
October 1991 Report No. STAN-CS-91-1387

AD-A254 623II I I~III III 111IIl i I l iii /•

Assembling Polyhedra with Single Translations

by

Randall Wilson and Achim Schweikard

SAUJG211992

A
Department of Computer Science

Stanford University

Stanford, California 94305

~ d,.nCU~E-rlt h'.• bej'.n rapproVo,,t

'Ai 1" " hi

, (%p' 1 J
I ' " q92-23197

2 19 122 1

REPORT DOCUMENTATION PAGE 101
0,6 fqftgl V"ff4 EW cu ofW wIaa.4uormaten % ""met" a owtqe I fto. me fewma. iwluim 1~tlt9vtgIUri'gmtwgqus aamrm

__ @4 *hqpmlAf°WW qlnu'6IO€ wld.Ll1t3 3 qsW t a'e 1 I09@4MlUeda auseuel bvirmec P coffweftp a0•q on O~vetot~m ss Al m 131 asmee ete,

ofw' sagf~. utfe 13. @**"women~u I"U~ vo .MIAW uýdaSUeIhi S08"Cg -mt~t 4~ a"g Wieago. 12 Is0103

1. AGENCY USE ONLY (Lave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I October 1991 research

4. TITLE AND SUBTITLE, S. FUNDING NUMBERS

Assembling Polyhedra with Single Translations C: N00014-88-K-0620

6. AUTHOR(S)

Randall H. Wilson, Achim Schweikard

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Stanford University

Stanford, CA 94305

9. SPONSORING ,MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Resident Representative STAN-CS-91-1387
Stanford University
Rm.202 McCullough Bldg-
Stanford, CA 94305-4055

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION i AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

available to the public

13. ABSTRACT (Mazimum200worMS)

The problem of partitioning an assembly of polyhedral objects into
two subassemblies that can be separated arises in assembly planning. We
describe an algorithm to compute the set of all translations separating two
polyhedra with n vertices in 0(n 4) steps and show that this is optimal.
Given an assembly of k polyhedra with a total of n vertices, an extension
of this algorithm identifies a valid translation and removable subassembly
in O(knn') steps if one exists. Based on the second algorithm a polynomial
time method for finding a complete assembly sequence consisting of single
translations is derived. An implementation incorporates several changes
to achieve better average-case performance; experimental results obtained
for composite objects consisting of isothetic polyhedra are described.

14. SUBJECT TERMS IS. NUMBER OF PAGES

assembly planning 14
separation of polyhedra 16. PRICE CODE
manufacturing

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

,NSN 75,:0-01-280-5500 Sta-cae ;o,- ;99 2eV '-691

Assembling Polyhedra with Single Translations

Randall H. Wilson, Achim Schweikard
Robotics Laboratory, Department of Computer Science

Stanford University
Stanford, CA 94305-4110 -.

October 17, 1991
Accesi, For -

Abstract N.1s CA&I

DTtC TAR
The problem of partitioning an assembly of polyhedral objects into UaintG" .•:.•

two subassemblies that can be separated arises in assembly planning. We Jus'Ificat,on
describe an algorithm to compute the set of all translations separating two -...........-
polyhedra with n vertices in 0(n 4) steps and show that this is optimal.
Given an assembly of k polyhedra with a total of n vertices, an extension By
of this algorithm identifies a valid translation and removable subassembly Dist• ibutioni
in 0(k 2 n4) steps if one exists. Based on the second algorithm a polynomial
time method for finding a complete assembly sequence consisting of single fv,2,I:'
translations is derived. An implementation incorporates several changes
to achieve better average-case performance; experimental results obtained Dist A

for composite objects consisting of isothetic polyhedra are described.

