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Chapter 1

Introduction

1.1 Background and Previous Work

Classical signal detcction involved centralized signal processing. A single sensor

was employed for making observations which were processed centrally. The need

for increased reliability and survivability of conununication systems has led to

the deployment of multiple sensors for signal detection. Various typesý: of sensors

are utilized to observe the environment. The collected data is sent to a central

processor where classical hypothesis testinig procedures are employed for cignal

processing [r, 3J. Processing of oblervations is done only at the centra.l proces-

sor. Hence, such comntunication systems are still centralized. The traisnIission[ of observa.ti.ons from1 ti'e sensors requires com m untication; clhamcl with large corn-

imunication bandwidth. Moreovw-r the computational load at the central processor
increases unfavorably due L, the iucrei. s in the nUmber of observations to be pro

cessed. Natturally, the lieed for distributing the processing at the sensors was felt,

therehy increasing the interest in the areca of decentralized detection. Depending

on the Ianrdwidtli constraints of Ohe cot iitilication cl}a,1ici4s, s011e signal pro1 ss

I I I
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ing is appropriately assigned to the peripheral sensors. These peripheral detectors

perform some signal processing locally and transmit the results to a fusion center

responsible for obtaining the final result.

The distributed detection system shown in Figure 1.1 has been considered quite

extensively in the literature. The system consists of ni local detectors observing

the environment. Each local detector makes a decision concerning the hypothesis

present based on its observations. Local detector decisions are then transmitted to

the fusion center where they are combined to yield a global decision. The decen-

tralized detection systems have been investigated usitng various approaches such as

the Bayesian approach, the Neyman-Pearson approach, the min-max criterion and

the Sequeatial Probability Ratio Test [4]-[16]. Tenney and Sandell [4] considered

a distributed detection system with a fixed fusion center. They used the Bayesian

approach to optimize a system consisting of two detectors with independent ob-

servations. Sadjadi [5] extended Tenney and Sandell's results to n detectors and

M hypotheses. Chair and Varshney [6] used the Bayesian approach to optimize

the fusion. center with fixed local detectors. Hoballah and Varshney [7] presented a

gener,'lized Bayesian formulation of a. decentralized detection system with a fusion

center. Using the Person-By-Person-Optimal (PBPO) methodology, they derived

the local detector and the fusion center decision rules. Reibmnan and Nolte [8] con-

sidered a dec ,itralized detection system with non-Gaussian noise. In [9], Reibman

and Nolte considered the general design arid performance of several distributed de-

tection system structures. Lauer and Sandell [1.0] used the Bayesian approach to

optimize the distributcd detection system with dependent observations at the local

detectors. EIkchian and Tenney [II] optimized the tandem topoogy and various

other system configurations. A simulation study of a specific decentralized dete(-

tion system was conducted by Kushner and Pacut [12]. 'Teuleketzis [13] develoiped

i,. dc'entralizcd version of Wald'.•; :cquential detectAion l roblcxim. I addition, he

oii:;1dclcrcd tlhic (lli:kc(it detuctini [)rOlYIL in [14]. rl'iniva,;;Ua [15] cont;idered the

2.i
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Neyman-Pearson approach for optimizing a decentralized detection system with a

fixed fusion rule. Viswanathan and Thomopoulos [17] considered the two detector

serial system and showed that it outperforms a parallel system with two detectors

and a fusion center. Papastavrou and Athans [19] considered the tandem topology

A 'and derived asymptotic results for a serial system of n detectors. Tsitsiklis [21]

discussed th,, advances in decentralized detection systems, computational issues

and asymptotic resu(ts.

In most of the above work, information available to a local detector consisted

of it's observations of the enviroument. Receatly, Srinivasan [26] considered the

availability of additional information such as the previous global decision at the

local detectors. He used the Neyman-Pearson approach to optimize a decentralized

(detection system with feedback,.

In this dissertation, we consider the decentralized detection system with ed..

back shown in Figure 1.2 and seeral variations from a Bayesian viewpoint. This

system consists of n local detectors collecting observations from thle enviro,, in ,u .

"Each local detector makes a decisiotl regarding the hypothesis present based on

the collected observations and the previous global decision. These local decisions
axe transmitted to the fusion center where they are combined to yield a global de-

cisor- The global decision is tranYism.itted back to all local dcetcctors to aid thic_

in their decisiori proccss. Inj addition to the study of the decentralized detection

system with feedback., we will present a unified approach to the design and study
of decentralized detection systems.

There are two major contributions of thiu; dissertation. The first one is the

demonstration of the fact that the performance of a decentralized detection system
can. be improved by the us, of feedback, This improvement is achieved at the

expense of increased communication. The other mejor contribution is a unified

!'

F
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representation of decentralized detection system with ý,ny topology along with an

approach to obtain the PBPO decision rules at any detector of the decentral;hed

detection system.

The general model for the decentralized detection problem consists of the fob

lowing principal ingredients:

1. A set of random variables {Hi, 9j; i = 0, 1,..., M-U; j = 1,2,... n} that

represent all the uncertainties in the problem and their distributions. 'I he

first variable represents the hypothesis, and is denoted by Hi, i=0,1,...,M-1.

The other random variable is the noise present in the environment denoted

by Oy, j=1,2,...,n.

2. A set of observations Y={Y1 , Y2, ... ,y,} which arc given functions of the
hypothesis present and the noise. In gemeral, yj, i-1,2,...,n, is a vector and

is the observation available to the ith deci-, uaker (detector). From the

given distribution of the noise 0, the conditional probability density function

p(yiI 11j), j=0,1, .. .,M-1, is also known.

3. A set of decision variables U={uo, u,,u2 ,... ,n,,} whexe each u.i represents

i i0, decision of the ith decision mnker. Th, decision ui, i=O,1,2,..... n, is to

t take values appropriate to the decision space specified %3y thc, problem. in

this formulatio,, u0 is the glolbal decision.

4. A set of decision rules F --. ,r 3 ½,,.,. %}, one for caach ltwi.ioi ,;,kher

(including the fusion centcr), where -yi is a mapping from_ the observation

space to the decision space, i.e.,

7 -, j (Yj) i - 1,2 ... 2

and,

UO : 'Yo(i"t, 1s2 , "in)"

6!
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i

t 5. A cost (payoff) function L(uo, H1 ) where u0 is the final decision of the system

and Hi is the hypothesis present.

The problem in decentralized detection systems is to

Find -y in P , for all i such that

E,,•., {L(uo, H1 )} is minimized.

In the next section, we present the dissertation organization.

1.2 Dissertation Organization

In this dissertation, we focus our attention on the decentralized detection system

with feedback shown in Figure 1.2. In Chapter 2, we describe the decentralized de-

tection system with feedback in detail and establish "ome initial results. Using the

Person-By-Person-Optimal (PBPO) methodology from a Bayesian viewpoint, we[ derive the decision rules of the local detectors and the global decision maker. The

optimum test at the local level i,; shown to be a lilcelihood ratio test for statisti-

cally independent observations at tlv local detectors. The number of observations

is not assumed to be known a priori. Hence, optimization of this system is done

for each time step t. In other -words, it is assumed that the knowledge of the

stopping time as to when the final decision is to be made is not available. The
local threshold equation is a function of the previous global decision. The perfor-

rnance of the system is derivea. In the remainder of the chapter, we assume that

the stopping time of t. tdecision pjoccss is known a priori, i.e. a known number

, of observations are available at each detector for processing, his is identified as

I the F.'ixed Semrple Size (FSS) problem. Here, the PBPO solution methodology is

-again used and tho system performance is optimized by taking into account the

stopping time. We derive the PUIO decision rule:; both at the local detectors and
[ at the fusion centcr for the. fixed s;ample ::izp: prohlh1. 1'ý ;Aid; ,ion, we cc qisider a

1.:



detection system havin~g a single detector with feedback. We derivae the detector

decision rule for the FSS problem. We establish the correspondence between the

single detector system with feedback and the serial system thereby allowing us to lr

utilize our results for the single detector system with feedback to serial networks.

Furthermore, the results of the decentralized Uetection system with feedback are

extended to more complex networks of serial nature. Thus, we providc a novel

approach for the design and analysis of serial networks. Examples are presented

throughout the chapter.

in Chapter 3, we consider a decentralized detection system~ with feedback and

iutroduce memory at the local detectors, allowing thenm to store all previous ob-

servations. Using the Bayesian approach, we derive the PBPO solution for the

decisio,• rules. We show that the proposed system outperforms the conventional

distributed detection system and the system without memory considered in Chap-.

ter 2 when more than one observation sample per detector are taken. Asymptotic=

results for this system are obtained and the probability of system error is shown

to go to zero asymptotically. An important issue that arises in the decentralized =
dletection system with feedback is that of_ dlata transmiission, lDue to the feedback

links from the global decision maker to •;he local detectors , there is an increase in

communication or data tra~nsmission. Two protocols are p)roposed and studied to

* achieve the desired r(:duction of data. transmission. We show that the ttse of the

proposed protocols reduces commnunication, oni an average, to zero asymptotically.

In other word:., on an average no transmission of decisions is necessary among the

sdstern detcctoxcs diyuipiilically. An example is presented to illustrate thme results

obtained.

Inl Chapter 4, we consi(her the design of a decentralized detection system with
an arbitrary topology. Inspir,.d hy Ilo's definition of information structure [22], we



ized detection systems could be represented in terms of a communication matrix

which shows the transmission paths of detector's decisions in a given system. We

show the applicability of this definition to our study of the design of decentralized

detection networks with arbitrary topologies, We generalize the definition of the

communication matrix to enable us to study systems with feedback such as those

in Chapters 2, and 3. Finally, using the PBPO solution methodology, we present

a general approach for the derivation of decision rules for the FSS problem. We

consider a number of examples and show that results available in the literature

can be obtained using this general design approach. The generalized definition of

the communication matrix and the general approach to the design of decision rules

provide the necessary arid sufficient tools for the study of decentralized detection

systems with arbitrary configurations.

In Chapter 5, we present a summary and discuss the results obtained in thisi

dissertation. Some directions for future research are also provided.

9
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Chapter 2

The Bayesian Formulation of a

Decentralized Detec ion System

With Feedback

2.1. Introduction

Fhit! area of decentralized detection has been studied extensively in the litera-

ture recently. Decentralized detection sysiIems have been proposed and investigated

using various approaches such as the Bayesian approach, the Neytnan-Pearson ap-

proach, the min-max criterion and the Wald's Sequential Probability Ratio Test

[4]-[15]. Srinivasan [26] and Alhakeem et. al. [27] have re-rentlV investigated a. de-

centralizedc detection system with feedback using the Neytan- iPearson approach.

T'his was moiiva.ted by results such as [20] where it has been shown that inproved

channel capacity is achieved when a feedback link is employed. In this chapter,

we study a decentr .ized detection system with feedback using the Bayesian for--

mul1ation. In this system, the global decision at time step t is fed l),-CP to all local

I10
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detectors. Local detectors in turn operate on their observations as well as the re-

ceived global decision to yield local decisions at time step t+l which are then sent

to the fusion center. A detailed description of this system is given in Section 2.2.

In Section 2.3, we derive the decision rules at the loca.l detectors and the fusion

center using the PBPO solution methodology. The number of observations is not

assumed to be known a priori and the optimization is done for each time step t.

Probability of system error is derived. In Section 2.4, we consider the Fixed Sam-

ple Size problem (FSS) where we have an a priori knowledge of the stopping time

t=T at which the final decision is made, i.e. the number of observations is known

a priori. The system is optimized in such a manner that the system performance

is optimum at thc stopping time t=T. We formulate the FSS problem using the

Bayesian approach and derive the global and local decision rules for any time t<T

and t=T that minimize the average system cost at time t=T. In Section 2.5, we

consider the single detector system with feedback and derive the decision rules for

the FSS case u:;ing the Bayesian formulation. In Section 2.6, we show that the

single detector sy.ern. with feedback is equivalent to a serial system where the

time step t is the same as the stage number n of the serial system. Hence, a de.eni-

tralized detection system with fe(edback l,,,Id be viewed as a serial system with n

blocks in series where cach block conists. of local detectors and a fusion center. In

Section 2.7, we discuss the results of this chapter. (t is noted that even when the

stopping time is known a priori, the decentralized (letection system with feedback

considered in this chapter cannot outperform the decentralized detection system

withnut f,-,back that has be"en ..tudli..d x..t.n;i..vely in.. the "iiera.ti... N(unerical

examples are presented throughout the chapter for illustration.

U
I 1.
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2.2 System Description and Problem Statement

We consider the binary hypothesis testing problem, with the two hypotheses de-

noted by HO and III respectively, for the system shown in Figure 2.1. This system

consists of n local detectors which communicate their decisions to a fusion cen-

ter. At time ctep t, we denote the observation sample at the kth detector by

y, k = 1, 2,..., n, and the local detector decision is denoted by u4, k = 1, 2,...,
The global decision at time step t is denoted by u. The 04h detector takes an

observation y' at time step t, and based on its present observationt and the previ-

ous global decision u"-1, makes the local decision 4 and transmits it to the fusion

center. The fusion center combines the incoming local decisions U', k=1,2, ... , ni

and generates the global decision u4 which is sent to all of the local detectors.

We assume that the joint conditional probability density functions

p(yi, y ,... , y' 1I1j), i = 0, 1 are known a priori. Each local detector uses a. decision

rule denoted by Y(.) to make a decision u, such that for k=1,2,... ,n, we have the

local decisions

Uk '(Y,, 0).

Similarly, we denote the global decision rule by yo'(.) and the global decision is

obtained as

Ut =7 --

where U 7-: (v4, i?4, ... , u4) is the vector of local detector decisions.

The problen is to find the PIIPO decision rules y.() for each detector k,

k=0,i,2,.. ,n, -so as to minimize the Bikyesian cost function J(I') , where

r' =- {r ' t Lz. 1, 2,.. .

Here, I'• is detincd as:

S:--: {(.) : ----k , 1,...,, n

1; I2

ip
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The optimization of this system is carried out using the Person-By-Person opti-

mization procedure for this team decision problem [25]. This system will be viewed

as a team consisting of two members. One team member is the fusion center and

the second team member is the aggregation of the individual detectors. The second

team member can be further viewed as a team where individual detectors are as-

sumed to be team members within their aggregate team. The equations resulting

from the person-by-person optimization represent necessary conditions but not, in

general, sufficient conditions to determine the globally optimal solution [25]. These

equations are solved simultaneously to obtain the solution.

In the Bayesian approach, we assume the kniowledge of the a priori probabilities

p(Ho) and p(H 1 ) • In addition, the cost of deciding u0 = Hi when the true

hypothesis is 1tj is denoted by Cij i~j=0, t, and assumeld to be known a priori. 'ulc

Bayesian cost function to be minimized can be written as:

.1(r t ) Coop(,0 = 0, Ho) + Coap(m'4 0, if,)

±Cwi4 = 1, rio) + Ci=p((Lt 1, 1 ) (2.1)

l)enote the system probability of false alarm p(uI ljio) and the system prob-

ability of detection p(-• = 1 III) by p' and p' respectively. Rewriting (2.1) in

termns of p'o and po we have:
=-: dopo - ',lta + (

J(Ft) U(1 j" + C1 (2.2)

wh ere

C1  p( fl0)(C1 o -. x)

td P(" t 1)"" 1

C p(i/,))C0 + M(IIm)C,,m

It ;:; WSiirn'dt that making a wrong deci.o;ion is more costly th;Ln making a correct

decision. '['his irrtpli(s that C1 and Ca are greater then zero since C0r > (/C') and

C'I > (,C . lit the next section, we proceed with the system optimization alid

perfri•r lllcI(x.
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'Ii

S.. . . .. . ... .. . . . ... ... . .... ... ... . .. .



2.3 System Optimization and Performance

In this section, we utilize the PBPO solution methodology to minimize the Bayesian

cost function in Equation (2.2). In Theorem 2.1 we derive the global decision rule

"W(I). The local decision rules are derived in Theorem 2.2. Before proceeding fur-

ther, we assuume that the observations at the local detectors are statistically inde-

pendent. Therefore, the a priori knowledge of the conditional probability densities

p(y', y',... ,yWJHj) reduces to the a priori knowledge of the individual detector

conditional probability densities p(yfl j1 ), i 1,2,... ,n; j = 0,1. Theorem 2.1 is

presented next.

THEOREM 2.1.

For the decentralized detection ,system with feedback, the PUPO fusion rule

for the Bayesian binary hypothesis testing problem is given by

(, if A(U t ) > C1C
4

0 otherwise (2.3)

whore tbe likelihood ratio A(U t ) is given by

A(IUW) _=__,(_'_)
p(U'l11)

Proof:

L Consider the co:;t fuilction 0 , iquation (2.2). We expanad thc- i,,mb 0hiLy of LI."L ase

aarni an(d the probability of (Ictcrtioxi around the decision vector U' as follows,

J(f") = Of •pXu: Z- t, U 1-110) .- "'1 EP(u, 1-" , W/l[j) -f- .
U ' li t

Con(ditioning on U" and expaii(ling we get

J(J't) . Ofs ,(t, .. l ,Tl , !To)p,(U t ISj)..C,,, , t :<- I.l1J, t !i ),1(Ut J1 )) +- C.
Ut Ut

,- -- • . - -



Since u' given Ut does not depend on the hypothesis present, we rewrite the

previous expression as:

J.(1) -= p(ul = IlU')[{Cip(U'IHi) - Cdp(U['l H1 )] + C. (2.4)
Ur

Due to 6'he PBPO methodology being employed, we assume that the local detectors

are fixed and minimize tj,:- cost function J(Ft) by choosing the decision rule at the

fusion center as

p(uC - W) = 1, ;f Cfp(Ut 1Ito) - Cdp(Ut II) < 0

0 otheriwise

which is the desired global decision rule -y(U t ) given in (2.3).

Q.E.D.

THEOREM 2.2

The PBPO decision rule at the kth local dctector for the Bayesian binary hy.

pothesis testing probhlem is given by

7•(Y- u-'--u = !, fP(Yk~') WI (2.5,
Uk p(Uio) > ri (7 )-

0 ot)herwi.SC

were ( ) is the kt' doetector threshohl at time step t defined as:

- Er. f, f(jk)P(Ul,[?4', [IN)p(71"'-I .l 0),•U ,# •-- '...... (2.65)
c"C,1 Tv• f [it)

and,

f (U ! -- I ?)(I? t_ I_ T! - I----

(u4 , 1'4,.. ,Uk. ., uk'+l, .... , u) tihe local detector decision

vwctor V xciudiii ,hc k h( dt codcisioni.

11/, (7L{, ut,, .... . . i, . . ., i,,) loh ;ld detector J{ecisioji ':ct(r U0

with the !c"' Jtector dcci:,iont u'. equal to i, i- JJ..

