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Chapter 1

Introduction

1.1 Background and Previous Work

Classical signal detection involved centralized signal processing. A single sensor
was employed for making obscrvatiéns which were processed cenivally. The nced
for increased reliability and survivability of commuuication systems has led to
the deployment of multiple sensors for signal detection. Various typos of sensors
are utilized to observe the environment. The collected data is sent to a central
processor where classical hypothests testing procedures are cmployed for signal
processing [1, 3]. Processing of observations is done only at the central proces-
sor. Hence, such communication systems are still centralized. The transmission
of ohservations from the sensors requires commuaication chaonels with larpe come-
munication bandwidth. Moveover, the computational load at the central processor
increases unfavorably due to the increise in the number of observations to be pro-
cessed. Naturally, the need for distributing the processing at the sensors was felt,
thereby increasing the interest in the arca of decentralized detection. Depending

on the bandwidth constraints of the cormumuication charnels, some signal process-




ing is appropriately assigned to the peripheral sensors. These peripheral detectors
perform sorne signal processing locally and transmit the results to a fusion center

responsible for obtaining the final result.

The distributed detection system shown in Figure 1.1 has been considered quite
extensively in the literature. The system consists of n local detectors observing
the environment. Each local detector makes a decision concerning the hypothesis
present vased on its observations, Local detector decisions are then transiitted to
the fusion center where they are combined to yield a global decision. The decen-
tralized detection systerns have been investigated using various approaches such as
the Bayesian approach, the Neyman-Pearson approach, the min-max criterion and
the Sequential Probability Ratio Test [4]-[16]. Tenney and Sandell [4] considered
a distributed detection system with a fixed fusion center. They used the Bayesian
approach to optimize a system consisting of two detectors with independent ob-
servations. Sadjadi [5] extended Tenney and Sandell’s results to n detectors and
M hypotheses. Chair and Varshney [6] used the Bayesian approach to optimize
the fusion center with fixed local detectors. Hoballah and Varshney [7] presented a
generalized Bayesian formulation of a decentralized detection system with a fusion
center. Using the Person-By-Person-Optimal (PBPQ) methodology, they derived
the local detector and the fusion center decision rules. Reibman and Nolte [8] con-
sidered a decentralized detection system with non-Cianssian noise, In [9], Reibman
and Nolte considered the general design and performance of several distributed de-
tection system structures. Dauer and Sandell [10] used the Bayesian approach to
optimize the distributed detection system with dependent observations at the local
detectors. Itkchian and Tenney [11] optimized the tandem topelogy and varvious
other systemn configurations. A simulation study of a specific decentralized detec-
tion system was conducted by Kushner and Pacut [12]. Tencketzis [13] developed
a decentralized version of Wald’s sequential detection problem. I addition, he

considered the quickest deteetion problewa in [14]. Srinivasan [15] considered the
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Neyman-Pearson approach for optimizing 2 decentralized detection systein with a
fixed fusion rule. Viswanathan and Thomopoulos [17] considered the two detector
serial system and showed that it outperforms a parallel system with two detectors
and a fusion center. Papastavrou and Athans [19] considered the tandem topology
and derived asymptotic results for a serial system of n detectors. Tsitsiklis [21]

discussed th. advances in deceatralized detection systems, computational issues

and asymptotic results.

In most of the ahove waork, information available to a local detector consisted
of it’s observations of the envircurnent. Recently, Srinivasan [26] considered the
availability of additional information such as the previous global decision at the

local detectors. He used the Neyman-Pcarson approach to optimize a decentralized

detection system with feedback.

In this dissertation, we consider the decentralized detection system with ized-
back shown in Figure 1.2 and several variations from a Bayesian viewpoint. This
system consists of n local detectors collecting observations frons the environmer .
Each local detector malkes a decision regarding the hypothesis present based on
the collected observatious and the previous global decision. These local decisions
are transmitted to the [usion center where tiey are combined to yleld a global de-
cisifor . The global decision is transmitted back to all local detectors to aid thaeu
in their decision process. In addition to the study of the decentralized detection

systern with feedback, we will present a unified approach to the design and study

ot decentralized detection systems.

There are two major contributions of thi: dissertation. The first one is the
demonstration of the fact that the performance of a decentralized detection system

can be improved by the use of feedback. This improvement is achicved at the

expense of increased communication. The other mejor contribution is a unified
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representation of decentralized detection system with «ny topology along with an

approach to obtain the PBPO decision rules at any detector of the decentralized

detection system.

The general model for the decentralized detection problem congists of the fol-

lowing principal ingredients:

1. A set of random variables {H;,8;; ¢ = 0,1,..., M-1; j = 1,2,... n} that
represent all the uncertainties in the problem and their distributions. The
first variable represents the hypothesis, and is denoted by H;, i=0,1,..,,M-1.
The other random variable is the noise present in the environment denoted

by 0;, j=1,2,...,n.

2. A set of observations Y=:{y;,y2,...,y»} which are given functicns of the
hypothesis present and the noise. In general, y;, i=1,2,...,n, i3 a vector and
is the observation available to the i** decisi~n 1uaker (detector). From the
given distribution of the noise 8, the conditional probability density function

p(y:1H;), 1=0,1,.. ., M-1, is also known.

3. A set of decision variables U={ug,uy,u2,...,%,} where each u; represents
th - decision of the it" decision maker. The decision wu;, i=90,1,2,....n0, is to
take values appropriate to Lhe decision space specified 5y the problem. In

this formulation, ug is the glohal decision.

4. A set of decision rules I' = {~vo,%,72,... s .}, one for cach decision maker

(including the fusion centcr), where 4; is a mapping from the observation
space to the decision space, i.c.,

;= yys), 173,200
and,

Ug == Yo(Uy, Ugy - ooy ily).

Ao o R | R s L] e & S e o e Wl
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5. A cost (payoff) function L(ug, H;) where ug is the final decision of the system
and Hj is the hypothesis present.

The problem in decentralized detection systemns is to
Find «; in ', for all 1 such that
Eo.u1, {L(uo, H;)} is minimized.

In the next section, we present the dissertation organization.

1.2 Disgertation Organization

In this dissertation, we focus our attention on the decentralized detection system
with feedback shown in Figure 1.2, In Chapter 2, we describe the decentralized de-
tection system with feedback in detail and establish some initial results. Using the
Person-By-Person-Optimal (PBPO) methodology from a Bayesian viewpoint, we
derive the decision rules of the local detectors and the global decision maker. The
optimum test at the local level i shown to be a likelihood ratie test for statisti-
cally independent observations at the local detectors. The number of observations
is not assumed to be known a priori. Hence, optimization of this system is done
for cach time step t. In other words, it is assumed that the knowledge of the
stopping time as to when the final decision is to be made is not available. The
local threshold equation is a function of the previous global decision. The perfor-
mance of the system is derivea. In the remainder of the chapter, we assuine that
the stopping time of the decision process is knewn a priori, i.e. a knowu nunber
of observations are available at cach detector for processing. This is identified a=
the Fined Satuple Size (FSS) problem. Here, the PBPO solution methodology is
again used and the system performance is optimized by taking into account the -

stopping time. We derive the PRPO) decigion rules both at the local detectors and

at the fusion centor for the fixed sample size problem. L addiiion, we congider a




detection system having a single detector with feedback. We derive the detector
decision rule for the FSS problem. We establish the correspondence between the
single detector system with feedback and the serial system thereby allowing us to
utilize our results for the single detector system with feedback to serial networks.
Furthermore, the results of the decentralized .ietection system with feedback are
extended to more complex networks of serial nature. Thus, we provide a novel

approach for the design and analysis of serial networks. Examples are presenied

throughout the chapter.

In Chapter 3, we consider a decentralized detection systern with feedback anc
introduce memory at the Jocal detectors, allowing theni to store all previous ob-
servations. Using the Bayesian approach, we derive the PBPO solution for the
decision rules. We show that the proposed system outperforms the conventional
distributed detection system and the system without memory considered in Chap-
ter 2 when more than one observation sample per detector are taken. Asymptotic
results for this system are obtained and the probability of system error is shown
to go to zero asymptotically. An important issue that arises in the decentralized
detection systemn with feedback is thai of data transmission. Due to the feedback
links from the global decision maker to she local detectors , there is an increase in
communication or data transmission. Two protocols are proposed and studied to
achieve the desired reduction of data transmission. We show that the use of the
proposed protocals reduces conimunication, on an average, to zero asymptotically.
In other word:., on an average no transmission of decisions is necessary among the
system aetectons asywplotically. An example is presented to illustrate the results

obtained.

In Chapter 4, we consider the design of a decentralized detection system with
an arbitrary topology. Inspired by Ho’s definition of information structure [22], we

deiine the commuication strn ture of a system. Using this definition, decentral:




ized detection systems could be represented in ierms of a comrnunication matrix
which shows the iransmission paths of detector’s decisions in a given system. We
show the applicability of this definition to our study of the design of decentralized
detection networks with arbitrary topologies. We generalize the definition of the
comrunication matrix to enable us to study systems with feedback such as those
in Chapters 2, and 3. Finally, using the PBPO solutiou methodology, we present
a general approach for the derivation of decision rules for the FSS problem. We
consider a number of examples and show that results available in the literature
can be obtained using this general design approach. The generalized definition of
the communication matrix and the general approach to the design of decision rules
provide the necessary and sufficient tools for the study of decentralized detection

systems with arbitrary configurations.

In Chapter 5, we present a summary and discuss the results obtained in this

dissertation. Some directions for future research are also provided.

Y




Chapter 2

The Bayesian Formulation of a
Decentralized Detec“ion System

With Feedback

2.1  Introduction

The arca of decentralized detection has been studied extensively in the litera-
ture recently. Decentralized detection sysieius have been proposed and investigated
nsing various approaches such as the Bayesian approach, the Neyman-Pearson ap-
proach, the min-max criterion and the Wald’s Sequential P'robability Ratio Test
[4]-[15]. Srinivasan [26] and Alhakeem ct. al. [27] have resently investigated a de-
centralized detection system with feedback using the Neyman-Pearson approach.
This was moiivated by results such as [20] where it has been shown that improved
channel capacity is achieved when a feedback link is employed. In this chapter,
we study a decentr lized detection system with feedback using the Bayesian for-

wdation. T this systemy, the global decision at time step t is fed hacl to all loeal

10
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detectors. Local detectors in ture operate on their observations as well as the re-
ceived global decision to yield local decisions at time step t+1 which are then sent
to the fusion center. A detailed description of this system is given in Section 2.2.
In Section 2.3, we derive the decision rules at the local detectors and the fusion
center using the PBPO solution methodology. The number of observations is not
assumed to be known a priori and the optimization is done for cach time step t.
Probability of system error is derived. In Section 2.4, we consider the Fixed Sam-
ple Size problem (I'SS) where we have an a priori knowledge of the stopping time
t=T at which the final decision is made, i.e. the number of observations is known
a priori. The system is optimized in such a manner that the system performance
is optimum at the stopping time t=T. We formulate the 'S5 problem using the
Bayesian approach and derive the global and local decision rules for any time t<T
aud t=T that minimize the average system cost at time t:=T. In Section 2.5, we
consider the single detector system with feedback and derive the decision rules for
the FSS case wing the Bayesian formulation. In Section 2.6, we show that the
single detector sysiem with feedback is equivalent to a serial system where the
time step t is the same as the stage number n of the serial system. Hence, a de<en-
tralized detection system with feedback coild be viewed as a serial system with n
blocks in serics where cach block consists of local detectors and a fusion center. Iun
bection 2.7, we discuss the results of this chapter. [t is noted that even when the
stopping time is known a priori, the decentralized detection system with feedback
considered in this chapter cannot outperform the decentralized detection system

withaut feedback that has been studicd catensively in the fiterative. Nwmerical

examples are presented throughout the chapter for illustration.




2.2 Systermn Description and Problem Statement

We consider the binary hypothesis testing problem, with the two hypotheses de-
noted by Hy and H, respectively, for the system shown in Figure 2.1. This system
consists of n local detectors which commmnnicate their decisions to a fusion cen-
ter. At time step t, we denote the observation sample at the k** detector by
yi,k =1,2,...,n, and the local detector decision is denoted by uf, k= 1,2,...,n.
The global decision at time step t is denoted by uf. The k** detector takes an
observation yi at time step t, and based on its present observation and the previ-
ous global decision u§™*, makes the local decision ui and transmits it to the fusion
center. The fusion center combines the incoming local decisions u}, k=1,2, ..., n

and generates the global decision u§ which is sent to all of the local detectors.

We assume that the joint cenditional probability density functions
p(¥i,vs,. .., ¥ | H;),1 = 0,1 are known a priori. Each local detector uses a decision

rule denoted by y£(.) te make a decision uf, such that for k==1,2,... n, we have the

local decisions
IR T R I
ug, = Yyp up )

Similarly, we denote the global decision rule by 4(.) and the global decision is

obtained as
uy = 1(U°)
where U* = (ud, 1, ..., u8) Is the vector of local detector decisions.
The problem is to find the PBPO decision rules v£(.) for each detector k,
k=0,1,2,...,1, 50 a3 to minimizc the Baycsian cost funciion J(I') , where

e {1% 022 1,2,... )

Here, 1 is defined as:

1"t oo {'Y.‘() t k= 0, 1., . .,Tl}




t
N nt
at-1 Local detector 1 1
0 p=
t
¥y — "2
2 1 Local detector 2 \ ¢
. u
%o Fusion 0
‘—.—_.»
center
.
t
Yn el oo | t!
1 Local detector n L) 1Y
u
0

Fig. 2.1: A decentralized detection system with feedback.
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The optimization of this system is carried out using the Person-By-Person opti-
mization procedure for this teamn decision problem [25]. This system will be viewed
as a team consisting of two members. One team member is the fusion center and
the second team member is the aggregation of the individual detectors. The second
team member can be further viewed as a team where individual detectors are as-
summed to be team members within their aggregate team. The equations resulting
from the person-by-person optimization represent necessary conditions but not, in
general, sufficient conditions to determine the globally optimal solution [25]. These

equations are solved simultaneously to obtain the solution.

[n the Bayesian approach, we assume the knowledge of the a priori probabilities
p(fls) and p(H;) . In addition, the cost of deciding up = H; when the trne
hypothesis is f; is denoted by Uy; 1,j=0,1, and assumed to be known a priori. ‘The

Bayesian cost function to be minimized can be written as:

J(T = Coop(ug = 0, Ho) + Corp(uly = 0, Hy)
'i-c’u}].?(’lt,t) = 1, [Ig) + (_711])(1L6 == 17 1{1) (21)

Denote the system probability of false alarm p(u§ = 1]7ip) and the system prob-
ability of detection p(uf = UII,) by pj and p} respectively. Rewriting (2.1) in

terms of p% and pf, we have:

J(Y) = Cypty, = Caply + € (

N
o
~—

where

1
- p(fj())(/‘o() + }’(111)(-701
It 5 assuraed that making a wrong decision is more costly than miaking a correct
decision. ‘Uhis implies that Cy and Cy are greater then zero since Cyy > Chy and

Cor > Chy. In the negt section, we procecd with the system optimsization wnd

performance.
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2.3 System Optimization and Performance

In this section, we utilize the PBPO solution methodology to minimize the Bayesian
cost function in Equation (2.2). In Theorem 2.1 we derive the global decision rule
v6(.). The local decision rules are derived in Theorem 2.2, Before proceeding fur-
ther, we assurne that the observations at the local detectors are statistically inde-
pendent. Therefore, the a priori knowledge of the conditional probability densities
p(yi, vk, ... yL|H;) reduces to the a priori knowledge of the individual detector
conditional probability deunsities p(y!|H;), i = 1,2,...,n; j = 0,1. Theorem 2.1 is

presented next.
THEOREM 2.1

For the decentralized detection system with feedback, the PBPO fusion rule

for the Bayesian binary hypothesis testing problem is given by

. C
WUY == 1 iAWY > g
7d
0 otherwise (2.3)

where the likelihood ratio A(U*) is given by

. Ut Hy)
Aty = 240
W) = O )

Proof:

Consider the cost function in Fquation {2.2). We expand the piobability of false
alarmr and the probability of detection around the decision vector Ut as follows,

J(U) = Cp y plu = LU o) — Ca 3 p(uf = LU HY) + C.
e us

Conditioning on U* and expanding we get

T = S ploady e LU TT)p(U o) - - Ca ST p(udy o= U, HO)p(UR L) + .
e e




Since uf given U* does not depend on the hypothesis present, we rewrite the

previous expression as:

J) = 3" p(uh = LUHCyp(UP|Ho) — Cap(UF|HL)] + C. (2.4)
Ut

Due to ihe PBPO methodology being employed, we assume that the local detectors

are fixed and minimize thx cost function J(I'*) by choosing the decision rule at the

fusion center as
pluby = U = 1, if Cyp(Uf|Ho) ~ Cap(U*|H;) <0
0 otherwise

which is the desired global decision mile v4(U/*) given in (2.3).

Q.E.D.

THEOREM 2.2

The PBPO decision rule at the k** local dctector for the Bayesian binary hy-

pothesis testing problemn is given by

LI

b, b ™) = ub = L ) B(y—’“-—l~ > ni(ub? 2.5

’Yl\(-,.k‘) 0 ) t k ’ p(yi![[g) ,]k(u() ) ( )
0 ot herwise

where nf(uh!) is the £ detector threshold at time step t defined as:

Elub Cy Zr’i f(Ui)z-'(f-’/ilu.‘F‘, H())P(“f)”l“ﬂ))
IR =
B e FUD U™, I (e Ty

(2.6)
and,

o t t rt t t
FOUR) sl = LU = e = 1TTR)

Ug s (uduly .o ul g, Ukygy .05 uh) the local detector decision
vector U excludiog she &% detector decision.
Ui (ubyad, oo ud = 4,000, 1d) losal detector decision veeter U

with the 5% detector decision wf equal to i, i -, 1.
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Proof:

We tewrite expression (2.4) explicitly in terms of the £** local decision
JI) =3 plug = HU)Cyp(Ugy [ Ho) — Cap(Uiy [ H1)]
Ui
olub = NUL)Cp(UlolHo) = CoplULl B + . (2.7)

It should be observed that the summation above is over all the possiblities of the
decision vector {7f. Substituting p(U{,iH,) = p(UL|H,) — p(U{ | H;) j=0,1 in (2.7)
and factoring out common terms, we have:

T =Y plul = YULICP(ULH) = Cap(Uk | H))
Uy
plah = HUL)C (U 1 To) = Cap(Uf | 11,)

+p(ug = HU)(Crp(Ut|Ha) — Cap(Ug] H1)) + C.

