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The publications describe progress in two related areas of visual information pro-
cessing: motion processing and visual attention. The full equivalence between
Reichart motion detection and Fourier motion analysis (first-order motion processing)
was proved formally. A new experimental paradigm was developed to test the model of
nonFourier (2nd-order) motion processing. This model, which accounts for the
perception of motion-from-texture, consists of a stage of linear Spatio-temporal
filtering followed by fullwave rectification and then by standard (Reichart) motion
analysis. It was demonstrated that human 2nd-order motion is, for practical
purposes, one—-dimensional (i.e., a single channel system). The spatial filter that
this channel utilizes was measured and found to be lowpass. Work on attentional
processes in visual task using rapid sequences of superimposed patterns showed that
highly trained subjects were unable to use gross physical differences to filter out
unattended items at an early stage of perceptual processing. On the contrary, the
results are explained by postulating that attended and unattended elements of the
input are tagged as such at an early‘'stage, and are then discriminated later on the
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USAF Office of Scientific Research, Life Sciences Directorate, Visual Information Processing Program
Interim Progress Report, 01 Feb 1991 - 31 Jan 1992
Grant AFOSR 91-0178
Visual Motion Perception

Genrge Sperling, New York University

ABSTRACT

The reports enclosed with this report describe experiments related to four aspects of
visual information processing: The main thrust is continuing studies of two separate
motion-computation systems and the derivation of the function properties of each. The
pronoun we is used in this report to refer to the PI in conjunction with one or more of the
other investigators, students, and staff.

(1) The most significant new work is described in a published abstract and a preprint
by the PI with Peter Werkhoven and Charles Chubb. Using a new paradigm (experimen-
tal display plus analysis), it was found that second-order motion perception for locally
parallel textures is quite well approximated by a single-channel system. Previous studies
(by other authors) that asserted otherwise were shown to have contained incorrect ana-
lyses. Elaborations of this paradigm (now in progress) will enable us to establish the full
dimensionality of motion and of texture processing (analogously to the dimensionality of
color vision). The manuscript has been accepted for publication in Vision Research,
pending optional revisions, which are in progress.

(2) A paper describing the formal proof of the equivalence of Reichart detectors and
Fourier analysis (of motion and texture) stimuli was published by the Joumal of
Mathematical Psychology. The paper also contains three illustrative experiments on

texture-from-motion, the last of which demonstrates that the rectifying nonlinearity can-
not be a pure square function. that

‘ (3) A paper (Sutter, Sperling, & Chubb) describing research that enabled the determi-
o nation of the partial selectivity of second-order pattern perceivers was completed and
- submitted to Vision Research for publication.

™~

(3 (4) Studies of the detection and discrimination of visual acceleration. These two
~  Dapers represent work that Werkhoven continued with Dutch collaborators during his
period at NYU. Just as motion-from-texture involves the analysis of spatio-temporal
modulation in texture, the detection of acceleration involves spatio-temporal modulations
in velocity. Werkhoven, Snippe and Toet ingeniously extend the principles that have
been used in other studies of second-order perception to derive a model of acceleration
detection based on a linear systems analysis of velocity variation. Snippe and Werkho-
ven apply a similar model to account for the detection of pulse modulations of velocity.

(5) The mechanism of nonspatial attentional selection. A manuscript describing a
repetition detection paradigm developed by the PI in collaboration with Steve Wurst was
completed and accepted for publication. A rapid sequence of 30 stimuli occurs at a sin-
gle location. The subject must detect an embedded repetition. Successive items alternate
in a particular feature value (e.g., black items versus white items on gray), and the subject
is instructed to attend only to one value of the feature (e.g., white). The main result is
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i)

that even unattended items enter memory. A theory account for many complex and para-
doxical results is that attention acts as a feature, e.g. A+ for an attended item, A- for an
unattended item. Subsequent processes treat this top-down "attention feature” just as if
were another stimulus feature.

(6) Work in progress is sketched briefly under "Students."

The main activities throughout this grant have been carrying out the experimental
research set forth in the proposal (1990), following up promising leads that developed in
the course of this work, and preparing manuscripts for publication. The work is best
described by the publications and technical reports; these are appended. An overview,
including facilities and personnel, is provided below.

FACILITIES

The Human Information Processing Laboratory (HIPL) is highly versatile laboratory
for conducting research in almost any area of vision or cognition as described in previous
progress reports and the current proposal.

PERSONNEL

Principle investigator. George Sperling, Professor of Psychology and Director of
the Human Information Processing Laboratory. As projected in the original proposal, the
PI devoted 10% time during 9 month academic year plus 50% time during 3 summer
months totaling 26.67% of full time averaged over the full year)

Full-time

Research Associate, Dr. Peter Wernhoven worked primarily on visual motion and on
related mathematical issues.

Systems Programmer. David Tanzer, a PhD student in Computer Science at NYU'’s
Courant Institute is being employed full-time as a systems programmer. He is experi-
enced, highly skilled, and effective. Beginning in September, 1991, NYU contributed
1/2 of Tanzer’s salary.

Part-time

Consultant. Dr. Barbara Dosher. During this period, Dr. Dosher collaborate in
preparing previously executed projects for publication (6 days).

Administrative assistant. Ms. Pamela Stark, a graduate student in the Department of
Applied Science, Ms. Stark took an indefinite pregnancy leave just prior to the end of the
current period. After a period of search, she was replaced by Paula Azevedo.

Graduate students

Joshua Solomon. Beginning his final year at NYU, Solomon has been and continues
to work on three projects in visual psychophysics: (1) the lateral inhibition of apparent
contrast by adjacent fields of high contrast; (2) discriminating half-wave and full-wave
mechanisms of second-order motion and texture detection; and (3) the peripheral visibil-
ity of second-order motion ar: 1 texture displays.

Shui-I Shi. Ms. Shi has been working on information processing studies to test
attentional theories. The main project involves a unified attention theory to account for
attention gating experiments and iconic memory--the link between attentional gating and
reaction time studies of attention having been previously established by Erich
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Weichselgartner in the HIPL. These are empirical studies of attention plus extensive
Monte Carlo simulations of a comprehensive model. Additionally, Ms. Shi is extending
the methods to a study of attentional control of visual search.
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HIP Lab Publications, 1991

Landy, Michael S., Barbara A. Dosher, George Sperling, and Mark E. Perkins. Kinetic depth
effect and optic flow: 2. Fourier and non-Fourier motion. Vision Research, 1991, 31, 859-876.

Parish, David H. and George Sperling, Object spatial frequencies, retinal spatial frequencies,
noise, and the efficiency of letter discrimination. Vision Research, 1991, 31, 1399-1415.

Solomon, Joshua A, and George Sperling. Can we see 2nd-order motion and texture in the peri-
phery? Investigative Ophthalmology and Visual Science, ARVO Supplement, 1991, 32, No. 4,
714. (Abstract)

Werkhoven, Peter, Charles Chubb, and George Sperling (1992). Testure-defined motion is ruled
by an activity metric--not by similarity. Investigative Ophthalmology and Visual Science, ARVO
Supplement, 1991, 32, No. 4, 829. (Abstract)

Sutter, Anne, George Sperling and Charles Chubb, Further measurements of the spatial frequency
selectivity of second-order texture meachanisms. Investigative Ophthalmology and Visual Sci-
ence, ARVO Supplement, 1991, 32, No. 4, 1039. (Abstract)

Chubb, Charles, and George Sperling. Texture quilts: Basic tools for studying motion-from-
texture. Journal of Mathematical Psychology, 1991, 35,411-442,

Chubb, Charles, Joshua A. Solomon, and George Sperling. Contrast contrast determines perceived
contrast. Optical Society of America Annual Meeting Technical Digest, 1991, Vol. 17. Washing-
ton D.C.: Optical Society of America, 1991. P. XX. (Abstract)

Sperling, G. and Wurst, S. A. (1991). Selective attention to an item is stored as a feature of the
item. Bulletin of the Psychonomic Society, 1991, 29, XX. (Abstract)

Papers Under Submission for Publication, Technical Reports

Sperling, G. and Wurst, S. A. (1992). Using repetition detection to define and localize the
processes of selective attention. In D. E. Meyer and S. Komblum (Eds.), Attention and Perfor-
mance XIV: Attention and Performance XIV: Synergies in Experimental Psychology, Ariificial
Intelligence, and Cognitive Neuroscience - A Silver Jubilee Cambridge, MA: MIT Press (In
press.)

Werkhoven, Peter, George Sperling, and Charles Chubb (1992). Motion perception between dis-
similar gratings: A single channel theory. Vision Research, 1992, 32. (In press.)

Werkhoven, P., Snippe, H. P., and Toet, A. (1991). Visual processing of optic acceleration. Sub-
mitted to Vision Research,

Snippe, H. P., and Werkhoven, P. (1991). Pulse modulation detection in human motion vision.
Submitted to Vision Research.
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Invited Lectures at Universities and Institutes

Department of Psychology Colloquium, University of Califomia, Irvine, Irvine, CA, January 10,
1991. Visual Preprocessing.

Department of Psychology University of California at San Diego, La Jolla, CA, February 28,
1991. Mechanisms of Attention.

University of California, Berkeley Berkeley, Califomnia, Joint Cognitive Science Colloquium and
Oxyopia Colloquium (Optometry School), March 22, 1991. Visual Preprocessing.

University of California, Berkeley Berkeley, California, Department of Psychology/Cognitive Sci-
ence Colloquium, March 22, 1991. The Spatial, Temporal, and Featural Mechanisms of Visual
Attention. ’

Bonny Center for the Neurobiology of Leamning and Memory, University of California, Irvine,
Irvine, CA, April 8, 1991. Mechanisms of Visual Attention.

Salk Institute, University of California at San Diego, La Jolla, CA, April 10, 1991. Visual Prepro-
cessing.

Department of Psychology, University of Florida at Gainsville, April 26, 1991. Systems and
Stages of Visual Processing.

Shanghai Institute of Technical Physics, Shangahi, China, June 17, 1991. How the Human Visual
System Computes Visual Motion [Host: Prof. Kuang, Ding Bo (Director, SITP); Translators: Dr.
Zhang, Ming and Chen, Lulin.]

Department of Computer Science, Shanghai Information-Technology Engineers Examination
Center, Fudan University, Shangahi, China, June 18, 1991. Neural Principles of Preprocessing
for Human Pattern Recognition. [Host: Prof. Wu, Lide (Director, SITEEC).]

Department of Electronic Science and Technology, Institute of Applied Electronics, East China
Normal University, Shangahi, China, June 20, 1991. Measuring Attention and How the Human
Visual System Computes Visual Motion [Host: Prof. Weng, Moying (Chairman and Director);
Translator: Dr. Zhang, Ming.]

Department of Psychology, Beijing University, and Institute of Psychology, Chinese Academy of
Sciences, Beijing, China, June 25, 1991. [Host: Prof. Jing, Qicheng (Director, Institute of
Psychology)]

Moming: The Efficiency of Pereception [Translators: Dr. Zhang, Ken and Prof. Jing,
Qicheng.]

Afternoon: Measuring Attention. [Translator: Luo, Chun-Rong.}

Computational Vision Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
China, June 28, 1991. First- and Second-Order Motion Perception. [Host: Prof. Wang Shuo-
Rong (Director, Institute of Biophysics); Translator: Prof. Wang, Yun-Jiu (Laboratory Director.]

New York University, Cognitive Sciences Colloquium, September 12, 1991. Is There Attentional
Filtering of Items by Feature as Well as by Location?




Joshua A. Solomon and George Sperling. Can We See 2nd-Order Motion
and Texture in the Periphery? Investigative Opthalmology and Visual Sci-
ence, 1991, 32, No. 4, ARVO Supplement, 714

CAN WE SEE 2nd-ORDER MOTION AND TEXTURE IN THE PERIPHERY?
Joshua A. Solomon and George Sperling,
Human Information Processing Laboratory, New York University

Stimuli, Our 1st-order sumuli are moving sine gratings. Our 2nd-order stimuli
are patches of static visual noise, whose contrasts are modulated by moving sine
gratings. Neither the spatal orientation nor the direction of motion of these 2nd-
order (drift-balanced) simuli can be detected by analysis of their Fourier domain
power spectra. They are invisible to Reichardt and motion-energy detectors.

Method. For these dynamic stimuli, in the fovea, and at 12 deg eccentricity, we
measured contrast modulation thresholds as a function of spatal frequency for
discrimination of * 45 deg texture slant and for discrimination of direction of
modon. Spatial frequency was varied by changing viewing distance.

Results. For sufficiendy low spatial frequencies and sufficiendy large contrast
modulations, all stimuli are visible both foveally and peripherally. For peripherally
viewed Ist-order gratings, the highest spatial frequency at which motion or texture
discrimination is possible is about 1/4 that at which the corresponding
discrimination is possible for foveally viewed gratings. For peripherally viewed
2nd-order gratings, the highest spatial frequencies at which motion or texture
discrimination are possible are somewhat less than 1/4 the frequencies of ihe
corresponding foveal discriminations. Thus, as the stimulus moves peripherally,
the visual mechanisms that detect 2nd-order motion and texture lose sensitivity
somewhat faster than the Ist-order mechanisms.

Conclusions. Under certain specific assumptions, our results suggest the
following about the neural detectors involved in these discriminations: (1) For both
motion and texture, there are more foveal than peripheral detectors at all spatial
frequencies. (2) There are more st-order than 2nd-order detectors. (3) On the
average, foveal detectors respond to higher spatial frequencies than peripheral
detectors. (4) The 2nd-order foveal—peripheral spatial frequency difference is
somewhat larger than the Ist-order difference.

Supported by AFOSR Life Sciences, Visual Information Processing Program, Grant 88-0140.




Peter Werkhoven, Charles Chubb and George Sperling. Texture-Defined
Motion is Ruled by an Activity Metric--Not by Similarity. Investigative
Opthalmology and Visual Science, 1991, 32, No. 4, ARVO Supplement, 829

TEXTURE-DEFINED MOTION IS RULED BY AN ACTIVITY METRIC -
NOT BY SIMILARITY

Peter Werkhoven, Charles Chubb and George Sperlirg.
Human Information Processing Laboratory, New York University

We examined motion carried by textural properties. The stimuli we
used consisted of patches of sinusoidal graung of wvarious spatial
frequencies and contrasts. Phases were randomized to insure that motion
mechanisms sensitive to correspondences in stimulus luminance were not
systematically engaged.

We used an ambiguous lpé)arem motion paradigm in which a
"heterogeneous™ motion path (defined by alternating patches of a type A
and a type B texture) competes with a "homogeneous™ motion path defined
by patches of type A. We found that the smength of these (2nd order)
motion stimuli is determined by the covariance of the acriviry of the
textures that define the motion paths. The activity of a textre is an
hypothesized property that is proportional to the texture’s contrast and is
found 1o be inversely proportional to its spatial frequency (within the range
of spatial frequencies examined). Indeed, heterogencous motion between
equal contrast patches of a high spatial-frequency texture A and a low-
spatial frequency texture B can easily dominate homogencous motion
between two patches of A because the activity of exture B is higher than
that of texture A.

At tempora) frequencies higher than 4 Hz, we find that activity
covariance almost exclusively determines motion strength At lower
temporal frequencies, similarity between textures becomes a significant
factor as well. .

Supponied by AFOSR Life Sciences, Visual Information Processing Program, Gran: 880140




Anne Sutter, George Sperling and Charles Chubb. Furthur Measurements
of the Spatial Frequency Selectivity of Second-Order Texture Mechanisms.
Investigative Opthalmology and Visual Science, 1991, 32, No. 4, ARVO

Supplement, 1039

FURTHER MEASUREMENTS OF THE SPATIAL FREQUENCY
SELECTIVITY OF SECOND-ORDER TEXTURE MECHANISMS
Anne Suner, George Sperling, & Charles Chubb
Human Information Processing Laboratory, New York University, NY, NY 10003

A number of investigations of texture and motion perception suggest a
two-stage provessing system consisung of an iniual stage of sclective hinear
filtenng, followed by a rectification and a sccond siage of selecuve lincar
filtering. Here we present new data measuring two properties of the second-stage
fillers: their contrast modulation sensitivity as a function of spatial frequency
(MTF), and the relation of initial spatial filtering 10 second-stage selectivity. To
determine the MTF, we used a saircase procedure to obtain amplitude
modulation thresholds for the detection of the orientation of Gabor modulatons
of a bandlimited noise carrier. We used improved noise carriers with a narrower
bandwidth than the stimuli reported last year. Four camrier bands were created
with center frequencies of 2, 4, 8, and 16 c/deg. The spatial frequency of the test
signals (Gabor amplitude modulations) ranged from 0.5 10 8 c/deg.

The improvements in our stimuli produced s different pattern of results: (1)
The threshold amplitude of signal modulation was lowest for 0.5 and 1.0 c/deg.
Above 1.0 c/deg, threshold increased with fmquency (2) There was a
significant interaction of carrier frequency band with the modulating frequency,
with the lowest thresholds occuring for camier frequency/modulation frequency
ratos of about three w four octaves. These results indicate that the second-stage
selective filters and detectors are most sensitive (o frequencies lower than or equal
1o 1 c/deg, and that they are selective with regard to the spatial frequency content
?f the camner noise on which the signals are impressed.

Samar, } HT. & Koendennk, §J., (1985). Vis. Res. 28 (4) pp. 511-521.
Supponed by AFOSR Life Sciences Dureciorsie Grand 88-0140 and NIMH Grant STIZMH14267.
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Texture Quilts: Basic Tools for Studying
Motion-from-Texture

CHARLES CHUBB

Department of Psvchology, Ruigers University
AND

GEORGE SPERLING

Psvchology Department and Center tor Neural Sciences.
New York University

A theoretical foundation and concrete stimulus-construction methods are provided for
studying motion-from-spatial-texture without contamination by motion mechanisms sensttive
to other aspects of the signal. Specifically. examples are constructed of a special class of ran-
dom stuimuli called rexture quilts. Although, as we demonstrate experimentally, certain texture
quilts display consistent apparent motion. it is proven that thetr motion content (a)is
unavatlable to standard motion analysis (such as might be accomplished by an Adelson
Bergen mouion-energy analyzer. a Watson Ahumada motion sensor. or by any elaborated
Reichardt detector). and (b)cannot be exposed to standard motion analysis by any purely
temporal signal transformation no matter how nonlinear ie.g. temporal differentiation
followed by rectification). Applying such a purely temporal transformation to any texture
yuiit produces a spatiotemporal function P whose motion is unavailable to standard motion
analysis: The expected response of every Reichardt detector to P is O at every instant in time.
The simplest mechanism sufficicnt to sense the motion exhibited by texture quilts consists of
three successive stages: (i) a purely spatial inear filter. (i) a rectfier (but not a perfect square
law) to transform regions of large negative or positive responses into regions of high positive
values. and (1) standard motion analysis. ' 1991 Academic Press, Inc.

I. INTRODUCTION

andard Motion Analvsis. The extensive literature on the motion of random-
dot cinematograms (Anstis. 1970: Baker & Braddick. 1982a. 1982b: Bell & Lappin.
1979: Braddick. 1973, 1974; Chang & Julesz, 1983a. 1983b. 1985: van Doorn &
Koenderink. 1984: Julesz. 1971: Lappin & Bell. 1972; Nakayama & Silverman.
1984: Ramachandran & Anstis. 1983) points toward the view that a “short-range”
system (Braddick. 1973, 1974) submits the raw spatiotemporal luminance function
directly to standard motion analvsis (such as might be accomplished by an Adelson.
Bergen motion-energy dctector (Adelson & Bergen. 1985). a Watson Ahumada

Reprint requests should be sent to Charles Chubb. Department of Psychology. Rutgers University.
New Brunswick. NJ 08903 or George Sperling, HIP Lab, NYU. 6 Washington Place. New York.
NY 10003,

0022-2496 91 S3.00
Copynght ¢ 1991 by Academic Pres Ine
A rrches b renroductien e s orm o resenved
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motion sensor (Watson & Ahumada, 19834, 1993b, 1935, an claborated Reichardt
detector (van Santen & Sperling. 1984, 1985). or some variants of a gradient detec-
tor (Marr & Ullman, 1981: Adelson & Bergen. 1986).

Fourier und Non-Fourier Mechanisms.  An impressive number of observations
suggest that standard motion analysis is not the whole story iBowne, McKee, &
Glaser. 1989 Cavanagh. Arguin, & vor Grunau. 1989: Derrington & Badcock.
1985 Derrington & Henning. 1987 Green. 1986: Lelkins & Koenderink. 1984:
Pantic & Turano. 1986: Petersik. Hicks. & Pantle. 1978: Ramachandran. Ginsburg.
& Anstis. 1983 Ramachandran. Rao. & Vidvasagar, 1973: Sperling, 1976: Turano
& Pantle. 1989). In particular. Chubb and Speriing (1987, 1988) have demonstrated
a vartety of sumuli that display consistent. unambiguous apparent motion. vet that
do not systemaiwcally stimulate mechanisms that apply standard motion analysis
directly to luminance. For reasons that become clear in Section 2. we call any
motion system that applies standard analysis to the raw signal as a Fouricr
mechanism. and we refer to any svstem that applies standard anaiysis to a non-
lincar transformation of the signat as a non-Fourier imechanism.

Microbalanced Stimuli. The methods used by Chubb & Sperling to construct
stimuli whose obvious and consistent motion content cannot be revealed by
applying standard moton analysis directly to luminance are founded on the notion
of a microbalunced random stimulus. In Section 2.3.5, we show that the expected
response of any standard .notion analvzer applied directly to any microbalanced
random stmulus is cqual to the expected response of the corresponding analvzer
tuned to motion of the same type. but in the opposite direction.

Microbalanced random stimuli allow us to differentiatly stimulate non-Fourier
motion mechanisms without systematically engaging Fourier mechamsms. This 1s
the source of thetr importance in the study of motion perception.

There are probably several types of non-Fourier motion rmechanisms. dis-
unguished by the different transformations they apply to the signal prior 1o
standard motion analvsis. In this paper. we extend the theory of microbalanced
randota stimuli in oru. - to develop methods for constructing stimuli that selectively
engage spectfic classes of non-Fourier mechanisms without stimulating either
Fourier mechanisms or other classes of non-Fourier mechanisms.

Poinpwise Transtormations: Static Nonlinearities. A transformation 7 is called
pomiwise if the output of T at any point (v, v. 1) in space-time depends only on the
istimulus) input value at that point. A nonlinear pointwise transformation some-
tumes is called a srarie nondinearitv. For instance. simple rectifiers and thresholders
are pointwise transformations. In Section 3. we address the problem of isolating the
class of non-Fourier mechanisms that apply a simple pointwise transformation
prior to standard moton analysis from the class of all those mechanisms that apph
more complicated transformations. The central result in this section 15 proposi-
tion 3.2 which provides necessary and sufficient conditions for a random stimulus
{ 1o be such that any pointwise transformation of 7 is microbalanced.
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Purely Temporal Transtormations und Texture Quilts.  The results with pointwise
transformations are extended in Section4 to purely temporal transformations
(defined in Section 2.2). Whereas, for a pointwise transformation. the transformed
value at the point (v, v, 7) depends only on the stimulus value at (x, y.¢). in a
purely temporal transformation the transformed value at (x, y. 1) .aay depend in
any way whatsoever on the entire history of stimulus va'nes at (x. y). We define the
class of stimuli called rexrure quilts (Definition 4.1 whose importance derives from
the fact (pioven in proposition 4.3) that any purely temporal transformation of a
texture quilt is microbalanced. Concrete methods are provided for construct i
hinary and sinusoidul texture quilts that display consistent motion.

In Section 3. these construction methods are applied in an experiment designed
to demonstrate the effectiveness of three textural properties as carriers of motion
information. The textural properties are (i) spatial frequency variation, (ii) orienta-
tion variation. and (iii) variation between perceptually distinct textures w.ith
identical expected energy spectra.

2. PRELIMINARIES

This section states the background facts presupposed by the main discussion of
the paper.

2.1. Discrete Dynamic Visual Stimuli

Netation. Let R denote the real numbers. and Z (Z 7)) the integers (positive
integers). We use square brackets to enclose arguments of discret2 functicas, and
parentheses to enclose arguments of continuous functions.

The Range of a Stinng us. We want the term “stimulus™ to refer not only to the
luminance function submitted as input to the retina. but to any physiologically
reasonable transformation of the spatiotemporal luminance function which might
be submitted as input to a component processor of the visual system. Consequently.
although luminance is physically a nonnegative quantity. we « o not apply this
constraint to the class of functions we admit as stimuli. We aliow stimuli to take
values throughout the positive and negative real numbers.

The Domain of a Stimulus. To remain close to our intuitions about neurally
realized visual processors, we take stimuli to be a functions of the discrete domain
Z' (where the dimensions correspond to horizontal and vertical space. and time).
In addition. for mathematical convenience. and without loss of physiological
plausibility. we require a stimulus to be 0 almost cverywhere in ats (infinite)
domain.

The Definition of a Stimudus, We call any function /: Z' — = a stimudus provided
I[x. v.1]=0 for all but finitelv many points of Z".

We shall be considering stimuli as functions of two spatial dimensions a. v and
time t.
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Stimulus Contrast.  As is now well established (e.g.. Shapley & Enroth-Cugell.
1984). carly retinal gain-control mechanisms pass not stimulus fumiance. but
rather a signal approximating stimuius contrasi. the normalized deviation at each
time ¢ of luminance at each point (x. 3) in the visual field from a “background
level.™ or “level of adaptation.” which reflects the average luminance over points
proximal to {x. v. ) in space and time. Because the transformation from fuminance
to contrast is a processing stage that is general to all of vision, we shall drop
reference to mean luminance L.,. and characterize L. only by its conirrast modulution
runction, C

C=—-—1. (1

What we argue in this paper is that the broad-band spatial filtering that mediates
the step from luminance to contrast is succeeded by additional filtering stages in
which a number of narrowiy mned spatial filters are apphied to the visual signal.
their output rectified. and the resulting spatiotempeorai stgnal processed for motion
information.

The History of a Stimulus at @ Point in Space.  For any stimulus /. any point
v, vie Z7. we define / the history of T at (x. v). by setting

Lo L=~ vt ()

for all re Z.

Space-Time Scparable Stimudi. A stimulus [ is called space-rime separable iff /
can be expressed as the product of a spatial function £ Z° — & and a temporal
function g: Z — ®: For all (x. v.nyeZ' I[x v e)=1[x v]e[r]

The Fourier Transtorm of a Stimulus.  Because any stimulus [ is nonzero at only
a finite number of points. the energy in / is finite, implying that / has a well-defined
Fourier transform.

We denote /s Fourier transform by / writing / for the complex number (0. 1),

g ‘ ’

i((g)' () )= S E E I[ X1 ,] ¢ dean e th . ) !3'

Although [ is defined for all real numbers oo, 0. 7.1t is pertodic over 2z cach
argument. This fact is reflected in the mverse transform:

I '

ol e tonre!

dey dU 14

xvot]

IERES R

In the Fourier domain. we consistently use ¢ to index frequencies relative to o
frequencies relative to v, and 1 frequencies relative to 7
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The Function 0. We write 0 for any function that assigns O to cach clement in
its domain. Thus. 0 defined on Z° is the stimulus that is zero throughout space and
time. We also write 0 for the temporal function that sets 0[r] =0 for all re Z.

2.2 Muappings und Stimulus Transformations

Let Q be the set of all real-valued functions of Z*. and call any function of Q into
€ a mapping. (We shall need the general notion of a mapping only briefly in order
to specify the subset of well-behaved mappings called transformations.) For any
mapping M and any /e Q. M([) is a real-valued function of Z*: accordingly. we
write MiN[x. v, 1] for the value of M(/) at any point (x. v.11€Z%.

If it is continuous. a function /: R — R submits to a wide range of useful opera-
tions. For instance. if /'is continuous. it can be integrated over any finite interval.
Of course. / need not be continuous to meet this coadition. For instance. f is
integrable over any finite interval if f is discontinuous at only a finite number of
points in any finite interval. If f is integrable over any finite interval. and if / also
1s bounded. then for any function g for which jn g converges. j_ /g also converges.
In particular. | fg converges if ¢ is a density function. For the results reported
here. we restrict our attention to a special class of mappings. which we shall cali
stimulus transformations. that have properties analogous to those of the well-
behaved function f. We specify these desirable properties in the following
paragraph.

Continuous Mappings: Finitelv Integrable Mappings: Bounded Mappings. For
any e Q. any pe K. any y € Z'. we write /,, _ , for the element of Q that is identical
to [ at all locations of Z* except . where it takes the value p. Any mapping M is
called continuous if M(I,_ ,)[J] is a continuous function of p for any /e Q. and
any y. [ e Z°. M is called finitely integrable if. for any such 7. ¢, and . M1, _ )[{]
15 an integrable function of p over any finite interval. Finally. M is called bounded
if. for any such /. w. and . M(/ )[v] is a bounded function of p over the set
of real numbers.

wep

DEFINITION OF A STIMULUS TRANSFORMATION. A stimulus transformation (which
we shall often refer to simply as a rransformation) is a bounded. finitely integrable.
mapping 7 such that 71S) is a stimulus for any stimulus S. and 7(0) = 0.

There are other reasonable constraints we might impose on the notion of a
stimulus transformation. For instance. we might require a stimulus transformation
to be time-invariant and causal. However. we do not include these conditions in our
definition because they are not required for the results we report.

Purely Temporal Stimulus Transformartions,  Let 2, be the set of all functions
mapping Z into = A transformation H is called purely remporal iff there exists a
function H,: 2, — Q, such that for any stimulus /. any (x. v. Ve Z".

Hih{x. voa)l=H, 0,  )(1]) (5
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That is. the svalue at the point (v, v.1e Z' that results from applying H to /
depends only on the history of [ at (x. y). Since it is obvious from the context. we
drop the distinction between H and H,. and allow H to be applied both to full-
fledged stimuli and to simple functions of ume. Thus. for any temporal function
P: Z — . we shall write H{P) to indicate the temporal function H (P

We shall be particularly concerned with two tvpes of transformations: poiniwise
transformations and linear. shift-invariant transformations.

Poinnwise  Transtormations and  Rectitiers.  For any functions 72 4 — 8 and
21 B — (. the compaosition ¢ge t. 4 — C is given by

go flal=g(flu)) 161

for any ue 4. For any f° R — R. we call the mapping /.. vielding the spatiotemporal
function /'« when applied to stimulus /. a poimrvise mapping (because its output
value at anv point in space-time depends only on its input value at that point).

As is evident. fe is a transformation iff (i) f(0)=(. (i1} / is bounded on E. and
(i) fis integrable over any bounded real interval. A transformation fe 15 called a
positive half-ware rectifier if ' is monotonically increasing. and /{v] =0 forall r < 0:
fe s called a negative half-wave rectitier if t is monotonically decreasing. and
Fle]1=0 for ¢ 20. Finally. fe is called a rull-ware rectitier if £1s a monotonically
increasing function of absolute value.

Linear. Shift-Invariant (LSI) Transtormarions.  For any offset w e Z°, define the
mapping 5¥ by

SUnD[)=1{-w] (7

for any /e £. Thus $¥(/) is derived by shifting / by the offset v in Z'. Any mapping
M s called shift-invarians ff

SYCMDY = MiSU ) (8)

for any weZ' any /e Q. In addition. M is /imcar iff for any 1. Je Q. any real
numbers « and ~

Minl+ 2y =rMUDY - 2 MU, t9)

As is well known. any linear. shift-invariant (LS transformation can be expressed
as i convolution. which is defined for any e Z' by

ks [u)= N Afu r]Ic] 110}

7

for some k: Z° = =. The function & is called the impulse response of the transforma-
ton A *.
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2.3, Random Stimuli
For any real random variable X with density /. we write E[ Y] for the expectation
of X

E[XT=| ~/x)ds, (11)

The notion of a random stimulus generalizes that of 2 (nonrandom) stimulus in
that the values assigned points in space-time by a random stimulus are random
variables (with finite variances) rather than constants.

DEFINITION OF A Raxpom STivuits.  Call any family R x. v 1]l (x. v, 1)1 e Z7)
of jointly distributed random variables a rendom stimulus provided

(i) R[x.v.t] is constant and equal to O for all but finitely many
(x. v.1)eZ". and
(it)  E[R[x. v.1]7] exists for all (x. v.NeZ*.

As with nonrandom stimuli, we write R for the Fourier transform of any random
stimulus R: and. for any y=(x. y)eZ" we write R, for the temporal random
function defined by

R,[t]=R[y.1] (12)

for all times re Z.

Space-Time Separable Rundom Stimuli.  We call a random stimulus R space-time
separable ff R 1s space-time separable with probability 1.

Constant Stimuli.  Any ordinary stimulus can be regarded as a random stimulus
that does not vary across independent realizations. We call such unvarying stimuli
constani.

The Motion-from-Fourier-Components Principle.  Parseval’s relation states that
the cnergy in a stimulus is proportional to the cnergy in its Fourier transform.
Individual spatiotemporal Fourier components are drifting sinusoidal gratings.
Thus. we can add up the energy in a dynamic visual stimulus either point-by-point
in space-time. or drifting sinusoid by drifting sinusoid. A commonly encountered
rule of thumb (van Santen & Sperling. 1985: Watson & Ahumada. 1983b. Watson.
Ahumada. & Farrell. 1986) for predicting the apparent motion of an arbitrary
stimulus /[ x. v.t]=f[x. 1] (constant in the vertical dimension of space). is the
mation-from-Fourier-components principle: For [ regarded as a linear combination
of drifting sinusoidal gratings. if most of /'s energy is contributed by rightward-
drifting gratings, then perceived motion should be to the right. If most of the energy
resides in the leftward-drifting gratings. perceived motion should be to the left.
Otherwise / should manifest no decisive motion in either direction.
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Drift-Bulanced Rundom Stimuli.  The class of driti-balunced random stimuli
tChubb & Speriing. 1987. 1988) provides a rich pool of counterexamples to the
motion-from-Fourier-components principle. A random stimulus R is drift balanced
iff the expected energy in R of each drifting sinusoidal component is equal to the
expected energy of the component of the same spatial frequency. drifting at the
same rate. but in the opposite direction. The term drift halunced is defined formaliy
as follows.

DEFINITION OF A DRIFT-Bavanced Raxnosm Stimvres. Call any random
stimulus R drift halunced iff

E[\Rte. 0. 1) 1= E[iRten. 0. —1y:°] (13)

for all (w. 0, 1) e R'!

Thus. for any class of spatiotemporal linear receptors tuned to stimulus cnergy
in a certain spatiotemporal frequency band. a drift-balanced random stimulus will.
on the average. stimulate cqually well those receptors tuned to the corresponding
band of opposite temporal orientation.

Microbalanced Random Stimuli.  Consider the following two-flash stimulus 8 In
flash 1. a bright spot (call it Spot 1) appears. In flash 2. Spot | disappears. and two
new spots appear. one to the left and one symmetrically to the right of Spot {. As
one might suppose. S is drift balanced. On the other hand. it is equally clear that
a Fourier motion detector whose spatial reach encompasses the location of Spot |
and only one of the Spots in flash 2 may well be stimulated in a fixed direction by
S. Thus. although § is drift balanced. some Fourier motion detectors may be
stimulated strongly and systematically by S. These detectors can be differentially
selected by spatial windowing. and thereby the drift-balanced stimulus S is con-
verted into a non-drift-balanced stimulus by multiplying it by an appropriate space-
time separable function. The following subclass of drift-balunced random stimuli
cannot be made non-drift-balanced by space-time separable windowing.

DEFINITION  OF A MICROBALANCID  RANDOM  STiMUres. Call any random
stimulus [ microbatanced iff the product 87 is drift balanced for any space-time
scparable function W

One can think of the multiplying tunction ™ as a “window™ through which a
spatiotemporal subregion of 7 can be “viewed” n isolation. The space-time
separability of W ensures that 7 is “transparent”™ with respect to the motion-con-
tent of the region to which it is applicd: #" does not distort /'s motion with any
motion content of its own. The fact that / is microbalanced means that any sub-
region of [ encountered through a “motion-transparent window™ is drift balanced.

“For a proof that the expected energy of the Fourier transtorm of any random sumulus s everswhere
well defined see Chubb & Sperling (1988, Appendiv A )
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The following characterization of the class of microbalanced random stimuli. and
all other results stated without proof in this section. are from Chubb and Sperling
(1988).

230 A random stimulus 1 is microbalanced if and onlv if
ECIxovoe ] Iy v =Ixovo Yo v o]l =0 (14}
forall xovon xov el
Some other relevant facts about microbalanced random stimuli:

2320 For any independent microbalanced random stimuli I and J.

. the product 1J is microbalunced.
and

1. the convolution [« J ix microbalunced.

2230 ) Any space-time separable random stinndus s microbalanced: (b any
constant microbalanced stimulus is space-time separable.

The following result is useful in constructing a wide range of microbalanced
random stimuli which display striking apparent motion.

2340 Lt 1T he a family of pairwise independent. microbalanced random stinudi.
all but at most one of which have expectation 0. Then anv linear combination of I’
is microbalanced.

Reichardt Detectors and Microbalanced Random Stimuli.  Two Fourier motion
detectors proposed for psvchophysical data (Adelson & Bergen. 1985: Watson &
Ahumada. 1983a. 1983b) can be recast as Reichardr detectors (Adelson & Bergen,
1985 van Santen & Sperling. 1985). The Reichardt detector has many useful
properties as a motion detector without regard to its specific instantiation (van
Santen & Speriing, 1984, 1985).

Figurc | shows a diagram of the Reichardt detector. It consists of spatial recep-
tors characterized by spatial functions 1, and /.. temporal filters ¢, * and g-+. multi-
pliers, a differencer. and another temporal filter 1+, The spatial receptors f,. i=1. 2,
act on the mput stimulus / to produge intermediate outputs,

virl= S vl N vt (15)

—

e 2

At the next stage. cach temporal filter ¢, x transforms its input v, (i j=1.2),
vielding four temporal output functions: ¢ * v . The left and right multipliers then
compute the products

Lrvee 0100+ e:lr]] and [y gee]T0v: =2 [1]). (16)
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he

FiG. 1. The Reichardt detector. Let / be @ random stimulus. Then. in response to [ for
r=1.2. the box contaimng the spatial function f:Z° — <. outputs the temporal function.
Sz v v I[x vl ] each of the boxes marked g, + outputs the convolution of its input with the
temporal funcuon ¢ Z — =: each of the boxes marked with a muluplication sign outputs the product
of 1ts inputs; the box marked with a minus sign outputs its left input minus 1ts right: and the box con-
taining /i outputs the convolution of 1ts input with the temporal function /1 Z — % To see how the
Reichardt detector senses motion. suppose /- is identical to .. but shifted in space by some offset. and
suppose the filters ¢+ do not alter their input. while the filters ¢.» stmply delay their input by some
amount ¢ of ume. Then a ngidly transiating pattern moving 1n the direction of box /.5 offset from box
1, will elicit some time-varying response from box /,. and the same response a short ime later from box
f.. 1f that “short tme later™ is precisely 6., the output of the righthand muitiphier will be posiuve as long
4y the pattern keeps drifting. This will result 1n a net negative Reichardt detector output. If the pattern
drift s in the opposite direction. the detector response will be positive.

respectivelyv, and the differencer subtracts the output from the right multiplier from
that of the left multipher:

DLrY=0vyxe [r)]0ye = e[ ]] = [y v le]J0ve = el ] ] (17

The final output is produced by applying the filter /i« whose purpose is to smooth
the time-varving. differencer output 0. Since many Fourier mechanisms can be
expressed as. or closely approximated by. Reichardt detectors (Adelson & Bergen,
1985, 1986: van Santen & Sperling, 1985). the following charactenization of the class
of microbalanced stimuli can be regarded as the cornerstone of the claim that
microbalanced random stimuli bypass Fourier motion mechanisms.
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235

For anv random stimulus 1. the tollowing conditions are equiralent:

i1 is microbalanced.
(10 The expected response of every Reichardr detector 1o Iis O at every instant
m nme.

Proot. Chubb & Sperling (1988) proved that I implies 11 To obtain the reverse
imphication, note that if 11 holds. then. in particular. for any points (x. v).
(x.r1eZ and any o,< Z. the expected response to /s the temporal function 0
tor a particular simple Reichardt detector that computes

Hxo v Iy vor=0, = I[xovor =0, 31X v o] (18)

This Reichardt detector is constructed by making (1) £, (of Fig. 1) the function that
takes the value 1 at (v, v) and 0 everywhere else. (i) #+ the function that takes the
value T at v v and 0 everywhere else. (i) cach of ¢+ and /i« the identity trans-
formation. and tivi g.« the filter that delays its input by o, units of time. However.
if the expected response to [ is O throughout time for any such Reichardt detector.

-
3

then Eq. 1141 holds, and proposition 2.3.1 implies that 7 is microbalanced. |

3 RaNDOM STIMULT MICROBALANCED USDER ALL POINTWISE TRANSFORMATTONS

The main purpose of this paper 1s to provide tools for differentially stimulating
specific types of non-Fourier motion mechanisms without engaging either Fourner
mechanisms or other types of non-Fourier mechanisms. A non-Fourier motion
mechanism 1 one that applies an initial nonlincar transformation to the visual
signal and subjects the output to standard motion analysis. In this section, we
provide some results relevant to the psychophysicul problem of stimulating non-
Fourier mechanisms whose imtial transformation s nonpointwise without engaging
any mechamsm whose imtial transformation is pointwise. The main finding s stated
in proposition 3.2, which provides necessary and sufficient conditions for a random
stimulus / to be such that e/ s microbalanced for any pomntwise transformation
fe. In Section 4 we apply this result to construct random sumuli (texture quilts)
which are microbalanced. and are. morcover. guaranteed to remain microbalanced
after any purels temporal transformation. Such stimult are useful for selectively
stimulating non-Fourier motion mechanisms that extract motion information from
stimuli that have undergone nonlinear sparial stimulus transformauons.

We begin by considering an example of a stimulus (Chubb & Sperling, 1987,
1988) that 1« microbalanced under all pointwise transformations, but whose motion
can be revealed by a purely temporal nonlinear transtormation.

YV Sumudus 1o Traveling Reversal of a Random Black-or-White Vertical Bar
Pattern.  let MeZ . We construct the random stimulus J of M + 1 frames
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mdexed 0. 1. ... M. cach of which contains M verucal bars. indexed 1.2, .. M from
left to nght. In frame O of stimulus J. all M vertical bars first appear. The contrast
of each bar s 1 or — 1 with cqual probability. and bar contrasts are jointly inde-
pendent. In cach successive frame m. o= 1. 2. .. M. the mth rectangle flips its con-
trast to | if its previous contrast was — 1 otherwise it flips from 1 to — 1 In
frame 1. rectangle | flips contrast: in frame 2. rectangle 2 fhips. and in successive
frames. successive rectangles flip contrast from left to right, until the M th rectangle
lips 1n frame M. after which all the rectangles turn off. An 7 cross-section of
frames O to M of J is shown in Fig. 2a.

The traveling contrast-reversal. stimuius /. 15 casily cxpressed as a sum of
pairwise independent. space-time separable random stimuli. all with expectation ¢:
thus propositions 2.3.3a and 2.3.4 imply that J is microbalanced. Morcover. it s
casy to see that. because J's frames are comprised of only two values. any pointwise
transformation of J merely serves to rescale cach of J's frames. and to shift 1t by
J4 constant: thats, for any /2 R - R. feJ =,/ + KA. where £ € R, and A is a stimulus

space

Fro 2 Exposing the motion of the traveling contrast-resersal of the rundom black-or-white sertical
Aar pattern J to standard motion-anadysis, AR v crossssection of Joehy An g crossesection of the
rartial denvative of J with respect to time. () An s crossesechion of O S Fach of Joand S O s
microbalanced. However. 7 Jriis not In particular. ©J Jr' has most ofats energy at those irequencies
shose velocity s equal to the veloety of the traveling contrast-reversal.
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that assigns a constant value across all points at which J 15 nonzero Clearly. feJ
is another microbalanced random function (this follows cusily from proposi-
tion 2.3.4). Thus. pointwise transformations fail to expose J's motion.

Exposing J's Motion to Standard Analvsis.  Perhaps the simplest way to extract
Js motion is to full-wave rectify the partial derivative of J taken with respect to
time. The stages of this transformation are illustrated in Figs. 2b and 2c. Figure 2b
shows ¢J ¢r. This funcuon is itself microbalanced (propositions 2.3.211 and 2.3.3a
imply that any purely temporal LSI transformation of a microbalanced random
sumulus 1s microbalanced). However. ¢J 70 (Fig 2¢) has most of its energy at
those spatiotemperal frequencies whose velocity is equal to the velocity of the
traveling contrast-reversal whose motion we wish to detect. Thus we see that.
although J's motion cannot be exposed to standard analysis by a simple pointwise
transformation. a temporal linear filter followed by a pointwise nonlincarity does
suffice.

We turn now to the problem of stipulating the general conditions that a random
stimulus 7 must satisfy so that f« 7 will be microbalanced for any pointwise transfor-
mation fe. Call any random stimulus { nicrabalanced under a piven transformation
T ff TeD 1s microbalanced.

We state the following basic proposition (3.2) and its subscquent corollary (3.3)
for continuously distributed random stimuli. The corresponding result for discretely
distributed random stimuli is simpler and should be evident.

320 NECESSARY AND SUFFICIENT CONDITIONS TOR A RaNDOM STiMUTLUS TO Bi
MICROBALANCED UNDER ALL POINTWISE TRANSFORMATIONS.  Ler [ he a random
stimuddus such that for anv (x, vor) (L v ryeZ’ o v oI vor )y has a
conttnuous joint density. Then the tollowing conditions are equivalent:

(1) 1 is microbalanced under all pointwise transtormations.

(20 Forall x.v.oox' v o r e, the joint densitv fof (I v VI voe D
and the joint densiny ¢ of (I xovor JOILY v e]) satisty

tepogr = g pr=elpog) + glg. p) (19)
tor anv poge = osuch thar p =0 and ¢ £ 0.

Proof. Set w=I[v.v.r]. =[x v ) y=fxovor ] and v=TIx v
Thus. (~. 21 is distributed in =7 with density f and (7. v) is distributed with
density ¢

(12) implies (1)) By definition of any pointwise transformation /re. we have
ht0)=0. Thus we need integrate only over values of w and 2 which are both non-
zcro in computing the expectation E[hix) Ai2) ). In particular. if Eq. (19} is satisfied
for all p 20 and ¢ = 0. then /e /15 microbalanced since
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l;‘[lumlu/.)]z;[j bopy gy 1ope g dp dy

+ |.\ |~ gy hip) iy, pydg dp

| 2| =

[ | |‘ hep)y gy 1epo g dp dy

b b hipyhtgy Hy. prde dy }

(Note: the boundedness and finite integrability of /re ensure that these expectations
exist. )

{Not (2} implies not (1)) On the other hand. suppose Eq. (19) fails for some
Xovoox L v e One way in which this might happen is if rir 7 etro e for
some nonzero re X In this case, there exists a neighborhood NV of #. not including
0. such that fim. ny> g(m.n) for all mone N Thus, for the function /= = =
defined by

! if ne N,
)=« , 121
[0 otherwise,
fre is a pointwise transformation (the function /1 is bounded on = finitely

integrable. and /1t0) =01 However. /e / is not microbalanced since

E[Mrytsy] = l | ftm ) dm dn > I. |. el nY dm dn
NN .

.y AR

=E[h{y) he]. t22)

To recapitulate. if Condition 2 fails because there exists a nonzero re = for which
firory# gir. ). then Condition 1 fails (7 is not microbalanced under all pointwise
transformations ).

The only other way m which Condition 2 can fail is if f1r.ry= etro vy for all r =0
in =, but for some p.ge =, with neither p nor ¢ equal W0 O, fip.gr+ fig. pr>
gipog) =+ glg. p) In this case. we obtain disjoint neighborhoods A of p and N or
¢. neither including 0. such that

fomon)+ f(nom) > gim. n) + ¢gln. my i23)

]
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A random stimulus microbalanced under all pointwise transformations. but quite
different from J of example 3.1 is the following. suggested by J. Lappin (1989).

34 Stmulus K: Rotating Random-Dor Cvlinder. Construct K by taking the
parallel projection of a set of peints on (and or inside) the surface of a cylinder
rotating around a vertical axis. Let the contrast values of the points be independent.
identically distributed random variables. As is well known. when properly con-
structed. K can display a very strong kinetic depth effect. with dots moving in one
direction seen as being in the front of the axis of rotation. and dots moving in the
other direction seen as being in the back ( Dosher. Landy. & Sperling. 1989: Ullman.
1979). Nonetheless. A is microbalanced under all pointwise transformations: All of
K’s systematic motion is horizontal: thus. we can drop reference to v, and note that
for anv x.r. x'. r. the joint distribution of (K[x. r]. K[x". t']) is identical to that of
(K[x. 7. K[x'.t]). Hence. by Corollary 3.3. Condition 3. K is microbalanced
under all pointwise transformations.

4. TEXTURE QUILTS

The rest of this paper is devoted to illustrating how the results of Section 3 can
be applied to construct stimuli which display consistent apparent motion that
cannot be exposed to standard analysis by any purely temporal transformation.
Specificallv, we demonstrate several motion-displaying stimuli. called rexture quilts
i Definition 4.1). that are microbalanced under ail purely temporal transformations.

As illustrated in Fig. 3. the simplest transformations that suffice to expose the
motion of texture quilts to standard analysis involve a purely spatial linear filter s
followed by a rectifier re;

T(Q)=re(s* Q). (30

The spatial filter s+ will respond with varving energy throughout regions of the
visual field. depending on whether or not the textures to which it is tuned populate
those regions. However. the output of a linear filter 1o a texture is positive or
negative depending on the local phase of the texture. The purpose of rectification
1s to transform regions of high-variance y* response into regions of high average
value. thus ensuring that the rectified output registers the presence or absence of
texture. independent of phase. The result 7(Q) is a spatiotemporal function whose
value reflects the local texture preferences of s+ in the visual ficld as a function of
time (Bergen & Adelson. 1988: Caelli. 1985)."

In general. a spatal lincar filter followed by 2 pomtwine nonhncarity can have arbitranly high order
Volterra kernels. depending on the order of the Tavior ~ertes of the pointwise transformation. However,
4 we take the reetfier of step 121 to be Recttay - v- then this squared output of & spatid filter s a
second order spatal transformanion. Standard motion analyss s yet another second order transtorma-
on. Thus. when we subgect the squared filter output to standard moton analysis, we are applyvng a
fourth order operator.
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FiG. 2 Fourier and non-Fourier motion mechanisms. {2) Fourier motion mechanisms  apply
standard motion-analysis directly to the luminance signal L. (b). {¢). and (d) Non-Fourier mechanisms
apply standard motion-analvsis to a nonlinear transformation of luminance. (b) A simple non-Fourier
mechanism applies a signal transformation comprised of a spatiotemporal linear filter. followed by a
pointwise nonlinearity. The »'s indicate spatial and temporal convolution, respectively. and * indicates
function composition. The filtering performed in ib) is roughly pomntwise i ume (the temporai impulse
response h2 approximates an impulse). and the nonlineanty applied 1s a full-wave rectificr. This system
iwith appropriately chosen spatial filter. b1) will extract the motion of the texture quilts shown in
Figs. 4b. 3d. 6¢. and 6d. It will not extract the motion of sumulus J. the traveling contrast-reversal of
the random vertical bar pattern shown in Fig. 2a. (¢} A spatially pointwise (the spatial impulse response
¢l approximates an impuise). »vstem with a flicker-sensiive temporal filter and a full-wave rectifier.
Because of the flicker sensitivity, this mechanism will extract the motion of the traveang contrast-reversal
of the random vertical bar pattern shown in Fig. 2a but not the motion of the texture quilts shown 1n
Figs. b, 5d. 6¢. and 6d. 1d) The temporal filter d2 averages the temporal filters b2 and ¢2. and the
pomntwise nonlineanty is a full-wave recufier. With an appropriate spatial filter d1. the non-Fourner
system entriacts the motion of any corresponding texture guilt as well as the motion of the traveiing
contrast-reversal of the random vertical bar pattern shown in Fig. 2a. However. 1t would be less well
<utted to these tasks than the detectors shown i th) and () whose temporal filters 1t averages.

The essential trick in all the quilt examples we consider is to patch together
various brief displavs of static. random texture. taking appropriatc measures to
ensure that the resultant stimulus satisfies the following definition.

4.1 DEFINITION OF v Textere Quinr. et 4 = Z7 be a set of points in space.
and let 7,.¢,....1, be a strictly increasing sequence of times. with T=
1ty <t <1y, Call any random stimulus @ satsfving the following conditions a

texture quilt;
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(1) Q assigns 0 to all points outside 4 ~ [
(n} Fori=0.1.....V—1. the random values assigned py Q to points i 4 at
time /, remain unchanged until time 7, .
tiiy  Independence. For i=0.1. ... N — 1. the random substimuli Q'. defined.
for all points = in space and all times 7, by

J Ol 1] <<t xed
10 otherwise,

-
12

O'lx 1] =

are jointly independent.
(iv) Svmmerry. For any x ffe A, and any re T. the joint distnib.:tion of
(Q[x 13, Q[ f. 1] is identical to the joint distribution of (Q[f. 1]. Q[ = ]}

Terminology.  Call A4 and T respectively Q°s spatial and remporal regions of

activity, and for i=0. 1. .. N = 1. call {e)r, <1 <1, .| the ith rimeblock of Q.

The empirical usefulness of texture quilts derives from proposition 4.3 in conjunc-
tion with the fact that it 1s casy to construct various sorts of texture quilts which
display consistent apparent motion across independent realizations. The proof of
proposition 4.3 is cased by the following

4.2 LEMMA.  Let Q be u texture quilt with spatial region of activitv 4. Then tor
any %, e A. the pair of temporal functions 1Q,. Q) is distributed identically to the
reverse pair (Q,. Q)

Proof.  From Definition 4.1(1) and (ii). note that for temporal functions P and
R. the density of the joint assignment (Q,. Q,) = (P. R} is 0 unless ecach of P and
R 1s constant throughout cach time block. und 0 outside 7. Thus. any P and R for
which the joint assignment (Q,. Q) =(P. R) has nonzero density are completely
determined by the values P[7,]=p,.and R[t,]J=r,.fori=0.1. ... N—1:for /. the
joint density of (Q,[r,]. @41, ]). Definition 4.1(1i1) thus implies that the density ¢f
the joint assignment (Q,. Q) =(P. R)is

AY 1
[T sp.rn (33)

=1
But by Definition 4.1¢iv). the quantity (33) 1s equal to
\ |
[T rir.p. (34)
pe 0
which is the density of the reverse occurrence that (Q,. Q) =1{P. R). |
4.3, TeXTURE QUILTS ARE MICROBALANCED UNDER PURELY TEMPORAL TRANSFOR-

MATIONS. | Anv rexture quilt with a continuous joint density is microbalunced
under all purely temporal. continuous transformaiions.
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II. Anv discretely distributed texture quilt is microbalanced under all purely
temporal transformations.

Proof of 1. Let Q be a texture quilt with a continuous joint density. and let @
be an arbitrary purelv temporal. continuous transformation. We must prove that
&(Q) i1s microbalanced. We can. of course, accomplish this by proving that >{Q)
15 microbalanced under all pointwise transformations (since. 1n particular. the
identity transformation is pointwise). This turns out to be a convenic t approach.