... I- -..-- ,- - -



Proof:

We rewrite expression (2.4) explicitly in terms of the kth local decision

J(I") - p(ut -- lIUkt )[Csp(Uk',I1o) - Cjdp(bT iII)]
Uhl

+houl +p(u 1U,o)[Cj(U'.oIHo) - CdAp( uku0 I) + C. (2.7)

It should be observed that the summation above is over all the possiblities of the

decision vector Uk. Substituting p(U,, 11 .,) = p(Uk'1fI,) - p(Uk, ltls) ,j=O,i in (2.7)

and factoring out common termns, we have:

J(Ft) I t'"L lUh ''J =t =~i 1U 1)[Cip(Uait~o) - Cap(Uk1 IIlit)]

Itot

1- ,,, 1(/ )[Cit(Uil0) -'CiP(UJI 1 t[11)]

+P(110' =1Uko)(Cfp(Ulto1I1) - (1dp(U, IH1)) + C.

Factoring the t(er,.ns in square brackets out,

](F t ) Vio, lU1)-11 p(n, 1 IU'o)J
Atz

+P0 lU4)CC!p(UCIIl,) -C Up(Urt[t)) I HM . (2.8)

Observing that the last two terms are tiot involved in the opltiziuation of the kth

local detector due to the PIBPO procedure being elmployed, we drop those terms

iii the subseqemnt e(pitatiotis and denote the new cost functiou by .11(nt). Next, we

exp)and JP(I's) in it-' the previous global decision, and Y, ' y , ..... Iy,) the

observation vector of local deteictors:

.11(1") [1 4 : ý~•-! 111141) --- 1(* ,) = iIUL)]
uh,

-- ,,(i ,,;-0 ,V l+'t ] (2.9))

ANEW
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For notational convenience, we assume that the integration is over the appropriate

variables indicated with the integral sign f and the term dY' will not be written

explicitly. This convention is followed throughout the disscrtation. Letting

p(uo = 1jU 1) - p(u= = IU,%)= f(UA,), and expanding (2.9) by conditioning on

u- and Y"', we have,

'(F") = • f(Uf.) fv, •,[ (Ui, -Y t, F-o)p(ut41 , Y t l-I0 )

-Cd (,( u, ,Y t , Hi )p(U, I' , Yt l H0 )]. (2.10)

The local decision vector UA! given both the previous global decision and the

observation vector Yt does not depend on the hypothesis Hj, j=0,1. In addition,

assuming the observations are independent in time, the previous global decision

u` 1 is independent of the observation vector Yt . We rewrite (2.10) as:

J'(r') = f~u. f,>,-,[r,(UD,,•' X')P(lf-'l )P(Y'l 0)

AUt

t 1iP( 11] (2.11)

Moreover, assuming that the observations at detectors i and j, i-/j, are independent.

of each other, Equation (2.11) is rewritten as,

J'(Pt ) . • f(UQ.) y, Eq- [Cip(-.u-'II ' o)p(Ult'-',y)P(Y f 'H)
rjk

Cd 11, o (i fO' y) p(y, I o , )HO

Ii p(uji{;,yo•,)p(yii~. [*t(2.12)
r i=l,i:•k

Factoring out the term p(UA!1 I 4'y ,ea

jut-',., y ,) we have

"> f (Q) )p(. AN I Z1,,)"

f]Yhl[Cf P(UO-' klno11)A,(v•.l) rl' ,i,,,.,P(Uf'l,14-• ,' ')

* ' 11(% 'liOK),iy, P,,( ,1 ?I.o 71f)P(y1lI,.)1 (2.13)

I. 8
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where Yý' (y', y'. , Y. 1,Y• +1," ,Y•) the observation vector Y' excluding

th-, k 'h detector observation.

Integrating over k'* and rearranging (2.13) we have,

fqo( l', 17to , k Yufv)

[Cf p(uo-' Ito)p(J~U-i , I& t o)p(y I Ho)

--C,,p(UO`-111,)p(UktIlUO-, II1)P(vit)] (2.14)

To minimize the cost function given by Equation (2.14) we choose

p(Uk, I ',y') 1 if A, > Ao

0 otherwise (2.15)

where
i A1 -- >_j f(U2)Cdp(yIHl)p( ,4-'I.HI)p(Uk'lu•-, H1 )

/A, = 7 f(U ) kJip(y •0I1o)p(u•-IHo)p(UY•.[47' Fo)
U.,

Ilk

The kth detector decision rule therefore is given by rewriting (2.15) at:
t ~i t u t U')[I,)P(Ykt[1)

f k' p(yJ)=U) > ,1(u) (2.16)

0 otherwist,
where r'u' i t- h k t4

hre (u is the kdetector threshold at time step t deffined as:

f I'_ f(U.)P(UI•oi , _IIo)p(-'jHo)(.1
N )( . (2•. J 7)

(,i Cd ,f(U ,p(U Iu4 111..", Ar1)p(u -llH't)

as stated in qimation (2.6).

QE.D.

At time step t:--2., thore i!, no fe('dback. At this step, the fusio, rule ha.s the

sme form u; gjvun in Thcornij 2.1. Ilowever, the- local lo,:ision ru<es a ;re si.ngle
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threshold likelihood ratio tests given by

7u(,•)---u 1, if p(glI)> r•(.
p(yIjHo)

" 0 otherwise

where 77' is the tlIh detelctor threshold at time step 1 defined as:

Ca ui2 f(Ufl)p(UAfHl)
'aU, f(t4)P(UkiJHi

f (I'D p(u• 1-0 [JU; =: 1).'- P010' ==1 T4• - 0).

From Theorems 2.1 and 2.2, the following observations regarding the decen-
tralizcd detecction systemn with Feedback can be made:

,, The optimum test at a loca.l detector is a likelihood ratio test for statistlically

independent observations.

r The kth local detector threshold g(u-'") is a function of the previous global

decision ui-1 as given in Equation (2.6). For the binary hypothesis testiag

; iblem, two thresholds exist since the previou,; global decision takesý two

values. The threshold '(ut') is also a functioa of the prolbabilitic.-, of syscem

false alarm aid miss at the previous step, namely P.'o and ,-o

* At every tim, step t, there are 2" fusion rule equatious and 21t local threshohl

equations to be solved for the binary hypothesis testing probtleu.

a Since the local detector's thresholds change from oie tLime step to the next,

the optimumi fu;ion rule changes as, well.

£4ysteiu Performance

Next, we consider the perforumacc of the decc lxtralizcd ,tctio-yon sy.tew vNIt

20 I
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feedback. In the general case, the performance is described in terms of the Bayes

cost J(F) given in Equation (2.2). Here, however, we consider the special case of

minimum probability of error criterion, i.e. COO = C11 = 0 and Col = C 0o = 1, and

characterize the system performance in terms of the system probability of error

denoted by p%. The system probability of error p% is given by

.. "; p~~to =_ p),ptio 4 to( (2.20)

wheroe p'. is the sy,;temn probability of miss. We expand p' defined as p(?t : I1 [.Io)

in terms of zio,

Pho ,1016 - , HO)p(z{' 1-11o)

bi-p 11 = 1u ' 0, !1o)p(Tt 1  O-_- ). (2.21)

Replacing p(' --:: 0 if) by 1 p(?i'-= 1 111) and rearranging te'rms, we have

1)(710 - l jo)ý,(It ' l,= 2,- : 1 , Ho)

-- P(ut -= 1 Iu"4 0, 1 o)1 + PN( , =: 1. 0, .ho).

T ' This may be rewritten as:

,t I(' t )i I 0 + "t, (-a" o) (2.22)f,0 flo Ao -0 f)-k,,f" 0l l},'W `-)

where
p)(n - - i) p(741 lu, :=-.i, 11().

Iritrohticing the local decision vector Ut ill 0t1e ,-bovw! expressioil, we h•ave

>2•:<P(U,:=t qwr, •t- u,)pu ,;':: :i) (2.23l)

Observing that the global dci:::nt 'It' conditioned on U' doc's not, deupenpd oItu'"

and JI0, Equation (2.23) yiel.ds

P.'' (It ' : I IU );.(U!IlW : , i, ,). (2.2,4)

' 1



Similarly, the probability of system miss pt. is written as:
tm = _t- tr[Pt tt-I = 0) t , -t , t- I)( .5

A = -~P, Lt(1t - 0) -- ,(-t-, = 1)] +po (uj 1) (2.25)

where the probability of system miss p' t r1- i) is expres.-d as:

p4C (U' = i) = 0(1u',-" =i, HI)

- (,1( -•-1U')P(U'IZ, =i, H1 ). (2.26)
Ut

Substituting Equations (2.22) and (2.25) in (2.20), we obtain the probability of

system error pt. At time step t=I the system. probability of error is given by

PC = 1})r(Ho) + pkoIh) (2.27)

where

U1

S,,•ui =Ž.•P(71' OIU')Iv(U'lf[).
I'Ti '

Next, we consider an Cxamnple where some 111merical ',su.lts are obttainted.

Example 2.1.

We consider a system consisting of two local detectors and a fusion center.

The binary hypothesis testing proble1,c.m is coiisid (ed. Undter both hypothuccs, ti ic

input observations at each detector are a:,suitned to have a Rayleigh distribution.

I For s;implicity, the sigl:Ll-tO-Iluisc ratio (SNR) at, the two detectors is assiuned to

be equal am[ is denoted by c. As shown by l)iFranco and Rubin [28], for 1.Iiim

model, the probability of false. alarm and tih probability of detection are given by

P,, ((I + 6) X 7)k

andl,

r-

I . "

I' ",

I-"

I '', ".. a S k ~ I.- ~ S i~lOtk.d .a..I, ~tA~.tl S ts. .. ~h' .L n.e.... ...JJ .. .... .



The above equations in addition to Equations (2.19), and (2.27) are used to eval-

uate the system probability of error and thresholds at time t=i. The results are

then used in Equations (2.6), (2.20), (2.22),(2.25) to obtain the system probability

Sof error and thresholds for t>1. The minimum probability of error criterion is

assumed, i.e. , coo Ci' - 0 and (701 = C 10 = 1. Also, the ' priori probabilities

are assumed to be equal. In this exampl', we consider two fusion rules namely

the OR and the AND fusion rules. For the OR fusion rule, we plot the threshold

values rJ.(ut-' = 0) and ,i(uo41 = 1) vs. SNR for different values of t in Figures

2.2 and 2.3 respectively. The probability of system error pt0 vs. SNR for different

values of t is plotted in Figure 2.4. Similarly, for the AND fusion rule, we plot the

threshold values r7'(uz' = 0) and 14(?- = 1) vs. SNR in Figures 2.5 and 2.6

respectively. The probability of system error p%0 vs. SNRt is plotted in Figure 2.7.

"The plot in Figure 2.2 shows that the threshold t) increases s a

function of time and as a function of SNR. The plot in Figure 2.3 shows that the

t hreshold qt(u- 1 = 1) decrexses as a function of time and ,as a function of SNR.

As SNR, goes to infinity, the thv:shold 4(l7(t-' . 1) goes to zero and 77'(i?1-' l 0)

goes to infinity . The Plot in Figure 2.4 shows that the probability of system error

I)% decreases as a function of [line and a.s a fuiction of SNRi as expected. It can

bc observed that pt, goes to zero as SNRI value increases to infinity and as time

stejp t goes to infinity . For the AND rule, the thresholds and the probability of

sy.htem (error shown in F."igures 2.5, 2.6 anl 2.7 follow a similar behavior, it

should be noted that Figure 2.6 show:; that the threshold vaiw,i,• ,iven -' _ I

are independent of the time I)aranet-r 1. (111 to thle usec of the AND fusion rule.

23
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2.4 The Fixed Sample Size Problem

In the previous section, we considered the decentralized detection system with

feedback. The stopping time was nor known a priori and the system was optimized

at each time step. In this section, we consider the case where the stopping time

T at which the final global decision is to be made is known a priori, We refer to

this problem as the Fixed Sample Size (FSS) problem. Next, we define the FSS

problem in more detail and design the system so as to ninimize the Bayesian cost

function using the P BP0 solution methodology.

Problem Statement and System Optimization

We again consider the binary hypothesis testing problem for the system shown

in Figure 2.t. The system operation is the same as l)efore. In the INS problem,

the stopping time t='T is known a priori. Hence, the probleim is to find the optiial

decision rules 7k for eadch detector k=0, 1, 2, ..., ii so as to minimize the 1layrsian

cost fulnction .J(P'), where

1' 1. , 9 , T '1( . 8

ilaI Id as h)fo;'e

" {" k(.) =0, 1, ...,n}.

Observe that the minimization is over the entire set of decision rules up to time -(

Step tiI. We assilue that the condiltional probability dlensity film "Iions
P(yi, /y4, ... , ye,, ), j--0, I a',re known i priori. In addition, the probabilities ,(;4o),

14(11) and t;he costs (;.ij :-:cost { decide "-- ./1 hypothesis present .. ji,

i., jr4, I are all assiiuried t 1nowh n ... a priori. We asuux{nc that th" ub'.crvaLtionr; ait

the k4L detector are independent in time (temporal indlpefhdeie). In adddition,

tht.e observationis at tlit! khh ldetector are asjsunmed to 1b iinde 1wendleit frorn t)ose at,

the. r.L1 de-0tector, 7' / k, (spatial inidependence). Hence, the a priori knowledge of

t, y,,.i (lit (...4 ) t rduacs It)o , a priori knowledge of the

p- -



individual detector conditional probability densities p(y!ltlj), i-=l, 2, .... n; j=0, 1.

The Bayesian cost function (1(F) to be minimized is written as:

() Coop(u = 0, Ho) + Caip(U, 0, H1 )

+C71p(,o= 1, ffo) + Cilp(U'o 1, Hi) (2.29)

which reduces to

.J(.) Up f dp +d (2.30)

where Cf, C,, and C aire as defined hi Section 2.2.

We should observe the effect of fixing the total number of observations available
in (2.30) where the probabilities of system miss and false alarmP 0n , T are a

fitnction of the final time step t=T. We would like to find the set of decision rules

I :auch that the Bayesian coit function J(F) of (2.30) is minimized. In Theorem

2.3, we derive the global (decision rules ('7(.) at any time t <- T. 'fhe local decisiOn

rules are derived in 'Fheorein 2.4.

THEOREM 2.3

For the decentralized dctec.tion system with feedback shown in Figure 2. 1, the

PI)P) fusion rule for thc Bayesian hiniiry hyi)othles-s testing problemn with it fixcd

sample size is giVe by

"",NH,( .TK! .1 ,) -> C

LI othrruii.w (2.31)

ald for t<"'[

yt (f t ) , if A(U't ) .J'jq(t,0)
(7,dg( t, 1)

1)O, /Leh•;oi.'ic. (2.312)

l '31
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where g(t,j) = p(u 1(u• = ., H•) - p(u~' = 1Ju• = 0, Hj)

Proof:

We consider the cost function J(F) given in Equation (2.30). We expand the

probability of false alarm and detection around the local decision vector UT at

time step t=T. Hence,
IT

i J(P) = Cf EUT p(uI = 1, U7, 110)

•Cd ET p(u'T = 1, UTIH 1 ) + C (2.33)

Conditioning on U" and expanding, we get

J(r) Cf Fu.r p(uTo = liUr, jh))p(U I1ff)

-Cd YUTr p(uo = l[U•, H)p(Ul'IHI) + C (2.34)

The globa) decision uT given the decision vector UT does not depened onl the

hypothesis prcsent; we rewrite (2.34) as

J(P) = P(71 I I UT)[CP(UTI.U 0) - Cdp(UTIIl)I + C (2.35)
UT

Since C is fixed, we minimize the cost function J(r) of (2.34) by using the following

descision rule

p(uT' = [U7 ) - 1 if UTp(umII)) - C,,7(UTItII) < 0

0 other wise

which ib the deut .ed dccision ruie '-y(U]-) at time step T a.s given in (2.31). The

1lobal de-ision rule "y'(Ut) for t<T is derivc, by expanding the cost J(P) of (2.30)

around the global decision it a-id the local decision vector UW. In this case, w.,

have

,1(F) Cf: p,,u,,, ( 1, ?t, , U I [I)

.C.., I 4 t P(O '" 1, t , IUil t) ± (: (+.Cp .3 )

32
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Conditioning on u0 and U' and expanding, we have

J(l2) = C1 ZuP(U"' = 117<,, U',IHo)p(i4I t ,HVO)p(UI IHa)

-Cd E.U P(uO' 1 1t4, U', II1 )p(u'I Ut , HIj)p(U' Iii) + C (2.37)

The global decision u. given the global decision u' does not depend on the local

decision vector U' since u' is a function of UW. Moreover, the global decision

U4 given the local decision vector UW does not depend on the hypothesis Ipreseat.

Therefore, the cost function J(P) of (2.37) reduce-, to

J(F) =:C~ p(uI' = 1 Ili', Ho)p(u' 1jUt)p(iUtjfo)

-C EU0,U. P(uO' =1 ju~,HI)p(u'l Ut )p(U'l Hll) + C (2.38)

Expanding the above explicitly in terms of the two possibilities of the gk-bal deci-

Sion 7$,`1 we get

J(F) Cf p(It4 l~u, 1, IO)P(u~, =II Ut)p(Ut I [T)
Ut

+Cfp(uLof lilt' 0, U.-O)p(IInt - OI t)n(U' I Fo)

-Cd(Iug'( =1U l ý 0, iT1)P(u, -- OIU')p(U't IIh) + C (2.39)

Substituting p(ul 01W) by I p(ul I W) mnd factoring out commron terms ii)

J1(') o< (2.39), we havc

-(Jdtpkug Ilu, 1, HO 1) -Cp(i4'7r 1.1 I 0, fIi,)]p(U!IT

l1t

+Cpu ' 1.11t, 0, TTO'p(U tI 'fi) --. ('IP(I"': 1. 1u 0, 111)

xP(Ut~jIIj) +Cl (2.410)



The last three terms are independent of the optimization of the global decision

rule at time step t. Therefore, we drop these terms in the subsequent analysis and

denote the new cost function by J1(F). Factoring out the common term in (2.40),

the cost function J'(F) is written as:

J'(P) = > p(14 = I IUt)[C.,p(U t IHo)[p(uT --- u) = 1, Ho)
Ut

-p((uT'= ljut4 = 0, Ho)] -- Cad,(Utl H)

xfp(u T -114 = li1,)- p(u' = if4u = 0, Ji)1] (2.41.)

Letting p(U3T = 1ji4 = 1, H1 ) - p(u' I lun = 0, 1;) = g(t, j) in (2.41), we have

J'(f') = (p(u = tlI W) [Cfp(Ut jIIo)f(tO)
Utt

4-',Ip(Ut III)7(t, 1)] (2.42)

To minimize the cost function J'(f') in (2.42) we choose

,(710= fU t ) = I if A < 0

0 otherwise (2.43)

where

A Cfp(Ut j.io)g(t, 0) -- Cdp(U t ih,)g(t, -1)

With a little rearrangement, Equation (2.43) becomes the global deci:dion rule

y4(Ut) at any tiie step t<'I' as given in Equation (2.32) r 'fTheorem 2.3.