Factoring the terns in square brackets out,
J(TY) = 2: [p(u = 1]”/51) — plugy = U]

3
U,

X[Cyp(UE ) — Cap( U H))

+p(ufy = LHUNC, p(Ug|Ho) — Cyp(UET )} + C. (2.8)

Observing that the last two terms are not involved in the optimization of the gt
local detector due to the PBPO procedure being employed, we drop those terms
in the subsequent equations and denote the new cost function by JHTU). Next, we
expand JYTY) in ', the previous global decision, and Y* = (y8, yt, ..., 4%) the
observation vector of local detectors:

T =30 [p(uf == YUk -~ (o = U]

U}

X Jye Dt [Cra(Uky, ui ', Y )
(U8, s Y ) (2.9)




For notational convenience, we assume that the integration is over the appropriate
variables indicated with the integral sign [ and the term dY* will not be wiitten
explicitly. This convention is followed throughout the dissertation. Letting
plul = UL, — plug = 1|\Ufy) = f(Uf), and expanding (2.9) by conditioning on
u5™! and Y*, we have,
P =3 FUD) e Som[CopUn ™, Y, Ho)p(ub™, Y| Hy)
Uk
—Cap(U lug™', Y, Hy)p(ug ™, V¥ Hy). (2.10)

The local decision vector U}, given both the previous global decision and the
observation vector Y does not depend on the hypothesis H;, j=0,1. In addition,

assuming the observations are independent in time, the previous global decision

ug™* is independent of the observation vector Y*, We rewrite (2.10) as:

JHT) = 3 f(UR) fr Tuem (Crp(Ukilug ™, Y p(ug™ | Ho)p(Y* | Ho)
U'

k

~Cap(Uf: lub™t, Y)p(uy™ ' | Hy)p(Y?

in)]. (2.11)
Moreover, assuming that the observations at detectors 1 and j, i#j, are independent .
of cach other, Equation (2.11) is rewritten as,

PO =3 fUD) e S [Cop(w™ | Ho)p(Uks ™,y p(ut | Ho)

U}:
IT pCelod wh)p(yt Ho)
=145k
~Cap(ug ' [Hy)  p(Ukylug™, i )p(yk | Hy)

n

1T pCuilug™, yiyp(yil i) (2.12)
=115k
Factoring out the term p(Uf, Jui™, ¥f) , we have

JHI) =37 2t SR fyr Uk Jug™, yk)

Ty (Cpp(ug™ [ Ho)p(yk | Ho) TRy ipne P(ub e, yE)p(yf| Ho)
K

Caple )Py B 1T g p(iilog™ s yE)p(0E T (2.13)




where Y 1 (38,44« ., ¥kogy Yhiys- -+, ¥} the observation vector Y* excluding

the k* detector ohservation.

Integrating over Y and rearranging (2.13) we have,

S =3 Ly o0 b~ ) S FUE)

b1
Ug

[(fP{UQ 1IH0) Jk|un ! , Hy) P(ykIHO
—Cup(u§ | Hy)p(Uklug™", H)p(yi [ L)) (2.14)

To minimize the cost function given by Fquation (2.14) we choose

UL1|U ’yk 1 l:j‘. {41 > A(‘)

0  otherwise (2.15)

where

=Y fFIUDCap(yk| Hy)p(ug™ | H)p(Uflug™", )
UC

Ao = Y FIUNC Byt Ho)p(uf™ | Ho)p(Uk ™", Hy)
ut

‘The k** detector decision rule therefore is given by rewriting (2.15) as:

Lot fe 1 t - p(y;cllfl) tr, t—1 ?

Yilyp, u = Uy = 1, 1f == > (e 2.16

(Jk 0 ) k f}’(yill{o) ’L( b] ) ( )
Q otherwise

where ni(u ) is the &' detector threshold at time step t defined as:

fL,,:j(U,\)p(Ukht ~b Hy)p uo o)

yi(ub ) - 2.07)
) = s T & (b ) (
as stated in Fguation (2.6).
N.E.D

At timie step ti1, there 15 no feedback. At this sten, the fusiop rule has the

)

samne form as given in Theorem 2.1, However, the local decision rules are single
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Py

threshold likelihood ratie tests given by

! Pl HY)
| 1, if BT 2.18
p(yilHo) ~ (2.18)

0 otherwise

where 7} is the 4" detector threshold at time step 1 defined as:

Oy X f(URp(U} o) .10
KNS SN ANUATN o

F(UL) = p(ud == UL = 1) - p(ud = 1T} = 0).

From Theorems 2.1 and 2.2, the following ohservations regarding the decen-

tralized deteciion systern with feedback can be made:

e The optimum test at a local detector is a likelihood ratio test for statistically

independent observations.

e The &% local detector threshold ni(ub™!) is a function of the previons global

decision u§™! as given in Equation (2.6). For the binary hypothesis testing

1 ohlem, two thresholds exist since the previous global decision takes two

values. The threshold pt(uh™) is also a function of the probabilitics of systen

. . -1 -
‘ false alarm and ruiss at the previous step, namely p%' and pi!

e At every tim. step t, there are 2* fusion rule equatious and 2u local threshold

equations to be solved for the binary hypothesis testing problev.

| e Since the local detector’s thresholds change from oue time step to the next,

‘ the optinnun fusion rule changes as well
‘ :

Hystem Performance

i Next, we consider the performance of the decentralized detection systom with
\ 1 A
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fcedback. In the general case, the performance is described in terms of the Bayes
cost J(I') given in Equation (2.2). Here, however, we consider the special case of
minimum probability of error criterion, i.e. Cgo = Cyy = 0 and Cpy = C1o = 1, and
characterize the system performance in terms of the system probability of crror

denoted by pf,. The system probability of error p, is given by
pLy = plp(Ho) + pho p(Hy) (2.20)
where pt, s the system probability of miss. We expand pf defined as pug = 1 | o)
in terms of u§™*,
Moo= o= L = L Ho)p(uf™ = 1]Ho)
Fp(uf = 1ub™ = 0, Ho)p(u™* == 0| Hy). (2.21)

Replacing p(uf™ = 0)Ho) by 1 p(uy™" = 1|Hy) and rearranging terins, we have

pff(\ = p(ué’l = 1]1[0)[11(116 = 1]“5—1 w3 1, }IQ)
~pluh = 1uy™ =0, Hp)] + p(aufy = ud™ =0, Hy).
This may be rewritten as:

t—1

Pl = 5 ok, (™t = 1) — pl (g™t s 0)] A p, (s ™h =2 0) (2.22)
wliere
Pha(ug™ =) = plug = Lug™ =1, Ih).
Introducing the local decision vector Ut iu the above expression, we have
Py, (ug” = i) = pluh = Uug™ =14, 1hy) =
Syye plul = YU ul™t, Ho)p(Utug™ =24, Hy). (2.23)
Observing that the global decizion uf) conditioned on I/t does not depend on uf™

and fy, Fguation (2.23) yields

P, (g ) Y n(uh s U |l 4 ). (2.24)

/A
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Similarly, the probability of system miss p}, is written as:

Phy = iy [P (157 = 0) = Pl (ug™ = )] + Pl (ug™" = 1] (2.25)
where the probability of system miss pf, (ué ™" = i) is expressed as:
Prg(ug ™t =14) = pluf = Olug™ =1, Hy)

= Zp(uf) = 0|U)p(Uud™ =1, Hy). (2.26)
Ut

Substituting Equations (2.22) and (2.25) in (2.20), we obtaiu the probability of

system error pf . At time step t=1 the systern probability of error is given by

Pr, = P}, P(Ho) + P, o( Hi) (9.27)

where

P, = 3_p(uy = LU )p(U'|Ho)
Ut

p,lnu = \:p(u(l, = O|UTMYp(ITH H).

L
m

Next, we consider an example where some nnmerical results are obtained.
Example 2.1

We consider a system counsisting of two local detectors and a fusion center.
The binary hypothesis testing problem is considi ced. Under hoth hypotheses, the
inpmt observations at cach detector arc assumed to have a Rayleigh distribution.
For siroplicity, the signal-to-nose ratio (SNR) at the two detectors is assumed to
be equal and is denoted by ¢, As shown by DiFranco and Rubin [28], for this

model, the probability of false alarm and the probability of detection are given by
P = (L e) ) 709

and,

P, = (05, )0,




The above equations in addition to Fquations (2.19), and (2.27) are used to eval-
uate the system probability of error and thresholds at time t=1. The results are
then vsed in Equatinns (2.6), (2.20), (2.22),(2.25) to obtain the system probability
of error and thresholds for t>1. The minimum probability of error criterion is
assumed, i.¢. , Oy = C11 = 0 and Cyy = Cyp = 1. Also, the = priori probabilities
are assumed to be equal. In this example, we consider two tusion rules namely
the OR and the AND fusion rules. For the OR fusion rule, we plot the threshold

values nf(us™ = 0) and 75 (ug™

= 1) vs. SNR for different values of t in Figures
2.2 and 2.3 respectively. The probability of system error p! vs. SNR. for different
values of t is plotted in Figure 2.4, Similarly, for the AND fusion rule, we plot the
threshold values ni(uy™ = 0) and ni(ui™? = 1) vs. SNR. in Figures 2.5 and 2.6

respectively. The probability of system error pf vs. SNR is plotted in Figure 2.7.

The plot in Figure 2.2 shows that the threshold ni(uf™ = 0) increases as a
function of time and as a tunction of SNR. The plet in Figure 2.3 shows that the
threshold ni(ug™' = 1) decreases as a fuunction of time and as a function of SNR.
As SNR goes to infinity, the threshold yi(ui™ = 1) goes to zero and ni(uf™* = 0)
goes to infinity . The plot in Figure %.4 shows that the probability of system error
pL, decreases as a function of time and as a function of 3NR as expected. It can
be observed that pl goes to zero as SNR value increases to infinity and as time
step t goes to infinity . For the AND rule, the thresholds and the probability of
systewn error shown i Figures 2.5, 2.6 and 2.7 follow a stwilar behavior. Jt
should be noted that Figure 2.6 show:; that the threshold valies given uf™! = |

are independent of the time parameter © due to the wie of the ANT) fimion rule.
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2.4 'The Fixed Sample Size Problem

In the previous section, we considered the decentralized detection system with
feedback. The stopping time was not known a priori and the system was optimized
at each time step. In this section, we consider the case where the stopping time
T at which the final global decision is to be made is known a priori. We refer to
this problem as the Fixed Sample Size {FSS) problem. Next, we define the FSS
problem in mere detail and design the system so as to minimize the Bayesian cost

function using the PBPO solution methodology.
Problem Statement and Systern Optimization

We again consider the binary hypothesis testing problem for the system shown
in Figure 2.1. The system operation is the same as before. In the FSS problem,
the stopping time t=T is known a priori. Ilence, the problem is to find the optimal
decision rules 7 for each detector k=0, 1, 2, ..., u 50 as to minumize the Bayesian

cost, function J(I'), where

P 0t = 12T (2.28)

and ag before
U= {I4() c k=0, ...,nh

Observe that the winimization is over the entive set of decision rules vp to time
step t="I". We assmume that the conditional probability density fun-tions
D3y Yiy - YEIH;), j=0, 1 are known a priori. In addition, the probabilities p(Iy),
p(Hy) and the costs O =cost { decide ul = ;] hypothesis present == {1},
i, =0, I are all assnmed to be known a prieri, We agsume thot the observations at
the &* detector are independent in time (temporal independence). T adddition,
the observations at the &% detector are agsumed Lo be independent from those at
the »™ detector, 1 £ k, (spatial independence). Hence, the a priori knowledge of

the conditional density p(yi, yh, o y2 1) reduces to the o priort knowledge of the
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individual detector conditional probability densities p(y!|H;), 1==1, 2, ..., n; j=0, 1.

The Bayesian cost function J(T') to be minimized is written as:

J(I)=  Coplud =0, Ho) + Cap(ul =0,H,)

+C10p('llg = 1, 1{0) + Cup(ug = 1, Hl) (229)

which reduces to

J(U) = Cpph ~ Cpk + C (2.30)

where C, Oy, and C are as defined in Section 2.2,

We should observe the effect of fixing the total number of observations available
in (2.30) where the probabilities of system miss and false alarm pl | p}; are a
function of the final time step t=T. We would like to find the set of decision rules
I" such that the Bayesian cost function J(T') of (2.30) is minimized. In Theorem

2.3, we derive the global decision rules 4§(.) at any time ¢ < T. The local decision

rules are derived in Theorem £.4.
THEOREM 2.3

For the decentralized detection system with feedback shown in Figure 2.1, the
PRPO fusion rule for the Bayesian binary hypothesis testing problem with a fixed

sample size is given by

e . utin) o
t (I { = { = 1 f !-,-(~—-,-I-—-—1—— > ~—;f-
7() ( ) ll() p((]l '1,()) (/yd
0 otherwise (2.31)
and for t<1
. ; . ¢’ 1](t 0)
NEY) =gy AU o I
70( ) ?'l) Zf ( ) (/v'“](t, ])
0 etherwise. (2.3:2)
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where g(t,j) = p(uf = 1jub = 1, H;) — p(ul = 1]u$ = 0, H;)
Proof:

We consider the cost function J(T') given in Equation (2.30). We expand the
probability of false alarm and detection around the local decision vector UT at

time step t=T. Hence,
J(T) = Ct Syr (i = 1,UT|Hy)
Cy Tyr p(ug = LUT|Hy) +C (2.33)
Conditioning on U’ and expanding, we get
J(T) = Cy Tyrp(ud = 11U, Ho)p(U”|Ho)
—Cy Yoyr p(ug = YU, Hy)p(UT|Hy) + C (2.34)

The global decision ul given the decision vector UT does not depened on the

hypothesis present; we rewrite (2.34) as
I(T) = Y p0 = LU (Cop(UF | Ho) — Cap(UT|IR)] + C (2.35)
ur

Since C is fixed, we minimize the cost function J(I") of (2.34) by using the following

descision rule
p(ul =1UTy= 1 if o, pUT|Hy) - Con(UT|H) < 0
G  otherwise
whicll is tie desived decision rule vd (U7T) at time step '\ as given in (2.31). The
global decision rule yi(U?) for t<T is deriverd by expanding the cost J(T') of (2.30)
around the gloLal decision u§ and the local decision vector U*. In this case, we
have
J(I) = Of Zué:l'ﬂ ]’(ug‘ = 1, uh, U*| Hy)

-Gy :u(',,U? p(‘U.g‘ w1, “(t)v Drtlfll) + O (“:K))
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Conditioning on uf, and U* and expanding, we have

J(F) = Cf Zuf,,U' p(ug' = ]‘le’)’ Ut, HO)P(UBIU', lqo)p(UtlHO)
~Ca Tugue P(ug = ug, Uty H)p(ub|U*, Hy)p(UtHy) +C (2.37)

The global decision ul given the global decision 1, does not depend on the local
decision vector U' since uf is a function of U*. Moreover, the global decision
uf given the local decision vector U* does not depend on the hypothesis present.
Therefore, the cost function J(I') of (2.27) reduces to

J(I)=Cp 3] p(ug = ub, Ho)p(up

Ut

[9pldF|Hy)
~Ca T e plug = Lug, H)p(uplUp(U* | H) +C (2.38)

Expanding the above explicitly in terms of the two possibilities of the gi-bal deci-

sion. v,,, we get

J(T) =), Cep(uf = 1ubh =1, Ho)p(u§ = 1|U*)p(U*|Ho)
~Cap(ug = uh = 1, 1L)p(uh = L{U)p(U*| 1)
+Cp(ug = 1jug = 0, Ho)p(uh = 0|U*)p(U*| Ho)

= Cyp(ud = Uud == 0, IT))p(ul, = 0|Up(U|IL) + C (2.39)

Substituting p(uf == 0]JU") by 1-- p(u§ = 1|U*) and factoring out common terms in

J(I) o7 (2.39), we have

J) =30 [Copleg = Uuh =1, Ho) — Cyp(uf == 1[uf = 0, Ho)lp(U*/ It)
A
l xp(h = 1|UY)
~Clp(ug = Luh = 1, Hy) = p(ud = |uf = 0, H)Jp(U*]:1))
xp(uf == 1|U")

+Crplud = 1ug — 0, Ho)p(Ut Hy) — Cap(al - < 1| -+ 0, 1))

xp(UH ) 4 O (2.40)




The last three terms are independent of the optimization of the global decision
rule at time step t. Therefore, we drop these terms in the subsequent analysis and

denote the new cost function by J*(I'). Factoring out the common term in (2.40),

the cost function JY(I') is written as:

JI) =3 pluh=1UCp(U*|Ho)p(ug = 1|uf = 1, Ho)
Ut
—p(ug' = 1|uf, = 0, Hy)] — Cap(U*| Hy)

x[p(uf = 1|uf = 1, H}) — p(uf = Luh = 0, Hy)]] (2.41)
Letting p(ul = ljuf = 1, H;) — p(ud = 1uf = 0, H;) = g(t,7) in (2.41), we have

JHE) =3 p(ug = LU*)  [Cyp(U*|He)g(t,0)

ue

- Cap(Ut ) g(t, 1)) (2.47)

To minimize the cost function J}(I'} in (2.42) we choose

p(ug' = 1Y) = 1 if A<O
0  otherwise ' (2.43)

wliere

A = Cep(U* Ho)g{t,0) — Cup(U*| Hy)g(t,1)
With a little rearrangement, Equation {2.43) becomes the global decision rule
Y5 (I7%) at any time step t<'T' as given in Equation (2.32) of Theorem 2.3.

