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Introduction

We have made relaxation measurements of several systems over

broad time ranges. We have developed1 a general model for the

relaxation of dispersive excitations on a percolation distribution

of finite clusters which gives excellent agreement with the

observed behavior. Using this model, simple relaxation

measurements may be used as a unique tool for investigating the

behavior of mesoscopic quantum correlations in complex systems. 2

Measurements of magnetic relaxation in spin glasses, ferromagnets

and antiferromagnets, and stress relaxation in structural glasses

provide new insight into the behavior of these materials.

Model

For percolation 3' 4 we assume that two spins are correlated

with probability p (presumably correlated means the electrons

share the same multiparticle quantum-mechanical wave function, the

spins need not be aligned). For p less than the critical

concentration for bond percolation (Pc) there will be only finite

domains of correlated spins, whereas for P>Pc there is an infinite

backbone in addition to finite domains. Percolation theory

provides specific predictions for the probability that a given

spin belongs to a domain of size s. For P>Pc in 3 dimensions:
5

Sns=sl-exp[-(C's)2/3 ], where C' scales with Ip-pcil/0, e--1/9,

and a=0.45. If all domains are assumed to have identical initial

susceptibility per spin (M0 ), and if each domain is assumed to

relax independently with a size-dependent relaxation rate (ws),

the net relaxation from all finite domains becomes

M(t)=M0Z3(sns)e-wgt. For stochastic relaxation of quantized
systems at temperature T, relaxation is due to activation between

energy levels: 6 wsce-SE/kBT. All dispersive excitations on finite

systems have an average energy-level spacing which is inversely

proportional to the number of particles in the system: 7-9 6E-6/s.

This may be pictured (FIG. 1) from the fact that s discrete levels

must fill a fixed magnon bandwidth (a depends only on the average

interaction between particles, independent of cluster size). Using

x-C's, the relaxation function becomes:



M(t)-M_1 xlO/ 9 exp(-x 2/ 3 )exp(-tw-e-C-/X)dx, (Eq. 1)

where M_-MOC'-2jp-pcj(x-e)/v, x-2.2, C_-C'A/kBT, and w- is the

relaxation rate of an "infinite" finite cluster (smaller clusters

have larger energy-level spacing and hence relax more slowly). The

preponderant relaxation is due to the dominant-sized domains

[X-(19/6)3/2], but for C_>> the spectrum is extremely broad.

For magnetic systems, the relaxation represented by Eq. I may

be described as follows. A random probability of correlation

between spins produces a percolation distribution of finite

domains. At equilibrium in zero field, all domains have the same

average internal energy (FIG. ib). In an applied field (H),

domains whose ground state magnetic moment is aligned with H have

a lower internal energy (FIG. 1c). When H is removed, the internal

energy of these domains must increase to the zero-field

equilibrium. For domains whose net magnetic moment is antialigned

with H (FIG. 1d), the internal energy must decrease to the zero-

field equilibrium, resulting in the relaxation function:

M(t)-M+fJxl0/9exp(-x 2/ 3 )exp(-tw+e+C+/x)dx. (Eq. 2)

Here the relaxation rate of an "infinite" finite cluster (w+) is

the slowest relaxation rate, since the energy-level spacing which

drives its approach to equilibrium is the smallest.

Various mathematical approximation to Eqs. 1 and 2 reproduce

several empirical functior, previously used to characterize

relaxation in random systems. Converting Eq. 1 or 2 to an

integration over relaxation times, the distribution becomes:

nT-exp[28(lnW)/9-W 2/3 ]/t, where W=;C±/ln(w±T). To second-order in

the exponent about its maximum, this is a log-normal distribution.

Using a steepest descents approximation valid for C-w-t>>l, Eq. 1

becomes M(t)~t - " with -7'[9-6(X')2/3 ]/(9C_), here X' is a time-

averaged dominant-sized domain. A similar approximation for Eq. 2,

valid when C+w+t<<l, reproduces the Kohlrausch-Williams-Watts

stretched exponential: M(t)-exp(-tO) with 0-2/(5+3C+/%,'). Although_. j
various combinations of these empirical functions give good

approximations to the observed behavior, data of sufficient El

quality and range invariably favor the percolation model.
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This model is quite general and may be applied to any random

system with dispersive excitations (magnons, phonons, excitons,

polaritons, etc). The percolation model may provide a physical

basis for the universal relaxational behavior observed in many

condensed matter systems.

Measurements
Magnetic relaxation measurements were made using a SQUID

magnetometer coupled to a high-speed voltmeter. The measurements

were made by applying a magnetic field (H-3.6 0e) to a sample

while at an elevated temperature. The sample was then field-cooled

to the measurement temperature. After a specified wait-time

(tw~-10 3 sec), H was removed and the magnetization recorded as a
function of time. Typically, the SQUID would flux-lock after 40-80

,usecs, and measurements were taken for 102-104 secs. The absolute
magnetization was determined before, and after each relaxation by

moving the sample between two counter-wound coils.