Introduction

The problem of finding sequences of motions for the assembly of a given object
consisting of polyhedral parts arises in assembly planning. This problem can be
regarded as a motion planning problem with multiple moving objects. In this
general form, the problem involves many degrees of freedom. Since known meth-
ods for motion planning allowing general motions are exponential in the number
of degrees of freedom, it is useful to restrict the type of motion considered. Here
we will impose the following restrictions:

"* Fach step in an assembly sequence concerns two subassemblies. Two sub-
assemblies which have been joined in a previous step are not moved relative
to each other in subsequent steps.

"* At each step in an assembly sequence, a single translation moves the first
subassembly to its final position relative to the second subassembly.

1

Figure 1: An assembly in which no single part can be removed

These restrictions embody practical constraints often imposed on assembly se-
quences by manufacturing processes; complicated assembly motions and oper-
ations joining more than two subassemblies make assembly more difficult and
raise manufacturing costs.

For assemblies of rigid parts, an assembly plan can be obtained by reversing
a valid disassembly plan. In this context, we will address the following two
subproblems:

1. Given two polyhedra, compute the set of all single translations separating
these polyhedra.

2. Given an assembly A of several polyhedra, decide whether there is a direc-
tion d and a subassembly S C A such that a translation along d separates
S from the remaining parts A \ S.

Given a solution to the second problem, we will show that complete assembly
sequences for polyhedral parts can easily be computed.

Two examples for the second problem are shown in figures 1 and 2. None
of the polyhedra in figure 1 can be separated from the remaining parts by a
translation involving a single object, but there are subassemblies which can be
moved simultaneously. In figure 2 any subset of the cubes P1 P4 can be
removed by a single simultaneous translation from the remaining objects. This
second example shows that the number of removable subassemblies is exponen-
tial in general. Hence, it is not practical to compute all removable subassemblies
explicitly.

However, we show that it can be determined in polynomial time whether a
removable subassembly exists. Specifically, we describe an optimal algorithm
for solving the first problem above. The method is then extended to derive a
polynomial time algorithm to solve the second problem. Using this procedure,

2

z
P1

P2

P3

Figure 2: An assembly of cubes

we derive a polynomial time method for finding complete assembly sequences.
Finally, an implementation of the above algorithms and the results of various
assembly planning experiments are described.

1 Related Work

A survey of earlier methods for separating sets in two and three dimensions is
given in [14]. In [11] lower bounds on the number of simultaneous translations
necessary for separating objects are derived. Dawson [3] shows that two or
more star-shaped objects can always be separated by translating the objects in
different directions simultaneously. In addition, it is shown in [3] that for some
assemblies of convex polyhedra, no individual parts are removable by a single
translation.

Homem de Mello and Sanderson [6] give a method to calculate the polyhedral
convex cone containing the infinitesimal translations allowed by a set of planar
contacts in space. A polynomial-time algorithm to identify subassemblies that
are connected and can be translated a small distance relative to the rest of the
assembly is described in [16]. Both of these methods consider only contar -,
and thus cannot find collision-free extended translations.

Krishnan and Sanderson [7] address problem 1 by mapping the set of all
unit translations onto a two-dimensional grid, and marking grid elements that
correspond to collisions between two polyhedra. Any unmarked elements then
represent valid removal translations. However, this method is ou1y accurate to
the size of the grid, and cannot be used to find translations i.,volving contacts
between the two parts.

Pollack, Sharir and Sifrony [12] consider sequences of translations to separate

3

polygons. The algorithm [12] is limited to planar assemblies of two parts, but
is able to find separating motions consisting of several distinct translations.

Toussaint [15] dcscribes an algorithm for separating two simple polygons by
a single translation; this is the planar case of problem 1 above. Similarly, Arkin,
Connelly and Mitchell [1] address the planar version of problem 2. They use the
concept of monotone paths among polygonal obstacles to identify a removable
subassembly of simple polygons in the plane. The methods in [1] do not extend
directly to the three-dimensional case. However, Mitchell has independently
shown that directions for partitioning an assembly can be found in polynomial
time [10]. In this paper we give an algorithm to find the set of translations sep-
arating two polyhedra in O(n 4) time and show that this is optimal. A method
for finding complete assembly sequences based on this algorithm is analyzed
theoretically as well as empirically and improvements for applications are de-
scribed. The analytic bounds derived consider the number of parts, the number
of vertices in the representation of the parts, and the size of the coordinates in
the input description.