Q.E.D.

It should be noted that the above global decision 1nles for t<T" were derived
with the objective of optimizing the system performnance at thue i==T. Ou the
other hand, the global decision rules of the previous section were derived with
the objective of optimizing the system performance at time § independently of
the future decisions, Le. the ohjective wos to optimize the porforurnee of the

dectsions af every tioe ¢ which way not resslt i opibual performance for the
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decision ~t time t=T. Next, we present the derivaiions of the local decision rules

i (), k=12, . ..n
THEOREM 2.4

For the decentralized detection system with feecdback shown in Figure 2.1, the

PBPO local decision rules for the Bayesian binary hypothesis testing problem with

a fixed sample size is given by

up = vi(pk,u ) = 1 if Ay}) > ni(ui™)

0 otherwisc (2.44)

! where nf(uh') is the k** detector threshold given for t=T as

rprs CrSur FUDMUE, | Hy)

weT =g, X AR, w ) (229
B FWUF) = pud = 1{UR) ~ p(ud = 0JUF,)
: and for t<'C
' ety = Cr10) S SV 571 o)
B _ Cag(t,1) S SOV ug i)

g(t, ) = p(ug' = l,lna =1, ;) - p(u;ﬁ' - 1]1'(‘, =0, I;).

| Proof:

| We first derive the Jocal decision miles at time step ¢ W peeall Fguation
(2.35) and write it explicitly in terns of the £ loeal decision
J(I) = Loy plud = HURCp(ULTH) — Cap(UH )]

S p(ed SO ) — Cal U] + ¢ (247)

wherae
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Substitwing p(UL| ;) by p(UF1H;) - p(UL|H;), i=0, 1 in (2.47), rearranging and
factoring out common terms, we have
J(I) =3 Cyp(Uk | Ho)ip(ug = 1UE) — p(uf = 1UK)]
ur
~Cap(U[H) p(ug = UUL) — p(ug = 11UG)]
+p(uf = YUR)Cp(UT | Ho) —~ Cap(U{ |H) +- € (248)

Noting that the last two terms in (2.48) are independent of the optimization of the
k' local detector, we dror those terms in the subsequent equations and denote the
new co: b function by JY(I'). Letting p(uf = 1UL) — p(xd = 1|UVE) = f(UF) and
factoring it out in Equation (2.48), we get

JHY = 3 FUDICp(UL  Ho) -~ Cap(U | Hy)) (2.49)

ur
Expanding Fquation (2.49) in u} ~! the previous global decision and
YT (4T, yF,...,uL) the observation vector of local detectors at time step t==T,
JHY =S RWUN ST feelCrp(UR Y YT L)
e ul 1
k (4]
- Cap(U, ug =t YT L)) (2.50)

where the integral fi+ is mndtifold integral of dimension n. By conditioniug (2.50)

on 4 ! and Y, we have

JUD) =3 U Y Sy [Crp(Ul g = Y7 ) (Yl )
T—1

U:I Uy -

CCgp(UE e YT )Y ul L)) (2.51)

It i seen that the Jocal decision vector U4 given both the previous global decision
uy "t and the observation vector Y1 does not depend on the hypothesis present,
Aszuning the observation independence in time, the previous global decision ugf !

s independent of the observation vector Y1, Tn addition, the k* local detector’s
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| decision 4 depends on the detecior’s input and not on other detector decisions.

|
Hence,

n
p(UGIg = YT) = puf = 1jug 1, YT) [T pluilug ™t ¥7).
121,63tk
Using the spatial independence of observations the above reduces to

PUS G YT) = p(uf = Luy~*, yi) H plul w2 yl)
i=1,i3k

Substituting all of the above results in the cost function J*(T') of Equation (2.51),

we get
1 AOEDY FOUD) Loz fyr[Crp(ui = Lug ', 9k)
e Ui
‘,'J (TII-‘:L,-# P(“&T]“" ' ¥ ))(H.:lIJ(J. |Ho)) .'"(uo 1]HO)
‘,I —--(_7“1)(11{ = ]lug‘_lﬁyz')(n:';l.l'#k p(u;rlugl—l’ ylr))
!
C (I p(uT | HY))plug | )] (2.52)

i Factoring out the common term p(uf = tjug ™, y}) and rearranging the order of

integration and smnmation, we have

JYT) = }_J Jye v = Lheg 5yl) > r F(UF)

'U

0

‘[‘Y,;"[(;f(l-[:{—-l,i#:k P(“;‘rl“;{ﬂ‘,!/‘.'I‘)P(;'/;'rl HO))P(?/Z‘I )i \”u ll {ly)
'_'(’-"”)(y;crl [[1 )I‘("’U ! l [l ) I_Is.-l a#£k I'(vl lulf & ’ 1:’1:1')

p(ug | Hy)] (2.53)

( Integrating over ¥,7, we rewrite (2.53) using notations of Section 2.2 as

JHL) == }_—; .1;,,{ p(ug = ]-l"'«’{*la i) Zl]',{l f(Uf)

Uu

*[Crp(UF R ™, L)p(uT | Dl o)
- ("l”’(Uh’;rl"g‘—‘lv 1:11)])(?/;:'

H)p(ug A1) (2.51)
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To minimize the cost function of J}(I') in (2.54) we choose

j pluf =1l 9Dy = 1 if Ay < A,
i
! 0  oitherwise (2.53)
where
Ao =3 FUD)Cyp(UF ug ™, HoYp(yi | Ho)p(ug ™| Ho)
U
N Av =3 O Cap(Ug |ug ™ H)p(yi | Ha)p(ug | Hy)
1t

| The k** local decision rule at time step T is therefore given by rewniting (2.59) as:

»

1 P(Jk ”11) 1( T-1
:/k IH 0

otherwise (2.56)

: i (i g ) =

| where 7 (ud ") is the k™ detector threshold at time step T defined by
, oty o L Tup SO o~ o)l | Ho) (257)
o Lo Ca Yopr fUDPUT [ug ™, Hy)p(ug = Hy)

i as given in Equations (2.44)-(2.46). The local decision rules for time step t-='T are

derived by recalling Equation (2.41). We write (2.41) »xplicitly in terms of the &

local decision rule at time step t,

| IROEDY 0 = WO TN = i = 1,78

ur
: } el = Uy = 0, 1)) Cop(UE ) [p(ul = 1] o 1, 11,
| pg = Hug = 0, )]} -1 p(asdy = 1 WA C T )

[p(-ug' l]uf, w1, Ily) — p(u;-]i' s l[u,', =z (), [.1'(,)_]

- ~Cap(Iy Hi)[}"("ig = g = 1, 7))
- Pl 0, 0]} (2.68)
< ‘ Letting plad = L)) - - l,«l]i) - p{ad s Lul - L ILG) = g(t,7) and substitnting
| _ ,
| p(Uig| ;) by pQUELRG) - p(UE ), we rewrite (2.58) after reArranging as
o » N
o PO RGOS (s 0) ~ Ca(T | 1)g(t 1)

17
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Plug == U [Crp(Usy Ho)g (¢, 0) — Cap(Uky | H)g (2, 1)]
+p(ug = HU)[Crp(Uk| Ho)g(t,0) — Cup(UflH1)g(t,1)] (2.59)
The last term in the above equation is independent of the optimization of the kth

local decision rule, hence we drop that term and denote the new cost function by

JYI). Fuctoring oui the 1 ultaut wonunon teria, Equaiion (2.59) is written as

JHI) =3 [Crp(Uki|Ho)g(t,0) — Cap(Uf, | Hy)g (2, 1)]
U;
[p(ug s 1U§y) — puh = 1{Uf)] (2.60)

Next, we expand (2.60) in uf™" the previous global decision and ¥* the observation

vector of the local detector atl bime step t to get

J2(l'\) H Z o) =1 fyt[ f})({j}ﬁl,uo 1 Ytllr{(_))(](f 0)

e
"C'IIP(Uls-lv u(t)__la Yt“[l ).’](ta 1)]
X[P(“(t) = 1|UI£1) - P("‘:) = ”(]i:())] (2.61)

Letting p(ug, = L) — plug == LUTE) = F(UE) and couditioning on uh™ and Y,
we get

Y =50 S e SUDCWUE G Y i)
U):

p(ad Y YY) g (8, 0) — Cap(UL Jul ' Ve )
<p(uyt, Y ) g(t, 1) (2.6%)
The local decision vector (), given hoth the previons globad decision #f ' and
the observation vector Y* does not depend on the hypothesis present. Using the

observation independence in time, the observation vector ¥t is indepensent of the

previons global dedision wf 1. Theretore, Fquation (2.62) is wiitten as:

AOED 2t SR Dol Cpp(T G g™, YY)

Vi
xp(ud ) p(Y Hy)y(t,0)

~Cap(UF Ty 5 ) p(edy D p(Y )y (t, )] (2.63)
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The £* local detector decision depends on the input of this detector and not on
other detecter decigions wnd observations. Moreover, using the spatial indepen-
dence of obaervations, we write the term p(Uf,|ug™*, ¥?) as

(UL YY) = plul = 1ui ™ y0) x [T p(uiled™, vi).
i=1.igk

Substituting the above in Equation (2.63) and rearranging the resultant terms, we

have

POV =T Tt FUD falCrplul = 1™, g)p(s™ | o)

2(6 0)p(y Ho) T ien p(uilug ™, v p(vi| Ho)
~Cpd g, = ug™ yh)plug™ | H)g(t, Vp(yt Hn)
TP in POl ™ v (i Hy ) (2.64)

‘Taking the conmon factor plrd = ui™?, yi) out and integrating (2.64) over the

ohservation vector Y anly, we ot

HOEDY Jg pluk = g™ k) Top FUE)

t-e1
Yy

[ Ho)g (8, 0)p(y | Ho) T ia p(uflug™, o)

~Cap(ug™ 1) (4 1)p(yk HT) T, e p(flug™, )] (2.65)
"lo minimize the cost function JAH(L) of (2.65) we choose

pluf, == Hui™tyh) = 1 if Ay < Ay

0 otherwise (2.60)

where

Ao =Y FUDC ep (T 1 Ho)g (¢, 0)p( 92| L))

BA
Ay = FUDCap(TTud H) g (8, Dp(yk | H L))
v
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where we substituted p(Uj|ub™, H;) for TT% , isp p(uf|ug™, H;) and combined
p(Ut|us™, H;) and p(u§|H;) to yield p(Uf,uh™*|H;). Therefore, the &** detector

decision rule at time t<T is given :.y rewriting Equation (2.66) as:

LI HL)
Hyb,ub Y =ul = 1 i 2.(.25._‘ 1':””': t-1
Yelyks o ) k fP(IIHHo) fui™)
0 otheruise (2.67)

where yi(ug™!) is the k** detector threshold at time step t defined as:

_ Cyg(t,0) T f(UDP(UL, ug™" | Ho)
Cag(t, 1) Yug fFULP(UL, ug™" | Hy)

as stated in Theorem 2.4.

me(ug™")

Q.E.D.

It should be noticed thai there are two different threshold equations for the
local likelihood ratio test. The first equation is (2.45) for time step t=T and the
second equation is (2.46) for time step t<T". Similarly, the global decision rule has
a threshold of C;/Cy at time t=T and Cyg(¢,0)/Cag(t, 1) at time t<T as stated
in Theorem 2.3. The system thresholds up to time 'I' are found by simultaneously
solving the set. of threshold equations given by (2.45) a1 (2.46) for all time t,
t< 1,

System Performance

Next, we present the performance equations for the system namely the system
probability of error pf . As belore, ihe system probability of error at time T is
given by

Ty T o @
Pey = P P(Ho) + ppn p(H). (2.68)

The systemn probability of false alarw and miss, L., ph, ph,» are given by Equations

(2.22) and (2.25) respectively, We recall those equations

ol = ot (™ = 1)y (uE o 0)] 4l (7 = 0) (2.69)




Doy == Dot [Phag (ub™ = 0) = phy (ug ™" = 1)] + pho(ug ' = 1) (2.70)

where

Prog(ug ' = 1) = ) p(ug = 0|U")p(U*lug™ = ¢, ) (2.71)
UC

- B (g™t = 0) = 3 plug = LU )p(U*ug™ = 1, Ho). (2.72)
i s

T'he performance of the system is found when t="T. Hence, the system probability
of miss and false alarm have to be computed recursively up to time step t==T,
Time step t=1 represents a special case where the global decision rule ig the same
as given in Equation (2.32) of Theorem 2.3 with t=1. 'The local decision rule is
| the same as in Equation (2.44) of Theorem 2.4 with the local threshold equation
of (2.46) moditied for t=1 as follows

Cyg(t = 1,0) Tor F(UDp(UL Ho)
Caa(t = 1L, 1) 3o FUDMOL )

7l = (2.73)

|

| s . . . . 1 s .

‘ which is obtsined by dropping the previous global decision term uf™" in Equation
|

0
(2.46).

It is secn that threshold equation of the k** detector is coupled with other d.-

tector thresholds at time step t, i.o., we have spatial coupling. In addition, therc is
a bemporal coupling of thresheld equations through the terin g(t=i, 6). Hence, we
have a set of non lincar threshold equations that are coupled spatially and termpo-
rally. For a given time t='l', the computational complexity appcars to inhibit a
numerical solution; hence, in the next section we constder a sinpler Systern con-
sisting of only one detector with feedback, thereby eliminating the spatial coupling

with other detectors.

, i
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2.5 The Single Detector with Feedback

; We consider the single detector system with feedback shown in Figure 2.8. In

this system, we only have a single detector and do not have separate global and
: local detectors. Therefore, the results obtained in the previous section cannot be
used directly. Using the notations defined earlier and dropping the subscripts since

| there is one detector only, we derive the FSS decision rules for this system next.

THEOREM 2.5

For the one detector with feedbick shown in Figure 2.8, the decision rules that

minimize the Bayesian cost function in the binary hypothesis testing problem with

a tixed sarmple size is given hy

| Yy = ul = 1 if Aly') > Crg(1,0)/Cag(1,1)
;| 0 otherwise (2.74)
and for t > 1
| - , Cra(t, 0)p(ut—Hy)
tyot t—1 ¢ [ AN NASE!

i - . -z L I A ol
: 14 (.’/ u ) t I'f (.7/ ) C«i,‘](ts l)p('ut"llH[)
: { otherwise (2.75)
|
| where
| g(t, 7)) = ple® = ut = 1) — p(u® = Lt -0, 17;).

Proof:

i Recall the Bayesian cost function to be miinimized
J(U) = Cppy -~ Capfy +C (2.76)

where O, Oy and C are as defined before. We expand p}u and p;fn it terms of

Ty Oy T pla L) Ce Y el LRt ) 1O (2.71)

Iy nt

hy




| vt I Single detector [
|
|

] Fig. 2.8: The single detector system with feedback.
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Conditioning on u* and expanding (2.77), we get
=3 Cp(u’ = 1|ut, Hy)p(u'|Hp) — Cyp(u® = 1jut, H)p(u!|H) +C  (2.78)

Writing the above equation explicitly in term of all possibilities of uf, namely

ut=0, 1 and substituting p(vf = 0|H;) = 1 — p(uf = 1| H;), we get,

J(1') = C'fp(uT = 1]ut = 1, Hp)p(ut = 1|H})
+Cyplu l]u = 0, Ho)(1 - p(u* = 1|HYp))
CCap(u® o= b = 1, ) p{ut = 1 Hy)
—Cyp(uT = Uut = 0, H)(1 — p(ut = L|Hy)) + C (2.79)

Multiplying out, factoring the commmon term p(uf - 1 H;) out and rearranging, we

get

J1) = Crp(ut = 1| Ho)[p{u® = 1]ut == 1, Hy) — p(«¥ = l|u! =0, Hy)]
—Clgplu® = 1|H")[p(uT = lut = 1, #,) - puT = lut = 0, H)]

COpplu® = 1t =0, o) — Cyp(u® = Uut =0, Hy) + € (2.80)

The Jast three terms are independent of the optimization of the decision rule at
time t. Hence, we drop these terms and denote the new cost function by JYIY).

Letting p(u? = Uut = 1, J;) — p(ed = 1« 0, 1) = g(t, ), we rewrite Fguation
(2.80) as

JHY s Crp(at == ) g(8,0) - Cup(a® - LT )g(t, 1) (2.81)
Introducing the observations y® and using the law of total probability, we have
JHYY = /r Cra(t, O)p(t = Lyt Hy) - Cag(t, Dp(ut == 1, y*| 1) (2.82)
v
Conditioning on 4t and expanding the above we got

THTY s e Cry(t, Op(ut = Ly*s Ho)p(y*| Ho)

- Oag(t, Dplat = Uyt TH)p(yt| ) (2.83)

/"}
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Letting t=1 in the above equation and observing that the detector decision u'
given the observation y* does not depend on the hypothesis prescat, we factor out,

the resulting common term and rewrite Equation (2.83) as

JHT) = J[, p(u' = 1ly")[Cg(t = 1,0)p(y' | Ho) — Cag(t = 1, 1)p(y' [Hi)]  (2.84)

To minimize the cost function J'(1') of Equation (2.84) we choose

plul =1y") = 1if  Crg(t=1,0)p(y'|Ho) <
Cug(t = 1, )p(y'|H1)
0 otherwise. (2.85)

which is the decision rule at time t=1 as given in Equation (2.74 ) of Theorem
2.5. We proceed to derive the rest of decision rules for t>1 by expanding Equation

(2.82) in terms of the previous detector decision u*~! as follows:

T = /y | Sl Cpplut = 1ty Ho)a(t,0)
- Caplut — Lut~t gt g (¢, 1) (2.86)

1

Conditioning on u'! and 3* and expanding, we hav.