Q.E.D.

It should be note(d that the above gloW Il decision il ies for t<-' werv deriwvcd

with thie objective of optimizing the syatein perfonsnale at time iT . OIn the

other hand, the global decision rules of the previous section were derived with

the objective of optimizing the :y:;tni peIrfor mwe , at tiue 1; independently of

the futire decisions, i.e. thc obbjective was to optinuiza thc :.f.wi.i. of thi

(lt:2::,lia at every tinc t which miy not. ro:mtlt iin opthflApd ierformantlc ior tie
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decision at time t=T. Next, we present the derivations of the local decision rules

"ri.) k=1,2,....

THEOREM 2.4

For the decentralized detection system with feedback shown in Figure 2.1, the

PBPO local decision rules fur the Bayesian binary hypothesis testing problem with

a fixed sample size is givou l)y

ulk =y(.,k 0.-') 1. if A(y') > r/ktuo )

0 otherwisc (2.44)

where ij4(uo-) iL; the kth detector threshold given for t=T as

T~i _ G~ Zuy fU[)p(U , I~1fN

f(U')-) = -- I) OHUkro)

and for t<T

-C(J/qt,O) Wof(UT .)p( ' f)Ca1!1(t, 0)5r/ f V" l( U I), •,,,'lk a t,111) .,+)

!g(t,j) = (, 1 71 - 1., tfj) - ,(, t,1 0, o, j).

Proof:

We. fir';t (hrive thl local decision rilles ait ti i, ,t.o:p W W !.; r<..:c..l Pu.la.tion

(2.35) and writ(. it explicitly in ternas of the kt' local decision

1(1) u...l~ . f)[6Z,(UklfIIZ,) -d(UZI

Jf( ( ,( (t.,lf )] "F. (7 (247)

, i• t ,) s ( ,- . ..



Substit-ting p(Ukonjf~I) by p(U[AIHj) -- p(UTIHj), j.=0, 1 in (247), rearranginig and

factoring out conmion terms, we have

J(F) = (7jp(U 1jHo)[p(u~o= 10U")- p ( IUU)]

-Udp(UkjIlI)[p(u•o' = IU)- p(uo' = 1IUo)]
+P(,no) -To lUU)o- C'dp(UTIH1)] ±_ C (2.48)

Noting that the last two terms in (2.48) are independent of the optimization of the

k"h local detccul.dr, we droP those terms in the subsequent equations and denote the
new co: i functiou by ,1'(I). Letting p(114 IJUn)-- p(1T = llU/•) --f(uj) and

factoring it out in Equation (2.48), we get

J0(1.) k f(u )[CMP(UkT1I1O) C. (dp(UTI-)i (2.49)
rj T

Expanding Equation (2.49) in - the previous global decision and

y:(y, yir ... , yf') the observation vector of local de'tectors at time step t=T,

'[ 7'--'1-Y
---C,,tP(Q' k,' uo 1 10l t,)] (2.50)!

where the integral fyr is multifold integral of dimension in. B1y conditioning (2.50)

011 Ito u)l Yt, we have

""I' I it --

[. ' ,,'t,(U . I . 1'-', y/r, 1[,) 1, Y", ,, -" Li ,) (2.51t)

it i; seen ilh.t, the local decision vector U",i giv'n both th, IrcvioliS global dxcision

*),. -l

U0 and thto ,bservation Vector Y'" does not depend on the hypothesis pr(nicint,

A:;:;niming the O•bsr'ation iilde.pendence in time, thw previouis global decision uit,-'

isi indcpendent of the oblswrvation výctor Y ". T1 add(itionl, tI', 0t ' local de-:tector's

I.



decision ur depends on the detect;or's input and not on other detector decisions.

Hence,
n

p(UT[uTo-,Yr) = p(uI' lT-1,Tr) I' P(UTIUo-l, YT).
ki1 ,ik

Using the spatial independence of observations the above reduces to

p(UTIuo-,YT) p(T IT T-1, Tj ij T [)ki~~ ~ lIu,, ,y• 1-A 1U k I 0

Substituting all of the above results in thc. cost function J1 (F) of Equation (2.51),

we get

T-1-

J,1 (r) = Wf(If) -,,1-i .fy[C1 P(Uj = a u k-,y")

= UI Y,u•')("(l,=# p(uY,' 1to))P(u'A"-Il[)
--C,,p(uk- lu0-, A:7 )U II=;, (U"rI0•- , if)

(rp lp(Yfltt•))P(UoT-l I• j)] (21. 5 2)

Factoring out the common. term p(iju t, , y*') a.nd rearranging the ordlhr of

iltegratior anld :(.1 (i;fiuation, we hlave

Y fr )O T ! It.PI )i \\tTI 110)"'a-11i0)
.1•;•W" (1,0,,, 74, 40, yn, ,•i)(,T •,)(u' r, -J kll r('J i Vf~p0, J[fl),I =('IIL'\.,.; I.. ,~J iVf)

P(10'IJI )] (2.53)