2 Separating Two Polyhedra

In this section a method for finding the set of translations separating two poly-
hedra will be derived. Let P and Q be closed and disjoint polyhedra in given
spatial placement, and let P and Q be represented as unions of at most n
tetrahedra, i.e. P = UIJ> Ti and Q = U=I Ui where r, s < n. A translation
separating P from Q is a vector d such that P can be translated to infinity in
direction d without intersecting Q, i.e. p + td is not in Q for each point p in P
and each t in [0, oo).

The set of all translations of P can be represented by the points on the
unit sphere S2 in three-dimensional space. For each pair of tetrahedra Ti, Uj,
the configuration obstacle C(Ti, Uj) is the set of placements of Ti such that Ti
intersects Uj [9]. The set of translations along which Ti collides with Uj is the
projection of C(Ti, Uj) on the unit sphere; let Rij denote this region.

The regions Rij are bounded by segments of great circles on S. The set of
great circles for all Rij determines open regions on S2 called faces. Each face is
a maximal connected component on the sphere not intersecting any great circle
in this set. The faces are regular in the following sense: the pairs of tetrahedra
Ti, U, from P and Q that collide in direction d are constant for all translations
d in a face f. Let p(f) be the number of pairs of tetrahedra that collide along
translations in face f. If the segment e of a great circle lies between two faces
f and f', we have the following crossing rules for p(f) and p(f'):

* If e belongs to the boundary of a region Rij and f' is on the interior side
of e, then p(f') = p(f) + 1.

4

" If f' is on the exterior side of region boundary e, then p(f') = p(f) - 1.

"* If e is not on the boundary of any region Rij, then p(f') = p(f).

In some cases, several edges may coincide. If two faces f and f' are separated
by an edge e bounding several regions, then p(f') = p(f) - g + h, where g is
the number of regions on the same side of e as f and h is the number of regions
on the same side of e as f'. The set of translations separating P from Q is the
union of all faces f for which p(f) = 0.

In the algorithm below, translations are represented as points on two parallel
planes instead of points on the unit sphere. Configuration obstacles C(Ti, Uj)
are projected to the planes z = 1 and z = - 1 using a central projection from the
origin. The regions Rij arc planar regions bounded by line segments and rays.
The supporting lines of these segments and rays define an arrangement in each
plane, represented by a graph. The nodes in the graph represent faces, edges,
and vertices of the arrangement, and links connect adjacent elements. Edges on
region boundaries are oriented with respect to the interior of the corresDonding
region, while edges obtained by extended supporting lines are marked as such.

The algorithm to find all faces representing valid translations proceeds as
follows. For each plane z = 1 and z = -1,

1. For each pair of tetrahedra Ti, Uj, compute the projection Rij of C(Ti, Uj)
on the plane.

2. Calculate the arrangement of lines determined by the boundaries of the
regions Rj, orienting the edges as described above.

3. For an arbitrarily selected face fo, compute the number P(fo) of regions
1tj containing fo.

4. Perform a depth-first traversal of all the faces in the arrangement by step-
ping from Jo to neighboring faces. To step from a face f to a neighboring
face f', calculate p(f') from p(f) using the crossing rules above. After
visiting a face, it is marked and not visited again. For each face f where
p(f) = 0, output the face f and continue.

Since P and Q consist of at most n tetrahedra each, there are at most n2

regions Rij, each with a constant number of edges. Therefore step 1 requires
O(n 2) operations. An arrangement of rn lines in the plane can be computed in
O(m 2) time [2, 4] and has O(m 2) cells. Here m = n 2 , so the number of cells
and the computing time for step 2 are O(n 4). Each region Rj has a constant
number of edges, so testing the initial face f0 for inclusion in all regions requires
O(n 2) operations. Finally, the depth-first search steps over each edge at most
twice, each step taking constant time. Since the number of arrangement edges
is 0(n 4), the computing time for step 4 is O(n 4).