Random Magnetic Systems

We have measured random Au:Fe alloys with iron concentrations

from 4% (spin glass) through 21% (random ferromagnet).1 0 All

exhibit similar relaxational behavior. The magnetization as a

function of temperature of 11.9% Au:Fe shows a sharp maximum at

Tm- 39 K, characteristic of a concentrated spin glass. The magnetic

relaxation for 3 temperatures above Tm is shown in FIG. 2. The

accuracy of Eq. 1 is verified by the fact that no systematic

dL.iations are observed throughout the time range of the fits
(10-4-101 sec) and that the curves extrapolate through the data at

longer and shorter times (inset). The best fits to a simple power-

law (inset, solid curves) give a good approximation to the data

over 4-5 orders of magnitude in time, but significant deviations

occur when the entire range of data is included.

Below Tm (FIG. 3) two regimes of relaxation are evident. A
short time (<10 sec) power-law like regime, and a long-time (>10

sec) stretched-exponential like regime. Experimentally the data

may be fit (solid curves) with identical distributions of aligned



and antialigned domains (M_-M+-Mi) with identical energy-level

spacing (C_-C+.C):

M(t).Mij;xlO/ 9exp(-x 2/ 3 )[exp(-tw-e-C/x)+exp(-tw+e+C/x)]. (Eq. 3)

Relaxation measurements of 19.8% Au:Fe (FIG. 4) reveal seve-al

complex features which may be explained in terms of the

percolation model. Little relaxation occurs before 1/w_-30 usec.

The locally steepest slope near l/W_-5 msec is due to the

relaxation of the dominant-sized aligned domains. Near 1/%+-80 sec

the magnetization again decreases more rapidly as the dominant-

sized antialigned domains begin to relax. Negligible deviation

between Eq. 3 (solid curve) and this complex behavior demonstrates

the extreme accuracy of the percolation model.

The behavior of several physical parameters may be obtained

from relaxation data using the percolation model. The intrinsic

relaxation rates of "infinite" aligned (w-) and antialigned (w+)

domains are obtained directly as fitting parameters. The

relaxation rates of the dominant-sized aligned and antialigned

domains (FIG. 5a) come from R+-w+exp(±C/'c). Other physical

parameters such as the magnon bandwidth (6), initial

thermoremanent magnetization per spin (M0 ), and finite-domain

,,correlation length (M cannot be isolated from Eqs. 1-3 because x

is a dummy variable of integration that connects them. If A is

assumed to be constant, relative values may be obtained using

M0Mi(A/CT)T-2 and &=(A/CT)fv, where -=2.2, a-0.45, and v-0.88 are

percolation scaling exponents. The initial thermoremanent

magnetization per spin (FIG. 5b) decreases linearly with

increasing temperature up to the transition. The linear

temperature dependence indicates a constant average energy-level

spacing (6E) throughout this regime. Extrapolation to zero

magnetization gives the temperature at which all magnons would be

excited, providing an estimate for A; we find 43±2 and 46±2 K for

8.0% and 11.9% Au:Fe respectively. The correlation lengths (FIG.

5c) are a minimum at the transition (in contrast to a divergence

if this were a percolation transition). Below the transition &

also decreases linearly with increasing temperature, extrapolating

to zero at 47±4 and 49±2 K for 8.0% and 11.9% Au:Fe respectively.



Dilute Au:Fe was the first random magnetic system to exhibit a

sharp susceptibility cusp,11 initiating interest in the

possibility of a spin-glass transition. Indeed some thermodynamic

transition may occur on the infinite backbone, but the accuracy of

the percolation model indicates that mesoscopic quantum-correlated

domains dominate the relaxational behavior. Above Tm, Eq. 1

implies that all domains are aligned with the magnetic field. In

the vicinity of Tm, half the domains become antialigned. Below Tm,

Eq. 3 indicates a well-defined energy-level distribution within

each domain; randomness comes from size and orientational

degeneracies between domains.

Structural Glasses

To verify the universality of the percolation model, we have
reanalyzed some stress relaxation data 12 on the ionic conductor

AgI-AgPO 3. Measurements were made by first warming the sample to

near the glass temperature (Tg=88.5 °C). After an anneal time, a

stress was applied and its relaxation recorded as a function of
time (FIG. 6). Eq. 2 provides excellent agreement with the

observed behavior (solid curves), indicating that a strain
increases the level of phonon excitation, so that the average

internal energy decreases to equilibrium. Using the percolation

model, annealing may be characterized (inset) as an exponential

softening of the localized phonon modes on a fixed distribution of

percolation clusters.