Fy= [0 Cplet = et gt Ho)p(at = o), 0)

ub~1

—Cuap(at = et o, H)p(ut™, vt ) g(e, 1) (2.87)

‘The dacision u! given the observation gt and the previous decision uf~! does not
derend on the hypothesis present. 'herefore, we rewrite (2.87), after factoring the

common term. p(ut = liu"], wt) out, as

FO = [F 0 plt = Lt Oyt Ol u )
) = Cag(t, Dp(ut, vt Hy)] (2.88)
To minimize the cost function JY(I') of (2.88) we choose
plut = 1t Nyt = L if Crg(n, 0)plyt ! )

Crl.(,’(ta 1 )p(l’ts “tﬁl l r{l)

0 otherunse. (2.89)
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as stated in Equation (2.89).
Q.E.D.

At time t==T, we have g(t=="T, j) == 1. This results in the decisiun rule at time

t=T defined a =

T

ul ="y,

0  otherwise (2.90)

4

The probability of error for this system is given by Equation (2.68) with the prob-
ability of miss and false alarm as given by (2.69) and (2.70). However

. - _ ) : A d1‘1 2.91

pm(.u Z) j\t(u‘—lzi) ! ( )

ph(ut! = §) = j[m dly (2.92)
f Af(ut=1=) |

where I/, and Fj are the conditional probability distributions unider the hypotheses
Hy an t Iy vespectively. The quantity A (u'™! = 1) is the threshold to be used when
integrating over the probability densities. It is related to the threshold p*(u!~! = 1)

in ap obvions manner.

In the next section, we apply the results obtained in this section to scrial

networks.
2.8 Detoction Results for the Serial Network

In this section, we present the design and analysis of another important class of
decentralized detection networks namely the serial (tandew) networle. This class of
networks has been investigated in the Jiterature (8, 17, [1]. We show the similarities
of the sertal network with the decentralized detection systenn with feedback sinsdied

previously.

h/




Consider a serial system cousisting of N detectors shown in Figure 2.9. Based
on ita obseivatio , the first detector makes a decision regarding the hypothesis
present and transmits it to the second detector. The second detector bases its
decision on the decision of the first detector and its own observation. This deci-
sion ia transmitted to the third detector. This precess continues until the final
detector which yields the glohal decision. This serial system can e viewed as a
single detector system with feedl w«ck discussed in Section 2.5 with t=n. Thus, the
threshold equations for the serial system can be written by substituting t=u and

T=N in Eqnations (2.74) and (2.75) of Theorem 2.5. The results are presented in

Lemma 2.1 next.

Lemma 2.1

For a serial system consisiing of N detectors as shown in Figure 2.9, the nt®
detector decision rule that minimizes the Bayesian cost function in the binary

hypothesis testing problem is given by:

) (eg(1,0)
Y =u'= 1 Aly?) > L0222
0  otherunise (2.93)
and for n =~ 1
Crg(n, 0)p(u™t Hy)
ne,n ne-l n . n f.]("1 )]( l ]
Y u == " = 1 if A > =
7y ) fAT) Cug(m, V)p(u= )
0 otherwise (22.94)
where
g(n,7) = p(uN = Lu™ = 1, fIJ-) — p(uN = 1™ = (), H,)
Proof:

A direct, substitution of t-:1 and T=N in Fqnations (2.93) and (2.94) results
in Kquations (2.74) and (2.75).

Q.K.D.




1
1 u 2

u
Y —# Detector 1 - : l Detector 2 b _ _ .
I __._.J N Detector N

y y —

Fig. 2.9: A serial system consisting of N derectors.




In order to demonsirate the validity of our results, we consider the case of 3
detectors in tandem and show that our results agree with the results established
in the literature [8]. For N=3, the decision rule of the first detector is given by:

Y =ul= 1 ifAGY >
0  otherwise (2.95)
where n! is the threshold of the first detector defined as:

1 (7j[}](1L3 = Hul o= ]_, IIQ) - p(u3 = l_lu" = O, H())]

= . - . (2.96
K Ca[p(a® = 1t = 1, Hy) — p(u® = l|u* =0, )] (296)
The decision rule of the second detector is given by:
Y u)=d" = 1 if AP >0’
0  otherwise (2.97)
whete (1) is the threshold of the secend detector defined as:
) = p(w’ = 1u* = L, Hy) — p(u’ = Ll|u* =0, 1) Cyrp(wt|Hy)
PR plud = Hu? = 1, H) — p(ad = Ju? = 0, 11,) Cyp(ul|H})
The deciston rule of the thivd detector ia:
Yy == 1 if AlY) > g
0 otherwise (2.98)

where n?(1?) iy the threshold of the thicd detector defined as:

_ Crp(e?|Hy)

RETRT
) = A

[t is seen that these decision rules are the same as those of Reibman and Nolte
8] Analogowly, solving the single detector with feedback problem wp to tirme
t="1" corregpond: to solving the problem of N detectors in taudern. Morcover, the
decison rle at time step £ < 7" in the single detector with feedback corresponds

Lo the decision rde of the nf detector (n < N) in the tandew network,

)
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Having established the correspondence between the serial network and the sin-
gle detector with feedback, the rest of our work on decentralized detection systemns
with feedback could be applicd to more complicated configurations such as the one
shown in Figure 2.10. In this system configuration, the block of n detectors and a
fusion center is repeated T times with the decision of each block feeding into the
next block. The decision rules for this tandem configuration are given by the deci-
sion rujes for the decentralized detection system with feedback given in Theorems
2.3 and 2.4 with time step t corresponding to the ¢* block in the tandem network.
Hence, the tandem configuration of Figure 2.10 is equivalent to the decentralized
detection system with feedback with the ¢ block thresholds of the tandem net-
work being the same as the t** time step thresholds of the decentralized detection
system with feedback. If the decision rules obtained in Section 2.3 are used for the
system shown in Figure 2.10, then the interpretation is that each detector block
of the tandem network attempts to optimize itself rather than trying to nptimize

the entire systemn.

2.7 Discussion

In this chapter, we presented the Bayesian formulation of a decentralized detection
systemn with feedback. ‘I'wo cases were considered namely the F'SS problem and the
Jess restrictive problem of the system without auy a priort knowledge of the stop-

ping time., Local detector thresholds were shown to be a function of the previows

glohal decision, |

e

was shown that a serial detection sysien can be interpreted as
a single detector systemn with feedback. Numerical results for system performance
for the case of uuknown stopping time were obtained. Numerical results showed
that a performance advantage of the decentralized deteciion system with feedback

considered in this chapter over the correspouding decentralized detection systern

without feedback cannot be established, in general. In the next chapter, therefore,
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we enhance the systemn and incorporate memory into the decentralized detection

system with feedback. We prove analytically that the system with raemory out-

performes the decentralized detection system without feedback investigated in the

literature,




| Chapter 3

| Decentralized Detection Systems

with Feedback and Memory

3.1 Introduction

1 In the previous chapter, we have cousidered the decentralized detection system with
i feadback shown in Fignre 2.1, In that system, at any time { cach local detector
’ | operated only on its enrrent obhservation v} and the previons global decision «f™". In
' other words, at time siep t, all previous observations yl, yf, ...,y ' were discarded.
In this chapter, we generalize the system of Figure 2.1 to includ the previons
observations in the processing at the local deteciors as shown in Figure 3.1, 1.c.,
we incorporate memory at the local detectors tn the decevtralized detection systemn
with feedback. We show that this system with inemory and feedback ontperforms

the conventional decentralized detection syatem without feedback shown in Fignre

y 1.2.
lu Section 3.2, we considec the peneralization of the decendralized detection sys-
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Fig. 3.1: A deceniralized detection system with feedback and memory.
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tem with feedback of Chapter 2 by incorporating memory at the local detectors.
The local detector operates on the previous global decision, its current observation
yt and all previous observations ¥, %2, ...,y " to produce the local decision u as
shown in Migure 3.1. We formulate the Bayesian hypothesis testing problem for
this gystem. Using the PBPO solution methodology, we derive the optimal fusion
mile anrl local decision rules. The system performance is evaluated and compared
to the performance of a decentralized detection systern without feedback shown
in Figure 3.2. The asymptotic performance of the decentralized detection system
with feedback is investigated and the probability of system error is shown to go to
zero asymptotically. In Section 3.3, we stusly the data transmission requirements
for the system where due to the feedback links additional data transmission is re-
quired. Techniques are developed such that the data transmission requirements are
rediiced. We propose and study two protocols. Numerical examples are presented

in each section.

3.2  System Description and Problem Statement

In this section, we consider the binary hypothesis testing preblem for the system
showrt in Figure 3.1, "This system consists of n local detostors which commmmieate
their decisions to the fusion center. The fusiou center conununicates the global de-
cision hack to each of the ndetectors. The system operation is described as follows:
At time step &, the k¥ detector makes the local decision uf, k=1, 2, ..., u, based
[ORCICIRRURIN ZED SR N . Vo fael £--2 1
CCISION iy 7, WG previous observations Neo oo Np Ty U
denoted by Yok and the current, obhservation yf. The local decision wf is trans-
mitted to the fumon center where 16 is cohined with the other incoming local

decisions to yield the global decision 1. The global decision o, is fed back to all

the local detectors for nse at the next thne step t+1. We asswne that the joing

conditicual prohability density functions p(Y5 Y5 L, YD), 0, 1 are known
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a priori where Y* is the concatenation of all local vbservations af time step t, i.e.

Yt = {t,7%...,%5}. The local decision uf is obtained using the decision rule

7L (.) s follows
ut =y (Yep,ug ")
wherc Y;_l'k = {yi,y’tc—-l, cey ult}

The global decision u, is obtained using the global decision rule v§(.) as follows:

ug == ¥o(U")

[ t t t
where [/* = {u{,ug, ..., u,}.

The problem is to find the PBPO decision rules ~L(.) for each detector
k=0, 1, .., n, 50 as to minimize a given cost function J(I'). For the Bayesian

formulation, the cost function J(1') is given by,

J(I) = Coop(uly = 0, Hy) + Copluy = 0, )

FCwp(uly, = 1, Hy) + Cuplud = 1, Hy) (3.1)

where (5, 1, 0, 1, is the cost of deciding wh == [I; when the true hypothesis is
[;. ‘The costs (4, 1, =0, L and the a priori probabilities p(Hp) and p(Il) are
assunied to be known. Rewriting (3.1) in terms of the probability of false alarm

at time step &, ptf”, and the probability of detection at time step t, pf,, we have

J(U) 2 Cpply - Caplyy 1+ C (3.2)

where
¢y o= P(H) (O Con)
G- POy - - Cay)
C = P(Iy)Co - P Cs

n the next section, we derive the decision rules yi(2) for k=0, I, ..., n, and

avaluate Lhe systemn performance.
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3.3 System Optimization and Perforuance

Before we proceed with the system optimization, we make certain simplifying as-
sumptions. We assume spatial independence, i.e., the ohservations at the &
detector denoted by Vi = {yl,yi% ..., yl} are statistically independent of the

observations at the j*

detector (j#k). Therefore, the a priori knowledge of the
conditional probability density functions p(Y?, Y*1, ..., Y| H;), i=9, 1, reduces to
the a priori knowledge of the individual detector conditional probability densities
pluk, vt i), k=1, 2, ..., n; j=0, 1. In addition, we assume that the ob-
servations at the & detector, yf, i7", ...,y} are independent in time. Thus, the
a priori knowledge of the individual detector conditional probability density re-
duces further to the knowledge of the conditional probability densities p(yi| H;),
k=1, 2, ..., n: j=0,1; t=1I, 2,...

Next, we proceed with the minimization of the cost function given in Fquation
(3.2). Using the PBPO dosipn wethodology, the optimal fusion rule yi(.) that
minimi s the cost function is derived. The result is presented in Theorem 3.1,
Assurning the knowledge of the fusion rule, the local decision rules vE(.), k=1, 2,
oy 1, that winimize the cost function of Feagnation (3.2) are derived in Theorem

3.2
THEOREM 2.1

Ior the decentralized detection system with feedback of Figure 3.1, the PHRPQ

fusion rule for the Bayesian binary hypothesis testing problem is given by

. (
’Y(cl(ljt) o= uit) e 1 "-f A(Ut) hes '(—;E‘

0 otherwise (1.3)
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where
1 2 A
A = ”%ﬁﬂ-‘{-‘l the likelihood ratio.

Proof:

Sinee the fusion center operation is ideutical to that «f the systen: considered

in Chapter 2, the result and the preof are ideatical to those i Theoren 2.1 ¢f

Chapter 2,
QB
THECREM 3.2
. « % . - .
The PBRIO decision cule at thie & detestor for the Bavesian binaty hypothesis
tesiing problem 13 given by

1 Yeeug ) mup = 1 if A(Yar) > ni(ug™)

0 otherwise (3.1)

whaere ph(uf") is the threshold of the kt* detector at time sten t defined as:

t=1y Cy Z(}; S(UDp(U} 1“7[0) -
rlk(u(] ) T T 1 (ti-d)
Ca 3 f(U)P(UE JusT Hy)
and
f(Ui-) = pf “n g 1|(/k1 . (”n == I'[ ko)
Froat:

Recall Fquation (2.1) of Theorem 2.1
J(rY) Lp ug = TOCrp(UY ) — Cap(TTH )] + C. (3.6)

We write (3.6) explicitly in terms of the &% local decision

HY ST bl = A URC (U | Ho) — Capl U )]
U':
ol WO UG CalTli 4 ¢ (30
60
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where
Ub = {u},u, ., uf_,ubypy, 0 ub )
Ut = {ud, ub, oy uf =4, ul )
Substituting p(Uf,|H;) = p(ULH;) — p(UL|H;), =0, 1, in (3.7] and factoring out

common terms, we have

J() = Ty pluh = HUL)Crp(Ui | Ho) — Cap(Ugy | H1 )
= p(ud == HUE)Cp(Uf [ Ho) - - Cap(Ufy 1TT)]
S pud - YUEC s p(UE Ho) — Cap(UEHH)] 4 C

Rearranging terms,

J(I*) =3 (p(uf = 1Tk ) — p(ug = 1{Ug)]
Ut

x[Cp(UEUly) — Cup(Uty | H1))

bplt = YULIC p(ULE) — Cap(UEE + € (3.8)

[t should be noticed that the proof up to this stage is the same as the proof of
Theorem 2.1 since the development is independent of the observation variable.
Proceeding with the proof, we observe that the last two terms of (3.8) are not
involved in the vptimization of the A% local detector. We discard these terms in
the subsequent equations and denote the now cost function by J'(1'%). Next, we
expand (3.8) in ug™! the provious global decision, and ¥, = {Y1,Y*' .., Y} the
chservation vectors of local detectors up to time step i, hence

YHIDEDY [p(nh = 1Ugy) = p(vg = LU

Ui

o 321 [Cop(Ubs, 0 b Yl 1) — Cap(Uy, ™ Vel IR)| - (3.9)

where [y, is a multifold integral over all yf for all k and all tine steps up to and

including t.

Vetting n(ul = 1|\UE) plu - YiTf) - - J(UE) and expanding (3.9 by conditiouing

Gl




on u5"* and Y;, we have
JHIY) = Z L) Fr Eur-i[Cfp(UﬁlluB"‘, Y, Hao)
A

(”0 y Yellg) — Cup( 121]“0 ! Yy, Hy)p(u “hLYH)] (3.10)

The local decision vector I/f, given both the previous global decision uf™ and the
observation vector Y; does not depend on the hypothesis present. In addition,

expanding p(ui™', ¥;|I;) by conditioning on Y;, we have

1 =3 F(UE) Fy Sp
Ug

[(/fp(Ukllu‘ 1,‘1})[)(11() |Y¢1‘ U) (Yt,YE—-ll}-Z-U)
—Cap(Uy g™, Ya)plug™ Ve, B )p (Y, Yo [ 11)] (3.11)

where we have used the fact that Y, = {V*,Y, ,}.
Due to the teruporal independence of the observations, the previous global decisien
uy™! does not, depend on the observation vector Y. Furthermore, using the spatial

independence of obscrvations, we rewrite Fquation (3.11) in terms of the individual

detector’s observation vector Y4,

JHI =5 R s oo iy S
[Crp(Utlus™, Y)plads ™ [Yie1, o) [TEs p(Yeal Ho)
—Cap(U ™, Yp(ul Yo, 1) T, p(Yal L)) (3.12)

Since the decision of the k% detector ul depends only on its input observation and

does not depend on other detector decisions,

p(UGL s ™, Vo) = p(uf, = 1uf ™ Y H p(uilug™, ¥i)
1145k

Furthermore, due to spatial independence of observations, the above is written as:

T8
pUkles 7, Y3) o plug = ilug™ Vo) JT w(uilug ™, Vi)
LAk

027




Substituting this result in (3.12), factoring out the k™ local decision term and
rearranging, we have
JHIH =% Lt F(UD Jy, , p(uf = 1ug™, Yig)
Ux
fY(,J M -I‘Y(J;._.) fyr,k—{-l c sz,n [(7fp(u(t)—1im"*]’ Ho)p(Y;.klfIO)
x[] I?:l,i;ék P(Yt,ilHO)][HZ_-l,i;ek p(uf]uf,‘l, Yei))
~Cap(ug | Yemr, H)p(Yekl H1) [Ty i 2(Yail 11)]

NI I 70 (3.13)

Cowbining the multiplicative terms in (3.13) and unconditioning on Y;;, we have

)
Jl(l‘t) = Z 2—:u8"1 f(UI:) fY:./. p(tlfc = 1|1"'(t)"1’ )/t.k)

Ux

.I‘y'll T .f}’,l,‘_l ',‘},f,k+1 “ e f}’g,n[(}pr’u'é— ]'[—{O)p(}fhkl}l{o)
x[n?ﬂ,.’;‘.k p(Yei,uflug™, o)) = Cap(ug ' Hy)

POYek ) T e A Ve, ™", 4] (3.14)

Inteprating over Yiy, Yia, oy Yikety Yk, s Yin and unconditioning on uf™t, we

rewrite (3.14) as

£--1
Uy

S =Y Sy 20 = 1™ Yeu) Soue 1 (UF)
X[Cyp(Yop o) Ty spx Py ug™ o) - Cap{Yir|1ly)
X T ik pud, ug ) (3.19)
To minimize the cnst function given in (3.15), we choose
pluf, = Hul L Yan) = 1 if Ag < Ay
0 otherwise (3.16)

whure

Ay S FUNCwYl) 1T plud, uf M)

Ut i




A\

Ao =3 fUHCp(YerlHo) TT p(uf,ub™|Ho)

U =1,k

The k" dotector decision rule therefors is given by rewriting (3.16) as:
P(Yt,kuill - ﬂ};(ub 1)
p(YixlHo) °

0 otherwise

YilYerug ) =up= 1 if

wher 2 nf(u5™") is the threshold of the k** detector at time step t defined as:

(1) = C; oy fURP(UL, w | Ho)
o Ca Ty FUURP(UE, ug™t | Hy)

(3.17)

as stated in Equation (3.5) of Theourem 3.1.