5

Q

Figure 3: Polygons from Pollack et. al. [12]

The optimality of this algorithm directly follows from an example given by
Pollack, Sharir and Sifrony [12]. The example in [12] concerns two polygons P
and Q with r and s edges respectively; the number of connected components
in the complement of the configuration obstacle corresponding to P and Q is
proportional to r2s 2 (figure 3). In our case the polygons P and Q are regarded
as polyhedra of zero volume, and r, s = n; the following holds equally if P and
Q are polyhedra with sufficiently small thickness. We place P in a plane p
and Q in a plane parallel to p, but distinct from p. Then the plane containing
the configuration obstacle of P with respect to Q does not contain the origin,
so the projection of the configuration obstacle of P with respect to Q on the
sphere S2 partitions S 2 into Q(n 4) connected components. Therefore the set of
translations separating P from Q consists of £2(n4) connected components.

Instead of decomposing polyhedra into tetrahedra in the above method, we
can decompose the faces of the polyhedra into triangles, and find the config-
uration obstacles for pairs of triangles. In fact, such triangulations are often
computed in geometric modeling systems. The faces of a part with n vertices
can be triangulated in O(n log n) steps into O(n) triangles [5], so that the to-
tal number of steps in the above algorithm remains O(n 4). We now have the
following lemma:

Lemma 1 The set of all translations separating P from Q, where P and Q are
polyhedra each with n vertices can be found in 0(n 4) steps and this is optimal,

To find separating translations in which parts touch each other, open poly-
hedra can be considered in the above algorithm. In this case the edge and
vertex cells of an arrangement may correspond to valid directions. A count p(c)

6

of colliding tetrahedra is associated with every face, edge, or vertex cell c in
the arrangement. The arrangement can be computed and the cells traversed in
0(n 4) steps.

3 Partitioning an Assembly

Problem 2 concerns an assembly A of polyhedra P1i ... , Pk. The method of the
previous section can be extended to find a translation d and a proper subassem-
bly S of A such that d separates S from the remaining parts A \ S.

As above, each pair of tetrahedra Ti and Uj from different polyhedra define
a region RIj of the unit sphere S 2 . A directed graph G(f) with weighted arcs is
associated with each face f in the corresponding arrangement on S2. The nodes
of each graph represent the objects P1, . . ., Pk. The weight of an arc from Pi to
Pj in G(f) is the number of pairwise intersections of tetrahedra from Pi and Pj
during any translation d in f. Arcs with weight zero are removed from G(f).

The graphs G(f) and G(f') for neighboring faces f and f' sharing an edge
e are related by the following crossing rules:

" If e is a boundary segment of a projected configuration obstacle from
tetrahedra in Pi and Pj, and f' is in the interior of the region, then the
weight of the arc from Pi to Pj is one greater in G(f') than in G(f).

" If e is a boundary segment and f' is outside of this region, the weight of
the arc from Pi to Pj is one less in G(f') than in G(f).

" If e is the extension of a boundary segment, G(f') = G(f).

Similar to the case of two polyhedra, if several edges coincide then G(f') differs
from G(f) by the sum of the changes for the coinciding edges.

A proper subset S of A can be removed along a direction d in a face f if
and only if there are no arcs in G(f) from nodes in S to nodes in A \ S. A
node Pj is a successor of Pi in the graph G(f) if i = j or there is a path in
G(f) from Pi to P,. The predecessors of a node are defined similarly. If the set
of successors of every node in G(f) is the entire set of graph nodes, then there
is no subassembly that can be removed using directions in face f. However, it
suffices to compute the sets of successors and predecessors of a single arbitrary
node Pl:

"* If the set of succ.ssors and the set of predecessors of P1 are both equal
to A, then there is no proper subassembly of A that can be removed in a
direction in f. This follows from the transitivity of the successor relation.