Recent stress relaxation data (FIG. 7, in collaboration with
R. Bohmer and C.A. Angell), are of sufficient quality and range to

clearly demonstrate the superiority of the percolation model over

empirical functions.

Review of Evidence in Support of the Percolation Model

Table I gives a statistical comparison of the X2 values from

the percolation model versus the best previously used relaxation

function with the same number of adjustable parameters. Every
significant difference favors the percolation model.



SAMPLE Au:Fe AgI-Ag

EMPIRICAL FUNCTION 8.0% 11.9% 19.8% -P03  -SO4
t-01exp[-(t/t0 )0] 0.18±.09 -0.06+.11 1.02+.13

exp[-(t/t0)0] 0.02±.16 1.579+.012

TABLE I. Average of ln(X 2/p) for various samples, where X2 is

from the percolation model, and X2 the appropriate empirical

function. Positive values indicate a better fit using the

percolation model.

Additional evidence for the percolation model comes from the

pleasingly simple behavior of the physical parameters. For Au:Fe
at low temperatures, Mi and all empirical prefactors decrease

linearly with increasing temperature, but drop more rapidly as the
transition is approached. Considering only the fraction of spins
which belong to finite clusters, the initial thermoremanent

magnetization per spin (FIG. 5b) decreases linearly up to the

transition. The correlation length (&) is roughly related to the

empirical exponent a [for large &, a few very large finite domains
dominate the behavior, and the relaxation is nearly exponential

($=1)]. Near the spin-glass transition, a is found1 3 to increase

linearly with decreasing temperature, but saturates to a value of

0.3-0.4 below -0.7 Tg. The linear behavior of & continues for all

temperatures below Tg (FIG. 5c), furthermore, this saturation
value arises naturally from the steepest-descents approximation to

the percolation model.

Perhaps the greatest evidence for the percolation model,

however, is the fact that this simple physical model provides a
general basis for several empirical relaxation functions observed

in condensed matter.

Antiferromagnet

Randomness for bond percolation need not come from intrinsic

randomness in the sample, thermodynamic fluctuations will also
produce random correlations in pure systems. To verify this, we

measured magnetic relaxation in pure Neodymium. 14 Nd has two

antiferromagnetic transitions; at 19.2 K the spins in alternate B



and C crystallographic planes antialign, and at 7.5 K the A planes

antialign.

Magnetic relaxation of polycrystalline Nd is shown in FIG. 8.

Least-squares fits to the data using Eq. 3 over the time range
10-4-101 sec (solid curves) reveal several features about this

system. Eq. 3 provides excellent agreement over the fit range,

indicating the presence of a percolation distribution of

mesoscopic domains. These domains persist to at least 30 K, well

above both transitions. Large deviations at long times may be

attributed to other relaxation mechanisms (domain rotation and/or

wall motion). Nevertheless, the percolation model provides

excellent agreement with the observed behavior over 5-6 orders of

magnitude in time; random correlation probabilities exist even in

this elemental antiferromagnet.

Ferromagnet

Europium sulfide is one of the simplest magnetic systems

available. 15 The magnetic moments are highly localized on the Eu

sites in this non-metallic NaCl-like crystal. The anisotropy

energy is very small (< 5 0e) and EuS has been extensively studied

as an ideal Heisenberg ferromagnet. The Curie temperature has been

determined to be TC=16. 57±.0 2 K and the Weiss temperature (from

high-temperature susceptibility measurements) is 9-18.7±i K. We

now briefly describe very recent (and preliminary) results on a

spherical single crystal of this simple magnetic system.

The inverse magnetization of EuS as a function of temperature

is shown in FIG. 9. Magnetic relaxation measurements at several

temperatures in the vicinity of 9 are shown in FIG. 10a. Above e,
Eq. 3 provides excellent agreement with the observed behavior

(FIG. 10b) indicating that finite domains persist for temperatures

well above TC. A sharp increase in the remanence in the vicinity

of 9 may be due to mean-field behavior of these domains. Below e
(FIG. 11) the data can only be fit using unequal fractions of

"aligned" and "antialigned" domains (Eq. 1 plus Eq. 2):

M(t)-fvxl 0/9 exp(-x 2/ 3 )[Mexp(-tw-e-C-/X)+M+exp(-tw+e+C+/x)] Eq 4



Although Eq. 4 has six adjustable parameters, the data show an

obvious crossover near 1/w+-4.95±.09 msec (marking the end of
"antialigned" relaxation) so that the long-time data may be fit

using Eq. 1, then the difference at short times fit using Eq. 2.