Integrating over k"', w(e rewrite (2.53) us;ing viotatiors of S(ction 2.2 ,

,]'() = 3•,J•z,1,• T- lq,-1, 1v') Erik f (0")
".1--i

- --- -'/ ,T--1

S•T"/-1
-(,,,vUfli L`O z[)P(YkW(J)1y(74-('1 ,J 2zit

~~~~~~~ .... . .. . ........ .......... . . ....... . . ..... ....... . ... . . .. .



To minimize the cost function of JP(F) in (2.54) we choose

(711.= 11Iu0,,- ) = 1 if Ao < At

0 otherwise (2.55)

where
AT = [ f( U[IC P( UTuo-', io)p(y•T jol)p(u' 1Io I)

'o f Wk UfPk

TA -- f(UC[)dp(UkluJT--,Itl)p(yTl Il)p(uT-I IH1 )
A, fH,

The kth local decision rule at time step T is therefore given by rewriting (2.55) as:
T T(,VT, N.o"'-) I if P(YkrlSS'l) > " T( -1

0 otherwi.vVe (2.56)

wre i7k 0( ) is the A!" detector threshold at time step '' 1efined by
. , ! r UTs f(U[)p(,A [I1 'r-1, iHo)p(, ,,-'1 I HO)

71(d - u, f(( U2 )p(5U[ii-' 2,),(,1-I (..7)

as given in E'qiuations (2.44),-(2.46). The local decision rules for ,inie step t.:ýT are

dcrived by recalling F"quation (2.41). We write (2.41) vxplicitly in terms of the 01,

local decision rule at time sto'p t,

--( , c : t , ,4 , -- 0 , U r , ) ] --( J 1 m ( U r 1  i f l , ) [ v ( ,i' 4 ( " -' I I , , 1: I ,

JJ-j1'(' z:: lO iu , - l .1)}j -I 7)~l~ i'(")= 1 u , { ( A,( dI il))

P1 1'") [ L, , ) (U(" =- " , 7o0)]
17 1

0,, IT,))0 ._ I (2.5[ )
-A ."O 1' 110'k~O" ý= 01 ,01 -1 -"P41 1 t) kf ('f tJP A1I1

! ~r.,,ttiv,,g p,(,, ::- I li'4 : t, !1:•) r-,(.,,?' - .... t ,,g t~s ) -- q(t, j) ,au, .,,1,l),,it,,titi
I'p(U7,<ol !) by. s,((J.fl11j) - (,~ v'I) ,r•,,, t~(~.8 ftrr.~ragii

1' "(1') '1: > , 1(,11, - - 1i.)C fv(U , I [ ,)'(t,,0). , -- (,,,e(,;, )y(#, I

II
(V 1K 0I)fjyt )



P( IU' )[Gi(Cf P(Iko 1,O)( ) - CdP(Ukl I Hl0(t, 01)

=pu 1Uk0) [Cf p(Ukjl Ha)g(t, 0) - Qjp(Uk'[ff)g(t, 1)] (2.59)

The last term in the above equation is independent of the optimization of the kth

local decision rule, hence we drop that termn and denote the new cost ffunction by

J 2 (r). Fuctoring oi,. 'uthe 1, n~illnt -A-W1111101 terlii, Equa;.ioxi (2.59) is writteni as

.1(F)=) [Cfp(U,'l IHo)g (t, 0) - Cip(Uk' 1IJAI)g (t, I)

Next, we expand (2.60) In u('1- the previous global decision and Y" thc observation

vector of the local detcct.or at. I-tie step t to get

i 2( : > ) ý- fY I[Cf Prp(U', ? io 1 Y'l [h0)Y(t, ()

X 1P(uO' =I IL{') P- p(UO = II Uko)1 (2.61)

Lettingp~n1~ -1111 t p( r4, I j~n) (Ufl at 111i~iirg, I)TI Lj i' rd

we get

'k

xp Y;' ytII )10(t, 1) (2. 62)

[lit' It ral ib ,rsi~;ol vector 0J, gi vCT- bothl W~IC p1eV jOltS J!r[0 j ); rlt'CiSi ir U') aTl[ ~ ~the observation vector Y' dioes not depelld on tire hiypothesis jire.,;cnIt. Us~inig the

Obscrvdatioli jittleiiil11erire in time, the obxervation vixtor Yt is ilriiepulri [let of the

* ~ ~ )L(eV~i5lk global d(I(6'ioiil 14 1 I.lieretorte, Equlation (2.6i2) is w).itteir as,:

.f 2(i.t- I2 I *f1.JfLP 1~divU1 I0u , 0 t)
C!qU ut[)~'(.3



T'he k"' local detector decision depends on the input of this detector and not on

otiier detector de'-ision:; and observations. Moreover, asing the spatial indepen-

dence of ob;ierviltionis, we write the terin p(UA1 jut'-, 1"') as

Elk,, II UQ` YY) =- P(Uk aj41,~ x ]J P(u,ýU,',-"4).

Substituting the ab,)ve in Equation (2.63) and rearranging the. resultant terms, we

have

1(7) > , 4 O p(yt 1 Iu0) ', A) Z~tfut- fD(U ý111)

-(/dp(%II1)yit, IP(,14juT-,) YIDpO uf4h , O (2.64)

Takn tllhellZ tomoi CO rtfi pt~t vt, J2 (F Yf (2.65 and ChUOScgrtn 26)oe

PM 47',) 17t, f A1) <_V A1tf'

[CI(z'N f(f[f(t,, 1)PY-t fI 1)~1 t OP( IUUu) 0

A, f.. f(Ul(Jk.) lit"~ u I [J,)g(t, 1)p(y'l 111)]

40(



where we substituted p(Uf.uI Ju H3 ) for f-L jl-.,kp(llu H) and combined
p(Uktlu" 1 H1 ) and p(u~'l'H1 ) to yield p(U,,u -'IHj). Therefore, the kth detector

decision rule at time t<T is given :.y rewritin.g Equation (2.66) as:

7k(yk,u"•-) U= u 1 if p(yIto) > •,(77o ( )p(yk, I Ro)

0 otherwise (2.67)

where •(ut-4') is the kth detector threshold at time step t defined as:

SCf Yg(t, 0) [iuI f(Uf)p(Ut, u' -•l[o)
- Cdgq(t, 1) _u, f( Uk)p(Uk, uto- JH1 )

as stated in Theorem 2.4.

Q.E.D.

It should be noticed that there are two different threshold equations for the

local likelihood ratio test. The first equation is (2.45) for time step t-T and the

second equation is (2.46) f,,r time step t<T. Similarly, the global decision rule has
a threshold of Cf/Cd at time t=T and Cjq(t, O)/Cdg(t, 1) at time t<T as stated

in Theorem 2.3. The system thresholds up to time ' are found by simultaneously

solving the set of threshold equations given by (2.45) a, 11 (2.46) for all time t,

t<. 'I.

System Performance

Next, we prcesnt the perform-uance equations for the systein naimely the system

Sprob.ability of error A, bu' Lhe system probability of error at timt: '17 is

given by

PU =4 pfp(HO /O)+ P"'opW1). (2.68)

The system probabli)ty of false alarmi. and miss, i.e., P 0 , arc give; 1)y I1",qatminjji

(2.22) and (2.25) rc.spectively. We recall those. equationis

-* p"[po,,( (' I) -0(- 74( 0)] + 1,' 0) (2.6!)

4 1



P-I0) [Pt-(ljj-+ p 0-Pt = 1) (2.70)p. M-O:p,0• --a . ) M.,,- (U + . U0- I

where

P = i) = = OlU t)p(U1ujz-' = i,11l) (2.71)
Ut

it
Flo (-x 1 i) _jp(ut = lIU t )p(UIluV'- = i, Ho). (2.72)

Ut

'I.'he performance of the system is found when t=T. Hence, the system probability

of miss and false alarm have to be computed recursively up to time step t=T.

Time step t=1 represents a special case where the global decision rule is the same

as given in Equation (2.32) of Trheorein 2.3 with t=l. The local decision rule is

the same as in Equation (2.44) of Theoremn 2.4 with the local threshold equation

of (2.a46) modificd for t=: 1. as follows

C. g(t 1 1,0) Ztu f(U)(UUJ o) 11.)
=C.q(t. 1,1 Z)u, f(U,)p(U:IJ,) (2.73)

which is obt::ixid by dropping the previous global decision term ui-1 in Equation

(2.46).

It is seen that threshold equation of the kih detector is coupled with other d,-

tector thresholkds a.t tUnie step t, i.e., we have spatial c.orIpling. In a•ddition, therre is

a tcniporal coupling of thresheld equations through the terin g(t-:i, 0). hlenct., w

have a set of non linear threshold equations that are coupled spatially and terinpo.-

rally. For a given time t-='I.', the computational complexity appears to inhibit a

numerical solution; hence, in the next section wC cOiNider a- simplehr .;ysteiri coil-

sisting of only one detector with feedback, thereby eliminatinfg the.spa,,tial coupling

with other detectors.

A

L• . .. . . . .. . . .



2.5 The Single Detector with Feedback

We consider the single detector system with feedback shown in Figure 2.8. In

this system, we only have a single detector and do not have separate global and

local detectors. Thereforc, the results obtained in the previous section cannot be

used directly. Using the notations defined earlier and dropping the subscripts since

there is one detector only, we derive the FSS decision rules for this• system next.

THEOREM 2.5

For the one detector with feedback shown in Figur, 2.8, the decision rules that

minimize the Bayesian cost function in the binary hypothesis testing problem with

.a fixed sample size is given by

= U' I, if A(y') > CYg(0,O)/Cd0(l, 1)

0 otherwiose (2.74)

and for t > I

C I', .q t O ) p,( ' at _." I ff ())
yt(y, at-) u- I. if A(yt) >

Cd(t, ( •),(u '- JJ)
0 ()othcrurwiTst (2.75)

w llm-o.

Y(t,j) Mp(u' . 11t 1, l ,1) -- p(, 1.iu4' o, [,1).

"K Proof:

,lAcafl tho l•a.ycsia, cost fillictioD to b. minilmi,",

J(r) - - C, 17)(10- (2.7(6)

wlwrc Of, C( and (C are as defined heftýore. We expanml ph and p$'/ ilk termoms of, 'at

J!( F') C1  'K',(,'i I f , ',) C ,1 (,' ( 1,.,, i,) N(/', (2. C7)

4_ _.



yt.. Single detector

Fig. 2.8: The single detector system with feedback.
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Conditioning on i t' and expanding (2.77), we get,

J(P)U = -14' 1.1utU0)p 110) - CdP(U" 11 -a'u, HI)p(utl HiL) + C (2.78)

Writing the above equation explicitly in term of all possibilities Of 14', narxely

U'=O, I arid snbstitixting p(It =l U ") =1. -P(ut -~ lI I ), we get,

J (r) Cf p(14 -= lint :-- .1, Ilo4(ut ==1111)

J-1-Cfp(-uT , lit' 0, Ho) (I -- p(utt  1111o))

-CdP (' 1u 0, lit)(I - p (Z, 1tiI11)) + C (2.79)

Multiplybig out., facwtoring the common term p (ut 11 l.rlf) out and rearranging, we

I get

J(F) Ujp(ut  iHOYrp(u` w- fl ,l,,o) -- P(uT I iu, - 0, IT,)]

I G4iip(u = I jlI 1)[P(u" = I ut .1, 111) P(71 J~ut 0. 111)]

I_ lit' :-:: 0, 1r0) 1-(1~" :II~-1 0, J1 ) +f 0' (2.80)

Thie last. three terints ale hildepelldeflt of the optilllizatioll of the dlecisioni ruile at

Linlic L. lfeiice, we (trop) thie.-i t~erms~ and cu lote the 1142w cost function by Pf(r).

* I .ttin p~u 1 n 1., f1 j) - P(?."' :-7 1 lit'- 0, [la) : : (t, J), we rewrite I'4]latio~li

.1 ~(2.80) a

I:IntrodulciTIJ tIe 0Iser'vatiolls yC ;Ioi r.1 ;iisij tue Lw of total pl'obabl~ity, wu have

j.. C(oxidiftionliug on. t Yand~ eXpanding the abhove vv! Iret

J1(r') TV ' C jq(t, 0)P(uTI I2 1 y"~ 1~~iI i 0)
_GY11t pI4 r 7(Y 71 V-3

411_



Letting t=1 in the above equation and observing that the detector decision ut

given the observation y- does not depend on th:e hypothesis prescat, we factor out

the resulting common term and rewrite Equation (2.83) as

J"(F) = f p(u' l-y'y)[Cg(t = 1,O)p(y1IHo) - Cdg(t = 1,1)p(y'j-H)] (2.84)

To minimize the cost function JX (F) of Equation (2.84) we choose

p(u1 = 1.[y) 1 if Cf..(t 1,O)p(y[111o) <

Cd9(t = 1, 1)p(y'IHO)

0 otherwise. (2.85)

which is the decision rule at time t=1 as given in Equation (2.74) of Theorem

2.5. We proceed to derive the rest of decision rules for t>1 by expanding Equation

(2.82) in terms of the prtvioLas detector decision u'-' as follows:

.. (') j C•.-- C p(U'= 1. ,U-, y Ho)!,(t, 0)

G....s c p( t ', ,'--I-, uYI HO),(t, 1) (2.86)

Conditioning on z4-' and y' and expanding, we hav.

J1- 1,) _- f•,j Cjp(z•'.- i ut-yt, Ho)p(ut-1 , ytIIo)g(.,o0)

-(:•K •.: :1114"'-, Y", 11)X(V.'-, ii'IH, ),g(t, 1) (2.87)

The decciou u' given the obsevvation yt and the previous decision u'- does not

depend on the hypothesis present. Therefore, we rewrite (2.87), after factoring the

common term p(OL' 1 ut- , •) out, as

.J'(r) /== [ ?;2 p(ut = yI-. (.

-C I •t, ])p(::',,t- I t)] (').88)

To mininiizie: the cost function J1 (?) of (2.88) we choose

1~u •_ lu . 1,t) __ I if Ct1 1 (t, 0)p(yt , u1 'I.th) :
|iu flu z O)("U .. 1

Col(t, 1 )P(7 1 , " 1  
1

0 otlDZr,. (2.89)

L " 4 6!-
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as stated in Equation (2.89).

Q.E.D.

At time t=T, we lhave g(t=T, j) - 1. This results in the decisiua rule at time
t=T defined a CH

,T(YT, ) 1 i )> f -1)
: tU = 7- r y T U T -') = 1 if A (Y • > C a ,(r-l &

0 otherwise (2.90)

The probability of error for this system is given by Equation (2.68) with the prob-

ability of miss and false alarm as given by (2.69) and (2.70). However

y i) j d14 (2.91)

where Itl and P0 are the conditional probability distributions under the hypo-teses

1T aui 10 respectively. T.he quantity ,\t(ut-i i) is the threshold to be used when

integrating over the probability densities. It is related to the threshold y t (u- 1  i)

in an obvious manner.

In the next section, we apply the results obtained in this section to scriat

networks.

., a .,,.! Re'lts for the Serial Nntwork

InI tins scction, we present the design and analysis of another important class of

decentralized detection networks namely the serial (tandem) network. This cla.'S of

networks has been investigated in the literature [8, 17, 11]. We show the similarities

of the serial network with. the decentralized detection syf;tem with feiedbluwk si.nlid

prmvioi.sly.

I4
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Consider a serial system consisting of N detectors sliown in Figure 2.9. Based

on itn obsexivatio' , the first iletect,)r makes a decision regarding the hypothesis

present and transmits it to the second detector. The second detector bases its

decision on the decision of the first detector and its own observation. This deci-

sion is transmit.ted to the third detector. This process continues until the final

detector which yields the global decision. This serial system can -e viewed a3, a

single detector system with feedl .ck discussed in Section 2.5 with t=n. Thus, the

threshold equations for the serial system can be written by substituting t=wu and

T -'-N in Equations (2.74) and (2.75) of Theorem 2.5. The results are presented in

Lemma 2.1 next.

Lemma 2.1[t For a serial system consisting of N detectors as shown in Figure 2.9, the nt"

detector dtcisio, rule that ininiixiizes the Bayesian cost function in the binary

hypothcris testing problem is given by:

y'(y')=u•'= 1 if (a1g1,)
if A(yl)-(•;,g(1, 1)

0 otherwise (2.93)

and forn 7- 1

(;jg(n,, 9))p(,fl- j [i,,•
y, Y n(ij nsI 1 ) "-n I if A(y") > M, 7( .,1" )O ,( ,, .- 1 , Ii

0 othcr'wi.,;! (2.9)

where

.(n,,J) p(1N I n" 1, i)-- 1 (1 N l1,,,. 0,I, I ,i)

Proof.

A direct suh•stitutioii of 1;- :1 and t U-ZN in Eqniations (2.93) and (2.94) ru:.lb:

in i'quatioUs (2.74) and (2.75).
I. -. E 1)[. .)
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1
u2Detector 1 DetU N

* ~~ ~ ~ jjCor 2 *--N Dtco
y

Fig. 2.9: A serial system consisting of N detector,.
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"In order to demonstrate the validity of our results, we consider th. fasi' rf 3

detectors in tandem and show that our re-sults agree with the results estiablished

in the literature [8]. For N=.3, the decision rule of the first detector is given by:

"( = = 1 if A(y') > r/'

0 otherwise (2.95)

where 711 is the threshold of the first detector defined as:

7 :1•(u If zlu::- t, IHo) -- p(u" 1.u' = 0, Ho)] (2.96)
(=.!d[pl3 = 1, I L,111)- p(u3 -I lIu' 0, I!1)('

The decision rule of the second detector is given by:

"."Y(y2 , u1) = I"= if A(y') > r7(it)

0 otherwise (2.97)

where ,l 2(at) is the threshold of the secmad detector defined a.i:

[p(, l,,I = it, lI,,) p(,1- tl.U 2 -0 ,11J,) Cf p(uIl11o)S'1•i/Il) '- • =~ 1,, =II tt) -j(,, 3  J.l,,u 0,11,)1 ~~ ' .,,, hit)

1Th1e decision rule of the third dItetor is:

(y;', u2 ) = it:' I if A(y") > qa(i 2 )

0 othcrwic (2.98)

wh1r(e1( 71:3(72) is the threshold of the third detector defined as:

(., Ip(u? Ih,,l)':In)

It is ,exen that these decision rules are the same as those of ibeiluuan and N, ite

[81. A hdogoii:;ly, solving the single detetor with feedback problezu il) to time

tl zI.' correCspol(k: to solving thu prInole of N d(etctors in tai,dem. Morefover, the

(deci;sol rah! at time s"eLi t < ' in the single, det.C-tor with feedhack correspond.s

w ther decis-ion ruh; of tlie n, d, tcctor (n < N) in the taldent network.

'ill
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Having established the correspondence between the serial network and the sin-

gle detector with feedback, the rest of our work on decentralized detection systems

with feedback could be applied to more complicated configurations such as the one

shown in Figure 2.10. In this system configuration, the block of in detectors and a

fusion center is repeated T times with the decision of each block feeding into the

next block. The decision rules for this tandem configuration are given by the deci-

sion rules for the decentralized detection system with feedback given in Theorems

2.3 and 2.4 with time step t corresponding to the t"A block in the tandem network.

tience, the tandem configuration of Figure 2.10 is equivalent to the decentralized

.dutection systcm with feedback with the tt' block thresholds of the tandem net-

work being the same as the t0 h time step thresholds of the decentralized detection

system with feedback. If the decision rules obtained in Section 2,3 are used for the

system shown in Figure 2.10, then the interpretation is that each detector block

of the. tandem network attempts to optiriize itself rather than trying to nptimize

the entire system.

2.7 Discussion

Il this chapter, we presented the Bayesian formulation of a decentralized detection

systein with feedback. '1'wo cmses were considered namely the FSS problem and the

less restrictive prol)lem of the system without any a priori knowledge of the stop.

ping time, Local detector threshold.s; were :ihowtn to be a function of tihe) pjviolIs

iroa t wanrnc ri4-Aa it 1ci' deteJ .... :ivstc-iLan h interpreted w;

a single detector system with feedback. Numerical resmlts for system performauce

for the casec of unknown stopping time were obtained. Nunerical results showe(d

that a performance advantage of th.i decentralized dcteci.;ot system with feedback

considered in this chapter over the co,:re:;pouding decentralized detection system

without feedback cannot be established, inl fnIr. ' hn tie .extf chapter, therefore,

..- " :-g •..•,• .Ld• .• "~ ~~~~. I. . . . . . . . ". . . •.. ... ' " " •-*I I I I I I I i I I I I i I i i I I I I I I II I
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Fig. 2.10: 'Taixmdern block of detectors.
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we enhance the system and incorporate memory into the decentralized detection

system with feedback. We prove analytically that the system with memory out-

perforrnes the decentralized detection system without feedback investigated in the

literature.

II



Chapter 3

Decentralized Detection Systems

with Feedback and Memory

3.1 Introduction

In the previous chapter, we have co,,sidLered the decentralized detection system with

fedback shown in F'igurc 2.1. In that system, at any time t each local ,htectort--L I

operatcd only on its cmirenmt observation y' and the previous global decision u')` in

other words, at time s4it) t, all previous observations y!/, I/,., y'f " %ere discarded.

hi thiis chapter, we gremeraize the :ystetnll of ,i,;ure 'U. to i-.hlid. Owe prcviom,

Obscrvations inl the processing at the local detect.ors a'v shown in Viglcr 3A., i.e.,

we illcorporate n1:ciory at thc local detectors, in the dh :iowtrlist'l detection :systvem

with feedback. We show that this systexm with ineniory and feedback omtperforms

1,h1e conwvmiticoal (l,'celtralizVl ,Iheltction sypt;enm without feedback shown in Figure

f 31.2.

S[ S~ectjion ' .2 ,V/w( )I i•i~hl.c th,; )J 5Ict'Jrii'AtiouI •, tihe (YTh,Vahi¢rald dctec:,tioii .sys-

I.
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yl lYx Ucal detector I !

~~Ut

t t-.1 yY2' Yn ..... t Local detector n

Fig. 3.1: A decentr'alized detection system with feedback arnd mnemrory.
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'/t
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Fig. 3.2: A decentralized detection system with t samples per detector.
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tern with feedback of Chapter 2 by incorporating memory at the local detectors.

The local detector operates on the previous global decision, its current observation

Yk and all previous observations yA, , ..Y A: y, to produce the local decision it' as

shown in Figure 3.1. We formulate the Bayesian hypothesis testing problem for

this system. Using the P RPO solution methodology, we derive the optimal fusion

7itle and local decision rules. The system performance is evaluated and compared

to the performance of a decentralized detection system without feedback shown

in Figure 3.2. The asymptotic performance of the decentralized detection sy,,tem