"* If the set of successors SI of P1 is a proper subset of A, then S1 is a
removable subassembly of A.

7

If the set of predecessors S2 of P1 is a proper subset of A, then by definition
no arcs connect nodes in A \ S2 to nodes in S:!. Therefore A \ S2 is a
removable subassembly of A.

To find a removable subassembly of A, we again project the configuration
obstacles C(Ti, Uj) onto two planes z = 1 and z = -1. However, if a translation
d separates a subassembly S from A \ S, then -d separates the subassembly
A\ S from S. Thus it suffices to search only one planar arrangement. This gives
rise to the following algorithm for finding a removable subassembly:

1. Calculate the arrangement of regions Rij on the plane z = 1.

2. Compute the graph G(fo) for an initial face fo of the arrangement.

3. Perform a depth-first traversal over the arrangement, computing G(f) for
each new face f. If in any graph G(f) the successors or predecessors of
P1 are a proper subset S of A, output S and a translation d in f.

The arrangement of projected regions can be calculated in O(n 4) steps, and
the initial graph G(fo) can be found in O(n') steps. Finding the set of successors
or predecessors of a node in one graph requires 0(k ') steps. There are O(n4)
faces in the arrangement, so traversing them all requires O(k2 n4) operations.
We now have the following lemma:

Lemma 2 Let A = {P,. .. , Pk} be a set of k polyhedra with a total of n ver-
tices. it can be decided in O(k 2n4) steps whether there is a proper subassembly
of A that can be translated to infinity without intersecting the remaining parts.
An appropriate subassembly and direction can be computed in the same number
of steps.

As an example, consider the simple configuration of four cubes aligned along
the x-axis in figure 2. The corresponding planar arrangement consists of 12
polygons in each of the planes z = 1 and z = -1; several of these polygons
coincide. Figure 4 shows the plane z = 1. The projected configuration obstacle
corresponding to cubes P1 and P4 is the region R(1,4) and is bounded by a line
segment and two rays.

Figure 5a shows the graph G(R(1,4)). R(l,4) is contained in R(l,2) and
R(1,3), so there are arcs in the graph from node 1 to nodes 2, 3, and 4, each
of weight 1. R(1,4) is contained in R(2,4), R(2,3), and R(3,4). Since node 4
has no successors, it is a removable subassembly for translations in R(1,4). If
cubes P2 and P4 represent a single part P24, the graph in figure 5b results.
Nodes 24 and 3 form a strongly connected component, so cubes 2, 3, and 4
must be removed simultaneously for translations in R(1,4).

8

y

Figure 4: The arrangement for the assembly in figure 2

1 ~21

24

3 43

Figure 5: Graphs for region R(1,4) where (a) P1, . P.., P4 can be moved indepen-
dently (b) P 2 and P4 must be moved simultaneously

4 Finding Assembly Sequences

The above method can be used to decide whether there is a complete assembly
sequence for an object with polyhedral parts. Here each subassembly can only
be removed by a single translation, but each translation in the sequence can
involve one or more pa-ts.

Lemma 3 IR can be decided in O(k3 n4) steps whether polyhedra PI,.... , Pk can
be separated completely using motions where each subassembly is removed from
the remaining objects by a single translation.

Proof: Assume that A = {P ,..., Pk} can be disassembled. Applying the
method of the previous lemma to A gives two subassemblies, each consisting of
one or more parts. Each application increases the number of subassemblies by

9

one, and the final number of subassemblies is k. Therefore the above method is
applied k - 1 times.O

Finally, let d be a bound for the number oi binary digits used to represent
the coordinates of vertices in the input assembly. The size of all intermediate
values occurring in the computation is bounded by 0(d). Thus using standard
algorithms for rational arithmetic we obtain O(kan4 d2) as a time bound for
finding an assembly sequence with the above algorithm. Here all computations
can be perform--' without loss of accuracy.