Let x. 8 be points in space. and let ¢ and « be points in time. Beciuse & is
hounded and continuous and Q has a continuou- joint ¢-°nsuy, we know that the
Joint density f of {@(Q)[x. 1]. (@} . «]) and the joint density g of (PIQI[f. (]
®(Q)[2 u]) both exist and are continuous on R-. We 1all show for any (p. rje R”
with neither p nor r equal to 0. that either fip. r)=gip.r)yor fip.ry=gtr. p). The
proposition will then follow from ~ arc'lary 3.2,

Cuse 1. At least one of x or f# is outside 4 Suppose x is outside 4. Then
by Definttion 4.1(i). Q,=0: hence ®(Q)[x r]= P(Q)[x. u] =0. Consequently.
rHepory=g(r. p)=14 whenever p# 0. Thus Eq. (29) holds vacuously. with

Hp.ry=giro py=0 forall p.reR.p=0.rz0. {35)

C. ¢ 2. Both x and 8 are in 4. Let F be the joint density of (Q,. Q) and &
be th ~ at density of (Q,. Q,). By Lemma 4.2, F=¢. Clearly. then. for F, the
Join. s of (@(Q,), @1Q,)) and G, the joint density of (D(Q,). ¢(Q,)). it
follows that F,=G,. For any p.re =, recall that fip.ryis the density of the
co-occurrence that @d(Q)[« 1] =p. and S(Q)[fS. «u]=r. but this is precisely the
density of the event that (d(Q,)(1]. #1Q i[u]y=1p. r1. This density. however, is
cqual to the integral of F, over all pairs of temporal functions (P. R} such
that P[+t]=p and R[u]=r. Similarly. gip. r1 is the density of the co-occurrence
that S(Q)[B. 1] = p. and P(Q) x. u] =r. but this is the density of the event that
(D@ N1]). Q) [u])y=(p.r). which is equal to the integral of G, over all pairs
of temporal functions (P, R) such that P{r]=p and R[u]=r. However. as we
have already noted. F, = (5. implying that f = ¢. Apply Corollary 1.3 to complete
the proof. |

The proof of 11 is similar.

The rest of Section 4 is devoted to showing how to construct two kinds of simple
texture quilts. In Section 3. we apply these construction techniques in an experiment
to investigate what sorts of textural characteristics are actually processed for
motion information by the visual system.

44 Binarv Texture Quilts

440 General Technigue tor Constructing Binaryv: Texnwre Quilts.  The sim-
plest sorts of texture quilts mvolve only two contrast values. As in Definition 4.1.
let T="!r1,<1r<1, be the temporal region of activitv. with new timeblocks
beginning at umes 7, f,. .. 1 . Let A be the spatial region of activity. Associate
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with timeblocks /=0, 1. ... N = 1 spatial functions 1 (called rimeblock pictures).
cach of which is O everywhere outside 4. and takes only the values | and — 1 within
A. In addition. associate with timeblocks O through V —1 a family

Bos by (36)

of jointly independent rundom variables. cach of which takes the value 1 or -1
with equal probability. Then. for i=0.1. ... V= 1. set

B v v.i]= l\' v v] if tis in umeblock 1. a7)
10 otherwise,
and construct the random stimulus
B=¢,B,+¢, B+ - +¢, B, . (38)

It 1s easy to sce that B is a texture quilt. First. the functions B, are defined to
satisfy Definition 4.141) and (11). The joint independence of the random variables o,
cnsures that B satisfies Definition 4.1t To see that Definition 4.1(iv ) is satisfied.
note that for any x fled. either (VB [x ¢, ]J=B.[f.1,] or (i)B,[x1]=
—B.[fi.1.]. In case (i),

Blxt.]=¢.8[xt,1=¢8[f 1,1=B( 1] (39)

implying that the pair (8[x 1] B{f.1,]) is distributed identicaily to the pair
(B[ 1), B[x 1.]) teach pair with an equal probability of taking the value (1. 1;
or ( — 1. — 11 In case i)

Bl[x.1,1= -B[p.1,]. (40)

and the pair (B[x ¢ ]. B{ff. 1] 1s distributed identically to the pair (B{f.1,].
B[ 2. ¢.]) cach with an cqual probability of assuming the value (1. — ) or(—1.1).
Thus Definttion 4.10v) 1s satisfied along with 4.1(i). (i), and (iii).

4420 Sumudus: The Sidestepping. Rundomiy Contrast-Reversing, Vertical Edge.
In Fig. 4b are displayed the 9 timeblock pictures comprising a particularly simple
binary texture quilt. Note that the vertical dimension of Fig. 4b combines ume and
vertical space. precisely as a strip of movie film. scanned vertically. combines time
and space. Timeblock pictures are scparated by gray hines. Figure 4a shows the
timeblock pictures f, through /. used in the construction, f, assigns the value -1
to all points (v v) of the horizontal rectangle comprising the spatial region of
activity. 4. f, assigns | to the points in the leftmost cighth of 4. and -1 to the
points in the right seven-cighths. The timeblock pictures ¢, through 1 continue to
shift the vertical edge rightward through 4 unul. in picture 8. 4 is uniformiy 1.
Multiplyine cach timeblock picture 7= 1.2, ... 9 by its assoctated random vanable
¢, vields. in this particular realization, the stimulus given in Fig. 4b.
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FiG. 4. Edge-driven motion from an ordinary edge and from a binary texture quilt. (a) A rightward
moving light-dark edge visible to Fourier and non-Fourier motion systems. Nine cntire {rames
are shown: cach frame consists of an area of contrast + 1 and area of contrast — 1. (b} A realization
of the sidestepping. randomly contrast-reversing vertical edge. This random stimulus is a texture quilt
and hence microbalanced under all purely temporal transformations: that is. its nightward motion
would be inaccessible to standard motion-analysis even if this analvsis were preceded by an arbitrary.
purely temporal transformation. Each frame of (b) was derived from the corresponding frame of (a) by
multiplying the entire frame by a random variable that takes the value 1 or —1 with equal probability.
The frame random variables are jointly independent. A straightforward way to extract the motion of
this texture quilt is to (i) apply a linear filter sensitive to vertical edges, (i) rectify the filtered output.
and (ni) submut the result to standard motion anaiysis.

The construction of the sidestepping contrast-reversing edge (Fig. 4b) i1s sym-
metric to the construction of the traveling contrast-reversal of a random black-or-
white vertical bar pattern (J in Fig. 2a). Transposing the x and ¢ dimensions in
Fig. 4b gives the xt-cross-section of a random stimulus J (e.g. Fig. 2a). This
stimufus exhibits an unusual symmetry between space and time. Whereas the
texture quilt of Fig. 4b is microbalanced under all purely temporal transformations.
its transpose J (Fig. 2b) is microbalanced under all purelv spatial transformations.
Extracting motion from J requires remporal filtering followed by a nonlinearity.
This process is essentially different from the process by which motion is extracted
from texture quilts (e.g., Figs.4b. 7a. 7b, and 7c) which requires a spatial non-
linearity.

44.3. Sumulus: Oppositely Oriented Static Squarewarves Selected by a Drifting
Grating.  Figure 5d shows the four timeblock pictures comprising another binary
texture quilt constructed using technique 4.4.1. In Fig. 5a ts shown a probabilisti-
cally defined sinewave grating. a stimulus whose motion is readily extracted by
standard motion-analysis. In Figs. Sbl and 5b2 are shown static vertical and
horizontal squarewave gratings. The stimulus of Fig. 3¢ is obtained by using Fig. 5a
to select between the vertical and horizontal gratings of Figs. Sbl and 5b2. If the
function of Fig. Sa is | at a certain point in space-time. the corresponding point in
Fig. 5¢ is assigned the value of the corresponding point in Fig. 5bl: otherwise the
point in Fig. 5¢ is assigned the value of the corresponding point in Fig. 5b2.
Although Figs. 5¢ and 5d look similar. they differ in an important respect: the
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i1G. 5. Ornentation-driven non-Fourier mouon from a binary texture quilt. (a) A probabilisticalhy
defined sinewiane grating that steps rightward 90 degrees between frames. The rightward motion 1 1a)
is aceessible to all motion detectors, (bl Four frames of a statie. vertical squarewave grating: (h2) Four
frames of a static horizontal squarcwave grating. (¢ A rightward transkating texture pattern. For eveny
white point in (ai. the corresponding value in (¢) s chosen from the vertical squarewave grating in ¢b
for every black point in (i), the corresponding vatue in ter s chosen from the horizontal square-
ware grating an (b1 tcyis not microbalanced. Sandard motion-analvzers can be designed 1o
detect 1ts moton. (dy A texture guilt. The frames of 1dy are denved by muluplving the corresponding
frames of ¢ by jointly idependent random variabics. cach of which takes the value T or -1 with equal
probability. The texture qudt td) is microbalanced under all purelv temporal transformanons, and
therefore 1ts nghtward motion 15 unavatlable to any mechamsm that apphes standard moton analvsi
ta g purely temporal transformation of the visual signal,
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stimujus of Fig. 3d is microbalanced under all purely temporal transformations,
while that of Fig. 5¢ is not microbalanced. It is possible to design Fourier
mechanisms to detect the motion of Fig. 5¢c. but not that of Fig. 3d. The cnitical
difference is that the timeblock pictures of Fig. 5d are jointly independent. while
those of Fig. 5¢ are not: Fig. 5d is obtained by randomly reversing the contrasts of
the timeblock pictures of Fig. 3c¢.

4.5, Sinusoidal Texture Quilts

It is not difficult to elaborate technique 4.4.1 1o a method for construcung quiits
mmvolving textures of arbitrarily many contrast values. We illustrate the principle in
the construction of quilts comprised of patches of sinusoidal grating.

151, A General Technigue tor Constructing Sinusoidal Texture Quilts.  As in
Definition 4.1, let T=|r[r,<r<1,, be the temporal region of activity. with new
timeblocks beginning at times ¢, f,.... 7y . Let .4 be the spatial region of activity.
Associate with timeblocks /=0, I, ... .V — 1. spatial functions B’ cach of which is
) everywhere outside A, and takes only the values | and — 1 within 4. The stimulus
in cach time block will be composed of two components characterized by spatial
frequencies (w,. 0,) and (@,, 0,), respectively. and independent phases p.. .. respec-
tively. Let

oo i 0g w1, 0,.6,. 0, vy 0y Ly L0, (41)
be integers. Let P be an integer. and let
Pas Pos P Pie e Iy 1o Py t42)

be jointly independent random varniables. cach uniformly distributed on the sct
10 1. P—1). Then. define the stimulus S as the sum of .V component stimuli S,
defined in cach timeblock.

s=Y 8. (43)
[}

where. for i =0, 1. ... V= 1. §, is zero everywhere outside timeblock 12 and for all
r i timeblock /.

Jcos(l:h-),\' ~v—p) P it W v v]=1.
fv ) =<cos2atd =0 v -5y P) i W vy]= -1, 44

0 otherwise.

[t s casy to check that & ~ausfies Defintion 41010 and i1y, The jomnt
independence of the random phase variables p o5, for i=0010.0 NV =1 entails
Definition 4.1(in).
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It remains to check that § satisfies Definition 4.1iv). Consider points z. ffe 4. If
W [x}= W [f]. then. as is easily checked. S{z.¢,] and S[f.1.] are independent
and identically distributed (each assuming a value from among cost2zp P) p=
0. 1.... P— 1} with equal probability). On the other hand. if B" [x] = W' [f]. then
the pair (S[x 1,]. S[B.1.]) 1s distrnibuted identically to the pair (S[f.¢,]. S[x. ¢, ]
as a consequence of the following

Lessa, Let PeZ. and let x=(x, 2 ) B=tf ) and «:;=10,.0m) all be
clements ot 270 Then tor any integer pe (0.1 ... P— 1. there cxists an integer
gz 0 Lo P =1 such that vwriting - tor dor product)

cost2mte - x— py Py=cos(2ntem - f—4) P) (45)

frame

Pia 6 Simusordal texture auits: Motion driven by differences in orientation and in sparial frequency
rhyand t¢1 show realizations of random sumuli. cach of which 15 mucrobalanced under all purely tem-
porti transformations. Their rightward motion vannot be detected by any mechamsm  that apphes
standard moton anabysis to i purely temporal transformation of the signal. In cach case. the four frames
ot select between two sinusardai patterns. The phases of sinusoids are jomthy independent across
frames and across different-frequency simusordal components patched together in the same frame. The
simusotds muxed m by differ in onentation. whereas the simusords mived in (o) have the same orienta-
tron, but differ in spatial frequency
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and

cos(2n(er - f§ — p) Pl =cos(2aler-x —q) P (46)

Proot.  As the reader mayv check. this s true for ¢g=1m-2+w-ff—-p)
modulo P. |

Thus. for x. ff such that ¥ [x] = I [#]. we observe that for any outcome p, = p.
there exists an equally likely outcome p, = ¢. such that

{cost2ntm, -2 — py Pl.cost2nte. - —py P

=(cosi2riw, - f—g) P). cosidnter, - x — g} P (47)

We infer that the pair (S[x ¢,]. S[B.7,]) is distributed identically to the pair
tSCA. e 1850 ..

4.5.2. Stmulus: Oppositely Oriented Static Sinusoids Selected by a Drifting
Grating.  The sinusoidal analog to the binary texture quiit of Fig. 3d is shown in
Fig. 6b. In Fig. 6a are shown the functions B',, HB'.. W', and W', used to select
between horizontal and vertical gratings. For this quilt. & = =0, fori=1. 2.3 &
and for some integer F (with F P the number of cycles per pixel), «. =8 = F. The
texture quilt of Fig. 6b modulates textural orientation across space and time. Alter-
natively. we can just as easily keep orientation constant and vary spatial frequency.

1.5.3. Stimulus: Static Sinusoids ot Different Spatial Frequencies. Selected by a
Dritting Graring. Figure 6¢ sh.¥s a texture quilt using the sampling functions of
Fig. 6a. but setting ., =0, =20,=20 for i=1.2. ... 4.

3. WHAT ASPECTS OF TEXTURE DOES THE VISUAL SYSTEM PROCESS FOR MOTION?

In this section. we describe a psychophysical experiment investigating the ques-
tion of what characteristics of spatial texture are analyzed for motion information
by the visual svstem. Three texture quilts are compared across four different viewing
conditions. These conditions comprise a sequence of similar but increasingly
challenging mouon discrimination tasks.

5] /’rm'edur('

Every texture gquilt used 10 this experniment s compnised of a sequence of jointly
independent timeblocks. cach lasting 1 30 s. tEach tmeblock consists of two identi-
cal refreshes at 1 60 5.1 Each texture quilt is stochastically periodic with a period of
S timeblocks: that s, for any integer /. the /th tumeblock is 1denncally distributed
to the 7 + 8th umeblock. Accordingly. we refer to ¥ timeblocks of the texture quilt
as one cvele. The motion clicited by cach quilt 15 carried by a squarewave that
selects between two textures. and steps 14 ¢vele on every odd timeblock. The
squarewave thus completes one of its four-step cveles in each 8 timeblock cvcle of
the quilt.




436 CHUBB AND SPFRIING

On each trial. a texture quilt moving randomly left or right s presented. and the
subject 15 required to signal (with a button-press) which way the quilt appeared
to move. The subject is asked to maintain fixation on a small spot present n
the middle of the stimulus throughout the display. and receves feedback after
each trial. For each quilt under cach viewing condition. the subject performs 100
practice trials followed directly by 100 actual triais. Quilt realizations are jointly
independent across trials. The starting phase of the quilt is chosen randomly on
cach tnal.

The Four Viewing Conditions.  For a given quiit. the four viewing conditions
differ with respect to the number of quilt cveles displaved. In Condition 1. the
casiest condition. the subject sees two quilt cycles teach cyele comprised of eight

stimulus timeblocks). with each timeblock displaved for { 30s. In Conditions 2. 3.
and 4. the subject sces 1.5, I, and 0.5 quilt cycles. respectively.

5.0.1. Three Quilt Stimuli.  The first quilt (the F-quilt} modulates textural spa-
tial frequency as a function of space and time. while keeping oricatation constant.
The & timeblocks comprising one full cvele of the F-qudt are shown in Fig. 7a.
A second quilt (the O-quilt. Fig. 7b) modulates textural orientation as a function
of space and time. while keeping spatial (requency constant. A third quilt (the
E-quilt. Fig. 7c) spatiotemporally modulates texture between jointly independent
binary noise and the so-called "cven” texture (Julesz. Gilbert. & Victor. 1978,

All stimult were viewed from | m against a mean luminant background. At this
distance. each quilt spanned 6.8 horizontal and 3.2 vertical degrees. and the
modulating squarewave moved at an average velocity of 12.75 deg s.

S L2 Why These Three Quilts. 1o cach of the three guilts. a squarewave with
vertical bars is used to modulate between two textures as @ function of space
and time. The squarewave has a spatial frequency of 0.3 ¢ deg. and steps 14
cvele rightward on ¢very odd timeblock (temporal frequency 3.75 Hz. velocity
12.75 deg s). We use a 1 4 cvcle stepping squarewave to modulate hetween the two
textures comprising cach quilt in order to rule out the possibility that the motion
clicited by the quilt s being carried by the border between textural regions. That
is. the 1 4 ¢vele stepping squarewave has the advantage that the signal derived from
the borders between texture regions is ambiguous in motion content. Given the
requirement of 1 4 cycle steps. we changed the particular instantiation of the quilt
on even timeblocks (1.¢.. within steps of the squarewave) in order to spread textural
energy broadly in temporal frequency without altering the spatial frequency content
of the texture.

It has been previously observed (Green. 1986 Ramachandran. Ginsburg, &
Anstis. 1983 Watson & Ahumada. 1983a) that motion is carried more effectively by
spatiotemporal variation of textural spatial frequency thar by variation of textural
orientation. The F-guilt and O-quilt were chosen to further mvestigate this claim.
The E-quilt is of interest because the two textures of which 1t s composed (jointly
independent binary noise and the cven texture) have dentical ~econd order
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Fi, 7 Three quilts used to study moton carried by modulation of texture spatial frequency. by
‘enture onientation, and by higher order textural characternstivs. 14 Eight frames that compnise one cycle
ol the F-guidt. Moton s generated by a sguarewave modulation of textural spaual frequency. The
squarewave grating selects between vertical sinusoidal gratings of spatal frequency 1.2 and 2.4 ¢ deg. The
wexture-modulating squarewave s 0.3 ¢ deg. and steps 14 avele nghtward on every odd frame. Fyery
cven frame s independent of and distnibuted identically to the preceding frame. Presentation proceeds
it the rate of 30 frames s This gives the texture-modulating squarewave a temporal frequency of 375 Hz
amd 4 mean velocity of 28 deg s by Faght frames that comprise one cyvele of the O-quidt In the O-guilt.
rentural onentation s modulated by the same squarewave used to modubinte spatial frequency in the

tJ

N

Foquit. The G-guilt squareswave selects hetween oppositely onented sinusoidal gratimgs that have a
spatidi frequencey of 28 ¢ de (o Fight frames that comprise one avele of the E-quilt. In the E-quilt the
texture-modulating  squarewase  selects hetween qomtis  mdependent Pinary nose and an cven
iexture tulesz. Clbert, & Victor, 19750 Despite the evident ditference between these two textures, cvery
time-independent hinear filter has the same expected power for both textures. Thus. if monon-from-
texture resulted from appiving o simple squanng transformation e the output of a spatial hinear filter
and submutting the result 1o standard motion analysis, the monon of the E-gult would be inviable
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statistics. That s, the joint distribution of any given pair of points m space is the
same under both the component textures of the E-quilt. This means that. despite
the obvious difference in appearance between the component textures. the expected
enetgy n the response of any given spatial linear filter is the same for both compo-
nent textures. If the pointwise nonlincarity applied to the output of the spatial
linear filter prior to motion analysis were simple squaring. it would be impossible
to detect the motion of the E-quilt.

Victor and Conte (1990) studied apparent motion clicited by E-quilts. and noted
that 11 s much weaker than motion clicited by comparable stimuli talso texture
quilts) that modulate between textures differing in spatial frequency. Our expen-
ment confirms this finding.

3.2, Results

Two subjects participated in the study, CC (the experrmenter) and GA (naive).
The results for CC are shown in Fig. 8 bottom, and those for GA are shown in

1)

GA
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cc

IR

R N N I N I Y N A S PN S

tin ~ The pereent of correct direction-ol-monon mdgments to the F-gquilt. the O-quilt. and the
E-quilt as a tunction of somutus duration The panels show data tor subjects CO and GAL respectinely
tach data pomnt s the mean of 100 judgments. 1Squaresy F-quilt, itranglesy O-quilt arclesy E-guilt
fhe stimuius durations of 133 266, 300, and 33 ms, correspond o stimulus preseatations ot 0 <01 S
ind 2 quilt eveles
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Fig. 8 top. Note first that both subjects were able to reliably discriminate felt right
motion in all three stimuli although subject GA failed with the E-quilt at the
brietest exposure. The two subjects performed comparably well at motion direction
discrimination of the O-quilt, but CC was much better than GA at detecting the
motion of both the F-quilt and the E-quilt. Subject CC was better at detecting the
motion of the F-quilt than the O-quilt: the reverse was true of subject GA.

It is possible that these performance differences reflect a genuine differences in the
perceptual apparatus of the two subjects. However. we cannot rule out the
possibility that the better performance of subject CC is due merely to his vastly
greater experience with motion perception tasks of this sort.

3.3. Discussion

Many of the models proposed to explain rapid. preattentive segregation of spatial
textures (Beck. Sutter. & Ivry, 1987: Bergen & Adelson. 1988: Caelli. 1985: Malik
& Perona. 1989: Sutter. Beck. & Graham. 1989) can easily be adapted to deal with
the motion displayed by texture quilts. The texture segregation models in this class
typrcally subject the visual input function to a linear transformation (a “texture
urabber”™) followed by a pointwise nonlinearity (such as a rectifier or thresholder)
to indicate the presence or absence of the texture. Such models propose that two
contiguous textural regions would generate a perceptual boundary if the visual
svstem were equipped with a linear filter that is differentiaily tuned to one of the
textures.

An analogous mechanism to detect the motion of texture quilts. suggested by the
current experiment and the work of Victor and Conte (1990). (i) convolves the
input sumulus with a spaual texture-grabbing filter tuned to the moving texture,
then (i1) squares the output of the filter. to transform regions of high energy filter
output tnto regions of high average value. and (iii) subjects the rectified output to
standard motion analysis. However, the transformation applied in steps (i) and (i)
does not distinguish between the two textures comprising the £-quilt. and therefore
fails to account for the good performance with the E-quilt. A simple modification
to deal with texture segregation and motion perception of the E-quilt is to assume
some other post-filter rectification operation than the squaring operation. It is quite
casy to choose a linear filter in combination with a post-tilter rectifier (other than
the squaring operation) that will segregate the random and even textures (e.g.
Julesz & Bergen. 1983). The current experiment does not specifically indicate the
kind of rectification that might be involved.

What sorts of filters are available to the visual system to compute motion from
texture”? For example. Daugman (1985) points out that (i) Gabor filters provide an
optimal tradeoff between resolution in the space and spatial frequency domains.
and i1} many investigators note that simple cells in cat striate cortex are well
modeled by oriented Gabor filters (c.g, Andrews & Pollen. 1979: DeValois.
DeValois. & Yund. 1979 Wilson & Sherman. 1976). Are the linear filters that serve
motion-from-texture computations Gabor-like cortical simple cells? The theory

: d I,
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reported here provides a tool. and the demonstration experiments illustrate how it
might be used to answer such questions.

6. SUMMARY

The main contributions of this paper are to (i) introduce the notion of a random
stimulus microbalanced under all poinnwise transformations, (i) provide nccessary
and sufficient conditions for a random stimulus to be of this sort. (iii) use this result
to construct apparent motion stimult called rexture guifts that are microbalanced
under all purely temporal transformations. and (iv} show that subjects can reliably
discriminate the motion direction of three kinds of texture quilts.

Texture quilts provide a flexible array of tools for studying motion perception
that is truly mediated by spatiotemporal modulation of spatial texture without con-
tamination by mechanisms responsive to the motion extracted directly by standard
analysis or motion extracted by standard analysis of any purely temporal transfor-
mation of the stimulus.
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Abstract—We use a difficult shape identification task to analyze how humans extract 3D surface structure
from dynamic 2D sumul—the kinetic depth effect (KDE). Stimuli composed of luminous tokens moving
on a less luminous background vield accurate 3D shape identification regardless of the particular token
used (either dots, lines, or disks). These displays sumulate both the Ist-order (Fourier-energy) motion
detectors and 2nd-order (nonFouner) motion detectors To determine which system supports KDE. we
employ stimulus manipulations that weaken or distort lst-order motion energy (e.g. frame-to-frame
alternation of the contrast polanty of tokens) and manipulations that create microbalanced stimuli which
have no usefu! Ist-order motion energy. All mampulations that impair Ist-order motion energy
correspondingiy impair 3D shape identification. In certain cases, 2nd-order motion could support limited
KDE. but 1t was not robust and was of low spatial resolution. We conclude that Ist-order motion detectors
are the pnmary 1nput to the kinetic depth system. To determine mimmal conditions for KDE. we use a
two frame dispiay. Under optimal conditions. KDE supports shape identification performance at 63-94%
of full-rotation displavs (where baseline 1s %) Increasing the amount of 3D rotation portrayed or
introductng a blank inter-stimulus interval impairs performance. Together, our results confirm that the

human KDE computation of surface shape uses a global optic flow computed primanly by Ist-order

motion detectors with minor 2nd-order inputs. Accurate 3D shape identification requires only two views

and therefore does not require knowledge of acceleration. 3

KDE Kinetic depth effect Structure from motion Shape Optic flow 2

3

-

o

INTRODUCTION surface portraved using random dot displays. In [;4

each trial of a new shape identification task we y

When a coliection of randomly positioned dots  devised, subjects view a random dot represen- y, .
moves on a CRT screen with motion paths that  tation of one of a set of 53 3D shapes and ﬁ

are projections of rigid 3D mouon. a human
viewer perceives a striking impression of three-
dimensionality and depth. This phenomenon
of depth computed from rejative motion cues
is known as the kinetic depth effect (KDE:
Wallach & O'Connell. 1953).

What are the important cues that lead to 2 3D
percept from such a displayv? Is it-motion, or are
there other important cues? If it is motion, then
what kind of motion detection system(s) are

identifv the shape and rotation direction. Shape
identity feedback optimizes the subject’s ability
to compute shape from each type of motion
stimulus. For accurate performance, the task
requires either a 3D percept or a subject strategy
that uses 2D velocity information in 2 manner
that is computationally equivalent to that re-
quired to solve for 3D shape (Sperling et al.
1989, 1990; see the discussion of expt 2, below).

We have shown that the only cue used for the

used to support the structure-from-motion com-  perception of three-dime 1sionality in these dis- -y
putation”? Is a computation of velocity sufficient, plays is motion (Sperlin.2 et al., 1989. 1990). ‘2
or are more elaborate measurements necessary, Further experiments determined that global 2
such as of acceleration? These are the questions optic flow is used rather than the position ‘
that we address in this paper. information for individual dots, since accuracy :
In a series of recent papers (Dosher, Landy & remains high when dot lifetir1es are reduced to

Sperling. 1989a. b: Sperling, Landy, Dosher &  as little as two frames (Dosh.r et al., 1989b). In
Perkins, 19&9: Sperling. Dosher & Landy, 1990).  that paper, we concluded that the input to the ;
we examined t' e cues necessary for subjects to  KDE computation is an optic flow generated by <
perceive an accurate representation of a 3D a ls'-order motion detection mechanism, such 5

RS9 :
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as the Reichardt detector (Reichardt, 1957).
Two manipulations that perturb Ist-order
motion energy mechanisms—flicker and po-
larity alternation—also interfered with KDE
{Dosher et al., 1989b). In polarity alternation,
dots change over time from black to white to
black on a gray background. When compared to
dots that remain white, polarity alternation was
equally or slightly more detectable in a detection
task, was poorer but still well above chance in
a discrimination of direction of motion task
(computed, presumably, using tracking of the
dots or using more elaborate, 2nd-order motion
detection mechanisms) but was useless for tasks
requiring KDE or motion segregation. These
latter two tasks require the evaluation of vel-
ocity in a number of locations simultaneously
(Sperling et al.. 1989). Shape identification per-
formance in a range of conditions was shown to
be monotonic with a computed index of lst-
order net directional power in the stimuli
(Dosher et al., 1989b). Hence. for sparse
dot stmuli, KDE depends upon a simpie
spatio-temporal (1st-order) Fourier analysis of
multiple local areas of the stimulus.

In this paper. we further examine and gener-
alize the contributions of several types of
motion detectors to the optic flow computations
used by the structure-from-motion mechanism.

MOTION ANALYSIS MODELS AND THE KDE

Ist-order motion analvsis

To motivate the stimuius conditions studied
here. we begin by summarizing models ol early
motion detection and analysis. Several recent
motion detection models (van Santen & Sper-
ling, 1984. 1985: Adelson & Bergen. 1985; Wat-
son & Ahumada, 1985) share as a common
antecedent the model proposed by Reichardt
(1957). We refer to this class of models as
Ist-order motion detectors. Below. 2nd-order
mechanisms involving additional processing
stages will be discussed. In the Reichardt detec-
tor, luminance 1s measured at two spatial lo-
cations 4 and B. The measurement at position
A 1s delaved in time, and then cross-correlated
over time with the measurement at position B,
resulting in a “‘half-detector™ sensitive to
motion from position 4 to B. A second such
“half-detector™ sensitive to motion from B to A
is set in opponency with the first. resulting in the
full motion detector. van Santen and Sperling
{1984, 1985) have investigated this model along
with extensions involving voung rules for com-

bining outputs of many detectors to enable
predictions of psychophysical expenments. re-
sulting in their Elaborated Reichardt Detector
(ERD).

An alternative way of characterizing motion
detection is in the frequency domain. A motion
detector can be built of several linear spatio-
temporal filters. Each filter is sensitive only to
energy in two of the four quadrants in spatio-
temporal Founer space (w,, ®,). In other
words, the filters are not separable. Their recep-
tive fields are oriented in space-time. and thus
they are sensitive to motion in a particular
direction and at a particular scale (Adelson &
Bergen. 1985; Burr. Ross & Morrone, 1986;
Watson & Ahumada, 1985). The Fourier
“energy” (the squared output of a quadrature
pair of filters) in each ot t'v¢ >pposing motion
directions i1s computed. and put in opponency.
This *“motion energy detector’”, proposed by
Adelson and Bergen (1985), and the ERD differ
in their construction and in the signals available
at the subunit level. but are indistinguishable at
their outputs (Adelson & Bergen. 1985. van
Santen & Sperling, 19895).

The structure-from-motion computation re-
lies upon the measurement of image velocities
at several image locations. The KDE shape
identification task that we use here can be solved
by categorizing velocity at six spatial locations
into three categories: leftward. approximately
zero, and nightward (Sperling et al.. 1989). Thus.
in order to discriminate the 53 test shapes
bv KDE. motion detection must be followed
by at least some rudimentary local velocity
calculation.

In order to signal velocity, the outputs of
more than one such Ist-order motion detector
must be pooled. Speed may be computed by
pooling only two detectors (a motion and a
“static” detector. Adelson & Bergen, 1985). To
signal motion direction, signals must be pooled
across a variety of orentations (Watson &
Ahumada. 1985). Finally, in order 1o solve the
“aperture problem™ for more complex stimuli
(Burt & Sperling, 1981; Marr & Ullman, 1981),
signals may be pooled over a variety of
directions and perhaps scales (Heeger. 1987).

In the previous paper (Dosher et al., 1989b),
shape identification performance was shown to
relate directly to the quality of the signal avail-
able from Ist-order motion detection mechan-
isms. Each stimulus consisted ot a large number
of dots on a gray background representing a 2D
projection of dots on the surface of a smooth 3D
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shape under rotary oscillation. In one condition
(contrast polarity alternation). the dots were
first bnghter than the background (*“white-on-
gray”). then darker than the background
(**black-on-grav"). then bright again. in succes-
sive frames. For a dense random dot field (50%
black/50% white) under simple planar motion,
poiarity alternation causes a percept of motion
opposite to the true direction of motion (the
“reverse-phi phenomenon™. Anstis & Rogers,
1975); reverse-phi 1s thought to reflect a spatio-
temporal Fourier analysis of the sumulus. since
contrast reversal reverses the direction of
motion of the lowest-frequency Founer com-
ponents (van Santen & Sperling. 1984). With
contrast reversal. the outputs of Ist-order
motion detection mechanisms no longer simply
signal the intended direction and velocity of
motion. Contrast reversal sumuli do not vield
a depth-from-motion percept (Dosher et al..
1989b). We take this as evidence that the
K DE relies upon input from a Ist-order motion
analvsis.

nd-order motion analyvsis

For the sparse random dot stimuli (Dosher et
al.. 1989b). contrast polarity alternation elimi-
nated the percepuon of structure from motion.
Nonetheless. subjects could judge the direction
of patches of contrast polanty alternating dots
undergoing simple translauon. What kind of a
motion detector mught be used to correctly
judge the mouon of a translating. polanty-
alternating dot? One simple possibihty would be
to first apply a luminance nonhnearity to the
input stmulus. For example. if the input stimu-
lus were fuli-wave rectified woout the mean
luminance. the polanty-alternating stumulus
would be converted to the equivalent of ngd
motion of a white dot on a grav background.
Thus. a full-wave rectifier of contrast followed
by a Ist-order analvzer (such as those discussed
above) would be capable of analvzing such a
motion stimulus correctly (Chubb & Sperhing.
1988b. 1989a. b).

A motion detection svstem consisting of a
contrast nonlinearity followed by a Ist-order
detector 15 one example of a wide class of
"2nd-order detection mechanisms™. each of
which consists of a linear filtering of the input
(spatial and or temporal). followed by a con-
trast nonhnearity, followed by a standard Ist-
order motion detection mechanism. A number
of results demonstrate the existence of both Ist-
and 2nd-order motion mechanisms and show

the contribution of both to the perception of
planar motion (Anstis & Rogers, 1975, Chubb
& Sperling, 1988b, 1989a.b; Lelkens &
Koenderink, 1984; Ramachandran. Rao &
Vidyasagar, 1973; Sperling. 1976).

Can both Ist- and 2nd-order motion mechan-
isms be used by the KDE system? The polanty-
alternating dots did not yield an effective KDE
percept of our 3D shapes. If one accepts the
existence of both 1st- and 2nd-order motion
mechanisms. why didn’t the 2nd-order system
support KDE? The KDE stimuli were relatively
small (3.7 x 4.2 deg) and viewed foveally (eve
movements were permitted throughout the 2 sec
stimulus duration). Evidence from studies of
planar motion suggests that both systems were
available under these conditions (Chubb &
Sperling. 1988b). For polanty alternation
stimuli. the most salient low frequency com-
ponents from the lIst-order system were in
the wrong direction. We assume that the 2nd-
order svstem vields a correct (if attenuated)
analysis. Bad shape identification performance
may have resulted either from the perturbed
Ist-order analvsis or because of competition
between the Ist- and 2nd-order systems (which
signaled opposite directions of motion in
some frequency bands). Our evidence (Dosher
et al. 1989b) demonstrated that Ist-order
system input is the predominant input to
KDE. but 1t did not exclude the possibility of
input from 2nd-order motion detection mech-
anisms. To approach that question. we con-
sider a KDE sumulus that produces a simple
2nd-order motion analysis, but to which
the Ist-order motion system is. statistically.
blind.

Microbalanced motion stimuli

Chubb and Sperling (1988b) defined a class of
stimuli. called microbalanced, among which are
stimul with the properties that we desire. In
expt | we concentrate on two examples of
microbalanced motion stimuli. These simul are
random in the sense that anyv given stimuius 1s
a realization of a random process. As proven by
Chubb and Sperling (1988b), if a stimulus 1s
microbalanced then the expected output of
every lst-order detector (ERD or motion
energy detector) will be zero. Thus, Chubt and
Sperhng defined a class of stimul for which a
consistent motion signal requires a 2nd-order
motion analysis, and showed that the 2nd-
order analysis predicted observers' percepts for
several examples of the class
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The polarity alternation stimulus is not
microbal. .ced; any given frequency band does
show consistent motion, with the lowest spatial
frequencies signalling motion in the wrong di-
rection. This stimulus can be transformed into
a microbalanced one as follows: for each dot,
choose the contrast polarity randomly and inde-
pendently for every frame. Any given Ist-order
detector will be just as likely to signal rightward
motion as it is to signal leftward motion since it
will either see the same contrast polarity across
any successive pair of frames or it will see
contrast polarity alternate, with equal prob-
abihty. One question we examine in this paper
is whether the motion signal available from
2nd-order mechanisms can be used to compute
3D structure.

We present two experiments. In the first, we
examine performance on a shape identification
task for a vaniety of KDE stimuli. Several types
of stimuli provide good Ist-order motion.
Others are microbalanced and hence can only be
analyzed by 2nd-order mechanisms. Still others
offer good Ist-order motion, but involve
camouflage similar to that available in some of
the microbalanced conditions. We find that
Ist-order motion is used, and that input from
2nd-order mechanisms may also be used but is
not as robust. In a second experiment, we
examine the residual shape percept from two-
frame KDE stimuli in order to determine
whether a single velocity field is a sufficient cue
for shape identification or whether acceleration
also is needed.

EXPERIMENT 1. POLARITY ALTERNATION,
MICROBALANCE, AND CAMOUFLAGE

In the first experiment, a shape discrimination
task is used with a vanety of displays. First, in
order to sensibly compare results to our pre-
vious work (Sperling et al., 1989: Dosher et al.,
1989b), there are control conditions that are
identical to those of our previous experiments
(the *Motion without density cue, standard
speed. standard intensity” and “Motion with
polarity alternation, stancard speed, standard
intensity” conditions of the preceding paper). In
addition to dots. randomly positioned disks and
lines are also used here in order to examine the
effects of the foreground token used to carry the
motion. The disk and line tokens are larger than
the single pixel dots, and hence have more
contrast encrgyv. They enable us to test whether
our previous failure to find KDE with polanty

alternation resulted from the low contrast
energy in the stimulus. Two forms of micro-
balanced stimuli are used, allowing us to test
KDE shape identification performance with
stimuli to which Ist-order motion detectors are
blind. Finally, we examine stimuli in which
moving textured tokens are camouflaged by a
similarly textured background.

Method

Subjects. There were three subjects in this
experiment. One was an author, and the other
two were graduate students naive to the pur-
poses of this experiment. All had normal or
corrected-to-normal vision. There were slight
differences in the conditions for each of the
three subjects. These will be pointed out below.

White-on-gray dot stimuli. First, we brnefly
describe the stimuli that consist of bright dots
moving on a gray background representing a
variety of 3D shapes. This description will be
somewhat abbreviated, since the same stimuli
have been used in previous studies and more
complete descriptions are available (Sperling et
al., 1989). The other stimuli used in the present
study result from simple image processing trans-
formations applied to the white-on-gray dot
stimuli.

Stimuli were based upon a fixed vocabulary of
simple shapes consisting of bumps and concav-
itics on a flat ground. The 3D shapes varied in
the number, position. and 2D extent of these
bumps and concavities. The process of generat-
ing the stimuli is illustrated in Fig. 1.

The first step in creating a stimulus involves
the specification of a 3D surface. For a square
area with sides of length s, a circle with diameter
0.9 5 1s centered. and three fixed points. labeled
1, 2 and 3, are specified. For a given shape, one
of two such sets of points is used (the upward-
pointing triangle or the downward-pointing tn-
angle, labeled u and d, respectively). The shape
1s specified as having a depth of zero outside of
the circle. For each of the three identified points.
the depth may be either +0.5s, 0.0. or —0.55,
which are labeled as +, 0, and —, respectively.
The depth values for the rest of the figure were
interpolated by using a standaru cubic spline to
connect the three interior points with the zero
depth surround. Thus, there are 54 ways to
designate a shape: u vs 4. and for each of three
interior points, + vs 0 vs —. We designate a
shape by denoting the triangie used. followed by
the depth designations of the three points in the
order shown in Fig. 1A. For example. u — +0
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Fig | Sumulus shapes. rotations. and their designations. (A) Shapes were constructed by choosing one
of the two equilateral triangles represented here. Each point in the triangles was given a positive depth
(1.e. toward the observer). zero depth. or negative depth, represented as +, 0 and —, respecuvely. A
smooth shape sphined these three points to zero depth values outside of the circle. A shape is designated
by the choice of tnangle (v or d). followed by the depth designations of the three points in the order given
in the figure (B) Some representative shapes generated by this procedure. All shapes consisted of a bump.
concawvity. or both. with a vanation in position and extent of these areas. (C) Shapes were represented
by a set of dots randomly painted on the surface of the shape. and wiggled about a vertical axis through
the center of the display. The motion was a sinusoidal rotation that moved the object so as to face ofl
to the observer’s right. then his or her left, then back to face-forward (denoted /). or the reverse
(denoted r).

is a shape with a bump in the upper-middle of
the display. and a concavity in the lower-left
(Fig. 1B). There are 53 distinct shapes, because
1000 and 4000 both denote a flat square.
Displays were generated by sprinkling dots
randomly on the 3D surface generated by the
spline. rotating that surface, and projecting the
resulting dot positions onto the image plane
using parallel perspective. A large number of
dots are chosen uniformly over a 2D area
somewhat larger than the s by s square, and
each dot’s depth is determined by the cubic
sphine interpolant (where the zero depth of the

surround is continued outside the square). This
collection of dots is rotated about a vertical axis
that is at zero depth and centered in the display.
The rotation angle 8(k) is a sinusoidal “wiggle™":
0(k) = +25sin(2nk/30) deg, where k is the
frame number within the 30 frame display.
Thus, the display either rotated 25deg to the
right, then reversed its direction until it faced
25deg to the left, then reversed its direction
until it was again facing forward (labeled /), or
rotated in the opposite manner (labeled r, see
Fig. 1C). The displays presented these 3D
collections of dots in parallel perspective
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as luminous dots (single pixels) on a darker
background.

A stimulus name consists of the name of the
shape followed by the type of rotation (e.g.
u + — 0/}, resulting in 108 possible names. Using
parallel perspective, there is a fundamental
ambiguity with the KDE: reversing the depth
values and rotation direction of a particular
shape and rotation produces exactly the same
display. In other words, a convexity rotating to
the right produces exactly the same set of 2D
dot motions as a concavity rotating to the left.
Thus, u+ —0/ and u — +0r describe precisely
the same display type. There is also no differ-
ence in display type among 1« 000/, 4#000r, 4000/
and d000r. This results in a total of 53 distinct
display tvpes.

These experiments used 54 white-on-gray dot
displays. including two instantiations of the flat
stimulus «000 (with different dot placements)
and one instantiation of each other display type.
Each set of dots was windowed to a display area
of 182 x 182 pixels (corresponding to the s x s
square). with dots presented as single luminous
pixels.

When the dots on the surtace of a shape move
back and forth in the display. the local dot
density changes as the steepness of the hills and
vallevs changes (with respect to the hne of
sight). In previous work (Sperling et al.. 1989),
we showed that this density cue is neither
necessary nor sufficient for the perception of
depth. However. it is a weak cue which one of
three highly trained subjects was able 1o use for
modest above-chance performance when it was
presented in 1solation. In other words. changing
dot density 1s an artifactual cue to the task. As
In previous experiments, we ramove this cue by
deleting or adding dots as needed throughout
the display in order to keep local dot density
constant. As a result of this manipulation. all
displays had approx. 300 dots visible in the
display window. The removal of the density cue

results in a small amount of dot scintillation
that neither lowers performance substantially
nor appears to be useful as an artifactual cue
(Sperling et al., 1989, 1990).

Other tokens. The 54 stimuli described so far
consisted of luminous dots moving to and fro on
a less luminous background. All other stimuli
were based upon these displays. First, three
conditions involved changes of the token that
carried the motion. The moving dots were re-
placed with disks. patterned disks, or wires. We
refer to the dot, wire, and disk conditions as
white-on-gray stimuli, and the patterned disks
as pattern-on-gray.

To create a disk stimulus, a dot stmulus is
modified in the following way. Each luminous
dot in the stimulus is replaced with a 6 x 6 pixel
luminous diamond centered on the dot
(Fig. 2b), which appears disk-like from the
viewing distance used in the experiment. A
sample image of white-on-gray disks 1s depicted
in Fig. 2¢, and is based on the white-on-gray dot
stimulus frame shown in Fig. 2a.

The pattern-on-gray disk stimuli are gener-
ated in a similar fashion. The 6 x 6 diamond
consists of 24 pixels which are a mixture of
black and white (12 of each). These are dis-
plaved on an intermediate gray background.
The diamond pattern and a sample stimulus
frame are shown in Fig. 2d and e. respectivelyv.
Note that the diamond pattern has an equal
number of black and white pixels in each row.

Other stimuli were based on “‘wires”. Each
dot was connected by a straight line (subject to
the ;..ael sampling densitv) to all neighbors that
were at a 2D distance no greater than 15.5 pixels
(Fig. 2f). Note that a vector is drawn between
two points based on their distance in the image.
not on their simulated 3D distance. Since the
lines were straight, when set in motion they
objectively define a thickened surface with lines
cutting through the interior of each bump and
concavity. This may have vielded a perceived

Fig 2 topposire) Stimulus display generation for expt 1. (a) A single frame of a white-on-grav dots
stimulus. All displays shown in this figure are based on this simulus frame. (b) The diamond shape used
to generate the disks from the dots. {(¢) A white-on-gray disks simujus frame. (d) The patterned diamond
for the pattern-on-gray condition. (e) A pattern-on-gray frame. | } A white-on-gray wires frame. All pairs
of dots in Fig. 2A were connected whose inter-point distance was less than 15.5 pixels. (g) A frame of
dynamic-on-gray dots. In this condition each dot was painted black or white randomly and independently
with probability of 0.5 for each color. (h) A frame of dvnamic-on-gray disks. The same procedure as in
(g) was applied to each pixel lying in each disk. (i) A frame of dynamic-on-gray wires. ()) A frame of
dynamic-on-static disks. For both dynamic-on-static conditions (disks and wires). the tokens and the
background consisted of random dot noise. and so the tokens cannot be discerned from a single static
frame. (k) A frame of the pattern-on-static condittion. This frame contains 300 copies of the pattern
«d} on 4 stauc noise background The camouflage 15 quite efective (1) An enlargement of the central
portion of tk), with the patterned disks emphasized
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ftesselated) surface having shghtly less relative
depth than the base surface. The choice of 15.5
pixels as the criterion for drawing a line was a
compromise sei in order to make sure that all
sumulus dots became an endpoint to a: least
one line. and that no line was so long as to
excessivelv cut through the simulated surface.

The white-on-gray disks and pattern-on-gray
disks were based on the dot stimuli. The same
exact instantiations were used in all three con-
ditions. The nth frame of a given shape and
rotation consisted of either dots. disks or pat-
terned disks centered on the same set of image
positions. For the wire stimuli. a new set of 54
instantiations was made.

Dynamic-on-grayv. Three types of stmuli
were used to explore the mouon of patches of
dvnamic noise moving on a gray background
These sumul are microbalanced. as we dis-
cussed in the previous section. These stimuli are
derived from the dot. disk. and wire stimul:. To
produce a dyvnamic-on-grav sumulus from a
white-on-gray stimulus, simply change the lumi-
nance of each white pixel in each stimulus frame
(i.e. the foreground or token pixels) to black
random!y and independently with probabihity
0.5 Thus. foreground pixels undergo random
contrast polarity alternation while background
pinels dre gray (1.e. have zero contrast). Sample
frames are illustrated 1n Fig. 2¢. h and 1.

Dynanuc-on-static. Two types of sumuh were
used to explore the mouton of patches of
dvnamic nolse moving on a stauc noise back-
ground. This class of stimuli s also micro-
balanced (Chubb & Sperling. 1988b). We derive
dvnamic-on-static sumul: from the disk and
wire sumuh. The foreground pixels consist of
dvnamic notse. just as in the previous dvnamic-
on-grav case. The background pixels consist of
a stauc frame of patterned texture. where each
pixel 15 randomiy chosen to be either black or
white with a probability of 0.5, just as the
dvnamic noise as. M a given pixel 15 a back-
ground posiion for two successive frames.
then its color does not change. If that position
18 a foreground pixel in either or both frames.
then there 1s a 50% chance that its color will
change. A single frame of dvnamic-on-static
stimulus 1s ssimpls a frame of random dot noise
(Fig. 2j). The motion-carrving tokens are not
discernible from a single frame. Rather. the
areas of moving dyvnanmic noise define the
foreground tokens

Contrast polarity alteration. Three stimulus
conditions nvolved contrast polarity alterna-

tion. This stimulus manipulation was explored
thoroughly for dot sumuli n the preceding
paper {(Dosher et al.. 1989b). In this condition.
the motion-carrving tokens alternate from white
to black to white again on successive frames. all
against a background of intermediate gray.
Constrast polarity alternation was used with
dots. disks. and wires, resulting in three polarity
alternation conditions.

Pattern-on-static. The final condition in-
volves pattern camouflage. This condition is
derived from the pattern-on-gray stimuli. The
gray background is replaced with a frame of
static random dot noise. In other words. the
patierned disk tokens move to and fro in front
of a screen of static random dots. occluding it
(and occasionally each other) as they pass by. A
frame of this sumulus condition is pictured 1n
Fig. 2k. and enlarged in Fig. 2I. where we have
artificially highlighted the patterned disks for
comparison to the pattern kernel showrn in Fig.
2d. There are approx. 300 patterned disks in
Fig. 2k. As vou can see. the camouflage 1s quite
effective. When the patterned disks move. as one
might expect. theyv are eastly visible (Julesz,
1971).

Display details. There are a total of 13 con-
ditions (3 white-on-gray. | pattern-on-gray, 3
contrast polanty alternation. 2 dvnamic-on-
grav, 2 dvnamic-on-static. and 1 pattern-on-
static). There were 54 distinct displavs for each
of the 13 conditions. In all conditions. the
displays are windowed to an area of 182 x 182
pixels. Dispiayvs were computed using the HIPS
image processing software (Landy. Cohen &
Sperling. 19844, b). and displaved by an Adage
RDS-3000 image display system.

Subjects MSL and JBL viewed these stimuli
on a Conrac 7211C19 RGB color monitor. Onl
the green gun was used. and so stimuli appeared
as bright green and black pixels (as dots. disks.
lines or noise) on a green background of inter-
mediate luminance. The sumuli subtended
3.7 x 4.2 deg. Sumul: were viewed monocularls
through a dark viewing tunnel. using a circular
aperture which was shghtly larger than t e
stimuli.

Subject LJJ wviewed the stimuli on a US
Pixel PX15 black and white monitor with
a P4-like phosphor. Here. sumuli subtended
2.9 x 2.9 deg. and appecared as white and black
pixels on an intermediate gray background.
Stimuli were viewed monoculariy through a
circular aperture in cardboard which approxi-
mately matched the hue of the displavs, and
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which had approximately the same luminance as
the stimulus background.

Each stimulus consisted of 30 stimulus
“:~mes. These were presented at a 60 Hz frame

a.e. Each frame was repeated four times, result-
-, in an effective rate of 15 new stimulus frames
per second. Each stimulus lasted 2 sec. A trial
sequence consisted of a fixation spot, a blank
interval, the 30 frame stimulus, and a blank. The
fixation and blank lasted either for 1sec each
(subjects MSL and JBL), or 0.5 sec each (subject
LJJ). The background luminance remained con-
stant throughout the trial sequence. Subjects
were free to use eye movements to actively
explore the display. Stimuli were viewed from a
distance of 1.6 m. After each stimulus display,
subjects responded with the name of the shape
and rotation direction using either a computer
keyboard or response buttons.

Slightly different image luminances were used
for each subject. The background luminance for
subjects MSL. JBL and LJJ were 31.0, 40.0 and
45.0 cd/m* respectively. Since isolated luminous
pixels were used. the appropriate unit of
measurement is extra ucd/pixel for bright
pixels. and removed pcd;pixel for dark pixels, all
at a specified viewing distance (Sperling, 1971).
Stimuli were calibrated so that extra ucd,/pixel
and removed ucd/pixel were equal. For subjects
MSL, JBL and LJJ. these were 13.2, 19.2
and 15.7 ucd:pixel, respectively, at a viewing
distance of 1.6 m. Contrasts were nominally
100%.

Procedure. There were 13 stimulus conditions.
For each condition, there were 54 stimuli (two
instantiations of the flat stimulus 4000, and one
instanuation of each of the 52 other possible
distinct shape.rotation combinations). This re-
sulted tn 702 stimuli, each of which was viewed
once by each subject. These 702 tnals were
viewed 1 random order in six blocks of 117
irials. On a given tnal, a stimulus was shown,
subjects keved in their responses, and then
feedback was provided so that we measured
the best performance of which the subject
was capable. Each block lasted approx. | hr.
Subjects ran several practice sessions on the
wt.ite-on-gray dots condition before data
were collected. Given the mix of stimuli in
a given condition, guessing base rates for
the identification of shape and rotation direc-
tion were between 153 (for a strategy of
random guessing) and 254 (for a strategy
of always answering w000/, or one of its
equivalents).
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Fig. 5. Resuits of expt 1. Resuits are given for three subjects.

Different svmbols in the bars represent different tokens

{large open dots for the disk and patterned disk tokens,

small solid dots for the dot tokens, and astensks for the wire
iokens).

Results

The results for the three subjects are summar-
ized in Fig. 3. Each performance measure given
here is the percent correct over 54 trials. We
discuss each class of stimulus condition in turn.

White -on -gray ' Pattern-on-gray. As ex-
pected, the performance on the three white-on-
gray and the one pattern-on-gray condition was
uniformly high. The tokens provided excellent
motion signals because they were moving rigid
areas of high contrast. It did not particularly
matter whether we used dots, as in our previous
studies, wires, as in the early wire-frame KDE
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work (Wallach & O’Connell. 1953). disks. or
patterned disks. The disk and patterned disk
stumuli provided very strong percepts of shape.
although the disks did not undergo realistic
foreshortening as they rotated. In fact. the dot
stimuli gave the weakest percept of depth. These
tokens had the least contrast energy (i.e. were
the smallest), and hence were harder 1o detect.
Subject JBL had the greatest difficulty in seeing
these small dots. and his results show a slight
drop in performance for the dot stimuli.

Dynamic-on-gray. The motion of a token
filled with dynamic random dot noise moving
on a gray background i1s microbalanced. In
other words. Ist-order motion detectors are
“blind™ to this stimulus. The expected value of
the output of such a detector is zero (across
random reahzations of the stimulus). Simple
2nd-order mechanisms (e.g. using rectification)
serve to reveal the true motion.