with feedback is investigated and the probability of system error is shown to go to

zerot asymptotically. In Section 3.3, we studiy the data transmission requirements

for the system where due to the feedback links additional data transmission is re-

quired. Techniques art- developed such tha.t the data transmission requirements are

redaced. We propose and study two protocols. Numerical examples are. presented

in each section.

3.2 System Description and Problem Statement

In this section, we consider the binary hypothlsis testing lr:l)r iin for the system

showrt in ligitre: 3.1. 'I 'his sy's0tem con sists of 11 10ocal (hIt( A:tor; which COiiilMitc;ttA!

tithtir (hecisiow) s to the fusion center. T'he fltsion cnitter con 111 lulinatles the golal (Ic.

Cwion l)ack to each of l, , detectors. '[.ie systen operation i:i dec-;,ribl) d as: follows:

At time step 1,, the k, 4 detector makes the local (lecision ft', k,2 I, 2, .. , 1, lased

on . .t!LC i .. .i ' loii a, l g i cci:imon ut¾'I, itil: j.... .. )l)it7VUl.1 5- K . Ilmk-o Y Y ..... .. k

denoted by Y. 1 ,k andl thI current ohbservation qt. Tei local decision n% is trans-

)nitted to the fl,,h), rvn'ter wi., re it is coi 1 bined with tt,hc (olr incoming hca,.

decisions to yield the gh)bal decision 71'. 'he )hlohal decision tit is fed back to all

the, local detectors for use at the next tulne sttep t--1. We assi ne tthat thte Jion t

,cond.itional proMo'bitlily ,ihinity fmtictiotui p)(y, Yi*, Y1.. , y i- i),j u(h, I are khoown

.. .. ... . .. . ........... . . . .. . . . . . . . . . . . . . .



a priori where yP is the concatenation of all local observations at+ time step t, i.e.

y' = {y',y.,.. .y,y}. The local decision u' is obtained using the decision rule

'4 (.) as follows
t tir-1

=Uk ;.(yt,k, o110

where 't.,k ={Y', Yk~ ,..Yk)

The global decision u' is obtained using the global decision rule 7(() as follows:

where U - ., UU,}.

The problem is to find the PT3PO deci:;ioi rides Y'.(.) for each detector

k=O, 1, ..., n, so as to minimize a given cost function J(F). For the Bayesian

formulation, the cost fudction ,.(1') is given by,

J(P) -7 G(Jop(u7 (J, tto) -+ Uu p(.41 0, 111)

* l :,<,p(,,4 1 , FT0) + (h.p(,<f :-, 1, IT1) (.•

where (7ij, i, j-:0, t, is the cost of (leCidiTg 11' -- [Tj when the true ihypothesis is

Hi. The cost,<' (-'j, i, j=.0, t and the a priori probabilities p(IFo) and p(Ht1) itre

atsuiutied to be known. Rewriting (3.1) in terms of the probability of fakse alarm

at thie .stqep , pL,,' aud tihe probabi tlity of detection at time step t, P1), we 11;,ve

:( ) t' y, t.. 0 , Io 1' (13.2)

Whlere

IV;',+ + t'f,)c,,. •,)(

Itn i;hle next sctio,, we derive the (he(:isiol ruhlu -4, (.) for k-=O, I., ... , and

; . . rfoUalicc.



3.3 System Optimization and Perfoiniance

Before we proceed with the system optimization, we make certain simplifying as-

sumptions. We assume spatial independence, i.e., the observations at the k"

detector denoted by Yt = t{yL,y 4 ,...,y1} are statistically independent of the

observations at the jh detector (i/k). 'Therefore, the a priori knowledge" of the

conditional probability density functions p(Y t , y`-, ... , Y'1Hj), j=0, 1, reduces to

the a priori knowledge of the individual detector conditional probability densities

",L &'' .... U1.4Ij), k= t, 2, ... , n; j=0, 1. In addition, we assume that the ob-

servations at the k-' deltector, yj,!1 ,...,I• are independent in time. Thus, the

a priori knowledge of the individual detector conditional probability density re-

duces further to the knowledge of the conditional probability densitics p(y'Hji),

k= 1, 2, ..., n: j=0, 1; t=-l, 2,...

Next, we proceed with the minimization of the cost function giveii in Equation

(1.2). Using the P193P() dosign ithodlology, the optimal fusion rule 7y(.) thiat.

Jliliil !: the cost function is derived. 'Phie result is presv'nt(ul in 'rlhorcm 3. 1.[ jjAssuming the knowledge of the fusion rule, the local decision rules -yj( .) kzcI, 2,

... , I, that minimize the cost function of Et'quation (3.2) are derived in 'l'huorein

:. 2.

TH-EO11)lREM 3.A

lFor the(! decentralized detection system with fodb•ack of 1i ,gure 3. , the JP111()
fiisioii rue fofr the Bayesian bin)iry 1y)pothesisj testing lI)IL-01)I i.1 given 1)y

70I (gU) 71, 1 if A(Ut) "> _Y

0 otherwi7.1 (:4.3)

I, (

h... .. . .... ..- - -.... . .. . . .



whereW pL t  h.U) utelielihood ratto.

P roof?

Since the fusionu Center- operation is ideutica! to thait ii' the sy!tena considered

in Chapter 2, tlvic rsult arid the proof are. identical to t'hose hin rlieorevn L ct

TH'IEOREM 3Z2

F2Thu, PI3PO d'ecisionY rule at thei ~k detector for the IBavesiant bil."ry hlypothes-nis

1' 1 testing prolblemn is givcn by

-(kI ~ ~ 1". 0 if A(Yt,k) > /(t

0) otherwise 34

wher!'e lk(z4 1 i the threshold of the thdetector- at tim-e step tdeidas

[ I ~~'404-1') 2P--fS 'Io (35

aridk >4fUp(Uk, u'f11,

Pro of-

K. ~Recal E~quation (.1 of TiiŽýorcn 2. 1

I J([') vt It Iiut)[C'ip(1tI U1  (Ja(p(U tlh) t10 (1. (3.-6)

\'Ve write. (3.6) explIicitly in termus of the kN' focal deocision

fit



II where

Substituting p(Uk0 1 I1j) = p(U(IHj) - p(UO1 IHj), j =O, 1, in (3.7) and factoring out

common terms, we have

A(ll) qut P(uo = 11U(J.)[CjP(Uk1 jHo) - Cip(UIA lHI)j

..IUo ) [ Cjp( U j, ) -- C dp(U •flTl)]

.,' , IU-o)[Cfp(U l110) - Cdp(g -UIh)] 4-C

Rearranging terms,

,! (rt) L 1) 110',4 11 rjg, -P(• =O lUkt)0

X [Cjf(u,f, !IO) -- ;dp( Uk I )] -.

+p(,,.g IU1N)f iP(U'.IiO) -_ CdP(Uf I"uI)] + C (3.8)

It should be noticed t1'r.t the proof up to this stage is the same as the proof of

Th{or;,mn 2.1 since the development is independent of the observation variable.

Proceeding with the proof, we observe that the last two terms of (3.8) n.c not

involved in the optimization of the 0,h local detector. We (discrd tlwr;(: terms in

the subsequent equations and denote the iow cost functio *JI (]'(). Next, we

expand (3.8) in u`- the previous global decision, and Y, {yt, yt.-'. y1 } the

observation vectors of local detectors up to time step t, hence

J'(r') = •[1(,u.; I Ul I.)- p'(u'4 t: IUV)]

J;', I> c P4[CIf U ?I'- ',YJIY) - Cp(U,,u, , YtI111,)j (3.9)

where fy, i:; a multifold integral over all yt. for all k ad. all time steps up to and

inclo ding t.

tt:i g.. 7,(,, -- 1. !U/ ) p(i : l l~ir,%)"' - - .(Uf) am l cxpad litxig (3.!ý) by conditionin,

61.
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on unO and Yt, we have

JIMr) f U! f~u.4 1Cf,, -" 1, Y,-110
ri Sp(,4-', Y, II) -- Ca•p( U•I •' , Yt, I 1 )p(u' YtIff)] (3.10)

I_ -
The local decision vector Uktj given both -,he previous global decision uO- and the

observation vector Yt does not depend on the hypothesis present. In addition,

expanding p(u--', Y; I1j) by conditioning on Y,, we have

,t1 (1't ) =Z)-• f(U•) f1, -

[C f 7( Ujkl I?t)- 1 , (0~P(U•Ft) I I Y , I .li,()pX t , IY ,-.t I TO)

- C(I p(U k'I- I u " Y)p(VO,- 1 , f-L )p(Y t, Y"t--• lt ) 1101i

where we have used the fact that Yt {Yt , Yt-I.

Due to the temporal independence of the observations, the previous global decision

u- 1 d(oes not depend on the observation vector Y`. Furthermore, using the spatial

independence of obs.rvations, we rewrite Pquation (3. . 1 ) i, terMs of the individual

detector's observation vector Yt,k,

SJ(Ft) f• WD f(.)y,,.. fy,. )_ >;-.O

[(f P(UJno, Yt)P(-1 t- 1 , J10 ) flL (yto Jig)

Sincc the decision of the kt' detector u' depends only on its input observation and

docs riot depenid on oth,,.r d(lo'(:tor decisions,

7p(LkJ UO',- 1's 1D k 0 X~putlu', -Yt)
*-= I,iq/c

"iirtherinore, due to spatial independence of observations, the above is written a!:

ji(Uk1 114' ,Yt) P(Uk' It(')4~ Y4,/c) 0Ip'4u ~ Yt)

62
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Substituting this result in (3.1.2), factoring out the VtA local decision term anid

rearranging, we have

* y*f 12+ fy,.j(ýfp(?4 1 'Iyt.1, Hfo)P(yt,kl-flO)

X [J* J=,ik p (Ytk,' H I )] 1FLý_i6 A:~k p ( u IUV,- Yt, i)

-Cd~u1 Y~.1 1 )pYtkj14)[n ],~ ((3.13)i )

Combining the multiplicative ternis in (3.13) and uncunditioning on Ytj we have

J, (1') I _1?{.1

jyt 1 .ke1 /Ytk+l fy±' IC P010'jI 0 pY II

*FJIkXti Ul 110'1 1)] CdP(71o 1Ill1

In~aigover 'f~t , Y2.. ., 11~-,Y,+, Yt,,, and 'unconditionilig OTTi 'It we

rewrite (3.14) as

jl Ft )fy",k P(V' 11[74', Yb~) Zu" f (N)

t ,j

il)mnlizj h rr fmictiorI 1ircji (3,1;)), wc choose

p(ut.7: 1.4 Jt', Yt~k) z 1. if A() < /1

0 otherwv'.Se (3.16)

A,: Y f(lJt)CiP('Yt,kl ii) ~If P(tt, 14; 1 ,
i. 1, .;.



n

Ao ?f(UD)Cf p(Yt~k IHo) ]7j P(uý,u4'-II11o)

The kt' d'ctfctor decision rule thtmrfox-,. is given by rew~riting (3.16) ;1s::

7111(ytký UO'p(Yt,kjHo)

0 otherwise

wher..- n*(uý`j) is the threshold of the kt' detector at time step t defined as:

t I (i -I f - UZ f(UJk')P(Uk, -[10)

Ao~~ ~~~ --. f"f U''Ce([J'ktH°,=,,I P(U' U , t -['I) o

as stated in Equation (3.5) of Theoremn 3.1.

Q .E.D.

* It is important to observe that the iocai decision rule is still a likelihood ratio

* test. Timei step t=1 represents the case without feedback. At this Step, the fusion

* I ruid has the same form as given in Theorem 3.1. However, the local decision r~ide

* is a likelihood ratio test gwen lby Equiation (2.18) and the thresholdi of the test is

given by Equation (2.19). For time steps t > 1, the theoldf~i~~ 71 tQu14-) of the k"A

I detector is a function of the previous global decion8uOf )1 as shown in Equation

(3.17). Since the previous glob~al decision L~- takes twc valhies in the case of binary

hypoher(Sis- testing phOblem, two thresholds exist for the likelihood ratio test at the

local. detectors.

System Performance

The system performance will again be y Ten in termis of the systemi prob;~.bility

Of crorr p' , The derivations are the samne as in Chapter 2 ~mtherefore, we onty

list the results here. Tlie syuem probability of error p_-- givn by

C) t t([ (81)-
.( r J 4

a dth 1.



where p, and p% are the probability of system miss and false alarm respectively

and are given by

= (-= 0 p ( = 1 1) (3.19)M0 ., 0~u- =0)-- ,( + Pt, ( 74-•p,•1u 1))n (i,,t 7n o0

= )-p( =' 0 + pI 0(uo =- 0). (3.20)Ph Po \, f0(Uo Ptfo ,Uo'' +Pf

At time step t=l, the system probability of error equation is the same as Equation

(2.27) of Chapter 2.

Next, we compare thie performance of the P1UPO decentralized detection system

with fcedback considered here to the conventional PBPO decentralized detection

system without feedback shown in Figure 3.2. Intuitively, we expect the system

with feedba,.ck to perform lbetter because of the additional information available at

the local detectors due to feedback. Let the two systems shown in Figures 3.1 and

3.2 be denoted by system A and system B respectively. rllie performance of system
A at time t can be colmpared with the performance of system 13 in a meaningful

manner if system H3 processes t observations at each local detector so that the

total number of obscrvwLions processcd by systenix B is also t x it. For the sake of

clarity, we only consider the case where, all the local detector thresholds are equal

to each other. The ge.neral problem of nonidentical thresholds may b1 considered

in a similar atuauer. '[lie result is presented next.

THEOREM 3.3

Consider tlh PBPO decentralized detection systems A and 13 shown in Figures

3.1 and 3.2 respectively. The probability of error attained by systeim A at time t

is equal to or less than that attained by system L3, i.e.,

(Wi



under the c-ondition

P10  1/2

where p'- is the probability of false alarm of system A at time t-1.

Proof:

First, we establish that for a specific, non-optimal choice of thresholds at the

local detectors in system A, the probability of error is the same as that of system

B. It will then follow that with an optimal choice of local thresholds, system A

will perform at least as well as system B. We consider the probability of miss and

false alarm for system A given by Equations (3.19) and (3.20) ard rewrite them in

a slightly different forin as:

t t)t--- ' (uo 1)(1 t--1 (3.21)

/Tfoz t lt--1 o t-I t. ut--1 0)1 -1)(3 !2

pfo(,i4 = l)p~o ±p~o(uo = o)(o -p,,). (. P2)

Recalling E']qna~tion,n. (2.24),) and (2.26),

i) Zpu~C2OI~)i( t~) Z, A (3.23)
fit

II Zo(,4,- Z'---) =: u •v,, =tlJ)v('M'J~,4- 1 .[,). (3.24)

It is seen that thcert! are two values for i',,o ("4'I = i) and p~o(u• = i) corre-

"sponiding to i.:O,1. Ahio, rcc:all that tlhre are' 1wo t;lI -. holds t each of the local!

dctcior, i. iystuia A.

LAt 71, de'note; the optiintal vahu.- of the iocal threshokl ( single threshold) for

syývUi,';l1 13. We let the local thre:slhold l(?ti 1 at each of t.- .t-ctors in

syst.:txi A take a valho lc;.is tlhamn yj. Sijnc the local detector thresholds have been

F00
(,()

, .N
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assumed to be identical, each thrt:shold value at a local detector corresponds to a

specific value of the system probability of miss and false alarm. We let

Pt (u-71  1) (3.25)
Pt t-1o.

Pf(U C 1) = a. (3.26)

We choose n' (ut` 0) (> 7t (u'-' I= 1)) at some value such that the following

hold:

0t I t ) (3.27)

•fo(t- 0) (1- (3.28)

where A is any value such that the threshold Ya(4ut- 1  0) tatisfies both Equations

(3.27) and (3.28). Substitutiig the results of (3.25) arid (3.27) in Equation (3.21),

the probability of miss for system A is given by

S+Ap~' +t- (1 . z-lMo,, =-(-y+ Am,.o -(I - P.,o

Ypt-1 + A)t--1 + -Y(l - pt-IInc + to -"1-- "•

PI'o -- "7+Ap'. (3.29)

S'b ,.ilarly, the result." of (3.26) and (3.28) ',. ;ub;titcutd im lqua.tioi , (3.22) to

obtainl the probability of false alarni for system A a-s follows:

ft r j o + -p ' r,

"Ph AO - P' (3.30)

Thcrt.fore, the system probalh i~y of error for system A can be written as:

) (Y" ± /AP$,o0 )P(1•1 ) ± (a -- A(J.-- p`-•))p(ih,).

],xpitd(ngg the ternis and rearranging,

",) (1[o)- A[( ,, - ",I)(H 1.

i 0/



Next, we calculate the probability of error for system B. It is seen that the proba-

bility of miss and false ala.rm for system B can be written in terms of -y and a as

follows:

pf =a--aA

p,,, = + bA

where a and b are some real numbers such that 0 < h < a < 1. Without loss of

generality, we assume that

a+b<l.

If a + b > 1, then we can redefine a, -, a and b with respect to the thre3hold

7 t, It" - 0) (as opposed to the threshold q (u`' = )). 'This will ensure that the

Lassmiiptioti a + b < I is satisfied. 'he probability of error for system B can now

he expressed as

(P,)n(, -- a(A)p( F0) + (- + bA)p(Hm)

- rxp( Hg) t -yp([ft) -- A[ap([1[,) -. bp( I1))].

l"ro• 1Ajfl*t.imIs (3.31.) and (3.32), we observe that for A 0, the proIhability of

'•r', [',,r ,,,y:;t'm. A is th, same ..: that of ,ysitc'mn , i.e.,

tit ulditioni, local. threshllds fi- 1)(411 systenis are tihe ;aine, i.e.,

)it other word2L, the dcc,: ntralAzcd detection system with feedback and mnemnory

red c1rs L t ho Oti: conventioial dec(m1tralized detection system IB whln. a sub optimal

choice of local thre:]holdH for system A is rniade as described above.

Next w, c, ,iier tih ca.,;t A -.- 0 auid show that systeim A pcrfom'ms better thIan

.•.t, ii i. w ,l ,, .- f l/. W,1 ob: ;wrvc Qthadt tih.: fir;t two te.rm:; of (..32) ajr' .1 .,

(8



I,

same as the first two termns in (3.31). IL remains to be shown that (ap(Ho)- bp(HI))

of (3.32) is less than [(1 - p'-')p(IIo) -- p"-p(I"z)] of (3.31). Hence, we have to

show that
tip(H,) -- bp(H1 ) < (I *- p}-)p(f l) ---p•0 1 p(I-I).

Since we have assurmed that a < I - b, the following holds

(1 -- b)p(IIu) - bp(I[t) < ap(Ilo) -- bp(H1)

"Thus, we need to show that

(I -- b)p(IHi) - bp(lt) • (1 - p'-')p(Ilo) - pt-1p(tii)

or,

t-!

-- bp([Jo )-b(1Ih) •-pfo A(110) -'m W)~1P 1).

Tliiu reduccA to

f-3Jp(-o) + PL,'p(IJ1) (3.33)

1> pt-1,>_ IA:.0

Since i + b < t and b < a, b < Therefore, the above expression can also be

¢'.xprcL•;';(d a-

1.
S>", (3.34)

Equation. (3.341) represents the condition under which system A performs better

. than system B. Furthermore, a stricter inexquality can be obtained by using thIC

CoTIvCXity of the Receivwr Operating Characteristic (ROC), i.e.,
p t,

P rJot-.._ 1 _2

mis. stricter in-;quality is give,. by

1/2• > f',5([Z,- p', PP 11r,

(3.3•)

5 9



or,

1/2 > ph'. (3.36)

Q.E.D.

Example 3.1

We pursue the same problem as considered in Example 2.1 for the system with

memory. [Hence, the system consists of two detectors and a fusion center. The input

observations at each local detector are also assumed to have a Rayleigh distribution.

A priori probabilities are assumed to be equal and minimum probability of error

cost assignment is used. For simplicity the SNR at the two detectors are assumned

to he equal. For the OR fuuion rule, we plot the threshold valucs ii(z-. 1)

aind y'(' . 0) vs. SNR in Figures 3.3 and 3.4 respectively. The probability

of system error pt vs. SNR is plotted in Figures 3.5. Theie probability of error of

a decentralized detection system without feedback vs. SNR is plotted in Figure

3.6. Similarly, for the AND fusion rule, we plot the thres;hold values qjf'l( t  1)

and r4(z4- 0) vs. SNR in Figures 3.t and 3.8 respectively. Th, probability
of system tcrior p' vs. 'Ntl. is plotted ini Figure 3.9, The prohblality of error of

the (lecentralized detectit k systman without feedback vs. SNR is: plotted in ]iiaure

3.10.

[ j The plot in Figure 3.3 shows that th. threshold Mf(t4,7' I) dc'reases as a

fuiction of time t. The plot in Figure 3.A shows that tile threVsholhFd 77'(-1-- =- 0)

increases as a function of time and as a fimc;.;on of SNR. ['liereforc, a:. time t;

goes to infinity, the threshold r0(Uto-1) goes to zero Lid 71'(u,- -7' 0) goes

to infinity. 1 c plot 1,t Figure 3.5 shows that the probability of system error 1,

d(ecreasx:: as a function of time and a-s a: fui.tion of SNR as expected. In addition,

we ol ,serve that t h.u' dher:er ralizu I. (le . t,:i 8yS N i."l wit.; 1.)ll. t ; fi,,I ak , Ih. thi :;aliwi

I,
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probability of error as the system with feedback when one sample is processed at

each local detector. As the number of samples per detector increases, ;t is seen

I that the decentralized detection system with feedback and memory (Fig. 3.5) has

I a lower probability of error than that of the conventional decentralized detection

"system (Fig. 3.6). Furthermore, p',-) goes to zero as SNR increases to infin7ity and

as time step t goes to infinity . The plots corresponding to the AND fusion rule

shown in Figures 3.7, 3.3 and 3.9 follow a similar behavior as those for the OR

rule.

Asymptotic Results

I In the above numerical example, we observed that as t increases, the system

"probability of error decreases. It would be of interest to examine the asymptotic

K ]behavior of the probability of error. This result is presented next.

THEOREM 3.4

For the distributed detectionl system with feedback and memory Shown inL Fig-

lre 3.1, tio systexm p.. ibability of error goes to zero as the ittinber of time steps t

goes to infinity, i.e.,

linit--. p,• f-0 0.

P roof:

We call u1ponl the asymptotic bounds on performanice disicussed in 13ilaitt [351.
i"or the hypothesis problem, it has Shown tot as tht ity1tir r oi aluhty

jwcxldent, idelitic si gly tktliblkksd r 11' shcw'n. tot iltttS y, the Iu)iiii.hr )ility