Q.E.D.

It is important to observe that the local decision rule is still a likelihood ratio
tust. Thoe step t==1 represents the case without feedback. At this step, the fusion
rul has the same form as given in Theorem 3.1. However, the local decision rule
is a likelibood ratio test given by Equation (2.18) and the threshold of the test is
given by Equation (2.19). For time steps t > 1, the threshold 7f(uf™") of the k™
detector is a function of the previous global decision uf™' as shown in Equation
(3.17). Since the previous global decision ..~ takes twc values in the case of binary

hypoihesis testing problem, two thresholds exist for the likelihood ratio test at the

local detectors.

System Performance

The gvstem performance will again be ¢ iven in ferms of the system prohability
of erorr p! . The derivations are the same as in Chapter 2 and, thercfore, we ouly

list the results herc. The system probability of crrox pf is given by

Peo = P p(Ha) + prop(I) (4.18)

G4
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where p}, and pj,u are the probability of system miss and false alarm respectively

and are given by

F’ino = pfv:ol(pfno (ué—l = 0) - p:no(u:)—l = 1)) _*— p:ncl(u:)—‘l = 1) (3'19)
Py = Pl b (! = 1) = oy (6! = 0)) 4l (™! = 0). (3.20)

At time step t=1, the systern probability of error equation is the same as Equation

(2.27) of Chapter 2.

Next, we compare the performance of the PBPQ decentralized detection system
with fcedback considered here to the conventional PBPO decentralized detection
system without feedback shown in Figure 3.2. Intuitively, we expect the system
with feedback to perform better because of the additional information available at
the local detectors due to feedback. Let the two systemns shown in Figures 3.1 and
3.2 be denoted by system A and system B respectively. The pecformance of system
A at time t can be compared with the performance of system B in a meaningful
manner if system B processes t observations at each local detector so that the
total number of obscrvations processed by systewu B s also £ x n. For the sake of
clarity, we only consider the case where all the local detector thresholds are equal
to each other. The general problem of nonidentical thresholds may be considered

in a similar manner. The result is presented next.
THEGCREM 3.3

Consider the PBPQ decentralized detection systems A and B shown in Figures
4.1 and 3.2 respectively. The probability of error attained by system A at time t

is equal to or less thon that attained by system B, i.c.,

(pe)a 7 (W) s




nnder the <ondition
Pt <1/2

where p}Jl is the probability of false alarin of system A at time t-1.

Proof:

First, we establish that for a specific non-optimal choice of thresholds at the
local detectors in system A, the probability of error is the same as that of system
B. It will then follow that with an oplimal choice of local thresholds, system A
will perform at least as well as system B. We consider the probability of miss and
false alarm for system A given by Equations (3.19) and (3.20) and rewrite them in

a slightly different form as:

Pino = Doy (6™ = 0P 4 g (g™ = 1)(1 ~ p)) (3.21)
Pr, = P (™ = Dpf "+ % (ug™ = 0)(1 - pi"). (3.12)
Recalling Fauations (2.24) and (2.26),
P (Ut = 1) = 52 p(1 = O (Ui = 4, 1Ey) (3.23)
15
Ph(ugt = d) = 0 plug = LUP(UHaE™ = 4, ). (3.24)
ue
Tt is seen that there are two values for pl, (ug™' = 7) and pf (uf ™ = i) corre-

sponding to i—:0,1. Also, recall that there ave two thresholds at each of the local

detectors i systeun A,

Let 9} denote the opiinal valwe: of the iocal threshold ( single threshold) for
system 13 We let the local threshold pf{af"" = 1) at cach of the detectors in

system A take a value less than 78, Sinee the Jocal detector thresholds have been

016
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assumed to be identical, each threshold value at a local detector corresponds to a

specific value of the system probability of miss and false alarm. We et

P = 1) = 7 (3.25)
ph(ug =1)=qa. (3.26)

We choose nty(uf™ = 0) (> 7% (uy" = 1)) at some value such that the following
hold:

Prag (g™t 0) =y - A (3.27)
Phlug? =0)=a - A (3.28)

where A is any value such that the threshold 7% (uh ™" — 0) satisfies both Equations
(3.27) and (3.28). Substitutiirg the results of (3.25) and (3.27) in Fquation (3.21),

the probability of miss for system A 1s given by

Phs = (v + A)phit A (1 —pit

= yphal + Aphit (1 - pit

P =+ Apt L (3.29)

g

Similarly, the tesults of (3.26) and (3.28) are substiluted in Pquaticn (3.22) to

obtain the probability of false alarm for system A as follows:

Pl = apft (o AT i)
P = a— A1 -, (3.30)

T'herefore, the system probab. iy of error for system A can be written as:
(w8g)a = (7 -+ Apl () + (@ ~ A(L - pi*))p(UH).
Fxpanding the terms and reacranging,

(e )a = yp(Ih) b (o) — A[(T- -p}'ﬂ‘l)p( o) — phitp(IT)]. (3.31)

O/




Next, we calculate the probability of error for system B. It is seen that the proba-

bility of miss and false alarm for system B can be written in terms of y and o as

follows:
pr=a-—al
Pm =77+ bA

where a and b are some real numbers such that 0 < i < a < 1. Without joss of

geucrality, we assume that

I; ' a+b<i.

If a+6 > 1, then we can redefine a, 7, a and b with respect to the threshold
| 74 (157" == 0) (as opposed to the threshold nf(uf ' = 1)). This will ensure that the

, asstmption @ + b < 1 is satistied. 'The probability of error for system B can now
i

he expressed as
[ (pe)m = (ev — al)p(Ho) + (v -+ bA)p(Hy)
, = ap(Hy) + yp(Hy) — Alap(Uy,) - bp( Hy))]. (3.32)

| From Fquations (3.31) and (3.32), we observe that for A = 0, the probability of

crror [or system A s the same @ that of system B, ie,

| (pry)a = (pi)n-

[n addition, loeal thresholds for both systems are the sawme, i.e.,

|
| W = 1) = (7 = 0) =

In other word:, the decontralized detection systean with feedback and memory
i reduces to the conventional decentralized detection systemn B when a sub optimal

choice of local thresholds for system A is raade as described above.

|
i
| Next we consider the case A > 0 and show that system A performs better than

. S o ' ' }
systenn Howhen I;ffu w9, We observe that the first two torws of (3.32) are the

68
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sare as the first two teris iu (3.31). It remains to be shown that (ap(Ho)—bp( Hy))

of (3.32) is less than ((1 — pi; " )p(Ho) — pimy p(H1)] of (3.31). Hence, we have to
show that

ap(Ha) — bp(Hy) < (1 — Pl )p(Ho) -~ Py ().

Since we have assumed that a < 1 — b, the following holds

(1 b)p(Ho) — bp(H) < ap(ile) — be( Hy)

Thus, we need to show that

(1 - b)p(H) — bp(1y) < (1 — pl " )p(Ho) — prg p(H1)
or,
—bp(Ily) — bp(H,) < ~p’f;1p(H0) ~ pirlp(Hy).

Thiy reduces to

b > pl ' p( Ho) + pray p(211) (3.33)
U]_',
b2 it

Since a +b < land b < a, b < -% Therefore, the above expression can also be

expressed as

1 - t-1 Qo
:t-): £pt'u : (¥34)

Fquation (3.34) represents the condition under which system A perforins better
than system B. [Furthermore, a stricter inequality can be obtained by using the

convexity of the Receiver Operating Characteristic (ROC), i.e.,

Thiy stricter inequality is given by

/2 > p;]'ng( y) 1 ptf;‘p( i)

(3.35)

06Y




or,

1/2 2 pit. (3.36)

£
b
-

Example 3.1

We pursue the same problem as considered in Example 2.1 for the system with
memory. [lence, the system cousists of two detectors and a fusion center. The input
observations at each local detector are also assumed to have a Rayleigh distribution.
A priori probabilities are assumed to be equal and minimum probability of error
cost assignment is used. For simuplicity the SNR at the two dztectors are assumed

to he equal. Tor the OR fusion rule, we plot the threshold values yi(uy™ = 1)

t-—-1

and ni(vg"" = 0) vs. SNR in Figures 3.3 and 3.4 respectively. The probability
of system error pf vs. SNR is plotted in Figures 3.5. The probability of error of
a decentralized detection system without feedback vs. SNR is plotted in Figure
3.6. Similarly, for the AND fusion rule, we plot the threshold values gk (ug' = 1)
and ni(uh™ == 0) vs. SNR in Figures 3.7 and 3.8 respectively. ‘L'he probability
of system crror pl, vs. SNR is plotted in figure 3.9 The prebalility of error of

the decentralized detectic 1 system without feedback vs. SN, is plotted in Pigure

3.10.

function of time t. The plot in Figure 3.4 shows that the threshold n (i = 0)
increases as a function of time and as a funciion of SNR. Therefore, ar time t
goes to infinity, the threshold ni(uf™ - 1) goes to zero and ni(uh™ = 0) goes
to intinity. The plot i Pigure 3.5 shows that the probability of syster crror pf
decreasas as a function of tiie and as a function of SNR as expected. In addition,

we observe thai the decentealized detection sysiom withont feedbacl has the same

70
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probability of error as the system with feedback when ore sample is processed at,
each local detector. As the number of samples per detector increases, it is seen
that the decentralized detection system with feedback and memory (Fig. 3.5) has
a lower probabhility of error than that of the conventional decentralized detection
systern (Fig. 3.6). Furthermore, p} goes to zero as SNR increases to infinity and
as time step t goes to infinity . The plots corresponding to the AND fusiou rule

shown in Figures 3.7, 3.3 and 3.9 follow a similar behavior as those for the OR

rule.
Asymptotic Results

In the above numerical example, we observed that as t increases, the system
probability of error decreases. It would be of interest to examine the asymptatic

behavior of the probability of error. This result is presented next.

THEOREM 3.4

For the distributed detection system with feedback and memory shown in [Fig-
ure 3.1, the system p.obability of orror goes to wero as the number of time steps ¢
goes to infimty, i.c.,

limy o Pty = 0.

Proof:

We call npon the asymptotic bonuds on performance discussed in Blaliat [35].
'or the hypothests tesiiog problem, 1t has Leen shown that as the nuber of tade-
pendent identically distribubed measuveients, n, goes to inhwity, the probability
of wn and false alana go to zero, Le.,
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With these two results in mind, the probabilities of 10iss and false alarm of a local
detector in a decentralized detection systein without feedback both go to zero. The

probability of miss and false alarm of the uecentralized detection systemn without

feedback is given by

pto =3 o(uh - OlUY) T o, T1 Pl (3.37)

us t€5a IG5,

py = Yop(ug = 1U") TL(L -~ ) TL w4, (3:38)

e iE€S50 1Sy

where

Su: th set of detectors deciding 0 in U°.

Sy the sct of detectors deciding 1 in 174,
Notice that Equation (3.37) is a summation over all possible values of U*, When
Ut consists of all s, we assume that p(uf, = ¢|U*) = 0 for any reasonable fusion
rule. For all other values of U*, at least oue pi - will exist which goes to zero ac t
goes to infinity. Thu,

limng oy b, = 0

b14]
In o sinilar ashion, the probability of false alarm goes to zero as well. Using the
reatlts of Theorewn 3.3 (Lo, the systen probability of crior of the decontralized
detection systeur with feedback and mewory s equal to or less than the probability

of error of the decerdralized detection system vithout foedback), the following hold,

. {
lirn,. vo Dy 0

lwnf_.‘*.,‘,p_“ﬁ, = (),

Therslcve,

li77’,i...‘.(_,“ 1

e
4 (U

(3.8,




Substituting the results of the ahove theorem in the threshold Equation (3.5) for

ui™' = 0,1 it can be shown that the following properties hold,

i—-1

i sco (U = 0) = 00

it

iMoo TE(uS™ == 1) = 0.
Thevefare,
li"lg._.oop}n(utﬂl = ()) == ()

lz'7nt_¢cop}°(ut—l =])=1

limt.,..,op:n”((ttﬁl = 0) =1

limyenoPly (071 = 1) = 0.

The probability of detection p§ (u'~* = i), i=0,1, can be cbtained from the above

properiies in a straightforward manner.

The performance advantage exhibited by the decentralized detection system
with feedback and memory is nseful in many practical situations., Unfortunately
increased communication between local detectors and the global decision maker
he omes necessary. Therefore, it is desirable to use some conuninication protocols
to reduce the transmission of decisions between local detectors and the global
! decision maker. i the next section, we propose and analyze two protocols to

reduce data transmission.

3.4 Phaka Traisaio:

.o An iroportant 1ssne to be addrcssod for the fecentraliied detection system with

feedback is the data teansmiscion requirements. I this systow, no decisious ore

fransuitbed from the local deiectors to the fusion center. The global decision is
temsnntt d froyp Ll sing center to n lecal detectovs: The s without, oy proio

colo, Hhave ace s boial of 2o fransmis-ions ) cach Lime step. Therefore, the total
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; number of decision transmissions upto and including time t is 2nxt which is more

than the data transmission requirement of the decentralized detection system with-

; out feedback. It would be desirable to reduce the data transmission requirements.

l | The metric that we employ is the number of decision transmissions in the system.
X

; In this section, we propase two protocols to reduce the average number of decision

| * transmdssions. This reduction will result in savings of system resources such as

power and bandwidth etc. in a poini-to-point communication environment. In

commnunication networking environment, this savings will resulf in a lower amount

of iraflic yielding smaller delays and higher information throughputs. In both of

the proposed protocols, each detector k, k=0,1,...,n nceds to store its previons
| decision. We denote the number of decision transmissions on forward links and
feedback links at time step t by L% and L} respectively. Next, we consider the two

protocols individually.

| 3.4.1 Protocol 1:

| In this protocol, at any time step t the global decision maker corpmunicates its
decision to all local det. #fors that, disagree with it. Therefore, decision transmission
| on a feedback link takes ;lace only when the: global decision maker disagrees with
: the local detector corresponding to that feedback link, Thus, we have

Transmit slobal decision a2t time t to local detector k if
{uh £k k=1,2 }
g F i, k=12, n}

For the forward link:, local dedision uf is transmitted only if it disagrees with the

. \ . . 1 .
previoms plobal decision uf™'. Thervefore,

Transmit local dectsion ab te t feow local detector k if

{ui Aup Sk = 1,2, )

Ne-od ) we egamine Lhe teduction o the iianber of decigion teansimssions achieved

Y

-
e e e
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when this protocol is employed. The number of forward decision transmissions at

time t given the hypothesis H; can be expressed as:

n

() = 32 1k 1)

=1
and the number of feedback decision transmissions at time t given the hypothesis
H,' i8:
L(@) = 3 Tug # ui|H:)
k=1

where 1(.) is the indicator function given as:

1 if (\) true
()= ‘
0 otherwise

We observe that both L% and [ are discrete random variables taking values in
[0,n].

The average number of decision transmissions under the hypothesis H; is found

by taking the expectation of the above random variables. Therefore,

Average munber of forward decision transmissions at time {:
n
E(LY(0)} = 32 B{I( # v 1)}
k=1
Average number of feedback decision transmissions at time t:
13
LY = 5 {1 (e # up | H)Y
k=1

Next, we present Theorem 3.5 where the average number of decision transiissions

under this protocol is expressed in terms of the system pavameter:,

THEOREM 3.5

Comsidey the decentralized deteciion system with ferdback and memory con
sisiing of nloenl detectors and a fusion center enploying Profacol 1. The averagee

wber of deciston transmissions at time t s given by

ML = p(Ha) RITEO)) 1 p{ 1) (L) (1.40)

\ql.vl.i

#




where E{L*(1)} is the average number of decision transmissions under the hypoth-

esis H, given by,

B(L1)} = n+ptipb, (6 = D(n =2 5oy sy (a6 = 0))
+phy b (ug Tt = 1) (2500, ph, (ue ™t =2 1) — n) (3.40)
and E{L*(0)} is the average number of decision tran: issions nnder the hypothesis

Hy given by,

E{LN0)}=n + el (ug = 0)(n—2 ook (uet = 1))
k=1
+(1 "' I’};l)(l "'p}()(u(:)—l = O))
n
x(23 ply (ug™t = 0) - n) (3.41)
5 |

Proof:

Recall that:

ALY = 32 BT ul 1)}
k=1

E{LY)Y = S B{I(u} # ub| 1)}

k=t
These can also be written as:
BLLGG)E = 3 p(ug # wy N H) (3.42)
k=1
1'-','{:",,',(£)} — z;:(ué £ | 14;) (3.43)
k-1

Now, we proceed to derive the average number of decision transmissions B{1501)}
and F{LE(1)} separateiy s follows:
(0 K{LY ()}
Censider the 2 term of the cwmmation (3. 12). Writing, it expliciily in teris
of all pussible combinations of uf and 1§ snch that 1 # u')™'. We have,
pla Lo Y - plag == Loy =G}

"*’1;(";: - 0, ":) - il”')

84
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i

Conditioning on uf™* and expandins;, we have

pluf #wgH) = pluf = lug' =0, Hi)p(ug™ = 0LH;)
+p(ug = Olug™ = 1, Hi)p(ug™ = 1| ;)

Summing this over all detectors we get the average number of decision transmis-

sions on the forward links:

7

E{LL()} = Y nlul, # ufH) = noap(ut = ud™ =0, H)p(ui™ = OH;)

k...
+p(ul = 0jui™t =1, Hy)p(ui™ = 1)

Letting F; = A, and rearranging terms, we get

E{L5(1)} = phit x (3 Pl (g™t = 0)] + pl™ x me,,(u' T=1)] (344)

k=1
which completes the first part of the proof.