5 Experimental Evaluation

The above methods were implemented in C on a DECstation 5000 using floating-
point arithmetic, with a nun-)er of modifications giving practical improvements.
The program was tested on randomly generated assemblies to estimate its char-
acteristics in the average case and find practical boinds on its application.

5.1 Implementation

A drawback of the algorithm above is the storage requirement: the arrangement
may take 0(n 4) space to store, which is impractical for complicated assem-
blies. Furthermore, the number of cells is increased dramatically by computing
the arrangement of the supporting lines instead of just the boundary segments
themselves. The topological sweep-line algorithm in [2, 4] sweeps over an ar-
rangement of m lines in 0(m) space and optimal 0(m 2) time, but cannot be
extended directly to the case of line segments instead of lines.

Our implementation addresses these problems by performing a vertical line
sweep [8, 13] over the arrangement of 0(n 2) line segments. This algorithm only
stores 0(n 2) of the cells of the arrangement at one time, and has running time
of 0((n 2 + I) log n), where I = 0(n 4) is the number of intersections between
segments.

An imaginary vertical line passes over the arrangement. The cells cut by
the sweep line in its current position are kept in a sorted list; the initial list is
found by sorting the lines by slope. Start points and end points of segments and
intersections between two segments are events, kept in a priority queue sorted
by x-value. As the sweep-line moves from left to right, events are processed
and the list of cut cells is changed accordingly. Each event can be processed
in 0(log m) time, so the total running time is 0((m + 1)log m), where I is the
number of intersection events. In our case m = n2 . Thus the arrangement
calculation requires 0((n l + I) log n) steps. where I = 0(n 4).

The vertical sweep-line algorithm maintains the graph G(f) for each face cut
by the vertical line. The graphs for faces intersecting the initial sweep-line are
propagated down from an initial face at the top of the sweep-line. To process an

10

Sweep Line
fl

1 2

e,

Figure 6: An intersection event in the sweep-line algorithm

event, the graph for a new face is calculated by stepping from the face above it
in the vertical line, as described in section 3. Thus the graphs for all faces in the
arrangement are calculated and checked without keeping the whole arrangement
in memory. The total computing time for finding an appropriate subassembly
using the modified algorithm is O(k 2n4 + n4 log n).

Figure 6 illustrates the processing of an intersection event. The interior ofregion R(2,R3) is below edge e1 , and edge e2 is the lower boundary of region

R(1,3). The graphs for faces]1, f2, and fa have already been computed; all the
graph links have weight one. When the sweep line processes the intersection of
ei and e2 at point p, the face f4 is entered. Edge e2 is between fl and f4 in
the new sweep line, so G(]4) is computed by stepping over e2 from G(f1). The
interior of R(I, 3) is above e2 , so G(]4) is obtained from G(]1) by deleting thelink from node 1 to node 3. Nodes 1 and 2 form a stongly connected component

of G(f 4), so the corresponding parts are a removable subassembly.
The implementation generates configuration obstacles for isothetic three-

dimensional solids (rectangloids or boxes) instead of tetrahedra; however, the
arrangement computation applies to the general case.

5.2 Experiments

To evaluate the practical computing bounds onl the implementation, n random
¶ disjoint boxes were generated and linked together to form k complex objects for

different values of n and k. Removable subassemblies were identified for these

1 11

Figure 7: An assembly of four random boxes

n k t lO3t/n" t in, tMax Smrax

4 2 0.2 0.78 0.1 0.2 16210
8 4 0.6 0.15 0.5 0.6 19644
16 4 5.1 0.078 4.7 5.4 30908
32 8 48.7 0.046 39.4 48.7 44163
64 8 283.6 0.016 281.0 284.2 61816
128 16 1150.7 0.0042 1120.8 1243.7 88264

Table 1: Computing times for partitioning composite objects consisting of iso-
thetic rectangular solids (units: seconds of CPU-time and 1024 Bytes)

assemblies using the described implementation of the above method. Figure 7
shows a random configuration of four boxes.

