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1 1. Research Summary

This research tackles the problems of data association and state
estimation in the multitarget tracking of non-maneuvering as well as
maneuvering targets in clutter. The major contributions are the development
of a depth-first search (DFS) algorithm for data association, three algorithms
which are suitable for implementation in multiprocessor systems for fast
computation of the a posteriori probabilities of the origins of measurements
in the joint probabilistic data association filter (JPDAF), and a joint
probabilistic data association fixed-lag smoother (JPDAS) for improving the
accuracy of state estimation.

In the DFS algorithm, the problem of data association is modelled as an
exhaustive search problem. Based on this model, a specialized DFS approach is
proposed for efficiently generating the data association hypotheses and
computing rapidly the conditional probabilities of the hypotheses for data
association in the JPDAF. In the three algorithms developed for
implementation on multiprocessor systems, the a posteriori probability of the
origin of each measurement in the JPDAF is decomposed into two parts. The
computation of one part becomes trivial and the different ways for computing
the other part lead to the development of the three algorithms. The
computational costs and memory requirements of the above algorithms are
analyzed in the worst case as well as in the average case.

SA comprehensive analysis reveals several drawbacks of the neural network
probabilistic data association (NPDA) algorithm. The NPDA is an application
of the Hopfield neural network to the data association problem.

In order to improve the accuracy of state estimation for multitarget
tracking in clutter, an algorithm is developed by making use of the joint
probabilistic data association fixed-lag smoothing techniques. It is shown
that a significant improvement in the accuracy of state estimation of both
nonmaneuvering and maneuvering targets may be achieved by introducing a time
lag of one or two sampling periods between the instants of estimation and the
latest measurement. Finally, a computer simulation system is developed to3 demonstrate the effectiveness of the developed algorithms.

I
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1 2. Research Description

This research is mainly focused on data association and target state
estimation in multitarget tracking in a cluttered environment. The objectives
are to design algorithms for efficiently generating the data association
hypotheses, computing rapidly the a posteriori probabilities, PJ', and
improving the accuracy of target state estimation. The major contributions of
this research are the development of

& the depth-first search (DFS) algorithm for data association,

a three algorithms for computing the a posteriori probabilities using

multiprocessor systems, and

3 * the JPDA fixed-lag smoothing (JPDAS) algorithm.

In the DFS algorithm, the problem of data association is identified as
an exhaustive search problem in general. Subsequently, a mathematical model
is proposed for the problem of data association in the JPDAF. Based on the
model, a specialized DFS approach is developed for the fast generation of data
association hypotheses and for the computation of the conditional
probabilities of the hypotheses in the JPDAF. The computational complexity of
the algorithm is analyzed in terms of the number of multiplications and
additions required in the computation of the a posteriori probabilities,
t13, in the worst case as well as in the average case. Although the DFS

algorithm requires more multiplications and additions that the fast JPDA
algorithm [1] in the worst case, it is much more efficient than the fast JPDA
algorithm in the average case. In addition, the DFS algorithm requires less
memory than the fast JPDA algorithm. Another advantage of the DFS algorithm
is that it could be easily extended to generate the data association
hypotheses in the measurement-oriented approach [2].

Three algorithms which are suitable for implementation in a
multiprocessor system are also developed. In the three algorithms, the
computation of the a posteriori probabilities, 0's is not based on the
generation of the data association hypotheses like in the DFS algorithm. Each

in the three algorithms is decomposed into two parts. The computation of one
part is trivial and the various ways of computing the other part (due to
interference from other targets) lead to the development of the three
algorithms.

In the first algorithm, the computation of the interference part of
is performed recursively in a top-to-bottom mode. In the worst case, this
recursive algorithm requires more multiplications and additions than the fast
JPDA algorithm [1]. However, in the average case, the recursive algorithm is
expected to perform much better than the fast JPDA algorithm. Furthermore,
the recursive algorithm requires less storage space than the fast JPDA
algorithm. In comparison with the DFS algorithm developed earlier in this
research, the recursive algorithm requires less multiplications and additions
but more storage space than the DFS algorithm. The most important feature of
the recursive algorithm is that it can be implemented on a multiprocessor
system, which could speed up the computation of the P's significantly. On
the other hand, the recursive algorithm is not as suitable as the DFS
algorithm for extension to the measurement-oriented approach since it is not
based on the generation of data association hypotheses.

The second algorithm is a nonrecursive algorithm. Since the

interference part of P is computed by polynomial multiplication, the
computational cost is drastically reduced with only a slight increase in
memory when the density of targets is not very high. The nonrecursive
algorithm is espezially suitable for a small tracking system where the

-2-
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I computational capability is limited.