(L) E{Li(1)}

Starting with Fquation (3.43), we expand the & term of the summation by

1

introducing the previous global decision u§™! as follows:

plug # wl H;) = E_, plug # uiy ug™ L)

We write this in terms of all possible decision combinations such that i, £ uf:

plul, # u|H) = Pl = L b == 0,0y )

o-‘v\/

dpluh =0, uf =1 uy )
Conditioning on uf and uf™* and expanding, we have:
pady # ub|fl;) — 2wt 1 wh = 0lud = L b H)nCl = U™ 1) plul )
Fpud - Hub = 0, uy™ Hy)p(ud = O™, H)pled ™M 1)
Rearranging and observing that . - ¢ conditioned on v and I, is independont

of 1fy, we have

pOu A wH i) = 3 p(n™ ' THG)  [p(uf = O™, Bl — Hug™', )
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': Summing over all detectors and letiing H; = H; yields the average number of

feedback decision transmissions,

E{Ly(1)} = Z plustHy)  Tpoqlp(uf = Olug™, Hy)p(ufh = ug™", H1)
.‘ || ol = L™, Hplub = O™, 1)
H This could be rewritten as:
| (LD} = X oo 1) Lipm,, (157%)  ply (15 ™) + 1 (657%) X oy (™))
| (3.45)
f

Substitnting p4, (ui') by 1 -pt, (uy™!) and rearranging, we have

i E{LY(D) = 2 p(uf™ )l x pg (17 + (1 = 20k (157)) zp,,m ] (3.46)

r—1
llo

| Finally, sununing £{[}(1)} and E{L%{1)} we obtain the result of Equation (3.40).
In a similar manner, we may derive the results given in (3.41). ¥inally, the results

of (3.40) and (3.41) can be used to obtain the overall result of Equation (3.39).

Q.E.D.

Next, we consider the asymptotic behavior of the average number of aata

! trausmnissions nnder this protocol and present the result in Lemma 3.1.

Lemma 3.1 :

When Protocol 1 is used, the average number of decision transmisstons £{L'}
for the gystem under consideration goes to zeoo as the number of tiwe steps t

increases to indinity.
. Proof:

We: tecall ihe asyinpioiie properties of the decentralized dedection system with

awerory and feedback from Section 3.3 to prove thiz Lemma, namely,

Ho
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, t o
hmg._.oopmo = 0.

[z‘mf._-;o‘)pf{u = 1.

limy..cobly, (w5 " = 1) = 0, k=1,2,.. . 0.
limyeopl;(ug™ = 1) = 1.
Using these asymptotic properties in (3.40), we have
limy . E{L'(1)} =0
Similarly, it can he shown that
liny .o BE{L(0)} =0

Therefore,

limg oo E{L'} =

i
|
, Q.E.D.
[
1
-
" f Next we consider another protocol for the reduction of decision transmissions.
1
i
L
i
\
| 3.4.2 Protocol 2:
.|
|
; [n this protocol, at any time step t, the global decision maker comumunicates its
. decision to all the local detectors when it disisrees wiih the previons global deci
[ stont. Therefore, a feedback decision transmission on all feedback links akes place
: when the curreat global decision disagrees with the previous slohal desision. e
. Transmit global decision at time t to all local detector: i Lol 4 0l a
For the forward links, local decision wf is transmitted on the &% forward link onh
: if it disageees wivh the previons local decision uy ' . Henee,
:
| Transmit local decision from a focal detector ki {0 £ 4 ')

Tire rednction i the average nnmber of decision transursnne g b

cmploying this protocol . examimed nexd, W expee s the enahier or norw g
b } |
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decision transmissions given the hypothesis II; as:

| ) = 3 1k # )

| and the number of feedback decision transmissions given the hypothesis H; as:
- 1) = 3 I # ut V)

. k=1

! wheve I(.) is the indicator function defined earlier. We observe that both L%()

and L{(7) are discrete random variables taking integer values in [0,n].

The average number of decision transmissions given the hypothesis H; is found
by taking tle expectation of the above random variables. Thercfore,

/iverage number of forward decision transmissions at time t.:

| B{LY(0)} = Y EUI £ 7|}

k=1

i Average number of feedback decision transmissions at time t:

E{LL()} = :; E{I( # uf™ | H))}

| Next, the average number of decision transmissions for this protorol is presenied

1 in Theorem 3.6.

l THEOREM 3.6

| Consider the docentralized detection system with feedback and rnernory con-
. sisting of n lecal detectors and a fusion center employing Protecot 2. The avsrage

! number of decision transmissions at time t is given by

:

| . ,, N -
: || E{I'} = p(Ho)£{LY0)} + p(H ) EILH (1)} (3.47)

|

where E{L'(7)}, i=0,1, is the average number of dedision transmissions at time t

under the hypothesis H; and given by,
| E{LA(@)} = E{L @)} 4+ £{L5(0)}
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li1 100Dy = 0.

limy ooy, = 1.

limyecolly, (g™ = 1) := 0, k=1,2,... 0.
lime: oopi(ugt = 1) = 1.

Using these asymptotic properties in (3.40), we have
lim, .o E{L*(1)} =
Similarly, it can be shown that
limy .o E{L}(0)} =0

Therefore.

llmt_.ooE{[/t} =z )

Q.E.D.

Next we consider another protocol for the redicticn of decision transmissions.
3.4.2 DProtocol 2:

In this protocol, at any time step t, the global decision maker communicates iis

decision t.: all the local detectors when it disagrees with the previous global deci-

sion. Therefore, a teedback decision transmission on all feedback links takes place

when the current globhal decision disagrees with the previous global decision, i.e.,
‘Iransmit global decision at time t to all local detectors if {uf s i1},

For the forward links, local decision u} is transmitted on the k% forward link only

if it disagrees wiih the previous local decision u{™ . Hence,

Trausrait local decision from a local detector k if {uf # uf~'}.

The reduction in the average number of decision transmissions achieved by

employing this protocol is examine? next. We express the munber of forw ud
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The average number of feedb.ack decision transmissions E{L;(7)} ,i=0,1, at time t

are given by

E{L{(1}} = n x [ph,, (6™ = 1) x oot + ply (ug” =0) x ph] (3.48)

E{L{(0)} =nx  [(1-p%(us™ = 1)) x Pl
+ptfo(u6"'1 =0) x (1 —p}:‘)] (3.49)

The average number of forward decision transmissions £ {L%(2)}, i=0,1, at time t

are given by

B{LY(} = 5 0 phay (ul™) x Ln + 2, (uf™) x L (3.50)

ut=1 k=1
Yo

where L, = Zu‘-z pi—l(u:_-_) % k1
Ly = S, Pl (uf?) x k1
k]l = p UO lluo 7Hl) X p(uo' '2|[1r1).

EIYO) = 3 30w () x Lo+ (1 (u§ ) x L (351)
ut-t k=1
(4]

where [3 = }-:u:;z(l - P},, (“o 2)) X k0
Ly = Ty ph  (ug™®) x k0
k0 == p(ubub2, Ho) x p(u§ 2| Ho).

Proof:

As before,

R{LY(0)} = }:p(ui 4wtV (5.52)

ET(7) > plul £ ub ' H) (3.53)

89




Now, we proceed to derive the average number of decision transmissions for any
H;. The final results are obtained only for the case H; = H;. The results for
the H; = Hp case can be obtained in a similar fashion. We derive E{L%(1)} and
E{L{(1)} separately as follows:
(@ E{Z4()}:

We observe that in Equation (3.53), the summation argument is independent

of the surnmation index k, hence
E{L{(3)} = n x p(ug # vy | H;)
Expanding in terms of all possible decision combinations such that u$ # u§!,

E{Ly(0)} = n x [plug = 0,ug”™" = 1{H:) + p(ug = Lug ™" = 0|H)]

1

Conditioning on u§™' and expanding

ELEY()} =nx  [p(u = O™ = 1, Ho)p(ul™ = 1]1;)
+p(uf = Ljug™" = 0, Hi)p(ug™" = 0| H;)] (3.54)
Substituting IJ; = [; and rewriting in terms of p, and p§, we get
E{Ly(1)} == nlpg (ug™! = 1) x pig" + 94 (ug™ = 0) x pi!
Similarly, letting 77; = Hy in Equation (3.54), we have
E{Ly(0)} = nl(1 = pj, (ug™ = 1)) x pi7* + p, (ug™" = 0) x (1~ pi")]

as stated in Equations (3.48) and (3.49).
(T1) E{L}(1)}:

We introduce the previous global decision uf™! inte Equation (3.52), hence

B{LY)} = 30 3 pluk 54 ug™, us ™ L)

“[f]_l k=1

Expanding in terms of all possibl: decision combinations such that uf # uf™!

BUL@Y =200 ol = 0,0l = 1uf )

11.,5,' RS

p(ud = 1,07 = 0,01 (3.

(W]
o
[be]

~




Conditioning on u{™! and u5™! and e panding, we have

E{L}(z)} = E Z p(ug == Oluz =1,uf -1 H; )p(u = 1, uu l|H)

(=1 k=
w1 k=1

Fp(a = Thuf™ = 0,uf™, Hp(uf™ = 0,ub™ [H;) (3.56)

Observing that the local decision u§ conditioned on u5™! and H; is independent of

uj™, we rewrite the above as:

E{L:@)} =33, p(ut = 0luy™, H;) x T1(3)
1k
1 un
: +p{ug = lug™, H;) x Ta(s) (3.57)
i where T((7) and T;(i) are used for notational convenience as follows
e
|
o Ty(1) = plug" = 1,uf" | H:)
N To(d) = pluf™ = 0,uf™' | H)
B I The terms T1(7) and T5(z) cannot be evaluated yet and need further work. Intro-
) ducing u§* into 7y(i) and conditioning on «§* and ui™? | we get
5
B = 2, Uueh™ g™, Ho)p(uf™", uf™? | H)
‘.:..i "o
Further conditioning the last term on uf™ and observing that u}™" conditioned on
x|
ub? and H; is independent of u4™", we have
-
b T(@) =Y p wpmt = U™, H)p(ul ™, H)p(ul™2 | H) (3.38)
. "n
‘ o In a similar fashion, 75(¢) is obtained as:
".;i Ty(2) = S plug ™ = Ofug 2, Hi)p(ug™ Jug™, H)p(ug ? | Hy) (3.59)
| up™?
!
| ! Fovi=1, 71(1) and 14(1) can be written as
l\ TY) — S e (e 7 % plag, ) plud A HY) (3.60)
2
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To1) = 3 phy (ug™") x p(ug ™ [ B )p(ug™*| ) (3.61)
2

"5_
It is seen that T1(1) and T5(1) are the same as Z; and L, respectively in Theorem
3.6. Similarly, for i=0, T1{0) and T(0) are the same as L and L4 in Theorem 3.6.
Therefore, the average number of decision transinissions is evaluated by substitut-

ing the results of Equations (3.48)-(3.50) in Equation (3.47).
Q.E.D.

The asymptotic behavior of the average nuinber of decision transmissions under

Protocol 2 15 considered in Lemma 3.2 next.

Lemma 3.2

When Protocol 2 is used, the average number of decision transmissions E{/['}

for the system under consideration approaches zero as the number of time steps t

increases to infinity.

Proof:

Again, we call upon the asymptotic propertics as listed in Theorem 3.4, namely

lim,_ooptn, = 0.

limy_oply =1 1
limt_.oopﬁnk(ué“l =1) =20, k=12,...,10.

limyacoph, (ug ™' = 1) = 1.
Using these properties in Equations (3.48 ) and (3.49) it can be shown that the
average number of decision trapsmissions given the hypothesis #y, E{L}(1)}
goes to zero as t goes to infinity. In a similar fashion, the average number of
decision transmissions given the hypothesis Hy, FE{L(0)} goes to zero as t goes
to iniinity. Therefore, the average number of decision transmissions for this second

protocol E{L!} goes to zero as t goes to infinity.




Next, we present a numerical example that shows the behavior of the average

! number of decision transmissions £{L'} for Protocols 1 and 2.

Example 3.2

We further pursue Example 3.1 and investigate the performance of the proto-

cols. For both Protocols 1 and 2, we plot the average number of decision trans-

missions £{L'} vs. SNR tor the OR and the AND fusion rules. The results given

; in Theorems 3.5 and 3.6 are used for the cornputations.

The plots of Figures 3.11 and 3.12 show that {or the OR fusion rule, the aver-

age number of decision transmissions for both the first and the second protocols

decrease as SNR values increase and as time step t increases. From Figures 3.11
and 3.12, it is seen that the average number of decision transmissions for Protocol

I decreases more rapidly than Protocol 2. The plots of the average number of

decision transmissions for Protocols 1 and 2 for the AND fusion rule are given in
Figures 3.13 and 3.14 respectively.  The average number of transmissions E{L*}
| is observed to be decreasing again as was the case with the OR f{usion rule. It
is interesting te nofc that as t goes to infinity, the average nunber of decision
transmissions goes to zero for both protocols |, i.e. no decision transmissions are

required on an average.
3.5  Discussion

, In this chapter, we have considered a decentralized detection system with feed-
back and wernory. The incorporation of meinory at the local detectors provided a
i
| considerable enhancenent for the gystem performance. This system was optimized
|
' using the Bayesian formmlation. Using the PBPO solution methodology, we derived

decision rules for the local detectory and the fustion center. The systom probability
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of error was derived and shown to be at least as good as that of the conventional
decentralized detection system without feedback. The system probability of error
was shown to decreases to zero as the number of observations increases to infin-
ity. An important issue that arises in this system is that of decision transmission.
Due to the feedback links, the system is characterized by an increase in decision
transmission. We proposed and studied two protocols to reduce decision transmis-
sion requirements. The average number of decision transmission was shown to go
to zero asymnptotically when Protocol 1 or 2 is deployed. Numerical results were
obtained for a system of two detectors and a fusion center. Using the OR fusion
rule, the decentralized detection systemn with feedback and memory was shown to
Lave a lower probability of error as compared to the conventional decentralized

deisction systemn. Similar results were found for the AND fusion rule.

98




NG

Chapter 4

A Unified Approach to the

Decentralized Detection Problem

4.1 Introduction

Tu the previous chapters, we have considered the problem of Bayesian hypothesis
testing in decentralized detection systems with feedback. Several other decentral-
ized detectien network topologies have been investigated in the literature, c.g., the
conventional decentralized detection network without feedback, the serial network.
the hierarchical network, etc. . In this chapter, we provide a unified representa-
tion for different decentralized detection network topologies. This representation
is inspired by the definitien of information structure given in [22, 23]. This unified

representation is then used to obtain PBPC decision rules for various deceniralized

detection systems.

[n Section 4.2, we define the communication structure of ormanizations as it

applies to tean decision ruaking. It is shown as to how a number of decentralizaed
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at the detactor corresponding to the column k are given by the k% column. We

dcfine the decision input of the k** detector as follows:
Iv={u; : Dy = 1; for all i} (4.1)

Thus, decentralized detection systems witit any configuration can be specified in
terms of the communication matrix D. Next, we present a couple of examples

illustrating the comniunication structure representation of decentralized detection

systems.
Example 4.1:

For a serial system consisting of N detectors with observations y; at each de-
tector i, i = 1, 2, ..., N(Figure 4.1), the matrix D is given by an off diagonal matrix

of dimension N x N 14 ollows:

det.no. 123 4..- N

1 01r090---0

2 001 0---0

D= R 900 1---0
0

N—11000 01
N luo 0 0---0

The entries of the matrix are obtaied from the block d'agram of the serial system.
Dete or numbers are also indicated for convenience of the reader. The (3,k) clc
ment is one if detector i transmits its decision to detecter k. For example, Dy, = 1
indicates that the decision of detector 1 is fed to detector 2. Using quation (4.1),

the decision input of the N detector is given by,

-[N = UN-T

The first colnmn of the D wmatriv has 2l zero entrics indicating thiai the. 2 s no
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Detector 2 N

] i
N Detector N |~——8-

u
Y — Detector 1 —-—««—H u
7.'_.’

l Fig. 4.1: A serial system consisting of N deteciors.
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decision input, i.e.,
I, = noinput

Example 4.2:

For w decent:ralized detection system with a fusion center consisting of n local

detectors(Figure 4.2), the communication matrix D is of dimension (n+1)x(n+1)

and given by:

12 ---n0
1 OO---OI\
D'__Z 00.--- 01
n|00.--01
0 LOO---OO/

Note that the global decision maker is denoted by detector number 0 and it appears

in the last row and column of the matrix. As seen form this matrix, there are no

decision inputs to the & detector,

I = no input

However, the column corresponding to detector 0 (the global decision maker) has

the folowing decision input,

Iy = {uy,une ... u,)

The Generalized Communicatica Structire

The reprosentation of decentralized detection systems in termas of the commu-
nication structure can describe sysvems which ars connected in the form of a tree
and where the decisions flow only in one direction naraely towards the fusion cen-
ter. IMowever, this represent .tion is not a lequate for vepresenting deconetralized

detection networks with more general network topologies such as the decentralized
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: Fig. 4.2: A decentralized detection system
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detection network with fee.iback considered earlier in this dissertation. Therefore,
we generalize the definition of the communication structure by including the time
parameter t. We assume that each detector in a given system produces a time delay
of one unit. Consider the connected graph corresponding to any given decentral-
ized detection network topology where the nodes represent the decision makers and
the decisions flow along the directed edges of the graph. Recall the fact that the
fusion center is responsible for making the final decision. We organize and label
the graph in terms of levels such that the fusion center is at level zero and the level
of other nodes is determined by their distances from the fusion center (number
of edges traversed from the fusion center to the node under consideration). We
illustrate this in Figure 4.3 where a deceniralized detection network with a general
(non-tree) topology alongwith ius corresponding graph is shown. We employ the
above connected graph to assipn the time index to each of the detectors of the
decentralized detection network. The time index of a detector is simply its level
in the conncected graph. The thine indices of the detectors are displayed alongwith
the detector number in the commmnication matrix . [Finally, the input decision

vector of the detector corresponding to the &** column is given by:

If = {ui™ ™™ Dy = 1y for all i} (1.2)

where
¢ is the time index of the detector corresponding to the & column.

ri is the time index of the detector corresponding to the i row.