of mi:1;;; ;.:,rd ts- alari go to zero., i.e.,

'. '"

i' " 'C"

Si i



With these two results in mind, the probabilities ,if miss and false alarm of a local

detector in a decentralized detection system without feedback both go to zero. The

probability of -niss and false alarm of the decentralized detection system without

feedback is given by

,P n,(u• O1U t) 171 p, IH p%, (3.37)
'U iESo i~jiS

tt
Pf,' ')r1(I P (3.38)

Lit i~so sE-Si

where

So: tltt: set of detectors deciding 0 in U'.

Sj1 the set of detectors dcciding I in (t.
Notice that Equation (3.37) is a summation over all possible valhus of Ut'. When

Ut consists of all l's, we assume that p(?i4 - VlUt) = 0 for any reasonLble fasion

rule. For all other values of Ut, at least one pf,,, will exist which goes to zero at t

goes to infinity. TinI,,,

in J. -;tNnilar fashio.i, the probability of failse alarm goes to zero as w•ell. Using the

S'.esilts of ','ltworcm 3.3 (i.e., thc: iy:;trml probability of c 'o.r of t0" docctralhzsa

dklcttion ;-;ystcun with. fi'dlmuk anm nitcoory is eqllal to or b :ss titan the i)rfbal)ility

of error of the tiecenttr'.lized (itectiofl systeml. ,Vithout fi ,dback), the following hold,

0

I..'vc c

• , *: tU -

[,.. - - - . - - - -22 - - - - -



Substituting the results of the above theoremn in the threshold Equation (3.5) for

U4- = 0, 1 it can be shown that the following properties hold,

li t, i(utf 1  0) -*CO

lirnc~p~.0(u~' ) (o

lirtv... ;4 (tl 1.) 1

limnF*.20,p, j,-'(U

The probability of detection p' (u`I i), i=0.,i, can be vbtained froml the above

prope1rties in a straightforward mnantier.

Thie performance advantage exhibi tc( by the decentralized. detection svs Loi

wvith feedback and uteinory is 'isefuld in manly practical situations. Urifbrtminafely

uicreaseel conuiriunicatioui between local detectors andit the global (lC~is-iOTi Mnaker

lit' oines ne-cessary. Therefore, it is desira-ble to use sone (:ornfllincatloul pi'otWol()

to n i-dvce the transmission of decnib ems bectween local detectors, andt the global

decisioln m1aker. .It tire next ,;ection, wVV. propo:fŽ andu analyze two 1pmtocols to

reduce data transmission.

An inmymortorkt mssmwii~ Is) imý auidr;~cd forc do: Vcentraliz;ed dlete(ctionI system with

feeVd1back is thre diata tfran:;nns! 'oni retuircincints.. In tlin:; sysiticu, r, (leclsioits ;)A.(e

tiiiuisimiittcsl irioiyi tire Ilocal dc, ectors to thu fusion rem i et. Tlie ALob~d (I deiiioi is

l~c~rsm yii~ 4 1111)1 O wce fu: c a e ter t u 11 local d otoct firs, 111112!. ith , -!,TI\N .' i
Ulw4,, irj,: it oe i,iL mli 2n ,rlstii in;A, (~wf, tivie' ::t-p. 'l'ixrefore, t~ll' toit lI



number of decision transimssions upto and including time t is 2nxt which is more

than the data transmission requirement of the decentralized detection system with-

out feedback. It would be desirable to reduce the data transmission requirements.

The metric that we employ is the number of decision transmissions in the system.

In this section, we propose two protocols to reduce the average number of decision

transmissions. This reduction will result in savings of system resources such as

power and bandwidth etc. in a point-to-point communication environment. In

communication networking environment, this savings will result in a lower amount

of traffic yielding smaller delays and higher information throughputs. In both of

the proposed protocols, each detector k, k=0,1.. .,n needs to store its previous

decision. Vie denote the number of decision transmissions on forward links and

feedback links at time step t by L' and L' respectively. Next, we consider the two

protocols individually.

3.4.1 Protoc(ol 1:

hi this protocol, at aiiy time step t the global decision maker rotmunniciates its

iecisioii to all local de. ':tors that disagree with it. Therefore, decision transmission

on a feedback link takes .l;a•m, only when the glo•al decision maker disapgrees with

the local (detector corresponding to that f(:eaback link. Thus, we have,

Transmit glodl (,lci'i&)ioi .at time', t to local det'ctor IC, if

For the forward link;:, lo':aI drcisioii lit is transmitte1 only if it di:(AgVrs wiih tl u'

})r1fllo1i5mu glohal dhisiruj I4O . '['lherefore,

Transxuit lot•l 'e,:ci-siot iii. time t from ocal left-i(:to" k ifI

k., t :' k = 1 ,12,..i 1, - 'I

we * *v~cu ile div (Alhr(:tIII i'll. jutittilnwci CeCIitW ACii16wssii-e;hF



when this protocol is employed. The number of forward decision transmissions at

time t given the hypothesis Ri can be expressed as:

n

k=1

and the number of feedback decision transmissions at time t given the hypothesis

Hi is:

4(i)= >jI(uO' 0 t1111i)
k=1

where I(.) is the indicator function given as:

It if (.) trueI(. )
0 otherwise

We observe that both L/ and L' axe discrete random variables taking values in

[O,ni].

The average number of decision transmissions under the hypothesis Hi is found

by taking the expectation of the above random variables. Thcrefore,

Average number of forward decision transmissions at time t:

'{f4(i)} = ZE{I(t4 #) ut--'lh)

Average numiber of fc',dha.k decision trainsmissions at time t:
fl

k= 1

Next, we present Theorem :.5 where twh, average iiunber of lec:ision trail.i.llisioN s

iinLmd this protocol is expressed in ternms of the system pa•r,.untoi't;.

' O'I.i(L' thOw dccentralizcd det:ctiou system with feedkwack and memory c011

i;:.iog ,f ft loc,;'.l dotectorn: ;IaEd a fusion center etll)yiIg Protocol I. Th" awrage

S11,iluh'r of decision transn'issio' ; at time t is given by

1, •( 1,) /J /,((J) • z( ', ) �, ,�(� M)}.

•: J r i-i..... i - i' .. i -i i - -- ::.. ;.-:.- I.i---- -



where E{Lt(1)} is the average number of decision transmissions under the hypoth-

esis H1 given by,

E{L'(1)} = + p,--' (u'= 1)(n - 2 E'pk(uo- = 0))

+pS J, (u,- = 1)"(2 n-t
do do = I)(2 p, ,,(Uo- =--1) -- n) (3.40)

and E{Lt(0)} is the average number of decision tran: ,issions under the hypothesis

11o given by,

E{Lt(0)} it + pf' P~0 (ut 1 = O)(n-2 - p)(u-' 2.))
k=l

f(- P),( 1 0))
n

x(2 p'(ut' -0 )-- 0 ) (3.41)
k=: 1

Proof:

Recai! that:

k=1

n

E{Lf(i)} Lb (' E{1(-• u• Ili}
A-. I

rhese can also be written as:

Y-,, /_(?4 - ,,,-In,) (3.42)
k 0

-,,,.q 'Z(4 / "H•i) (3.4:3)
k:=

Now, we proceed to derive the average number of ,tecision tra nsmissiofn: Kb{/1(1)I}

and E{ Lt(I )I separatey- ;,is folhlows:

Co'ni.;i(lcK- !i ,'. t,(r in of tle :mnmiation (3. 12). Writiiir it explicitly In terms

of Al pil..ble ,I f4Yimatiis Of " a mil it" mch that 4 , / uz,-I.. We have..

84-__ - - o,,', ' - ti ,



Conditioning on u- and expandiii we have
p(u. $ u'--'Hi) p(ul -- lJu=-1 = 10, Hi)p('-' = 0Hi)

.+P(11'7 OjUt 0 =--,Hj)p(ut- = )jiI,)

Summing this over all detectors we get the average 7iumber of decisioi transimis-

sions on the forward links:
fl

E{1 i)} = •.,:(u' # u'"•Jit)= p. p( -= lut-1 = 0, Ui)p(ut-' OlHi)
k=1

+p( 01= 017,-t = 1, JIt)p(u,7- = lHjl1)

Letting Hi = H, and rearranging terms, we getflln 71

Ef{L'(1)} 1 =,p`-1 x p', (?t'-' = 0)] + pot- x [IZE P (It-t= 1)] (.44)
4=1 k=1

which completes the first part of the proof.

FS8tarting withIi Equation (3.43), we expand the k0h term of the sumiorl by

introducing the previous global decision -uit a's follows:

We write this in termis of all possible. dh.cisioi combinatios siich that 11' l4it:

0 k1/, , ?1 o,, 0 , ItW'-' ,
k 7-k(1

I..1td[itt)linifg oi 1l1 ft) a 1tild expandilng, we have:

• ?, ,•, $ ,, H , ) fl u,- ,( ,i - - 0 ,4 I n, , ' , 1 ) , .. 11. f lf,1h•( , ', - l ,)

-iHcarrntinging arnd o)•S., vivmg that lit ('0 i fit, ion l )t( I 0 --.t l I( id:1; id, p l (.n1doimt,

o if , I , w%, have

v'("i / u,•. U,)-- ( :~ _• ,.'f - II,) [J.)(4 •0f 1 W' U'j)i(,, " l . '-'ft4 ,
1A.(7t I I) HO~ [A71

p(, I fv, I, )P - ,ll ,, , ",)/

ii~i-'i-T-fi-iq I I....I.II.I.I....i.....q. .. . ..... 1I.ii



[
Summing over all detectors and letting [Ii 11, yields the average number of

feffdbadc decision transmissions,

E{ L()L }= ) p(uto"Hi) "z.4pru' =O[u-1, H1 )p(ug = k u0o-, H0)
ut--1

U o

±pr(ujk = Ilu- 1, Ii)p(u' 04' III)]

This could be rewritti:n as:

E{L'(I)} - p(, t I , 'I " H.) [p ý, (> u )+) x 0 )p,(uo7-)]
u•-I k=i

(3.45)

Substituting p' (.( t -,) by I -p F 1,-') and rearranging, we have

E{Lt(1)}= Ep(t,7t'• U)[,zxp,,(.,,',-±)(1 .,r-("') , p,,, '-)] (3.46)

T-r k= (
t~to

Finally, sununing E L'{I()} and E{L'(1)} we obtain the result of Equation (3.40).

In a similar manner, we may derive the results given in (3.41). lrinally, the results

of (3.40) and (3.41) can be used to obtain the overall result of Equation (3.39).

[ Q.E.D.

Next, we ,onsidtr the asymptotic behavior uf the average number of uata

tran1stilissions 11111er this protocol and present the result in Lemmuta :3.1.

Lemma 3-1

'VlWhen Protocol 1 is used, the average um1ber of (lecision tiansinission's Elt{ }

' 5w the sysietin ittier consideratioi .,rAWs to z,:, a's t1h1e i nber of tin-le sleps t.

in'rea:s.s to infinity.

Proof:

" tc it ! V iil ;Ot ;vu ljlp . .i" (- p 'rt. ics (if t.hOw !,, tralI'v' .eti' :;yAsvtnt widt

xI,'fllOrv ;.-WI fdhill;ýck troin 3:'ct .3 to prowv ' t.hi::. i'll!Ilia Itunl'ly,

NO........ ............................. .... •--.... ....-. ".



limt~p j 0.

Jirne..E{Lt (1)} =

Similarly, it can he shown that

lir7nt-,'fLt (O)} 0

Therefore,

li*?nt-,E{L'} 0

Q. E. D).

Next we conisider another protocol for the retluctiou of dlecisioni t.raysm,.iuIonsI.S

3.4.2 Proteicol 2:

III I hlis JproL)(:ul, at ally film.~ 5t-e1 t, the global derisioii riakvr cormimlrticatresj.-

decisioxi to all thec local dletc~torsi wiwan it.l, is~vxcvs Nvi- Ow Ih previous global leci -

sioti. TIherefore, a feeq llark dec ision t rami inisiori m, all feed hack litik- i-ikts pltc

wliei the curreot global lecis onn disagrevs with the pre-vionis tglol ial h isnl I~

T'ransmit global decisionl at t~iml t tO ~I tiu :il '!c i *. if 1- -.4

For; the forward l1inks, ](o(-;l decisionx ul Is transmuntted mi the' k-`h If 'war'i 11 loink

"liif, rtedeiit,m~ 'Mn Ow In. ;ofrwe mimbnler of dlec(is~oimIIIIr'ult~ .

11II;loy~'nn, tin " u. J l I-, i xalIm:iEv.i IA4n . W - tilt f Tle i~ ! I;r, ''T "d 'I'A J.



decision traiijrnissions given the hypothesis IIi as:

Lt,(i) = ((u' # u'"•lIHi)
k=I

and the number of feedback decision transmissions given the hypothesis Hi as:

'.,,+,.st +rI,~L (i) =- rrr(
K k=1

wheve I(.) is the in(,icator function defined earlier. We observe that both L'.(i)
and LQ(i) are discrete random variables taking integer values in [O,n].

The average number of decision transmissions given the hypothesis H, is found

by taking tO, expectation of the above random variables. Therefore,

itverage number of forward decision transmissions at time t:

rL

E{L)(+)} ~k= L (( •'~)

Average number of feedback decision transrinssions at timu t:

k~ t

Next, the average number of decision ticansmissions for this protocol is presented

in Theorem 3.6.

THEOREM 3.6

Consider the dlecentralized detection system with feedback and. memory c,:n--

sisting of n local detectors and a fusion center employing Protocov 2. The' i.,rage

number of decision transmissions at time t is given by

E {L t } = p(Ho)E{ Lt (0) } + p(H:)? 1'[,'(,.)} (3.47)

where E{Lt(i)}, i=z0,], is the average number of det-Ision transinsss;)ns at Iime t

under the hypothesis Hi and given by,

+88
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lil 1tcoo =

limt..z4p = 1.

liram•-oP uo = 1) 0, k=1,2,...,n.

hm:.•pdLuo= I) = 1.

Using these asymptotic properties in (3.40), we have

lirnt-. .E{L t (1)} 0

Similarly, it can be shown that

limt. E{L t(0)1= 0

Therefore,

1imnt._.oE{Lt} =0

Q.E.D.

Next we consider another protocol for the rediction of decision rai 'mi ssions.

3.4.2 Protocol 2:

In this protocol, at any time step t, the global decision maker communicates .is

decision t,.. all the local detectors when it disagrees with the previous global deci-

sion. Therefore, a feedback decision transmission on all feedback links takes place

when the current global decision disagrees with the previous global decision, i.e.,

Transmit global decision at time t to all local detectors if {Tv• 4 Lit }.

For the forward links, local decision u' is transmitted on the ktI forward link only

if it disagrees w,,,h the previous local decision ui-7 . Hence,

.Transmlit local decision from a local detector k if {u $ uz-'}.

The reduction in the average number of decision transmissions achieved by

employinig th.is protocol i•s exannod-! next. We express the number of forw trd

87
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The average number of feedt.ack decision transmissions E{Ll(i)} i=0,1, at time t

are given by
t-I t 1 0) --11

E{L4([)} = × x ,' , 1)x p2' +4,'(t0- ) x Ap,] (3.48)

E{nL(0)} nx [it- P%(u-' = 1))P-

+p. (u•-I = 0) x (1 - pt'A)] (3.49)

The average number of forwaid decision transmissions E{L'(i)}, i=O,1, at time t

are given by

E{L()} p,(uo' ) x L1 +p (ut-1) x L 2  (3.50)

f k=l1

where L1 p.- -2 p•-(ug-) x ki
SZ,.- p(zt-2) x h.

=hi p(z 4s'tr )H×) x

E{Lt4(0)} = p' (u'--) x L3 ± (1 P' 4(u'-') Il 0 U (3.51)
~t--1 k=d
0

where L3  -- 1 (t p '(4D-2)) x kO

Z, 2 p'-(•,l2 ) x k0

ko p(Q 1 .4-, H0 ) x p(vf- 2IHo).
ci

Proof:

As before,
E{14](i)} pu ,;lZ)('.2

zrL•i p: _2(uj # zo'IH!•) (3.,52)
VtA

. 839II



Now, we proceed to derive the average number of decision transmissions for any

Hi. The final results are obtained only for the case Hi = Hi. The results for

the Hi = H0 case can be obtained in a similar fashion. We derive E{L'(1)} and

Ef{L(1)} separately as follows:

(I) E IL'(1):

We observe that in Equation (3.53), the summation argument is independent

of the summation index k, hence

E{Lt(i) - n x p(u 4 u'$-1 g1 H)

Expanding in terms of all possible decision combinations such that u' U`

E{L'(i)} = n x [p(u = ,u'-' = lIHI) + p(u' - 1, u` = OjH1 )]

Conditioning on ut-` and expanding

F{L (i)} = nx [ 0(u t = o 1 , ,H,)p(u'-' II liH)

+ p(uo' I I1t1o,4- =O0, Hi) p(u~o-• 0[Hfi )l (3.54)

Substituting Ili =1 and rewriting in terms of pt and p' we gt

L'(1) r[p, (U - 1) X pt- I P(t-' = 0) X p., 1]-

Similarly, letting rTi I-to in Equation (3.54), we have

Ef{L'(0)} = n[(1 - po 0' - 1)) x po'- + p' 0 (U-' =0) x (1- ptjJ)]

a,; stated in Equations (3.48) and (3.49).

(11•) E ýLt(!)}: --

We introduce the previous global decision u-t into Equation (3.52), htnce

=1' tt_

E{!,)(i)} = • EIp(ui. # uV'lv•-1 jUI)

Expanding in terms of all possibh; decision combinations such that 21 1 uIlk

/k{Lj(/)} = £_ p(04 = 0, u•z-7- :,Ut-A )
7[ 1 k -1 4-( t'0

90
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Conditioning on u'-1 and u•-1 and e-.pnmding, we have

n

Ef {L(i)}- •_ put,• .. 0ui- = U,-,,)p1ul-'' .-- 1,u0-'`It,)

0k=
+P01, = tj~ -1Ou"IL)(.6

Observing that the local decision ul conditioned on uo- 1 and Hi is independent of

u•"1 we rewrite the above as:

E{1Lt(i)} = P >i: p(u, = 0•U'",H r) x Ti(i)
u - k 1

-+.P z- Iut-, Hj)x "L2(i) (3.57)

where T1 (i) and T, (i) are used for notational convenience as follows

T i P(i) - = 1, U01 H

T2(i) = p(uj' = 0, U Hi)

The terms T_(i) and T2(i) cann.t be evaluated yet and need further work. Intro-

ducing 04-2 into Tj (i) and conditioning on u'- aInd u'- 2 , we get;

' r (Z)= P2 p(u' ' t -1, 71,t-2, [r,)•,(u.'-, t-2H,)i .
U--

*l urther conditioning the last term on ut- 2 and observing that u'-1 conditioned on,
102 and Hi is independent of u')-', we have

• L0
• •I~ ) •2P~ •1 t1z- [{Ip,, tllu--2, (.,Pt- I... .i

In a similar fashion, T2(i) is obtained ýis:

T2 7(i) - p(a, --- o 01u, U )p(u 1 Iau,- 2, 11)p(u•-If-) (o-.59)

.Fo i=i, '/I() and T•(1) cai be written as:

9 1
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T2(1 E= >3 x p(t47 1Hi)p(u'72Iiri) (3.61)
U1t-2

It is seen that T1(1) and T2(1) are the same as L, and L 2 respectively in Theorem

3.6. Similarly, for i=O, T1 (O) and T2(0) are the same as L 3 and L4 in Theorem 3.6.

Therefore, the average number of decision transmissions is evaluated by substitut-

ing the results of Equations (3.48)-(3.50) in Equation (3.47).

Q.E.D.

The asymptotic behavior of the average number of decision transmissions under

Protocol 2 is considered in Lemma 3.2 next.

Lemma 3.2:

When Protocol 2 is used, the average number of decision transmissions E{Lt}

for the system under consideration approaches zero as the number of time steps t

increases to infinity.

Proof:

Again, we call upon the asymptotic properties as listed in Theorem 3.4, namely

•t

II

,t.o htO04 - 1) 0, k=l.2,.
lira t "" , (71 - 1

Using these properties in Equations (3.48) and (3.49) it can be shown that the

average number of decision tran~rnissions given the hypothesis HT1, E{Lt(1)}

goes to zero as t goes to infinity. In a similar fashion, the average number of

decision transmissions given the hypothesis Ht o, E{Lt(O)} goes to zero as t goes

to infinity. Therefore, the average number of decision transmissions for this second

protocol E{L t } goes to zero asi t goes to infinity.

Q.Li•).
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Next, we present a numerical example that shows the behavior of the average

number of decision transmissions E{Lt) for Protocols I and 2.

Example 3.2

We further pursue Example 3.1 and investigate the performance of the proto-

cols. For both Protocols 1 and 2, we plot the average number of decision trans-

missions E{Lt} vs. SNR tor the OR and the AND fusion rules. The results given

in Theorems 3.5 and 3.6 are used for the computations.

The plots of Figures 3.11 and 3.U2 show that for the OR. fusion rule, the aver-

age number of decision traimnii;,sions for both the first and the second protocols

decrease as SNR values increase and asq time step t increases. From Figures 3.11

and 3.12, it is seen that the average nuimber of decision transmissions for Protocol

1 decreases more rapidly than Protocol 2. The plots of the average number of

decision transmissions for Protocols 1 and 2 for the AND fusion rule are given in

Figures 3.13 and 3.14 respectively. The average number of transmissions E{Lt}

is observed to be decreasing again as was the case with the OR fision rule. It

is intemrting to note that as t goes to infinity, the average number of decision

transmissions goes to zero for both protocols , i.e. no decision transmissions are

required oa an average.

3.; Discussion

In this chapter, we have considered a decentralized detection system with feed-

back and memory. The incorporation of memory at the local detectors provided a

considerable enhanceiuent for the systerm performance. This system was optimized

w ring the 1layesian formulation. I f;ing tlhe PBPO solution methodology, we deriv(ed

decision rules for the loh al detert'w',s and. the fusion center. ' hc; .';ystc-1tm prol;.;d)ilit,y

9 :M
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of error was derived and shown to be at least as good as that of the conventional

decentralized detection system without feedback. The system probability of error

was shown to decreases to zero as the number of observations increases to infin-

ity. An important issue that arises in this system is that of decision transmission.

Due to the feedback links, the system is characterized by an increase in decision

transmission. We proposed and studied two protocols to reduce decision transmis-

