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In this final report, a descriptive summary of research
accomplished under AFOSR Contract No. F49620-87-C-0064 is
presented. Technical details of research, mathematical
formulations, their computational implementations, and their
verifications are presented in the archival papers listed at the
end of the report.

In (1] the problem of transient dynamics of highly flexible
three-dimensional space-curved beams, undergoing large rotations
and stretches, is treated. The case of conservative force loading,
which may also lead to configuration-dependent moments on the beam,
is considered. Using the three parameters associated with a
conformal rotation vector representation of finite rotations, a
well-defined Hamilton functional is established for the flexible
beam undergoing finite rotations and stretches. This is shown to
lead to a symmetric tangent stiffness matrix at all times. In the
present total Lagrangian description of motion, the mass-matrix of
a finite element depends linearly on the linear accelerations, but
nonlinearly on the rotation parameters and attendant accelerations;
the stiffness matrix depends nonlinearly on the deformation; and an
'apparent' damping matrix depends nonlinearly on the rotations and
attendant velocities. A Newmark time-integration scheme is used to
integrate the semi-discrete finite element equations in time.
Several examples of transient dynamic response of highly flexible
beam-like structures, including those in free flight, are presented
to illustrate the validity of the theoretical methodology developed
in this paper.

The following topics are discussed in [21: (i) some of the
recent advances in formulating finite deformation (large rotations
as well as stretches) plate and shell theories, and attendant mixed
finite element formulations based on symmetric variational
statements; (ii) finit, element/boundary element formulations based
on unsymmetric variational statements, Petrov-Galerkin methods, and
the use of fundamental solutions in infinite space, for the
highest-order differential operator of the problem, as test
functions in solving nonlinear plate and shell problems; and (iii)
algorithms for solving the problems of control of nonlinear dynamic
motion of plates and shells.

Article [3] deals with nonlinearities that arise in the study
of dynamics and control of highly flexible large-space-structures.
Broadly speaking, these nonlinearities have various origins: (i)
geometrical: due to large deformations and large rotations of these
structures and their members; (ii) inertia: depending on the
coordinate systems used in characterizing the overall dynamic
motion as well as elastic deformations; (iii) daming: due to
nonlinear hysteresis in flexible joints; viscoelastic coatings,
etc., and (iv) mtia: due to the nonlinear behavior of the
structural material. The geometrical and material nonlinearities
affect the "tangent stiffness operator" of the structure; the
inertia nonlinearities affect the "tangent inertia operator".

To study the nonlinear transient dynamic response and control
of flexible space-structures, one may think of: (i) semi-discrete
approximation methods, and (ii) space-time methods. In the former
class of methods, an appropriate spatial discretization is etployed
through weak-formulations (finite-element and field/boundary



element) in space, and thus a set of coupled nonlinear ordinary
differential equations (0. D. E.) is derived. These 0. D. E.s are
solved often through temporal integration techniques of the finite
difference-type. The semi-discrete methods are not ideally suited
for traveling-wave type propagating disturbances. The second
category of methods, viz., the space-time methods, wherein weak
formulations in both space and time are employed, are somewhat
better suited for wave-propagation type problems. In this article,
attention is primarily focused on semi-discrete methods.

Depending on the scale of the response that is required to be
studied, a large-space-structure may either be modeled as an
equivalent continuum, or as a lattice structure with the details of
each member being accounted for. The spatial discretization in
either case is required to be of the least-order possible so that
the control algorithms may be meaningfully implemented. The
reduced-order-modeling of the "tangent stiffness" operator of
either a continuum model, or a lattice model of a space-structure
is treated in some detail in this paper, for structures undergoing
large dynamic deformations.

The control of dynamic motion of space-structures is currently
envisaged to be through either active processes, passive processes,
or some combinations there of. One of the concepts of active
control that is considered in detail in [3], and by other authors,
is the use of piezo-ceramic actuators that are bonded to the truss
and frame members of the space-structure in various locations. The
controlling shear stress transmitted by the actuator to the truss
by frame member depends on the axial force, transverse shear
forces, and bending and twisting moments, in the member itself, as
well as the excitation voltage applied to the piezo-actuator. This
problem of mechanical coupling between the structural member and
actuators is discussed in some detail in this work.

The problem of control of nonlinear dynamic motion is
addressed in [3]. The problem is posed in the form of determining
the feed-back gain matrix and the attendant control force vector,
such that the response as predicted by a semi-discrete system of
coupled nonlinear ordinary differential equations, subject to a set
of arbitrary initial conditions, is damped out in a pre-set time.