The resulis for three subjects are somewhat
different. For two subjects (LJJ and JBL).
performance is alwavs at or near chance (less
than 10% correct in all cases). although for
subject LJJ with the dvnamic-on-gray dots the
performance is significantly above chance
(P < 0.05). On the other hand. for subject MSL.
performance 1s alwavs well above chance

*In order to test the range of luminances over which polarity
alteranon was eflective, we rarn a contro! expenment
(using MSL and JBL as subjects). where a varnety of
wiite praci juminances were used with o given black pixel
juminance We viewed @ vanety of dyvnamic-on-gray
displavs. varving the luminance values for the biack anc
white pivels independentiy over a wide range We alse
tested a vanety of other Juminance calibrauor pro-
cequres. Dynamic-on-gras sumuli are only micro-bal-
anced 1if the contrast energy of the white pixels 15 the
same as thai of the biackh pixels And. 1t 1s difficult to
cahibrate the luminance of individual pixels embedded i
a compiex display texture given that the desired pattern
15 first low-pass filtered by the CRT video ampiifier, and
then passes through the gun nonhineanty (see Mulligan
& Stone, 1989, for a full discussion of this point). Thus.
it was important to verify that our results were robust
over a range of luminance values overlapping the cah-
brated equal contrast pont

To summanze, shape identification performance 1s
consistent with the results of expt | for a reasonably wide
range of white pixe! luminances Subject MSL consist-
ently performs at moderate levels, and subject JBL
consistently performs at or near chance. The luminance
levels vielding poor shape identification performance are
consistent with the levels that result in the weakest 3D
percept, and are roughly consistent with the luminance
levels that are balanced (black pixel decrement vs white
pixel increment) for a varsety of calibrauon displavs. The
performance levels for dynamic-on-gray stimuh in expt
I do not result from a miscahibration of lumuinance levels

(24-39% correct identifications). but far less
than his nearly perfect (94-98%. correct) per-
formance with white or pattern tokens on gray.*

The 1st-order motion mechanisms are clearly
the most effective input to the KDE svstem,
since eliminating motion detectable by 1st-order
mechanisms reduces performance substantially
for all subjects. The results for subject MSL
suggest that 2nd-order motion mechanisms can
also be used. On some tnals. fragments of the
microbalanced stimuli did appear 3D to this
subject (one of the authors). especially in the
foveally-viewed portion of the stimulus. To raise
his performance level, he used sophisticated
guessing strategies based on active eye move-
ments and local measuremenis of motion or
three-dimensionality in the fovea at a smali
number of locations of the display. But. these
strategies only serve to bring performance up to
mediocre levels in companson with performance
with ngid white-on-gray motion.

Dynamic-on-siatic. The dynamic-on-static
manipulation also results in a micro-balanced
stimulus. For the dynamic-on-stauc conditions,
performance is at chance level for all three
subjects. and for both wire disk tokens. As with
the dynamic-on-gray conditions, the motion of
the tokens 1s visible. It 1s not particularly
difficult to deiect the motion of an area of
dvnamic noise on a static noise background
(Chubb & Sperling. 1988b). However, this sort
of motion engenders no shape percept whatever
under the conditions of our experniments.

Unlike dynamic-on-gray stimuli, dynamic-
on-static stimuli are not revealed by contrast
rectiicauon. Detection of the motion of a re-
gion of flicker requires more elaborate 2nd-
order mechanisms. Regions of flicker could first
be detected by applving a linear temporal filter
(such as differentiation). followed by rectifi-
cation, and then by application of a Ist-order
motion mechanism. Some such complex 2nd-
order motion detector exists in the human visual
system, since we are capable of seeing areas of
flicker move. including in the displays of our
experiment (at least with scrutiny). Yet, this
2nd-order motion detection system does not
support the structure-from-motion computation
for our dynamic-on-static stimuli.

Prazdny (1986) reached the opposite con-
clusion using dynamic-on-static displays repre-
senting simple wire objects rotating in a
tumbling motion. Each object contained five
wires. and subjects were required to identify the
object among six alternative wire-frame objects.
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The displays were 7 x 7 deg, and the wires were
several pixels thick. Performance was quite high
in the task for five subjects. Although we have
some reservations about the experimental
method employed by Prazdny, we have gener-
ated similar displays in our laboratory, and our
dynamic-on-static wire-frame displays do yield
a shape percept when displays are restricted to
a small number of wires.

The most likely explanation of the difference
between our results and those of Prazdny in-
volves the difference in spatial resolution re-
quired by each task. Chubb and Sperling
(1988a) have demonstrated that 2nd-order
motion systems have less spatial resolution than
the Ist-order mechanisms, and that their resoi-
ution drops precipitously with increases in reti-
nal eccentricity. In our displays, motion was
about a vertical axis using parallel perspective,
and hence all motion was along the horizontal.
There could be as many as 10 or 20 disks or
wires in a given row of the image to resolve. Our
displays did not yield a global percept of optic
flow, but motion was perceived foveally with
scrutiny. This 1s entirely consistent with Chubb
and Sperling’s observation. Prazdny did not
give precise details about his stimuli. but it was
clear that along 4 given motion path there were
only two or three wires to resolve across his far
larger display. Performance was so low in our
dvnamic-on-static conditions because too much
spatial acuity was required of the 2nd-order
svstem that detects the motion of flickering
regions.

How useful for perception of shape is a
display of dynamic noise figures moving on a
static noise background? We have examined a
large number of disk and (thick) wire displays
in order to span the gap of spatial resolution
between Prazdny’s displays and our own. With
our 3 x 3deg display size, a shape percept can
only be achieved by using a very small number
of tokens (around 5-10). These displays con-
sisted of rotating disk tokens. Cavanagh and
Ramachandran (1988) suggest an alternative
explanation of the difference between our results
and those of Prazdny. They consider the crucial
difference to be that the objects p irirayed in the
Prazdny displays were connected (one long wire
figure). whereas our displays consisted of separ-
ate disk tokens. With our wire displays. almost
no 3D percept was achieved for the dynamic-on-
static condition. In addition. we were able to
achieve a 3D percept with displays of a small
number of dynamic-on-static disks. Thus, we

feel that jow spatial resolution in the 2nd-
order motion system (rather than unconnected
tokens) is the likely explanation for failure of
KDE.

Contrast polarity alternation. Performance is
quite poor for the contrast polarity-alternating
dots as 1t was in the previous paper (Dosher et
al., 1989b). For two subjects (JBL and LJJ)
performance is at chance or insignificantly
above chance. For subject MSL, performance is
low (11% correct) but significantly above
chance (P < 0.05). On the other hand, when the
token is changed to disks or wires, performance
rises substantially. Contrast polarity alternation
is not as devastating a stimulus manipulation
for disks and wires as it is for dots.

For lIst-order motion detection mechanisms
such as the Reichardt detector. contrast polanty
alternation causes the strongest responses 1o be
in the wrong direction. Yet, the intended motion
can be detected quite accurately if a 2nd-order
detector is used that first appiies a luminance
nonlinearity followed by a Reichardt detector.
The pnmary difference between the dots on the
one hand. and the disks and wires on the other,
1s that the disks and wires have more pixels
illuminated. In other words, they have more
contrast energy. and in particular thay have
more energy at lower spatial frequer.cies. Thus,
the disk and wire stimuli should stimulate both
the Ist- and 2nd-order motion detection systems
more strongly. resulting in stronger incorrect
direction information from the Ist-order
system as a whole, but also stronger information
from the 2nd-order system, and stronger
directional information in those selected Ist-
order frequency bands which signal the correct
direction.

[t is interesting to note that a large number of
the errors made by obs¢rvers with polanty-alter-
nating stimuli were errors in the direction of
rotation only, with the shape specified correctly.
For example, for a stimulus which had as
correct answers either u + — 0/ or u — + Or, the
subject incorrectly responded with u + — Or or
u — + 0/, rather than with any of the 104 other
possible incorrect responses. This effect was
largest for the disk tokens. In a separate control
experiment, for contrast polarity-alternating
disk stimuli, 39% of the errors made by subject
MSL were only an error in the specification of
direction, compared to 1.4% direction errors
for the dynamic-on-gray conditions. For subject
JBL. the corresponding values were 48% and
5.6%. For the polarity-alternating disks, on
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tnals when subject MSL correctly identified the
shape. there was a 33% chance that he would
misidentify the direction of rotation (for JBL:
29.3%). We believe that accurate shape identifi-
cation in this condition primanly reflects re-
sponses constructed from selected Ist-order
information. One strategy was simply to specify
the opposite rotation direction to that which
was perceived! The displays did. however. oc-
casionally appear to be 3D with the correct
direction of motion (at certain times during the
rotation, or close to the location to which the
eyes were directed). indicating a residual 2nd-
order motion input to the KDE system. The fact
that these displays only appeared foveally to be
rotating in the correct direction. and then only
using the larger tokens. is consistent with a
2nd-order motion detection system with low
contrast sensitivity and low spatial resofution
(as has been demonstrated by Chubb &
Sperhing. 1988b). and more sensitive in the fovea
(Chubb & Sperling. 1988a). In summary. we
have some indication that 2nd-order motion
detection mechanisms can be used to derive 3D
structure. but theyv are far less robust and have
poorer spatial resolution than Ist-order motion
mechanisms.

Partern-on-static. For all three subjects per-
formance with patiern-on-static dispiays Is quite
poor (9. 26 and 33% corrrect). although 1t is
significantly above chance levels 1n all cases
{P < 0.05). This poor performance results from
& msmatch of resolution and tempora!
sampling. The patterned disks are quite de-
tailed high frequency. The disks are 6 pixels in
diameter. and can move as far as 8.3 pixels in
one frame. This speed 1s only achieved by disks
at the top of a peak when in the middle of the
display (i.e. near frame numbers 0. 15 and 29).
but many disks are moving 3-5 pixels per frame.
High frequency spatial filters which are required
to idenufy the disks must correlate across
frames with filters that are far more than 90 deg
away in the phase of their peak spatial fre-
quency. A typical Ist-order detector will not
compadre spatial regions that far apart in order
1o avoid spatio-temporal aliasing (van Santen &
Sperling. 1984). Thus, the clearest motion sig-
nals are coming from the slower areas in the
display. which are the Jeast vsefu) for discrimi-
nating the shapes. We have examined pattern-
on-static displays with finer temporal sampling
(60 new frames per sec. as opposed to 4 repaints
of 15 new frames per sec used in the exper-
iment). and they give a strong impression of

three-dimensionality. Thus, poor performance
in the task resulted from undersampling in time
of the stimuli. which interferes with Ist-order
(and some 2nd-order} motion mechanisms, and
good KDE can result from the motion of tokens
which are camouflaged when at rest.

We have also examined dynamic-on-static
displays with finer temporal sampling (60 new
frames per sec). These displays vield no im-
pression of three-dimensionality. The poor re-
sults for dynamic-on-static displays do not
result from insufficient sampling in time. Also,
since finely sampled pattern-on-static displays
do appear 3D. poor performance with dynamic-
on-static-displays does not result from the
camouflage of the tokens when at rest. Rather,
dvnamic-on-static displays yield no effective
KDE because of the low resolution of the
2nd-order system required to anaivze the
motion.

EXPERIMENT 2. TWO-FRAME KDE

The first experiment shows that accurate per-
formance in shape identification is dependent
upon a global (primarily 1st-order) optic flow. If
a stimulus manipulation makes that optic flow
noisy or otherwise interferes with the optic flow
computation. there 1s little or no KDE. This
occurs even though foveal scrutiny does reveal
the mouion 1n these displays.

If the percept of surface shape depends upon
a giobal optic fiow, then we should be able to
get reasonable shape identification performance
from any stumulus that results in a strong per-
cept of optic flow. In particular, the extended
(2 sec) viewing conditions of expt | should not
be necessary. Two frames are obwviously the
minimum number of frames that can vield a
percept of motion. and two frames should
suffice. In the second expenment, we investigate
the accuracy of performance in the shape
identification task for two-frame displays.

Method

Subjects. There were two subjects in this
experiment. One was an author, and the other
was a graduate student naive to the purposes of
this experiment. Both had normal or corrected-
to-normal vision. There were slight differences
in the conditions for each of the two subjects.
These will be pointed out below.

Stimuli and apparatus. The sumuli were simi-
lar to the white-on-gray dot stimuli from expt 1.
Stimuh were generated from the same set of 3D
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shapes, using the same dot densities, and pro-
jected in the same way. The local dot density
was kept constant using the same scintillation
procedure. New stimuli were computed, two of
the flat shape, and one of each of the other 52
shapes, resulting in 54 displays.

Each display consisted of 11 frames, rotating
from 20 deg left to 20 deg right in increments of
4 deg per frame. The middle frame (number 6)
was face-forward, as was the first frame of each
display in expt i, Two-frame stimuli consisted
of a presentation cf the middle frame followed
by one of the other 10 display frames. This
resulted in either a leftward or rightward ro-
tation of 4-20 deg between the two frames of the
display. A single trial display consisted of 0.5 sec
of a cue spot, 0.5 sec blank, the first frame, an
inter-stimulus blank interval (or IS1), the second
frame, and a blank. Each stimulus frame was
repainted four times at 60 Hz, for a total dur-
ation of 67 msec. We define the ISI to be the
time interval between the onset of the last
painting of the first stimulus frame and the onset
of the first painting of the second stimulus
frame. For example, when no blank frames were
used. the ISI was 16.7 msec. Displays were

Purcent Correct

4 8 12 18 20
Degrees of Rotatton

Percent Correc!
"
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4 deg rotation

] 12 deg rotation
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182 x 182 pixels, and were presented using the
same apparatus and viewing conditions as for
subject LJJ in expt 1. The background lumi-
nances for subjects MSL and LJJ were
15.6 cd/m? and 5.0 cd/m’, respectively. The cor-
responding dot luminosities were 26.8 and
15.7 extra ucd/dot, respectively. Nominal con-
trasts were huge (1.e. nominal Weber contrasts
of 500% or more).

Procedure. The task was shape and rotation
identification. Subjects keyed their responses
using response buttons, and received feedback
on the display after their response. Three groups
of trials were run. In the first, the ISI was
16.7 msec, and rotation angle between frames
was varied from 4 to 20 deg. Since the second
frame could be chosen from either the frames
preceding or succeeding the middle frame
(rotation to the left or night), this resulted in 540
possible stimuli (54 displays, 2 directions, §
rotation angles). These were run in random
order 1n 4 blocks of 135 tnals. In the second
group of tnals, rotation was kept constant at
4 deg. ISI ranged from 16.7 to 83.3 msec. This
again resulted in 340 trials presented in random
order in 4 blocks of 135 tnals. In the third group
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Fig. 4. Results of expt 2. Data for two subjects are shown. Error bars indicate =1 SEM. (A)

Shape-and-rotation identification accuracy as a function of the angle of rotation between the two frames

IST was 16.7 msec. (B) Shape-and-rotation idenufication accuracy as a function of the duration of a blank

inter-sumulus 1nterval (ISI). Rotation angic was 4deg (C) The two manipulations used in the same
expeniment. Note the lack of interaction.
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of tnals. both rotation angle and ISI were
vaned. The ISls were either 16.7 or 33.3 msec.
For subject MSL. the rotation angles were
either 4 or 12deg. For LJJ. they were either 8
or 12deg. These four conditions (two rotation
angles by two ISIs) resulied in 432 triais which
were presented in random order in 4 blocks of
108 trials.

Resulis

The results are shown in Fig. 4. Each data
point is the percent correct over 108 trals. As is
evident from the .'gure, shape identification can
be quite high for these minimal motion displays
(for similar obszrvations using different exper-
imental methodology, see Braunstein, Hofiman.
Shapiro. Andersen & Bennett, 1987, Lappin.
Doner & Kottas. 1980; Mather, 1989. and Peter-
sik. 1980;. For an ISI of 16.7 msec (Fig. 4A).
this entire sequence lasted only 133 msec. Yet.
performance was as high as 54.6% for subject
LJJ. and 88.9% for subject MSL (62.8% and
94.2% of their white-on-grayv dots performance
in expt 1. respectively). Two frames of moving
dots are sufficient for accurate, although not
perfect
performance 1n this shape identification task.
Since these experiments were first reported
(Landy. Sperling. Dosher & Perkins. 1987a:
Landy. Sperling. Perkins & Dosher. 1987b).
Todd {1988) has also shown above-chance KDE
performance for two-frame stimuli. although in
his paradigm the two frames are repeated sev-
eral imes before a response 1s made.

Rotatnion angle and fixarion. Performance as a
function of roiation angle between the o
frames 15 given 1n Fig. 4A. Performance de-
creases with increasing angle of rotation for
subjec’ MSL. For subjeci LJJ. performance
reaches a peak at §deg. and decreases for
smaller and larger rotations. The decrease in
performance with larger rotation angles is to be
expected. since the correspondence problem be-
comes increasingly difficult as dots move farther
from their imial positions. One might also
expe-t performance to drop as rotation angle
decreases to zero. At extremely small rotation
angles. the 1emaining motion would fall below
threshold. In our displays, the drop with small
rotation angles might be expected to occur even
sooner as the small motions in the display
became corrupted by poor spatial sampling
(inter-pixel distance was approx. | min arc).
This drop was only seen in the data of LJJ, and

presumably would be seen in those of MSL if he
had becn tested using smaller rotations.

In a previous paper (Dosher et al.. 1989b). we
found that adding a blank interval between
successive frames of a 30 frame KDE stimulus
reduced shape identification to near chance
performance. This was explained by reduction
of power in the stimulus to the Ist-order system.
This eftect is also seen here, where performance
decreases monotonically with increasing 1S
(Fig. 4B). Subject L1J performs at chance levels
with a 50 msec or greater ISI. while subject MSL
1s still slightly above chance performance with
an 83.3 msec IS!

Time and distance. In the previous two groups
of trials, there was a coniounding between the
sumulus manipulation (rotaiion angle or ISI)
and dot velocity. Greater rotation angles at a
fixed (16.7 msec) ISI produced greater velocities.
Similarly. greater ISIs at a fixed 4 deg rotation
angle resulted in smaller velocities. If perform-
ance were simply a function of velocity, then
rotation angle and ISI should trade off. In Fig.
4C we present the results of varying both ISl
and rotation angle factorially. We used a differ-
ent set of rotations for subject LJJ than MSL
based on the results in Fig. 4A. so that for both
subjects the performance was expected to de-
crease with incieasing rotation angles. Ascan be
seen in the figure, the two variables do not trade
ofi as would be ¢ :pected if performance were
oniv a function of velocity, or rotation speed.
Increasing rotation angle increases the difficulty
of the coirespondence problem. Increasii _ 1SI
causes increasing problems for the motion de-
tection svstem. Both manipulations degrade
performance in an additive fashion. This obser-
vation contradicts Korte's (1915) 3rd law of
apparent motion perception, which states that
an increase in IS! must be counteracted by an
increase in distance traveled for sirong apparent
motion. In Fig. 4C, Korte’s law predicts a
cross-over interaction, which is strongly dis-
confirmed. However, Burt and Sperling (1981)
show that time and distance have independent
additive effects on the strength of the apparent
motion of dot sumuli, which agrees with the
present results.

KDLCZ from optic flow. Accurate KDE per-
formance requires a global optic dow. When
that optic flow is produced by a minimal motion
stimulus—a two-frame display—the shape per-
cept may be fragile and easily degraded by a
varicty of stimulus manipulations. The stimuli
are quite brief in this paradigm and. by sub,ect
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reports, appear as a collection of dots moving
at various speeds, i.e. “look like” an optic
flow. On some trials, only patches of planar
motion are perceived. and the shape response
is generated cognitively. On other trials, a
3D surface is perceived. On some trials the
optic flow is perceived and so is the shape,
but the shape percept is only “felt” after the
display is over. As we discussed extensively in
our first article on the shape identification
task (Sperling et al., 1989), KDE is inextricably
tied with the percept of an optic flow. It can
be very difficult to differentiate empincally
between a judgment based on a 3D percept
and performance based on an alternative strat-
egy (computationally equivalent to that re-
quired for KDE) using a remembered set of 2D
velocities.

Reasonably accurate performance on the
shape-and-rotation identification task results
from only two frames of 300 points. In the
computer vision literature. there have been sev-
eral studies of the structure-from-motion prob-
lem resulting in theorems of the following form:
**m views of n points under the following restric-
tions of the motion path suffice to determine the
3D structure up to a reflection” (Bennett &
Hoffman. 1985; Hoffman & Bennett. 1985:
Hoffman & Flinchbaugh. 1982: Uliman, 1979).
It has been suggested that these minimal con-
ditions for structure from motion also govern
human perception (Braunstein et al., 1987;
Petersik. 1987). The particular models just men-
tioned do not have any prediction concerning
performance in the 300 points 2 views situation
used here. An exception is a recent paper by
Bennet:. Hoffman. Nicola and Prakash (1989),
where 1t is shown that there is a one parameter
family of possible interpretations for two frames
of four or more points. This family is parame-
terized by the slant of the axis of rotation (as in
the “‘isokinescopic displavs™ described by Adel-
son, 1985), and the paper does not deal explic-
itly with rotation axes in the image plane. as
used here. On the other hand, models that
compute 3D structure based only upon a single
velocity field do allow for this performance
(Longuet-Higgins & Prazdny. 1980; Koenderink
& van Doorn. 1986). We take our experimental
results as evidence for optic flow-based methods
for the KDE, as opposed to models requiring
three or more vicws. In particular, our results
strongly rule out models that require measure-
ment of acceleration in addition 10 velocity (e.g.
Hoffman, 1982).

Structure-from-motion computation may
improve its 3D representation with additional
information (e.g. with additional frames,
Grzywacz, Hildreth, Inada & Adelson, 1988;
Hildreth & Grzywacz, 1986; Landy, 1987;
Ullman, 1984). The shape in our two-frame
displays does not always appear to have the
depth extent that results from the 30 frame
displays of expt I, and two-frame performance
is reduced relative to 30-frame performance.
The shape identification task can be solved by
knowing only the sign of depth and direction of
motion in each spatial location (up to a reflec-
tion), without accurately estimating either vel-
ocity or the amount of depth.

DISCUSSION

Two experiments investigated the type of
motion detection mechanism used as an input to
the structure-from-motion system. Performance
in the shape-and-rotation identification task
was accurate regardless of the token used to
carry the motion. as long as that token was
presented with constant contrast polarity (the
white-on-gray and pattern-on-gray conditions).
The performance decrements seen with contrast
polarnity alternation and the two microbalanced
conditions add further evidence to the con-
clusion of Dosher et al. (1989b) that Ist-order
motion detectors are the pnmary substrate for
the computation of shape. In addition. there are
indications of an input to the shape compu-
tation from 2nd-order motion mechanisms.
which 1s weak, low in spatial resolution, and
concentrated at the fovea. 2nd-order mechan-
isms that require temporal filtering (i.e. detec-
tion of flicker) prior to a point nonlinearity were
useless here because of the spatial resolution
required by our stimuli. These sorts of detectors
would only be useful for KDE displays involv-
ing a small number of moving features, rather
than the densely sampled optic flows required
for the determination of precise shapes of
curved surfaces from motion cues. The results
from the two-frame experiments reinforced
these conclusions. They also demonstrated “hat
detection of instantaneous velocity is suffic ent
for KDE; acceleration is not required, nor are
more than two views.
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OBJECT SPATIAL FREQUENCIES, RETINAL SPATIAL
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Abstract—To determine which spatial frequencies are most effective for letter identification, and whether
this is because letters are objectively more discriminable in these frequency bands or becau n utilize
the information more efficiently, we studied the 26 upper-case letters of English. Six two-octave wide filters
were used to produce spatially filtered letters with 2D-mean frequencies ranging from 0.4 to 20 cycles per
letter height. Subjects attempted to identify filtered letters in the presence of identically filtered, added
Gaussian noise. The percent of correct letter ider:tifications vs s/n (the root-mean-square ratio of signal
to noise power) was determined for each band at four viewing distances ranging over 32:1. Object spatial
frequency band and s/n determine presence of information in the stimulus; viewing distance determines
retinal spatial frequency, and affects only ability to wtilize. Viewing distance had no effect upon letter
discriminability: object spatial frequency, not retinal spatial frequency, determined discriminability. To
determine discrimination efficiency, we compared human discrimination to an ideal discriminator. For our
two-octave wide bands, s/n performance of humans and of the ideal detector improved with frequency
mainly because linear bandwidth increased as a function of frequency. Relative to the ideal detector,
human efficiency was 0 in the lowest frequency bands, reached a maximum of 0.42 at 1.5 cycles per object
and dropped to about 0.104 ir the highest band. Thus, our subjects best extract upper-case letter
information from spatial frequencies of 1.5 cycles per object height, and they can extract it with equal
efficiency over a 32:1 range of retinal frequencies, from 0.074 to more than 2.3 cycles per degree of visual

angle.

Spatial filtering Scale invariance

INTRODUCTION

Characterizing objects

When we view objects, what range of spatial
frequencies is critical for recognition, and how
is our visual system adapted to perceive these
frequencies? Ginsburg (1978, 1980) was among
the first to investigate this problem by means of
spatial bandpass filtered images of faces and
lowpass filtered images of letters. He noted the
lowest frequency band for faces and the cutoff
frequency for letters at which the images seemed
to him to be clearly recognizable. The cutoff
frequency for letters was 1-2 cycles per letter
width; faces were best recognized in a band
centered at 4 cycles per face width. He also
proposed that the perception of geometric visual
illusions, such as the Mueller-Lyer and Poggen-
dorf, was mediated by low spatial frequencies
(Ginsberg. 1971, 1978; Ginsberg & Evans,
1979).

*To whom reprint requests should be addressed.

Psychophysics

Contrast sensitivity Acuity

An issue that is related to the lowest fre-
quency band that suffices for recognition is the
encoding economy of a band. For a filter with
a bandwidth that is proportional to frequency
(e.g. a two-octave-wide filter), the lower the
frequency, the smaller the number of frequency
components needed to encode the filtered image
of a constant object. Combining these two
notions, Ginsburg concluded that objects were
best, or most efficiently, characterized by the
lowest band of spatial frequencies that sufficed
to discriminate them. Ginsburg (1980) went on
to suggest that higher spatial frequencies were
redundant for certain tasks, such as face or
letter recognition.

Several investigators were quick to point out
that objects can be well discriminated in various
spatial frequency bands. Fiorentini, Maffei and
Sandini (1983) observed that faces were well
recognized in either high or in lowpass filtered
bands. Norman and Erlich (1987) observed that
high spatial frequencies were essential for dis-
crimination between toy tanks in photographs.
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With respect to geometric illusions, both Janez
(1984) and Carlson, Moeller and Anderson
(1984) observed that the geometric illusions
could be perceived for images that had been
highpass filtered so that they contained no
low spatial frequencies. This suggests that low
and high spatial frequency bands may carry
equivalently useful information for higher visual
processes.

Characterizing the visual system

In the studies cited above, the discussion of
spatial filtering focuses on object spatial fre-
quencies, that is, frequencies that are defined in
terms of some dimension of the object they
describe (cycles per object). Most psychophysi-
cal research with spatial frequency bands has
focused on retinal spatial frequencies, that is,
frequencies defined in terms of retinal coordi-
nates. For example, the spatial contrast sensi-
tivity function (Davidson, 1968, Campbell &
Robson, 1968) describes the threshold sensi-
tivity of the visual system to sine wave gratings
as a function of their retinal spatial frequency.
Visual system sensitivity is greatest at 3-10
cycles per degree of visual angle (c/deg). How
does visual system sensitivity relate to object
spatial frequencies?
retinal spatial

Unconfounding and object

Sfrequencies

Retinal spatial frequency and object spatial
frequency can be varied independently to deter-
mine whether certain object frequencies are best
perceived at particular retinal frequencies. Ob-
ject frequency is manipulated by varying the
frequency band of bandpass filtered images;
retinal frequency is manipulated by varying the
viewing distance.

The cutoff object spatial frequency of lowpass
filters and the observer's viewing distance were
varied independently by Legge, Pelli, Rubin and
Schleske (1985) who studied reading rate of
filtered text at viewing distances over a 133:1]
range. Over about a 6:1 middle range of dis-
tances, reading rate was perfectly constant, and
it was approximately constant over a 30:1
range. At the longest viewing distances, there
was a sharp performance decrease (as the
letters became indiscriminably small). At the
shortest viewing distance. performance de-
creased slightly, perhaps due to large eye move-
ments that the subjects would have to execute
to bring relevant material towards their lines of
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sight, and to the impossibility of peripherally
previewing new text.

While viewing distance changed the overall
level of performance in Legge et al., the cutoff
object frequency of their low-pass filters at
which performance asymptoted did not change.
From this study, we learn that reading rate can
be quite independent of retinal frequency over a
fairly wide range, and that dependence on criti-
cal object frequency does not depend on viewing
distance. Because the authors measured reading
rate only in lowpass filtered images, we cannot
infer reading performance in higher spatial fre-
quency bands from their data.

Unconfounding object statistics and visual system
properties

Human visual performance is the result of the
combined effects of the objectively available
information in the stimulus, and the ability of
humans to utilize the information. In studying
visual performance with differently filtered im-
ages, it it critical to separate availability from
ability to utilize. For example, narrow-band
images can be completely described in terms
of a small number of parameters—Fourier
coefficients or any other independent descrip-
tors—than wide-band images. Poor human
performance with narrow-band images may
reflect the impoverished image rather than
an intrinsically human characteristic—an ideal
observer would exhibit a similar loss.

The problem of assessing the utility of stimu-
lus information becomes acute in comparing
human performance in high and in .ow fre-
quency bandpass filtered images. Typically,
filters are constructed to have a bandwidth
proportional to frequency (constant bandwidth
in terms of octaves). For example, Ginsburg
(1980) used faces filtered into 2-octave-wide
bands; while Norman and Ehrlich (1987) also
used 2-octave bands for their filtered tank pic-
tures. With such filters, high spatial frequency
images contain more independent frequencies
than low frequency images.

Although linear bandwidth represents per-
haps the important difference between images
filtered in octave bands at different frequencies,
the informational content of the various bands
also depends critically on the nature of the
specific class of objects, such as faces or letter.
Obviously, determining the information content
of images is a difficult problem. When it is not
solved. the amount of stimulus information
available within a frequency band is confounded
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with the @bility of human observers to use the
information. Direct comparisons of perform-
ance between differently filtered objects are
inappropriate. This distinction between objec-
tively available stimulus information and the
human ability to use it has not been adequately
posed in the context of spatial bandpass
filtering.

Efficiency

In the present context, physically available
information is best characterized by the per-
formance of an ideal observer. If there were no
noise in the stimulus, the ideal observer would
invariably respond perfectly. To compare the
performance of an observer, human or ideal,
noise of root-mean-square (r.m.s.) amplitude n
is progressively added to the signal of r.m.s.
amplitude s until the performance is reduced to
some criterion, such as 50% correct in a letter
identification task. This defines the signal to
noise ratio, (s/n),, for a criterion ¢. Efficiency eff
of human performance is defined by:

7= GG

where /# and i indicate human and ideal observ-
ers, and s and n are r.m.s. signal and noise
amplitudes (Tanner & Birdsall, 1958). In a pure,
quantally limited system, efficiency actually
represents the fraction of quanta absorbed
(utilization efficiency). In the context of signal
detection theory, efficiency is given by a 4’ ratio:
effl =(d,/d]).

Orverview

For an object that contains a broad spectrum
of spatial frequencies, object spatial frequency is
determined by the center frequency of a spatial
bandpass filtered image. Retinal spatial fre-
quency is determined by the viewing distance at
which the stimulus is viewed. Stimulus infor-
mation is determined jointly by the signal-to-
noise ratio, by the spatial filtering, and by the
characteristics of the set of signals; these three
informational components are combined in the
efficiency computation. Letters are a convenient
stimulus to study because they are highly over-
learned so that human performance can be
expected to be reasonably efficient, and because
much is already known about the visibility of
letters in the presence of internal noise (letter
acuity) and about the visual processing of
letters.

Specifically, to determine the roles of object
and retinal spatial frequencies, letters are
filtered into various frequency bands. Noise is
added, and the psychometric function for cor-
rect identification is determined as a function
of s/n. Accuracy depends only on s/n and not on
overall contrast, for a wide range of contrasts
(Pavel, Sperling, Riedl & Vanderbeck, 1987).
This determination is repeated for every combi-
nation of object frequency band and viewing
distance. Thereby, retinal spatial frequency
and object spatial frequency are unconfounded,
enabling us to determine whether a particular
object frequency band is better discriminated
in one visual channel (retinal frequency) than
any other (Parish & Sperling, 1987a, b). More-
over, by computing an ideal observer for the
identification task, we obtain an objective
measure of the information that is present in
each of the frequency bands. Finally, the com-
parison of human performance with the per-
formance of the ideal observer gives us a precise
measure of the ability of our subjects to utilize
the information in the stimulus. Having
untangled these factors, we can determine which
spatial frequencies most efficiently characterize
letters for identification.

METHOD

Two experiments were conducted using simi-
lar stimuli and procedures.

Stimuli

Letters (signals) and noise. The original,
unfiltered letters were selected from a simple
5 x 7 upper-case font commonly used on CRT
terminals. Since this is an experiment in pattern
recognition, we felt that the simplest letter pat-
tern might be the most general; indeed, this font
has been widely used in letter discrimination
studies. For the purpose of subsequent spatial
filtering, the letters were redefined on a pixel
grid that measured 45 (vertical height) x 35
(maximum horizontal extent of letters M and
W). The letters had value 1 (white); the back-
ground had value 0 (black). To avoid edge
effects in filtering, the background was extended
to 128 x 128 pixels for all computations. How-
ever, only the center 90 x 90 pixels of the stimu-
lus were displayed, as these contained effectively
all the usable stimulus information, even for
low spatial-frequency stimuli. Letters for pres-
entation were chosen pseudo-randomly from
the set of 26 upper-case English letters. Noise
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Table 1. Parameters of the bandpass filters: lower and upper
half-amplitude frequencies, peak, and 2D mean frequencies
in cycles/letter height

Band Lower Peak Upper Mean*
0 0 Lowpass 0.53 0.39
i 0.26 0.53 1.05 0.74
2 0.53 1.05 2.11 1.49
3 1.05 Ry 4.2 292
4 211 4.22 8.44 5.77
S 6.33 Highpass 225 20.25

*Frequencies are weighted according to their squared ampli-
tude (power) in computing the mean.

fields were defined on a 128 x 128 array by
choosing independent Gaussian noise samples
for each pixel, with the mean equal to zero and
a variance ¢? as required by the condition. (As
with the letters, only the central 90 x 90 pixels
were displayed.) Forty different noise fields were
created.

Filters. Each stimulus consisted of a filtered
letter added to an identically filtered noise field.
Six spatial filters were available, corresponding
to six successive levels of a Laplacian pyramid
(Burt & Adelson, 1983). The zero-frequency
component was added to the images so that they
could be viewed. The object-relative filter
characteristics, upper and lower half-amplitude
cutoff and 2D mean frequency (cycles per
letter height), appear in Table 1. The 2D mean
frequency f for a given band is:

127 I /\27 127
i
!

J=¥ Y f.a,/Y Yl
x=0)=0 i x=m0 =0
where f,, is the 2D frequency and a,, is its
amplitude. Cycles per object height is used
rather than the more usual cycles per object
width because the height of our upper-case
letters remained constant across the entire set,
whereas the width varied between letters.

The transfer functions (spectra) of the filters
are displayed in Fig. 1. Approximately, filters
are separated in spatial frequency by an octave
(factor of 2) and have a bandwidth at half-
amplitude of two octaves. The small mound in
the lower right corner of Fig. 1 is a negligible
imperfection in filter 4. For convenience, the
limited range of spatial frequencies passed by
each of the filters will be referred to as the band
of that filter; a specific band is b, (i =0, 1, 2, 3,
4, 5), where b, is the lowest set of frequencies
and b, is the highest.

The filter spectra (shown in Fig. 1) are
approximately symmetrical in log frequency
coordinates, a symmetrical spectrum in log co-
ordinates is highly skewed to the right in linear
frequency coordinates, resulting in a mean that
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Cycles/fiold width
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0.7 14 28 56 N2
Cycles/ letter haight

Fig. 1. Filter characteristics for the filters used in the
experiments. There are two abscissas, both on a log scale.
The top abscissa is the frequency in cycles per unwindowed
field width (128 pixels), the bottom abscissa is in cycles per
letter height (45 pixels). The ordinate is the normalized gain.
The parameter i indicates the filter designation b, in the text.

is much greater than the mode. In a 2D (vs 1D)
filter, the rightward shift is accentuated. For
example, band 2 has a peak frequency of 1.05
c/object but a 2D mean frequency of 1.49
c/object. The single most informative character-
ization of such a skewed bandpass spectrum
depends somewhat on the context; usually use
the mean rather than the peak.

Figure 2 (top) shows the letter G, filtered in
bands 1-5 without noise; the bottom shows the
same signals plus noise, s/n =0.5. The full
128 x 128 array (extended by reflection beyond
its edges) was passed through the filter so that
the effect of the picture boundary did not
intrude into the critical part of the display.

Signal 1o noise ratio, s/n. A filtered letter is a
signal. Let i, j index a particular pixel in the x, y
coordinate space of the stimulus. The signal
contrast c,(,j) of pixel i,j is:

U I)
)

where /,, is the luminance of pixel i, j and /, is
the mean signal luminance over the 90 x 90
array. Signal power per pixel, s, is defined as
mean contrast power averaged over the 90 x 90
pixel array:

i, j) = 8]

I J
s=()"' LY ei,j) @

where ¢, is the contrast of pixel i, j and
1=7=90.

Noise contrast ¢,(i, j) is the value of the i, jth
noise sample divided by the mean luminance.
Analogously to signal power (equation 2), noise
contrast power per pixel, n, is equal to (o /l,).
The signal to noise ratio is simply s/n.
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Quantization. Our display system produced
256 discrete luminance levels. Level 128 was
used as the mean luminance {,; [, was
47.5cd/m’. To produce a visual display of a
given letter, band, and s/n, signal power s and
noise power n were normalized so that the
luminance of every one of the 8100 displayed
pixels fell within the range of the display system;
there was no truncation of the tails of the
Gaussian noise. (Although the relationship be-
tween input gray-level and output luminance
was not quite linear at the extreme intensity
values, it was determined that more than 90%
of the pixels fell within the linear intensity
range.) Intensity normalization was applied sep-
arately to each stimulus (combination of signal
plus noise). By normalizing the total stimulus
s +n, the actual value of s displayed to the
subject diminished as n increased; i.e. the actual
value of s was not known by the subject. Indeed,
even stimuli with precisely the same letter in the
same band and with the same s/n might be
produced with slightly different s and n depend-
ing on the extreme values of the noise fields.

Seven values of s/n were available for each
band. chosen in a pilot study to insure that the
data yielded the entire psychometric function
(chance to best performance). The same pilot
study showed that subjects never performed
above chance when confronted with noise-free
letters from b, this band was omitted from the
present study.

Procedure: experiment |

Four of the experimental variables—letter
identity. noise field, frequency band, and s/n—
were randomized within each session. A fifth
variable, viewing distance, was held constant
within each session and was varied between
sessions. Four viewing distances were used:
0.121, 0.38. 1.21 and 3.84 m. A chin rest was
used to stabilize the subject’s head for viewing
at the shortest distance. At the four distances,
the 90 x 90 pixel stimulus subtended 31.6, 10,
3.16 and 1.0 deg of visual angle respectively. The

upper and lower half-amplitude cut-off retinal
frequencies for the upper six filters, with respect
to the four viewing distances used in this exper-
iment, and for a fifth distance used in the second
experiment, appear in Table 2. Subjects partici-
pated in four I-hr sessions at each wviewing
distance. Each session consisted of 315 trials,
nine trials at each of seven s/n’s for each of the
five frequency bands.

Prior to the first session, subjects were shown
noise-free examples of the unfiltered letters.
They were told that each stimulus presentation
consisted of a letter and a certain amount of
noise, and that the letter may appear degraded
in some way. They were informed that at no
time would a letter be shifted in orientation or
from its central location in the stimulus field.
Finally, they were instructed to view each stimu-
lus for as long as they desired before making
their best guess as to which letter had been
presented. A response (letter identity) was
required on every trial. Subjects typed the
response on a keyboard connected to the host
computer (Vax 11/750); subsequently, typing a
carnage return erased the video screen and
initiated the next trial in a few seconds. The
room illumination was very dim; the response
keyboard was lighted by stray light from its
associated CRT terminal. No feedback was
offered to the subjects.

Observers

Three subjects, two male and one female,
between the ages of 20 and 27 participated in the
experiment. All subjects had normal or cor-
rected-to-normal vision. One of the subjects was
a paid participant in the study.

Procedure: experiment 2

This experiment was run before expt 1. It is
reported here because it offers additional data
with two new and one old subject at a fifth
viewing distance. Except as noted, the pro-
cedures are similar to expt 1. The screen was
viewed through a darkened hood at a distance

Table 2 Lower and upper half-power frequency and 2D mean frequency (in ¢ 'deg of visual angle) for all bands and viewing
distances used in both experiments

Viewing distance (m)

Band 012 038 1.21 384 048
0 (lowpass) 0.00 004(003) 000 012(009) 0.00037(0.27) 0.00 118(0.87) 000 015(011)
1 002-0.07(00%) 006-023(016) 018-074(0.52) 0.58 234(]1 6% 007-029¢0.21)
2 004015010 0.12-047(0.33) 0.37-148(1.04) 1.18-4.70 (3 30) 0.15-059(04h
3 0.07-0.30(0 20) 0.23-0 94 (0.64) 074.297(204) 2.34-9.40 (6 48) 029 1.18(081)
4 0.15-0.59 (0 40) 047-1.88(1.27) 1.48-5.94 (4.04) 4.70-18.80(12.82) 0.59 2.36(1.60)
5 (highpass) 0.30 2.25(1 41) 094 7.13(445) 297-2253(14.19) 9.40 7127(45.00) 1.77-896(5.6%)
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of 0.48 m. At this distance, the 90 x 90 stimuli
subtended 7.15deg of visual angle. The half-
amplitude cut-off frequencies and the mean
frequencies of the six spatial filters are given in
the rightmost column of Table 2. Three male
subjects between the ages of 20 and 27 par-
ticipated in the experiment. All subjects had
normal or corrected-to-normal vision. Two of
the subjects were paid for their participation,
and one, DHP, also participated in expt 1. Five
sessions of 315 trials were run for each subject.

RESULTS
Psychometric functions: p vs log,, s/n

The measure of performance is the observed
probability p of a correct letter identification.

The complete psychometric functions are dis-
played in Figs 3 (expt 1) and 4 (expt 2). A
separate psychometric function is shown for
cach subject, viewing distance and frequency
band. In band b,, for all subjects, performance
asymptotes (for noiseless stimuli) at  ~ 0.5. In
all other bands, performance improves from
near-chance (1/26) to near perfect as the value
of s/n increases.

Noise resistance as a function of frequency band

An obvious aspect of the data of both exper-
iments is that the data move to the left of the
figure pancls as band spatial frequency in-
creases. This means that high spatial frequency
stimuli (bands b,, b,) are identifiable at smaller
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Fig. 3. Psychometric functions from expt 1. Each graph displays performance as a function of log,, s'n,
within a frequency band The parameter is viewing distance. Subjects are arranged in columns and
frequency band is arranged in rows, progressing from the highest frequency band at the top to the iowest
band at the bottom. The four viewing distances are 3.84 (Q). 1.2t (A).038(0).and 0.121 (¢'m
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Fig. 4. Psychometric functions for each subject and fre-

quency band in expt 2. Viewing distance was 0.48 m. The

five frequency bands, b,~b,, are indicated, respectively, by

O. 0. A. ¢ and +. The probability of a correct response
is plotted as a function of log,, s/n.

s/n than stimuli in bands b, and b,; resistance to
noise increases with spatial frequency band. To
enable comparisons of noise sensitivity as a
function of band, the s/n at which p = 50% was
estimated for each subject and frequency band
from expt 1 by means of inverse interpolation
from the best fitting logistic function. As view-
ing distance had no effect, all estimates were
made using the data collected when viewing
distance was equal to 0.38 m. A graph of these
(s/n)y., points as a function of the mean object
frequency of the band is plotted in Fig. 5§ (Q).
For comparison, the expected rate of improve-
ment in (s/n)s.,, based on the increasing num-
ber of frequency components as one moves from
low to high frequency bands, is plotted as a
series of parallel lines in Fig. 5. Performance
improves [(s/n)y., decreases] somewhat faster
than 1/f (the slope of the parallel lines). These
results, and Fig. 5, will be analyzed in detail in
the Discussion section.

—ask isross
032 056 100 170 3.9 562 0.0 178 316

2D Meon frequency (cycles/Letter height)
Fig. 5. Performance of human subjects and various compu-
tational discriminators. The abscissa indicates log,, of the
mean frequency of each bandpass stimulus. The ordinate
indicates the (interpolated) s/n ratio at which a probability
of a correct response p = 0.5 is achieved. Circles indicate
each of the three subjects in expt | at the intermediate
viewing distance of 1.21m. In band 5,, 2 of 3 human
subjects fail to achieve 50% correct (eff = 0); these points lie
outside the graph. (A) indicates sub-ideal and () indicates
super-ideal performances of discriminators that brackets the
ideal discriminator. The shaded area below the super-ideal
discriminator indicates theoretically unachievable perform-
ance. Squares indicate performance of a spatial correlator-
discriminator. The oblique parallel lines have slope — 1 that
represents  the improvement in expected performance
(decrease in s/n) as function of the number of frequency
components in cach band when filter bandwidth is
proportional to frequency.

The non-effect of viewing distance

Another property of the data is that, in most
conditions, viewing distance has no effect on
performance. Analysis of variance, carried out
individually for each subject, shows that there is
no significant effect of distance in any band for
subject dhp and a significant effect of distance in
bands b, and b, for the other two subjects.
Further analysis by a Tukey test (Winer, 1971)
in bands b, and b, for these subjects shows that
the only significant effect of distance is that
visibility at the longest viewing distance is better
than at the other three distances. For subject
CJD, the improvement is equivalent to a gain in
s/n of 0.19 and 0.28 log,, (for bands b, and b,
respectively); for MAYV, the corresponding gains
were 0.21 and 0.40.

Improved performance at long viewing dis-
tances is almost certainly due to the square
configuration of individual pixels, which pro-
duces a high frequency spatial pixel noise that is
attenuated by viewing from sufficiently far away
(Harmon & Julesz, 1973). In low frequency
bands, pixel-boundary noise is not a problem
because the spatial filtering insures that adjacent
pixels vary only slightly in intensity. We ex-
plored the hypothesis of pixel-boundary noise
with subject CJD, who showed a distance effect
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in band 5. At an intermediate viewing distance
of 1.21 m, CJD squinted her eyes while viewing
stimuli from band 5. By blurring the retinal
image of the display in this way, performance
improved approximately to the level of the
furthest viewing distance.

To summarize, the only significant effect of
distance that we observed was a lowering of
performance at near viewing distances relative
to the furthest distance. This impairment
occurred primarily in bands 4 and 5. In these
bands, the spatial quantization of the display
(90 x 90 square-shaped pixels) produces arti-
factual high spatial frequencies that mask
the target. These artifactually produced spatial
frequencies can be attenuated by deliberate
blurring (squinting). or by producing displays
with higher spatial resolution, or by increasing
the viewing distance to the point where the pixel
boundaries are attenuated by the optics of the
eye and neural components of the visual modu-
lation transfer function. In all cases, blurring
improves performance and eliminates the
slightly deleterious effect of a too small viewing
distance. Thus, for correctly constructed stim-
uli, in the frequency ranges studied, there would
be no significant effect of viewing distance on
performance. This finding is in agreement with
the results of Legge et al. (1985), who examined
reading rate rather than letter recognition. It is
in stark disagreement with the results of
sinewave detection experiments in which retinal
frequency is critical—see Sperling (1989) for an
explanation.

DISCUSSION

A comparison of performance in different
frequency bands shows that subjects perform
better the higher the frequency band; and sub-
jects require the smallest signal-to-noise ratio
in the highest frequency band. To determine
whether performance in high frequency bands is
good because humans are more efficient in
utilizing high-frequency information, or because
there is objectively more information in the
high-frequency images, or both, requires an
investigation of the performance of an ideal
observer. The performance of the ideal observer
is the measure of the objective presence of
information. Human performance results from
the joint effect of the objective presence of
information and the ability of humans to utilize
that information. Human efficiency is the ratio
of human performance to ideal performance.

Ideal discriminator

Definition. An ideal discriminator makes the
best possible decision given the available data
and the interpretation of “best.” The perform-
ance of the ideal discriminator defines the objec-
tive utility of the information in the stimulus.
We prefer the name ideal discriminator, rather
than ideal observer, because it indicates the
critical aspect of performance under consider-
ation, but we occasionally use ideal observer to
emphasize the relations to a large, relevant
literature on this subject. Qur purposes in this
section are first, to derive an ideal discriminator
for the letter identification task, second, to
develop a practical working approximation to
this discriminator, and third, to compare the
performance of the human with the ideal dis-
criminator.

Although ideal observers have recently come
into greater use in vision research, the appli-
cations have focused primarily on determining
the limits of performance for relatively low-level
visual phenomena. For example, Barlow (1978,
1980), and Barlow and Reeves (1979) investi-
gated the perception of density and of mirror
symmetry; Geisler (1984) investigated the limits
of acuity and hyperacuity; Legge, Kersten and
Burgess (1987) examined the pedestal effect;
Kersten (1984) studied the detection of noise
patterns; and Pelli (1981) detailed the roles of
internal visual noise. Geisler (1989) provides an
overview of efficiency computations in early
vision. Our application differs from these in that
we expand the techniques and apply them to
a higher perceptual/cognitive function, letter
recognition.

For the letter identification task, the ideal
discriminator is conceptually easy to define. A
particular observed stimulus, x, representing an
unknown letter plus noise, consists of an inten-
sity value (one of 256 possible values) at each of
90 x 90 locations. The discriminator’s task is to
make the correct choice as frequently as possible
from among the 26 alternative letters.

The likelihood of observing stimulus x, given
each of the 26 possible signal alternatives, can
be computed when the probability density func-
tion of the added noise is known exactly. The
optimal decision chooses the letter that has the
highest likelihood of yielding x. The expected
performance of the ideal discriminator is com-
puted by summing its probability of a correct
response over the 256"'® possible stimuli (256
gray levels, 90 x 90 pixels). Unfortunately,
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Fig. 6. Flow chart of the experimental procedures tha
Upper half indicates space-domain operations; lower
frequency domain. Computations are carried out on

t are modelled by the ideal discriminator analysis.
half indicates the corresponding operations in the
128 x 128 arrays; the subject sees only the center

90 x 90 pixels. A random letter and a random noise ficld are cach filtered by the same filter (b); the noise

is amplified to provide the desired signal-to-noise ratio;

; the letter and noise are added, the outpul 1s scaled

and quantized (represenied by the addition of digitization noise), and the result is shown to the subject.
In the frequency domain w,. w,, the bandpass filter selects an annulus, whereas the quantization noise

is uniform owv

when there is both bandpass filtered and inten-
sity quantization, the usual simplifications that
make this enormous computation tractable are
not applicable.

As an alternative to computing the expected
performance of the ideal discriminator, one can
compute its performance with a particular sub-
set of the possible stimuli—the stimuli that the
subject actually viewed or, preferably, a larger
set of stimuli for more reliable estimation. This
Monte Carlo simulation of the performance
of the ideal discriminator is a tractable com-
putation that yields an estimate of expected
performance.

Derivation. Stimulus construction is dia-
grammed in Fig. 6 which shows the equivalent
operations in the space and the frequency do-
mains. To derive an ideal discriminator, we need
to carefully review the processes of stimulus
construction. We use uppercase letters tz rep-
resent quantities in the frequency domain and
lowercase letters to represent quantities in the
space domain. A letter is defined by a 90 x 90
array that takes the value 1 at the letter
locations and 0 at the background locations.
When this array is spatially filtered in band b, it
defines the letier template 1, ,(x,y), where i

er w,, 0,

indicates the particular letter, b the frequency
band, and x,y the pixel location. We write
T, y(w,, w,) for the Fourier series coefficient of
t,, indexed by frequency.

An unknown stimulus u, ,(x, y) to be viewed
by a subject is produced by adding filtered
n,(x, y) with post-filtering variance ¢%, to the
template ¢, ,(x, y), where letter identity i is un-
known to the subject. The stimulus is scaled and
digitized (quantized) to 256 levels prior to pres-
entation, contributing an additional source of
noise g, »(x, y), called dig'tization noise. Finally,
a d.c. component (dc) is added to u,, to bring
the mean luminance level to 128. These steps are
diagrammed in Fig. 6 which shows both the
space-domain and the corresponding frequency-
domain operations. The space-domain compu-
tation is encapsulated in equations (3):

ux.b(x! y) = p:.b[’l,b(x’ ,V) + "b(xv }’)] (33)
u,-_,,(x, }’) = ﬂn,b['n.b(xv }’) + "b(xv )’)]
+g,(x, y) + dc. (3b)

The scaling constant B, ,. limits the range of
real values for each pixel, prior to quantizati. n,
to [—0.5, 255.5). The degrec of scaling is deter-
mined by the maximum and minimum values in
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the function f,, +n,. Note that the extreme
values in the image are determined by o, which
is adjusted to yield the appropriate s/n for each
condition; the values of 1,, are fixed prior to
scaling. Specifically:

256
max(!, , + n,) — min(7, , + n,)’

B.»= “4)

As a result of bandpass filtering, the
noise samples in adjacent pixels are strongly
dependent on each other. Therefore, the dis-
criminator problem is best approached in the
Fourier domain, where the random variables
{Ny(w,,w,)} are jointly independent because
the filtering operations simply scale the differ-
ent frequency components without intro-
ducing any correlations (van Tress, 1968). The
task of the ideal discriminator is to pick the
template ¢, , that maximizes the likelihood of u, ,
with a priori knowledge of: (i) the fixed func-
tions ¢,,, and their probabilities; and (ii) the
densities of the jointly independent random
variables {N,(w,,w,)}. As is clear, B,,, 6}.
{0, w,, w,)}. and {N, (w,, w,)} are all jointly
distributed random variables characterized by
some density /. To compute the hkelihood of v, ,
the ideal discriminator must integrate f/ over all
possible values that may be assumed by the
set of jointly distributed random variables,
whose values are constrained only in that they
result in a possible stimulus u, ,. Unfortunately,
no closed-form solution to this problem is avail-
able, forcing us to look for an alternative
approach,

Bracketing. To estimate the performance of
the ideal discriminator, we look for a tractable
super-ideal discriminator that is better than the
ideal but which is solvable. Similarly, we look
for a tractable sub-ideal discriminator that is
worse than the ideal. The ideal discriminator
must lie between these two discriminators; that
is. we bracket its performance between that of
a “‘super-ideal” and a “‘sub-ideal” discriminator.
The more similar the performance of the super-
and sub-ideal discriminators, the more con-
strained is the ideal performance which lies
between them.

Our super-ideal discriminator is told, a priori,
the extact values 1y 8, and o2 for each sumu-
lus presentation. Therefore, it is expected to
perform slightly better than the ideal discrimi-
nator which must estimate these values from
the data. The sub-ideal discriminator estimates
these same parameters from the presented
stimulus in a simple but nonideal way. There-

fore, it is expected to perform slightly worse
than the ideal discriminator. The computational
">rms used to compute B,, and o for the
sub-ideal discriminator are presented in the
Appendix, along with the derivation of the
likelihood estimator used by both discrimin-
ators. A complete discussion of these deri-
vations and the problems associated with the
formulation of an ideal discriminator for such
complex stimuli is presented in Chubb, Sperling
and Parish (1987).

Performance of the bracketed discriminator.
The super- and sub-ideal discriminators were
tested in a Monte Carlo series of trials, in which
they each were confronted with 90 stimuli in
each of the frequency bands at each of seven s/n
values chosen to best estimate their 50% per-
formance point. The s/n necessary for 50%
correct discriminations was estimated by an
inverse interpolation of the best fitting logistic
function. The derived (s/n)y., is the measure
of performance of a discriminator. The mean
ratio, across frequency bands, of

(s/n)ge, sub-ideal;(s/n)., super-ideal

is about 2 (approx. 0.3 log,, units). The
ratio does not depend on the criterion of
performance.

Efficiency of human discrimination

In all conditions, human subjects perform
worse than the sub-ideal discriminator. Notably,
with no added luminance ..0ise, the subideal
(and, of course, the ideal) discriminator func-
tion perfectly, even in b, where subject perforr
ance is at chance, and in b, where subjec. .
reached asymptote at about 50% correct.