For the decentralized detection system of Ifigure 4.3, the communication matrix is

1G5
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.. n
y'g Decision ___3____
——# mauker 3
i ut
i = Decision 1
Y1 ———#+ maker 1
R——
t 1
v4 Decision | %4 L Clobal
=8 maker 4 decision
- maker
t
y2 N
Decision 2]
| maker 2 [
Level O 0
Lavel 1 o 1 2
Leavel 2 oo

Fig. 4.3: A general (non-tree) decentralized detection systen:
with th~ couesponding connected graph.
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given by,
time tndex 11220
1 det.no. 12340

1 1 foo0001)
D= 1 2 |oooo01
2 3 |10000
2 & [10000
0 0 \11000)

The decision input vector [} for the first detector is obtained from the first column.

The column time index is given by ¢; = 1 and

t [, t42-1~1 _ f42--1-1 _ t40-1-17 __ t .t . t—2
I = {uy y Uy » Uy b= {uy, uy, g |

Next, we further illustrate the applicability of the generalized representation by

considering the following cxamples.
Exampie 4.3:

In this example, we look at the serial network of Fxample 4.1 and obtain the

time indices. The communication matrix [ is giv n by

time index — N =1 ceeuns 0

! det.no. 1 2 3 4 --.N

N -1 | 01 0 0--0)

b N -2 2 00 1 0--0
N -3 3 0on o 1---0

0

L N1 100 ¢ 0 1

{) N Deveinnnnnn, 0/

Ouce again, the time indices and detector nmbers are included for the convenience

of the reader. The thine index o (time index of the detector corcesponding to
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column k) of the non-zero entries in the matrix D could be written in terms of the

tirne index r; (time index of the detector corresponding to row i) as follows:

cp=ri+ 1

! Hence, the input decision vector I consists of one decision, namely the previous

\ detector decision

t o thri—ex—1 8
- In = Uy = Up g

This indicates that the decision of the (n —1)** detector is used in the nt* detector

| decision making without any further delay.

Note that the time indices and detector numbers along the columns are repeated

along the rows. Therefore, for brevity, from now on we will provide this information

| only along the rows.
Example 4.4:

We consider the decentralized detection system with a fugion center as given
in Example 4.2 and obtain the time indices. The communication matrix [) is of

dimension (n+1)x(n+1) and is given hy:

11 {00.--01)
| 12]00.--01
| D=t |

i

L 100---01
00100---00

: ‘ It 15 scen that all the local detectors have the same time index. The time index
r; of the non-zero eniries is given by v = 1, i=1,2,...,n , and the time index ¢ is

given hy ¢ = 0. Hence, the time paramcter of the local decisions at the glohal

| decision maker is:

T
—
—-—
o
i
Y
!

oo

g e Lmil
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The decision input at the global decision maker [f is, therefore, given by,
I.-i, = (u-i, ué, u;)

Local detectors have no decision input as seen before.
Example 4.5:

We consider a decentralized detection system with feedback as shown in Figure
4.1. The system consists of n local detectors and a fusion center. The number
of levels in this system is the same as that of Example 4.4, hence the same time

indices are obtained. The comuwnication matrix I) is, therefore, given by:

11{00---01)
12]00---01
D= tifiiii

"n{00---01
0o0\t1---10

Observe the effect of feedback on the matrix D. The bottom row indicates that
there is a comrunication link from the global decision maker (detector 0) to all the
local detectors. Note that the decision input of the local detector corresponding
to the coluinn k, k=:1,2,.. . », has a time index of one, i.c., ¢, = 1. The decision

input of the local detector corresponding to the colunn k is given by

¢ thrg oy -1 -0—1-- ~
I{ =l Tmom et g VO — b2 o any local detector k.

As seen above, the global decision input to the local detectors has a time parameter
of t-2 which indicates that two Line delays are encountered, the local detector delay
and the global deciston maker delay. It is important to note that our carlicr vesults
from Chapters 2 and 3 assume that the global decision maker does not account for
any tiwme delay. Hence, the time paratoeter of 1 was nsed for the previous global

decision in Chapters 2 cud 3.
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The decision input of the global decision maker is obtained usiag the 0** column,

t __ .t ¢ t
I = (uy,ug, ..., u;,)

The tirne parameter of the local decisions indicate that all local decisions are used

without any time delay.

With our generalized definition of the communication structure, any decentral-
izd detection system can be represented by a comimunication matrix. In the next
section we derive the decision rules of all the detectors in a decentralized detection

system with any configuration represented in terms of its communication matrix.

4.3 'The General Decentralized Detection System

4.3.1 System Description and Problem Statement

We consider the binary hypothesis testing problem for a decentralized detection
systemn with any arbitrary configuration (Serial Network, Paralle]l Network, System
with Feedback, etc.). Let the number of detectors in the system be u+1. The block
diagram of any detector, suy the k' detector, of a decevtralized detection systern is
shown in Figure 4.4. Due to the effect of event sequencing, we associate a time step
parameter t with all the system variables. The k** detector of the general system
operates as follows: At time step t, the k** detector based on the observation input

yi and the decision input If produces the decision uf using the decision rule v(.)

as follows:
wk = Tk (ks k)
We assumne that the joint conditional probability density of the observations
PG YL b ) 1 == 0, 15 t = 12, o, T is known a priori. 'The problem is to

fiud the PBPO solution for the decision vde 4/(.), k50,1, .0 te=L, 2, oo 'L, s0
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3’;2 The k'P detector  ————pm-
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Vigure 4.4: Block diagram of the k™ detector in a given systen,




as to minimize the cost function J(I') for the final decision ul. We consider the

Bayesian formulation where the cost function J(T') is given by,

J(F) = Cmp(ug' = 0, I{Q) -+ Cmp(ug‘ = 0, fIl)
-+Clop(u§ =1, Ho) +- CuP(UE =1, Hl) (4-3)

where Cyj; 1, = 0, 1, is the co:t of deciding ul = H; when the true hypothesis is
H;.

The costs Cy;5 1, ] = 0, 1, and the a priori probabilities p(Hy) wnd p(Hy) are
assumed to be known. We rewrite Equation (4.3) in terms of the system probability
of false alarm at time step T, p}‘, and the system probability of detection at time

step T, pf, as follows

J(1) = (/'fp(u'(f = 1|Hg) — (7dp(u?;‘ = 1|H)+C
= Cyply - Capl 4 O (4.4)

where

Ct = p(Ho)(Cro ~ Con)
Ca = p(I1)(Cor — C1)
C = p{llh)Cuw + p(I1) U

1 should be noied that the cost function J(I') of Equation (4.4) is independent
of the system structure (configuration). Ience, the development up to this point
is for a general system. In the next subscction, we derive the PBPO decision rule

¢ ~oat k'h“"""' S R
'Yk(_.) 0L e (UCLECLOY 1O & BUCILCrAl SYSLCLIL.

4.3.2 System Optimization

Before proceeding with the system optimization, we make certain stonlifvine as-

sunptions. We assmne that the ohservations of the general system are spatially as

112




3 e e it ey e
i1
£ C e e

well as temporally independent. Hence, the a priori knowledge of the conditional
probability density functions p(yd, 5, . 5| H;)ij =0, 13t = 1, 2, ..., T reduces to
the a priori knowledge of the individual detecter conditional probability densities
p(yi|H;); j=0,1; t=1,2,...,T; k=0,1,....,n. Next, we proceed with the minimization
of the cost function given in Evuation (4.4). We derive the decision rule for the

kth detector shown in Figure 4.4. The result is presented in Theorem 4.1.

THEOREM 4.1

For the binary hypothesis testing problem in a general decentralized detection
system, the PBPO decision rule of the k** detector (Figure 4.4) that minimizes

the Bayesian cost function associated with the global decision at the final time T

is given by:
Yo, ) =up= L if A(we) > ni(Ty)
0 otherwise (4.5)

for all k==0,1,...,n; t=1,2,.../'1; where ni(If) is the threshold of the &t detector at

time step t defined as:

Crg*(T,0) f* (uk, 0)p(Ii| Ho)
Cagt(T, 1) F(nel, Vp(IEHR)

THEAE (4.6)
and
' (Ty1) = p(ud = Uuf = 1, ;) ~ p(ud = U|uf = 0, ;)
FH(hyd) = plub = Huj, = 1,11, = p(uf = Ljug, = 0, ;)

Proof:

We start with Fquation (4.4) and expand it in terms of the &% decision at tine
step §, 1, the decision input I}, the observation yf, and the global decision at time

step €, uf as follows:

JI)= Y Jut Coplul = 1,1, v, b, yi| Hy)

P

§ 0yt
Tpmg oy,




—Cyp(ud = 1, If ul, ub, yh | H) + C (4.7)
Conditioning on uf, If, ul, and yi, E¢ -ation (4.7) is rewritten as:

J(F) = 2: fy{‘ Cfp(ug = 1|“6,"§n Ii,yz, HO)

If ug s,
Xp(ué, uia yltn IHHO)
"'Cdp(u%1 = ]-qu)’ uis Ilte’ yi, Hl)
xp(ug, uf, I,y | Hy) + C (4.8)

Writing the cost function J(I') of (4.8) explicitly in terms of all the possibilities of

the global decision u§ and conditioning further on u}, I}, and yf, we have

J(I') = z fy;'. Cfp(ug‘ = 1lug = 1, why 1§, Yy Ho)

It
x p(ug =2 1|uks i, Ik, Ho)p(ug, yk, Tt Ho)
~Cup(ud = uh = 1,ul, It, vt, Hy)
xp(upy = uk, It vk, Hi)p(ul, Tt vkl Hy)
+Csp(ug = 1fub = 0,ul, If, yt, Hy)
x plug = Oluf, £f, yx, Ho)p(u, It yi|Ho)
—Cap(ug = Lluf = 9,uf, If, yf, H1)
xp(uf = Glui, If, vk, H)p(ut, I, yi L) + C (4.9)
We observe that the final global decision ul = 1 given the slobal decision at time
t, ug = j and the hypothesis H; does not depend on uf, If, and yi. Hence, we

rewrite (4.9) by factoring out the common terms and substituting p(u = 0].) by

- plug = 1[.)
J(I) = ) Jo Coplul, vk, Tl Ho)p{ug = 1ub - - 1, Ho)

xp(uy = L[ug, yi, If, Ho) + p(ug = L = 0, Hy)
%(1 — plug = |ui, If, yh, Ho))]

Cup(ub, up, T ) [p(uy = 1ug = 1, 1)
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sp(ul = 1|ud, yt, IE, Hy) + p(ud = L|uf = 0, Hy)

X (1 — p(uy = Lui, I, ¥k, H))] + C (4.10)
Multiplying out the term (1 — p(uj = 1].)) and rearranging, we have

J(F) = Z fy; C!p(ui.' yi,li-lHO)P(uf) = 1'“11 yltc.-Iiv Ho)

It out
- x[p(ud = 1|ud = 1, i) - p(ud == juf = 0, Fo)]
+Cyp(up, yh, I Ho)p(ug = 1luf = 0, Hy)
= Cap(uef, i TELH ) (g = ks wky T HL)
x[p(uf = uh =1, Hr) ~ p(uf = luh = 0, Hy)]
—Cup(uhy yby LHL)p(v! = 1uh = 0, Hy) + C (4.11)

Lotting p(ud = b = 1, H;) — p(ud = 1ju = 0, H;) = ¢g*(T,) and conditioning

(4.11) further on y} and 7f, we have

Jry= Y. s Cop(ublvs, 16, Ho)p(v. I Ho)

ot
xp(ub = U, v, I, Fio)g*(T, 0)
+Cfp(’ui|yi., Ili! HYO)p(yltcaI}t; 1{0)p(u(:§‘ = llu(t] = 0’110)

~Cup(ui|yks Ty H)p(yts L1 H1)

xp(ug = Vg, yi, T H)g' (T, 1)
~Cap(uklyk, 16, H)p(yhy T HOP(ug = Lug = 0, Hy) + C (4.12)
We note that the &* detector decision u} given the observation yf and the decision

input oes not depend on the h nothesis present. Next, we rewrite the cost
input I} d t depend ihe b poth t. Next, te th t

funciion J(I') of (4.12) in terms of all possibilitics of the decision u}, hence

JI) =Y I POk = Ly B)IC (vt 11 M)

%
x{p(u = 1|l = 1,9, £f, Hy)g*(T,0) + p(ud == L]ul =0, Hy)}

Cap(yh, L) x {p(ag = Vg, = 1, T, 2090 (1)

LLh
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i +p(ul = 1ug = 0, H)} + plut = Ojug, I)Crp(yi, Ik Ho)
| x {p(uf = jul = 0,%, I}, Ho)g"(T,0) + p(ug = 1|ug = 0, Ho)}
"'Cdp(yltu I::lf-{l) bt {P(ué = llui = 07 yltn ]£1H1)gt(Tv 1)

+p(F = 1uh =0, H)}] + C (4.13)

We observe that the global decision at time t, uf given uf = j and the hypothesis

H; does nct depend on yi and If. In addition, substituting p(ul, == 0|y}, Ii) by

| 1 - p(ut = 1jyt, 1¢) in (4.13) and rearranging, we have

a J(T) = Srg Jyg (i == Lk, TOIC 12y Tl Ho)
; s {p(uh = 1heh = 1, Ho)g!(T,0) + p(uf = L}y = 0, Ho)}
'\ —Cap(ys TLH) {p(u§ = L|uf = 1, H1)g"(T,1)
| +p(ud = 1|uf = 0,81} — Cyp(y3, 1k Ho)
T x{p(uf = 1]l = 0, Ho)g*(T,0) - p(ug = {uh = 0, Ho)}
| +Cap(yh, TELH) {p(uh = 1|uf = 0, H1)g'(T) 1)
',__vr] +p(ud = Lub = 0, H)Y + Cypluks Tt Ho)
x (p(ey = 1]l = 0, Ho)g!(T, 0) + p(ul = L[ = 0, Ho)}
—Cup(yf, THHY) % {p(ad = Lluf = 0, Hy)g*(T',1)
| tp(uf = 1uh =0, 1)} +C (4.14)
j We observe that the last three terms of Eqnation (4.14) are not involved in the op-

i timization of the k% detector. We discard these terms in the subsequent equations

and denote the new cost function by J'(1'). Rearranging by further factorization

of conumon terms in Fquation (4.14), we get

‘ YISEEDY S pCuk = Uk, FOIC e p(yks Ll Io)
I

x {p(uly = Ul = 1, Ho)g'(T, 0} -+ p(ud = Vfub = 0, Hy)
| <l = 0, Ho)gt(i',0) — plud = juf = 0, o)}

"C'rll)(]/;_., [!E-]E{l){p(u(t) ik 1—]“5: w1y iy )‘r]t(fp, 1)
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I

JR P PO U SR SO SRR Hp =<t

oo Bt R S
e e e e e T I D S L AR M

A A—E AL oo St o Mo W0 v T L IS

e S S e A L T Wb o e

. rm————— Ao D A LIS & LA P 4o W 1 TS UMM e S S S S s




(fnnx{

. -

L VO

+p(ug = Llug = 0, Hy) ~ p(u§ = ljuj = 0, H,)g"(T, 1)

~p(ud = 1fub = 0, H,)}] (4.15)

Canceling out the equal terms and rearranging by further factorization of common

terms, Equation (4.15) is rewritten as:

Y=Y Sy p(uh = Uk, I8)[Cyp(yh, 15| Ho)g* (T, 0)
I
x{p(uf, = ljuf =1, Ho) — p(uf = 1|uf = 0, Hy)}

~Cap(vis Tk H1)g' (T, 1)
x{p(uf = luf = 1, Hy) — p(u§ = lluf = 0, H,)}] (4.16)

Letuing p(tg = L|uf = 1, H;) — p(uf = L|u} = 0, H;) = f*(ul,1), we rewrite (4.16)

as:

EIVEDY Sy plup = 1y, I})
&

f

x[Cyp(yi, LI Ho)g* (T, 0) f* (1, 1)
~Cuplyk, e Hy)g (1, 1) f* (o2, 1)] (4.17)
The cost function J'(I') of (4.17) is minimized if we chouvse
plug = Uy i) = 1 if A > Ag
0 cotherwise {4.18)

where
Iy e SV ¢ rr 172y A B R W TR
.41 = C,,-p(yk, fkl"l)*)’ (l. s 1l)J (“’ka 1l)

Ao = Cyp(yt, It o) g (T, 0) f(ut, 0)

The 5™ detecior decision rule y£(.) of the general system is given by rewriting

(£.18) a9

Yol ) w=ulo=2 0 Gf Algh, I} > ut

0 otherwise (1.19%




where u} is the threshold of the k** detector at time step t defined as

} ¢ = g0, 0)

3 Cag(T,1) fH(u, 1)

Ll Using the assumption of tenporal wnd spatial independence of observations in the
| general system, the £t* detector observation y} is independent of the k% detector
‘1 decision input If. Hence, the likelihood ratio is separable as follows:

y Ak, I) = A(h) % A(I)

Substituting this result in Equation (4.19) and rearr: nging, we have

R nwhl)=ut= 1 if M) > n(dk)

A

0  otherwise (4.20)
¥ | where ni(If) is o multivalued threshold of the k*h detector at time step t defined

A8

: o Cygt(T,0)fH(wt, 0)p( T

i = Cug' T, 1) 7, DpUETH) 20
I as given in Equation (4.6).