In the first part of article [3], continuum models of space-
structures are analysed. These include models of the space-beam
type as well as the shallow shell type. In the case of space-beams,
the problem of nonlinear dynamic response, when the beam undergoes
large overall rigid as well as elastic motion, is discussed. The
beam is assumed to undergo large rotations as well as stretches. A
simple finite element algorithm to predict the response is
presented. When a shallow-shell type continuum model is used, a
field-boundary element approach based on nonlinear integral
equations is presented as a means to create a reduced-order dynamic
model of the semi-discrete type. A simple algorithm to control the
response predicted by these nonlinear semi-discrete equations is
discussed.

In the second part of [3], detailed models of the lattice type
space-structures are discussed. Each member of the structural
lattice is assumed to be either a "truss member", or as &-"frame
member." The "truss member" is assumed to carry only an axial load,



and has three displacement degrees of freedom at each node. The
"frame member" is assumed to carry an axial force, transverse shear
forces, bending moments, and a twisting moment; and is assumed to
have three displacement and three rotational degrees of freedoLz at
each node. Explicit expressions for the tangent stiffness matrices
of both "truss" type and "frame" type members, which undergo
arbitrarily large displacements, arbitrarily large overall rigid
rotations, and moderate local (relative) rotations, are derived. In
all cases, each member (truss or frame type) is modeled by a single
finite element, in the entire range of large deformations. Several
examples are presented to illustrate the efficiency and cn-board
computational feasibility of these reduced-order models for lattice
structures. In each instance, remarks on needs for future research
are made.

The problem of transient dynamics of highly-flexible 3-
dimensional space-beams, undergoing large rotations and stretches,
is treated in [4). The case of conservative force loading, which
may also lead to configuration-dependent moments on the beam, is
treated. Based on the present governing equations, a general mixed
variational principle for the static problem is presented.
Furthermore, using the three parameters associated with a conformal
rotation vector representation of finite rotations, a well-defined
Hamilton functional is established for the dynamic problem of a
flexible beam undergoing finite rotations and stretches. This is
shown to lead to a symmetric tangent stiffness matrix at all times.
In the present total Lagrangian description of motion, the mass-
matrix of a finite element depends linearly on the linear
accelerations, but nonlinearly on the rotational parameters and
attendant angular accelerations; the stiffness matrix depends
nonlinearly on the deformation; and an "apparent" damping matrix
depends nonlinearly on the rotations and attendant velocities. A
Newmark time-integration scheme is used to integrate the semi-
discrete finite element equations in time. An example of transient
dynamic response of highly flexible beam-like structures in free-
flight is presented to illustrate the validity of the theoretical
methodology developed in this paper.

A scheme for active control of nonlinear vibration of space-
structures, wherein each member is modeled as a beam-column, is
presented in [5). The expressions for shear stresses transmitted to
the structural member by the distributed segmented piezo-electric
actuators, which are bonded on the surfaces of the member, are
derived in the general case in which the structural member is
subjected to moments, transverse shear forces and an axial force.
Based on the weak form of the governing equations, and a
complementary energy approach based on assumed stress fields, the
viability of active control of nonlinear dynamic response of
lattice-type space structures, using piezo-electric actuators, is
studied. Four examples are given to demonstrate the feasibility of
the approaches presented in this paper.

The deformation of a beam-column, the upper and lower surfaces
of which are bonded in segments with piezo-ceramic liners, is
studied in [6] for the purpose of obtaining appropriate expressions
for the force transferred to the structural member by the piezo-
actuator. This concept may be employed for the control of large



dynamic deformations of a lattice-type flexible space-structure.
The present model, which is based upon a static analysis, accounts
for the effects of transverse shear and axial forces in addition to
a bending moment on the beam in formulating the governing
equilibrium equations. The present model provides more complete
expressions for the force transmitted to the structural member than
a model reported earlier in literature, in which the shear and
axial forces are neglected.

The dynamic response of frame-type structures with hysteretic
damping at the structural joints, resulting from slipping and
nonlinear flexible connections, is investigated in (7). The
slipping at a structural joint is represented by the modified
Coulomb joint model. The behavior of a nonlinear flexible
connection is modeled by the Ramberg-Osgood function. A simple
computational model for the dynamic analysis of frames with
hysteretic damping is presented here. Several numerical examples
are included to illustrate the usefulness of the approach in
analyzing large space structures.