sion requirements. The average number of decision transmission was shown to go

to zero asymptotically when Protocol I or 2 is deployed. Numerical results were

obtained for a system of two detectors and a fusion center. Using the OR fusion

rule, the decentralized detection system with feedback and memory was shown to

have a lower probability of error as compared to the conventional decentralized

• ,dei.ection system. Similar results were found for the AND fusion rule.
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Chapter 4

A Unified Approach to the

Decentralized Detection Problem

4.1 Introduction

-I the previous chapters, we have considered the pioblem of Bayesian hypothesis

"testing in decentralized detection systems with feedback. Several other dccuntral-

ized detection network topologies have been investigated in the literature, e.g., the

conventional decentralized detection network without feedback, the serial network,

the hierarchical netwnrk, etc.. In this chapter, we provide a unified representa.

tion for different decentralized detection network topologies. This representation

is inspired by the definition of information structure given in [22, 23]. This unified

representation is then used to obtain PBPO decision rules,; for various decentralized

detection systems.

SIn Section 4.2, we define the communication structure of organizations a; it

ap)plies to team decision making. It is shown ars to ho.'! iL NUmber of( decntra;lizcd

,, ' 99kJ



. at the det:ictor corresponding to the column k are given by the kth column. We

define the decision input of the kV' detector as follows:

Ik : i = 1; for all i} (4.1)

Thus, decentralized detection systems witJt any configuration can be specified in

terms of the comrmunicatio>i matrix D. Next, we present a couple of examples

illustrating the communication structure representation of decentralized detection

systems.

Example 4.1:

For a serial system consisting of N detoctors with observations yj at each de-

tector i, i = 1, 2, ... , N(Figure 4.1), the matrix D is given by an off diagonal matrix

of dimension N x N m follows:

(det. no. 1 2 3 4 N

1 0 1 0 0-..0•

2 00i0.

D• 3 00 0 1...

N - tO 1 0 000--1N O00 0 0 ..0

The entries of the matrix are obtaiikcd from the block J tagram. of the serial system.

Dete. or tumbers are also indicated for convenience of the reader. The (i,k) cJc

ment is one if detector i transmits its decision to detector k. For example, D12 = 1

indicates that the decision of detector 1 is fed to detector 2. Using El'quation) (4.1.), I
the decision input of the IV"WL detector is given by,

[N := UN-I" I
Hbe first column of the ) .u11atrix ha•l: all zo-ro cntricý:; ixidicatiiig L1ial dih. is no1.

: ~1.1) 1



_________ 1.2

, Ctor 1 Detector 2 FLO-"cort
y Y, Detectior N]

Fig. 4.1: A serial system consisting of N detectors.
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decision input, i.e.,

1- no iniput

Example 4,2:

For i. decentzalizod detection system with a fusion centei consisting of n local

detectors(Figure 4.2), the communication matrix D is of dimension (n+l)x(n+l)

and given by:

12 0n0

1 00.0 1

2 or0 ... 0 1D --

oi1.1...71 00 ,... 0 1 •- -

0 00 ... O0 0

Note that the global decision maker is denoted by detector nurrbher 0 and it appears

in the last row and column of the matrix. As seen form this matrix, there are no

decision inputs to the kth detector,

k=1,2,...,n, i.e., •

Ik = no insut

However, the column corresponding to detector 0 (the global decision maker) has

the foiiowing decision input,

:0 w_ 1IL1,U19. ..... IL;-,)_-

Tl~he C.enerahzed Communicatird Structi'n-e

_Thie rcpr:scrntation of decentralized detection systems in terms of the cc cmin-

nication structure can describe systems which are connected in the form of a tree

and where the decisions flow only in one direction namely towards the fusion cen-

ter. However, this represent *tion is riot ii equate for -epresentinli- docenetralized

I I detection networks with more general network topologies such i s the decentralized

II:D

• . .. . . . . ... : • 2y •% .:•L : . .................... .................. ...__..... ......._-__-__-____,____"_______-_____-_--_____-_________-_.,_. . .

i I I i n m
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detection network with feedback considered earlier in this dissertation. Therefore,

we generalize the definition of the communication structure by including the time

parameter t. We assume that each detector in a given system produces a time delay

of one unit. Consider the connected graph corresponding to any given decentral-

ized detection network topology where the nodes represent the decision makers and

the decisions flow along the directed edges of the graph. Recall the fact that the

fusion center is responsible for making the final decision. We organize and label

the graph in terms of levels such that the fusion center is at level zero and the level

of other nodes is detern-jined by their distances from the fusion center (number

of edges traversed from the fusion center to the node under consideration). We

illustrate this in Figure 4.3 where a decentralized detection network with a general

(non-tree) topology alongwith it.s corresponding graph is shown. We employ the

above connected graph to assign the time index to each of the detectors of the

decentralized detection network. The time index of a detector is simply its level

in the connected graph. The time indices of the detectors are displayed alongwith

the detector number in the communication matrix I). Finally, the input decision

vector of the dtector corresponding to the kh cohnnn is given oy:

{u4"+ : D 1A = 1; for all 0 (4.2)

where

Ck is the time index of the detector corresponding to the V'9 column.

ri is the time index of the detector corresponding to the iM row.

For•i the ,le...ntr•..izc.d1 dectection zystemn of' Figure 4.3, the coninmniclatiou matrix is

105

I
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Y3 Decision __

maker 3
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i 4Decision u4  ioba. t

S.... aker n .m..ker

Y2 ut
Decision ....
maker 2

Level 0 .................................. 0

L............................. 1 2

- ,-

Fig. 4.3: A general (non-tree) decentralized detection systen.
with th- corresmponfdinlg connected graphl.
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given by,

time index -* 11 22 0

1' 4 det. no. 12340

1 1 00001

l) 1 2 00001

2 3 10000

2 4 10000

0 0 11000

The decision input vector P[ for the first detector is obtained from the first column.

The column time index is given by cr = I and

{ t+ .2-1-- t2-- 1-1 - ,, 1 - } =t+ -,•I u t , u , 'it-}.

Next, we further illustrate the applicability of the generalized representation by

considering the following exampIhs.

Exaample 4.3:

In Lhis example, we look at the serial network of E'xamphle 4.1 and obtain the

time indices. '[Tl. commu.rnication matrix D is g;v. -n by

time index --r N - I ...... 0

4, det. no. 1 2 3 4 N..N

N -I I () 1 0 0

N-2 2 0 0 1 0 ... 0

IV 3 00 0 1...0

. . . .. .. )

I 1.-l 00 00 L

0N .(........... 0)

Once again, the timc indlices a.1( detector Itllinl)ers are i(huhle(I for tLhe cuV(um1(icn(e

of tlh ructder. 'l1he time iTnde(x cC, (time index of ti. (etecCtor COrVIsl)1(1di 1g t(-

I'
-- --4. - - . - -. - - - - - - - - .



colunn k) of the non-zero entries in the matrix D could be written in terms of the

time index ri (time index of the detector corresponding to row i) as follows:

ck = ri ± t

Hence, the input decision vector 4. consists of one decision, namely the previous

detector decision
I'l = .t+-r--ck-l = t

n-I -

This indicates that the decision of the (n - 1)o" detector is used in the 7th detector
decision making without any further delay.

Note that the time indices and detector numbers along the columns are repeated

* along the rows. Therefore, for brevity, from now on we will provide this information

only .dong the rows.

Example 4.4:

We consider the( decentralized detection systeni with a fus,-ion conter as given

in 1Exaxriple 4.2 and obtain the time in, lic,'s. The coirummnication matrix D is )f

dimension (n+ 1 )x(n +-I1) and is given by:

L1t 00 ... 01l

L 2 00...01

00 k00...o}0

It is seen that all the local detectors have the same tuie index. The'1 time index

ri of the non-zero entries is given by -i 1: 1, irl,2,...,n and the time index Co is

given by co - 0. Hence, the time paramcter of the local decisiuns at the global

decision maker is:

tfi-Cg 1 :-7 t I-fj 1. nt

I I 8



The decision input at the global decision maker i• is, therefore, given by,

Local detectors have no decision input as seen before.

Example 4.5:

We consider a decentralized detection system with feedback as shown in Figure

4.1. The system consists of n local detectors and a fusion center. The number

of levels in this system is the same as that of Example 4.4, hence the same time

indices are obtained. The coinumnication matrix D is, therefore, given by:

I I1. 00. .... 0. )

,1 2 00...01

n 00 l...01
O 0 1.1.,.10 -

Observe the effect of feedback on the matrix D. The bottom row indicates that

there is a communication link from the global decision maker (detector 0) to all the

local detectors. Note that the decision input of the local detector corresponding

to the column k, k=1,2,...,,w, has a time index of one, i.e., ek 1. '[he decisioC

input of the local detector corresponding to the column k is given by
i! [•, ..... t+ro-ck-- ... ,t+O-1--.1l -

22 " r -I= t+04 2 for any local detector k.

As seen above, the global decision input to the local detectors haq a tidM, pirnMniter

of t-2 which indiate:; that two (, [me delays are encountered, the local detector delay

and the global decisbi, makeer delay. ft is important to note that our earlier results

from C(hapters 2 andll :3 asslmno., that the global decision malker does aot account for

any time (lelay. ence, OW time parameter of t--1 was used for the previous global

decision in C'hapters 2 ..iul 3.

1019
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The decision input of the global decision maker is obtained using the 0t' column,

lot = (tit,, ..., ,,1t)-

The time parameter of the local decisions indicate that all local decisions are used

without any time delay.

With our generalized definition of the communication structure, any decentral-
izd detection system can be represented by a communication matrix. In the next

section we derive the decision rules of all the detectors in a decentralized detection

system with any configuration represented in terms of its communication matrix.

4.3 The General Decentralized Detection System

4.3.1 System Description and Problem Statement

We consider the binary hypothesis testing problem for a decentralized detection
system with any arbitrary configuration (Serial Network, Parallel Network, System

with Feedback, etc.). Let the number of detectors in the system be n+l. The block

diagram of any detector, say the kth detector, of a decentralized detecltion system is

shown in Figure 4.4. Duc to the effect of event sequencing, we a&u,,ciate a tiue stepj)

parameter t with all the system variables. The kth detector of the general system

operates as follows: At time step t, the k-h detector based C'II the observation inputH . and the decision input I'l produces the( decision u4 using the decision rule mU.)

as follows:
t - I(.,'• 11.) _

22 7k(4, 4)
We amsunie that the joint conditional probability density of the observations

,(yt,, ytl1j); j -z 0, 1.; t 1- 1, 2, ... , 1' is known a priori 'liTe problem is to

find thc P1 li'O solution for the decision r1le y1(.), k: .0, 1, ... ,n; t.-z I, 2, ... , 'U, so

1. I0

Ii-



yt The kth detector

Figure 4.4: Block diagram of the kth detector in a givcri system.
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as to minimize the cost function. J(F) for the final decision J. We consider the

Bayesian formulation where the cost function J(F) is given by,

,1(F) = Coop(uo = 0, Ho) + Coip(u' =0o, 0') 1-

.--Cop(UT = 1, Ho) 4C11p(u = l, HI) (4.3)

where Cii; i, 0, 1, is the co,:t of deciding uT = H, when the true hypothesis is

The costs Cij; i, j = 0, 1, and the a priori probabilities p(lHo) 'txd p(H11) are

assumed to be known. We rewrite Equation (4.3) in terms of the system probability

of false alarm at time step T, pf, and the system probability of detection at time

step T, pd , as follows

() CQp(Uz = ijHo) - dp(u1? = [IIt) + C
, T T •(1.t -

- jf - CdjP4 -_1.

where

C1  P(H0)(Clo- C0O)

c,, =p(111)(Co, - C( )

G' = p( 10)G(X + 7(I1u)•"-0 1

It Nhould be ,iiLed that the ,cos•t [unction J(F) of Equation (4.4) is indecjpxndent

of the system structure (configuration). IIemice, the develop1 )uent up to this point

is for a general system. In the next subsection, we derive the I'1311O decision rule

0. ' O)le k (ICLUCLOr fLor 4 gClwaMr sysu.il .

4.3.2 System Optimization

B'fore proceerldig witli the system optu.ni:/to1h, we n];tkc certai,, sijx1pl.'fix. , ",-

SUllptio 1i. W'Ve assiulie ]that the observations ot Ulh, geteral :.;ystn ares 5p)tiadly as

112 N



well as temporally independent. Tence, the a priori knowledge of the conditional

probability density functions p(y', y', ...,y'IH1j); j = 0, 1; t = 1, 2, ... , T reduces to

the a priori knowledge of the individual detector conditional probability densities

p(y'1jH1 ); j=0,1; t=1,2,...,T; k=0,1,...,n. Next, we proceed with the minimization

of the cost function given in Equation (4.4). We derive the decision rule for the

Ikth detectox shown in Figure 4.4. The result is presented in Theorem 4.1.

THEOREM 4.1

For the binary hypothesis testing problem in a general decentralized detection

system, the PBPO decision rule of the kt" detector (Figure 4.4) that minimizes

the Bayesian cost function associated with the global decision at the final time T

is given by:

A '(yk, 1 k) = 'u 1 if A(y') > 74([4)

"0 otherwise (4.5)

for all k=z0,1i,...,n; t=1,2 ... T'; where 77'([L.) is the threshold of the kth detector at

I time step t defined as:
t " G tf ý.' ) UW7k11

ilk(T, k)f t (,4, 0)p(=II) (4.6)

* ,I and ]-"•1-:
IiIl

!: f'~~g(T, i) =p(u' -= 1 I,4,- =z t, 11) -~ p(,,.j .-- jt, 0-, [14I
7)01 p jz4 It 2li~ -pz :l 0, 113

-- Pro1of:

We start with Equation (4.4) and expand it in terms of the kh decision at tiUe

, step t, 1 , lthe decision input 41, the observation y', and the global decision at t•nefs~tep 1, 7 at,; follows:

t .

' 11-.3,( 07 k, f ),, A, 11-1o)

1h 0

I ** -I - v.a r.un.hlk~Y *."-



-CdP(uo' =I 1A, I U, Ut, 4YkII1) +±C (4.7)

Conditioning on u', Ikt, uk, and y', E, -ation (4.7) is rewritten as:

J(FP) f,', CjpAUT I 1Ulk, I, YL [10)
0L h

-Cdp(u,' = JI ut ut,I1k, y',Hi)

xp(u', ut 4,,JhylJIH) + C (4.8)

Writing the cost function J(F) of (4.8) explicitly in tern-s of all the possibilities of

the global decision 'u' and conditioning further on u', Ik, and yý, we have

()=fV, Cfp(.UT = hJuI = 1,11 Jk'ý HO)

XP(U~t =- 01, IU'k Ykt k, Ho)p(ut, Y,, 4IkI~o)

IV, -9 u t,,y HI)
xp~ut - 0I4, I~, i, Irp~4,,[, yf 1 k 49

.1(P)1 f, C- 0,m4 yIfl)pU1 1ku, 1 , fl )

XPU'= tlUtk, 'ik) +k' p11404 =1Ik- , Y1 0)

T'a~~,i. = I'1 t[~~ tJu t 
-. I. I)

- -P 110 4 U ' h i k

[IT'=01,ItoH~~i,[tyII 49

0 k k



=1.,y', Ii,Hi) +±p(uT = I lu, z-- 0,111)

X (I -pAuO' = 11t4, Ik, A,110')A ±C (4.1.0)

Multiplying out the term (1 - p(u' = IlI.)) and rearranging, we have

J(FP) =f,-, CfP(4' IYk'I lk I O)P(Uo = 1 IU'k, YkI ,I 11)

T' T

V 710 L 11" ::-f. 1 U1t) --P(t z I ,-ý-0,114)l

ijz4Uk' Y' k1,110) .~P(ZLT I lit' 0, Ho)

*I-Cý:?P(?4".I I, ~I'It I-[I)P(?'7 14z Yk 01 14) 11C 4.1

I~~~ting ~~p(ul, =- Ilit = 1, HO) -p(TT =u 0I lit' = 0t7 , j) n odiinn

* (4.1.1) further on y'- and Ik, we have

-PUO 1 itk, A~, 4," UnOg(T, 0)

-- d(klk,1ý l)PY, 11& ý- lj4= , OHI) +i-C (4.12)

We note that the k04 detector decision -ut given the observation yt and the decision

input !j' does not. depend onl Ltci h. t)othes1Js present. Next, we rewrite the. cost

ftinc~ion J(1') of (4.12) in terins of all possibilitics of the decision it', henice

J(I')I 1~(? hI-i.Y :,I)[Cf P(Yk', 4tI11-1)

C~n~ 11llhI) x 11)(a, - 17[4-1, y" Prk



11T-= -,H 1)}] +p(u* = 01AI1)[CfP(y,, 41.11o)

I Ju, = 0, ylt ) I, Ho)g'(T, 0) + p(,T = I Jul = 0, I)}

-Cdp(y', IklH,1) X {P(Ut 11Ut = 0, Ykt, 1k, HO l 9( 1)

ip lu 0,Hl)}] + C (4.13)

We observe that the global decision at time t, u• given ut = j and the hypothesis

.fi does net depend on y' and N.. In addition, substituting p(uz I Dly', IT) by

I .- p(ut = lyj,,Ik) in (4.13) and rearranging, we have

Zr f1 p()4 Iy~,I)Ecfp(y•, I•l.U)
J(r) =q f", f• v( = 1zMk, 0[fyt, Ik 110

{p(it lu = 1, Ho)g'(T, 0) + p(uT = I•, = 0, o)}) 1

-Cp(Y,,NIkH1){P(ui lut. = I, H1 ,)g1(T, I)

+p(uOi = ljuo = 0,IHI)} - Cfp(yk, II HU)
x{p(u = I lit' 0, Ho)gt(T, 0)-t p(ujT = Iu , = 0, no)}

+('dp(y', rkl/H)fp(u' = 11u' = 0, H1 )gt(T, 1 )

:.rm +p(Jo 11iU' = o,11011 -t, CfPYk', l41Ho)

x{p(uO = I I = 0, HO)gO(T- 0) + p(71'' 1 I lI = 0, HO)}

-Cdp(y,, Ij1.A) x {p(ut l-i 0, 1H1)gt(T, 1.)

-+p(u7.' = 1fu, 0, 1h)} + C (4.14)

We observe that the last three terms of "qnation (4.14) are not involved in the op-

tirnization of the kth detector. We discard these terms in the subsequent equations

anr( denote the new cost function by JP (1'). Rearranging by further factorization

of common termx in Equation (4.14), we get

j, (r) j: p:u T- ?A lly , i")[Cf (A., Rl AH ))J'(i') }• ~.1, t p(., A A; 7, t•

x {p(z•4 1.I . -: 1, Ho)q t (T, 0) + p(uv -! I. u- 0, 1))

-- (-I t U, :- 0, o) ( 0) - ,(u,' -- Il, 0, II0)}

-- • 1-ICM,11KI l(4 1. 1 71'k

,•..•__=.•.••g•.;•__•..-• .....



+p0,ur iI = 0, :1 ) -p(u' = IJu = o, H 1)g'(T, 1)

,~U --(o= 11140= 0, 11,)}11 (4.1,5)

Canceling out the equal terms and rearranging by further factorization of common

terms, Equation (4.15) is rewritten as:

J'(F) f,•, p(u' = I Y4,Ik)[Cfp(y', IkjHo)g.t (T,O)

• I ×{p(u, - Jul•, = , )-p(U' I Jul 0 , Ho)}I

"' ~~~--Cdp(yk, IiH)(T 1)

J x{p(4) I Ju.= 1,Hi)- p(uG lu'. = 0, UL)}I (4.16)

Letting p(id 1- ul 1, Hi) - p(uI• J iul -= 0, IIj) f t (u',i), we rewrite (4.16)

as:

x×[C~jp(y, ( ,)ft(7.k,I)

--C'ap(,, lIH, )gk(:', 1)f(i4, k)j (4.17)

The cost function .P1(F') of (4.17) is minimized if we choose

rC. t= I y,, it) if A, > Ao

0 otherwise (4.18)

where

k- "Itf k• Ttk • lrA1 ~ 6(y, lJflH1 )q(t., i}f t (K, 1, )

Ao Cfp(y', l-oI u)g'(T, o)f(u4, 0)

T.rhe lcth dt.cLor decision ru.le -yk(.) of the general ,ystcni is given by rewriting

(4.18) as:

;11
I if A(/,kIi

i7 I I I Ii I I I I I I I I I



where !4' is the threshold of the kth detector at time step t defined as

Cf tg(7", O)f '(ut ,0)

ILk Cdgq(T, I)f t (ui, 1)

Using the assumption of temporal ind spatial independence of observations in the

general system, the kV' detector observation y' is independent of the k"h detector

decision input I,ý. Hence, the likelihood ratio is separable as follows:

A(y'., I!) = A(y.) X A(Ik)

Substituting this result in Equation (4.19) and rearr; nging, we have

'(Ij(y, Pk) = = 1 if A(y') > r77(I4)

0 otherwise (4.20)

where ,74(.[1) is ii. multivalued threshold of the kth detector at time step t defined

Cfq t (T, O)f t (ut, O)p( rtlaHo) (4.21)
Oag PO 1.fku, I)p(k',IH1)

WS; given in Equation (4.6).

Q.E.D.

It should be noted that Fquation (4.19) represents the general decision rule for