Data from the subjects are plotted with the
(5/n)5e, sub-ideal and (s/m)g., super-ideal in
Fig. 5. For comparison, Fig. § also shows the
performance of a correlator discriminator which
chooses the letter template that correlates most
highly with the stimulus in the space domain. In
the coordinates of Fig. 5 (log,,s/n vs log,of
where f represents the mean 2D spatial fre-
quency of the band), the vertical distance d from
the human data log(s/n).,. human down to the
bracketed discriminator log(s/n)sy.., ideal rep-
resents the log,, of the factor by which the
bracketed discriminator outperforms the human
observer at that value of f. For the purpose
of specifying efficiency, we assume the ideal
discriminator lies at the mid-point of the sub
and super-ideal discriminators in Fig. 5. The
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Fig. 7. Discrimination efficiency as a function of the mean

frequency of a 2-octave band (in cycles per letter height)

indicated on a logarithmic scale. Data are shown for three

observers: A =SAW, O =RS, O =DHP. The viewing

distance is 2.21 m, which is representative of all viewing
distances tested.

efficiency eff of human discrimination relative
to the bracketed discriminator is eff = 10~%,
where: :

d = lOg(S /n )SOQo.human - log(S /n )50°/o.ld¢al‘

The values of eff in each object frequency
band are shown in Fig. 7. In band 0, eff is zero
because human performance never reaches
50%; indeed, it never rises significantly above
4% (chance). In band 1, human performance
asymptotically climbs close to 50% as s/n ap-
proaches infinity; ¢ff = 0. In band 2, eff reaches
its maximum of 35-47% (depending on the
subject), and it declines rapidly with increasing
frequency (b,—&;).

The 42% average efficiency in band 2 is
similar in magnitude to the highest efficiencies
observed in comparable studies. For example,
efficiency has been determined for detecting
various kinds of patterns in arrays of random
dots (Barlow, 1978, 1980; van Meeteren &
Barlow, 1981), tasks which, like ours, may
require significantly cognitive processing. In a
wide range of conditions, the highest efficiencies
observed were about 50%, and frequently
lower. Van Meeteren and Barlow (1981) also
found that efficiency was perfectly correlated
with object spatial frequency and was indepen-
dent of retinal spatial frequency.

Spatial correlator discriminator. A correlator
discriminator cross-correlates the presented
stimulus with its memory templates and chooses
the template with the highest correlation. Corre-
lation can be carried out in the space or in the
frequency domain. Correlation is an efficient
strategy when noise in adjacent pixels is inde-
pendent and when members of the set of signals
have the same energy; both of these conditions

VR J-TR—L

are violated by our stimuli. However, when
sufficient prior information is available to sub-
jects, they do appear to employ a cross-corre-
lation strategy (Burgess, 1985).

It is interesting to note that the performance
of the spatial correlator discriminator over the
middle range of spatial frequencies is quite close
tc the performance of the sub-ideal discrimin-
ator. At high spatial frequencies, correlator
performance degenerates, due to its inability to
focus spatially on those pixel locations that
contain the most information. A spatial corre-
lator that optimally weighted spatial locations,
could overcome the spatial focusing problem at
high frequencies. (Spatial focusing is treated in
the next section.)

At all frequencies, the spatial correlator is
nonideal because noise at spatial adjacent pixels
is not independent. At low spatial frequencies,
the nonindependence of adjacent locations be-
comes extreme and the correlator fails miser-
ably. This points out that, for our stimuli,
correlation detection is better carried out in the
frequency domain because there the noise at
different frequencies is independent. The quali-
tative similarity between the correlator dis-
criminator and the subjects’ data suggests that
the subjects might be employing a spatial
correlation strategy, augmented by location
weighting at high frequencies.

Lowest spatial frequencies sufficient for letier
discrimination. Band 2 cosresponds to a 2-
octave band with a peak frequency of 1.05
¢/object (vertical height of letters) and a 2D
mean f{requency of 1.49 c/object. At the four
viewing distances, 1.05 c/object corresponds to
retinal frequencies of 0.074, 0.234, 0.739 and
2.34 c/deg of visual angle. We observe perfect
scale invariance: all of these retinal frequencies,
and hence the visual channels that process this
information, are equally effective in achieving
the high efficiency of discrimination.

The finding that b, with a center frequency of
1.05 c/object and a ! amplitude cutoff at 2.1
¢/object is critical for letter discrimination is in
good agreement with previous findings of both
Ginsburg (1978) for letter recognition and
Legge et al. (1985) for reading rate. Legge et al.
used low-pass filtered stimuli, which included
not only spatial frequencies within an octave of
1 c/object (b,) but also included all lower fre-
quencies. From the present study, we expect
human performance with low-pass and with
band-pass spatial filtering to be quite similar up
to 1 c/object because the lowest frequency
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bands, when presented in isolation, are percep-
tually useless (at least when presented alone).

It is an important fact that our subjects
actually performed better, in the sense of achiev-
ing criterion performance at a lower s/n ratio, at
higher frequency bands than b,. This is ex-
plained by the increase in stimulus information
in higher frequency stimuli. Increased infor-
mation more than compensates for the subjects’
loss in efficiency as spatial frequency increases.

Components of discrimination performance

Though the performance of the bracketed
ideal discriminator is useful in quantifying the
informational utility of the various bands, it is
instructive to consider the changing physical
structure of the stimuli as well. What com-
ponents of the stimuli actually lead to a gain in
information with increasing frequency? Accord-
ing to Shannon'’s theorem (Shannon & Weaver,
1949), an absolutely bandlimited 1-D signal can
be represented by a number of samples m that
is proportional to its bandwidth. When the
signal-to-noise ratio in each sample s,/n, is the
same, the overall signal-to-noise ratio s/n grows
as \/;1 In the space domain, our filters were
constructed (approximately) to differ only in
scale but not in the shape of their impulse
responses. Therefore. when the mean frequency
of a filter band increased by a factor of 2, the
bandwidth also increased by 2. Since the stimuli
are 2D, the effective number of samples in-
creases with the square of frequency, and the
increase in effective s/n ratio is proportional to
m. This expected improvement with frequency,
based simply on the increase in effective number
of samples. is indicated by the oblique parallel
lines of Fig. 5 with slope of —1. The expected
improvement in threshold s/n due simply to the
linearly increasir; bandwidth of the bands does
a reasonable job of accounting for the improve-
ment in performance for both human and
bracketed discriminators between b, and b;.

Performance of all discriminators improves
faster with frequency between 0.39 and 1.5
c/object and between 5.8 and 22 ¢/object than is
predicted from the bandwidths of the images. A
slope steeper than — 1 means that there is more
information for discriminating letters in higher
frequency bands even when the number of
independent samples is kept the same in each
band. Once sampling density is controlled. just
how much information letters happen to con-
tain in each frequency band is an ecological
property of upper-case letters.

Increasing spatial localization with increasing
frequency band. From the human observer's
point of view, the letter information in low-pass
filtered images is spread out over a large portion
of the total image array. In high spatial-fre-
quency images, the letter information is concen-
trated in a small proportion of the total number
of pixels. In high spatial-frequency images, a
human observer who knows which pixels to
attend will experience an effective s/n that is
higher than an observer who attends equally to
all pixels. In this respect, humans differ from an
ideal discriminator. The ideal discriminator has
unlimited memory and processing resources,
does not explicitly incorporate any selective
mechanism into its decision, and uses the same
algorithm in all frequency bands. Information
from irrelevant pixels is enmeshed in the
computation but cancels out perfectly in the
letter-decision process. To understand human
performance, however, it is useful to examine
how, with our size-scaled spatial filters, letter
information comes to be occupy a smaller and
smaller fraction of the image array as spatial
frequency increases.

Here we consider three formulations of the
change in the internal structure of the images
with increasing spatial frequency: (1) spatial
localization; (2) correlation between signals; and
(3) nearest neighbor analysis. We have already
noted that, in our images, the information-rich
pixels become a smaller fraction of the total
pixels as frequency band increases. Indeed, this
reduction can be estimated by computing the
information transmitted at any particular pixel
location or, more appropriately for estimating
noise resistance, by computing the variance of
intensity (at that pixel location) over the set of
26 alternative signals.

To demonstrate the degree of increasing
localization with increasing frequency, the vari-
ance (over the set of 26 letter templates) was
computed at each pixel location (x, y). Total
power, the total variance, is obtained by sum-
ming over pixel locations. The number of pixel
locations needed to achieve a specific fraction of
the total power is given in Fig. 8, with frequency
band as a parameter. These curves describe the
spatial distribution of information in the latter
templates. If all pixels were equally informative,
exactly half of the total number of pixels would
be needed to account for 50% of the total
power. The solid curves in Fig. 8 show that the
number of pixels needed to convey any percent-
age of total signal power, decreases as the
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Fraction ot power

Number of pixels

Fig. 8. Fraction of total power contained in the n most
extreme-valued pixels as a function of n (out of 8100). Solid
lines indicate the power fractions for signals; the curve
parameter indicates the filter band. Dashed lines indicate
power fractions for filtered noise fields. Although power
fractions from successive bands of noise are too close to
label, they generally fall in the same left-right 5-0 order as
those for signal bands.

frequency band increases. These information
distribution curves are an ecological property of
our set of letter stimuli; different curves would
be needed describe other stimulus. sets.

The dashed curves in Fig. 8 were derived from
random noise filtered in each of the six fre-
quency bands (b,~bs). The distribution of noise
power is very similar between the various bands,
enormously more so than the distribution of
signal power. For our letter stimuli, stimulus
information coalesces to a smaller number of
spatial locations as spatial frequency increases.

Correlation between signals. A more abstract
way of describing the change of information
with bandwidth is to note that letters become
less confusible with each other in the higher
frequency bands. A good measure of confusibil-
ity is the average pairwise correlation between
the 26 letter templates in each frequency band
(Table 3). The average correlation between
letter templates diminishes from 0.94 in band 0
to 0.31 in band 5. In a band in which templates
have a pairwise correlation over 0.9, the over-
whelming amount of intensity variation (“infor-
mation”’) is useless for discrimination. Small
wonder that subjects fail completely in this
band. Overall, performance of the ideal dis-
criminator and of observers improves as the
correlation decreases, but there is no obvious
way to use the pairwise correlation between
templates to predict performance.

Nearest neighbors. The analysis of nearest
neighbors is a useful technique for predicting
accuracy by the analysis of the possible causes
of errors. We can regard a filtered image ¢, of
letter i as a vector in a space of dimensionality
8100 (90 x 90 pixels). When noise is added, the

Table 3. Average pairwise correlations and
nearest neighbors (Euclidean distance x 10-°)

Band Correlations  Nearest neighbor

0 094 0.01
1 091 0.30
2 0.58 1.2
3 0.38 23
4 0.33 31
5 0.31 4.1

possible positions of 1, are described by a cloud
whose dimensions are determined by the s/n
ratio. A neighboring letter k may be confused
with letter i when the cloud around ¢, envelopes
t,. The closer the neighbor, the greater the
opportunity for error. Table 3 gives the average
normalized distance to the nearest neighbor in
each of the bands. The increase in distance to
the nearest neighbor reflects the improvement in
the representation of signals as spatial frequency
increases.

We consider possible causes of lower
efficiency of discrimination in bands below b,.
The letters in these bands have high pair-wise
correlations and the mean band frequency is
less than the object frequency. This means
that letters differ only in subtle differences of
shading, a feature that we usually do not think
of as shape. Observers would need to be able to
utilize small intensity differences to distinguish
between letters. To eliminate an alternative ex-
planation (the smaller number of frequency
components in the low-frequency bands), we
conducted an informal experiment with a lower
fundamental frequency. The fundamental fre-
quency, which is outside the band, nevertheless
determines the spacing of frequency com-
ponents within the band. Reducing the funda-
mental frequency of the letter by one-half
increases the number of frequency components
in the band by a factor of 4. (A 256 x 256
sampling grid was used rather than 128 x 128.)
These 4 x more highly sampled stimuli were not
more discriminable than the original stimuli.
This suggests that the internal letter represen-
tation (template) that subjects bring with them
to the experiment cannot utilize low-frequency
information, even when it is abundantly avail-
able. Whether, with sufficient training, subjects
could learn to use low spatial frequencies to
make letter discriminations is an open question.

SUMMARY AND CONCLUSIONS

1. Visual discrimination of letters in noise,
spatially filtered in 2-octave wide bands, is
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independent of viewing distance (retinal fre-
quency) but improves as spatial frequency
increases.

2. The improvement in performance with
increasing spatial frequency results mainly from
an increase in the objective amount of infor-
mation transmitted by the filters with increasing
frequency (because filter bandwidth was pro-
portional to center frequency) which is mani-
fested as objectively less confusible stimuli in the
higher bands.

3. The comparison of human performance
with that of an estimated ideal discriminator
demonstrates that humans achieve optimal
discrimination (a remarkable 42% efficiency)
when letters are defined by a 2-octave band of
spatial frequencies centered at 1 cycle per letter
height (mean frequency 1.5 c/letter). This high
efficiency of discrimination is maintained over a
32:1 range of viewing distances.

4. Detection efficiency was invariant over a
range of retinal spatial frequencies in which the
contrast threshold for detection of sine gratings
(the modulation transfer function, MTF) varies
enormously. The independence of detection per-
formance and retinal size held for all frequency
bands.

5. A part of the loss of human efficiency in
discrimination as spatial frequency exceeded 1
c/object height may have been due to the sub-
jects’ inability to identify, to selectively attend,
and to utilize the smaller fraction of information-
rich pixels in the higher frequency images.

6. Finally, it is important to note that
without the comparison to the ideal observer,
we would not have been able to understand the
components of human performance in the
different frequency bands.
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APPENDIX

Both sub-ideal and super-ideal discnminators must compute
estimates of the likelihood that the stimulus u, , was pro-
duced with template 1, , and noise n,, where k is the letter
used to generate the stimulus, i is an arbitrary letter, and &
indexes spatial frequency band. Let x be an index on the
pixels of the image: 1 < x < 8100, for the 90 x 90 images of
the expenments.

For the Monte Carlo simulations of the super-ideal
discriminator, the unknown stimulus parameters, a, ,and 02
are computed during stimulus construction, and their exact
values are supplied to the discriminator a priori. The
sub-ideal discriminator, however, must estimate these par-
ameters from the data as follows.

Sub-Ideal Parameter Estimation

Recall that stimulus contrast is modulated for any pixel
x in the image:

u [x] = B {1, 1 (x) + ny(x)] + g, ,(x). (Al)

The scaling constant §,, limits range of real values for each
pixel, prior to quantization, to the open interval (—0.5,
255.5). the addition of g, ,[x}. called quantization noise,
rounds off pixel values to integers.

For each bandpass filtered template 1, ,, we first compute
the correlation p, , of the template to the stimulus u, ,:

Z 1, o)1, 4(x)
P = . . (A2)

s foa]

To compute the likelihood estimates for each template ¢, ,,
we must be able to reverse the effect of 8, ,. Thus we define
a, = 1/B,_, and choose a, , 30 as to minimize the expression:

2[% sl p(x W= Z(Pﬁ. (P (A3)

Solving for &, , gives us:

Ylaxp) "2
Xy = Pr s . (A%)
Z {5 (x ¥

Finally we set:

1 X
U}V = X, z [2, 034 4(x) — ...(x)]2 (AS)
xa=]
where X = 8100, the number of pixels in the image.

Likelihood Estimation

With estimates of ¢ and a,, for the sub-ideal dis-
criminator, and the a priori values for the super-ideal
discriminator, we can formulate a maximum likelihood
estimator. By rearranging terms of equation (Al) and
dividing both sides by f# yields:

"*';"" ~ La(x) = my(x) + (A6)

Substituting a, , for 1/8, and by transposing into the fre-
quency domain, denoted by upper-case letters and indexed
by w, we have:

o, Ui (@) = T, (w) = Ny(w) +a,,0, ,(0). (A7)

q. b(x )

Note that the left side of equation (A7) is simply a
difference image between the stimulus U, ,(w) and the
template T, ,(w). This difference is exactly equal to the sum
of the luminance and quantization noise only when the
correct template is chosen (i =k). When the incorrect
template is chosen (i # k) the right hand side of equation
(A7) is equal to the sum of the noise sources plus some
residue that is equal to 7T, ,(w)— T, ,(w). Under the
assumption that quantization noise can be modeled as
independent additive noise in the frequency domain, the
density A of the joint realization of the right-hand side of
equation (A7) is given by:

4=1] ud
" w mlojal, + 0k Fy(w)]]?

—x10,,Uj (@) = T, @)/’
[ - A8
* xp[ a,al+aliFr | AY

where Fy(w) is simply the kernel of filter b, in the frequency
domain. Dropping the multiplicative term in equation (A8),
which does not depend on the template 7T, and taking logs.
the ideal discriminator chooses the template that minimizes:

Z Xla, U, (w)= T, ()}
@ a,’.aoéwilﬂ(w)l’

(A9)

Finally, it is more convenient to compute the power of
the quantization noise in the space domain (o?) than in the
frequency domain (6} ). 0 = 6. Spatia! quantization noise,
q..»(x), is uniformly distributed on the interval [-0.5, 0.5),
so that o] is computed as:

04

x?dx (A10)
and is equal to 1/12.
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Using Repetition Detection to Define and Localize the Processes of Selective Attention
George Sperling and Stephen A. Wurst

12.1 Introduction

Overview

In our repetition detection task, subjects search a rapid sequence of 30 frames for a stimulus that is
repeated within four frames. Successful detection implies that a match occurs between an incoming item
and a recent item retained in short-term visual repetition memory (STVRM).

When subjects attempted to attend selectively to subsets of items based on gross physical differ-
ences (such as color or size), they were unable to exclude the unattended items from STVRM. Fre-
quently, there was better STVRM for unattended than for partially or fully attended items: this indicates
that attentional filtering occurs more centrally than STVRM. That is, when to-be-attended items are
defined only by their physical features, and not by space or time, there is no perceptual filtering prior to
STVRM.

To explain such paradoxical results, we propose that selective attention attaches an attentional tag
A+ to an item. A+ functions like a stimulus feature. All items are entered equally into memory. A+
items preferentially match other A+ items, and unattended A- items preferentially match A- items. In
contrast to repetition detection, feature-based attentional selection does occur in partial report from visual
strcams. Therefore, if there is a single processing path, the locus of attentional selection is constrained to
lic between the loci of repetition detection and of feature-based selection for partial reports.

Background: Early versus Late Selective Filtering

Theories of selective attention postulate that the human information processing system is limited in its
capacity and that attention serves to select information to be processed from other, competing information
(c.g., Broadbent 1958; Deutsch & Decutsch 1963; Norman 1968). Indeed, selective filtering of unattended
information has been proposed as a mechanism in numerous visual processing tasks.

There is abundant evidence that selective attention can function as a mechanism to differentially
filter information from different spatial locations (see reviews by Sperling & Dosher 1986; Sperling &
Weichselgartner 1991). However, we find no convincing evidence that attention can function as a
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mechanism for selecting information on the basis of physical features when items containing different
constellations of features occur at the same location. Rather, the data are consistent with a theory that
asserts that stimulus features serve only to guide spatial attention. That is, whenever selection appears on
the basis of the physical features of visual stimuli (such as color, spatial frequency-filtering, size, etc.),
these features serve to bring attention to a particular location, but the attentional filtering is on the basis of
location rather than on the basis of feature. To test this theory, it is critical to present more information
than can be successfully processed at a single location, and to observe whether, at this single location,
attentional filtering is possible on the basis of physical features.

Selection from Streams

It is trivial to demonstrate that attentional filtering can occur within a given spatial location. Consider, for
example, the following gedanken experiment. Subjects view a stream of altemnating black and white
digits on a gray background. Subjects are asked to compute the sum of the white digits and to ignore the
black digits. Obviously, subjects can perform this task when the stream is slow enough, but this would
not be profourdly revealing about selective attentional processes because we already know that selection
can occur at a cognitive or a decision level of processing. The interesting questions about selective atten-
tion concem whether it can operate at an earlier sensory or perceptual level (reviewed in Sperling &
Dosher 1986).

Search Procedures. A useful technique for studying attentional selection at a single location is to
present a rapid strcam of items at a location too rapidly to permit all items to processed perfectly. Atten-
tional selection can then be used to determine which items are processed. There are a number of tasks
that involve items that are presented in a rapid visual stream at a single location. For example, Sperling,
et al. (1971) studied rapid visual search as a function of the number of locations in which streams of items
were presented. However, the problem with search experiments is that, so far, no procedure has been
developed to determine whether attentional selection (i.e., rejection of nontarget items) occurs at the per-
ceptual or at the decision level of processing. Indeed, recent theories of selective filtering (Cave & Wolfe
1990; Duncan & Humphreys 1989; Pavel 1991; Wright & Main 1991; cf. Hoffman 1979) propose various
cue-weighting algorithms to determine the sequence of attentional selections in visual search. Such
weighting processes are typical of decision processes, although the algorithms themselves are neutral with
regard to whether they operate at a perceptual or a decision level of processing.

Feature-based Partial Reports from Streams. Another task involving a stream is the selective recall
of items according to their physical characteristics. The procedure involves the selection of items from a
rapid stream according to whether or not the target items have a distinguishing characteristic such as a
ring around them, or whether they are brighter than their neighbors. Subjects can extract single target
items from a rapid strcam (Intraub 1985; Weichselgartner & Sperling 1987), or even a short sequence of
four targets (Weichselgartner 1984). In fact, such experiments are partial report experiments in which the
the many items (from among which a few are selected for a partial report) are arrayed in time rather than
in space as in the more usual procedure (Sperling 1960).
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Feature-based Partial Reports from Spatial Arrays. In spatial arrays, subjects can select items for
partial report that have a ring around them (Averbach & Sperling 1960) or items that merely are pointed
at by a short bar marker--a minimal feature for selection. When subjects are required to report only items
of a particular color from briefly exposed letter matrices, these partial reports are not much better than
whole reports (von Wright 1968). Similarly, when subjects are required to report only digits from mixed
arrays of letters and digits, subjects do not report more digits than when they must report both letters and
digits (e.g., Sperling 1960). Both of these studies required subjects to extract both item-identity and loca-
tion information from briefly exposed arrays. When subjects are required only to report the item identi-
ties and not locations, partial reports according to feature easily surpass whole reports (e.g., selecting
solid from outline characters, Merikle 1980). Thus, with comparable response requirements, feature-cued
partial reports are comparably successful in temporal streams and in spatial arrays.

Partial Reports according to Spatial or Purely Temporal (versus Featural) Cues. Originally partial
reports were studied in spatial arrays, and the selection cue designated one of several rows of characters--
purely spatial selection (e.g., Sperling 1960, 1963). With spatial cues, there is a large and consistent par-
tial report advantage. When subjects must use a temporal cue to make a partial-report selection of four
items from a rapid temporal stream, item selection appears to be based on a temporal window of attention
(Sperling & Reeves 1980; Reeves & Sperling 1986, Weichselgartner & Sperling 1987). The subject’s
temporal window for selection from temporal streams is perfectly analogous to the spatial window for
selection from spatial arrays (e.g., LaBerge & Brown 1989).

The Locus of Feature-based Attentional Selection. Partial-report paradigms primarily focus on the
process whereby information is selected for inclusion in short-term memory. That feature-based atten-
tional selection of information for partial reports can occur in streams and in arrays merely places the
level of attentional selection below the level of short-term memory. This constraint is unremarkable.
Therefore, it is search tasks that seem most often to have been called forth to resolve the issue of early
versus late selection on the basis of physical features (recent examples include: Nakayama & Silverman
1986; Neisser 1967; Treisman 1977; Treisman 1986; Treisman & Gelade 1980; see Folk & Egeth 1989
for a review). Closely related issucs are automatic versus controlled processing (Shiffrin & Schneider
1977), speeded classification (e.g., Felfoldy & Garner 1971; Gamer 1978) and auditory selective attention
(Swets 1984). The ambiguity of current search theories concemning the level of attentional selection was
noted above. This is not the place for a review and critique of the many other approaches to these prob-
lems in the visual and auditory domains. Instead, we offer new variations of a repetition-detection task
and new analyses that are particularly well suited to defining the locus of feature-based attentional selec-
tion (i.e., perceptual filtering according to physical properties).

Repetition Detection Paradigm

The repetition detection paradigm (Kaufman 1978; Wurst 1989; Sperling & Kaufman 1991) seems partic-
ularly well suited for the study of attentional selection based on physical features. In this paradigm (fig.
12.1) a stream of thirty digits is prescnted rapidly (typically, 9.1 digits per sec). Within this stream, every
digit is repeated three times, but only one digit is repeated within four sequence positions (lag 4 or less);
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all other digits are repeated with lags of nine or more. The subject is instructed to detect the recently
repeated digit. Successful performance of this task obviously depends on the subject’s ability to match
incoming digits with previously presented digits in memory. Because all digits are repeated exactly three
times within a list, only memory that discriminates short-lag repetitions from long-lag repetitions is use-
ful for performing this task.

Figure 12.1

In previous research (Kaufman 1978; Sperling & Kaufman 1991), it was found that, at lag 1, repeti-
tion detection was typically better than 80% correct, and that by lag 4 it had dropped below 30 or 40 per-
cent. Adding a noise field between successive frames (fig. 12.1) did not impair performance, even when
the noise field was so intense that, if it were simultaneous with digit presentations, it would have rendered
them illegible. This immunity to visual masking suggests a central memory locus for short-term visual
repetition memory (STVRM), even at lag 1.

In another adaptation of the task (Kaufman 1978; Sperling & Kaufman 1991), it was found that
using nonsense shapes as stimuli instead of digits yielded equivalent results. This suggests that STVRM
is visual rather than verbal or semantic.

Wurst (1989) used dicoptic presentations to demonstrate that the locus of short-term visual repeti-
tion memory (STVRM) was after the locus of binocular combination. A particularly interesting finding
in Wurst’s dicoptic viewing procedure was that one eye was given priority over the other eye. Thus, a
filtering of items by the eye of presentation may have been occurring even though items were presented
alternately (never simultancously) to the two eyes and though, in control conditions, monocular perfor-
mance was the same for both eyes. The present study was undertaken to determine whether selection
could occur by varying stimulus attributes other than the eye of presentation.

Plan of the Experiments

To investigate the role of attention in the short-term visual repetition memory task, as in the previous stu-
dies, digits arc presented in the same spatial location while being viewed binocularly. Two levels of a
dimension are employed (e.g., large and small sizes of digits), and digits alternate between the levels. We
will call a level of a dimension a feature. For example, small and large are features within the size
dimension. In this study, four stimulus dimensions that have typically been employed in attention
rescarch (e.g., Nakayama & Silverman 1986; Treisman 1982; Sagi 1988) size, angular orientation, spatial
bandpass filtering, and contrast polarity (black-on-gray vs. white-on-gray), are examined separately.
Additionally, we examine one feature pair (small-black versus large-white). Digits with a different
featurc (e.g., large and small size) are alternated at the same location. We determine the ability of sub-
jects to attend selectively to items with one feature (or feature pair) while ignoring items with the other
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Figure 1. The repetition detection paradigm. The leftmost sequence (lag 1) represents five consecutive frames
from the middle of a longer sequence of frames. The target repetition is the digit five. The middle sequence illus-
trates repetition of the digit 5 with lag 2. The rightmost sequence illustrates Kanfman’s (1978) noise condition with
lag 1. A grid of randomly chosen vertical or horizontal lines is interposed between each digit frame; repetition

detection performance was unimpaired.
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feature (or feature pair).

12.2 Method

In experiment 1, four stimulus dimensions are examined individually: size, orientation, spatial
bandpass filtering, and contrast polarity. In experiment 2, two features are varied simultaneously to
determine whether enhancing the difference between alternating stimuli would enhance attentional selec-
tion. The procedures of experiments 1 and 2 are quite similar so, although they were conducted sequen-
tially, we consider them together throughout this chapter.

A stimulus sequence consists of 30 consecutive digits. A position in the sequence is called a frame;
thus we say the i-th digit occurs in the i-th frame. Stimuli in a sequence altemnately exhibit one level A of
a dimension on odd numbered frames, and the other level B of the same dimension on even numbered
frames. We call such as sequence JA+1B. If subjects were completely successful in selectively filtering
out unattended B stimuli on the even numbered frames, detection of the repetitions of the attended-to-
feature in a LA+1B sequence would be similar to a control condition (JA) in which the even numbered
frames were simply blank. If the selection were totally unsuccessful, for example, if the features were
indiscriminable, then the altemating feature sequence should be as difficult as a same-feature sequence
(A). Consider performance in the two control conditions A and A. The point between these two perfor-
mances where performance with JA+18 falls indicates the success of attentional filtering. This is the
broad plan of the experiments. Additional complications will become apparent as the story unfolds.

Stimulus Generation

Frames. The repetition detection procedure (Kaufman 1978; Sperling & Kaufman 1991), was used in this
experiment. Each trial consisted of a stream of 30 digits displayed on a video monitor. A digit was
painted three times (three refreshes), followed by six refreshes of a blank, gray screen, all at 60 refreshes
per seccond. The sequence of nine refreshes (digit plus subsequent blank screen) is called a frame. The
frame duration is 150 msec; equivalently, the digit-to-digit stimulus onset asynchrony (SOA) is 150 msec.
A digit sequence was composcd of thirty frames: the 10 digits, each presented three times.

Lag. To distinguish the different types of repetitions that occur, we use the term lag. When a digit
occurs in frame i of the sequence, and then again in frame j, 1<i<;j<30, the digit is defined as being
repeated with lag i — j (see fig. 12.1). Only the target digit was repeated within a lag of 4 or less; all
other repetitions of the digits were separated by 8 or more intervening digits (lag 2 9). To generate a
stimulus sequence, the first digit is chosen randomly. Subsequently, at any point in sequence generation,
the requirement that no digit be repeated with lag < 8 restricts the number of digits eligible to be chosen.
At each point, the new digit was chosen with equal probability from among the eligible digits. The
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critical repetition was embedded randomly in the sequence, with the restriction that the first member of
the repetition pair occur between sequence positions 11 and 20. Each sequence was generated by a new
random draw.

Figure 12.2

Figure 12.2a shows a typical sequence of thirty digits. Figure 12.2b shows the expected distribution
of lags in such a sequence. A single lag of 1, 2, 3, or 4 represents the to-be-detected repetition--the signal.
All the other repetitions have lag 29 and represent the noise. The distribution of noise lags is approxi-
mately exponential; it is truncated because repetition lags greater than 21 are impossible. While the
actual noise distribution of lags is well defined, the effective noise distribution depends somewhat on how
precisely, in such a rapid sequence, subjects can use their knowledge of constraints on the frames in
which repeated pairs are permitted to occur (see below).

Procedures. Subjects were instructed to detect the repetition of lag 4 or less, and not to respond to
any of the other stimuli. No masking stimuli were interleaved between the digits. All digits were
presented in the same spatial location, centered on the CRT screen.

A trial began with a centrally located fixation square. When the subject was ready to begin the trial,
the subject pressed any key on the computer keyboard. After a repetition was detected, the subject
pressed the RETURN key as quickly as possible. After the end of the sequence, a message was presented
on the monitor that cued the subject to enter the repeated digit and to enter a confidence rating between 0
(very low confidence that the response was the repetition) and 4 (very high confidence that the response
was the correct repetition). The actual repeated digit was then presented on the screen to give the subject
complete accuracy feedback information. A message to press the RETURN key was displayed, following
which, the fixation square for the next trial appeared.

Stimulus Sets

Subjects viewed all stimuli at a distance of 93 cm. The square fixation box was a 2.46 x 2.46 deg visual
angle. The digits 0 t0 9 wcre used in the Times-Roman font. The background of all displays and blank
intervals was set at 50 cd/m22. Unless otherwise specified, digits were white on gray, with a digit height
of 0.74 deg.

Figure 12.3
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Figure 2. Top: A stimulus sequence in the repetition detection experiment. Bottom: The expected fre-
quency distribution of signal (target) and noise repetitions. SIGNAL indicates that, on each trial, there is
exactly one signal repetition, its lag is either 1,2,3 or 4. Nontarget digits are constrained to repeat only
with lags of 9 or more (NOISE repetitions). The numbers 10 and 20 (top) demark the the middle ten
positions of the sequence within which the initial element of the target repetition is constrained to occur.
These two constraints determine the expected frequency distribution of noise repetitions, indicated as
NOISE.
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Figure 3. Stimuli used in the experiments. In each panel, the top 10 digits are the type A stimulus of the
indicated dimensions (orientation, polarity, size, bandpass, polarity & size). The bottom 10 digits are the
type B si™uli.
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Four stimulus dimensions were investigated separately in experiment 1. There were two levels
(feature values) for each of the four dimensions. The stimulus sets are shown in figure 12.3. The four
dimensions (and the two feature values of each, A and B, respectively were

1. size (large, 0.74 deg visual angle versus small, 0.49 deg visual angle);

2. orientation (slanted 45 degrees up-to-the-left versus slanted 45 degrees right);

3. contrast polarity (white digits on gray background versus black digits on gray). The lumi-
nance level of the white digits was 101.50 cd/m2 and the luminance level of the black digits
was 0.40 cd/m? against a background of 50 cd/m?.

4. (4) bandpass filter (high spatial bandpass versus low bandpass filtered). The mean luminance
level for all bandpassed filtered stimuli was 50 cd/m2. The high bandpass digits had a mean
2D frequency of 5.77 cycles per letter height, and the low bandpass digits had a frequency of
2.92 cycles per letter height. (See Parish & Sperling, 1991, for a description of the filters.)

5. Polarity and Size. These stimuli were used in Experiment 2. Large white digits represented
feature type A; small black digits were type B. All were presented against the gray back-
ground. (Large, small, light, dark, gray were as defined above.)

Figure 12.4

Blocks of Tnals

Figure 12.4 illustrates the design of experimental and control stimulus sequences and presents examples.
A block of trials contained only one of the five stimulus transformations (fig. 12.3). Three experimental
blocks all were of type (JA+1B) in which streams of strictly-alternating A,B stimulus features were
presented. There were three kinds of experimental blocks for a given transformation that differed in the
attentional conditions: attend to A, equal attention, attend to B ). In addition to experimental blocks.
which consisted of sequences that alternated two feature values (A and B), there were control blocks,
which consisted of digits having the same feature value throughout.

Expcrimental blocks contained 100 trials, and control blocks contained 150 trials. Each of the trials
was classified according to lag 1, 2, 3, or 4. In the expcrimental (JA+4B) blocks, trials were classified
according to whether the the repetition pair was aa, ab, ba, or bb. [We use A and B to denote features or
strecams that contain the features (c.g., A = large and B = small). We use a, b, respectively, to denote tar-
get digits--members of the repetition pair--that contain feature A and B, respectively. ]
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Figure 4. Experimental and control presentation sequences used to estimate the effectiveness of atten-
tional filtering. (a) The middle row indicates the experimental condition, an alternating sequence of type
A and type B stimuli, designated as A +4B. If the subject could not discriminate the features that dis-
tinguished the type A and type B stimuli, the subject would perform equivalently in the JA+4B and in to
the "All" control, which consists entirely of A stimuli, designated simply as A. On the other hand, if the
subject were able to perfectly ignore the unattended B feature in the JA+JB stream, experimental perfor-
mance would be equivalent to the "Blanks" control, designated as’jA . This would be true for repetitions
at lag 2 and at lag 4 (indicated above). (b) Graphical illustration of the three types of displays. The
dimension is size. Type A stimuli are large, type B are small; the example illustrates bb detections.’
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Attention Conditions

The three experimental blocks are distinguished by the attentional instructions, the probability of the dif-
ferent types of repetitions presented, and the payoffs for correct responses. For the attend-A experimental
block the subject was instructed to devote 80% of attention to feature A (e.g., large) and 20% to feature
B (e.g., small); for the attend-B experimental block, the subject was instructed to devote 80% of attention
to feature B (e.g., small) and 20% to feature A (e.g., large). In equal attention experimental blocks, the
subject was instructed to devote 50% of attention to feature A and S0% to feature B. The probabilities of
different trial types for the attend-A, attend-B, and attend-equal blocks are shown in table 12.1. Note that
when attending to feature A, 70% of the trials in the selective attention blocks are pure (a, a) repetitions
(35% at lag 2, 35 percent at lag 4). The remaining trials consist of mixed repetitions at lags 1 and 3, (a,
b) 10%, (b, a) 10%, and of pure unattended-feature repetitions at lags 2 and 4, (b, b) 10%. The converse
holds when attending to feature B.

Table 12.1

The attention instructions served only to define the initial conditions for the subjects. The steady-
state behavior of subjects was controlled by carefully defined rewards to enforce the attention conditions.
For every stimulus repetition in the attended-to stream that the subject detected correctly (that is, an aa or
bb pair), the subject received 5 points. The subject received only 1 point for detecting repetitions in the
unattended stream, and zero points for for the mixed ab and ba repetitions. The two paid subjects were
paid 1 cent per point (in addition to their usual hourly wage for participation). The maximum expected
payoff per trial for detecting targets with the attended feature is their probability of occurrence (0.7, table
12.1) times their value (5 cents), a net of 3.5 cents. The maximum expected eamings from detecting tar-
gets with the unattended feature is 0.1 x 1 cent = 0.1 cent. Thus, the expected value of detecting repeti-
tions with the attended-to feature was 35 times greater than the value of unattended-feature repetitions.
The 35:1 attended/unattended ratio of maximum possible earnings exerted a potent control over attention,
although some of the cffects of attention were unanticipated.

100% - 0% Attention Conditions. Even the extreme divided attention conditions (nominally 80% to
20%) involve divided attention because, when the subject notices repetitions involving the unattended
fcature, they are reported. Why not include experimental conditions in which the subjects are told to give
100% (rather than 80%) of their attention to the attended feature, are told to give 0% (rather than 20%) of
their attention to the attended feature, and are paid only for detecting attended-feature repetitions? In pre-
vious research, Sperling & Melchner (1978a, 1978b) compared 100% - 0% attention to a range of divided
attention conditions similar to the nominal 80% - 20% range used here. Sperling and Melchner’s atten-
tional manipulation involved only instructions; in contrast to the present study, their instructions were
unenhanced by differential probabilities of occurrence of or by differential rewards for detecting attended
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Table 1. Probability of Each Condition Within Each Block of Trials.

|
| Attend A | Attend B | Equal Attn.
| | |
| ____________________________________________________________
I | ]
Target= | A B | A B | A B
__________________________ l - - ——— - - ———— - = - - I —-— - —— ————— - — - - -
Lag 1* | .05 .05 ] 05 .05 | 07 .07
| | |
Lag 2 I .35 05 | 05 35 | 18 18
| I I
Lag 3* | .05 .05 | 05 05 | 07 .07
I | |
Lag 4 | .35 05 | 05 .35 | 18 18
| | I

Stim.= | AA A- BB B- |
Lag 1 | .167 - 1 .167 - |
Lag 2 : 167 167 167 167 :
Lag 3 : 167 - 167 -— :
Lag 4 : 167 .167 167 167 :
I !

* Mixed-feature repetition pairs; “"Target"™ indicates the feature of
the first element of the pair.
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targets. Nevertheless, in one-third of their cases, Sperling & Melchner’s (1978b) divided-attention condi-
tions spanned a range of performances that was fully as great as the extremes of the 100% - 0% control
conditions, and their remaining divided-attention cases spanned most of the 100% - 0% performance
range. Thus, while 100% - 0% conditions might (or might not) slightly expand the range of performances
observed here, the added conditions would not be expected to produce any qualitatively different data.

Controls (A, B, 3A , 1B ). Control blocks were run for each feature, as indicated in fig. 12.4 and in

table 12.1. In the control-ALL trials (A and B), all thirty digits have the same feature value, and lags 1, 2,
3, and 4 occur equally often. Control-ALL trials were interleaved with control-BLANK trials (JA and

1B) in which every other digit in the sequence was replaced by enough blank frames to permit the

remaining digits to retain their precise temporal positions in the sequence. Therefore, for control-
BLANKS, only 15 digits were presented, and repetitions only occurred at what, in the ALL sequence,
would have been called lags 2 and 4 (since blanks occurred at lags 1 and 3). As indicated in table 12.1,
the six control conditions with feature A (or feature B) had an equal probability of occurring (i.e., 25 tri-
als for each condition in the control blocks).

Altogether, there were 36 different kinds of trials for each of the five stimulus transformations (fig.
12.3). There were 24 experimental conditions: 4 lags (1, 2, 3, 4) x 3 attentional instructions (80%, 50%,
20%) x two kinds of targets (aa, bb at lags 2, 4; ab, ba at lags 1, 3). And there were 12 control condi-
tions: the control-ALL contained 4 lags (1, 2, 3, 4) x 2 features (A, B), whereas the control-BLANKS
contained 2 lags (2, 4) x 2 features (A, 3B).

Four blocks of each experimental condition, and at least three blocks of each control condition,
were conducted. This yielded a comparable number of trials for the major data points of interest, and at
lcast 20 trials for each of the most infrequent conditions.

Apparatus

A desktop computer (an IBM-compatible AT personal computer) was used to present stimuli and collect
subjects’ responses. Stimuli were created with HIPS image-processing software (Landy, Cohen, & Sper-
ling 1984a,b) and displayed using a softwarc package (Runtime Library for Psychology Experiments,
1988) designed to drive an AT-Vista Videographics Adapter that produced black-and-white images on a
NEC Muliisync-Plus color monitor (with horizontal resolution of 960 dots, vertical resolution of 720
lines, and short persistence phosphors).
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Subjects

One female and two male New York University graduate students with normal or corrected-to-normal
vision participated in this research. Two of these subjects were paid for their participation, and the third
was the experimenter. The three subjects were well practiced on the repetition detection procedure before
the formal experiments began.

Results and Discussion

Because there are 36 data points for each of the five types of stimuli, presentation of the results is
quite complex. We use three kinds of graphs. The first shows the attention conditions relative to the con-
trols; the second shows attention-operating characteristics; and the third shows all 36 conditions on a sin-
gle graph. We also table the fractional benefits conferred by feature mixing and by attentional manipula-
tions. Because our observed data are quite at variance with what might be expected from such experi-
ments, we begin with a display (fig. 12.5) that compares hypothetical expected data with actually
observed data in a typical condition for a typical subject.

Figure 12.5

Definitions Illustrated with Hypothetical Data

Figure 12.5a shows the hypothetical data from a subject viewing the bandpass stimuli. The data in fig.
12.5a represent detections of aa (high-spatial frequency) repetitions in various contexts. The control con-
ditions are JA and A (pure high spatial frequency stimuli); the experimental conditions are JA+1B
(mixed high and low spatial frequency stimuli). Consider first the diagonal line connecting data from the
control conditions A and A. The condition A represents a plausible upper bound on the attention con-
ditions because it corresponds to what would be expected if the subject succeeded in ignoring B stimuli
entircly: the B stimuli are processed equivalently to the blanks of JA. The control A represents a plausi-
ble lower bound on attention: the B stimuli are not discriminated from A stimuli. Thus, the projections of
the diagonal line of fig. 12.5a (control conditions) on the vertical axis indicate plausible bounds on the
range of attention effects (0.50 to 0.98).

In the experimental conditions +A+1B, full attention to feature A while ignoring B is represented

by the the middle point on the diagonal line of fig. 12.5a. Full attention to A shows a benefii relative to
the control-ALL-A condition but not as great a benefit as would occur if the B stimuli were replaced with
blanks. The three points on the diagonal line of fig. 12.5a represent actual data of subject BL, bandpass
lag 1, detection of high spatial-frequency digits.
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Figure 5. Hypothetical and actual results of an experiment on selective attention either to high (type A) or low
(type B ) bandpass filtered stimuli (see Fig. 3). (a, b, ¢) Hypothetical results. (a) The proportion correct in detecting
aa (high-high) repetitions is shown as the ordinate for the three types of stimuli represented on the abscissa (see

axis labels at bottom). The %—A + -%B experimental displays serve three attention conditions: the data point for the

attend-A condition is connected by lines to to the control conditions (which involve only aa repetitions); equal
attention is the middle 1/2 tone point, and detecting aa while attending B is shown as the lowest point. (b) Data for
detecting type bb (low-low) repetitions. Here, the point on the connecting line over A +4B represents attention
directed to type B stimuli; the points underneath it represent equal attention and attend-A, respectively. (c) Atten-
tion opcrating characteristic (AOC) derived from the data of panels (a) and (b). The abscissa and ordinate, respec-
tively, represent the proportion of correct aa and bb detections, respectively. The outer shaded area indicates per-
formance better than a blanks control (A, 4B) for one or both of the two types of targets (aa, bb). The inner
shaded arca indicates performance worse than the corresponding all controls (A, B) for both aa and bb detections.
The concave-down curve is the AOC derived from the $A +5B stimulus with with the points representing, from

left-to-right, attend-A, equal attention, and attend-B. The error bars indicate one standard error of the mean; the
relative sizes of the errors derive from the inverse square root of the number of observations: small errors indicate
many trials (attended features). (d, e, f) Real data from subject BL corresponding to the hypothetical data of (a, b,
c). These data represent the most common type of result. (d) Coordinates and data as in (a). (e) Coordinates and
data for control conditions arc as same as (b) but the attentional data are in opposite order: The more attention the
subject devotes 1o type B stimuli, the worse arc bb detections. (f) The observed AOC for subject BL represents,
from lower lcft o uppcer right, attend-low, equal attention, and atiend-high bandpass stimuli. The AOC is perpen-
dicular to the expected AOC.
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Two hypothetical data points are shown in fig. 12.5a. The half-shaded point below the full attention
point in fig. 12.5a indicates equal attention. We expect that equal attention in a mixed A +4B stream

would yield better performance than in the control-ALL-A stream because mixing two features in the
stream (instead of only one) makes the stimuli more discriminable. Attention to B stimuli is expected to
lead to poor performance on aa repetitions (0.25), and this is shown indicated the triangle in fig. 12.5a.

In the hypothetical data, we expect complete symmetry between features A and B. So, fig. 12.5b,
generated for detections of bb repetitions is basically the same as fig. 12.5a (except that the 3B and B

points are based on real data for bb detections that are slightly different from the aa data of fig. 12.5a).

Attention Operating Characteristics (AOCs). AttentionOperatingCharacteristics (AOCS) The {1 over
2JA+{1 over 2}B points in figs. 12.5a and 12.5b generate the AOC (Kinchla 1980; Sperling & Melchner
1978b) of fig. 12.5c. The lower-right square of fig. 12.5c¢ indicates joint performance on aa and bb repeti-
tions when attention fig. 12. is directed to A. The rectangle around the square indicates one standard error
of the mean in each dimension. The rectangle is extended in the B dimension because, in the attend-A
condition, there are seven times more aa repetition trials than bb trials, and this increases the standard
error of bb detections relative to aa. The circle in fig. 12.5¢ indicates equal-attention performance, and
the diamond at the upper left end of the AOC indicates attend-B performance. Based on the hypothetical
data of figs. 12.5a and 12.5b, the shape of the AOC is concave down, as expected.

Additionally, fig. 12.5c indicates two shaded areas that represent excluded performances. Regard-
less of the state of attention, we expect the subject to perform worse in any experimental JA+4B condi-

tion than in the corresponding A or 3B control conditions. This excludes data from the shaded area in
the outer rim of the AOC graph. And, we expect performance in $A+4B to equal or exceed performance

in the ALL-A and ALL-B control conditions. This excludes data from the lower-left rectangle of the
AQOC graph.

Definition: Fraction of Maximum Possible Benefits. The range between A and JA defines the

extent of possible benefits conferred by feature differentiation between A and B plus any additional
benefits of selective attention. In fig. 12.5a, the maximum possible bencfit extends from .50 and 98, a
range of 0.48. The attend-A condition yields a fraction corrcct of .74, which is (.74 - .50)/(.98 - .50) =
0.50, exactly half of the possible benefit. For all the data points in fig. 12.5a, the hypothetical and the real
data arc the same. The equal attention condition yields a score of 0.70 as shown in fig. 12.5a and that
attention 10 B would yield a score of .30. The fraction of possible benefit in the hypothetical equal-
attention condition is (.70 - .50)/(.98 - .50) = 0.42. Equal attention involves only stimulus differentiation,
not attention, so this fractional benefit of the altemating-feature stream is a stimulus differentiation
benefit. Sclective attention confers an additional benefit over and above the stimulus differentiation
benefit.

In summary, the alternating-feature stream, ;A +48 confers two possible benefits: stimulus differen-
tiation (in equal attention conditions) and attention-plus-stimulus differentiation (in selective attention
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conditions). To estimate these benefits, it is useful to average over the two types of detections (aa, bb).
That is, when alternating two features in the JA+1B stream helps to differentiate stimuli, then detections

of both aa and bb should be improved relative to the respective all-A and all-B controls. We define the
average achieved fraction of the maximum possible stimulus differentiation benefit, Stim Benefit, as the
improvement in equal-attention conditions (equal attention minus control-ALL) compared to the max-
imum possible range of improvement (control blanks minus control-ALL). To compute Stim Benefit, the
following definitions are needed. Let P(aa | JA+4B)am-a be the probability of correct detections of aa
repetitions given the JA+1B stream with attention directed to the A feature. Let A indicate the ALL-A

condition and %A + indicates the A blanks control condition. Then,

P(aa | 5A+3B)ann=as —P(aa |1 A) P(bb | JA+3B)ann<az — P(bb | B)
. .1 7447 1) 277
Stim Benefu--z— P (aa |¥4)-P(aa A) +x P(bb |%B)—P(bb |B)

Similarly, the average achieved fraction of the maximum possible attention-plus-stimulus benefit, abbre-
viated here simply to attention benefit (Attn Benefit), is

P(aa | 5A+3B)sun=a —P(aa | A) P (bb | 3A+3B)snn=p — P (bb | B)
1 A+ 1 Aty
Attn Benefil = 3\~ Plaa TIA)-P@a 1Ay | 2| PGb13B)-P @b 1B) @

where Aun=AB denotes the equal-attention condition. For the hypothetical data, aa (fig. 12.5a) and bb
(fig. 12.5b) detections v ere approximately symmetric, so the averages would be approximately the same
as the aa values given in the earlier example. For the real data, Stim Benefit and Attn Benefit are tabu-
lated in table 12.2 to be considered below.

AOQOC:s for Real Data

Some Features Are Harmful to Attend. Figures 12.5d and 12.5¢ show the percent correct for aa and bb
detections in the bandpass conditions for subject BL and lag 2. Detections of the high bandpass aa
repetitions parallel the hypothetical expected data. Detections of the low bandpass bb repe.itions in con-
trol conditions ALL-B and B arc essentially equivalent to aa repetitions in control conditions ALL-A
and JA. However aticntion conditions produce wildly differcnt data. Selective attention to B results in

the lowest proportion (0.24) of correct bb detections. The more attention is devoted to B, the worse are
bb detections! Sclective atiention to feature B actually yiclds a bb hit rate of only 0.24 compared to a bb
hit rate of 0.80 when attending to A. Selective attention to B produces different data than equal attention,
but the direction of the difference is produce the same data that attending to A would have produced.

The inverse results for attending to low bandpass repetitions in fig. 12.5e combined with the normal
results of high bandpass detections in fig. 12.5d yield an AOC in fig. 12.5f that is perpendicular to the
expected AOC. Both subjects for both lags (2, 4) show this type of AOC in the bandpass condition.
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Indeed, this AOC, which is perpendicular to the normal AOC, is the most commonly observed and
perhaps prototypical AOC for these experiments.

Figure 12.6

Figure 12.6 shows all the AOCs from the experiments. The 22 AOCs represent five stimulus
transformations, with lags 2 and 4, and all the subjects. In a few conditions, notably orientation, the
effect of attention is quite small, but none of the 22 AOCs follows the normal concave down trajectory of
the hypothetical data. Most AOCs have the prototypical shape that indicates attention to one feature (A)
is helpful to both aa and bb detections whereas attention to the other feature (B) is harmful to both. The
features that are harmful (versus helpful) to attend are small (versus large), low bandpass (versus high)
and small-black (versus large-white).

Equal-Attention Can Be Harmful. In seven instances (all four polarity conditions; lag 4 orientation, sub-
ject BB; lag 4 polarity-and-size, subjects BB, SW), equal attention results in uniformly worse perfor-
mance than either mode of selective attention,

Finally, even when attentional effects are quite small, as in the case of orientation, what effects
there are tend to follow the same two patterns (harmful feature, harmful equal-attention) as have been
noted for the other transformations. We momentarily defer explanations of these phenomena.

Benefits of Stimulus Differentiation and of Selective Attention

Under equal attention, the detection of aa repetitions was not significantly different from the detection of
bb repetitions in any condition for any subject. Similarly, the A control conditions did not differ from the
corresponding B control conditions. These results indicate that the A and B features were quite sym-
metric, and equivalent with respect to difficulty in the repetition detection task. Therefore, the benefit
calculations, which are averaged over aa and bb detections, are representative of each type individually.

Table 12.2
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Figure 6. Attention Operating Characteristic (AOC) for all subjects and the five stimulus types of Fig. 3.
The abscissa is the probability of detecting aa detections within each type stimulus transformation; the
ordinate is thc probability of bb detections. Symbols represent different attention conditions: squares =
attend- A circles = equal attention, and diamonds = attend-B. Standard error bars are drawn around each
point. Performances in A and JA control conditions are shown on the abscissa, performances in B and
3B on the ordinate. The clear area defines the reasonable bounds on performance, given the control data.

BB, BL, and SW indicate subjects.




'Table.Z.

in Equal Attention and in Selective Attention Conditions.

Subject:

ORIENT

POLARITY

SIZE

BANDPASS

POL-&-S2

a

Stimulus differentiation benefit

Fractions of the Maximum Possible Benefits Achieved

lag2
lag4
[2+4]c

lag2
lag4
[2+4]

lag2
lag4
(2+4]

lag2
lag4
[2+4]

lag2
lag4
[2+4]

SW

0.
0.
0.

-0.
-0.
-0.

0.
0

08
04
06

16
17
17

12

.23
.18

.28
.34
.31

.51
.30
.40

a

STIMULUS BENEFITS

BB

-0.27
-0.11
-0.19

-0.08
0.06
-0.01

0.46
0.01
0.24

- —

0.30
-0.00
0.15

BL

- - —
-— —

.38
.30
.34

O OO0

.51
.36
.43

[= NN e

averaged over feature types A and B.

b

Mean

~-0.09
-0.04
-0.07

-0.12
-0.06
-0.09

0.29
0.12
0.21

.33
.32
.32

(o NN e

o

.44
.22
.33

(=N e

ATTENTION BENEFITS

SW

0.15
0.17
0.16

0.26
0.31
0.29

0.03
0.38
0.21

0.09
0.29
0.19

0.63
0.64
0.63

BB

-0.04
0.12
0.04

0.22
0.30
0.26

0.11
-0.05
0.03

0.28
0.17
0.23

BL

-0.13
0.12
-0.01

0.32
0.28
0.30

measured in equal attention conditions,

b

Mean

o el o] o Ne el [oN=No] o OO

OO

.06
.14
.10

.24
.30
.27

.07
.17
.12

.02
.20
.09

.41
.36

Includes stimulus differentiation plus selective attention benefits averaged
over selective attention conditions.

C

See text for computational details.

{2+4] indicates average of lags 2 and 4.
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Stimulus Benefuits. Table 12.2 shows benefits as calculated from equations 1 and 2. We consider first
the stimulus benefits. These are determined under conditions of equal attention. If the subject were to
violate the instructions and to have selectively attended one or the other feature of the stream in the equal
attention 1A +4B condition, it would, i some cases, have improved performance and violate our assump-

tion. However, the equality of the aa and bb equal-attention detections (and other intemal cousistencies
in the data) suggest that the subjects did not adopt such a strategy.