Table 1 shows the computing times and storage requirements observed. For
each value of n and k, 32 samples were run and the average, minimum, and
maximum running times recorded (t, tri,, and t

max, respectively), along with
the maximum storage needed (sm,,). In all cases the entire arrangement and all
graphs were computed instead of stopping at the first removable subassembly
found.

6 Conclusions

Several extensions of the described methods might be considered. Unconnected
subassemblies usually require more complicated fixtures and more difficult mea-

12

nipulation than do connected subassemblies. As a result, connected subassem-
blies are often preferred in manufacturing planning. By analyzing a connection
graph of the assembly, the above algorithm can be extended to generate only
subassemblies which are connected.

In practice, an arrangement of fewer segments would result from projecting
the configuration obstacles of complete polyhedra. The projected configuration
obstacle for polyhedra P1 and P2 is the union of all projected configuration ob-
stacles Rij of two tetrahedra Ti, Uj from P1 and P2 . The configuration obstacles
could also be found using more direct methods [8].

Finally, other types of motions could be considered. For instance, a sequence
of translations might be allowed to separate subassemblies, or spatial screw
displacements could be considered instead of translations.

Acknowledgements

This research was funded by DARPA contract N00014-88-K-0620 (Office
of Naval Research) and the Stanford Integrated Manufacturing Association
(SIMA). The authors would like to thank Prof. Dr. Herbert Edelsbrunner
for his suggestions concerning the computation of planar arrangements.

References

[1] E. M. Arkin, R. Connelly, and J. S. B. Mitchell. On monotone paths among
obstacles, with applications to planning assemblies. In Proceedings of the
ACM Symposium on Computational Geometry, pages 334-343, 1989.

[2] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.
BIT, 25:76-90, 1985.

[3] R. J. Dawson. On removing a ball without disturbing the others. Mathe-
matics Magazine, 57(1):27-30, 1984.

[4] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, Hei-
delberg, 1987.

[5] M. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating
a simple polygon. Information Processing Letters, 7(4):175-180, 1978.

[6] L. S. Homem de Mello and A. C. Sanderson. Automatic generation
of mechanical assembly sequences. Technical Report CMU-RI-TR-88-19,
Robotics Institute - Carnegie-Mellon University, 1988.

13

[7] S. S. Krishnan and A. C. Sanderson. Path planning algorithms for assembly
sequence planning. In International Conference on Intelligent Robotics,
pages 428-439, 1991.

[8] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

[9] T. Lozano-P~rez. Spatial planning: A configuration space approach. IEEE
Transactions on Computers, C-32(2):108-120, 1983.

[10] J. S. B. Mitchell. Personal communication, December 1990.

[11] B. K. Natarajan. On planning assemblies. In Proceedings of the Fourth
ACM Symposium on Computational Geometry, pages 299-308, 1988.

[12] R. Pollack, M. Sharir, and S. Sifrony. Separating two simple polygons by a
sequence of translations. Discrete and Computational Geometry, 3:123-136,
1988.

[13] F. P. Preparata and M. I. Shamos. Computational Geometry: An I;ztro-
duction. Springer-Verlag, 1985.

[14] G. T. Toussaint. Movable separability of sets. In G. T. Toussaint, editor,
Computational Geometry. Elsevier, North Holland, 1985.

[15] G. T. Toussaint. On separating two simple polygons by a single translation.
Discrete Computational Geometry, 4:265-278, 1989.

[16] R. H. Wilson. Efficiently partitioning an assembly. In L. S. Homem de
Mello and S. Lee, editors, Computer-Aided Mechanical Assembly Planning.
Kluwer Academic Publishers, 1991.

14