’ Q.E.D.
.
i'»_- II It should be noted that Equation (4.19) represents the general decision rule for

any detector of a decentralized detection system with a arbitrary configuration.
Morcover, the general decision rule of any detector k at any time step t is based

on the likelihood ratio of the input to that detector. Thus, the decision rule at the

global decision maker can be obtained {rom the above general result. The result

| is given next.
i Lemma 4.1:

A ' For a general decentralized detection systens the PRPO decision rule 45(.) of

the global decision waker that mwinimizes the Bayesian cost, function for the binary
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hypothesis testing preblem is given by

E R g f
W) == 1MW) > &

0  otherwise (1.22)
where IT is the decision input of the global decision maker and yg is the input

observation of the global decsision maker (if any).

Proof:

The global decision rule of (4.22) results directly from the general decision rule
(4.19) by letting k = 0, t == T, and observing the following:
gi (T ) = pluf =1l = 1, ) —~ p(uf = 1ud =0, H;)

= l1~0=1

and for t==1,2,...,T

Fiuby i) = puh = Vb = 1, 15 — plug = Luh =0, H;)

= L.

Hence, the threshold of (4.19) reduces to:

s C

1 !
e = o
resitlting in Fquation (4.22).

Q.10

The decision rule of (4.22) s a general global decision rule e that the global
decision maker may also make direct observations of the phenomenon in addition
to the desisions reecived frour the other detectors, The observation term g is to
he dropped if theve 1o ue divech olsicvvation wi the global decision maker. The

result of Temmna 4. L agrecs with the slobal decizion rale at thue step 17 of the 155
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problem given in Theorem 2.3 if If = UT is nsed. The decision rules at the local

detectors for the FSS problem considered in Chapter 2 can alse be obtained. It is

demonstrated in Lemma 4.2.
Lemma 4.2

For the decentralized deiection system with feedback, the decision rule at the

kth detector for the FSS problem is given by Theorem 4.1 with I} = u§™!, i.e.,

(b =k = L if Awk) > klug )

0  otherwise (4.23)
for k=1,2,...,n and t==1,2,...,T; where

m( . 1) _ (,fg (¢, [)\f‘(uk,O)p('u0 Y Hy)
o (t,l)f‘(uﬁ,,l)p(J(, 1|H1)

(4.24)
Proof:
[t is seen that g7(¢,0) is the same as defined in Theorem 2.4. Fxpanding
SH(u, i), 1 = 0, 1, in terms of the decision vector U/}, we have
Fiub, 1) = plud == Ul = 1, L) — p(ud = Vul, — 0, 1T)
Filuf, i) =Y plug = LU ug = 1, IG) - p(nfy = 1, Ug]ng = 0,15)

Ut

Coaditioning on U} and rearranging

Plubyi) = 30 Iplub = L = 1, UE, 1) — plub = Uul, = 0, UL, IL)]

Ui

xp(UE| H:) (4.25)

Observe that the global decision uf, given all of the local decisions, i.e., uf, and U},

does not depend on the hypothesis present. Hence

u,, L[I\“o e Iluk = 1 I/k) pluly = 1luh = (), U} )]p(Ule )

Uk
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Note that [p{ash = l|lu} = 1,U}) —~ p(ud = L} = 0,U})] = f(U}) as defin-d in
Equation (2.45). Thus,
Pl i) = X ARSI (4.26)
7
Substituting the above result fori = 0, 1 in Equation (4.24) and recalling the spatial

and temporal independence of observations yields Equation (2.46) of Theorem 2.4.

Q.E.D.

Next, we turn to the resulta in Section 2.3 where the PBPO solution was
obtained without the knowledge of the final time T. In other words, the system
was optimized with the assumption that the decision process could end at any time

t. In Lemma 4.3, we obtain this result using our unified approach.

Lemma 4.3:

For the decentralized detection system with feedback but without memory, the
decision rule at the &t detector is obtained by letting If = uh ! and time step T

= t in Theorem 4.1, 1.¢

8y
ey

Telyk vy ™) = up = 1 if M) > nilug ")
) otherwise (4.27)
for k=1,2,...,n; where

_ Crfiul,0) (uo Yiy)
Caft(uf, 1)p( iy II'[l

ne(ug™h) (4.28)

Proof:

As explained in Example 4.5, the decision input to the k™ detector If is given
hy It = uf ', The rosult of substituting I = «g™! in equationy (4.5) and (4.6)
of Theorem 4.1 iy stradghtforward. The result of substitiiting ‘I < t needs to be

examined. We look at the function ¢*(?',4) which by letting ‘1" = t, we have

g (ty2) = pluh L

wd = LIG)  pl - Vg = 0, TF)

2




B

Using the facts that
p(ud = 1uf = 1, H;) =1
plufy = lub =0,H;) =0
The function ¢'(T = ¢,z) = 1.

Substituting this result for i = 0, l in Fquatien (4.6) yields Equation (4.28). Fol-
lowing similar steps as in Lernna 4.2 for the development of f*(u},7), the threshold

given in Equation (4.28} is the same as that of Equation (2.6) of Theorem 2.2

Q.E.D.

Th local and global decision rules of Chapter 3 can be verified in a similar
fashion. The communication structure of the decentralize.:. detection system with
feedback and memory is the same as that of the system without memory. Hence,
the decision rule desigp is the same in both systems. At this stage we turn to the
results in the literature where we look at the general formulation attempted by
Reibman and Nolte [9] and show that their results are a special case of our results.
It sheuld he noted that in the literature, the same detector at two different time
instants is considered as two different detectors. Hence, the time parameter t does

not need to be tiaken into account, here. The result is presented in Lemima 4.4 next.

Lemma 4.4:

For the binary hypothesis testing problem in a decentradized detection syster,
the PRPO decision rule at the £* dotector (Figure 4.5) that minimizes the Dayesian

cost function of the final global decision is given by:

Yo, ) = 1 if Ayy) > me(dk)

0 otheruise (4.29)

where [y, is the decision input of the & detector and n(1;) is the threshold of the

Y22




u
k
The kW' detector -

Figure 4.5: Block diagram of the k™ detector ina givern systen..
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kth detector defined as:

- St
and

f(uk,1) = plug = Uux = 1, H;) — p(ug = 1|uy = 0, H;)
Proof:

The above results are obtained simply by dropping the superscript t in the
results of Theorem 4.1. Since in this formulation, a detector operating at two
different time instants is considered as two different detectors. The term ¢*(7,2) =
1 because the global decision maker operates only once (t==T). It should be noted
that the results of Lemma 4.4 agree with that of Reibman and Nolte [9] with
the f(ux,j) term in Equation (4.30) expanded over all possibilities of the local

decisions that are input of the global decision maker.

Q.E.D.
In Lemma 4.5 next, we verify the results of the serial system using Lemmn.:. 4.4.

Lemma 4.5

For a serial system consisting of I detectors, the k' detector decision rule is
given by Lemma 4.4 with Iy = ug_;, namely
Yalyry ) = L f AQyk) > ie(tekan)
0  otherwise (4.31)
where 5(ux—1) is the threshold of the &** detector defined as:

N(g—_y) = C1f (v, 0)p(tir-1| o)
T Cf (s Dl 1)

(4.32)

and

fug,7) = pug = Lug = 1, I) — p(uo = Lug = 0, H;)

L2724
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Proof:

The above results are obtained by a straightforward substitution of I = up—,
in Lemma 4.4. It should be observed that the 0** detector corresponds to the N
detector in the serial system. [urthermore, for k=1, there is no decision input
I, and for k=0, the term f(uk,7) = 1 resulting in the decision rule at the final

detector.

Q.E.D.

Ir order to demonstrate the versatility of our approach, we apply it to a more

complex decentralized detection configuration next.

4.3.3 Decentralized Detection with Peer Communication

We consider the binary hypothesis testing problem for the decentralized detection
system with peer coramunication shown in Figure 4.6. In this system, the & lo-
cal detector comrmnicates its decision to the global decision maker as well as all
other local detectors. Uhe system operates as follows: At time step t, the £ local
detector makes the local decision uf based on its current observation yf, its previ-
ous observations Y;_ 4, and other detector decisions {74, ..., u,i_f'fl, uf;ll, U Tialk
that are transmitted to it. Let the number of local detectors be n. ''he munber

of levels for this system is the same as that of the conveutional decentralized de-

tection system of Fxample 4.4, henee the same time indices are obtained. The
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Fig. 4.6: A decentralized detection system with peer communication
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commuidcation matrix 1} is, therefore, given by

1t1f01--1 11\
12]l101.--11
13l11o0 1.1

. P Y
. P

In]tl.---1 01
20300..-0 00/

Observe that the 0*" detector (the global decision maker) dces not transmit its
dacision to the other detectors (row clements ave all 0). The decision input of the

detector corresponding to column k is therefore given by:

o=l T T for any local detector k.

The decision rule of the & detector is preseated in Lemma 4.6 next.

Lemma 4.6

T'or the binary hypothesis testing problem of a decentralized detection system
with peer communication shown in Figure 4.6, the PRPQ decision rule of the kth

local detector that ruinimizes the Dayesian cost function is given by Uheorem 4.1

with T:=t, namely

AV I) s = 1 if A(Yes) > nl(1)

B otherwise (1.33)
where 73 (18) i3 the threshold at time step t defined as

<"ff uk 0)p(1E | Ho)
Caf (uf, 1)p(IE H)

Flu, i) = plub = Ll = 1, 1) = plub = Vnf = 0, H,)

nh(1) = (4.34)

t t T S 1og
ool Yo ui o ult for any local detector k

127




Proof:

Straightforward sabstitution of If = u{™, ..., uj },uih, .., uf™?; k=21,2,....n,
and T=t in Theo em 4.1 yields the desired decision rule of Lemma 4.6. The
decision rul: of the global decision maker is the same as that of the conventional

decentralized detection system since the available information 2t the global decision

maker are the same.

Q.E.D.

Next, we present a numerical example utilizing the results obtained for the
decentralized detection systemn with peer communication and compare the perfor-
mance to the conventional decentralized detection system and the decentralized

detzction systen with feedback and memory.

Example 4.6:

We pursue the example of Chapter 3. Briefly, the system consists of two local
detecters and a fusion conter. The O fusion rule 18 used. The iuput observations
are assmued o have a Rayleigh distribution. 1'he probability of error pl for this

system is given by

pL == prap(Hy) + php( Hy) (1.35)

where pl, and p are the systom probability of mi:s and false alarm respectively.
Siv-e ihe fusion rule 15 th» OR rule, the error probabilities can be written in terms

of the local detector error probabilities pl,. and pf, as follows

= (01" (1.26)
and
phz= 1 ()~ ph)? (1.37)
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For i=1, the local detector probability of miss at time t, p}, is found by condi-

1

tioning on the second detector decision at time t -1, uf™" as follows

Py = p(ut == 0|H)
= e plud = Ofus™, Hy)p(uz™ [Hy) (4.38)

Expanding in terms of all possibilities of u5™!, we have

Phyy = p(ul = Ofu™ = 1, Hy)p(ui™t = 1|H,)

4p(uf = Ofuf™ = 0, Hy)p(uy™" = 0[H1) (4.39)

Substituting p(us~* = 1|]I7}) = 1 — p(u§™! == 0|,) and rearranging, we have

Pmo = P(ug™ = 0[H)[p(uf = Ofui™ = 0, Hy) — p(u] = Olug™ = 1, Hy)]
+p(ul = 0juy™t = 1, Hy) (4.40)

Since local deteciors are assumed to have equal SNR, the following holds

plug™ = 0lR) = Pl = v = Py
Hence, Fquation (4.40) is rewritten as
P = il [ph (™! = 0) - pl, (i7" = 1)]
ot (™ = 1) (1.41)
Similarly, the probability of false alarm of the local detector is given by
ph o Pl (Tt e 1) = (T - 0))
+p}i(u§”1 = 0) (4.42)
Substituting Equations (4.41) and (4.42) in (4.36) and (4.37) and then substituting

the results in (4.35) yields the systent probability of <rror.

The probability of error vs. SNR, is plofted in Figure 4.7 for vari s values of

the munber of samples per detector. Mareover, for the SNR value of 5 A1, we plot
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the system probability of error vs. the number of observation samples per detector
in Figure 4.8 for the decentralized detection system witi: peer communication,
the conventional decentralized detection system and the decentralized detection

system with feedback and memory.

The plot in Figure 4.7 shows that the probability of error for the decentralized
detection system with peer communication decreases as the number of samples per
detector increases and SNR value increases. The plot in Figure 4.8 shows the prob-
ability of error for three decentralized detection systems for the SNR value of 5dB.
It is scen that the probability of error of the decentralized detection system with
peer communication is less than that of the conventional decentralized detection
system. On the other hand, the decentralized detoction system with feedback and
memory has the least probubility of error for a given number of samples. Similar
results for the AND fusion rule are obtained. The probability of error vs. SNR is
ploted in Figure 4.10. In Figure 4.9, the probability of error, for the SNR value of
3, is ploted for the decentralized detection system with peer cornmunication, the

system with feedback, and the conventional decentralized detection system.

It should be noted that for the case of two local detectors, the decentralized de-
tection system with feedback and memory outperforms the decentralized detection
system with peer communication. Intuitively however, the decentralized detection
system with peer communication should outperform the decentralized detection

systemn with feedback and memory, which is the case when the system has more

4.4 Discussion

In this chapter, we have presented a unified approach to the study of a decentral-

ized detection system with any configuration. Tn this approach, we represent the
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interconnection between detectors in a decentralized detection system by a coru-
munication matrix. Based on this representation, we have derived a general PBPO
decision rule at any det-ctor of a decentralized detection system with any configu-
ration. It was demonsirated that the unified approach can be used to obtain results
from earlicr chapters as well as rexults available in the literature. A new topolog-
ical structure namely a decentralized detection system with peer commuuication
was considered in detail and its performance was evaluated. Numerical results
were also obtained for the case of two detectors and a fusion center. Qur results

in this chapter provide a versatile tool for the design and analysis of decentralized

detection systems.
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Chapter 5

Summary And Suggestions For

‘.

Future research

5.1 Summary

[ thig dissertation, we have considered the binary hypothesis testing problem for a
decentralized detection system with f#-zdback consisting of n local detectors. Using
the Bayesian formulation, we derived the local and the global decision rules. An
expression for the system probabiliny of error was also derived. It was shown that
as the number of ebucrvation sanples increased, the system probability of ercor
decreased at a slower rate than that of a conventional decentralized detection
system. The F55 problem was investigated where the stopping time was known a
priori, Local and global threshold equations were derived and shown to be coupled
spatially and temporally. The single detector system with feedback was studied.
The: decision rule of the single detector was derived for the FSS problem. it was
skown that the single detector system with feedback corresponds to a serial system

cousisting of N dozctors. ''he deeision rule at time step t of the single detector
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gystem with feedback was shown to be the same as the decision rule of the nth
detector of a serial network. Ilence, results of the decentralized detection system

with feedback could be extended to networks with blocks of detectors in tandem.

Next, a decentralized detection system with feedback incorporating memory
at the local detectors was investigated. Using the PBPO solution methodology,
local and global decision rules were derived. The :iystein probability of error for this
system was shown to be at least as good as the conventional decentralized detection
systam without feedback. Asymptotic behavior of the system probability of error
was considered. [t was shown that as the number of observations goes to infinity
the system probabiliy of error goes to zero. Due to the feedback links, an increase
in data transmission is exhibited. Two protocols were proposed and studied for
the reduction ol data transmission. It was shown that the average number of
decision transmissions goes to zero as the number of samples goes to infinity. For
a decentralized detection system with feedback and memory, the system probability
of error and the average number of decision transmission were considerably better

than that of the corresponding system without memory.

Finally, we presented the definition of the communication structure of decen-
tralized detection systems. Then, using the Bayesian formulation and the PBPO
solution methodology, the I'SS problem was solved for a decentralized detection
system with an arbitrary configuration. We derived the decision rules for a gen-
eral decentralized detection system. Using these decision rules, we verified various
resulis from the literature as well as the decentralized detection system with feed-
back. Using our new definition alongwith our decision rule design approach, we

established a unified approach to the design and study of decentralized detection

systemas.

There are two wajor contribubions of this dissertation. The first one is the

13/



demonstration of the fact that the performance of a decentralized detection system
can be improved by the use of feedback. This improvement is achieved at the
expense of increased commnunication. The other major contribution is a unified
representation of decentralized detection system with any topelogy along with an

approach to obtain the PBPQ decision rules at any detector of the decentralized

detection system.

5.2 Suggestions For Future Research

‘Throyyghont this dissertation, we have assumed that the observations at the lo-
cal detectors are statistically independent snd identically distributed. In practice,
however, spatial and temporal dependence of observations can be expected. There-
fore, a fruitful area of research is to optimize thc decentralized detection system
with feedback under the appropriate dependent observation models. Another pos-
sibility is to investigate the non parametric problem in a decentralized detection

system with feedback. Proper decision rules must be developed for this case,

The design of optimum decentralized detection systems is computationally
quite intensive. It usually involves solutions of coupled nonlinear equations to
determine the thresholds. Computationally efficient approaches for the design of

optimumn (or near-optimum) decentraliz.d detection systems should be developed.
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including, hut not limited to, communications, command and control, baitle
management, intelligence information processing, computational sclences
and sof tware producibility, wide area survelllance/sensors, signal proces-
sing, solld state sclences, photonics; electromagnetic technology, super-
cenductivity, and elecironic reliability/me ataincbility and testability.
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