The prediction of transient response of structures, in the
form of traveling waves, is very important for controlling the
dynamic behavior of structures. It is well known that the standard
semi-discrete form of the finite element method is not suitable for
predicting the wave propagation, due to the inherent dispersion
involved. In [8], an application of space-time finite element
method to the wave propagation problem is discussed. The main
concerns in such problems consist of developing a consistent and
stable scheme and also of capturing a shock wave, without wiggling.
At first, a weak form of the wave propagation problem is discussed,
taking into account the jump condition associated with velocity and
stress. A mixed finite element formulation plays an important role
in evaluating the velocity explicitly. The application of present
formulation to the linear wave equation shows that the present
numerical results at the discontinuity give the mean values of
jump. In the case of flexural wave propagations in a Timoshenko
beam, the present method captures the wave front easily, as opposed
to the semi-discrete method.

A novel theory and its computational implementation are
presented in [9] for the analysis of strongly nonlinear dynamic
response of highly-flexible space-beams that undergo large overall
motions as well as elastic motions with arbitrarily large rotations
and stretches. The case of conservative force loading, which may
also lead to configuration-dependent moments on the beam, is
treated. A symmetric tangent stiffness matrix is derived at all
times even if the distributed external moments exist. An example of
transient dynamic response of the beam is presented to illustrate
the validity of the theoretical methodology.

Currently, there is renewed interest in the study of multi-
body-dynamics and its application in many fields of engineering.
The mathematical model of a rigid body is useful whenever the
overall motion, involving large rigid rotation, is of interest. The
nonlinear dynamic equations of motion, in their explicit form,
appear quite complex due to the expression for the absolute
accelerations. In [10], weak formulations of linear and'angular
momentum balance laws of a rigid body undergoing large overall



motion are stated a priori. Holonomic as well as nonholonomic
constraints, that may exist on the motion of the rigid body, are
introduced into this weak form in a fundamentally novel fashion
here. Comments are made on the incremental form (and consistent
linearization) of the weak formulation (with constraints), and the
time-finite-element solutions thereof.

The paper referred to in (11) presents general variational
formulations for dynamic problems, which are easily implemented
numerically. The development presents the relationship between the
very general weak formulation arising from linear and angular
momentum balance considerations, and well known variational
principles. Two and three field mixed forms are developed from the
general weak form. The variational principles governing large
rotational motions are linearized and implemented in a time finite
element framework, with appropriate expressions for the relevent
"tangent" operators being derived. In order to demonstrate the
validity of the various formulations, the special case of free
rigid body motion is considered. The primal formulation is shown to
have unstable numerical behavior, while the mixed formulation
exhibits physically stable behavior. The formulations presented in
this paper form the basis for investigations into constrained
dynamical systems and multi-rigid-body systems.

Constrained equations arise in the dynamics of mechanical
systems whenever there is the need to restrict kinematically
possible motions of the system. In practical applications,
constraint equations can be used to simulate complex, connected
systems. If the simulation must be carried out numerically, it is
useful to look for a formulation that leads straightforwardly to a
numerical approximation. In (12], the methodology of previous work
is extended to incorporate the dynamics of holonomically and
nonholonomically constrained systems. The constraint equations are
cast in a variational form, which uay be included easily in the
time finite element framework. The development of the weak
constraint equations and their associated "tangent" operators is
presented. This approach to constraint equations may be employed to
develop time finite elements using a quaternion parametrization of
finite rotation.

Weak formulations in analytical dynamics are developed,
paralleling the variational methods in elastostatics, and including
a fundamental yet novel approach for treating constraints (both
holonomic and nonholonomic). A general three-field approach is
presented, in which the momentum balance conditions, the
compatibility conditions between displacement and velocity, the
constitutive relations and the displacement and momentum boundary
conditions are all enforced in weak form. A primal, or kinematic,
formulation is developed from the general form by enforcing the
compatibility conditions and displacement boundary conditions A
priori. The conditional stability of the kinematic formulation is
the counterpart of the locking phenomenon in elastostatics and may
be avoided, either by reduced order integration or by utilizing a
mixed formulation. Toward this end, a two-field mixed formulation
is presented, which follows from the general form, when the
constitutive relations are satisfied apRjoj. A general set of the
constraint equations is introduced into the kinematic and mixed



formulations, using a specific choice of multipliers, which results
in modified variational principles. Several simple examples
concerning rigid body dynamics are presented [13].