The fact that Eq. 4 gives excellent agreement (solid curves) with

the complex behavior indicates that fixed finite domains dominate

the relaxation throughout the measurement range.
The temperature dependence of the aligned correlation length

(FIG. 12) shows that the Curie transition is not a percolation

transition, in fact &_ is extraordinarily small at TC. Small &_
indicates small finite aligned domains, but since P>Pc this means

a high correlation probability (p_-pc=&_-l/V) and strongly aligned
infinite backbone, as expected for a ferromagnetic transition.

Summary

A simple model for relaxation of dispersive excitations on a

percolation distribution of finite clusters gives excellent

agreement with measurements of stress relaxation in structural

glasses and magnetic relaxation in spin glasses, ferromagnetic,

and antiferromagnetic materials. The percolation model may provide

a physical basis for the universal relaxational behavior observed
in condensed matter. From the percolation model, simple relaxation
measurements may be used to determine the size distribution,

intrinsic response, energy-level spacing, and relaxational

behavior of mesoscopic quantum correlations in complex systems.
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FIG. 1. Schematic representation of excitation levels in finite

clusters. The bandwidth (A) is fixed by the average interaction

between particles. (a)&(b) The average energy-level spacing (6E)

varies inversely proportional to the number of particles in the

cluster. (b) At equilibrium, all clusters have the same average

internal energy. (c) For "aligned" clusters, whose energy was

reduced by an external perturbation, the internal energy increases

toward equilibrium. (0) The internal energy of "antialigned"

clusters decreases when the external perturbation is removed.
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FIG. 2. Magnetic relaxation of 11.9% Au:Fe at 3 temperatures above

the transition (Tm-39 K). The solid curves are the best fits using
Eq. 1 over the range 10- 4 to 101 sec. No systematic deviation is
observed from <10 - 4 to 102 sec. Inset shows the difference between
Eq. 1 and the data. The best fits to a simple power-law (solid

curves) are shown for comparison.
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FIG. 3. Magnetic relaxation of 11.9% Au:Fe at 4 temperatures below

TM-3 9 K. The solid curves are the best fits using Eq. 3 over the

range 1,)-4 to 102 sec.
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FIG. 4. Magnetic relaxation of 19.8% Au:Fe at 40 K. The solid

curve is the best fit using Eq. 3. The complex behavior is due to

the relaxation rates of the dominant-sized aligned (1/._-5 msec)

and antialigned (1/w+-80 sec) domains, and the broad distribution

from l/w-30 psec to l/w+-10 ksec.
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FIG. 5. (a) Temperature dependences of the dominant-sized aligned

(P_, upper) and antialigned (R+, lower) relaxation rates for 8.0%

(o) and 11.9% (+) Au:Fe. Solid curves are guides for the eye.

Relative temperature dependences of (b) the initial thermoremanent

magnetization per spin (M0 ) and (c) the finite domain correlation

length (t) for these samples. Solid lines are the best fits to the

linear regimes below Tg-28 K and Tm- 39 K.
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FIG. 6. Stress relaxation in AgI-AgPO3 after annealing at 79.0 °C

for -0, o-3, +-8.75, x-23.25, *-.75.67, and s-93 hours. Over the
range of these data, Eq. 2 (solid curves) gives slightly better

fits than the KWW stretched exponential (e.g. dashed curve). From
the percolation model, annealing may be characterized (inset) as
an exponential softening of the phonon relaxation rate (w+) on
finite molecular clusters with a constant correlation length (U).
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FIG. 7. (a) Stress relaxation in AgI-AgSO4 at 3 temperatures below
Tg-3 3 °C. The percolation model (En. 2, solid curves) gives much

better fits than the KWW stretched exponential (dashed curves).

(b) Difference between the data and Eq. 2 at 29.2 °C. The solid

curve is the best fit using the empirical KWW function.
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FIG. 8. Magnetic relaxaition of Neodymium. The solid curves are the

best fits using Eq. 3.
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FIG. 9. Inverse magnetization versus temperature for a spherical

single crystal of EuS. The Curie temperature is TC-16. 58+.0 2 K,

and the Weiss temperature 8-18.7+1 K.
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FIG. 10. (a) magnetic relaxation of EuS at several temperatures in

the vicinity of e-18.7 K. (b) Deviation of the magnetic relaxation

from Eq. 3 at two temperatures above e-
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FIG. 11. magnetic relaxation of EuS in the vicinity of TC-16.58 K

may be fit using unequal fractions of "aligned" and "antialigned"

domains (Eq. 4, solid curves). The behavior near I/w+-4.95+.09

msec signals the end of "antialigned" relaxation.
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FIG. 12. Temperature dependence of the aligned correlation length.

The relative value of &- is extraordinarily small near TC-16.58 K,

indicating a highly correlated infinite backbone.