any detector of a decentralized detection system with a,- arbitrary configuration.

Moreover, the general decition rule of any detector k at, any time step t is based

on the likelihood ratio of the input to that detector. Thus, the decision rule at the

global decision maikei c(An bC obtained from the ab)ove gen'ral result. The result

is given next.

Lemma 41:

I or a general decentralize.d (letectioI. systeni the i'11PRP decision rule -yuT(.) of

the global dhci:siou WaLk(er that Iiiiinizes the 13qy.siaii cost, functioi, for the biniary

1
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hypothesis testing problem is given by

Cf:',, "(In,;g =,D =' I if •,(t D v[-,C•

0 otherwise (4.22)

'!where Ij is the decision input of the global decision maker and yt is the input

observation of the global decsision maker (if any).

Proof:

The global deci.'ion rule of (4.22) results directly from the general decision rule

(4.19) by letting k 0, t -= 7, and observing the following:

,T(Ti) = p(,'• I " 1, 1[,)- p(u' I ?J = 0, 1i)

1 -. 0- 1

and for t-l,.... ,T

Hence, the thrcshold of (4.19) reduces t,:

...(7•~

resulting in Equation (4.22).

'?h," decision rule of (4.22) is a gencral global dcci'siox rule in that tih, global

(decision maker may ah;o nakel direct observidions of the phenomenon in addition

to the di,,i.on, rccciv4..d f":t.u the other detectorsi. Th., ob',.erwatin term yt is to

be (iropned if thcO:w i nc,(l'r:ci, obk;; .1w .,. at the 0,,lobal derision ;1.kc,-. 'lhc

resilt of Lemnum 4. .1 agtrees witlh Olhe g'lobh, df.ci,:ion Mt.:l a.t tiiiR; :1C,. '1' Of 'lke F"'S

r11



problem given in Theorem 2.3 if IT = UT is used. The decision rules at the local

detpctors for the FSS problem considered in Chapter 2 can also be obtained. It is

demonstrated in Lernma 4.2.

Lemma 4.2

For the decentralized dei.ection system with feedback, the decision rule at the

kth detector for the FSS problem is given by Theorem 4.1 with 1" ut4-, i.e.,

'-(yk, i 't-1) ?It 1 if A(yt) > ,.Itt-1)

0 otherwise (4.2:1)

for k=1,2,...,n and t=t,2,...,Tr; where

!.G' gl•utt , -rg(t O)ft (?I',O)p(7ut°',I -10[) ( ,
Q Cg (t, 1)f 1(ul, 1)p(u')-' HI) (,4

Proof:

It is seen that J'r(t,0) is thl same as defined in Theorem 2.4. Expandittg

.t Iti ), i 0, 1, in termis of the decision vector UL, we have

k ~~~1 0., [T)-- -- ,J(-0 kk A10

1, T•.ýJ .- I., .Ti) -. 7(7 t t U , 0, o ii)

Conditioning oil U4 af11d rearranging

ft(u ) j [P(,U, I uk I, Uk, Ul-) - P0u~10 A. 0 Ii)

x ×p(brI ) (4.25)

b)lservv that the global decision it' given all of the local decisions, i.e., u7 and U)t,

does not depend on t;hc hypothcsis present. tIence

j rt t i)t I ?, , I, 1.I ) 1 1 1 '(u t•, -- • = 0), Wf U ) Ip ( w J I -

1ZiP



Note that [p(Ut 1IuO 1,Uk)-- p(uo =luk 0,Uf)] = f(Uk) as definid in

Equation (2.45). Thus,

f(74,i) 0 f(Uf)p(U•,th) (4.96)

Substituting the above result for i 0, 1 in Equation (4.24) and recalling the spatial

and temporal independence of observations yields Equation (2.46) of Theorem 2.4.

Q.E.D.

Next, we turn to the result;i in Section 2.3 where the PrBPO solution was

obtained without the knowledge of the final time T. In other words, the system

was optimized with the assumption that the decision process could end at any time

t. In Lemma 4.3, we obtain this result using our unified approach.
V I

.r Lemma 4.3;

For the decentralized tletectiou system with feedback but without memory, the

decision rule at the kg" (hetct,,r is obtained by letting 4 = UO' and time step T

t in Theoremn 4. 1, i.e.,

(Y ,u') 1. if A(" t .t- )

,I ( o~ht'wer',~ (4.27)

fou kr 1,2,...,n; where
CfPf( -O)P?4 )(4.28) -

Proof:

As explainted hi Example 4.5, the decision input to the k0h detector Nýý is given

by I V 'lhe rsilt, of substituti, g 1, -1 in equations (4.5) and (4.6)

of '['hcormn 4.1 is stry.iglhtforward. The resilt of snbstit•,ting '1' :.: t needs to be

examined. We look at thei finction gt(T i) which by letting T- t, we have

Y,:(t, i) 704 p( 14 1 N ) 1 , 110 P(",' I I ), 1U)

. 2



Using the facts that

P(l- =t 0 1,=i) 1
I(ut = lju• = 0, Hi) = 0

The function gt(T =. t, i) = 1.

Substituting this result for i = 0, 1 in Equation (4.6) yields Equation (4.28). Fol.

lowing similar steps as in Lemma 4.2 for the development of f"(u', i), the threshold

9given in Equation (4.28) is the same as that of Equation (2.6) of Theorem 2.2.

Q.E.D.

T'1, local and global decision rules of Chapter 3 can be verified in a similar

fashion. The communication structure of the decexitraliz, .: detection system with

fcedback and memory is the same as that of the system without memory. Hence,

the decision rule design is the same in both systems. At this stage we turn to the

results in the literature where we look at the general formulation attempted by

Reibman and Nolte [9] and show that their results are a special case of our results.

It shodld he noted tha•t in the literature, the samen dctcctor aLt two different tiule

instants is considered as two different (letectors. Hence, the time parameter t does

not need to be taken into accouni; here. the result is presented in Lemma 4.4 next.

Len-ma 4.4:

lFor the binary hypothesis testing probiem in at dccentralimd (lctection system,

the PBPO deci,,iion rule at the kth detector (Figure 4.5) tOa.t minimizc. thie Bayesian

cost function of the final global decision is given by:

7k(?/,, Ik) 1 if A(y.) > y(Tk)

0 otherxwi.ve (4.29)

where ]k is the dercision iuput of the kih (ltectr and u/( ,) is, the thrc,shold of the

A==)
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I'he ký detector - -

Figure.5 Block diagraml of the k± detector in a ~ieiSVStCFri.
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0th detector defined as:

7(1k) Cf f (u, O)P( I Ho) (4.30)
l( l) d Cdf(uk, 1)p(IkI H1)

and

f(uk,i) = p(uo = tiju = 1, Ha) - p(uo =ltik = 0, L)

Proof:

The above results are obtained simply by dropping the superscript t in the

results of Theorem .1.1. Since in this formulation, a detector operating at two

different time instants is considered as two different detectors. The ternm g(T, i)

1 because the global decision maker operates only once (t=T). It should be noted

that the results of Lemnna 4.4 agree with that of Reibrnan and Nolte [9] with

the f(uk,j) term in Equation (4.30) expanded over all possibilities of the local

decisions that are input of the global decision maker.

Q.E.D.

In Lernma 4.5 next, we verify the results of the serial system using Leninms; 4.4.

Lemma 4.5:

For a serial system consisting of N detectors, the kV' detector decision rule is

given by Lcmma 4.4 with Ik = uk.-i, namely

-A- (Yk, .k-) -- if A(yk) > ?kuk.-t)

0 otherwizse (4.31)

where 17(uk.-1) is the threshold of the kth detector defined au:

C ) C (u,, O)p(u,_il11o) (4.32)
CJf(uk, l)•p(•k-.i HI)

and

f(uk,i) p(?10 lUk ` 1, Ii) I- = 1jUA 0, l i)

I. Z.4

I ,I•
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Proof:

The above results are obtained by a straightforward substitution of Ik uk-1

in Lemma 4.4. It should be observed that the Gth detector corresponds to the Nth

detector in tile serial system. Furthermore, for k=t, there is no decision input

14, and for k=O, the term f(uk,j) = 1 resulting in the decision rule at the final

detector.

Q.E.D.

In order to demonstrat,, the versatility of our approach, we apply it to a more

complex decentralized detection con figuration next.

4.3.3 Decentralized Detection with Peer Communication

We con.ider the biinary hypothesis testing problem for the ,lccentralized detection

system wit!) peer cormmnnication shown in Figimre 4.6. In this system, the k", lo-

cal detector comninzmcates its decision to the global decision mnake as well as all
other local detectors. 'lie system operates as follows: At timu step t, the kcth lo(al_

detector makes the local decision It' based on it;; current observation y', its previ-
ous observationts Y._I>k, and other detector decisions 'I',-,'...,tU +-- t-.t .,-

that are transmitte'd to it. Let the i,,umiber of local detectors he i 'T'lie niunber

of levels for this system is the same as that of the conwvetional deIt-cutralized de-

tection systeml of l'xample 4.4, hence the samen tinie indices are obtained. '['he

I 2'/
t "-



t..1 t-1 u-U2  3 ,,,-

yt Loc.-d detector 1I U

t-1 t-l t-.1 I11 3 "'" i Ut. .
3 u 2

Local detector 2

Fusion U 0

*center

ut-i Local u

yt Loc-al detector n
n

Fig. 4.6: A decentralized detection system with peer communication
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coxmnnurication matrix 1) is, therefore, given by

i 1 0 1... I1 It

12 10 1,... i

1 3 1 1 0 l .. 1',i D=

1 2 l ... 1 0 1

2 0 00... 0 0 0

Observe that the 0t" dotector (the global decision maker) does not transmit its

V :, decision to the other detectors (row elements are all 0). The decision input of the1J detector corresponding to column k is therefore given by:

Ii .".1 . for any local detector k.

a 'The decision rule of the k0' detector is presented in Lemma 4.6 next.

Lemma 4.6

For the binlary hypothesis testing problem of a decentralized defection system

with peer comnunuication shown in Figure 4.6, the PBPIO decision rule of the kth

local detector that minimizes the B5ayesiau cost flnction is given by 'lehorem 4.1

with .17:.t, n caiely

y(Ytek,[) - i if A(.,,) > 7k()

where rli(,) is the threshtold at, time steap t dhn. ned as

.,, k) = f(4.34)

C (lI )Pk 41
Y(,.i) p (U, =- 1il U, 1, 1'1) - p (,,, 1= l,1 o= , 11,

ILIU U an local detertor k

t "2.



Proof:

Straightforward substitution of I. = u',. t- 1 , +1, . , ; k1,2,n,

and T=t in Thev em 4.1 yields th,. desired decision rule of Lemma 4.6. The

" decision rulz. of the global decision maker is the same as that of the conventional

decentralized detection .ystem since thu available information at the global decision

maker are the same.

Q.E.D.

Next, we present a numerical example utilizing the results obtained for the

decentralized detectkon system with peer communication and compare the perfor-

mance to the co-veitional decentralized detection system and the decentralized

.detection system with feedback and memory.

Example 4.6:

We pursue the example of Chapter 3. Briefly, the system consists of two local

detectors and a fuuion center. The Oiz fiwi,on rule is used. 'Te input observations

are assumed to iave a Rayleigh distribution. The probability of error p' for this

system is given by

p,- p(H1 ) + p4p(Hfo) (4.35)

where p'. and p' are the systemi probability of mi: s and false alarm respectively.

Sir'':e 1 'e fusion rule ist tin OR rule, the error probabilities can be written in terms

of the local detector error probabilitie p,',, and pt. as follows

= (,~t ,,o2(4.36)

I" IAMid
f1.2§
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For i=1, the local detector probability of rmiss at time t, P41 is fi,,und by condi-

tioning ou the second detector decision at time t 1, ut-1 as follows

t
Pm1  pt"-1 ' I0h)

U, p Ou-1, Hi)p(u - 'HI) (4.38)

Expanding in terms of all possibilities of u2 1 , we have

p .' =p(u Ou'-' =, 1,.U 1)p(u'-' = ljHg)

-+p(i' = 0l"= 0, H,)p(,i-' = 01H 1 ) (4.39)

Substituting p(i-' = if,) = - p(u-' = 01ff!) and rearranging, we have

Pm, = p(u4-' =f -H)[p(ut = Olu- 1 = 0, Hi) - p(ui --- Ou1-' 1, HI)]

+p(ui = 0Iuý-' = 1, HI) (4.40)

Since local deteci,ors are assumed to have equal SNR, the following holds

( 0111) = -i t-1 t-1
2 U Pm-i Pm PMiNi

Hence, Equation (4.40) is rewritten as

,,= -"- 1p -' = 0) -- P "t1 )'

= 1) (4.41.)

Siifilarly, the probability of false alarm of the local detector is given by

P, PT1, [p t. := 1) ._ ,-'t" t).

+p0) (4.42)

Substituting Eqii:tions (4.41) and (4.42) in (4.36) and (4.37) and then substitut-ing

the results in (4.35) yield& the system probability of '.rror.

The probability of error vs. SNR is plot;ted in Figure 4.7 for vari as values of

the iimhber of samples per detector. MPireover, for the. SNR value of 5 dt13, -w( plot

1.29 .

I -I i -~* i i i g --' ... -- ----- -, i , ,



the system probability of error vs. the number of observation samples per detector

in Figure 4.8 for the decentralized detection system witn peer communication,

the conventional decentralized detection system and the decentralized detection

system with feedback and memory.

"The plot in Figure 4.7 shows that the probability of error for the decentralized

detection system with peer communication decreases as the number of samples per

detector increases and SNR value increases. The plot in Figure 4.8 shows the prob-

ability of error for three decentralized detection systems for the SNR value of 5dB.

It is seen that the probability of error of the decentralized detection system with

peer communication is less than that of the conventional decentralized detection

system. On the othcr hand, the decentralized detction system with feedback and

memory has the least probability of error for a given number of samples. Similar

results for the AND fusion rule are obtained. The probability of error vs. SNR is

ploted in Figure 4.10. In Figure 4.9, the probability of error, for the SNR value of
5, is ploted for the decentralized detection system with peer communication, the

system with feedback, and the conventional decentralized detection system.

It should be noted that for the case of two local detectors, Lhe decentralized de--
tection system with feedback and memory outperforms the decentralized detection

system with peer communication. Intuitively however, the decentralized detection

system with peer communication should outperform the decentral;zed detection

system with feedback and memory, which is the case when the system has more
thaUn two local dctecors.

4.4 Discussion

In this chapter, we have presented a unified approach to the study of a decentrah

ized. d.Iitetion ;ysl;em with an.y, configuration. IT). this approach, we reprec-It the

1 'I
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interconnection between detectors in a decentralized detection system by a cornr

munication matrix. Based on this representation, we have derived a. general PBPO

decision rule at any det&ctor of a decentralized detection system with any configu-

ration. It was demonstrated that the unified approach can be used to obtain results

from earlier chapters as well as re,-ults available in the literature. A new Lopolog-

ical structure nram.ely a decentrali.•ed detection system with peer cornmunicatin

"was considered in detail and its performance was evaluated. Numerical results

were also obtained for the case of two detectors and a ftui.tm center. Our rcsultsi

in this chapter provide a versatile tool for the design and analysis of decentralized

detection systems.

Vil
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Chapter 5

Summary And Suggestions For

Future research

5.1 Summary

It this dissertation, we have considered the binary hypothesis testing problem for a

decentralized detection system with V,,dback consisting of n local detectors. Using

the Bayesian formulation, we derived Lhe local and the global decision rules. An

expression for the systen. probability of error was also derivd. It was shown that

as the nttnler of ob:jervation samples increasidcl, tihe systeui probability of error

decreased at a slower rate than that of a conventional decentralized detection

,system. The Pss problem was investigated where the stopping time was known a.

priori. Local and global threshold equations were derived and shown to be coupled

spatially aul temporally. Thie single detector system with fee.dback was studied.

The decision rule of the single detecrtor was derivwd for the FSS problem, it was

shown that the single det.-ctor system with feedback corresponds to a serial sys;tem r

1,onsisting ot N W ,.::ctors. T[i decision rule at tinie step t of the single detect, r

1.3 :6



system ;:ith feedback was shown to be the same a, the decision rule of the nth

detector of a serial network. Hence, results of the decentralized detection system

with feedback could be extended to networks with blocks of detectors in tandem.

Next, a decentralized detection system with feedback incorporating memory
at tile local detectors was investigated. Using the PBPO solution methodology,

local and global decision rules were derived. The :-ystem probability of error for this

system was shown to be at least as good as the conventional decentralized detection

system without feedback. Asymptotic behavior of the system probability of error

was considered. It was shown that as the number of observations goes to infinity

the system probabiliy of error goes to zero. Due to the feedback links, an increase

in data transmission is exhibited. Two protocols were proposed and studied for

the reduction of data transmission. It was shown that the average number of

decision transmissions goes to zero as the number of samples goes to infinity. For

a decentralized detection system with feedback and memory, the system probability

of error and the average number of decision transmission were considerably better

"than that of the corresponding system without memory.

Finally, we presented the definition of the communication structure of decen-

tralized detection systems. Then, using the Bayesian formulation and the PBPO

solution methodology, the FSS problem was solved for a decentralized detection

system with an arbitrary configuration. We derived the decision rules for a gen-

eral decentralized detection system. Using these decision rules, we verified various

••eSuls Irom the literature as well as the decentralized detection system with feed-

back. Using our new delinition alongwith our decision rule design approach, we

establithed a unified approach to the design and study of decentralized detection

systems.

There are two major contribitions of th,.i dissertation. The first one is the

I__.



demonrtration of the fact that the pea:formance of a decentralized detection system

can be improved by the use of feedback. This improvement is achiev,ýd at the

expense of increased commnunication. The other major contribution is a unified

representation of decentralized detection system with any topology along with an

approach to obtain the PBPO decision rules at any detector of the decentralized

detection system.

5.2 Suggestions For Future Research

'Throuighout this dissertation, we have assumed that the observations at the lo-

cal detectors are staltisticaliy independri.t •.nd hde.i.tkiclly distributed. In practice,

however, spatial and temporal dependence of observations can be expected. There-

fore, a fruitful area of research is to optimize the decentralized detection system

with feedback under the appropriate dependent observation models. Another pos-

sibility is to investigate the non parametric problem in a decentralized detection

system with feedback. Proper decision rules must be developed for this case.

The design of optimum decentralized detection systems is computationally

quite intensive. It usually involves solutions of coupled nonlinear equations to

determine the thresholds. Computationally efficient approaches for the design of

optimum (or near-optiinunm) decentraliz,:d detection systems should be developed.
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