one of five possible regions. These regions are determined in
terms of the local thresholds. If the regional threshold n; lies in the two outside regions, it
results in maximum possible values of system cost. Therefore, these two regions are not
desirable. In the remaining three regions the system cost does not change as the regional
threshold m; is varied within any of these regions. Thus it is not possible to express the .e-
gional probabilities of detection and false alarm in terms of the regional threshold n; ex-
plicitly. The functional relationship between 1,;_; and T5; and n; can be further emphasized
by expressing T; as N;(T2;.1,T2;). The optimization procedure of Section 5.5 can now be
used except that we have only two independent variables Ty;_ and T5; for each regional de-

tector RD;.
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5.7. Examples

In this section we present several numerical examples that illustrate the utility of the

design procedure described in this chapter. Our goals in presenting these examples are

1) To examine the effect on the global MAC of allowing identical local detectors to use

identical local decision rules.

2) To examine the effect of having side information at the regional and global decision

makers.

3) To compare the MPOE of the various systems when the total number of observation re-

ceived by each system is six.

In these examples we assume that under hypothesis Hy, each local and regional observa-
tion is a Gaussian random variable with mean zero and variance oiz. While uncer hypoth-
esis H;, each observation is a Gaussian random variable with mean |; and variance oiz. As
discussed in Example 5.2, for the Gaussian hypothesis testing problem, it i< more conve-
nient to express the local thresholds in terms of the local observations as (see equation
(4.71)).

02 Il

R L (5.34)
r .ll,-logt‘+2

where T; represent tl.= local thresh »ids defined in equatior: (5.1). Note that the thresholds
that ppear in the tables at the end of this section are those given by (5.34). We should
mer = thatin &'l the systems, the design procedure reduces to the minimization of a cost

function. In performing the optimization we use the method developed by Hooke and
Jeeve [69].

Example 5.1

The objective of this example is to examine whether optimality is lost by assuming

that the identical local detectors in systems S; and S, are using the same threshold.

Consider the system S with six local detectors and the system S, with five local de-
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tectors so that both the systems have an identical number of local obscrvations, i.e., six lo-
cal observations. Let tg = 0.5, 4; = 2.5, and oi2 = 1 for all the observations in the two
systems. Using different cost assignments we perform the design of the systems for two
cases. In the first one, we do not restrict the local detectors to employ an identical thresh-
old, i.e., in obtaining the optimum local thresholds, we assume that each one of the local
detectors employs a different threshold. The appropriate design equations in this case are
(5.10) for system S, and (6.18) for system S, which are functions of six variables and five
variables respectively. In the second case, we assume that all local detectors have identical
thresholds. The appropriate design equations are (4.47) for system S; and (5.18) for sys-
tem S,. For both systems, the thresholds obtained with and without equal threshold restric-
tion were identical for a variety of cost assignments. In other words, for this example<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>