The data from orientation and polarity illustrate minimal stimulus benefits. For example, consider
the benefits of altemating two orientations in JA+;B versus presenting a single orientation in A or B.

For subject SW there is no benefit, for subject BB there is a slight loss in the ;A+2B conditions relative

to the controls. With alternating contrast polarity, both subjects show a slight loss, rather than a benefit,
in the JA+4B condition. Alternating orientation or polarity stimulus features, in and of itself, is not help-

ful.

Both subjects show a small but clear benefit of selective attention to contrast polarity, and subject
SW also shows a benefit of selective attention to orientation. This means that stimuli that are not well
differentiated by their feature differences may nevertheless become differentiated by selective attention.
In contrast to orientation and polarity, size, bandpass, and polarity-and-size show substantial benefits of
stimulus differentiation. Apparently, these feature differences are recorded in STVRM and help to dif-
ferentiate stimulus from noise repetitions.

Attention Benefits. Because the attention benefit is really an attention-plus-stimulus-differentiation
benefit, we would expect it to exceed the stimulus benefit for all feature dimensions. Selective attention
should enhance the stimulus differences. However, for the seven data sets that involve the significant
feature differences (size, bandpass, polarity-and-size), only subject SW for polarity-and-size shows a con-
sistently larger attention benefit than stimulus benefit. The other attention effects are quite variable and,
in the case of bandpass (and some instances of size and of polarity and size), quite a bit smaller than the
stimulus benefits.

The apparently negative incremental effect of attention is placed into context by noting that the
attention bencfit is computed to be the average of two states of attention. Size, bandpass, and polarity-
and-size were the very conditions under which the paradoxical harmful effects of attention to the B
dimensions were manifest. A harmful effect of attention to the attended B stream, counterintuitive as it
seems, is fairly represented as a negative benefit that, in some instances, overwhelms the helpful effects
of attention to attended A dimensions on the benefit computation. There is still a positive attention
benefit in these particular conditions, but it is due to the residual stin'vlus benefit: the average incremental
effect of attention is harmful to performance.

Additivity of Feature Differences. Polarity and size, by themselves, have certain stimulus and attention
benefits (table 12.2). When polarity and size are combined in the polarity-and-size condition, the com-
ponent benefits approximately add. Additivity is demonstrated by comparing the stimulus benefits for
polarity plus the stimulus benefits for size with the stimulus benefits of polarity-and-size (averaged over
subjects and lags). Thesc values are -0.09 (polarity) + 0.21 (size) = 0.12, as compared to 0.33 (polarity-
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and-size). The corresponding computations for attention benefits are b. .efits are 0.27 + 0.12 = 0.39
(0.39). Within subjects and lags, the computations are a bit more noisy. It is interesting to note that addi-
tivity nolds for attention benefits but fails for stimulus benefits, contrary to Dosher, Sperling, & Wurst
(1986), who found perfect additivity of stimulus effects.

Figure 12.7

Consolidated Graphs of All Experimental and Control Conditions

Each panel of fig. 12.7 shows mean data for each of the 36 kinds of repetition detections for one subject
and one set of features. Except for variances and tests of significance (Wurst 1989), these graphs
represent the entire data of the experiments. The plan of fig. 12.7 is to indicate the data of control condi-
tions by two sets of connected lines that form upper and lower reference bounds for four clusters of points
that represent the data of the expcrimental conditions. We begin by making some gencral observations.

The Effects of Lag and SOA. The effects of lag on repetition-detection performance are indicated in fig.
12.7 by the sloping connecting lines that span lag 1 to lag 4. These sloping lines indicate performance in
the control-ALL A and ALL B conditions. Performance with the control-ALL streams is at or above 90%
at lag 1 for nearly all subjects and type of stimulus transformation. The two minor exceptions are the
polarity-and-size conditions whese, for two subjects, the control-ALL B slips down into the 80 - 90%
range. By lag 4, performance drops into the 25% range, the largest drop occurring between lags 1 and 2.
These data are completely consistent with earlicr studies (Kaufman 1978, Sperling & Kaufman 199i;
Wurst 1989).

The effect of SOA 1s derived from the sloping lines labcled A 2 that iepresent data for the control-
BLANKS conditions ({A , £B), and which appear above lags 2 and 4. Performance in control-BLANKS

is much better performance than the corresponding control-ALL (A, B) dat>. Altcmatively, the control-
BLANKS conditions with lags 2 and 4 might be described as lags 1 an’ £ of a sirram with a doubled
SOA (stimulus onset asynchrony--the time from the onsct of one digit to the next). However, the
control-BLANKS is not quite equivalent to a slower sequence berzuse it has cnly 15 instead of the 30
items that would be produccd by simply slowing the stream. The combined .nanipulation of slowing and
shortening the sequence produces (except for ceiling effects) much better performance for the comparable
control-BLANKS than the contrc: ALL conditions: control-BLANKS, lag 2, surpasses conirol-ALL, lag
1, and control-BLANKS. lag 4, surpasses control-ALL, lag 2.

The obvious interpretation of these data is that the main cause of the decline of performance with
lag is retrcactive interference (versus passive decay). Increasing the SOA increases the amount cf time
that the items must be retained but actually improves performance. (We know this al<o from unpubiished
observations in our laboratoy in which sequence length was controlled.) Improved performance with
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Figure 7. Data of all 36 trial types for each subject and type of stimulus transformation. In each panel,
frame lag is plotted on the abscissa, and proportion of correct detections is plotted on the ordinate. Hor-
izontal bars connected by continuous lines labeled A/2, A, represent control conditions A (blanks) and A
(all). 1B and B conditions are indicated by bars connected by dashed lines (not labeled). The data points
at each of the frame lags represent the different attention conditions and targets in JA+1B stimuli. Frame
lags 2 and 4 indicate aa and bb detections; frame lags 1 and 3 indicate mixed ab and ba detections. Open
circles indicate equal attention. At frame lags 2 and 4, data points for the detection of aa repetitions are
displaced to the left and detections of bb to the right, as indicated by dimension labels below) (D indi-
cates "detection"). At frame lags 1 and 3, detections of ab repetitions are displaced to the left and detec-
tions of ba repetitions to the right. R1 indicates the first occurring feature in a mixed repetition pair, indi-
cated by the dimension label below R1. Open symbols indicate detection of the attended feature (even
lags) or detection of mixed repetition pairs in which the attended feature occurred first. Filled symbols
indicate reports of unattended features or, in mixed pairs, that the attended feature occurred second.
Reports of aa (bb) under different attention conditions are linked by lines, the heavier line indicated the
attended feature. The asterisks at frame lags 1 and 3 indicate the means for the six mixed detection types.
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increasing SOA suggests (1) the benefit of more time for encoding far outweighs the cost of passive decay
within range of SOAs studied here, and (2) retroactive interference (versus passive decay) is the cause of
diminished performance as a function of lag.

Repetition Blindness. The improvement of detection with shorter lags is different from another
phenomenon discovered recently by using superficially similar procedures. "Repetition blindness”
(Kanwisher 1987) is the reduced ability of subjects to report both occurrences of a repeated word embed-
ded in a rapid sequence (approximately 4 to 9 per second) as contrasted with the reportability of two
independent words. In contrast to the present research, reportability of both occurrences of the word
increases with increasing lag. There are several differences between our repetition detection procedure
and the procedure Kanwisher used. Repeated items are discriminated from unrepeated items in
Kanwisher’s studies rather than from other equally-often-repeated items, as in ours. The repetition blind-
ness paradigm tests the tendency of subjects to report both occurrences of repeated items rather than their
ability to discriminate repeated from unrepeated items. Moreover, repetition blindness experiments typi-
cally have used linguistic stimuli (words) in the stimulus sequence, in some instances varying the context
in which these words were presented (Kanwisher 1987, Kanwisher & Potter 1989), and in other instances
varying the case of the repetition without incurring a performance detriment (Marohn & Hochaus 1988).
These procedural and stimulus differences suggest that repetition blindness and repetition detection para-
digms may elicit different information-processing strategies and may reflect different levels of process-
ing.

Equivalence of the Opposed Features within a Dimension. Feature equivalence has already been
mentioned, but a glimpse at the control data shows that performance on the A and B control streams is
essentially equivalent in all conditions. Indeed, there are several examples where the JA performance is
below ;B performance, and some where A performance is above B performance. None of these
instances approaches statistical significance, considering that they are post hoc comparisons.

Feature equivalence means that differential attentional effects exhibited in the JA+1B conditions

are due to other factors than simple discriminability of the streams. Further, we note that attentional
effects cannot be due to cross-stream masking in which an item from ;A masks one from JB. We refer
again to the basic result that interposing noise fields (which are much more effective maskers) has
minimal effects on performance (Kaufman 1978; Wurst, Sperling, & Dosher 1991). Furthermore, we
have previously noted the equivalence of equal attention performance for aa and bb in ;A+3B. In other

words, at early levels of processing, the A and B items are equivalently discriminable.

Mixed Detections, ab and ba . In fig. 12.7, mixed detections are represented as clusters of points that
lic above lags 1 and 3. Because of the strict feature altemation in the JA+1B stream, only different-

feature (mixed) repetitions can occur at lags 1 and 3. The probabilities of these repetitions were quite
low, P=0.1 in the selective-attention conditions and P=0.14 in the equal-attention condition (table 12.1).
At each of these lags, there are six mixed detection-types: three attentional states x two feature sequences
(ab, ba). All six detection types are illustrated in fig. 12.7 for each stimulus transformation, subject, and
lag.
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Because a mixed repetition involves a feature difference, we expect mixed repetitions to be more
poorly detected than same-feature repetitions in all conditions. The mean of all six (fig. 12.7) mixed
repetition types for lag 1, is below the level of same-feature repetitions in all 11 instances, and dramati-
cally below the same-feature level in some instances. But the pattern is hard to discem. With lag-1
mixed repetitions in the bandpass transformation, subject BL almost equals his performance with same-
feature repetitions, whereas subject SW's mixed detections are grossly impaired. In the polarity-and-size
transformation, this data pattern is reversed for the two subjects.

At lag 3, however, mixed detections fall right at the mean of same-feature detections in about half
of the 11 instances, and not far from the mean in the remainder. This suggests, as previously noted
(Kaufman 1978; Sperling & Kaufman 1991), that physical features are most important at lag 1 and that
more abstract memorial representations become more important at longer lags. Whether the decreased
dependence on physical features with increasing lag represents two memory systems, Or one memory sys-
tem with different properties as a function of signal strength, is not resolvable here. Finally, although the
theory that will be considered later suggests that there should be significant differences within six mixed
detection types, we did not discover any strong consistent differences.

Main Effects of Feature Differentiation and of Selective Attention. The main attention effects
involve same-feature detections (aa, bb) and are represented in the clusters of points above lags 2 and 4.
Previously, in table 12.2, we observed that the benefits of feature differentiation appeared only for the
size, bandpass, and polarity-and-size transformation types. Selective attention, on the other hand,
impaired average performance for these tr-r sformations but enhanced performance with orientation and
polarity transformations. In fig. 12.7, the details of these attentional phenomena are manifest. Equal
attention is represented by two large circles, one for each kind of detection (aa. bb). Each equal-attention
circle is connected to two "attentional” line segments that represent the directed attention conditions with
the same target. In the top two rows of fig. 12.7 (orientation, polarity), the equal attention data occur
roughly at the centroid of all the attentional conditions and fall more or less on the control-ALL lines.
When selective attention is appropriately directed (heavy lines, open symbols) about half the data fall
above the equal attention circles and above the control lines, thereby indicating a small benefit of selec-
tive attention. The remaining data show litile effect of attention.

In the size, bandpass, and polarity-and-size conditions, the equal-attention centroids move clearly
above the control-ALL lines, indicating a significant stimulus benefit. In many instances, selective atten-
tion data fall well above and far below the equal attention data, indicating large effects of selective atten-
tion. However, the appropriately and inappropriately directed attention have similar effects, the direction
of the effect is determined by the direction of attention, independent of the type of target (aa or bb).
Thus, on the average, even appropriately-directed selective attention is not more beneficial than equal
attention. The thick-lined attention spokes (appropriately directed selective attention) that point both up
and down in fig. 12.7 (instead of up only) from the equal-attention circles represent the misdirccted AOCs
of fig. 12.6.
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12.4 Theory: Attention is Itself a Feature

Neural Network Theory of Short-Term Visual Repetition Memory (STVRM)

Waurst, Sperling, & Dosher (1991) outline a theory that accounts reasonably well for the basic properties
of the data of their repetition detection experiments. Following an established literature (McClelland &
Rumelhart 1988), it is assumed that items are represented in memory as vectors of (dozens of) features.
Each item vector has a value for every feature that can be represented in short-term visual repetition
memory (STVRM). The feature value may be present/absent or perhaps more finely graded. Features are
assumed to represent properties of items such as, for example, "has a vertical stroke”, "has an intersec-
tion", and so on. It is assumed that features are elementary visual components (rather than semantic com-
ponents) because it was found that nonsense forms were remembered precisely as well in STVRM as
meaningful alphanumeric stimuli (Kaufman 1978; Sperling & Kaufman, 1991). However, the present
discussion does not depend on what the particular features are assumed to be.

Items are not retained perfectly in the model of STVRM because new items use the same limited
memory capacity as old items. The net effect is that memory noise (item uncertainty) increases as new
items are added to STVRM. If a subject had perfect temporal discrimination, only the 11-th to the 24-th
items of the 30 item input stream would need to be processed. To determine whether a repetition has
occurred in the stimulus stream, comparisons are made between immediately successive items entering
STVRM. Additionally, comparisons are made between the incoming item and older items in memory.
[It is worth noting that a memory that simply recorded features of items, and in which the incoming item
was compared, featu. .-by-feature, to the sum of all recorded items (e.g., Murdock 1982), would not deal
adequately with attention tags because, once stored, the tags become a property of memory rather than
remaining associated with items.] The outcome of all comparisons is a single number (the familiarity
strength value) that combines the degree of similarity between the incoming item and the most-similar
memory item, and the confidence in this similarity.

Given that a familiarity strength has been computed, it is still necessary to generate a response.
Because there is only one to-be-reported repetition on each trial, generating a response requires finding
the item that has the highest familiarity strength value. This is nontrivial because humans cannot store a
strength value for a dozen incoming items at an input rate of 6.7 items per second and then pick the larg-
est value at the end of a trial. An alternative algorithm that stores the strength value of the first item and
updates it whenever a new item has a higher strength would be computationally too demanding. Instead,
a slightly less than ideal strategy is proposed. A repetition is reported when one of the strength values
exceeds a threshold criterion value. An optimal--or nearly optimal--criterion evolves during practice with
feedback in the particular task. The model with these assumptions about memory and decision processes
provides a reasonable account of both accuracy and confidence data from a wide range of repetition detec-
tion experiments (Wurst, Sperling, & Dosher 1991).
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Attention Is a Feature: A+/A-

The critical addition to the just-described memory and decision theory is that, in addition to features that
represent physical properties of the stimulus, we assume that selective attention to an item functions like
a feature in STVRM. Thus, along with physically defined features such as "vertical stroke” there is an
attentionally generated feature "attended,” which can have the value A+ to indicate the item was attended,
or A- to indicate that it was not attended.

Because, in STVRM, the A+/A- feature is assumed to function just like other stimulus features, A+
tagged items preferentially match each other. That is, attended items have the A+ feature in common,
and this facilitates the detection of repetitions for A+ items. However, unattended A- items, also share a
common A- feature, and detection of unattended A-, A- repetitions is facilitated just as much as attended
A+, A+ repetitions. Normal performance operating characteristics that are observed in other tasks reflect
mental operations subsequent to STVRM in which the attention feature is used, for example, to select
items for memory (as in partial report) or for further processing (as in visual search).

The Argument against Early Perceptual Selection. If it were possible to selectively filter items so that
they did not enter STVRM, then A-, A- repetitions would be undetected. However, the opposite result is
observed: A-, A- repetitions are remembered as well as A+, A+ repetitions. The surprising result for
about one-third of our conditions was that, when subjects gave equal attention to all dimensions, their
repetition detection performance suffered relative to both the attended A+, A+ and the unattended A-, A-
repetitions. In the remaining data, attention to the dominant feature enhanced performance for both aa
and bb detections relative to equal attention or attention to the subordinate feature. The systematic
superiority of repetition detection of unattended items (when attending to a dominant feature) over
partially-attended and fully-attended items is an extremely robust finding, occurring for all subjects and
several stimulus types. Unequivocal superiority of unattended over partially-attended items really is quite
extraordinary, and certainly requires the unattended (as well as attended) items to enter memory. These
results fall quite nicely out of the attention-is-a-feature theory.

Transformation-specific Biases in Attentional Tagging. There were two main classes of data in
repetition-detection experiments: In type 1, equal-attention was harmful, and in type 2, selective attention
to one of the two features was harmful. Type 1 data are characterized by the inferiority of both aa and bb
detections under equal attention relative to both aa and b under all conditions of selective attention.
Type 2 is characterized by the superiority of both aa and bb detections under attention to feature A rela-
tive to equal attention or attention to feature B,

Type 1 data are explained by assuming that the subject can reliably attach the A+ tag to input items
according to instruction. Since this tag is reliably attached, it is equally useful for matching attended
pairs with attended pairs and unattended pairs with unattended pairs. Thus both attended and unattended
items benefit from selective attention.
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Obviously, in type 1 data (and therefore in this theory), selective attention does not operate by filter-
ing out items from STVRM. Unattended items occupy just as much space in STVRM as do attended
items, and they are just as available when the right question is asked. They could be filtered from subse-
quent processing because they have an A- tag: the subject knows that they were "unattended”. But this
would be at a higher level of processing, where discriminations are made among items that are already in
memory.

Type 2 data are explained by assuming that the subject can attentionally tag all the items in the A
stream when attending to A but cannot reliably tag all the items in the B stream when attending to B.
Thus, in selective attention to A, the subject succeeds in doing what comes naturally: correctly tagging
the A as attended and the B items as unattended. The subject gains the benefit of reliable attentional tag-
ging, which facilitates repetition detections of both aa and bb pairs because each is tagged correctly.

Now, consider the problem of attempting to attend to B in the face of an inherent bias to attend to
A. Suppose the subject fails to attend (attach A+ tags to) all the B items and inadvertently attends
(attaches A+ tags to) some not-to-be-unattended A items. Such mistagging works symmetrically to the
detriment of both aa and bb detections becauses mismatched attention tags disturb what otherwise would
be matches.

Dominant Features. All three subjects detected the small-black digits better when attending to the
large-white digits than when attending to the small-black digits. Post hoc this suggests that large-white is
a "dominant" feature relative to small-black, in the same sense that figure is dominant relative to ground.
There is an a priori bias to associate attention with large-white. When the subject attempts to attend to
small-black, the rapid presentation rate does not allow enough time to overcome this bias. Similarly,
large is dominant relative to small and high bandpass is dominant relative to low. However, in the simple
polarity condition, the black-and-white streams seem (0 be more or less equivalent. This suggests that
size is the operative factor in determining feature-dominance when it is involved together with polarity in
S&P.

In the bandpass transformation, there is a one octave (2x) difference between stimulus bands.
Because the two 2 dimensional spatial filters are scaled replicas of each other, there is 2x2 times more
information in high bandpass images than in low bandpass images (in the sense of number of independent
samples). In both cases, size and bandpass, the attention-attracting feature seems to be the one that would
activate the larger number of ncurons. This argument closely follows Milner’s (1974) distinction
between extrinsic and intrinsic attention (532), where extrinsic attention is determined by summed neural
activity. With slower presentation rates, the attention-bias of features might be overcome by conscious
effort (intrinsic attention). If so, extrinsic and intrinsic attention in the repetition detection procedure (and
in simpler procedures) could be conjointly scaled (Krantz & Tversky 1971) together with the attention
dominance of images and image transformations.
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Mixed Pair Predictions. When attentional tagging is carried out correctly, mixed repetition pairs
under selective attention should be impaired relative to equal-attention mixed pairs. Both kinds of mixed
pairs should be impaired relative to homogeneous pairs because, in addition to attentional differences,
there are real stimulus differences (e.g., Posner et al. 1969, name vs. physical identity matching) Under
conditions in which attentional tagging is unreliable, the differences between equal-attention mixed,
selective-attention mixed, and homogeneous repetitions are expected to diminish: mixed pairs benefit
from mistagging while homogeneous pairs suffer.

These complex mixed-pair predictions are not borne out by the data. While there are some data sets
in which equal-attention mixed pairs fare better than selective attention pairs (e.g., SW, orientation, lag
1), the effect is not rcliable over all conditions. A particular problem is that, because the mixed trials
represent a small fraction of the total trials, the reliability of available mixed-pair data is low.

In mixed-pair repetitions, feature differences overshadow attention differences. For example, the
orientation feature has a large influence on shape and therefore greatly impairs mixed pair detections at
lag 1 (but not lag 3). Size and polarity show significant but smaller mixed-pair deficits. While equal-
attention mixed-pairs fare better in these transformations, the effect is not reliable. The variability of
mixed pair detections is illustrated in the bandpass and P&S conditions. With bandpass stimuli, mixed
pair deficits arc enormous for subject SW and almost absent for subject BL, while the reverse is true with
polarity-and-size stimuli.

Mixed Pairs as a Tool to Study Memory Representation. Variations in feature similarity between mixed
pairs offer a means of studying their significance in STVRM. Surface feature properties such as orienta-
tion, poiarity, size, and bandpass play a significant role for mixed detections at lag 1 but become
insignificant at lag 3. Systematic manipulation of mixed-pair differences could, in principle, establish
metrics for the dimensions that underlie the memory comparisons.

Relation to Other Paradigms, Early versus Late Selection

Spatio-temporal versus Featural Selection. In paradigms involving spatial selection, such as partial report
(Orenstein & Holding 1987), or temporal selection, such as the attention-gating procedure (Sperling &
Recves 1980; Reeves & Sperling 1986), items outside the spatiotemporal window of attention are una-
vailable. These are examples of successful attentional selection. Reeves & Sperling (1986) give a fairly
complete account of the temporal window of selection (the attention gate), and Sperling & Weichsel-
gartner (1991) extend the account to the dynamics of spatiotemporal attentional selection. On the other
hand, where attentional selection on the basis of featural properties has been asserted to occur, as in visual
scarch, it has not been clear whether the features serve only to guide spatial or temporal attention or
whether the features themselves serve as the basis for selection. The present data suggest that, within a
location, early selection on the basis of gross physical features does not occur. Certainly featural proper-
tics can excrt an influence on detection and other decisions, but our data suggest that featural effects occur
at the level of decision making, not at the level of exclusion from processing.
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The Processing Level of Feature-based Attentional Selection. In contrast to the present study, Intraub
(1985) and Weichselgartner & Sperling (1987) apparently observed feature-based selection in character
streams. Their procedure utilized a rapid stream of characters in which the target character was sur-
rounded by an outline square or circle. Report of the target character can be nearly flawless even at
stream rates exceeding 10 characters per second. Weichselgartner & Sperling (1987) also demonstrated
that highlighting a character in a stream (making it brighter than its neighbors) allowed it to be extracted
almost perfectly. This is in striking juxtaposition to the present experiment, in which white characters
could not be selectively attended in the context of black characters and vice versa. Further, Weichsel-
gartmer (1984) demonstrated that when more than one character was cued (by an outline square or by
highlighting), as many as four characters could be selected. Thus feature-based cueing, like spatial and
temporal cueing, can yield multi-item selection.

There are two contrary results: feature-based selection from temporal streams for partial report and
feature-based nonselection in the repetition-detection procedure. What do they imply about about atten-
tional processing? Two possibilities are that partial report selection occurs at a higher level of processing
or in a parallel processing path. We can exclude a single path in which partial report precedes STVRM
because, if attentional selection could have occurred before STVRM, it would have been manifest by our
attentional manipulations.

Suppose the processes underlying repetition detection and feature-selected partial reports share a
single processing path. Then, the locus of attentional selection is rather closely constrained by these
results to lie between STVRM and selection for partial-report. Considerations about the precise level of
processing of STVRM become critical. We have already recounted the earlier observation (Kaufman
1978; Sperling & Kaufman 1991) that never-repeated nonsense visual shapes yield precisely the same
data as do letters in the repetition detection paradigm. This implied that the STVRM was visual (not ver-
bal, for example). Wurst (1989) showed that STVRM occurs after binocular combination, that it is blind
to eye of origin, and that dividing a stream alternately between two spatial locations does not alter
STVRM capacity within a location. Within STVRM itself, the situation is less clear because there are
differences between lag 1 and longer-lag detections. Kaufman (1978) and Sperling & Kaufman (1991)
had noted that manipulations such as varying character font or introducing spatial jitter selectively
affected lag 1 detections relative to longer lags. Indeed, Sperling & Kaufman (1978) argued that this
implied lag 1 utilized a different memory than did other lags.

With respect to feature selection for partial report, Weichselgartner & Sperling (1987) showed that
using a simultaneous auditory click to cue an item from a rapid visual stream failed to uniquely select an
item. Rather, the click caused reports typical of other cues that define an interval in time from which to
sclect items, analogously to tonal cues in partial report that have been used to define an interval in space
from which to select items. That is, the trial-to-trial distribution of items that subjects reported as simul-
taneous with the auditory click had a large temporal window that included some items before and many
items after the cued item. Only visual cues served to cleanly extract the cued item. On the other hand,
when the size of an outline square was varied, it was found that even squares many times larger than the
target letter functioned as well for extraction as did close-fitting squares. The large differences in data
from auditory cueing and from visual cueing of items in visual streams implies that visual cues for partial
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report of visually presented items produce selection at a visual level. But the observed indifference to the
size of a cueing square suggests that the memory representation is not a simple transformation of the
stimulus.

This review of featural selection from visual streams by means of the repetition detection paradigm
and the partial report paradigms suggest a quite similar visual basis for performance in both paradigms
The observation that attentional selection is possible in partial reports but not in repetition-detection sug-
gests that attentional selection occurs subsequent to STVRM and prior, or intemal, to selection for partial
report. The generally similar visual sensibilities of partial reports and repetition detections suggests that
attentional selection for partial reports follows very closely, perhaps acting directly on, the substrate pro-
vided by STVRM.

12.5 Summary and Conclusions

Background: Detection of visual repetitions in a rapid stream of items depends on a short-term repeti-
tion memory (STVRM) that is indifferent to eye of origin and to interposed masking fields, and which
functions as well for nonsense shapes as for digits. STVRM is visual, not verbal or semantic. It is
govemed by interference from new items; it does not suffer passive decay within the short interstimulus
intervals under which it has been tested.

Our subjects’ attempts to selectively attend to characters based on physical differences of orientation,
contrast polarity, size, spatial bandpass filtering, and polarity-and-size combined yielded large (but unex-
pected) attentional effects. The most common result was that certain attentional states impaired repetition
detection of both attended and unattended items. There was no evidence for attentional selection. Repeti-
tion detection of unattended items was not systematically impaired relative to partially or fully attended
items. Although some of the feature differences produced large stimulus benefits that aided detection in
alternating-feature strcams, they never produced attention benefits that consistently exceeded the stimulus
benefits.

The paradoxical results were explained by assuming that attention itself functions like a stimulus
feature, with values A+/A- to represent attended and unattended states. All items are recorded in
STVRM, and matches between similarly tagged items are facilitated.

Feature-based repetition detection differs dramatically from attentional selection based on spatial or
temporal location and from featurc-based selection for partial report. Target items can be selected for
partial report from stimulus streams based on physical differences in intensity or when targets are sur-
rounded by outline squares.

If feature-based selection for partial report follows STVRM in the same processing path, then the
locus of attentional filtering is constrained to lie between STVRM and the process of partial-report selec-
tion.
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Abstract

We examine apparent motion carried by textural properties. The texture stimuli consist of
patches of sinusoidal grating of various spatial frequencies and contrasts. Phases are randomized
between frames to insure that standard motion analysis directly applied to stimulus luminance is
not systematically engaged.

We use ambiguous apparent motion displays in which a heterogeneous motion path defined by
alternating patches of texture s (standard) and texture v (variable) competes with a homogeneous
motion path defined solely by patches of texture s. Our results support a model in which strength of
texture-defined motion is computed from a single spatial transformation of the stimulus - the activity
transformation. The value assigned a point in space-time by the activity transformation is directly
proportional to local texture contrast and inversely proportional to local spatial frequency (within
the range of spatial frequencies examined). Thus. the activity transformation can be modeled
as the rectified output of a low-pass spatial filter applied to stimulus contrast. The strength of
texture-defined motion between a patch of texture s and a patch of texture v is proportional to
the product of the activities of s and v. A counterintuitive implication of this model borne out in
our data is that apparent motion along a heterogeneous path consisting of alternating patches of a
low contrast. low frequency texture (texture !) and patches of high contrast. high frequency texture
(texture h) can be stronger than motion along a homogeneous path of identical patches of texture
h.

1 Introduction

1.1 Terminology

Drifting spatiotemporal modulations of a variety of optical entities (such as luminance. contrast.
texture type. binocular disparity. etc.) can induce a vivid motion percept. that is. something appears
to move from one place to another. This introspective description. however. does not necessarily
reflect the underlving processes in human visual motion perception. We discriminate two stages for
the extraction of motion information. —\ preproceesmg qtage serves to transform the raw stimulus into

a $mgle scalar modulation signal ( gg?yane\t stage:
¢ oy

_ The preprocessing stage can be either a linear or a nonlinear stimulus transformation. LTiear
pwprocescmg is called ﬁrct order motion extraction. whereas nonlinear preprocessing is called second
order motion e\tractlon{C'\vanagh €t-4t, 1889: Chubb and Sperling, 1989). R

Both first and second order motion extraction tan be further classified by ‘the tvpe of motion
analysis. A review of the literature on motion perception shows that two classes of motion extraction
mechanisms have been considered and tested experimentally. We call these classes of motion extraction
motion correspondence ertraction and motion energy extraction.

,Motion energy extraction compute the directional energy of a Fourier representation of the drifting
modulatlon signal, that is, the relative energy of ‘drifting’ spectral components. Energy ertraction is
insensitive to the relative phase of the different spatial Fourler components of the modulation signal
(van Santen and Sperling, 1984), and are thus insensitive toljeatures of spatidl.structure. Motion
correspondence extraction, in contrast, is thought to identify local features ofthe modulatxon signal and

[
S

A

motion analysis (thaking~the motionjnformmtiomrexpliet) Sd o RTST s, A

"o

e

"'\\ ~.
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then to track the location of corresponding features over time. Energy and correspondence mechanisms
vield qualitatively different predictions for the strength of motion (Werkhoven et al., 1990b).

In this paper, we study drifting modulations of {exture type (second order motion extraction) and
discriminate between motion correspondence extraction and motion energy extraction_/ S

W

1.2 Motion-From-Texture

Texture-defined motion is motion carried by textural properties. It is not produced by a moving texture
patch; that would be rigid, luminance-defined motion. Texture-defined motion is usually produced
by a moving patch that is filled with a particular type of texture in which each successive frame
represents a new, uncorrelated instance of that texture type. As for all second order motion stimuli. an
intriguing aspect of texture-defined motion perception is that (unlike perception of luminance defined
or first order motion) it cannot be explained by Fourier energy or autocorrelational motion analysis
{standard motion analysis). An early example of texture-defined motion was reported by Sperling
(1976). Detailed studies and analysis were recently presented by Chubb and Sperling (1989.1991).
Cavanagh et al. (1989), Lelkens and Koenderink (1984), Mather (1991). Turano and Pantle (19%9).
and Victor and Conte (1989).

1.3 Energy Channels

C'hubb and Sperling (1989. 1991) suggested a sclieme for extracting texture-defined motion that con-
sists of two stages. Stage 1 is a ‘texture grabber’ that consists of a linear spatial filter followed by a
non-linearity (e€.g.. rectification, squaring, etc..). Stage 2 is standard motion analvsis.

The “texture grabbers’ of stage 1 are assumed to be distributed over the visual field. It is assumed
that the spatial filters of stage 1 operate on stimulus contrast (see Model section). rather than on
luminance. but this assumption is not critical to our arguments. The output of a linear filter mav
be positive or negative depending on the local phase of the sensed texture, and that would yvield an
expected output of zero over the phase-randomized texture patches. The purpose of rectification is to
produce a positive average output across the texture so that a texture grabber registers the presence
or ahsence of texture. independent of local phase. Indeed. that is why Stage-1 (linear spatiotemporal
filter followed by rectification) is called a terturc grabber. The output of a texture grabber in response
to a particular texture is called activity. The essential nonlinear characteristic of texture extraction
processes has also been emphasized by Bergen and Adelson (1988) and Caelli (1985) (see also Graham.
1992).

We assume that the second stage (standard motion analysis) is a coincidence detector with an
internal delay (e.g., Reichardt, 1961). It computes the following product: previous activity at location
1 times current activity at location 2. Such a motion-detection scheme yields a high response when
the time for a texture to move from location 1 to location 2 equals the internal delay. The output of
the second stage corresponds to motion strength. This model of standard motion analysis is proposed
only for the sake of definiteness. van Santen and Sperling (1984) showed that the various motion
models that had been proposed for human vision were equivalent or approximately equivalent to an
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elaboration of this simple scheme. We will refer to this class of motion models as standard motion
analysis. None of our conclusions will depend on the details of standard motion analysis.

Together, a texture grabber followed by standard motion analysis form a likely motion computation.
which we call an energy-channel. There may exist multiple energy-channels, yielding independent
measures of motion strength.

1.4 Correspondence-Channels

Above, we discussed a type of motion computation (energy-channels) that is basically insensitive to
similarities between the textures in a motion path. Traditionally, however, psychophysicists have
interpreted results of motion-from-texture experiments in terms of correspondence matching. The
nietaphore of motion correspondence describes motion as the convection of some invariant aspects
of spatiotemporal structure over time. A correspondence computation is inherently different from
an activity computation: it is highly sensitive to differences between textures in a motion path.
Although it is intuitively clear that a single energy-channel is inherently different from a correspondence
computation. this may not be intuitively clear for a system with multiple energy-channels. However,
in the Model section of this paper. we formally show that a system of multiple energyv-channels can
not be equivalent with correspondence matching. We conclude that a correspondence computation is
a separate class of motion computations.

Historically. motion correspondence has been investigated with ambiguous motion displays in which
motion is perceived as occurring along one or the nther of several competing paths. Most studies
liave dealt with stimuli that stimulated the first-order motion system (e.g.. Burt and Sperling. 1981:
Kolers. 1972; Navon. 1976; Papathomas €t al., 1991: Shechter et al., 1989; Ullman. 1980: Werkhoven
et al., 1990a.1990b) and these data are adequately explained by the first-order motion models. We
consider here two recent studies that attempt to deal with feature correspondence in texture-defined
motion stimuli. These studies illustrate the difficult methodological issues that arise in attempting to
determine motion correspondence. and thereby they motivate the more complex paradigm we use.

1.4.1 Watson’s crossed-phi procedure

Watson (19%6) focussed on the spatial frequency specificity of perception of texture-defined motion.
He used a ‘crossed phi® method, in which two different texture patches (A, B) exchange position in
successive frames (B. A). The pathes were Gaussian-windowed sine waves (Gabor patches). Observers
reliably perceived lateral motion when A and B were different spatial frequencies. Watson interpreted
his results in terms of models of human visual motion processing in which motion estimates are
computed separately within different spatial frequency bands. Furthermore, it was implicitly assumed.
that such a model was equivalent to a correspondence computation.

In our view, the ambiguous ‘crossed-phi’ paradigm admits two alternative interpretations in tern:-
of competing paths. The motion paths between textures of similar spatial frequencies (A - A). (B -
B) must compete with a no-motion (standstill) path between textures of different spatial frequencies
(A.B). Alternatively, the motion path A - A in one direction competes against the motion path B - B
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in the opposite direction. Neither interpretation allows the crossed-phi paradigm to measure motion
strength between textures of different spatial frequencies because such motion is not present in the
display.

1.4.2 Green’s Gabor patches

Green (1986) embedded competing paths in a rotating annular display (quite similar to Navon. 1976).
He measured the strength of apparent motion as a function of the spatial frequency of Gabor patches
along the paths. Green’s observers tended to perceive motion along paths in which neighboring
patches had same or similar spatial frequencies. Green concluded that spatial frequency is a strong
determinant in ‘correspondence matching’ and proposed (like Watson) that the visual system uses
multiple (bandpass) channels similar to spatial frequency channels in analyzing these texture-defined
motion paths.

Green's results are open to a different interpretation. If Green had failed to find dominance of the
homogeneous path, it would indeed have indicated a failure of matching in apparent motion: i.€.. that
all patches were equivalent for motion-from-texture. However, we propose that. in Green's motion
competition scheme. finding dominance of the homogeneous motion path does not prove the existence
of different channels or of feature-matching. The argument is as follows.

The motion stimulus used by Green contains two homogeneous motion paths {one between patches
of texture 1 and another between patches of texture 2) in the same direction and one type of het-
erogeneous motion path (between patches of textures 1 and 2) in the opposite direction. We apply
a simple but general motion computation (after Werkhoven et al.. 1990b) to the Navon-Green dis-
play to illustrate that motion in the direction of the heterogeneous path should never be perceptually
dominant. Consider an arbitrary texture grabber (T') followed by a half-Reichardt motion detector
(van Santen and Sperling. 1985). Let 77 be the response of texture grabber 7 to texture 1 and 7T,
the response of the texture grabber T to texture 2. Using the Reichardt product to estimate motion
strength. and subtracting the strength of the heterogeneous from the (opposite) homogeneous path
vields a net motion strength in the homogeneous direction proportional to (T} — T3)? which is always
non-negative! The dominance of the homogeneous motion path is inherent to the display’s competition
sclteme rather than a result of ‘correspondence matching'.

The Navon-Green ambiguous motion display is useful in determining whether or not two competing
texture patches are motion metamers. With metamers. motion is ambiguous: with non-metamers the
homogeneous path dominates. However. Green did not elaborate the method sufficiently to demon-
strate that more than one tvpe of texture grabber was involved. In particular. Green's results are
consistent with the proposal that the visual system uses only a single texture grabber in its analysis
of texture-defined motion: a texture grabber whose response is monotonic with the spatial frequency
of the sensed texture - for example, a texture grabber that applies a low-pass spatial filter to stimulus
contrast.
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1.4.3 Finally

The experiments discussed above on motion-from-texture experiments do not uniquely support a mo-
tion correspondence computation. With a different type of experimental paradigm (motion direction
discrimination experiments) Victor and Conte (1990) have shown that correspondence might not be
relevant to motion processing at all.

To conclude on the validity of correspondence computations, we need a stronger experimental
paradigm which is presented in this paper. In the next we will refer to motion correspondence com-
putations as correspondence-channels.

1.5 Representation of a General Motion Computation

Above, we have discussed two types of motion computations: energy-channels and correspondence-
channels. There may exist an arbitrary number of independent channels of each type contributing to
motion strength. In general. the output of the motion computation will be a vector, its components
representing the outputs of the individual channels or combinations of them. For example. the mo-
tion computation may be represented by a n-dimensional vector when its components correspond to
n independent motion channels. However, the motion computation may result in a scalar represen-
tation. when all channels are combined (for example summed) before the final representation. The
dimensionality of the vector representation is called the dimensionality of the motion computation.

It is important to realize that the dimensionality of the motion computation is the number of
values through which all channels involved are finally represented. It does not indicate the number of
clhiaunels involved. For example, n independent energy-channels may be represented by a single scalar:
the sum of all channels.

1.6 Fundamental Questions

In this paper we address the following questions:

e (a) What is the dimensionality of the motion computation? That is. if the motion computation
is represented by a vector. what is the dimensionality of this vector.

¢ (b) What is the number of channels and how are they combined in the final motion vector
representation? For example, how many energv-channels (or texture grabbers) are involved in
the perception of motion-from-texture?

e (c) What are the characteristics of the channels involved? For example, what are the textural
properties sensed by the texture grabbers and how does the activity of a texture grabber depend
on these textural properties?

1.7 Motion Metamers

The concept of motion metamers is critical to our method of answering the questions concerning
the dimensionality of motion perception. Motion metamers are understood most easily by analogy
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with color metamers. Color metamers are patches of light that are judged equivalent with respect to
color bnt which may have different spectral compositions. The explanation for color metamers derives
from the standard Young-Helmholtz trichromatic color theory. For human vision, any color can be
represented by three independent scalars (Helmhotz, 1924). Equivalently, any arbitrary color can be
matched by a suitably chosen mixture of three independent primary colors. In fact, any triplet of
independent primary colors can serve as a set of primaries for matching an arbitrarily chosen color.
The class of all triplets that match a particular color is the metameric class for that color. In order
to find such a metameric class of matches for an n-dimensional color system, the number of ‘primary
colors” used to match an arbitrary ‘color’ must be at least equal to n.

Richards (1979) applied the matching methods of colorimetry to study a wide range of sensory
attributes such as visual flicker, visual texture, tactile sensations, and auditory sensations. Williams et
al. (1991) observed a kind motion metamerism: polymorphic motion stimuli that produce motion
percepts with equivalent directional characteristics, but they did not interpret their observations in
terms of the metamerism. Here, we apply the dimensional analysis of colorimetry to the motion
domain. in particular, to motion-from-texture.

We say that two kinds of texture patches are motion metamers if they can be interchanged in
any motion path without affecting the the motion strength of path. Our experiments are basically
analogous to the color matching experiments. First, we embed a variable texture v in a motion path
that is in competition with a standard path containing a texture s. We determine the parameters
of v (such as contrast and spatial frequency) that are needed to achieve path equality for v and s.
Second. we determine that v and s are indeed equivalent for other paths as well. Generalized path
equivalence demonstrates that v and s are motion metameres. Third. we find the range of v texture
patches that are equivalent to s, i.e., we find the metameric class containing s. From the dimesionality
of the metameric class. we can determine the number of ‘primary textures® vsubi that would be needed
to provide a match to every member of the class. That is, different texture primaries might have to
be added to provide motion equivalence, just as different color primaries have to be added to provide
color equivalence. This number of required texture primaries is the dimensionality of the motion-from-
texture strength computation. Fourth. it is generally desirable to repeat the procedure for different
choices of s to assure that s was not an unlucky choice. Given our particular results, this iteration of
steps 1-3 will not be crucial.

In general. the number of tvpes of texture grabbers is at least as great as the dimensionality
of the motion-from-texture computation, and it may be much larger. We offer a proof that. under
certain assumptions. the dimensionality of the motion-from-texture computation exactly describes the
number of types of texture grabbers involved in the motion-from-texture computation (just as the
dimensionality of color space describes the number of types of color receptors).

Unlike color metamers, however, which are equivalent in all subsequent processing, motion metamers
are equivalent only with respect to the motion-from-texture computation, and generally are perceived
as different in other respects.
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1.8 Motion Competition Schemes

The matching technique could basically be applied to a variety of ambiguous motion schemes for
determining the dimensionality of the motion computation. However, not all of them have the power
to discriminate between different type of motion channels (see for example the discussion on Green’s
display). We used an ambiguous motion scheme that was first introduced by Werkhoven et al. {1990).
In this motion competition scheme, one heterogeneous motion path (between patches of texture s and
texture v) competes directly with one homogeneous path (between patches of texture s).

By varying the textural properties of the textures v, we can determine the heterogeneous motion
paths s — v that are metamer with a certain homogeneous path s — s. In general, this metamery does
not transfer to the textures itself. That is, for a general motion computation, a metamery between
motion paths s—s and s—v does not imply a metamery between tertures s and v with respect to motion
processing. However, it should be noted that, if and only if motion-from-texture is ruled by a single
energy-channel a metamery between motion paths does imply a metamery between the textures with
respect to motion processing. This is inherent to energy-channels: textures contribute independently
to motion strength.

This competition scheme not only allows to determine the dimensionality of the motion computa-
tion, but also allows to determine the number and type (activity versus correspondence) of channels
involved in the motion computation. This requires a thorough analysis (given in the Model section).

However, an intuitively clear property of this scheme is that the two type of motion channels
considered above {activity versus correspondence-channels) yield qualitatively different predictions for
motion metamery and the relative strength of the heterogeneous and homogeneous motion paths.
Hence. they are easily discriminated.

1.8.1 Activity-Channels

Consider, for example. a single energy-channel that uses only a single type of texture grabber (e.g..
a low pass filter followed by rectification}. This model yields the counterintuitive prediction that
the motion strength between a patch of high spatial frequency texture and a patch of low spatial
frequency texture (heterogeneous motion) can be stronger than motion between two patches of high
spatial frequency texture (homogeneous motion). Indeed, such a heterogeneous motion path may
dominate homogeneous paths even for a system with multiple energy-channels (when there is more
than one type of texture grabber).

For more generality, we apply the energy-channel computation (described above to show the in-
herent dominance of the homoge ~ous paths in Greens’ display’s) to the competition scheme used in
this paper. The motion strength is 77T, for the heterogeneous path and T,T; for the homogeneous
path yielding a net motion strength in the heterogeneous direction equal to T5(T; — T2). Whenever T;
is larger than T3, the heterogeneous motion path dominates. The motion paths are balanced when T
equals Ty. All textures that transform into the same activity are metameric with respect to motion
processing!
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1.8.2 Correspondence-Channels

By definition, correspondence-channels favor the homogeneous motion path (between patches of similar
texture). Consequently, heterogeneous motion cannot dominate over the homogeneous motion path!

1.9 A Preview
1.9.1 Dimensionality of the Computation

In this paper, we discuss a general motion computation consisting on n energy-channels, and a
correspondence-channel. By studying the above competition scheme with many different pairs of tex-
ture patches (Experiment 1 and 2), we can determine classes of motion metamers and infer the dimen-
sionality of the motion computation (Model section). The results strongly support a one-dimensional
motion computation. That is, motion strength is represented by a single scalar.

1.9.2 Type of Computation

The experimental results show no involvement of a correspondence-channel. Furthermore, the compe-
tition schemes allow to determine the number of energy-channels that are represented by a single scalar.
We proof (under certain assumptions) that the motion computation consists of a single energy-channel.
that is, a single texture grabber followed by standard motion analysis.

Also. we derive the characteristics of the single texture grabber involved with respect to textural
properties relevant to motion strength (using the results of Experiment 1, 2 and 3). Thus we can
predict the strength of texture-defined motion as a function of the contrast and spatial frequency of
sinusoidal texture patches.

1.9.3 Where in the Visual System?

The results of Experiments 4 and 5 will shed some light on where in the stream of visual processing
our proposed texture-from-motion computation takes place. In Experiment 4 we show that the motion
computation is not based on perceived contrast. Experiment 5 shows that our texture-from-motion
stimuli give similar results for monocular, binocular and dichoptic presentations.

2 Method

In this section we describe the ambiguous motion competition scheme used in the experiments.

This scheme (proposed by Werkhoven et al., 1990 b) differs from other schemes (e.g., Burt and
Sperling, 1981; Green, 1986; Navon, 1976; Shechter et al., 1989; Ullman, 1980) in that it contains a
single heterogeneous motion path (between patches of texture 1 and texture 2) that competes directly
with a single homogeneous motion path (between identical patches of texture 2). Except for textural
properties, the other parameters (such as step size and frame rate) of the motion paths are identical.

Instead of varying both textures 1 and 2, we sampled a subspace of possible textures resulting
in two (similar) schemes: Scheme I and Scheme II. In Scheme I, we kept texture 2 constant (called
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texture s) and varied texture 1 (called texture v). In Scheme II, we kept texture 1 constant (now
texture s) and varied texture 2 (now texture v).

2.1 Stimulus
2.1.1 Motion Competition Scheme 1

In Experiment 1, we used motion competition Scheme I. The motion stimulus consisted of a series of
8 frames ( f1, f2,- .. fs) shown successively in time. Figure 1 shows a sketch of the frames.

— Figure 1 about here —

The first frame ( f;) contains an annulus of patches of alternating texture types s and v at regular
positions (see Fig. 1, at the left side). Because the viewing distance was constant throughout the
experiment. we will specify dimensions in degrees of visual angle. The annulus of texture patches has
an inner radius of r; = 1.04 deg, and an outer radius of ro = 2.08 deg. The mean radius r is 1.56 deg.
The patches (or sectors) are spatially contiguous. Since the annulus contains 8 sectors, each sector
has a width of 45 deg.

Frame f, was similar to frame f;, except that patches of texture v are replaced by a uniform patch
of background luminance. Furthermore, f; was rotated around the center of the annulus 22.5 degrees
with respect to frame 1 (see Fig. 1, left).

In a sequence of frames, the locations and types of patches in frame f,,, were identical to frame
fn . except for a rotation around fixation of 45 deg.

The presentation time of a single frame (‘frame-time’) was 133.3 msec. Thus, the presentation
time of the 8-frame sequence was 1.066 sec. The annulus revolved at an angular speed of 168.8 degrees
per second. vielding a local velocity of the patch-centers of 4.6 degrees of visual angle per second.

The ambiguous motion stimulus described above contains two motion paths. This can be under-
stood most easily using a diagram in which we show the angular positions () of the patches of texture
for successive frames. Angular position is measured clockwise relative to the vertical. Such a diagram
is shown in Fig. 1. at the right side. Note that the horizontal rows of patches correspond to frame
1.2.3 and 4 respectively. By definition, motion extraction is based on the dynamic properties of the
stimulus. that is the spatiotemporal pattern of textures. In the diagram, possible motion paths are
spatiotemporal {oblique) rows of elements. The arrows pointing to the left and right are examples of
motion paths to the left and right respectively. In the following description of the stimulus, we will
say that the neighboring elements in a motion path are spatiotemporally linked or ‘matched’. Note
that the term ‘matching’ is used for the purpose of stimulus description only and that it does not refer
to a ‘motion correspondence’ computation.

When frame f, and frame f,4; were presented in succession, two matches between patches of
frame f, and patches of frame f,, were a priori possible. The first match is a homogeneous clockwise
match between patches of identical texture s separated by +22.5 deg (indicated in the diagram by the
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arrow pointing down and to the right). The second match is a heterogeneous counter-clockwise match
between patches of texture v and patches of texture s (-22.5 deg, indicated by the arrow pointing
down and to the left). Matches between frames f, and f,4, are entirely ambiguous. Matches between
patches of frames f, and fn43 involve large temporal separations (400 msec) relative to the equivalent
matches between frames f, and fn41 (133.3 msec). It has been shown that motion strength decreases
strongly and monotonically with temporal interval for intervals larger than approximately 30 ms (Burt
and Sperling, 1981; Werkhoven et al., 1991). Therefore, the matches between frames f, and f,,3 are
unimportant for motion perception in these stimuli.

Scheme I displays contain homogeneous and heterogeneous motion paths in opposite directions. By
randomizing the direction of rotation, the directions of the two motion paths (although still opposite)
are randomized.

The annular pinwheel stimulus was used for various reasons. First, the motion stimulus was
presented at a constant eccentricity in the parafovea, and the effects of anisotropy of the retina were
averaged across equivalent areas of the visual field. Second, it was easier to maintain fixation so eve
movements were better controlled'. Finally (with the use of circularly symmetric stimuli) a motion
path does not end at the boundaries of the display. avoiding edge effects.

2.1.2 Motion Competition Scheme 11

Scheme 1I (used in Experiment 2) is equivalent to Scheme I. except that textures s and v are in-
terchanged. The motion stimulus and resulting motion paths for this experiment are sketched in
Fig. 2.

—-— Figure 2 about here —

Although the heterogeneous motion path (between patches of texture s and v is identical to that
of Scheme ]. the homogeneous motion path is different from that of Scheme I. In Scheme II. the
liomogeneous motion path consists of patches of texture v. The critical importance of the two schemes
for our paradigm concerns the question of whether. when a particular s and v are chosen so that
motion paths are balanced in Scheme I, the paths will remain balanced when the same s and r are
used in Scheme II. From the subjects’ point of view, however, there is no difference between the two
schemes because. for any stimulus generated by Scheme I, an identical stimulus can be generated by
Scheme I1. However. during the course of a session. when v is varied between trials. different families
of stimuli are generated by the two schemes.

"Torsional eye-movements induced by the rotating annuli (cyclo-induction) were not controlled in our experiment.
Balliet and Nakayama (1978) reported the ability of extremely trained subjects to make stepwise eve torsions up to
rotations of approximately 26 degrees for large field stimuli (25-50 degrees of visual angle). However, we do not expect
torsional pursuit in our experimental conditions: small field stimuli, brief presentations, fast motion, unpredictable
motion direction, and ambiguous or near-threshold motion stimuli.
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2.2 Texture Stimuli

The textures used to characterize texture-defined motion are patches of sinusoidally modulated gratin 's
that differ in spatial frequency and contrast. The grating patches were arranged in eight sectors of an
annulus (pinwheel) around the fixation point with the grating extending radially in each sector. Tw,
critical parameters that characterize a texture patch at a given location of the pinwheel are contrast
¢ and spatial frequency w. Within a location, grating orientation was always radial. The ohase v of
the grating was a random variable with a uniform distribution.

We use polar coordinates to further characterize the pinwheel. Let ¢ be the polar angle of a point
in the image, and p be the distance to the origin (the center of the anrulus). Then the luminance
distribution at the point p, ¢ in sector j of frame ¢ is:

L;j(p,p) = Lo[l + ¢ijsin(27row; j + i ;)] (1)

W -~ define the mean spatial frequency w; ; as the spatial frequency at mean radius r. The mean spatial
freq.~ncy w;; of a texture patch depenas on’ - on whether j is odd or even. That is, two spatial
frequencies, w,. w, strictly alternate hetween adjacent patches on every frame of the display.

Within a trial, the contr _t ¢ ; of a sectc~ ¢,j depended only on whether i and j were even or
odd. On odd frames. ¢, ; was chose. as ¢, or ¢, according to wherher the sector j was even or odd.
On even frames, sector contrast ¢ ; alternated between  und ¢, in Scheme I and between ¢, and 0 in
Scheme 11. Between trials, ¢, and w, were changed. Sixteen values of contrast ¢, from 0 to 1 were used
increasing by steps of 0.0625: 0. 0.0625, 0.13 ....1. Spatial frequency w, was varied over a range of
three octaves: 1.2, 2.5, 3.7, 4.3, .9,5.6. 7.4 or 9.9 cpd. [lLe rontrost ¢, and spatial frequency w, of
te ‘ure s were constant throughout the experiment: ¢, = 0.5, w, = 4.9 cpd.

" phase %,;,0 < v, ; < 2r, was chosen randomly and independently for every combination of i
an. y.tla* is, 1or every single patch. The phase randomization of every patch makes the motion of
the stimulus inaccessible to any first-order (Fourier-based) mechanism. Phase randomization insures
that motion mechanisms sensitive to correspondences in stimulus luminance were not systematically
engaged (Chubb and Sperling. 1988).

— Figure 3 about here --

Figure 3 shows an example of a series of frames for Scheme I. Texture s is a ‘medium’ frequency
grating and texture v is a ‘low’ frequency grating. The regions inside and outside the annulus (back-
ground) were uniform grey and had a luminance value (Lo = 72 cd/m?). Within the annulus’ texture
patches the expected luminance value was equal to the background luminance.

2.3 Apparatus

The experiment was controlled by a IBM 386 PC compatible computer, driving a TrueVision AT-
Vista video graphics adapter. A 60 Hz Imtec 1261L monitor with a P4-type phosphor was used to
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display the stimuli. The screen dimensions were 21.8 x 14 cm (640 x 480 pixels; 12.3 x 8.0 deg visual
angle)?. We used a look-up table to linearize the monitor’s luminance values with the gray values of
the computed stimulus patterns. The decay time to 10% and 1% intensity was about 1.3 and 6.2 msec
respectively which is shorter than the temporal properties of retinal processing (Farrell et al., 1990;
Sperling, 1971).