The article in (14] deals with the effect of non-linearly
hysteretic joints on the static and dynamic response of space
frames. It is shown that a complementary energy approach based on
a weak form of the compatibility condition as a whole of a frame
member, and of the joint equilibrium conditions for the frame, is
best suited for the analysis of flexibly jointed frames. The
present methodology represents an extention of the authors' earlier
work on rigidly connected frames. In the present case also, an
explicit expression for the tangent stiffness matrix is given when
(i) each frame member, along with the flexible connections at its
ends, is represented by a single finite element, (ii) each member
can undergo arbitrarily large rigid rotations and only moderate
relative rotations and (iii) the non-linear bending-stretching
coupling is accounted for in each member. Several examples, with
both quasi-static and dynamic loading, are included to illustrate
the accuracy and efficiency of the developed methodology.

Acoession For

NTIS ¢PA&I
DTTC TA;3 3

Dist



References:

1. M. Iura and S. N. Atluri, "Dynamic Analysis of Finitely
Stretched and Rotated Three-Dimensional Space-Curved Beams,"
Computers & Structures, Vol. 29, No. 5, pp. 875-889, 1989.

2. S. N. Atluri, J-D. Zhang, and P. E. O'Donoghue, "Analysis and
Control of Finite Deformations of Plates and Shells:
Formulations and Interior/Boundary Element Algorithms," in
Finite Element Analysis of Plates and Shells, Eds. T. R. J.
Hughes and E. Hinton, Pineridge Press, Swansea, 1989.

3. S. N. Atluri and M. Iura, "Nonlinearities in the Dynamics and
Control of Space Structures: Some Issues for Computational
Studies," in Dynamics and Control of Large Space Structures,
Chapter 3, (Eds. S. N. Atluri and A. K. Amos), Springer-Verlag,
1988.

4. M. Iura and S. N. Atluri, "Dynamics of 3-D Space-Curved Beams
Undergoing Finite Rotations and Finite Strains: A Variational
Theory and Numerical Studies," in Proc. of 21st Annual Meeting
of the Society of Engineering Science, pp. 210-221, 1988.

5. G. Shi and S. N. Atluri, "Active Control of Nonlinear Dynamic
Response of Space-Frames Using Piezo-Electric Actuators,"
Computers & Structures, Vol. 34, No. 4, pp. 549-564, 1990.

6. S. Im and S. N. Atluri, "Effects of a Piezo-Actuator on a
Finitely Deformed Beam Subjected to General Loading," AIAA
Journal, Vol. 27, No. 12, pp. 1801-1807, 1989.

7. G. Shi and S. N. Atluri, "Nonlinear Dynamic Response of Frame-
Type Structures with Hysteretic Damping at the Joints," Int. J.
Num. Meth. in Engg., Vol. 28, pp. 2635-2650, 1989.

8. M.Iura, M. Borri, and S. N. Atluri, "Analysis of Traveling Wave
Responses of Structures," in ComDutational Mechanics '88 (Eds.
S. N. Atluri and G. Yagawa), Springer-Verlag, paper 44v, 1988.

9. M. Iura and S. N. Atluri, "Dynamic Analysis of Finitely
Stretched and Rotated 3-D Space-Curved Beams," in Computational
Mechanics '88, (Eds. S. N. Atluri and G. Yagawa), Springer-
Verlag, pape. 40ii, 1988.

10. M. Borri and S. N. Atluri, "Time-Finite Element Method for the
Constrained Dynamics of a Rigid Body," in Computational
Mechanics '88, (Eds. S. N. Atluri and G. Yagawa), Springer-
Verlag, paper 41i, 1988.

11. M. Borri, F. Mello, and S. N. Atluri, "Variational Approaches
for Dynamics and Time-Finite-Elements: Numerical Studies,"
Computational Mechanics, Vol. 7, pp. 49-76, 1990.

12. M. Borri, F. Mello, and S. N. Atluri, "Primal and Mixed Forms



of Hamilton's Principle for Constrained Rigid Body Systems:
Numerical Studies," Computational Mechanics, Vol. 7, pp. 205-
220, 1991.

13. F. J. Mello, M. Borri, and S. N. Atluri, "Time Finite Element
Methods for Large Rotational Dynamics of Multibody Systems,"
Computers & Structures, Vol. 37, No. 2, pp. 231-240, 1990.

14. G. Shi and S. N. Atluri, "Static and Dynamic Analysis of Space
Frames with Non-linear Flexible Connections," Int. J. Num.
Meth. Engg., Vol. 28, 1989.