2.4 Subjects

Two subjects participated in the experiments: one of the authors (PW) and a colleague (JS). PW is
emmetropic. JS is myopic (-0.5 D) but was in focus for the viewing distance used. Both subjects were
experienced psychophysical observers. Natural pupils, binocular viewing, and spectacle corrections
were used throughout. Several naive subjects confirmed the main findings for the experiments.

2.5 Procedure

Subjects indicated the dominant motion path (counter-clockwise/clockwise) by pressing one of two
buttons. In both experiments, texture s (the standard texture) had contrast ¢, = 0.5 and spatial
frequency w, = 4.9 cpd. From trial-to-trial, the spatial frequency w, and contrast ¢, of texture v
was varied. The experiments determined the probability P;(c,;w,) of perceptual dominance of the
heterogeneous motion path as a function of ¢, for certain w, using the method of constant stimuli.
The subscript ¢, t=1.2, indicates Experiment 1 with competition Scheme I (Fig. 1) or Experiment 2
with Scheme II (Fig. 2).

The probabilities Py(c,;w,) and Py(cyw,) are estimated by the fraction of perceptually dominant
heterogeneous motion paths out of 36 presentations. Spatial frequency w, was varied over a range of
three octaves: w, = 1.2,2.5,3.7, 4.3, 4.9, 5.6, 7.4 and 9.9 cpd. Within a session. contrast ¢, was varied
(pseudo-randomly from trial-to-trial; w, was varied only between sessions. For each spatial frequency
«,. Experiments 1 and 2 were both conducted within one session.

Subjects viewed the stimuli in a room with dimmed background illumination.

3 Experiment 1: Scheme I

3.1 Results

By definition, the homogeneous path (consisting entirely of identical patches of texture s) does not
change in this experiment when texture v is varied (see Scheme I, Fig. 1). The strength of the
heterogeneous path, which is composed of alternate patches of textures s and v) is varied by varying
spatial frequency and contrast, w, and c,, of texture v. Figure 4 shows the probability Py(c,;w,) of

?Due to the limited bandwidth of the video amplifier (30 MHz) of the monitor, an anisotropy was observed for the
average luminance of differently oriented textures that contain high spatial frequencies. Therefore, we only displayed the
pixels at column position m and row position n for which (m + n) was even. The other pixels were dark. Hence, vertical
and horizontal gratings share a common ‘carrier’ component. This procedure forfeits maximum luminance and resolution
in favor of eliminating anisotropy; the net resolution (320 x 240 pixels) was more than adequate for the displays.
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reporting the heterogeneous motion path as dominant as a function of the contrast ¢, of texture v.
Each panel shows Py(c,;w,) for a different value of spatial frequency w,.

— Figure 4 about here —

The data show that the probability of reporting the heterogeneous path as dominant increases
monotonically from zero (for small ¢,) to one (for ¢,, = 1) for all values of w,, except the highest, where
the probability of heterogeneous motion dominance has only reached about 65% when ¢, = 1. A
remarkable feature of these data is that in all eight panels, the probability P;(c,;w,) of heterogeneous
motion dominance exceeds 50% for sufficiently high contrast of c,.

The upper left panel of Fig. 4 shows data for a two octave difference between the spatial frequency
of texture s (w; = 4.9 cpd) and the spatial frequency of texture v (w, = 1.2 cpd). Heterogeneous
motion is perceived in 50% of the presentations when the contrast ¢, of texture v is approximately 0.2.
Note that at this balance point where both paths are equally likely, both the contrasts and the spatial
frequencies of textures s and v are markedly different. Once ¢, exceeds 0.5, the heterogeneous motion
path is dominant in 100% of the presentations. A 100% perceptual dominance of a heterogeneous
over a homogeneous path demonstrates that the similarity between the textures in a motion path
certainly is not essential for motion strength. Indeed, for sufficiently large c,, the heterogeneous path
is dominant over the homogeneous path for every combination of frequencies tested in Fig. 4.

The transition contrasts between heterogeneous and homogeneous motion occur where the curves
of Fig. 4 cross 50%. The transition contrasts occur at a wide range of different contrasts c, for different
spatial frequencies w,. Each Py curve is well characterized by two parameters: the transition contrast
t1{w,) and the steepness o1(w,) at the transition contrast (the subscript 1 indicates Scheme I). The
transition contrast py(w, ) is defined as the contrast ¢, of texture v, necessary for balancing the motion
paths (such that Pi(c,;w,) = 50%), The steepness oy(w,) is defined as the derivative B%Pl(cv:wv)
with respect to ¢, at the transition contrast.

To estimate transition contrast p;(w,) and steepness oy(w,), we selected® data points of each
probability curve around the transition contrast. Within this selected range, the curve was assumed
to be linear. and these data points were subject to a least square method of linear regression to estimate
the regression coefficients p3(w,) and oy(w, ).

— Figure 5 about here —

3In principle, we selected the three data-points around the transition contrast (the crossing of the curves with the
50% guide line) that were closest to the 50% guide line. There were only two exceptions. First, at spatial frequency
we = 1.2 cpd, for subject PW, Experiment 2, we selected the data points with contrast ¢, = 0.19,0.25 and 0.31 (to avoid
the low contrast values, for which Scheme II becomes ambiguous). Second, at spatial frequency w, = 2.5 cpd, for subject
JS, experiment I and I, we selected the data points with contrast ¢, = 0.38 and 0.5 (since we had no data points close
to the guide line).
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Estimates of yy(w,) are shown in Fig. 5 as a function of the varied spatial frequency w, (open
circles). The transition contrast py(w,) increases systematically with increasing spatial frequency w,
of texture v for both subjects. Together, the data of Figs. 4 and 5 indicate that the strength of the
heterogeneous motion path increases with increasing contrast ¢, but decreases with increasing spatial
frequency wy,.

— Figure 6 about here —

Estimates of o;(w,) are shown in Fig. 6 as a function of the varied spatial frequency w, (open
circles). The steepness o1(w,) of the probability curves at transition contrast p;(w,) decreases with
the spatial frequency w, of texture v. In the Model section we elaborates on this finding.

3.2 Discussion
3.2.1 A One-Dimensional Motion Computation

We found a metameric class of heterogeneous motion paths s ~ v that have a strength equal to the
homogeneous path s — s. For all patches v examined, we only had to adjust the contrast of v to make
path s — v match path s — s.

Consider the analogy of color matches in scotopic (dark-adapted) vision with metameric motion
matches. In scotopic vision, a patch of a standard wavelength (say, 500 nm, or any other visible
wavelength) can be matched to a patch of any other wavelength by adjusting the intensity of the
standard. Indeed. in scotopic vision, a patch composed of any combination of wavelengths can be
matched by a suitably chosen intensity of the standard. Intensity of the standard patch is obviously
a one-dimensional continuum. Because, any patch of any visible wavelength can be mapped into an
equivalent standard (e.g., 500 nm) intensity. scotopic ‘color’ vision is one-dimensional.

In our motion-from-texture experiments. the motion path of standard textures s plays the same
role as the standard wavelength in scotopic color vision. We obtained motion equivalence between the
path composed of standard textures s (frequency w, = 4.9 cpd) and paths composed of textures s and
i (frequencies w, ranging from 1.2 t0 9.9 cpd). There was one difference, however. that does not change
the logic of the procedure but greatly improves it in practice. To obtain motion equivalence. we chose
to vary the contrast of path s — v rather than of the standard path s —s. Whereas varying the contrast
of the texture (v) is not conceptually different than varying the contrast of the standard s, it has the
great experimental advantage of vielding a large class of stimuli (s — v paths with w, = 1.2...9.9
cpd) all of which are metamers. The stimuli span a two-dimensional space: spatial frequency and
contrast. The motici-from-texture computation is one-dimensional because the subject can obtain
motion equivalence between any pair of stimuli by turning only one dial-the contrast of one of the
stimuli (the contrast of v).

The observed class of metamer motion paths implies a one-dimensional motion computation. That
is, whatever motion channels are involved in the motion computation, their collective result is rep-
resented by a single scalar! However, the required contrast values for the different textures v to
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balance the motion paths s — s and s — v, can still be determined by multiple channels, including other
energy-channels (multiple texture grabbers) or a secondary contribution of a correspondence-channel.

First, we will show that a single energy-channel is sufficient to model the results, found for Exper-
iment 1. Second, we will discuss how the effects of a possible correspondence-channel can be isolated.
using Scheme IIL

3.2.2 Sufficiency of A Single Activity-Channel

In a single energy-channel, we assume that only one single type of texture grabber operates on the
input yielding an activity representation of the input. Motion strength is the result of a standard
motion analysis scheme applied to this activity representation. The motion strength of a path is
computed from the product of activity measures between successive patches along the path in space-
time. Motion strength of a heterogeneous path balances homogeneous motion strength when the
responses (activities) to textures v and s are equal. Differences in textural properties between elements
s and v are irrelevant as long as the activities are equal, just as, in scotopic vision, differences in
wavelength are irrelevant as long as the rod response is the same.

The results for Scheme I suggest an activity transformation that is a monotonically increasing
function of contrast and a monotonically decreasing function of spatial frequency. For example. to
balance the activity of texture s, with contrast ¢, and spatial frequency w,, with a lower spatial
frequency texture v. (c,.w,) requires a ¢, < ¢,. This pattern of results suggests a single class of
texture grabbers consisting of a low-pass spatial filter followed by rectification.

We argued that a single energy-channel is sufficient to explain the results of Experiment 1. It is
important to note here. however. that our finding that heterogeneous motion can dominate homoge-
neous motion is also consistent with multi ernergy-channels, as will be shown in the Model section.
For example, the dominance of heterogeneous motion may well be the result of two independent
energv-channels, both favoring heterogeneous motion. To uniquely determine the number of channels
involved. we need the results for competiton scheme II together with a forma!l analysis ( Model section).

3.2.3 Secondary Contributions of a Correspondence-Channel

In the discussion above. we argued that a single-channel model is sufficient to model the (con-
trast /frequency dependent) dominance of heterogeneous motion found for Scheme 1. However. we
can not exclude a possible secondary effect of texture similarity based on this scheme. To motivate
Experiment 2, we need to elaborate on this argument.

Although motion perception may be dominated by a single energy-channel, there may yet be a
secondary contribution of a correspondence-channel.

The relative strength of the heterogeneous motion path would decrease as the differences between
the spatial frequencies and contrasts of successive patches of textures s and v increased. Suppose there
were a secondary contribution of a correspondence-channel. in Experiment 1, sensitive to differences
between textures in either contrast or frequency. Because the correspondence-channel favors the
homogeneous path (by definition), motion balance requires v in the heterogeneous path to have a
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higher contrast ¢, to overcome the similarity in path s — s than if there were no correspondence-
channel. Thus, in Scheme I, a secondary correspondence effect would displace transition contrast
f1(wy) to higher values.

To test for a correspondence-channel, we introduce Scheme II in which s and v are interchanged
(see Fig. 2). If there were a correspondence effect, in Scheme II it would favor the v-v path and the
transition contrast pa(w,) would be shifted below yu;(w,) for any texture v.

When the homogeneous and heterogeneous motion paths remain balanced after interchanging
textures s and v, this is called transition invariance. Transition invariance would imply that there is
no contribution of a correspondence-channel.

4 Experiment 2: Scheme II

4.1 Results

Figure 4 shows the probabilities P,(c,:w,) of the dominance of the heterogeneous motion path as a
function of the contrast ¢, of texture v for different spatial frequencies w, of texture v. The data
points for Scheme II are marked by a filled circle.

When ¢, equals zero, the display is physically as well as perceptually ambiguous. A value of 50%
is shown for ¢, = 0. though no data were collected at this point. By varying the contrast of texture v
in this experiment, the strength of both the heterogeneous motion path and the homogeneous motion
path are varied. As the contrast ¢, increases, the probability of heterogeneous motion dominance first
increases to a maximum, then decreases to zero for high contrast ¢,,. On the whole. for contrasts above
0.1 or. in a few cases. 0.2, the Scheme I and Scheme II curves are mirror complementary. and seem to
cross at exactly P= 50%. That is. the two schemes produce remarkably similar transition contrasts.

To examine the correspondence between the data from Schemes I and II, some definitions are
needed. Let the transition contrast yy(w,) be the contrast ¢, of texture v for which the motion paths
are balanced. and the probability of heterogeneous motion dominance Pa{c.;w,) is 50% (the index
2 indicates Scheme II). The steepness at this transition contrast is gz(w,). The transition contrast
jt2(«) and steepness value o,(w,) are estimated as y(w,) and o1(w,) in the previous section.

To compare the transition contrast g,(w, ) for Scheme Il with transition contrast u,(w, ) for Scheme
I. they are presented together as a function of spatial frequency w, in Fig. 5. Transitions ga(w, ) are
presented with filled circles. As in Scheme 1. the contrast uy(w, ) of texture v. necessary for balancing
the motion paths, increases systematically with increasing spatial frequency w, of texture v. An
exception for both subjects are the transition contrasts for w, = 9.9 cpd.

To compare the steepness values g,(w, ) for Scheme II with steepness values oy(w,) (for Scheme I).
the absolute value of o,(w,) is shown as a function of the varied spatial frequency w, in Fig. 6 (using
filled circles). It should be noted that the estimation is not very accurate: the standard deviation
in the distribution of steepness coefficient o;(w,) is approximately 20%. However, like oy(w,). the
steepness o3(w, ) shows a tendency to decrease with increasing spatial frequency w, of texture v.
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4.2 Discussion
4.2.1 ‘Transition Invariance and Motion Metamers

It is immediately clear that, for most spatial frequencies w, of texture v, the transition contrast uz(w,)
is equal within measurement error to transition contrast pu;(w,) (see Fig. 5). In 14 of 16 cases, the
transition contrasts are invariant when the textures s and v are interchanged. This we call transition
invariance.

In two cases (the highest spatial frequency used - w, = 9.9 c¢pd- for both subjects), a small
difference between transition contrasts for Scheme I and II is observed. At the high spatial frequency
of v, the contrast of texture v necessary to balance the motion paths is slightly smaller for Scheme
II than for Scheme I. This shift in transition contrast suggests a small similarity effect (a small
contribution of a correspondence-channel), and was discussed in the discussion of Experiment 1.

Transition invariance implies that textures s and v (at transitions) are equivalent with respect to
motion precessing and can be interchanged in any motion path (Scheme I and Scheme II) without
affecting motion strength. This leads to the important conclusion that the metamery for motion paths
s — 8.8 — v and v — v transfers to the metamery of teztures with respect to motion processing.

It is interesting to note that Green (1986, Fig. 7, p. 604) was unable to find a contrast that could
make a spatial frequency patch of 5.0 cpd into a motion metamer of a 1.7 cpd patch. We had no
difficulty in finding metamers between even more disparate spatial frequencies. However, our data in
Fig. 5 show that one of the two subjects would require the 5 cpd stimulus to have more than 2x the
contrist of the 1.7 cpd stimulus, and this is outside the range of contrasts that Green explored.

4.2.2 Necessity of a Single Acitivity-Channel

The general finding of motion metamery and transition invariance strongly constraints the possible
tvpe of motion computations. First, the finding of a class of metameric motion paths indicates that the
motion computation is one-dimensional (see Discussion Experiment 1). That is. the motion channels
possibiy involved are combined and represented by a single scalar.

Second. transition invariance shows there is no secondary contribution of correspondence-channels
{see the discussion on this issue in Experiment 1). The effect that a patch of texture v has on the
strength of motion is independent of the other patches in the path. At a transition, the strength of
motion path s — v is equal to that of v — v and that of s — s, although a correspondence-channel would
vield stronger motion for the homogeneous paths.

The two constraints above leave us with a system of multiple energy-channels that must be com-
bined and represented by a single scalar representation (e.g., summation of energy-channels). In the
Model Section, we prove (under the assumption of channel summation) that if multiple energy-channels
were involved, the vransition contrast would generally shift when the textures s and v are interchanged
in Schemes I and II. However, when motion perception is exclusively ruled by a single energy-channel
(the product of the activity of a single type of texture grabber), the transition contrast is invariant
when the textures s and v are interchanged. Hence, transition invariance uniquely supports a single
energv-channel.
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5 Experiment 3: Contrast Linearity

5.1 Motivation

In the above experiments, we have shown that the transition contrast y;(w,) increases systematically
with increasing spatial frequency w, of texture v for both subjects. The strength of the heteroge-
neous motion path in Scheme I increases monotonically with increasing contrast ¢, but decreases with
increasing spatial frequency w,. In order to further specify the dependency of motion strength on
contrast, we performed an experiment similar to that described above using competition Scheme I.
and varied the contrast of texture s.

5.2 Results

We kept the frequency of textures s and v constant (w, = 4.8 cpd and w, = 1.2 cpd) and measured
the transition contrast u; as a function of contrast ¢, (Scheme I). Transition contrast was estimated
from the psychometric curves using the method described earlier.

— Figure 7 about here —

Figure 7 shows the transition contrast u of texture v for three contrast values of texture s (¢, =
0.50. 0.75 and 1.00) for three subjects. The data strongly suggest a linear dependence of the transition
contrast of texture v on the contrast of texture s. The solid lines are the best fits (minimizing the
sum of squares). accounting for at least 97% of the variance for each subject.

5.3 Discussion

We showed that the transition contrast of texture v needed to balance the motion path s — v with
the motion path s — s varied linearly with the contrast of texture s. This dependency is easily
accommodated in a model where the texture grabber is linear in the contrast of the texture. In fact.
one can easily show that contrast linearity follows directly from the linear data under the assumption
that the texture grabber is a separable function of spatial frequency and contrast. A linear (low-pass)
spatial frequency filter is a simple example of such a separable filter characteristic.

6 Model

6.1 Summary of Model Constraints

We used the analogy with colorimetry and some general assumptions about the possible motion com-
putations involved to reach the conclusion that texture-from-motion strength is ruled by a single
energv-channel. We summarize our reasoning.
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We discriminate two classes of motion computations: energy-channels and correspondence-channels.
yielding different metrics for the strength of a motion path. Consider, a heterogeneous motion path
composed of patches of texture s and v. The strength of an energy-channel for an s — v path is
determined by the product of the activity of texture s and that of v. The activity of a texture is the
output of some nonlinear transformation (texture grabber) that maps texture into a scalar. Activity-
channels are insensitive to differences in textural properties and allow heterogeneous motion paths
s — v to dominate over homogeneous paths. By definition, the strength of a correspondence-channel
is determined by the similarity of the textural properties of textures s and v. That is, homogeneous
paths s — s and v — v dominate heterogeneous paths s — v.

In theory, multiple channels of each type may be involved in a motion computation yielding a
motion strength vector representation of arbitrary dimensionality. However, the experimental results
impose the following constraints. First, the class of metameric motion paths in both Scheme I and
Scheme II indicate that the computation is one-dimensional. Second, the invariance of transitions for
Scheme I and Scheme II exclude correspondence-channels. This leaves us with a system of multiple
energv-channels. that combine into a single scalar representation of motion strength.

Although we have shown that a single energy-channel is sufficient to model the data, we promised
proof for the necessity of a single energyv-channel. This proof is based on the inconsistency of multiple
energv-channels with transition invariance. We assume a system of multiple energy-channels that
lincarly combine to represent motion strength (summation of energy-channels). Such a system would
result in different transitions for Scheme I and II. The proof is given and discussed in the Appendix.

6.2 The Activity Channel

In this section. we derive the characteristics of the single energy-channel. This energy-channel consists
of two stages. The first stage is the nonlinear transformation (texture grabber). The simplest version
of a texture grabber is a spatiotemporal linear filter followed by rectification (see Chubb and Sperling.
1989). The output of this first stage (the texture activity) is fed into the second stage: standard
motion analvsis. Stages one and two are sketched in Fig. 8.

— Figure 8 about here —

6.2.1 Stage 1: Texture Grabbers

It is now well-established (See review by Shapley and Enroth-Cugell, 1984), that early retinal gain-
control mechanisms pass not stimulus luminance, but rather a signal approximating stimulus contrast.
the normalized deviation of stimulus luminance from its local average. We assume that the spatiotem-
poral filters of stage 1 operate on stimulus contrast.

The output magnitude of these filters varies over the visual field, depending on what textures
happen to populate these regions. The cutput of a linear filter to a texture is variable and dependents
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on the local phase of the texture. The purpose of rectification is to transform regions of highly
variable response into regions of high average value, thus insuring that the rectified output registers
the presence or absence of texture, independent of phase. Examples of rectification are half-wave
rectification (setting negative values to zero) and full-wave rectification (anything that is symmetric
with respect to input sign, such as absolute value or squaring).

The output of Stage-1 is called activity. The resulting transformation (accomplished by stage 1)
vields a spatiotemporal function whose value reflects the local texture preferences of the stage 1 filter
in the visual field as a function of time (see also Bergen and Adelson, 1988; Caelli, 1985). The activity
transformation of the texture grabber depends on the contrast ¢ and spatial frequency w of the textures
involved.

In Experiment 3. we have shown that texture activity is linear in texture contrast. This is accom-
modated by a spatial filter that is linear in stimulus contrast. We can further characterize the spatial
filter characteristics by the amplitude of its Fourier transform: F(w). We assume that rectification is
an absolute value operation. Thus, after rectification, the activity transformation T is proportional to
c and to F(w):

T(c,w) = cF(w) . (2)

This texture activity T is fed into the second (motion analysis) stage.

6.2.2 Stage 2: Standard Motion Analysis

The second stage (standard motion analysis) is a coincidence detector: it computes the product of
the delayved activity at Location 1 with the current activity at Location 2 (van Santen and Sperling.
1984). The output of the second stage corresponds to motion strength.

To simplify the computation in the model. we assume that the first-stage spatiotemporal filter is
space-time separable. Indeed. space-time separability seems to be the rule in apparent motion ( Burt
and Sperling. 1981; van de Grind et al.. 1986)*. Given space-time separability, we can ignore the
temporal component of filtering because temporal patterns were not varied in our stimuli.

We proceed as follows. The perceived direction of motion is considered to be the outcome of a
competition in motion strength between motion paths. Within a path the strength of motion between
a patch of texture v and a patch of texture s is determined by the product of the activities of the first
stage. We assume that the strengths of detectors for all paths are additive in the final motion percept,
and adopt a linear combination model (Dosher et al., 1986). Additive internal noise determines the
shape of the psychometric functions for motion direction as a function of contrast.

‘It is reasonable to consider that the linear filter in the texture grabber may itself be composed as a weighted sum
of many filters, i.e., filters that also are in the processing path for first-order motion (e.g., Burr et al., 1991). A linear
filter composed as the sum of component filters would be space-time separable if each of its component filters were
¢+ »-time separable and had the same temporal function, independent of spatial scale. This seems to be the case in
n ' .n processing (Burt and Sperling, 1981; van de Grind et al., 1986).
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Consider the strength model with respect to competition Scheme I (Fig. 1). In one direction there
is a homogeneous motion path containing patches of identical texture s. In the opposite direction.
there is a heterogeneous motion path containing patches of different textures s and v. For sine wave
stimuli, a half-Reichardt model (simple product) is equivalent to the whole Reichardt model (difference
of products) (van Santen and Sperling, 1985), so we need to consider just a simple product rule.

The strength of the heterogeneous motion path is:

Sl,he(cvvwv’ CoyWs) = CuF(Wu)CsF(ws)- (3)

The motion strength Sy ;, for the homogeneous motion path is equal to:

Sl.ho(csaws) = —C§F2(ws) (4)

(strength in the opposite direction has o7.posite sign).
Linear combination of both ¢~ . .ients with equal weights yvields a net motion strength D; in the
direction of the heterogeneous nat’ :

Fi{ey.wy €5 ws) = Sl‘he(('vv‘-‘)v»csaws) + Sl,ho(cssws)- (3)

Response variability across trials is due to additive internal noise which is assumed to be distributed as
a standard normal density function with mean 0 and standard deviation A (Fig. 8). A linear addition
of noise yields the internal decision variable i which has a normal distribution N with mean D and
standard deviation A.

According to signal detection theory (Green and Swets, 1966) the probability I, of heterogeneous
motion dominance is:

Py(cyiw) = P(i > 0) = AQ/ N(Di(cuswr, €53, A) di. (6)
7\'

Substituting motion strengths (Expressions 3 and 4) into the additive linear combination (Expres-
sion 5) and then substituting (Expression 5) into the noise-driven decision process (Expr. 6) vields:

P (cu»wv) -

-1
~—

ooN coF(wy)es F(ws) — ¢2F3(w,)], M) di,
T3 | Ml F@)eFles) - FY ). ) (
for the probability of heterogeneous motion dominance for Scheme I (Fig. 1).

Similar reasoning yields the net motion strength D, and the probability Pa(c,:w,) of heterogen.-ous
motion dominance in Scheme II (see Fig. 2):
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D?(cv»wu»csvws) = S?,he(cvvwvvcuws)+S2,ho(csa‘-‘-’a) (8)
= ¢, F(wy)esF(w,) — ¢ F3(w,) (9)

and
Pa(cy;wy) = _ﬁ /0 N([eoF(ws)esFlws) = EF3(wy)], A) di (10)

This model predicts the transition and steepness at transitions of the probability curves for both
the experiments.

6.3 Predictions for Scheme I

For different spatial frequencies w, of texture v, we measured the probability P)(c,:w,) of heteroge-
neous motion dominance as a function of the contrast ¢, of texture v. Our model predicts that the
probability P, of heterogeneous motion dominance is an error function of the net motion strength D
(see Equation 6). In this experiment, the net motion strength D, is linear in ¢,. Hence, we expect an
error function for the probability function Pj(c,;w,) as a function of ¢, (see Equation 7).

6.3.1 Transition Contrast

The transition contrast st;(w, ) is defined as the contrast ¢, of texture v at which the probability of
heterogeneous motion dominance Pj(c,;w,) is 50% for a given spatial frequency w, of texture v. Hence,
for ¢, = p1(wy). the strength of the heterogeneous and homogeneous motion paths are balanced and
we have 51 pe = S1.n0 Or (see Expressions 3 and 4):

lll(wv)F(W'v):CsF(ws):Ks (11)

where ~ is a constant equal to the activity of standard texture s. texture. If F(w,) is a low-pass filter.
#1(w, ) will be a monotonically increasing function of w, (as supported by our experiments):

p1(wy) = KF7 ! (w,). (12)

6.3.2 Steepness

The steepness 01(w,) is defined as the derivative of Pi(c,;w,) with respect to c, at transition contrast
/ll(‘-"‘u):

1
o(wy) = E—Pl(cv;wv)lc.,=ul(wu) KF("’JU)' (13)

Co B 271"/\2
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Thus, the steepness 0} (w, ) is expected to decrease as a function of the spatial frequency w, for low-pass
filters (as supported by our experiments).

In conclusion we expect error functions for the probability Py (cy;wy) of heterogeneous motion dom-
inance as a function of contrast ¢, with (a) a transition contrast pu;(w,) that is inversely proportional
with F(w,) and (b) a steepness oy(w,) that is proportional with F(w,). If we have low-pass filters.
F(w,) decreases monotonically with spatial frequency w,.

6.4 Predictions for Scheme II

For different spatial frequencies w, of texture v, we measured the probability P;(c,;w,) of heteroge-
neous motion dominance as a function of the contrast ¢, of texture v. Py(cy;wy,) is an error function
of D; (see Equation 10). However, for Scheme II (unlike for Scheme 1) D; is not linear with the varied
contrast ¢, of texture r. As we increase the contrast c, of texture v, D, shows a quadratic dependence
on ¢.. Therefore, we do not expect an error function for Py(cy;w,).

If contrast ¢, of texture v is zero, the probability of heterogeneous motion dominance P; will be
507 (the motion stimulus is purely ambiguous!). Starting at ¢, = 0, it first increases linearly with c,.
is maximal for ¢, = ¢;F(ws)/[2F(w,)]. and decreases again with further increases of c,. Obviously.
there may exist a contrast ¢, = u, (between the ‘optimal’ contrast, that vields a maximal D. and a
very high contrast. that vields a negative D) for which P, = 50%.

Analogous to the derivation in the previous section, one can find the analytic expressions for the
transition jiz(w, ) and steepness a,(w,) of the probability curves for Scheme II. The expressions for the
transition contrasts are equal: py(w,) = p3(w,). The expressions for the steepness of the transitions
for Scheme I and II differ only in sign: o,(w,) = —o1(wy).

6.5 The Texture Grabber

We can simply find the Fourier transform F(w) of the low-pass filter from the reciprocal transition
;/“'(..u,,) (see Expression 12) and from the steepness a;(w,) as a function of spatial frequency w, (see
Expression 13).

The reciprocal transition contrasts are expected to be proportional to the function F(w,). Esti-
mates of the reciprocal transition contrasts /li"(uv) are shown in Fig. 9.

— Figure 9 about here —

From the reciprocal transitions in Fig. 9, it follows that F(w) is a low-pass filter in the range of
frequencies examined.

The model predicts that the steepness of the probability function is proportional with the function
F{w,) and inversely proportional with X (the strength of the internal noise). Thus, unlike the transition
contrast, the steepness is biased by the internal noise contribution. If the relative strength is constant
and independent of the spatial frequency and contrast of the patches of texture involved. the steepness
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o;(w,) is expected to be proportional with F(w,). Estimates of o,(w,) are shown in Fig. 6. The
steepness shows a tendency to decrease with increasing spatial frequency. However, we find some
non-monotonicity, in particular for higher spatial frequencies. This may reflect a certain variability of
the internal noise for different spatial frequencies.

7 Experiment 4: Perceived Contrast

We have discussed texture grabbers and motion analysis in terms of objective contrast of patches of
texture. The experiments implied that the activity of the texture grabber increases monotonically
with objective contrast and decreases monotonically with spatial frequency. An interesting question is
whether this relation is consistent with the subjective contrast of static gratings as a function of spatial
frequency. In other words, is the activity of a texture grabber simply proportional to the subjective
contrast?

To answer this question, we performed a contrast discrimination experiment.

7.1 Method

In a two interval presentation subjects looked at an annulus containing either gratings s or v. In one
interval we showed an annulus of gratings s (see frame f, of Fig. 1), with fixed contrast ¢, = 0.5
and fixed spatial frequency ws = 1.9 cpd. In the other interval we showed an annulus of gratings v
(see frame fy of Fig. 2), with contrast ¢, and spatial frequency w,. The order of presentation of the
intervals was randomized. Each annulus was shown for 133 ms (which is equal to the frame display
time in the motion stimulus). The intervals were separated by a time interval of 133 ms in which the
screen was uniform with background luminance. Apparatus, viewing conditions. and other aspects
were identical to the motion experiment

7.2 Procedure

The task of the subject was to indicate the interval that contained the patches of grating with the
highest contrast. We measured the probability P.(c,;w,) that observers judge the grating r as the
grating with the highest contrast as a function of the objective contrast ¢, of grating v. In the contrast
matching experiment. we examined two spatial frequencies: w, = 1.2 cpd. and w, = 7.4 cpd of grating
v. These were the lowest and highest spatial frequencies for which we found transition invariance in
our motion experiment. From these probability curves, we estimated the matching contrast of grating
v for which the perceived contrast of grating s and v was equal. The precise estimation of the matching
contrast was analogous to the estimation of transition contrast in the motion competition experiments.

7.3 Results

— Figure 10 about here —
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In Fig. 10, we show the probabilities of judging the contrast of grating v higher than that of grating
s (with ¢, = 0.5) as a function of objective contrast ¢, (filled circles). For all conditions and subjects.
the perceived contrast of texture v increases monotonically with its objective contrast ¢,. The contrast
¢, where the curve crosses the 50% guide line is the matching contrast. For a ‘low’ spatial frequency
grating v (w, = 1.2 cpd), we find that the perceived contrasts of s and v are matched when ¢, = 0.47
for subject PW and ¢, = 0.44 for JS. This matching contrast is close to the objective contrast ¢, = 0.5
of grating s. For a ’high’ spatial frequency grating v (w, = 7.4 cpd), the matching contrasts are
¢, = 0.54 for PW and ¢, = 0.53 for JS.

For comparison of the matching contrast with the transition contrast in the motion experiments,
we have also shown the probabilities to perceive heterogeneous motion using Scheme I as a function
of ¢, in the corresponding panels.

7.4 Discussion

Interestinglyv. the matching contrasts for low and high spatial frequency gratings are approximately
equal to the objective contrast of grating s, for the range of contrasts and spatial frequencies of grating
v examined. That is, perceived contrast does not depend on spatial frequency. However, the contrast
of grating v for balancing the motion paths when w, = 1.2 cpd for Scheme I was: ¢, = 0.22 for
subject PW and ¢, = 0.36 for JS. Obviously, at the transition contrast for the motion experiment. the
perceived contrast of grating s and v are markedly different. That is, the activities of the grating v
are matched even when both spatial frequency and perceived contrast are different from grating s. In
conclusion. activity can not be a function that depends solely on perceived contrast.

8 Experiment 5: Dichoptic Presentations

8.1 Motivation

We have succesfully modeled the strength of motion-from-texture in terms of a texture grabber followed
by standard motion analysis. Standard motion analysis is a type of motion computation that is not
sensitive to correspondences in textural features. An interesting property of standard motion analysis
is that the neural substrate for such a process is organised so as to require successive stimulation to
the same eye. When monocular motion information is not available to the observer standard motion
analyvsis fails.

The motion system that extracts information of both eyes (when motion is presented dichoptically)
can be classified as a correspondence-channel. For example, Pantle and Picciano (1976) studied ap-
parent motion with a three dot stimulus and reported element movement for monocular and binocular
presentation, but group movement for dichoptic presentation. The group movement suggests a rep-
resentation of features or shapes precedes the extraction of motion. Also, Georgeson and Shackleton
(1989) showed that drifting square-wave gratings with missing fundamental (MF) moved backwards
while presented monocularly (following the third harmonic) but moved forwards when presented di-
choptically. They suggested that the perceived direction of dichoptic apparent motion was consistent
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with a system that combines information across spatial frequency channels to identify local features
and then tracks the location of corresponding features over time.

Following the above reasoning, the motion system for dichoptic presentations would be sensitive to
the similarity of the textures involved. Thus, the contribution of what we call correspondence-channels
might be more pronounced when our competition schemes are presented dichoptically (sofar viewing
has been binocular in our experiments). We tested our energy-channel model for both dichoptical
and monocular presentations of our motion stimuli. This test may also locate the motion extraction
process involved in our stimuli in terms of different levels in the visual nervous system (before or after
the sites of binocular combination).

8.2 Results

The ambiguous motion competition schemes I and II can be presented dichoptically ir two different
modes. In the first mode, the odd frames are presented in one eye and the even frames in the other.
In this way, the spatiotemporal stimulus is purely ambiguous in each eye. Both the heterogeneous and
the homogeneous paths are processed by dichoptic mechanisms. In this mode, dichoptic mechanisms
are not competing with monocular mechanisms.

In the second mode, the patches of one texture type are presented in one eye and the patches of
the second type of texture in the other eye. In this way the homogeneous motion path (textures s
for Scheme I) is presented in one eye, while the textures v in the other eye form a purely ambiguous
stimulus. In this mode, dichoptic mechanisms processing the heterogeneous path have to compete
with monocular mechanisms processing the homogeneous path.

We determined the psychometric functions for both competition schemes for a condition where the
texture s and v differ two octaves in spatial frequency ( ws, = 4.9 cpd and w, = 1.2 ¢pd) for subject
PW. The binocular results were presented in top-left panel of Fig. 4. As discussed for Experiment 1
and 2. a difference between the transition contrasts u; and p; indicates the involvement of additional
(correspondence) channels. The results for monocular presentation were identical (within measurement
error) to the results for binocular presentation. For both conditions, we find transition invariance:
jy =y = 0.2,

Tle results for both modes of dichoptic presentation were very similar to those for binocular pre-
sentation. That is. dicloptic presentation yields psychometric functions for Scheme I and II similar to
those for binocular presentation. For adequate contrast ¢, heterogeneous motion dominated homoge-
neous motion for both modes of dichoptic presentation suggesting the dominance of an energy-channel
even when monocular motion information was absent. However, the contribution of a correspondence-
channel is noticable for dicoptic presentations, transition invariance no longer holds. We found y; =~ 0.2
and p2 = 0.1 for both modes of dichoptic presentation.

8.3 Discussion

Motion perception between patches of non-similar texture is easily perceived for both modes of dichop-
tic presentation (as predicted by our energy-channel). Even in the second mode. where a dichoptic
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heterogeneous motion path competes with a monocular homogeneous path, heterogeneous motion can
easily dominate for small contrast of texture v (e.g., ¢, > 0.2 for Scheme I). These results suggest
that dichoptic processing of our motion stimuli is dominated by the same mechanisms as monocular
processing and that motion strength is not predicted by the similarity between textural features such
as spatial frequency.

However, although dichoptic presentation leaves transition contrast u; for Scheme I unaffected,
transition pp for Scheme II decreases. This difference from the binocular results indicates a significant
contribution of other channels when monocular information for the heterogeneous path is ambiguous.
A more detailed investigation might be useful.

9 General Discussion

9.1 Fallacy of Correspondence Matching

The experiments presented in this paper provide cogent evidence that texture similarity is not relevant
to the texture-from-motion computation (within the range of spatiotemporal parameters varied in this
experiment). As a1 example it was shown that motion between patches of texture that differ by two
octaves in spatial frequency and a factor of two in contrast can be stronger than motion between
patches of identical texture.

The correspondence matching metaphore to explain visual processes in several visual domains
seems to have lost predictive power. Correspondence matching fails to explain the dominance of
(1) heterogeneous motion paths composed of textures that differ in spatial frequency and contrast
(this paper), (2) heterogeneous motion paths composed of elements that differ in size, orientation and
luminance {Werkhoven et al., 1990a,1990b), and (3) stereoscopic matches between elements that differ
in size and luminance (Gulick and Lawson, 1976).

The visual motion system does not seem to be designed to establish correspondence between similar
features in a motion sequence. This should not come as a surprise given the inherent difficulties in
designing correspondence matching mechanisms. Such mechanisms would look for ‘similar features’
in ‘successive’ time samples of the spatiotemporal stimulus. However. what constitutes a feature. and
how strict should similarity be taken?

Recently developed stimulus (motion) energy models for motion extraction bypass the correspon-
dence problem and are more likely candidates for the kind of visual processing early in the visual system
(Adelson and Bergen, 1985; Heeger, 1992). The energy-channel described in this paper is equivalent
to such an motion energy computation, applied to a nonlinear transformation of the stimulus, (van
Santen and Sperling, 1984).

9.2 Contrast and Motion

In Experiment 3, we showed that the transition contrast of texture v needed to balance the motion
path s—v with the motion path s—s varies linearly with the contrast of texture s. In the context of our
model, this means that the activity of a texture grabber is approximately linear in texture contrast.
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In fact, we find linearity even for high contrasts in the range of 50% to 100%. As a consequence of
this contrast linearity, motion strength varies linear with the contrast of each of the texture inputs.
That is, the strength of motion between two textures with identical texture contrast is quadratic with
this contrast. Approximate contrast linearity of the input lines for standard motion analysis was also
found for experiments with spatiotemporal modulations of luminance Werkhoven et al. (1990b).

It should be noted, that the linear contrast dependency is at odds with the contrast thresholds
for motion direction discrimination reported by Nakayama and Silverman (1985). They measured the
smallest phase shift (yielding threshold direction discrimination performance) of sinusoidal gratings
as a function of grating contrast. The smallest phase shift yielding threshold performance leveled off
for grating contrasts exceeding 5%. They interpreted their finding in terms of a contrast saturation
function. However, their results are open to a different interpretation in which the minimum phase
shift is limited by other (spatial) properties of the motion extraction mechanism leaving the contrast
dependency unknown.

9.3 A Shared Motion Analysis Stage?

An intriguing question is how mechanisms for the extraction of motion carried by the spatiotemporal
modulation of luminance relate to those for extracting motion carried by the spatiotemporal modula-
tion of texture type. To discriminate both mechanisms we have to compare the characteristics of the
perception of both motion types. For example, Turano and Pantle (1989) studied velocity discrimina-
tion performance for both types of motion stimuli and showed similar discrimination characteristics.
Their results support the hypothesis of a higher order (motion analysis) mechanism that accepts input
from both the luminance-domain as well as texture-domain.

A shared motion analysis stage for the two types of motion is also supported by our finding that
strength of motion-from-texture is ruled by the same metric as motion in the luminance domain.
Motion strength is the covariance (or product) of local activities. This activity is simply the lumi-
nance itself when the motion is carried by luminance (van Santen and Sperling, 1985) or a nonlinear
transformation of the luminance pattern for motion-from-texture (this paper).

In conclusion, the extraction of motion from the spatiotemporal modulations of luminance and
that of texture tyvpe seems to be mediated by a shared standard motion analysis stage. However.
additional experiments with different paradigms may weaken this idea. For example. Mather (1991)
showed that both motion types produce motion after effects, but that the duration of the aftereffects
were significantly different.

9.4 Transitivity and Additivity

Under the assumption of standard motion analysis and channel summation, the metamery of motion
paths s — v showed in this paper implies that the corresponding patches of texture v are metamer
with s with respect to motion processing. That is, all textures v of this metameric class yield identical
motion strength when embedded in a motion path s — v.

Metamery yields two strong predictions. First, metamery predicts transitivity: if textures a and
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b are metamer with s, then a is metamer with b. Second, metamery predicts additivity: if textures a
and b are metamer with s, then any linear combination aa + 8b (with @ + 8 = 1) is metamer with s.
These predictions have not yet been tested.

9.5 Motion Transparency

The energy-channel proposed in this paper computes the difference between left and rightward motion.
This implies that motion transparency (the simultaneous detection of left and rightward motion) is not
readily accommodated in this model. Because the motion analysis component of the energy-channel
is a Reichardt-correlator, the motion energy of the left and rightward motion path are no explicit
intermediate results). However, occasionally, observers reported transparency for stimuli that were
nearly balanced.

Adelson and Bergen (1985) addressed this issue by pointing out that although their energy detector
was functionally equivalent to correlation detector, the intermediate results are not. Specifically, the
energy of left and rightward motion are explicit intermediate results in energy detectors, but not in
correlation detectors (the output of a half Reichardt-correlator is the half-phase opponent energy!).
Although our conclusions do not depend on the specific choice of motion model, a further study of
transparency in this context might reveal the specific type of detector involved.

9.6 Extension of the Parameter Space

It is important to remember that we have shown the one-dimensionality of the motion-from-texture
computation only with respect to parallel sinewave patches that differ in spatial frequency and con-
trast. Chubb and Sperling (1991) found that motion-from-texture could be carried by differences in
spatial orientation, although differences in orientation did not produce as vigorous motion as did differ-
ences in spatial frequency. This observation indicates that orientation (and possibly other properties)
are relevant to motion-from-texture. It would be interesting to determine the dimensionality of the
computation for a larger class of stimuli.

Although motion strength at a ‘frame time’ 7 of 8/60 sec is exclusively determined by the product
of activities, we can not exclude that effects of texture similarity are stronger at longer frame time.
In fact, the temporal frequency of texture modulation in our experiments is 1.9 Hz (one cycle consists
of four frames of 133 ms each). At slower temporal frequencies, the processing time for the textures
increases, perhaps enabling more elaborate ’texture grabber’ filters or correspondence-channels to
contribute to motion strength.

Effects of other properties (e.g., orientation) and temporal parameters are currently under inves-
tigation.
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11 Appendix: Multiple Activity Channels and Transition Invari-
ance

11.1 A System of Multiple Activity-channels

We propose a multi-channel model (multiple energy-channels) for computing the strength of motion-
from-texture. The model consists of two stages, as shown in Fig. 11.

— Figure 11 about here —

11.1.1 Stimulus Transformation: Texture Grabbers

Stage 1 consists of n types of texture grabbers—where each type of texture grabber 7 is described by
nonlinear spatiotemporal transformations T;, ¢ = 1...n, of the optical input. Each transformation
vields a spatiotemporal function T,(y,t) whose value reflects the local texture preferences of the Stage
1 filters in the visual field as a function of position ¢ and time t. (We use  for the position of a texture
grabber because, in our essentially one-dimensijonal stimulus, the texture position is determined by
the angle (».) The output of these texture grabbers is called activity. The n different transformations
T; of Stage 1 transform the optical input into n activity representations.

11.1.2 Motion Detection

Stage 2 is a set of motion detectors. For specificity, but without loss of generality (see van Santen and
Sperling. 1985; Chubb and Sperling, 1988, 1991) we adopt Reichardt’s scheme for standard motion
analysis (Reichardt, 1961) which consists of two oppositely tuned coincidence detectors. Motion
detectors operate on the outputs of the texture grabbers. Each type of texture grabber (transformation
T,) has its own, unique set of motion detectors. A transformation T; together with its motion detectors
is called a motion channel i).

A coincidence detector performs a multiplication operation on the current activity T;(y.t) at
position > at time ¢ and the (delayed) activity T,(yv — Ag.t — At) at position ¢ — Ay and time { — Af.
Hence. the output of the coincidence detector is: Ti(¢ — Ag,t — At)Ti(,t). The outputs of two
coincidence detectors tuned to identical velocities but opposite directions are subtracted to yield a net
motion strength D(p,t):

Di(p,t) = Ti(p — Ap, t = AT, t) — Ti(p — A, )T, 1 = At). (14)

Channel i has a positive output for motion in the direction of positive ¢ and a negative output for
motion in the opposite direction.
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11.1.3 Summation

In a one-dimensional motion computation, the outputs of a system of energy-channels described above
(represented in a n dimensional channel space) are essentially mapped to a single (decision) dimension:
the final net motion strength. This mapping maps 2 n — 1 dimensional manifold in the channel space
to a single point in the one-dimensional decision space (final motion strength). For example, channel
summation maps a planar surface in the channel space to zero final motion strength (for Scheme I).
For other combination rules than summation, other (non-planar) surfaces will map to zero final motion
strength. However, when we assume that this mapping is continuous and differentiable, these true
manifolds are in first order approximated by a planar surface for small channel signals at transition
points. Channel summation is a sufficient first order combination rule.
Summation of channels D; yields net motion strength D:

D(¢,t) =) Di(g.1). (15)
=1

11.2 Predictions for Competition Schemes

We apply the multi-channel computation to competition schemes I and II (see Fig. 1 and Fig. 2.
Consider first Scheme 1. The heterogeneous path is the motion between texture s (at time t — At and
position ¢ — A¢) and texture v (at time t and position ¢). Let T; ; be the activity of texture grabber
T; for texture s, and T}, the activity of texture grabber T; for texture v. The output of channel i for
this path is the product of the delayed activity T; , of texture s and the current activity 7, , of texture
v. For simplicity, we will use the vector notation:

Ty, Ty

- Ty, - T3,
T, = . and T, = . (16)

Tn,s Tn,v

The vectors T, and T, are the activity vectors of textures s and v respectively. An activity vector
represents the activity of a texture in the n-dimensional transformation space (T-space) defined by
transformations Ty ...7T,,.

For Scheme I, the motion strengths S; . summed over all channels for the heterogeneous path can
be written as the vector product:

n
Sl,he = T; : T; = ZTi.sTi,u- (17)
=1
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We have arbitrarily assigned a positive sign to motion strength in this direction. Motion in the oppocite
direction has a negative sign (see Equation 14). The output of channel i for the homogeneous path
(between textures s) is the squared output of transformation 7;,. The motion strength Sy, of the
homogeneous path is (after summing all channels) is:

Sl,ho = _T; : T.;- (18)

Adding Equations (6) and (7) gives the net motion strength D in the direction of the heterogeneous
path for Scheme I:

Dy =T,-[T,- T (19)

D, =T, [T, - T.}. (20)

11.3 Transitions: Scheme I

At a transition for Scheme I, the net motion strength D, is zero:

D =T,-[T,-T]=0. (21)

There exists an (n — 1)-dimensional plane of T, vectors in T- -space for which the motion strength of
the heterogeneous and homogeneous motion paths are balanced (the vectors T, for which the difference
vector Ty, — T, are orthogonal to vector T,).

— Figure 12 about here —

In fact. the solution space is even more constrained than shown in Fig. 12a. Let each texture grabber
be a function of m textural properties. If we consider the m-parameter space that characterize our
textures and an n-dimensional T-space, than the parameter space is mapped on a m-dimensional
surface in T-space. Possible solutions are the intersections of this surface with the solution plane.
Consider, for example, a two-dimensional T-space (a two-channel motion computation). The
vectors T, in T-space that satisfy Equation 21 for a certain vector T, must end on the dashed guide
line in Fig. 12a. Unless all transformations T; are identical, each vector T of this solution will
project back to a unique point (texture) in our parameter space. Thus, the activity vectors that vield
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balanced motion strength for a particular texture s, are described by a curve in the parameter space
(e.g., frequency/contrast space in our experiments).

It should be noted in passing, that the net heterogeneous motion strength D; = T, - [T:, - ’f':,] can
be positive. Hence, even in a multi-channel computation, the strength of the heterogeneous motion
path can dominate.

11.4 Transitions: Scheme II

Similarly, at a transition for Scheme II (Fig. 2), the net motion strength D; is zero:

D,=T, [T,-T.]=0. (22)

The (n — 1)-dimensional solution of T, vectors in T-space for which the motion strength of the
heterogeneous and homogeneous motion paths are balanced is not a plane. For example. we consider
again the two-dimensional T-space. The vectors T. in T-space that satisfy Equation 22 for a certain
vector T; end on a circle containing T; (see Fig. 12b). Again we will find a one-dimensional solution
in the parameter space. However, it will differ from the solution for Scheme I, when T-space is
two-dimensional (or higher dimensional).

11.5 Transition Invariance

Using only the result for Scheme I, we cannot discriminate between a single-channel(n = 1) and multi-
channel computations (n > 1): either single- or multi-channel computations might yield solutions to
Equation 21. To resolve the issue, we need the constraint of transition invariance.

Transition invariance means that once the motion strength of the heterogeneous path and that of
the homogeneous motion path are balanced for a particular pair of textures s and v for Scheme I. this
balance is not disturbed by interchanging the textures s and v (vielding Scheme II). We now show
that transition invariance is inconsistent with a multi-channel computation.

The transitions are invariant iff the activity vector T, simultaneously satisfies Equations 21 and
22. Because the difference vector Ty — T, is always in the plane defined by vector T, and vector T,.
the only vecter T, that satisfies both equations is T, =T,.

Vector T, is equal to vector T, iff each transformation T; involved in the motion computation has
an equal output for both textures v and s:

Tis=Tin (i=1...m). (23)

Equation 23 represents a very strong constraint for the ensemble of transformations that might be
involved in a multi-channel computation. Every transformation T; must have an iso-activity contour
as a function of all textural properties (e.g., frequency-contrast space) that contains both the activity
of texture s and that of texture v. Furthermore, transition invariance holds for different texture
pairs (s. v); the iso-activity contours of each transformation T; must be identical for all these pairs.
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Figure 1: Motion competition Scheme I. At the left side: A series of frames (f1, f2, .. )
is shown successively in time (for details see Section ‘Method’). The first frame (f;)
contains an annulus of patches of alternated texture type s and v at regular positions
drawn against a uniform background. The annulus has an inner radius of r; = 1.04
degrees of visual angle, and an outer radius of 2 = 2.08 deg. The patches of texture
s and texture v are spatially contiguous and alternate within the annulus. Since the
annulus contains 8 patches, each patch has a width of 45 degrees. Angular position ¢
is measured clock-wise with respect to the vertical.

The second frame ( f,) is similar to frame f;, except that the low frequent patches of
texture v are now replaced by a uniform patch of background luminance. Furthermore,
f2 is rotated (clockwise) around the center of the annulus over an angle of 22.5 degrees
with respect to frame f;. In a sequence of frames, frame f,4; is identical to frame f,
, except for a rotation around the center over an angle of 45 degrees (clockwise).

At the right side: Angular positions  is along the horizontal axis. Patches of texture s
and v are shown at their angular positions for frames f; ... f4 yielding rows of patches.
The top row of patches s and v corresponds to frame f;. The second row of patches s
corresponds to frame f,. Hence, time (or frame number) is along the vertical axis.
When frame f, and frame fn41 are presented in succession, two motion paths are a
priori likely. A homogeneous motion path: clockwise matches (C\\'; between patches of
identical texture s (indicated by the arrow pointing down and right). A heterogeneous
motion path: counter-clockwise (CCW) matches between patches of texture s and
patches of texture v (indicated by the arrow pointing down and left ).




Fic- -e 2: Motion competition Scheme II. This scheme is similar to Scheme I (see Fig. 1),
excopt that textures s and v are interchanged. In Scheme II, the homogeneous motion

path contains textures v.

Scheme [l

Heterogeneous Homogeneous
Motion Motion
Path Path
(CCW) (CW)




Figure 3: An example of the ambiguous motion display (as sketched in Fig. 1). Frames
fi, f2, f3, and f4 (containing the patches of textures) are shown in (a), (b), (c) and (d)
respectively. For this example, textures s and v differ only in their spatial frequency:
the spatial frequency of texture s is two octaves higher than that of texture v.
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Figure 4: Probability P;(c,;w,) of the dominance of a heterogeneous motion path over
a homogeneous motion path is shown as a function of the contrast ¢, of texture v for
different spatial frequencies w, of texture v for two subjects. Open circles represent
the probability Py(¢,;w,) for Scheme I (Fig. 1), filled circles P,(c,;w,) for Scheme II
(Fig. 2). The horizontal dashed guide line indicates a 50% probability of heterogeneous
motion dominance.

The contrast ¢, and spatial frequency w, of texture s is the same for all panels: ¢, = 0.5
and w, = 4.9 c¢/deg. (a) Subject PW; (b) subject JS.
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Figure 5: Transition contrasts u;(w,) as a function of spatial frequency w,. Open circles
for Scheme 1. Filled circles for Scheme II. The vertical dashed line indicates the spatial
frequency of texture s: w, = 4.9 c¢/deg. The horizontal dashed guide line indicates the
contrast of texture s: ¢, = 0.5.
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Figure 6: Steepness values o;(w,) as a function of spatial frequency w,. Open circles
for Scheme I. Filled circles for Scheme II. (Note that to facilitate comparison absolute
values are given!). The vertical dashed guide line indicates the spatial frequency of
texture s: w, = 4.9 c/deg.
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Figure 7: The dependence of transition contrast ui(omega,) on contrast
c, of texture s. The spatial frequency w, was 4.9 cpd, and w, was 1.2 cpd.
Competition Scheme I was used. Circles: subject JS. Squares: subject PW.
The solid lines show the best linear fit (minimizing the sum of the squared
deviations).
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Figureg Diagram of a single channel motion computation. First stimulus contrast
is extracted followed by a linear spatial filter F and rectification. The spatial filter
together with the rectification is called ’texture grabber’ (the first stage). The output
of the texture grabber is called activity. The second stage (standard motion analysis)
is basically a coincidence detector: it computes the product of the delayed activity at
location ]| with the current activity at location 2. Response variability across trials
is due 1o jnternal noise which is modeled by an additive noise having a standard nor-
mal demliy function with mean 0 and standard deviation 1. The heterogeneous path
is dominnpt whenever the net motion strength in the direction of the heterogeneous
motion pnth (after adding noise) is positive (decision stage).
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Figure?; Reciprocal transitions p,’»'l(wu) as a function of spatial frequency w,. Open
circles for Scheme I. Filled circles for Scheme II. The vertical dashed guide line indicates
the spatial frequency of texture s: w, = 4.9 c¢/deg. The horizontal dashed guide line
indicates the contrast of texture s: ¢, = 0.5. The solid line curve is the mean of
the reciprocal transitions. In terms of the model, this curve shows the amplitude of
the Fourier transform of the spatial filter F(w) of the texture grabber involved (see

Equation 13).




PW,w_v=12c/deg PW, w_v= 7.4 c/deg

8 8
8 8
o 8 o 8
o o ¥
8 8
[-] -
00 02 [ X} os os 1.0
Corrast, Cv Corwrast, Cv
JS, w_v = 1.2 c/deg JS, w_v = 7.4 cideg
g 8
8 8
a 8 o &
o 9 bk ;
R &
o o

Figure 10 Results of the perceived contrast experiment. Observers compared the
contrast of a grating v (spatial frequency w, and contrast ¢,) with the contrast of
texture s (¢, = 0.5,w, = 4.9 c/deg). Shown are the probabilities P, for judging the
contrast of v higher than that of s (filled circles). The matching contrast for texture v
is the crossing of the curve with the dashed 50% line.

To compare the matching contrast with the transition contrast in the motion experi-
ment, we have shown the probabilities P;(c,) for Scheme I (open circles).
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Figure §| Multi-channel motion computation. The first stage consists of n independent
transformations T; (the texture grabbers). Transformation T; is a non-linear transfor-
mation (e.g., spatial filtering followed by rectification). The output of each transforma-
tion is called an activity representation of the optical input. Standard motion analysis
(M) is applied to each of the activity representations of the input. Finally the motion
strength is summed across the different channels.
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Figure‘l.LSolutions for transitions (path equality) in a two-dimensional T-space. Each
texture in a motion path is processed by diﬁ'_grent texture grabbers. Vector T, represents
the activity of texture v in T-space, vector T, that of s. The collection of activity vectors
T, that satisfy the constraints for path equality are given by the thin line in (a) for
Scheme I and by a thin circle in (b) for Scheme II.
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Abstract

We present data on the human sensitivity to optic acceleration, i.e., temporal modu-
lations of the speed and direction of moving objects. Modulation thresholds are measured
as a function of modulation frequency and speed for different periodical velocily vector
modulation functions using a localized target.

Evidence is presented that human detection of velocity vector modulationsis not directly
based on the acceleration signal (the temporal derivative of the velocity vector modulation).
Instead, modulation detection is accurately described by a two stage model: a low-pass
temporal filter transformation of the true velocity vector modulation followed by a variance
detection stage.

A functional description of the first stage is a second order low-pass temporal filter
having a characteristic time constant of 40 ms. In effect, the temporal low-pass filter is
an integration of the velocity vector modulation within a temporal window of 100-140 ms.
A non-trivial link of this low-pass filter stage to the temporal characteristics of standard
motion detection mechanisms will be discussed.

Velocity vector modulations are detected in the second stage, whenever the variance
of the filtered velocity vector exceeds a certain threshold variance in either the speed or
direction dimension. The threshold standard deviations for this variance detection stage
are estimated to be 17% for speed modulations and 9% for motion direction modulations.
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Introduction

Man is capable of interacting successfully with complex dynamic environments. This ability is
due primarily to powerful neural mechanisms that have evolved to process optical motion in-
formation (see Nakayama, 1985b for a survey). Therefore motion perception has been studied
extensively. Psychophysical research has shown that the human visual system contains highly
sensitive motion extraction mechanisms (DeBruyn and Orban, 1988; McKee, 1981; Werkhoven
and Koenderink, 1991) that map spatiotemporal image structure into explicit motion informa-
tion (e.g., velocity and direction}.

Motion perception has traditionally been studied using spatiotemporal invariant (uniform)
motion stimuli. Relatively few studies have aimed at the human sensitivity to the spatiotempo-
ral structure of motion fields or velocity vector modulations. Although previous studies helped
to define methods and stimuli, none of them allowed definitive statements concerning human
sensitivity to acceleration or mechanisms for detecting higher derivatives of motion (Regan et
al., 1986). This scarcity of studies is surprising, since in natural vision, optical motion on the
retina is generally varying in both space and time even if environmental objects move at a
constant speed and direction. Structured motion fields are not just an inevitable burden for
our visual syvstem. In fact, it has been shown that the spatial structure (Koenderink, 1986)
and temporal structure (Arnspang, 1988) of optical motion fields are of major importance to
the visual agent and are closely related to egomotion and 3D shape extraction.

The study presented here focuses on the human sensitivity to temporal velocity vector
modulations, that is, the ability to detect temporal variations in speed or direction (called
optic acceleration).

The Paradigm

A fundamental and intriguing question to be answered is: Does the human visual system
contain specific acceleration detectors? In other words, do human observers directly assess the
optic acceleration of a moving object (the temporal derivative of the velocity vector function)
or do they indirectly infer optic acceleration from variations in the perceived velocity along its
trajectory (by sampling velocities at different times)?

This question strongly resembles a classic debate in the study of uniform motion perception:
Are human observers able to directly sense optical motion, or do they infer motion indirectly
from the variance in object position over time? Nakayama and Tyler (1981) have answered the
latter question using a target with a periodically (sinusoidally) modulated position in time.
They measured modulation threshold amplitudes as a function of the frequency (inverse period)
of the pos:tion modulation function. They argued that modulation threshold amplitudes would
be independent of the modulation frequency when motion was inferred from the variance in
position. However, when motion was assessed directly (e.g., the temporal derivative of the
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position modulation function) threshold modulation amplitudes were expected to decrease
with increasing modulation frequency.

For low modulation frequencies (< 2 Hz), Nakayama and Tyler found strong experimental
support for a direct assessment of motion. Modulation thresholds did not show an invariance
when expressed in terms of displacement. For higher frequencies (> 2 Hz), Nakayama and
Tyler found deviations from the expected dependence of modulation thresholds on frequency,
presumably as a consequence of some finite temporal integration of the motion signal in the
human motion system.

To examine optic acceleration, we adopt this elegant paradigm used by Nakayama and
Tyler substituting velocity modulations for position modulations. That is, we use a target
with a velocity vector modulated in time around a certain mean velocity vector and measure
threshold amplitudes for the detection of velocity vector modulations as a function of the mod-
ulation frequency. We study velocity vector modulations both in the direction of the velocity
vector (speed modulation) and orthogonal to the velocity vector (direction modulation). In-
variant modulation thresholds as a function of modulation frequency would indicate an indirect
detection of motion modulation or optic acceleration.

General Stimulus Considerations

The choice of an adequate stimulus to be used in a study on motion modulation detection is
not trivial. It is important to design the modulation detection experiment such that detection
cannot take place oufside the motion system in other dimensions than speed or direction.
In the following we list a few considerations regarding some widely used stimuli in motion
experiments.

Sine Wave Gratings

Sinewave luminance gratings are a powerful tool for studying linear systems and also for
studying motion perception. However, the use of moving sine wave gratings leads to several
problems. First, local speed and local temporal frequency are inherently confounded. As a
resuit. a speed modulation of a moving sine wave grating might be detected outside the motion
system as a local modulation of stimulus temporal frequency. For example, a detector with a
spatiotemporal separable response function, thus not tuned to speed at all, would be sufficient.
Second, with a one-dimensional spatial pattern, such as a sine wave grating, it is not at all
obvious how one could study motion direction modulations. Third, moving sine wave gratings
allow extensive spatial integration by the motion detection system. This property makes all
spatially extended moving patterns especially unattractive to study spatially local modulations
in speed or direction. Fourth, spatially extended moving patterns inherently stimulate motion
detectors at a range of eccentricities. Thus, a study of motion sensitivity as a function of
eccentricity cannot be specific.

Random Pizel Arrays
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Another visual stimulus often used in studies on motion perception is a random pixel array
or ‘Julesz pattern’ (Julesz, 1971). An important property of a Julesz pattern is that its power
spectrum is flat. Therefore, 2 moving Julesz pattern with a modulated speed function would
not yield the temporal frequency cue discussed above. However, human sensitivity to temporal
modulations is limited by the flicker fusion frequency. As a result of this cut-off frequency for
temporal modulations, the sensed energy of a moving Julesz pattern decreases when speed
increases. That is, when speed increases, an increasing proportion of the spectral components
of the moving pattern would yield temporal frequencies beyond the fusion frequency, thus
conceivably reducing the apparent contrast of the stimulus. Thus, speed modulation for Julesz
patterns may provide the observer with an apparent contrast modulation as a cue.

Furthermore, Julesz patterns are spatially extended. Hence, they yield similar problems
for the study of motion modulations as discussed above for sine wave gratings.

Localized Targets

We have discussed a few extraneous cues associated with spatially extended stimuli. Many
of these problems are circumvented when using strongly localized targets, such as dots. A
moving dot allows for the study of local motion perception (restricted spatial integration)
and for the control of eccentricity of presentation. Furthermore, local temporal frequency
modulation is not a cue for motion modulation detection.

However, an increase in dot speed can yield an increase in apparent spatial stimulus extent
(if the visual system integrates the stimulus over a fixed window in time), and also a decrease
in apparent contrast (if the visual system integrates the stimulus over a fixed window in space).
To get some grip on the possible contributions of these extraneous cues, we studied motion
modulation sensitivity using moving dot targets and blob targets (spatially blurred dots).

Methods

Method Speed Modulations

This section describes the method for our study on the human sensitivity to temporal modu-
lations of moticu speed.

Stimulus Specifications

The stimulus consisted of a moving luminous dot (well above detection threshold) of 1 mm
diameter. The dot projected on the screen of a CRT was blurred by a sheet of diffusing material
which was placed directly in front of the CRT screen. We estimate the standard deviation of the
resulting isotropic luminance ‘blob’ at 1.5 cm, thus its full width at half maximum (FWHM) at
about 3-4 cm. The dot moved horizontally across the screen at a variable (modulated) speed
from the leftmost point to the rightmost point of a horizontal trajectory across a distance
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do. This single left-to-right motion is called a sweep (the distance dg is the sweep-length).
When it reached the right end on its trajectory, the dot returned to the far left position on the
trajectory and continued its motion (the next sweep). The time to finish one sweep is called
the sweep-time (%g). At a viewing distance d,, the average dot speed vo was:

vo = 5" arctan(do/d,). (1)

One motion stimulus presentation consisted of 4 sweeps. Thus, the presentation time was 4t,.
The dot speed was modulated in time yielding a non-uniform periodic speed function v;(t) with
modulation frequency w. Speed modulation functions v.(t) were either periodic (symmetric)
triangular functions A(t) or periodic block functions II(¢) (see Fig. 1). The amplitude dv, of
the modulation functions was varied but was always smaller than the average speed vg, such
that the dot speed was always positive. The phase of the periodic modulation function at the
start of the stimulus presentation was randomized.

— Figure 1 about here —

In addition to the moving dot, we also provided the observer with a stationary fixation
dot (a green LED), placed at a distance equal to the sweep-length dy above the center of the
horizontal trajectory, thus making eccentricity of presentation (€) about equal to the length of
the trajectory of the moving dot. The sweep-time for a particular experiment was taken to be
such that one sweep contained a few cycles of the speed modulation. Hence, for low temporal
modulation frequencies examined, a longer sweep-time was required. The parameters as set in
the different modulation experiments are specified in separate parameter tables in the Result
section.

In the main experiments, speed covaried with the eccentricity of the moving dot. To study
the effects of eccentricity and speed independently, we ran two control experiments. In one,
we varied eccentricity but kept the viewing distance constant. In the second, we varied speed
but kept eccentricity constant.

Apparatus

Th~ need modulation functions were generated by manipulating the position of the beam
of a HP 1321A high speed graphic display (P31 phosphor).

The beam produced a 1 mm diameter luminous dot on the screen (well above detection
threshold). A Wavetek 185, 5 MHz, function generator produced a saw-tooth horizontal posi-
tion signal z(t), as a function of time ¢, which was fed into the X-channel of the HP 1321A.
The horizontal position of the dot was linear with this signal. Hence, the dot moved from
left to right across the screen until the saw-tooth reached its maximum (finishing one sweep),
at which point it returned (invisible) to the far left and started to traverse the screen again
(the next sweep). The amplitude of z(t) (and thus the sweep-length) across the screen was
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constant. For a constant period A of this saw-tooth signal in time, the dot crossed the screen
at a constant speed, determined by the temporal derivative of x(t), and thus proportional with
the reciprocal period 1/A of x(t). The reciprocal period 1/ of z(t) (and thus the dot speed)
was modulated in time by a periodic modulation function v,(t) with (modulation) frequency w
(using a HP 3325A synthesizer function generator). The modulation function v.(t) was either
a triangular function A(?) or a block function II(t) (see Fig. 1). Speed modulation v.(t) varied
around an average speed vy with an amplitude dv, (see Fig. 1). This set-up allowed easy
adjustment of the average speed, amplitude and frequency of the speed modulation function.

The Importance of Visual Fization

Pilot experiments showed that visual fixation during modulation detection experiments is
critical. Observers reported to have no difficulties in detecting modulations when tracking
the moving dot for conditions where detection failed under visual fixation. Obviously, pursuit
eye movements facilitate modulation detection. It is well-known that the pursuit system is
quite slow (cut-off frequency at about 1 Hz). For speed modulation frequencies higher than
1 Hz, observers could not follow the exact speed modulation, but might track the dot at its
average speed. The actual speed modulation would then become apparent as a displacement
in the retinal coordinate frame. Thus, allowing the observers to track the dot would provide
them with a displacement cue, resulting in modulation detection outside the motion system.
In order to eliminate this cue, visual fixation is crucial.

Note that in much of the older literature (e.g., Hick, 1950), but also in more recent literature
(Burr €t al.. 1986) no mention of the observers fixation condition is made.

Procedural Information

Speed modulation thresholds were measured in a modulation detcction experiment. In one
session. observers viewed 18 stimulus presentations of a modulated speed function v(t) (with
an average speed vy and a modulation amplitude dv,) and 18 presentations of a unmodulated
(uniform) speed function (having a constant speed vg). The order of presentation for these
36 trials in a session was randomized, as was the phase of the modulation function for the
trials that contained the speed modulation. The task of the observers was to indicate for each
stimulus presentation whether they perceived a modulated or an unmodulated motion in time.

Usually 4-5 sessions with different adequately chosen modulation amplitudes were sufficient
to determine the speed modulation detection threshold by data interpolation. We defined the
speed modulation threshold I, as the relaiive modulation amplitude dv./vy at threshold
performance (yielding 80% correct answers). Measurements were performed binocularly with
natural pupils in a darkened room. No feedback was provided in either experiment.

In one of the control experiments we studied speed discrimination using the present experi-
mental set-up. In a session for speed discrimination , observers viewed uniform speed functions
with a constant speed that was either higher (vo + dv;) or lower (v — dv;) than the average
speed vp of the ensemble of presentations. Observers indicated whether the perceived speed
was high or low. Before a session started, the motion stimuli were shown on request to build
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an internal representation of the high and low speeds. The procedure for determining speed
discrimination thresholds was otherwise similar to the procedure for the modulation detection
experiment.

Subjects

Five subjects with normal or corrected-to-normal vision participated in the experiments.
Three subjects, HS, PW, and AT are authors of this paper and had foreknowledge of the
design, and are experienced observers in psychophysical experiments involving optic motion.
The results of these main subjects are presented. The general findings were confirmed by two
naive subjects, working on an hourly fee. There was no obvious correlation between subject
experience and threshold values.

Method Direction Modulations

This section describes the method for experiments on direction modulation detection.

Stimulus

Similar to speed modulation functions, the direction modulation functions were generated
by manipulating the position of the beam of the HP 1321A high speed graphic display. However,
for direction modulation functions, both the horizontal and vertical position of the dot were
manipulated.

The time dependent horizontal position 2(t) of the dot (the X-channel of the HP 1321A)
was driven by a HP 3325A synthesiser function generator. This generator produced a saw-tooth
signal x(t) with a period A that determined the sweeptime fg and an amplitude that determined
the sweep-length dg. For this direction modulation experiment, the period and amplitude of
7(t) were constant during a stimulus presentation, resulting in a constant horizontal speed
l‘r(f) =19 = do/fo.

The time dependent vertical position y(t) of the dot (the Y-channel of the HP 1321A) was
driven by Wavetek 185 function generator. The y(t) signal determined the direction modula-
tion. The position functions y(t) were periodic with frequency w. The vertical speed function
vy (1) was simply the temporal derivative of vertical position y(t). Thus, the modulation fre-
quency was w. The average vertical speed was zero. The amplitude of the vertical speed
modulation function vy(t) is written as dvy. As a result, the speed of motion v(t) of the dot
was:

0)
ot (2)

v(t) = voy[1 +

For a small vertical speed v,(t) relative to the horizontal speed vy (vy(f) < vg), the average
speed was approximately constant (v(t) = vg). The direction 6(t) of motion as a function of
time t is approximately linear in vy(1) when v (1) < vp:
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o(t) = a.rctan(v—':)%)) ~ 3';%1. 3)

The average motion direction f in all experiments was horizontal: 6y = 0. The amplitude of
the direction modulation function 6(t) is df = arctan(dv, /vo).

Triangular position functions y(¢) = A(t) resulted in block shaped direction modulation
functions 6(t) = II(¢). Sinusoidal functions y(t) = Q(t) resulted in sinusoidal direction mod-
ulations #(t) = §(t) (integrated y(t) functions), but shifted a phase 7/2 backwards in time.
Finally, block wave position functions y(t) = II(¢) resulted in pulse shaped direction modula-
tion functions 8(t) = 6(t). An illustration of these position modulation functions and resulting
direction modulation functions is shown in Fig. 1.

Procedure

The procedure was identical to the procedure for speed modulation detection experiments.
Observers indicated for each motion stimulus whether the motion was modulated (non uniform)
or not. Two main observers participated in the direction modulation experiments (HS and AT).
Two naive subjects confirmed the findings for the main subjects.

Modulation direction thresholds are defined as the direction modulation amplitude dé yield-
ing threshold performance (80% correct answers).

Speed Modulation Detection
Speed Modulation Detection Dependence on Modulation Frequency

Results
Speed modulation detection thresholds 11, as a function of modulation frequency w for two
different speed modulation functions and different speeds vg are presented in Fig. 2.

— Figure 2 about here —
The parameter settings for different average dot speeds vg are listed in Table 1.

— Table 1 about here —
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Since the data were very similar for the three main observers (PW, HS and AT), we averaged
modulation detection thresholds W, for this presentation. The modulation thresholds of Fig. 2
are presented as (relative) speed modulation thresholds (speed modulation Weber fractions
W, = dv;/vo). Triangular symbols indicate the triangular speed modulation function A(t) and
square symbols indicate the block modulation function II(¢). Open symbols indicate that the
moving target was blob like. Closed symbols indicate dot targets.

Consider triangular modulation functions. For low modulation frequencies (w < 2 Hz)
speed modulation thresholds for very different conditions (1 deg/s dot targets at 0.25, 0.5
and 1 Hz, 1.7 deg/s blob targets at 1 and 2 Hz, and 15 deg/s blob targets at 2 Hz) are
identical within measurement error (approximately 32%). This suggests that speed modulation
detection thresholds at low frequencies are constant and independent of frequency, speed and
target shape. However, speed modulation detection threshold values do depend on the shape
of the modulation function used. Thresholds for the triangular speed modulation functions
A(t) are aporoximately a factor 1.8 higher (averaged over speeds, modulation frequencies and
subiects) than the thresholds (17%) for the block modulation function II(t).

At high modulation frequencies (w > 2 Hz) the speed modulation thresholds in Fig. 2 rise
strongly with increasing modulation frequency for both triangular and block shaped modula-
tion functions.

Discussio..: Threshold Invariance at Low Modulation Frequencies

The fr-quency independence of modulation thresholds for low modulation frequencies strongly
supports the hypothesis that modulation detection is based on the magnitude of the speed mod-
ulation signal. The modulation magnitude is independent of modulation frequency. A detection
mechanisia based on the difference in maximum and minimum speeds of the speed modulation
function 1 indeed expected to yield constant thresholds, independent of modulation frequency.

The in.variance of thresholds for low frequencies rules out the hypothesis that speed modula-
tion detec ion is based on the magnitude of the optic acceleration signal. The optic acceleration
signal is the temporal derivative of the speed modulation signal. Hence, its magnitude is linear
with the 1odulation frequency. Therefore, a detection based on the acceleration magnitude is
expected o improve with increasing modulation frequency. A hypothetical acceleration detec-
tor (requi.ing a constant acceleration threshold for detection) would yield a hyperbolic (inverse
lincar) de.rease of speed modulation threshold in Fig. 2, which is not supported by the data.

The low frequency plateau in Fig. 2 rules out another hypothesis saying that observers
base detection on the spatial excur-ions of the moving dot with respect to its average path
(i.e., the path of constant speed vp). According to this hypothesis, the speed modulations
are detected whenever the excursions exceed a certain excursion threshold. The magnitude
of the spatial excursion is the temporal integral of the speed signal and is linear with speed
and with the period of temporal modulation. Thus, the ‘excursion’ hypothesis predicts that
speed modulation thresholds decrease with decreasing modulation frequency. This prediction
is inconsistent with the finding that thresholds are constant for low modulation frequencies
(see Fig. 2).
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In conclusion, the threshold invariance at low modulation frequencies strongly support the
view that human speed modulation detection is based on the speed signal itself (the relative
magnitude dv;/vo of the speed modulation function v(t)), and not on the temporal integral of
v(t) (position), or the temporal derivative of v(t) (acceleration).

Discussion: Low-pass Temporal Filtering at High Frequencies

At high modulation frequencies (w > 2 Hz) the speed modulation thresholds in Fig. 2
rise strongly with increasing modulation frequency. Apparently, the magnitude of the mod-
ulation function is reduced at high frequencies. Phenomenologically this can be understood
by assuming that human speed modulation detection is based on a temporally blurred (low
pass filtered) version of the true (physical) speed function. A temporal low-pass filtering of
the modulation function reduces the energy of high frequency modulation functions yielding
increased thresholds amplitudes.

In the Model Section, we elaborate on a two-stage modulation detection model. The
first stage consists of a nth order low-pass temporal filter operating on the speed modulation
function. The second stage is decision stage based on the filtered modulation signal of stage
one. The parameters that specify the first (temporal filter) stage and the second (decision)
stage are derived based on data presented here and in the following sections.

Discussion: Wave Forms

At a given modulation frequency, thresholds for triangular speed modulation functions are
a factor 1.8 higher than the thresholds for the block modulation functions. At high modulation
frequencies, this finding can be understood by considering the fundamental low-pass character-
istic of the modulation detection threshold functions obtained. We estimate that for frequencies
w > 2 Hz only the fundamental frequency is passed through, even at 100% modulation depth
(note that because of the symmetry of the modulation functions used, only the odd harmonics
are present). This ratio of 1.8 for the relative thresholds of triangular and block modulation
functions is in reasonable agreement with the ratio 7/2 =~ 1.6 of the amplitudes of the funda-
menta) frequencies of the two modulation functions. The fact that the fundamental frequency
component dominates the percept is supported by informal and introspective reports of our
observers. They reported not to be able to discriminate the temporal pattern of block and
triangular modulation functions with equal apparent modulation depth at frequencies higher
than 2 Hz, whereas they were able to perform such a discrimination for the 1 Hz modulation.
A further study of this issue may be of interest.

At low modulation frequencies (e.g., 1 Hz) however, the dependence of thresholds on the
form of the modulation function cannot be understood by considering low-pass temporal fil-
tering, because at these modulation frequencies this filter is fast enough to follow the physical
speed function. For low modulation frequencies, the filtered speed modulation signal will pass
through the temporal filter unaffected for both triangular and block modulation functions.
This observation reveals information about the type of detection that operates on the low-pass
filtered modulation function. It strongly suggests that the modulation detection cannot be




Speed Modulation Detection 12

based simply on the amplitude (or peak) of the modulation function (yielding equal thresholds
for triangular and block modulation functions).

In the Model Section we show that this apparent discrepancy can be resolved by (1) taking
into account the effects of probability summation on peak detection (note that a block modu-
lation function spends much more time at large, near threshold, excursions than a triangular
modulation function), or (2) by assuming a variance detection of the filtered speed signal in-
stead of a peak detection. Note that a block wave modulation function has a variance three
times that of a triangular wave of the same amplitude. Hence, the amplitude (modulation
depth) of the triangular function has to be v/3 ~ 1.7 times that of the block function for
threshold performance in a variance detector.

Discussion: Blob Targets versus Dot Targets

We argued in the introduction that speed modulations are confounded with changes in
the spatiotemporal power spectrum yielding an »pparent contrast cue for speed modulation
detection. Also, the perceived spatial structure might change with speed. For example, a dot
at constant speed might be perceived as a horizontal bar for high frequency speed modulations.
However, the correspondence of speed modulation thresholds for luminous dots and blurred
blobs (see Fig. 2) (at 1 Hz for the triangular modulation function) shows that the exact spatial
structure (or frequency spectrum) of the stimuli is not critical for the value of the low-frequency
speed modulation Weber-fraction.

Speed Modulation Detection v. Speed Discrimination

Motivation

The threshold amplitudes (x17%) for the block modulation functions (open squares in
Fig. 2) are in excellent agreement with recent data reported by Snowden and Braddick (1991)
obtained for speed modulated random dot patterns.

Perhaps surprisingly, however, thresholds for speed modulation detection are much higher
(typically a factor 3-4) than thresholds found in speed discrimination experiments (DeBruyn
and Orban, 1988: McKee, 1981). Unfortunately, speed discrimination thresholds are often
dependent on the specific experimental conditions. In order to compare modulation detection
with discrimination thresholds, we performed a speed discrimination experiment using the
same experimental set-up as for modulation detection. Observers had to indicate whether the
perceived speed of a uniformly moving dot was high (vo + dv;) or low (v + dv;). As for
modulation detection thresholds, speed discrimination thresholds are expressed relative to the
average speed: W, = dv,/vg.

Results
We measured two speed discrimination thresholds at different presentation times of the
motion stimulus. Each uniform motion stimulus in our two-interval discrimination experiment
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was shown for an interval duration T = 125 ms or T = 1000 ms. The corresponding thresholds
are shown in Fig. 2 (’+’ symbols) at their ‘equivalent’ temporal frequencies w = 1/(2T). This
facilitates a comparison of discrimination thresholds with modulation detection thresholds at
frequency w for which each speed interval of the modulation function was shown for 1/(2w) s.
Results (see '+’ symbols in Fig. 2) show that speed discrimination thresholds (6%) are
indeed much lower than speed modulation detection thresholds (17% for block wave modulation
functions). The 6% speed discrimination thresholds were independent of presentation time.

Discussion

At the longest presentation time each uniform speed was shown 1000 ms in the speed
discrimination experiment, yielding a 6% threshold. It is interesting to compare this 6%
speed discrimination threshold with the 17% speed modulation threshold for block modulation
functions at 0.5 Hz modulation frequency. For a block shaped modulation function at this
frequency, the presentation time of each speed interval of the block function was also 1000 ms.
Thus, although the different speeds in both experiments were presented at equal (long) time
intervals, the thresholds are markedly different.

The high thresholds for modulation detection may be a consequence of a fundamental
problem observers have in segmenting the modulated motion stimulus into high and low speed
intervals when speed itself is the only segmentation cue, as originally proposed by Snowden
and Braddick (1991). However, we propose an alternative explanation (as discussed in detail
in the Model and General Discussion sections): High thresholds for modulation detection may
be caused by the uncertainty (of observers) about the phase of the speed modulation function.

The Cut-off Frequency Dependence on Speed

Motivation

The cut-off frequency «w.(vg) is defined as the modulation frequency yielding threshold
detection performance (80% correct answers) for a given average speed rg and modulation
amplitude dv;. The data in Figure 2 suggest that this cut-off frequency is a function of speed.
For example, for the lowest speed tested (1.7 deg/s). modulation detection thresholds increase
somewhat faster for increasing modulation frequency {c.g.. at 4 Hz) than the threshold for an
average speed of 15 deg/s.

To study this issue further, we measured cut-off frequencies fc. » «:. - range of average
speeds vg. To facilitate a comparison of our data with the cut-off frequc =iz for random dot
patterns used in the experiment of Snowden and Braddick (1991). we re<:- ved the diffusing
screen yielding a luminous dot as a target. The spatial power spectra of do« ::rgets and random
dot patterns are comparable.

Results
We measured cut-off frequencies w.(vg) for a wide range of average speeds vg by measuring
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the percentage of correct responses as a function of modulation frequency at modulation depth
dv, = 100% for the triangular speed modulation function A(t). The speeds and corresponding
parameter settings are listed in Table 2. It should be noted that target speed was varied by
varying the viewing distance d, (although for two conditions the sweep-length do was slightly
adjusted).

— Table 2 about here —

The closed symbols in Figure 3 are cut-off frequencies for dot targets and show a clear
increase of cut-off frequency with stimulus speed.

— Figure 3 about here —

Open symbols are cut-off frequencies for blob targets and are extrapolated from the thresholds
for triangular modulation functions in Fig. 2 using a temporal low-pass filter that is justified
and specified in the Model Section. Because these extrapolated data for observer AT and HS
were very similar, we averaged them for this presentation.

Discussion
We fitted the dependence of the cut-off frequency w.(vo) for dot targets (closed symbols)
on speed g to a power function:

we(vo) x v§. (4)

and estimated the power exponent a = 0.3 — 0.35. In the General Discussion section. we
discuss this power law in terms of well known properties of elementary motion detectors.

A comparison of the cut-off frequencies for blob and dot targets shows that only for the
highest speeds used (vo > 7.5 deg/s) the cut-off frequency becomes pattern-dependent (see
also Watson et al., 1986). This is consistent with introspective reports saying that, for still
higher average dot speeds of the modulation, the percept was a ‘string of beads’. The ‘beads’
presumably correspond to the places where the stimulus comes to an instantaneous standstill,
thus allowing a significant luminance build-up over time in a small spatial region.

Disentangling Viewing Distance and Eccentricity

Motivation
In this section we report on a control experiment to test our claim that the high frequency
cut-off we find for our speed modulation thresholds (see Fig. 3) is caused by low-pass temporal



Speed Modulation Detection 15

filtering. In Fig. 3 we showed that the temporal cut-off frequency depends only weakly on
stimulus speed (4-8 Hz for speeds less than 7 deg/s). Therefore, it is tempting to assume a
temporal frequency limit for the speed modulation detection system. However, to support this
conclusion we have to tackle the following problem.

In the above experiment, speed was varied by varying the viewing distance (see Table 2),
thus covarying the eccentricity of presentation with stimulus speed. The spatial grain size of
the visual system increases approximately linear with increasing eccentricity (Watson, 1987),
such that the spatial resolution for the spatial speed variations of our stimuli decreases as a
function of eccentricity. Therefore, one could claim that the (near) invariance of the temporal
frequency cut-off can also be explained by a constant spatial frequency limit with respect to
the grain size of the visual system at the eccentricity of presentation of the motion stimulus.

To disentangle the effects of viewing distance and eccentricity we measured the cut-off
frequency at a fixed viewing distance and stimulus speed, but at different eccentricities.

Results

We measured the cut-off frequency at a fixed viewing distance (d, = 2.40 m) and stimulus
speed (4 deg/s) for different eccentricities of presentation (¢ = 0.5, 5, 10 and 15 deg). The
sweep-length dp is 42 cm and the sweep-time #5 is 2.5 s. Cut-off frequencies for a triangular
speed modulation function with 80% modulation depth are presented in Table 3.

— Table 3 about here —

Table 3 shows that the cut-off frequencies are virtually identical at all eccentricities.

Discussion

A correct explanation for the approximately invariant cut-off frequencies is indeed in terms
of a temporal high-frequency cut-off, and not in terms of an eccentricity-scaled spatial resolu-
tion limit. Of course this temporal frequency limit can be described as a spatial limit in units
that scale with stimulus speed. However, because of the scaling in human motion vision of the
spatial grain size with stimulus speed, we believe that such a description is equivalent to our
explanation in terms of a temporal resolution limit.

Disentangling Viewing Distance and Speed

Motivation

The cut-off frequencies in Table 3 at constant speed but varying eccentricity are invariant,
whereas the cut-off frequencies in Fig. 3 at covarying stimulus speed and eccentricity do show
a slight (though systematic) variation. We hypothesized that this small variation in cut-off
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frequencies depends on the stimulus speed. We tested this hypothesis explicitly by measuring
cut-off frequencies at fixed viewing distance and eccentricity but different speeds.

Results

We measured cut-off frequencies for a triangular speed modulation function with a mod-
ulation depth of 80% at a fized 10 deg eccentricity and fixed viewing distance (240 c¢m), but
at different speeds vg. Because sweep-time ?y was constant (1.25 s), the sweep-length dop was
directly proportional to the dot speed.

— Figure 4 about here —

Cut-off modulation frequencies are shown in Fig. 4 as a function of the average speed vg
(at fixed eccentricity!). As expected, we find a dependence of cut-off modulation frequency on
speed.

Discussion

We fitted the dependence of the cut-off frequency on speed to a power function (see Eq. 4).
The exponent a that fits the data of Fig. 3 best is estimated to be a = 0.25 for HS and
a = 0.30 for AT. The absolute values of the cut-off frequencies at a fixed speed in Fig. 4
can be compared with Fig. 3. The cut-off frequencies of this experiment (measured with 80%
modulation amplitudes) are roughly 0.8 times the cut-off frequencies in Fig. 3 (measured for
100% modulation amplitudes). This can be explained by the fact that the filtered modulation
signal is proportional to the modulation amplitude dv, times an attenuation function (see
Model Section). This filtered signal has to exceed a certain internal threshold for detection to
take place. Thus a higher modulation amplitude yields higher modulation frequencies.

Note, that the cut-off frequencies at the lowest average speeds in Fig. 3 were measured at
much smaller eccentricities than the 10 deg eccentricity for this experiment. Thus, it seems
that eccentricity of presentation is of small relevance to speed modulation detection, even for
speeds that barely exceed the motion detection threshold at the eccentricity of presentation.

Finally, it is of interest 1o note that human modulation detection sensitivity at the lowest
speed tested (0.5 deg/s at 10 deg eccentricity) is excellent when expressed in terms of the
spatial excursions of the modulated motion path from the average motion path at average
dot speed vg. These spatial excursions did not exceed 0.9 arcmin, which is approximately the
hyperacuity threshold that was found at this eccentricity for static stimuli with an explicit
nearby spatial reference available (Westheimer, 1982)!

Direction Modulation Detection
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In this section, we study velocity vector modulations orthogonal to the average velocity vector
(direction modulations) resulting in curved trajectories. Instead of measuring speed modula-
tion thresholds, we measure direction modulation thresholds. The precise generation of the
direction modulation functions is specified in the method section, as is the definition of direc-
tion modulation thresholds. Otherwise, the procedure and organization of these experiments
are quite similar those of the speed modulation detection experiment described above.

Direction Modulation Detection Dependence on Modulation Frequency

Results
In Fig. 5, we present direction modulation thresholds as a function of modulation frequency
for two different direction modulation functions.

— Figure 5 about here —

Circles represent sinusoidal direction modulations §(t), squares block shaped direction
modulations II(t). Since direction modulation thresholds were very similar across the main
observers, we presented the averaged threshelds for observers AT and HS. The parameter
settings for different velocities and functions are listed in Table 4.

— Table 4 about here —

Direction modulation detection thresholds for an average speed v = 1 deg/s and sinusoidal
modulation functions (small filled circles in Fig. 5) are approximately invariant (d6 = 10.2—12.3
deg) for the range of {requencies tested (0.25-1 Hz).

At high frequencies, thresholds rise strongly as a function of frequency w for both sinusoidal
and block shaped direction modulation functions. The average ratio of threshold amplitudes
for sinusoidal and block shaped modulation functions at high frequencies w > 2 Hz is 1.26.

Discussion: Threshold Invariance at Low Modulation Frequencies

The threshold invariance at low frequencies indicates that human direction modulation
detection is based on the amplitude of the direction modulation function and not on its tem-
poral derivative (directional acceleration); direction modulation amplitude is independent of
modulation frequency, whereas the derivative is linear with modulation frequency. Therefore,
a detection based on directional acceleration would yield increasing thresholds for decreasing
low modulation frequencies, which is not observed.

On the other hand, direction modulation detection might be based on the magnitude of
vertical dot position (the temporal integral of the direction modulation function). However,
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a constant vertical position threshold (relative to the mean position) would yield decreasing
threshold direction modulation amplitudes for decreasing modulation frequencies in Fig. 5,
which is also not observed.

At 1 Hz modulation frequency, the 6.6 deg threshold direction amplitude at v == 2 deg/s is
smaller than the 10.2 deg threshold found at vy = 1 deg/s. Although here we compare only two
data points we speculate that the asymptotic level is speed dependent. Increasing direction
modulation thresholds at low speeds are not surprising given the relatively low sensitivity of
the human motion system at low velocities (DeBruyn and Orban, 1988).

In conclusion, the observed asymptotic behavior of direction modulation thresholds as
a function of modulation frequency support the hypothesis that detection is based on the
amplitude of the direction modulation function. The observed absence of mechanisms tuned to
visual acceleration seems consistent with a study on motion after effects (MAE) by Schwartz
and Kaufman (1987), who reported that "there is no MAE specific to adaptation for changing
directions as distinct from simple motion™.

Discussion: Wave Forms

Because the fundamental frequency of sinusoidal functions has a smaller amplitude (a factor
of #/4) than that of block functions (at a ¢’ “en modu'ation amplitude), thresholds are expected
to be a factor of 4/m = 1.27 higher for sinusoidal than for block functions at relatively high
modulation frequencies. The average ratio (1.26) of threshold amplitudes for sinusoidal and
block shaped modulation functions found for the frequency range > 2 Hz, is in good agreement
with this ratio, suggesting a relatively low cut-off frequency. The strong increase of direction
modulation thresholds for both sinusoidal as for block functions, suggests a temporal frequency
limit for the direction detection system of approximately 2 Hz. We found a similar temporal
limit for speed modulation detection.

Discussion: Direction Modulations v. Speed Modulations

To compare the (absolute) direction modulation detection thresholds df with the Weber
fractions for speed modulations, we use the following Weber fraction ¥y for direction modula-
tions: Wy = dv,/vo = tandf. Now, both Weber fractions Wy = dvy/vg and W, = dv;/ve are
c'~gantly expressed in terms of velocity vector modulations and can be compared.

For exampie, one can compute that the Weber fraction 1¥; for block shaped direction mod-
ulation detection at 1 Hz and speed 1o = 1.7 deg/s is approximately 9%. This is about a factor
2 lower than the Weber fraction W, = 17% for block shaped speed modulation detection. Fur-
thermore, if one takes into account the effects of probability summation (or variance detection
of the velocity vector modulation), very similar ratios (a factor of 2) for speed and direction
modulation thresholds can be shown to hold for other modulation functions used (see general
discussion section).

The fact that the human visual motion system is more sensitive to direction than to speed
is a well-known phenomenon in motion discrimination experiments, where Weber fractions
for speed discrimination are typically twice the Weber fractions for direction discrimination
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(Nakayama, 1985b; DeBruyn and Orban, 1988). Thus, —although absolute Weber fractions
for modulation detection are a factor 3-4 higher than Weber fractions for motion discrimination
experiments— the ratio of Weber fractions for speed and direction modulations is very similar
(about a factor of 2) in both types of experiments.

The invariant ratio of sensitivity to speed and direction reveals a fundamental characteristic
of the human visual motion system. Let’s consider a motion system consist.ug of an ensemble
of Reichardt correlators that have spatially rotational-invariant prefilters (i.e., spatial input
filters that are not orientation selective) (see Glinder, 1990). For such a motion system,
the higher sensitivity to direction than for speed is likely to be related to the fact that in the
motion direction both spatial and temporal prefilters contribute to a broadening of the ensemble
response correlation peak, whereas in the orthogonal direction the width of the correlation peak
is determined solely by the spatial prefiltering.

Discussion: Low-pass Temporal Filtering at High Frequencies

We proposed a low-pass temporal filter to explain the cut-off frequency for speed modulation
detection. The temporal limit found for speed modulations (2 Hz) was similar to the cut-off
frequency of approximately 2 Hz observed here for direction modulation detection. In the
Model Section, we model this temporal behavior of direction modulation detection analogous
to the way we modeled that of speed modulation detection: a temporal filtering of the direction
modulation signal which corresponds to a temporal filtering of the speed signal v,(t) orthogonal
to the mean velocity vector (see Eq. 3).

Spatial Cues at Very High Modulation Frequencies

Motivation

For modulation frequencies that far exceed the temporal limit (2 Hz) for detection of
modulation by the motion svstem, thresholds are determined by other cues outside the motion
svstem. such as spatial cues. Although these thresholds do not reveal the characteristics of the
motion svstem, they are of interest.

Results

We measured direction modulation thresholds at 8 Hz and 100 Hz modulation frequency
for a 1.7 deg/s speed frequency. Thresholds were found to level off for this frequency range,
suggesting that observers made use of weaker spatial cues to detect modulations, which were
independent of modulation frequency.

The threshold for the remaining spatial excursion cue at high frequencies is a measure for
the dvnamic spatial acuity orthogonal to the motion direction of a moving dot. We found it
to be about 8 arcmin for our observers, which is a few times the 2-3 arcmin acuity limit for
static stimuli (Wertheim, 1894) at the eccentricity used in this experiment (3/4 deg).
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Pulse shaped Direction Modulation Functions

Motivation

Here we make a short study of pulse shaped direction modulation functions §(t), yielding
square wave vertical position modulation functions II(t) (see Fig. 1). Detection of pulse shaped
direction modulation functions is interesting because the corresponding vertical velocities are
too high to be sensed by the motion system. Hence, modulation detection must be based on
+ues outside the motion system. Therefore, the detection of pulse shaped modulation functions
is likely to make use of a spatial cue: the spatial excursion from the mean vertical position.

Filtered pulse shaped direction modulation functions have constant amplitudes for low mod-
ulation frequencies (when the response functions in the time domain for consecutive pulses are
well-separated), yielding constant spatial excursions from the mean vertical position. There-
fore, if the spatial excursion is the cue for modulation detection, thresholds are expected to
be independent of modulation frequency for low frequencies. We tested this prediction by
measuring modulation detection thresholds (expressed as spatial excursions) as a function of
modulation frequency for pulse shaped modulation functions 8(2).

Results
The parameter settings for this pulse detection experiment are listed in Table 4.

— Figure 6 about here —

Figure 6 shows that the spatial excursions yielding threshold performance are approxi-
mately invariant (2.3-2.8 arcmin) for the range of modulation frequencies tested (1-4 Hz).
Similarity in performance for subjects AT and HS allowed averaging over these observers.

Discussion

The finding that the spatial thresholds at the 1 Hz modulation frequency are slightly higher
than those for 2 Hz may be explained by probability summation or by the nature of variance
detection. At the fixed stimulus presentation time used there are twice as many ‘events’ (pulses)
at a 2 Hz than at a 1 Hz modulation frequency. Consequently, probability summation or
variance computation can take place across more events yielding lower thresholds. Obviously,
there is a lim!* to summation such that no improvement occurs at even higher modulation
frequencies.

Note that the spatial modulation thresholds (spatial excursions) (2-2.5 arcmin) are consid-
erably lower than the dynamic acuity (8 arcmin) determined earlier in this paper at the same
speed (1.7 deg/s). However, they are still higher than the hyperacuity thresholds (0.2-0.5 ar-
cmin) that have been measured for stationary spatial configurations at similar eccentricities
(Westheimer. 1982). A more elaborate experiment that we performed on pulse shaped speed
modulation functions will be presented elsewhere.
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The fundamental frequency components of block shaped and triangular shaped position
modulation functions (at a given modulation amplitude) have relative amplitudes x /2. With
a low cut-off frequency of 1 Hz, these fundamental frequencies are expected to dominate the
detection thresholds at high modulation frequencies. Therefore, we expect relative thresholds
of 2/m = 0.64. This can be verified by comparing thresholds for block shaped position functions
(see pulse shaped direction modulations in Fig. 6) with the triangular shaped position functions
(see block shaped direction modulations in Fig. 5) at, for example, 4 Hz modulation frequency.
This average ratio across observers is 0.67 supporting our claim that we deal with positional
cues and a low cut-off frequency such that the fundamental frequencies dominate detection of
high frequency modulation functions.

Model

We present a model for the detection of velocity vector modulations in the human visual
system. The model consists of two stages. The first stage is a nth order low-pass temporal
filter that operates on the velocity vector modulation function. This filter is characterized by
its order n and a characteristic time constant 7. The second stage is a decision stage based on
the filtered modulation function.

In this section, we will show that our data provide strong experimental evidence that the
decision stage is a variance detection stage. The single parameter that specifies the variance
detection stage is a variance threshold and can estimated from the data. Furthermore. having
knowledge about the decision stage, we can estimate the parameters that characterize the first
(low-pass temporal filter) stage.

The Decision Stage: Variance Detection

The amplitude detection thresholds presented in this paper have been in*erpelated baced on

detection probabilities as measured using a method of constant stimuli. I oo rhreshiolds
are the modulation amplitudes at threshold performance (R0°¢ correct answer  and thus form
one parameter to characterize the full psychometric functions availatie. H. - .cr the shape
of the psychometric functions reveal the parameter used in the decision s = e g velocity.

squared velocity, etc). Therefore, it is of interest to examine the shape of tie psyvchometric
functions.

Due to the noise, associated with the stochastic {binomial} nature of the observer decision
process, we need a large number of elementary decisions for eack modulation amplitude in
order to discriminate small shape differences of different psychometric functions. Therefore,
we averaged psvchometric functions, for all parameter settings used in the modulation de-
tection experiments described above, as a function of normalized velocity vectcr modulation
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amplitudes £&. With a normalized vector modulation amplitude £, we mean a modulation am-
plitude for a given parameter setting, divided by the modulation amplitude yielding threshold
performance for that particular setting: £ = (dv/vg)/W,. Assuming that velocity vector modu-
lation detection is ruled by a single detection process, psychometric functions for all parameter
settings will be identical if plotted as a function of normalized amplitudes!

The resulting psychometric curve that describes all experiments reported in this paper is
shown in Fig. 7.

— Figure 7 about here —

The horizontal axis in Fig. 7 represents normalized modulation amplitudes £. The ordinate
represents the percentages correct for a small range of normalized modulation amplitudes
clustered around a range of plotted normalized amplitudes of the data points. Half the length
of the shown error bar for a normalized amplitude i corresponds to the square-root-variance
(o) of the binomial probability distribution for that point: ¢; = /pi(1 — p;)//%;, with p; the
ordinate for modulation ¢, and n; the number of elementary observer decisions. Each individual
data point is based on about 700 elementary (yes/no) observer decisions (n; = 700).

We find an excellent fit of this psychometric function using a standard error function or
(scaled) standard normal distribution Erf(z):

1 2y
Erf(z)zﬁ/_ e ' 7/di, (9)

that has the square normalized modulation amplitude (z = £2) as its argument (x%=5.2 with 7
degrees of freedom). The scale factor 4 is constant: ¥ = 0.84, and causes Er f(z) to be 80% for
z = 1 (a constraint, set by our thresliold definition). Note that the function E7f(£?) used for
the fit has no free parameters! The evidence for this particular shape of psychometric function
is very strong since a fit with functions Erf(€) or E7f(£2) yields unacceptable Chi-square
values of Y2 = 152 and }? = 55 respectively. Thus, assuming that a standard error function
is a valid description of the psychometric function associated with the final observer decision
process (Green and Swets, 1966), the empirical function shown in Fig. 7 strongly suggests that
modulation detection is based on the square modulation amplitude, i.e., the variance of the
(temporally filtered) velocity vector modulation.

A variance detection process is certainly not exclusive for velocity vector modulation de-
tection and has, for example. also served to explain human sensitivity to temporal fluctuations
in the luminance domain (Rashbass, 1970; Koenderink and van Doorn, 1978). The choice of
variance detection for these visual tasks is not surprising since variance detection has been
shown to be optimal from a statistical point of view in a number of instances in which the
visual system is uncertain about some aspects of the stimulus to be presented (Green and
Swets, 1966), €.¢.. the phase of periodical modulation functions. This uncertainty may force
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the observer to use the autocorrelation (variance) of the velocity modulation signal, instead of
the more efficient cross correlation of the modulation signal received with the signal expected
(Green and Swets, 1966; Burgess and Ghandeharian, 1984).

We argued that the uncertainty of the observer about the phase of the modulation func-
tion accounts for variance detection and thus for our finding that speed modulation detection
thresholds (17%) are much higher than speed discrimination thresholds (6%). However, an
alternative explanation for variance detection is in terms of the difficulty of the visual system in
segmenting modulated motion paths in temporal segments of different velocities in the absence
of cues other than in the motion dimensions (Snowden and Braddick, 1991). To decide on this
issue, experiments are useful in which the observer is provided with explicit cues that define
the phase of the motion modulation signal and/or allow for a segmentation of the stimulus.

Interestingly, such experiments have been performed in another domain. In stereo vision
(disparity processing), for example, the absence of an explicit segmentation cue (i.e., defined
outside the stereo domain) can lead to dramatic increases in the disparity discrimination thresh-
old (McKee, 1983; Fahle and Westheimer, 1988). In the domain of two-dimensional luminance
pattern perception, on the other hand, an explicit segmentation cue has been observed to force
the visual system in a processing mode yielding higher discrimination thresholds than obtained
without segmentation cues (Watt, 1985)!

Rashbass (1976) has shown that a variance detection process based on the square mod-
ulation amplitude yields identical detection performance to an alternative detection model
consisting of peak detection based on the linear modulation amplitude, with a detection proba-
bility summation that is governed by a psychometric function similar in form to the empirical
curve shown ir Fig. 7.

We have shown that modulation detection is accurately described by a variance detection,
based on a low-pass transformation of the velocity vector function, that is, velocity vector mod-
ulations are detected whenever the variance (after filtering) exceeds a certain internal threshold.
The internal thresholds are most easily derived from threshold modulation amplitudes for block
shaped modulation functions at a low frequency, when the modulation function is nearly unaf-
fected by the low-pass filter. This is because the variance of block shaped functions is equal to
the square modulation amplitude. Therefore. the internal threshold for variance detectior. is
equal to the square of the threshold modulation amplitude measured for these functions. For
example, the minimum standard deviation (square root variance) yielding modulation detec-
tion is W, = 17% for speed modulations (see Fig. 2) and Wy = 9% for direction modulations
(see Fig. 5).

The Filter Stage: A Second Order Low-pass Filter

The data presented in this paper suggested that the detection of velocity vector modulation
functions is based on a temporal low-pass filtered version of the true (physical) stimulus velocity
vector function. The effects of such a low-pass temporal filter on detection performance depends
on the type of decision stage that follows temporal filtering. Now we have specific knowledge
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about this decision stage (see above), we can estimate the temporal characteristics of the first
(filter) stage.

We model the temporal low-pass filter as a standard temporal n-th order low-pass filter and
estimate its order and its characteristic time constant from the dependencies of modulation
thresholds on modulation frequency

Method
A standard temporal n-th order low-pass filter has a pulse response function:

o) = gy (I e (m >0, (®)

and a transfer function g(w) of modulation frequency w:

§(w) = (14 (2mwr)?)) /2, (7)

This filter reduces the amplitude of the modulation functions. For example, a sinusoidal
modulation function with frequency w and amplitude A passing the filter g(t) will have a
reduced amplitude Ag(w). The detection of such a modulation signal takes place in a variance
detection stage as described above. At threshold, the variance of this filtered sinusoidal signal
is equal to a threshold variance o2: A%.g%(w)/2 = o2 (recall that the variance of a sinusoidal
signal equals half its square amplitude).

This threshold o can be estimated from an empirical modulation detection threshold
W (wo) at a low modulation {requency wo < 1/(2x7) for which §(wo) = 1. For example, for
block shaped modulation functions the variance of the function at threshold amplitude W (wy)
is exactly 117%(wp). Thus. 62 = W2(wy) for block shaped modulation functions.

To estimate the time constant 7, we consider the threshold amplitudes at modulation fre-
quencies wy and w; for which the the higher order spectral components of the modulation
function can be ignored. In those cases, the modulation functions are approximated by their
fundamental (sinusoidal) components. For example, for block shaped functions with (thresh-
old) amplitude 11"(w,), the amplitude of the fundamental sinusoidal component is %”’(wg). At
threshold, the variance of the filtered fundamental equals the detection threshold o3:

%[%"Vu(“’i)P[I + (27wiT)?)] ™" = 0. (8)

For frequencies w; 3> (27r7)~!, we could use the asymptotic behavior §(w;) = (27rw;7)™" to
estimate 7 and n analytically from two data points at high frequencies. However, we can not
use this approximation a priori and use a numerical approach. First, we rewrite Eq. 8 to solve

72 as a function of n and w;:
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0

(27w;)? I 1r ©)

7w, n) =
The time constant 7 is constant. Thus, 7(w;, n) is expected to be the same for any two different
(sufficiently high) modulation frequencies w; and w;. Hence, the order n of the filter is the
solution of the equation:

T(wy1,n) = 7(wq, n). (10)

We chose the lowest n for which |7(wy,n) — 7(wa, n)|/[T(w1, n) + T(w2, n)] is smaller than 20%.
The time constant 7 is taken to be the average of the two values 7(w;,n) and 7(w2,n) at this
n.

Estimation of Filter Parameters for Speed Modulation Thresholds

Consider the speed modulation thresholds for block shaped functions in Fig. 2. We use the
threshold at low modulation frequency wg = 1 Hz for the estimation of og: 09 = W,(1) = 17%.
Furthermore, we use the two thresholds at high modulation frequencies w; =4 Hz and w, = 8
Hz with thresholds W, (w;) = 30% and W,(w;) = 81%.

Using the method described above, we find that a value n = 2 and a time constant 7 = 33 ms
adequately model the dependence of speed modulation detection thresholds W, (w) as a function
of modulation frequency w. In fact, we found 7(w;,2) = 30.6 ms and 7(w3,2) = 36.1 ms.

With 7 = 33 ms, this second order low-pass filter corresponds to a value of approximately
90 ms for the full width at half maximum (FWHM) of the pulse response of the speed integra-
tion filter yielding an integration (smoothing) of the physical speed signal in the human visual
svstem within roughly a 100-140 ms temporal window.

Estimation of Filter Parameters for Direction Modulation Thresholds

Similar to the previous section, we estimated the order n and time constant 7 from the
direction modulation thresholds for block shaped functions as presented in Fig. 5. We used
the threshold Wy(wo) = 8.7% for wo = 1 Hz, and Wy(w;) = 11.4% (wq = 2 Hz) and Wy(w,) =
24.9% (w, = 4 Hz).

Using the method described above, we find that a value n = 2 and a time constant 7 = 42 ms
adequately model the dependence of direction modulation detection thresholds Wy(w) as a
function of modulation frequency w. In fact, we found 7(w;,2) = 34 ms and 7(w;,2) = 49 ms.

This time constant for the low-pass filtering of the direction modulation signal is only
slightly higher than the time constant (=33 ms) estimated for the low-pass filtering of the
speed modulation signal. However, as we showed in Fig. 3, this small discrepancy may be
a consequence of the different speed ranges used for the determination of the temporal filter
characteristics for direction and speed modulations.
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The overall similarity of the characteristics of human detection of speed and direction
modulations and the (near) equality of the integration time-constants derived strongly suggests
a detection system that monitors the full (temporally filtered) velocity vector.

General Discussion

Evidence for indirect optic acceleration detection

We presented a study of human sensitivity to optic acceleration and have been unable to find
any evidence for a visual mechanism that directly detects optic acceleration, i.e., the temporal
derivative of the velocity vector modulations. Instead we find strong evidence that modulation
detection is based on the amplitude or modulation depth of a temporally filtered velocity vector
modulation signal. The temporal characteristics of the temporal filter are adequately described
by a second order low-pass filter with a time constant 7 = 40 ms. Effectively, this filter
corresponds to a temporal integration of the velocity signal of at least 100 ms. This is consistent
with the upper temporal limit of about 100 ms for the integration of velocity information
(improving signal-to-noise ratios) in motion discrimination experiments (DeBruyn and Orban,
1988; Snowden and Braddick, 1991). Thus, the lower and upper limits for temporal integration
in the human visual motion system are equal, suggesting a single hard-wired temporal filter
in the motion processing system. This view is further supported by the close quantitative
correspondence between the increase of cut-off frequency with speed (as reported here for
motion modulation detection) and the decrease of temporal integration time with speed found
in motion discrimination studies (van Doorn and Koenderink, 1982, 1985).

This leads to the intriguing question: which stage in the stream of visual motion processing
accounts for the characteristic temporal filtering found in our experiments?

Temporal Filtering: Mechanistic Considerations

A functional description of the phenomenology of our experiments consists of a temporal
integration of an unsmoothed internal representation of the true velocity signal (Fig. 8a). At
this point we will try to link this functional description to an actual implementation in the
visual system in terms of well-known motion detection mechanisms.

— Figure 8 about here —

An abstract description in terms of a smoothed motion signal does not necessarily mean that
the visual system actually extracts an exact (unfiltered) velocity signal to subsequentially low-
pass filter it in time. In fact, the following rhetorical questions make such an implementation
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unlikely: (1) How does the visual system arrive at the representation of the true (unfiltered)
velocity in the first place? (2) If such a representation exists, should this signal be low-pass
filtered given the great advantages of having access to a velocity signal with high temporal
resolution (Arnspang, 1988; Gliinder, 1990)? Because of the above puzzles, we believe that
the temporal integration is inherent to the mechanism that arrives at a velocity representation
and that it takes place effectively before the final estimate of the velocity vector, akin to the
scheme of Fig. 8b.

We illustrate some of the possible stages of temporal filtering by adopting a specific but
plausible basic motion detector: the Reichardt-correlator (van Doorn and Koenderink, 1985),
see Fig. 9.

— Figure 9 about here —

A plausible implementation of such a correlator typically contains three temporal filtering
stages:

1. A temporal prefilter f(t) for each input line.
2. A temporal delay filter (with time constant 7) in one of the input lines.

3. A temporal low-pass filter [; of the correlator output.

We will discuss each of these filters as candidates to account for the temporal low-pass
filtering of the velocity vector modulation functions found in our experiments.

Temporal Lou-pass Filtering of Correlator Output

Intuitively, it is tempting to associate the psychophysically observed integration of veloc-
ity with the temporal integration [ of the correlator output. Perhaps surprisingly, however,
temporal filter [, is not equivalent with a temporal integration of the modulation of speed or
direction. To show this, we will consider an ensemble of motion detectors (Reichardt correla-
tors), ideally tuned to a continuum of velocities. To substantiate our point we will focus on
speed modulation functions. Assuming that detectors tuned to identical velocities are pooled
(Gliinder, 1990), this ensemble can be parameterized by tuning velocity v, only. At time ¢,
the moving target has velocity v(?) and will thus activate only detectors with a tuning velocity
vy = v(t). Therefore, the type of activated detectors (parameterized by v;) within the ensemble
will vary in time, yielding time dependent ensemble activation profiles. For example, ensemble
activation profiles for a triangular speed modulation function are given in the left upper corner
of Fig. 10.

— Figure 10 about here —
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In this figure the type of detector (parameterized by its tuning speed v;, along the vertical
axis) that is activated by the moving dot is given as a function of time ¢ (along the horizontal
axis). When the detectors are very sharply tuned, only one type of detector is active at a time,
dependent on the speed of the moving dot. At a particular moment in time, we can walk along
the vertical axis and find which detectors are active as a function of their tuning speed (the
ensemble activation profile). Because the dot moves with a single speed at a each moment in
time, the ensemble profile is a single pulse that shifts along the vertical axis in time. With
sharply tuned detectors, the ensemble activation profile is a perfect copy of the physical speed
modulation signal v(t), and is thus triangular in time (see upper left corner of Fig. 10).

Now let’s consider the temporal filter [; that integrates the output of the standard motion
detectors in time yielding an integration of the ensemble activation profile along the horizontal
time axis. The resulting horizontally blurred activation profile is shown in the upper right
corner of Fig. 10. To make our argument as strong as possible, we assumed that the temporal
integration takes place within a temporal window that exceeds the period of the modulation
function a few times such that it flattens the profile.

Figure 10 also shows the ensemble activation profiles for a uniform (unmodulated) speed
function before (bottom left) and after temporal integration (bottom right). Obviously a
constant profile in time is invariant under temporal integration.

As a result of temporal integration [ (blurring along the horizontal time axis), both the
ensemble activation profiles for modulated and unmodulated velocity functions are constant
in time. However, the shape of the profiles for the modulated speed function (upper right)
and that for the unmodulated speed function (bottom right) differ strongly even for inifinite
blurring.

A true integration of the speed modulation signal, however, would blur the ensemble profile
along the vertical (speed) axis yielding blurred profiles that become indiscriminable for infinite
blurring.

The above reasoning shows that temporally filtering the speed signal is not equivalent to
temporally filtering the output of motion detectors (correlators). That is, blurring is the speed
dimension is generally not equivalent to blurring in the time dimension. We suggest that the
psychophysically observed integration of the speed signal must be inherent to a processing
stage which comes before the correlation stage.

Temporal Pre-filter

The shown temporal low-pass characteristic for modulation detection might be inherent
to the temporal filter f(t) at the input of a standard motion detector (see Fig. 9). The
reasoning would be in terms of ‘window of visibility’ arguments as used to explain the perceived
equality of apparent motion with real motion at adequate sampling frequencies (Watson et al.,
1986; Burr et al., 1986). However, in order to account for the low-pass filter characteristics
for modulation detection, we have to assume upper temporal cut-off frequencies of 4-8 Hz.
At these unrealistic temporal cut-off frequencies, the motion system has not even reached
optimal sensitivity (Burr and Ross, 1982)! Consequently, the temporal pre-filter explanation
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is implausible.

Temporal Delay Filter

We suggest that the temporal delay filter (see Fig. 9), is the most plausible candidate to
account for low-pass transformations of modulation functions. The standard motion detector
as sketched in Fig. 9 is optimally activated if an object traverses the spatial interval between
the front end receptors of its two input lines in the finite delay time 7. The speed of the object
may vary during its trajectory, as long as the above constraint is satisfied. Intuitively, this
results in a temporal averaging (or temporal integration) of the speed function.

Gliinder (1989) has recently presented an interesting mathematical analysis on this issue.
His study focused on the question of how velocity estimates through an ensemble of standard
motion detectors depend on the spatial object function and on the impulse response function of
the delay filter of the detector. For an ensemble of bilocal correlators tuned to a continuum of
velocity vectors, he showed that the estimated velocity function is the result of the convolution
of the true (physical) velocity vector function with a time-invariant kernel which only depends
on the integral function of the impulse response function. Hence, the estimated velocity vector
function is independent of the spatial object function.

Gliinder’s proof strongly supports our view that the phenomenological description of our
results, in terms of low-pass temporal filtering of the velocity vector function, corresponds
with a plausible implementation in terms inherently non-ideal (realizable) band-pass delay
filters in correlator detectors. Following this hypothesis, the cut-off frequencies for modulation
detection depend inversely on delay value : for longer delay values, the width of convolution
kernel increases and yields stronger temporal blurring. Our finding that cut-off frequencies
w. are slightly dependent on speed v (we(vo) o v33%) thus lead to the conclusion that delay
values 7 are speed dependent. Cut-off frequencies w, are expected to be inversely dependent
on correlator delay 7. This conclusion corresponds closely to the empirical power function

reported by van Doorn and Koenderink (1982): 7 x 1'6'0'40.

Speed Dependence of Cut-off Frequencies

The dependence of cut-off frequency on speed we observe in Fig. 3 is consistent with what
has been reported in both psychophysical and electrophysiological literature: higher velocities
correspond to somewhat faster detectors.

However, this finding is at odds with the speed dependence of temporal velocity resolution
obtained by Snowden and Braddick (1991). They found that the cut-off frequency for speed
modulation detection decreases with increasing velocity in their experimental set-up. This issue
remains to be resolved by further experimentation. The most noticeable difference between our
experiments and those of Snowden and Braddick concerns the spatial nature of the stimuli used.
Snowden and Braddick used a spatially extended randon. dot pattern centered at the fovea,
whereas we used a localized target moving at a trajectory with an approximately constant
eccentricity in our case.
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Relation to Sampled (Apparent) Motion Experiments

Apparent motion differs from continuous (smooth) motion because it is characterized by a
speed function that is modulated in time. Apparent motion is thus a special case of the
modulation functions examined in this paper. We will discuss two studies (Watson et al., 1986
and Burr et al., 1986) that reported on the minimum temporal sampling frequency yielding
perceptual equivalence of apparent and real motion and compare them with our study on the
upper cut-off frequencies for velocity modulation detection.

In Watson et al.’s stroboscopic paradigm the time-dependent speed is an ill-defined signal,
but periodic with a frequency equal to the strobe frequency. They find minimal sampling
frequencies (yielding perceptual equivalence of stroboscopic and real motion) that are much
higher (> 30 Hz) than the cut-off frequencies for velocity modulation detection obtained in
this study. However, this is probably due to the strong luminance cue at low velocities.

In Burr et al’s ‘sample and hold’ paradigm the moving dot is visible all the time and
displaced stepwise in time. The time-dependent speed function T(t) is now well-defined (see
Fig. 1) and can be compared with the block modulation functions used in our experiments with
160% modulation ampiitude. Fig. 1 shows that ‘sample and hold’ speed modulation function
T(t) differs only in duty cycle from the block modulation function II(t) at 100% modulation
amplitude as used in our experiments. Furthermore, functions Y(t) differ only in peak width
from the triangular functions A(t) at 100% amplitude. However, the cut-off frequencies found
in this paper (approximately 4 Hz for triangular modulation functions at vg = 2 deg/s, see
Fig. 3) differ by at least a factor of 4 from the minimum sampling frequencies (15-40 Hz,
dependent on the drift rate) found by Burr et al. for this particular speed. We offer a number
of explanations for this apparent discrepancy:

1. For a given average speed vp, the amplitude of the fundamental frequency in the ‘sample
and hold’ motion modulation function Y(¢) is much larger than for the triangular speed
modulation function A(t) we used to obtain Fig. 3 (the ratio equals 72/4 ~ 2.5). This
allows for higher cut-off frequencies in Burr’s paradigm.

2. Burr et al. do not mention visual fixation. The strong dependence of detection perfor-
mance on pursuit eye movements was discussed in the Method section. Our observers
reported to have no difficulties in detecting modulations when tracking the moving dot
for conditions where detection failed under visual fixation.

3. We mentioned before that for modulation frequencies that far exceed the temporal limit
(2 Hz) for the detection of modulations by the motion system, thresholds are determined
by cues outside the motion system, such as spatial cues. Thus it may be that experiments
on the equivalence of apparent and real motion do not exclusively reveal the structure of
the visual motion system.
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Relation to Experiments with Controlled Eye Movements

Results have been reported on frequency limits for velocity modulation detection when a moving
reference is provided (Funakawa, 1989) (contrary to our stationary fixation dot). Providing a
moving reference leads to cut-off frequencies (~ 25 Hz) that are considerably higher than those
obtained in our study. Interesting as these results are, we believe them to be indicative of the
temporal resolution of visual subsystems concerned with the spatial analysis of moving patterns,
and not with the determination of velocity as such. We believe both types of experiments (and
visual subsystems) should be clearly distinguished (although, of course, they may be intimately
intertwined).

Conclusion

In conclusion, human detection of velocity vector modulations is not based on optic acceleration
(the temporal derivative of the velocity modulation function v(2)). The data presented in this
paper strongly support the view that modulation detection consists of a variance detection
process, based on the magnitude of a low-pass filter transformation of the true modulation
function v(t). Effectively, the motion system integrates the velocity vector modulation signal
for about 100 ms over time.

These results put severe constraints on viable theories aiming to explain human capacities
in the extraction of 3D environmental information from motion parallax cues (Nakayama,
1985a).
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Figure captions

Figure 1: A sketch of some modulation functions: pulse shaped §(t), triangular A(t), sinusoidal
(1), block shaped II(t) and sample function Y(t), as a function of time z. For this illustration,
all functions are normalized such that their mean value over time is 0.5, their temporal wave-
length is 27, and the modulation amplitude is 100%, except for function Y(t). The function
Y(t) is the velocity modulation function as used in the ‘sample and hold’ paradigm of Burr et
al. (1986) (for this illustration also with mean 0.5, and temporal wavelength 27).

Figure 2: Threshold speed modulation amplitudes W, as a function of speed modulation
frequency w. Thresholds ¥, are the relative speed modulation amplitudes (dv;/vg) that yield
80% correct answers. The (very similar) data of three observers (HS, PW and AT) have been
averaged. Triangular symbols indicate (symmetric) triangular speed modulation functions
A(t). The different sizes of the symbols indicate different average speeds vg as given in the
figure. Note, that the closed triangles indicate a special condition in which the diffusing screen
was removed such that the target was a luminous dot. Square symbols indicate thresholds for
(symmetric) bloc! speed modulation functions II(%).

The + symbols indicate results obtained in a separate speed discrimination experiment. Ob-
servers indicated whether a uniform motion stimulus moved at a high velocity (vo + dv,) or
at a low velocity (vp — dv;). As in the modulation experiments, W, = dv;/vo. For the left
speed discrimination threshold in the figure the presentation time of each speed interval was 1
s, for the right threshold it was 125 ms. To facilitate a comparison with the speed modulation
thresholds, the two speed discrimination thresholds are plotted at a horizontal position that
equals half their inverse presentation time.

Half the length of the shown error bar for each data point corresponds to the square-root-
variance of the binomial probability distribution for that point.
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Figure 3: Upper cut-off modulation frequency w, as a function of speed vy. Cut-off frequency w,
is defined as the modulation frequency yielding threshold performance (80% correct answers)
for a modulation amplitu.e of 100%. Cut-off frequencies are measured for triangular speed
modulation function A(t) and two individual observers (HS and AT). Parameter settings are
listed in Table 2. Closed symbols indicate cut-off frequencies for a luminous target dot.

Open symbols are cut-off frequencies for a blurred (blob shaped) target and are extrapolated
from the data of Fig. 2 using the temporal low-pass filter described in the Model Section.
Because these extrapolated data for observers AT and HS were very similar, we averaged them
for this presentation.

Figure 4: The dependence of upper cut-off frequency w. on speed vy for a triangular speed
modulation function A(t) with fixed 80% speed modulation amplitude. Eccentricity was fized
at 10 deg. Individual data for two observers (AT and HS) are plotted.

Figure 5: Threshold direction modulation detection amplitudes df as a function of modulation
frequency w. Weber fractions W, are simply related to df by the expression: W; = tandé.
Data of two observers (AT and HS) have been averaged. Filled circles are data obtained with
a sinusoidal motion direction modulation function Q(t); Open squares indicate a block shaped
motion direction modulation function II(t) (corresponding to a vertical position modulation

A(t)).

Figure 6: Modulation thresholds for the detection of pulse shaped direction modulation func-
tions 6(t), expressed as vertical spatial ezcursions of the block shaped vertical position modula-
tion II(t). Spatial thresholds are shown as a function of modulation frequency w. The average
speed vg was 1.7 deg/s and the eccentricity of presentation was 3.4 deg. Data for two observers
(AT and HS) have been averaged.
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Figure 7: Probabilities P of correct answers as a function of the normalized velocity vector
modulation amplitude £. With a normalized vector modulation amplitude £, we mean a mod-
ulation amplitude for a given parameter setting, divided by the modulation amplitude yielding
threshold performance for that particular setting.

The data points are collected using all speed/direction modulation detection experiments de-
scribed in this paper. The horizontal axis represents normalized modulation amplitudes £. The
ordinate represents the percentages correct P for a small range of normalized modulation am-
plitudes clustered around a range of plotted normalized amplitudes §; of the data points (filled
circles). Half the length of the plotted error bar for a normalized amplitude §; corresponds to
the square-root-variance or standard deviation (o;) for that point (see text).

Because we normalized the amplitudes to the threshold amplitude, the curve is expected to
reach threshold (80% correct answers) for £ = 1 and reach chance level (50%) for £ = 0. The
solid curve is a best fit of the psychometric function Erf(z) to the data, taking the squared
modulation amplitude z = £ as its argument. The dotted and dashed curves are the expected
psychometric curves for arguments z = £ and z = £ respectively, and fit less well.

Figure 8: Two similar (but fundamentally different) modulation detection processing streams.
The first stream (a) consists of the extraction of a true velocity signal, followed by low-pass
temporal filtering and by a final detection stage (e.g., peak or variance detection). The second
stream (b) consists of a velocity extraction that does not yield a true velocity signal but a
louw-pass transformation of the true velocity, followed by a final detection stage as in the first
stream.

Figure 9: A standard motion detector (Reichardt correlator). Standard motion analysis con-
sists of two input lines (receptive fields) with temporal filters f(t), a delay filter (with time
constant 7) for one of the input lines, a correlation stage and a temporal integration filter [.

Figure 10: Ensemble activation profiles as a function of time. The ensemble of motion detectors
considered in this figure is parameterized by a single parameter, the tuning velocity v, (vertical
axis). Activation profiles are given as a function time ¢ (horizontal axis) for a triangular velocity
modulation function (upper left corner) and a constant speed (lower left corner). At the right
side we show the resulting activation profiles for both functions after temporal integration ( f7)
of each motion detector output in the ensemble (i.e., integration along the horizontal axis).




Tables

Tables
wave form speed sweep-length | sweep-time | distance | eccentricity
vo (deg/s) | _do (cm) to(s) | do(m) | e(deg)
A(t) 1.0 43 4 6.00 4.10
A(t) 1.7 30 1 10.20 1.68
A(t) 5.0 30 1 3.40 5.04
A(t) 15.0 30 1 1.12 15.0
I1(?) 2.5 30 2 3.40 5.04
Table 1: Parameter settings for speed modulation thresholds of Fig. 2.
wave form speed sweep-length | sweep-time | distance | eccentricity
vo (deg/s) do (cm) to (s) d, (m) € (deg)
A(t) 0.26 23 2 25.0 0.52
A(t) 0.63 23 2 10.4 1.26
A(t) 2.5 23 2 2.60 5.00
A(t) 5.0 35 2 2.00 10.0
AQ?) 75 35 2 1.35 15.0

Table 2: Parameter settings for speed modulation thresholds of Fig. 3.
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Tables

eccentricity || cut-off HS | cut-off AT | cut-off PW
€ (deg) we (Hz) w, (Hz) w (Hz)
0.5 n.a. 6.0 6.8
5 5.3 5.5 5.4
10 5.2 53 4.9
15 n.a. 5.7 5.8

Table 3: Cut-off frequency w. obtained for the triangular speed modulation
function A(t), with relative amplitude 80% and mean velocity vo = 4 deg/s,
for three observers at four eccentricities ¢. The data for observer HS at 0.5
and 15 deg eccentricity were not available.

wave form speed sweep-length | sweep-time | distance | eccentricity
v (deg/s) do (cm) to (s) d, (m) € (deg)
Q(t) 1.0 43 4 6.00 4.10
Q(t) 2.0 43 2 6.00 4.10
I1(t) 1.7 36 2 6.00 3.43
6(t) 1.7 36 2 6.00 3.43
Table 4: Parameter settings for direction modulation thresholds of Fig. 5

and Fig. 6.
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Abstract

We present data on the human sensitivity to temporal pulse modulations of target
velocity. We measured threshold detection modulation amplitudes for pulse-shaped speed
modulations, as a function of pulse duration and temporal frequency.

At short pulse durations (up to 50 ms) and low modulation frequency (1 Hz), detec-
tion amplitudes are ruled by a Bloch law: the product of pulse duration and threshold
modulation amplitude is a constant. This constant corresponds to a position modulation
with an amplitude of 3 arcmin in a coordinate frame that moves at the average speed (3
deg/s) of the target. At longer pulse durations we find deviations from Bloch’s law. Speed
modulation thresholds are not critically dependent on target luminance contrast.

These results are modeled by a modulation detection process in two stages. A functional
description of the first stage is filtering of the true speed modulation signal by a second
order low-pass filter with a characteristic time constant of 20-25 ms. The second (decision)
stage is variance detection: modulations are detected when the variance of the filtered mod-
ulation function exceeds a certain threshold variance. The square root threshold variance
is estimated 8-10%.

This two-parameter model accurately predicts the measured dependence of pulse mod-
ulation detection thresholds on pulse duration and pulse density.

1 Introduction

Structure-from-Motion theories (Arnspang, 1988; Koenderink, 1986) show that the spatiotem-
poral dynamics of motion fields contain useful information for building representations of our
3-D environment. An intriguing question is how sensitive man is to modulations in motion
parameters (e.g. speed and direction) and what mechanisms have evolved for extracting these
modulations.

This question motivated Werkhoven et al. (1992) to perform experiments on the detection
of temporal modulations of speed and direction (optic acceleration). They have presented
evidence that the human visual system does not detect these modulations based on a optic
acceleration signal. Modulation detection is accurately modeled by a variance detection process
based on a low-pass transformation of the true velocity signal.

The above conclusions were based on modulation transfer functions: the dependence of
detection thresholds on modulation frequency. Transfer functions are powerful predictors for
the performance of linear systems and have a long history. For example, transfer functions
revealed the characteristics of luminance modulation detection in the human visual system (de
Lange, 1958).

An alternative tool for studying human detection performance in visual research has an
even longer history: pulse detection. For example, pulse detection experiments lead to the for-
mulation of Bloch’s law for luminance pulse detection (Bloch, 1885). Pulse amplitudes yielding
threshold detection performance, as a function of pulse duration, can reveal the linearity and
temporal characteristics of the visual detection mechanism. Furthermore, a study of detection
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thresholds as a function of pulse density can yield information on the type of decision process
that rules the detection process (Roufs, 1974; Watson, 1979).

The conclusions inferred from pulse detection experiments and those from modulation
transfer functions, have been shown to be consistent for luminance modulation detection ex-
periments (Roufs, 1972; Roufs, 1973). This consistency proves the linearity of the temporal
filter stage that rules the detection of temporal luminance modulations. Furthermore, consis-
tency provides evidence that modulation transfer functions are determined by a single temporal
filter (Koenderink, 1978).

In this paper, we present a study on the detection of pulse-shaped speed modulation func-
tions and examine the consistency of the present findings with the modulation transfer funci’ons
and model presented in Werkhoven et al. (1992).

2 Methods

In short, stimuli consisted of dot targets that moved along horizontal trajectories at a speed
either modulated in time or kept constant. Observers indicated whether the target motion as
constant or modulated.

2.1 Apparatus

We used an Atari 1040 ST computer to generate the stimuli and to control the experimental
procedures. An Atari SM125 high resolution 70Hz white phosphor monochrome monitor was
used (luminance 71 cd/m?) to display the stimuli. The phosphor decay rate was approximately
0.3 msec. The spatial resolution of the SNM125 was 640 x 400 pixels. Viewing distance was
constant throughout the experiment {210 c¢m), vielding angular screen dimensions of 3.6 x 3.5
deg.

2.2  Stimulus

A ‘snapshot’ of the spatial configuration of the targets is shown in Fig. 1.

— Figure 1 about here —

The stimulus consists of two rows of four targets (squares of 8 arcmin width). The horizontal
separation between targets in a row was 1.3 deg. In the first row, targets moved coherently
at a constant speed vo (uniform motion path) in a random horizontal direction. In the second
row (at the other side of the fixation mark), the targets moved coherently with a modulated
speed v(t) = é(t) (modulated motion path) in the opposite direction of the first row. The
vertical position of the first row (top or bottom) was randomized. The opposite motion of the
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constant and modulated path discouraged observers to use the relative horizontal positions of
the targets in the two paths as a cue for modulation detection.

The vertical separation of the top and bottom row was 3.2 deg. The traversed target
trzjectory length was 5.2 deg. Whenever a target reached the end of a trajectory, it returned
to the start of its trajectory and continued its motion. As a result, at every instant of time,
four targets were visible in each row. Observers fixated their view on the fixation mark (see
Fig. 1) which was placed half way of the vertical positions of the two rows and half way of
the trajectory. Consequently, the eccentricity of both motion paths varied between 1.6 and
3.1 deg. Targets were presented dark on a light background so that the visual system of the
observers adapted to a well-defined photopic luminance level.

The average speed of the traversing targets was vo = 3.0 deg/s (or 5 pixels per frame) in all
experiments reported in this paper. The transition time (the time to cross the trajectory) was
1.71 s (120 frames). Total presentation time was fixed at 4.1 seconds. The targets appeared
instantaneously at the start of their trajectory and, likewise, disappeared instantaneously at
the end of their trajectory. The positional phase (the initial position of the targets in a row)
and the phase of the speed modulation function were both randomized between presentations.

2.3 Pulse Modulation Functions

The top and bottom row moved rigidly in opposite directions with a velocity modulation
function v(t) = 6(t). We used a three parameter pulse modulation function () as shown in
Fig. 2. Basically, the modulation function é(t) consists of alternating positive and negative
pulses (with equal magnitude dv and duration a) superimposed on a constant speed vo.

— Figure 2 about here —

The three parameters that determine the modulation function é(t) are:

1. Pulse duration a. The values for a were limited to integer multiples of the inverse monitor
refresh rate (14.3 ms).

2. Pulse modulation amplitude dv/vo. Because the average speed was fixed at 5 pixels/frame
and because the values of dv were limited to an integer number of pixels per frame, the
modulation amplitudes dv/vy were 0%, 20%, 40%, 60%, 80% or 100%. We did not use
modulation amplitudes higher that 100% yielding local reversals of motion direction for
the negative velocity pulses.

3. The temporal separation § between the onset of consecutive pulses. Because the sign
of the amplitudes of the pulses alternated in time, the average speed was constant (vp),
independent of modulation amplitude dv. Thus, the average speed of the uniform and
modulated path are equal.
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2.4 Psychophysical Procedure

Speed modulation thresholds were measured in a modulation detection experiment. In one ses-
sion, observers viewed 25 stimulus presentations with a constant average speed vg, modulation
amplitude dv, pulse duration a and pulse separation 8. The modulated motion path appeared
either at the top vertical position or in the bottom position (its position was randomized). The
uniform motion path always appeared in the position opposite to the modulated path. The
phase of the modulation function was randomized. The task of the observers was to indicate
the position (top/bottom) of the modulated motion path by means of a joy-stick.

Usually 4-5 sessions with different adequately chosen modulation amplitudes were sufficient
to determine the speed modulation detection threshold (for a given constant pulse duration
and pulse separation) by data interpolation. We defined the speed modulation threshold W
as the relative modulation amplitude dv/vp at threshold performance (yielding 80% correct
answers). Measurements were performed binocularly with natural pupils in a darkened room.
No feedback was provided in either experiment.

2.5 Observers

The two authors (HS and PW), both experienced observers in visual motion experiments, were
subjects throughout the experiment. The general findings were confirmed by a third, naive
subject.

3 Experiments

3.1 Pulse duration
3.1.1 Results

We collected data on the dependence of speed modulation thresholds W on pulse duration a
for a fixed temporal interval 8 = 500 ms between the onset of consecutive pulses (see Fig. 3!).

— Figure 3 about here —

Detection thresholds are 120% (HS) and 140% (PW) for the shortest pulse duration (14.3
ms) and decrease monotonically with increasing pulse duration, down to 20% for a long pulse
duration of 143 ms (HS) and 158 ms (PW).

It should be noted that the rightmost data point in Fig. 3 was determined using the reverse of the procedure
described in the methods section, that is, for this data point we fixed the modulation amplitude at 20% and
determined the pulse duration a yielding threshold performance. The leftmost data point (at a=14.3 ms) is
extrapolated from the probabilities correct at modulation amplitudes smaller than 100%. Modulation amplitudes
higher than 100% yield a reversal of motion direction and were not used.
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The guide lines are theoretical relations derived in the Model Section, and show the pre-

dicted asymptotic behaviour for small pulse durations (the solid line) and large pulse durations
(dashed line).

3.1.2 Discussion: Small Pulse Durations and Blochs’s Law

Figure 3 shows a dependence of pulse modulation thresholds on pulse duration that asymptotes
to a line with a slope of approximately -1 for the shortest pulse durations examined in log-log
coordinates. This indicates that the product of modulation W and pulse duration a is constant
at threshold (Bloch’s law). The product Wa is exactly the integral of the modulation pulse,
that is, the spatial displacement of the dot in a coordinate frame that moves at speed vo. This
suggests that, for short pulse durations, modulation detection is based on a spatial cue: the
spatial excursion of the dot in the moving frame. The threshold spatial excursion is H# rga and
is approximately 3 arcmin for observer HS and 3.5 arcmin for PW at the average speed of 3
deg/s in this experiment.

Spatial excursion is the temporal integral of the velocity modulation function. Thus, the
finding that the magnitude of the spatial excursion rules detection performance strongly sug-
gests that the detection stage is based on the integral of the velocity signal. A likely imple-
mentation of velocity integration is a low-pass temporal filter operating on the true velocity
signal. The time constant of this low-pass filter determines the integration time and thus the
range of pulse durations for which we may expect a Bloch law. In the Model Section, we will
elaborate on this issue, and show that this finding is consistent with the model proposed by
Werkhoven et al. (1992) for the detection of different types modulation functions in speed and
direction.

3.1.3 Discussion: Large Pulse Duration and Low-pass Filtering

For larger pulse durations (e.g., @ = 143 ms) pulse modulation thresholds deviate from the
asymptote behavior described by a Bloch law.

In terms of a low-pass filter stage, this performance at large pulse duration is expected when
the pulse duration exceeds the time constant 7 of the temporal filter. Now, the filter response
is no longer the impulse response function (as for short pulse durations), but can be described
by a response to an incremental step (at the on flank of the pulse) followed by a response to
a decremental step (at the off flank). For large pulse durations (@ 3> 7), asymptotic threshold
performance becomes independent of the time constant and depends exclusively on the pulse
duration. The deviations from a Bloch law reveal information about the characteristic time
constant of the low-pass filter (see the Model Section).

3.2 Pulse Separation

In the above experiment, we measured pulse modulation thresholds as a function of pulse
duration a at fixed pulse separation # = 500 ms. Here, we study modulation thresholds as a
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function of pulse separation B for pulse durations a = 14.3,28.6 and 42.9 ms.

3.2.1 Motivation and Predictions

Roufs (1974) performed modulation detection experiments in the luminance domain and showed
that detection thresholds decrease with the number of pulses in the stimulus presentation. This
decrease was in agreement with the steepness of the psychometric functions obtained in his ex-
periments. We may expect similar behavior in the motion domain. that is, detection thresholds
decrease with increasing pulse density (1/8).

However, when the pulse density reaches a point where the pulse separation § is comparable
to the time constant 7 of a hypothesized low-pass filter, that operates on the modulation
function, the pulse responses of the temporal filter start to interfere. Now, the temporal filter
integration of the the modulation function yields an annihilation of neighboring positive and
negative pulses. This would lead to an increases in thresholds for pulse separations smaller
than the characteristic time constant 7 of the low-pass filter.

To summarize, modulation thresholds are expected to decrease as a function of modulation
frequency (due to increased pulse rates) until the pulse separation is of the order of the time
constant 7. For even smaller separations, thresholds will increase with frequency (due to
temporal integration).

3.2.2 Results

We measured modulation thresholds as a function of pulse separation 3 for short pulse du-
rations a; = 14.3 ms, a; = 28.6 ms and a3 = 42.9 ms (in the range of Bloch’s Law). As
mentioned in the Method section, the number of available modulation amplitude levels is lim-
ited. Therefore. we used the percentages correct answers at pulse durations a1, a; and a3 and
all available modulation amplitudes to estimate a single threshold 1V for a;. The argument
runs as follows. As we have seen in Fig. 3, the threshold modulation amplitudes 11" decrease
with increasing pulse duration (Bloch’s law) for small pulse durations. However, the product
of modulation amplitude 1V and pulse duration a (pulse area, Q) at threshold performance
is constant in this range. Hence. we can use the thresholds at a; and at a3 to estimate
the threshold at a;. Therefore, we computed the pulse areas for these three pulse durations
and their corresponding percentages correct answers for a given pulse separation 3. yielding a
psychometric function: percentages correct answers as a function of pulse area 2. From this
function, we estimated threshold pulse area {2 and modulation threshold W = Qg/a; for pulse
duration aj.

— Figure 4 about here —

Figure 4 shows estimated thresholds W au pulse duration a; = 14.3 ms as a function of
the fundamental frequency w of the modulation function. Note that modulation frequency
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is inversely proportional to pulse separation: w = 1/(23). Thresholds first decrease from 120%
(HS) and 140% (PW) to 54% (HS) and 78% (PW) with increasing modulation frequency up
to 6 Hz. For frequencies larger than 6 Hz, thresholds increase with increasing frequency.

3.2.3 Discussion

Fig. 4 shows the predicted threshold dependence on pulse separation (or modulation frequency).

At low modulation frequencies, the pulse separation 3 is large compared to the time con-
stant 7 of the hypothesized temporal integration fil'er. For this condition the filter responses
to each individual pulse are well separated in time and do not interfere. Now, thresholds are
determined by the pulse density. Performance is expected toimprove with pulse density assum-
ing a variance detection stage or probability summation (see Model Section). Thus, thresholds
decrease with increasing modulation frequency in the low frequency range.

At high modulation frequencies, the pulse separation becomes small compared to the time
constant of the hypothesized low-pass filter and the filter response functions to individual
pulses strongly interfere. Positive and negative pulses start to annihilate and performance
deteriorates. For this condition, we consider the transfer function of a low-pass filter. The
amplitudes of high frequent spectral components are reduced by low-pass filtering. Therefore.
we expect tl..: fundamental component (first order harmonic) to dominate the detection stage.
In the Model Section, we derive the characteristic time constant 7 of the hypothesized low-
pass filter based on the above discussed dependence of detection thresholds on modulation
frequency.

3.3 Luminance Contrast
3.3.1 Motivation

In order to evaluate ‘Window of Visibility’ theories applied to modulation detection (see Gen-
eral Discussion) it is useful to examine the dependence of human sensitivity to speed modu-
lations for different luminance conditions. In the above experiments, the moving targets were
drawn dark on a light background (a 100% contrast). Here, we measure threshold modulation
amplitudes as a function of luminance contrast for two different modulation functions.

3.3.2 Results

One function had 8 = 500 ms and @ = 28.6 ms. The other function had 8 = 56 ms and
a = 14.3 ms. Luminance contrast was either 25%, 50% or 100% and was realised by drawing
a corresponding percentage of the pixels of a dot dark (at random positions). The remaining
pixels had background value.

— Figure 5 about here —




4 MODEL 9

Results for two observers, and the two velocity pulse functions are shown in Fig. 5. Thresh-
olds decrease slightly with increasing luminance contrast.

To further examine the effects of spatial structure of the dot target, observer 4S (4D
myopic) repeated the above experiments without his correcting spectacles at 100% luminance
contrast. The measured thresholds without spectacles were nearly identical to those maasured
with spectacle correction.

3.3.3 Conclusion

The results show that modulation detection thresholds depend orly slightly on luminance
contrast and are independent of the amount of spatial blurring of the target. This suggests

that spatial structure is not critical for speed modulation detection (see also Werkhoven et
al., 1992).

4 Model

Werkhoven €f al. (1992) present -4 ~trong evidence for a two-stage speed modulation detection
model. The first stage 1s a low-pass temporal transformation of the modulation function.
The second stage is a variance detection process, based on the filtered modulation function.
They showed that this two-stage detec’. \n model accurately describes the modulation transfer
functions for the detection of differently shaped modulations (e.g., triangular, block-shaped.
sinusoidal) of .arget speed =ad direction.

I this section, we show chat this model can also account for pulse modulations of speed.

.1 The first stage: A Second Order Low-pass Filter

The modulation function é(t) is filtered by a second order low-pass temporal filter g(t):

=t -
g(t) - ﬁ € T! (1)
which has a transfer function §(w) of temporal frequency w = 21—[3:
§(w) = [1 4 (2rwr)? 7" (2)

The resulting filtered modulation function is the convolution of this filter g(t) with the modu-
lation function 6(¢): g(t) ® 6(t).
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4.2 The Second Stage: Variance Detection

The psychometric functions presented by Werkhoven et al. (1992) clearly support the claim
that observers based modulation detection on the square amplitude of the modulation function.
Variance detection is an elegant and sufficient description of this phenomenon. It should be
noted, however, that Rashbass (1976) has shown that a probability summation with summation
coefficient 2 based on the linear amplitude of the (filtered) modulation function yields similar
predictions.

We assume that the variance o2 of the filtered speed modulation signal has to exceed some

fixed threshold value o2 for detection. The variance of the filtered modulation function is given
by:

1 23
o= — [ [g(t)® (1) = vo)?dt. (3
23 1=0
Note that the modulation functions, and thus their (linearly) filtered functions. are periodic in
time with period 23. In general, the expressions for the variance o2 are not elegant. However.
we distinguish three conditions that allow simple expressions.

4.2.1 Non-interfering Pulses: a < 7

Here, we consider a condition where the pulse duration a of the modulation function é(t) is
very small compared to the time constant 7 of filter g(t) (ideal pulses). Furthermore. we take
the pulse separation 3 such that the response function g(t) to a given pulse becomes zero before
the next pulse starts. For these conditions, the filtered modulation function is approximated by
a series of non-interfering impulse response functions. The amplitude of this impulse response
function is proportional to the pulse area all’. The variance ag(r) of such impulse response
function is simply:

1 '20'2

43

The variance of non-interfering impulse response functions is inversely proportional to the
characteristic filter constant 7.

1 B
otr) = 5 [ Wag(o)dt ~ (@ < 7). (4)

4.2.2 Non-interfering Steps: 7 € a

Consider a condition where the pulse duration a is finite and much larger than the time constant
r. Now, the modulation function 6(t) is described by two step functions: an incremental step
IV at time t = 0 and a decremental step —IV at time t = a. A convolution of these step
functions with the time filter g(t) yields a variance o2:
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Y Y I ’
o(r)=3 /¢ I (W _/y =Mmr[t_a,ol.q(y)dy) dt. (5)

Now we assume that the filtered function reaches its asymptote before the next step occurs,
that is, the time constant 7 is relatively small compared with the pulse duration o. For these
non-interfering step responses, Eq. 5 reduces to:

. Wia
08

B
Note that the asymptotic variance for non-interfering step functions is independent of the
characteristic filter constant 7.

(r < a). (6)

4.2.3 First Order Harmonic: at High Frequencies

When the temporal frequency w = 1/24 is larger than the cut-off frequency w., we may ignore
tlie higher order harmonics of the modulation function é(¢) and restrict our analysis to the first
order or fundamental spectral component. The amplitude of the fundamental component for
a modulation amplitude 1" and pulse duration o is 41Vaw (for short pulse durations). This
fundamental component is attenuated by the temporal filter g(t) yielding a filtered amplitude
1Waxj(w). The resulting variance a?(r) of the filtered fundamental component is half its
squared amplitude:

1 4Waw 2
2 — T -
(1) =3 <1+(2nm)2) ' (7)

Tlie asymptotic behavior of a}(r) (for a high frequency w — o¢) is inversely proportional to

ri

1 / Wa \?
o?(r)::i (W2T2w) ’ (8)

4.3 Parameter Estimation Based on Pulse Duration Dependence

The dependence of modulation thresholds W as a function of the pulse duration « for a fixed
pulse separation 8 is shown in Figure 3. This dependence allows to derive the two parameters
that specify our model, that is, the time constant r of the second order temporal filter g(t),
and the threshold variance o3 that determines the performance of the variance detection stage.

The time constant 7 that characterizes g(t) can be estimated using two data points of
Fig. 3: the leftmost and the rightmost data point. We will use the data of subject HS to
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illustrate the estimation procedure. The leftmost point shows the threshold W = 1.2 for pulse
duration a = 14.3 ms and pulse separation 3 = 500 ms. Such short (ideal) pulses filtering yields
non-interfering impulse response functions. The threshold variance ag(r) for non-interfering
impulse responses is given by Eq. 4 (substitute W = 1.2, 8 = 500 ms, and a = 14.3 ms). The
variance expression 02(7) depends on only one parameter: the time constant r.

The rightmost point shows the threshold W = 0.2 for pulse duration a = 143 ms and pulse
separation § = 500 ms. Now, the pulse duration is ‘finite’ and the modulation function can
be described by an incremental step followed by a decremental step. The variance o? for these
step responses is given by Eq. 5 (substitute W = 0.2, 3 = 500 ms, and a = 143 ms). Because
we had no a priori knowledge about the time constant r, we have not used the asymptotic
behavior (Eq. 6), but used the exact expression (Eq. 5).

The variances ag(r) and o2 of the pulse and step modulation function are both equal to
the threshold variance o2. Therefore, we may equate them: ag(‘r) = 02, and solve them
numerically. Basically, this equation reflects the intersection of two asymptotes in the log-log
presentation of 11" versus a. The first asymptote is the Bloch law for short pulse durations
(with slope -1) (Gorea and Tyler, 1986). The second asymptote for large pulse durations is
inherent to variance detection or probability summation, and has slope -1/2. Both asvmptotes
are shown in Fig. 3, based on the estimated threshold variance and time constant for each
observer.

We find 7 = 15+ 5 ms (HS) and 7 = 19 £ 5 ms (PW). Furthermore. Eq. 4 gives us the
threshold variance o2 after substitution of the average time constant r (and other parameters):
oo = 9.9% (HS) and 10.2% (PW).

4.3.1 Peak Detection?

One may wonder how critical the type of decision stage is for the estimation of the time con-
stant 7 of the second order low-pass filter. Although we found strong experimental support for
variance detection (Werkhoven et al., 1992), we will analyze another general c'ass of decision
mechanisms: peak detection. Contrary to variance detection (which is based on the square
modulation amplitude), peak detection is based on the magnitude of the modulation ampli-
tude. Peak detection monitors the maximum filter output for the modulation function. The
modulation is detected whenever this maximum exceeds a threshold.

A peak detection model yields estimates for 7 that are slightly higher (r = 32 ms for HS
and 37 ms for PW) than estimated in a variance detection model. Although we observe a
difference between the estimated time constants in a peak and a variance detection model, this
is a minor discrepancy.

4.4 Parameter Estimation Based on Frequency Dependence

Above, we estimate the time constant 7 based on the observed dependence of detection thresh-
olds on pulse duration. In this section, we will test our variance detection model and estimate
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T based on the observed dependence of thresholds on the pulse separation 3, or temporal fre-
quency w = 1/28. (see Fig. 4). We use the thresholds at two extrema: W atw = 1 Hz and W
at w = 12 Hz. The reasoning (for this illustration for observer HS) is as follows.

At modulation frequency w = 1 Hz, the pulses (of duration a = 14.3 ms) yield well-
separated non-interfering impulse response functions afier temporal filtering. The resulting
variance ag(r) for non-interfering impulse responses is given by Eq. 4 (substitute W = 1.2,
a = 14.3 ms, and S = 500 ms).

At frequency w = 12 Hz, we assume that the higher order spectral components of the
modulation function are strongly reduced in amplitude by the temporal low-pass filter and
may be ignored. Hence, we only consider the variance of the (attenuated) first order spectral
(fundamental) component. The variance a}(r) of the filtered fundamental component is given
by Eq. 7 (with W = 0.8, a = 14.3 ms and w = 12 Hz.

— Figure 6 about here —

Both variance expressions are dependent on only one parameter: time constant 7. The
variance oZ(r) for ideal pulse functions and ¢7(r) for the fundamental component are shown
in Fig. 6 as a function of r for HS (in fact we use the square root of variance, o,(7) and o(7)
are shown). Because the variances af,('r) and a}’(‘r) of the pulse and fundamental modulation
function are both equal to the threshold variance o2, we may equate them: o,(1) = oy(7).
From Fig. 6 we estimate the variances to be equal at time constant 7 = 26 £ 3 ms. The
threshold variance at this time constant is equal to the threshold standard deviation og and is
7.5%. Thus, the absolute detection moduiation amplitudes are approximately 0.23 deg/s (HS)
for the average speed vg = 3 deg/s used in this experiment.

For observer PW we estimated {using the same method): 7 = 29 + 3 ms and o¢ = 8.3%.

To substantiate our claim that higher order spectral components may be ignored for the
computation of 7, we performed an analogous calculation using the 9 Hz threshold of Fig. 4
instead of the 12 Hz threshold. The computed 7 for this case is 7 = 24 ms for observer HS,
and is not significantly different (given a standard deviation of 3 ms). Therefore, 12 Hz may
be considered far above the cut-off frequency.

The frequency dependence of threshold amplitude on frequency is characterized by two
asvmptotes. At low frequencies we have Bloch’s law (see Eq. 4) and for high frequencies we
consider only the fundamental component (see Eq. 8). Both asymptotes are shown in Fig. 4
based on the estimated threshold variance and time constant for each observer.
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5 General Discussion

5.0.1 Ewvaluation

Werkhoven et al. (1992), proposed a two-stage detection model for velocity vector modulations
(i.e., modulations of both speed and direction): low-pass filtering followed by variance detec-
tion. This model has only two parameters: the characteristic time constant of the low-pass
filter, and the threshold of the variance detection stage. Therefore, this model yields strong
qualitative predictions when applied to the pulse detection experiments, that is, detection
performance as a function of pulse duration and pulse separation. These predictions were
tested.

First, a pulse duration a small compared to time constant 7 yields impulse response func-
tions g(t) for each individual pulse. Moreover, when the pulse separation 3 is large compared
to 7, these pulse responses do not interfere. Hence, at threshold, the amplitude of the response
function is determined by the product of the pulse energy: the product of the pulse duration
and the pulse amplitude: Wa. Pulses with equal energy result in detection. Therefore. we
expect a hyperbolic relation for the dependence of threshold amplitude on pulse duration. This
prediction (Bloch’s law) is supported by the data (see Fig. 3. Second, at pulse durations a
much larger than the time constant 7 we expect that the variance of the filtered modulation
function to be linear with pulse duration and quadratic with the threshold amplitude 1¥". For
this condition, thresholds are expected to deviate form Bloch’s law and to be inversely pro-
portional to the square root of pulse duration. This predicted deviation is observed in Fig. 3.
Third, at high modulation frequencies, detection performance is expected to be dominated by
the first order harmonic of the modulation function. For this condition, asymptotic detection
thresholds increase linearly with modulation frequency (see Fig. 4).

The above observations strongly suggest that the detection of pulse-shaped modulation
functions (studied here) and the detection of other functions described in Werkhoven et al. (1992)
is carried out by closely similar, if not identical, mechanisms of the human visual system. One
may wonder what constitutes this temporal filtering of the modulation function. Werkhoven et
al. (1992) showed that the low-pass filter characteristics discussed above cannot be equivalent
to an integration of the correlation output of standard motion detectors (Reichardt correla-
tors). They showed that the temporal low-pass filter must be inherent to processing preceding
the correlation stage. An analysis by Glinder (1990) strongly supports the view that a low-
pass temporal filter stage corresponds with the inherently non-ideal band-pass delay filters in
correlator detectors.

5.0.2 Characteristic Filter Time

The detection thresholds of pulse modulations of speed presented in this paper are modeled
by two parameters: the characteristic filter time 7 = 15 — 29 ms and the variance detection
threshold (square root variance o9 = 8 — 10%).

The characteristic time constant of 15-29 ms corresponds to a temporal integration of
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60-100 ms of the speed signal. As mentioned above, this integration time is determined by
the temporal characteristics of the delay filter in Reichardt correlators (Gliinder, 1990). An
integration time of 60-100 ms is in excellent agreement with the upper temporal separation
(inter stimulus interval) under which observers are still able to sense motion flow (Morgan and
Ward, 1980).

The time constant (7 = 15— 29 ms), inferred from pulse modulation experiments presented
in this paper, is lower than the estimate 7 = 35-40 ms found for periodical triangular and
sinusoidal modulation functions (Werkhoven et al., 1992). This need not come as a surprise,
since (as explained in the methods section) the presert experiments are performed using dark
targets against a photopic background, whereas the stimulus in Werkhoven et al. was a
luminuous dot moving against a dark background. It is well known that the visual system
becomes faster with increasing luminance (adaptation) levels (Kelly, 1971).

5.0.3 Variance Detection Threshold

Minimum speed modulation detection thresholds for the row of squares used in the present
experiment (8% at 1 Hz) are markedly lower than the minimum thresholds (17% at 1 Hz) for
the single blob target used in Werkhoven et al.. This improvement in detection performance
is likely to result from the stimulus optimizations for this experiment versus Werkhoven et al.:
(1) the number of targets simultaneously moving is four (versus one), (2) the observer was
provided a uniform motion path as an explicit reference for detection (versus NO reference).

5.0.4 Speed Modulation Detection v. Speed Discrimination

In typical speed discrimination experiments observers view two uniform motion paths, sep-
arated in time or space, and indicate the path with the highest (or lowest) speed. Speed
discrimination thr.sholds (the relative threshold difference between high and low speed) re-
ported are as low as 6% (DeBruyn and Orban, 1988). These 6% difference thresholds suggest
‘eqrivalent’ modulation thresholds as low as 3% for spatiotemporal contiguous block-shaped
motion paths. Perhaps surprisingly, the modulation detection thresholds (presented in this
paper) for spatiotemporal block-shaped contiguous paths are 8%.

We suggest that this difference is caused by the uncertainty of the observer with respect
to the phase of the modulation functions. This uncertainty may force the observer to use the
autocorrelation (variance) of the velocity modulation signal, instead of the more efficient cross
correlation of the modulation signal received with the signal expected (Green and Swets, 1966;
Burgess and Ghandeharian, 1984).

5.0.5 Speed Modulations v. Direction Modulations

Bloch’s law found for small pulse durations and large pulse separations revealed that, for these
conditions, modulation detection is based on a spatial cue: the spatial excursion of the dot in
the moving frame. This threshold spatial excursion is estimated approximately 3 arcmin for
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observer HS and 3.5 arcmin for PW at the average speed of 3 deg/s and 1.6 deg eccentricity
for this experiment.

Werkhoven et al. (1992) also estimated spatial excursion thresholds, but for modulations
orthogonal to the average motion path. They found a smaller spatial excursion threshold of
2 arcmin at a lower average speed of 1.7 deg/s and larger eccentricity 3.4 deg. Note, that
Werkhoven et al.’s stimulus was also less optimal because of the single target used and the
absence of a reference motion path.

A comparison of the spatial excursion thresholds parallel and thresholds orthogonal to the
motion path suggests that the visual motion system is more sensitive to modulations in motion
direction than to modulations in motion speed.

5.0.6 The Invalidity of ‘Window of Visibility’ Theories

We have shown that speed modulation detection thresholds vary only slightly with the lu-
minance contrast of the targets. This finding is at odds with ‘window of visibility’ theories
(Watson et al., 1986; Burr et al., 1986) as we will argue below.

The ‘Window of Visibility’ theory was originally proposed to explain the discriminability
of smooth and sampled (apparent) motion in terms of differences in ‘visible’ spectral compo-
nents. Sampled motion has a Fourier transform that is the convolution of the spectrum for the
unsampled (smooth) motion with a regular series of temporal pulses. The energy of certain
components for the sampled motion (not present for smooth motion) within a ‘visible spectral
window would perceptually distinguish sampled from smooth motion.

A similar theory for speed modulations would predict detection whenever the modulated
motion path has detectable spectral components not present for uniform motion. The de-
tectability of spectral components that result from speed modulation is determined by the
modulation amplitude as well as by target luminance contrast. In fact, we expect a trade-off
between threshold modulation amplitude and luminance contrast. This is not supported by
the data that show similar thresholds for luminance contrasts of 25%, 50% and 100%.

To explain modulation detection, ‘window of visibility’ theories would have to be rephrased
in terms of discriminability of spectral components instead of detectability.

5.0.7 Conclusions

Optic acceleration detectors are absent in the human visual system. The detection of variations
in target speed is not based on the temporal derivative of the speed modulation signal. Instead.
speed modulation detection is based on the variance of the (temporally blurred) modulation
function.

Modulation detection performance is determined by two parameters: the characteristic
time constant of the low-pass filter and the threshold of the variance detection stage. This
simple model accurately describes detection performance of pulse-shaped speed modulation
functions (the present paper), as well as the detection of periodic (triangular, sinusoidal and
block-shaped) modulations of speed and direction (Werkhoven et al., 1992).
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7 Figure Captions

Figure 1: A sketch of the spatial stimulus structure. The stimulus contains two rows of 4
square targets. The fixation mark is in the center of the configuration. The top and bottom
row move (coherently) in opposite direction. One of them is the modulated motion path, the
other the uniform path.

Figure 2: Speed modulation function é(t). The function is characterized by alternating positive
and negative pulses relative two the average speed vg. The amplitude of the positive pulses is
dv, that of the negative pulses —dv. The pulse duration is a. The pulse separation 3 is the
time interval between the on-set of two consecutive pulses.

Figure 3: Speed modulation detection thresholds 1 = dv/vg as a function of pulse duration
a. The pulse separation 3 was constant (500 ms). Note the rotated error bar of the rightmost
data poiut, where pulse duration was varied at a fixed, 20%, modulation amplitude dv/vg to
determine the threshold duration. The solid line (with slope -1) shows the Bloch law prediction
(Wa = constant), that is, the asymptote for short pulse durations fitted through the leftmost
data point. The dashed line is the asymptote for long pulse durations (see Model Section).
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Figure 4: Speed modulation detection thresholds W = dv/vg as a function of the temporal
modulation frequency w = 1/(283). Frequency w is the frequency of the fundamental spectral
component of function §(t). Thresholds are given for a pulse duration @ = 14.3 ms and
are estimated using threshold measured at a = 14.3,28.6 and 42.9 ms (see text for detailed
explanation).

The graph is presented in log-log coordinates. The solid line with slope -1/2 shows asymp-
totic model predictions for low frequencies. The line with slope 1 shows asymptotic model
predictions for high frequencies (see Model Section).

Figure 5: Speed modulation detection thresholds W = dv/vg as a function of target luminance
contrast. Filled squares: Pulse duration was a = 28.6 ms, pulse separation # = 500 ms
(w = 1 Hz). Open squares: Pulse duration was a = 14.3 ms, pulse separation 8 = 56 ms
(w=9 Hz).

Figure 6: Predicted variance as a function of characteristic time constant r for two conditions
for observer HS. Open squares: o2(7) for ideal pulse functions (based on 1 Hz threshold
modulation amplitude). Filled squares: a}(r) for the fundamental component (based on 12
Hz threshold modulation amplitude).
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Figure 1: A sketch of the spatial stimulus structure. The stimulus contains two rows of 4
square targets. The fixation mark is in the center of the configuration. The top and bottom
row move (coherently) in opposite direction. One of them is the modulated motion path, the

other the uniform path.
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Figure 2: Speed modulation function §(¢). The function is characterizad »y alternating positive
and negative pulses relative two the average speed vo. The amplitude of the positive pulses is
dv, that of the negative pulses —dv. The pulse duration is a. The pulse separation f is the
time interval between the on-set of two consecutive pulses.
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modulation frequency w = 1/(2(). Frequency w is the frequency of the fundamental spectral
component of function §(t). Thresholds are given for a pulse duration a = 14.3 ms and
are estimated using threshold measured at a = 14.3,28.6 and 42.9 ms (see text for detailed
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totic model predictions for low frequencies. The line with slope 1 shows asymptotic model
predictions for high frequencies (see Model Section).
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Figure 5: Speed modulation detection thresholds W = dv/vo as a function of target luminance
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