In the last algorithm, only the interference from the neighboring

targets of target t is considered in the computation of the Ps.
computational cost and memory requirement are only marginally increased in
this approximating algorithm when it is compared with the PDAF [3]. It is
apparent from the computer simulation that performance of the approximating
algorithm is quite close to that of the original JPDAF in most of the
scenarios presented in the simulation. Generally speaking, the approximating

algorithm is proposed fcr applications where both the computational efficiency
and the memory requirement are critical.

Another issue, which is quite different from data association as
discussed above, in multitarget tracking is brought to attention. In the
original JPDAF, the accuracy of the target state estimation is affected not
only by the measurement noise but also by the uncertainty in the origins of
the measurements. To improve the accuracy of the target state estimation, a

jPDAS (JFDA smoothing) algorithm is proposed. Some computer simulation
results have been presented to illustrate the improvement in tracking accuracy
achieved by introducing a small time delay between the instants of estimation
and the latest measurement. The experimental results show that the JPDAS

algorithm works well for tracking multiple targets in a cluttered environment.
However, the introduction of the time lag causes an increase in the
computational and storage requirements. Fortunately, a small lag produces a
significant improvement in the estimation accuracy so that the increase in the

computational burden is kept to a minimum.

In addition to the development of the algorithms for data association

and target state estimation, a comprehensive analysis of the neural network
solution to the data association problem in [4] and [5] is also provided. The

analysis reveals that the Hopfield neural networks developed in [4] and [5]
have improper energy functions. This resulted from misinterpretations of the
properties of the JPDAF which the networks were designed to emulate and the

improper selections of the constant coefficients in the energy functions. The
computer simulation system developed for multitarget tracking in a cluttered
environment is available along with the simulation results from the system.
This simulation system consists of six modules, spanning system specification,

measurement generation, clustering, data association, target state estimation,
* and run-time monitoring.
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I i 3. The Most Significant Research Accomplishment

The most significant research accomplishment is the incorporation of
image-based tracking with errors in measurement as well as errors in
registration, which can be coupled with the efficient data association
algorithm developed for the target-oriented approach (and which is suitable
for generalization to the measurement-oriented, trak-oriented, and multiple
correlation approaches) for fast and accurate tracking of nonmaneuvering as
well as maneuvering multitargets in clutter. The image processing algorithms
are necessary to identify targets in the presence of anticipated background
noise (including earth, lunar, star backgrounds, complicated spacecraft
structures, specular reflections) and blur (including atmospheric turbulence,
motion, optical aberration). The areas of application include not only
surveillance, but also autonomous rendezvous and capture, autonomous planetary
landing systems, and satellite servicing. The sensors could be passive (video
cameras, stereo vision (3-D sensor)), as well as active (laser radar) and the
benefits of image-based tracking systems could include economy (cheaper
tracking systems) in addition to speed and accuracy.
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Recursive Implementation of Total Least Squares Algorithm

for Image Reconstruction

From Noisy, Undersampled Multiframes *

I N. K. Bose, H. C. Kim, and H. M. Valenzuela

Department of Electrical Engineering

The Spatial and Temporal Signal Processing Center

The Pennsylvania State University

University Park, PA 16802
Tel:(814) 865-3912

Fax:(814) 865-7065

ABSTRACT t

It is shown how the efficient recursive total least squares algorithm recently

developed by C. E. Davila for real data can be applied to image reconstruction from

noisy, undersampled multiframes when the displacement of each frame relative to a

reference frame is not accurately known. To do this, the complex-valued image data

in the wavenumber domain is transformed into an equivalent real data "roblem to

which Davila's algorithir is successfully applied. Two detailed illustrative examples

are provided in support of the proceduire.

I

I This research was partially supported by SDIO/IST and managed by the Office

of Naval Research under Contract N00014-86-K-0542.

t Permission to publish this abstract separately is granted.
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I 1. Introduction

I In many applications, multiple low resolution images of an object are available,

but a high resolution image is desired. For example, a camera aboard a satellite is

used to take several pictures of an area on the ground and to transmit a sequence of

undersampled low resolution frames, which are shifted from each other. Futhermore,

those frames are often degraded versions of the original scene due to blur and noise.

Through the task of image registration, the displacement of each frame relative

3 to an arbitrarily chosen reference frame is measured. The type of blur and the

characteristic of noise can be determined from the understanding of the various

I physical processes involved in the image formation. Subsequently, interpolation,

3 deblurring, and filtering are required to reconstruct a high resolution image.

S. P. Kim, N. K. Bose, and H. M. Valenzuela recently developed an efficient

I algorithm to reconstruct a high resolution noise-free image from undersampled

low resolution noisy multiframes [1]. This algorithm implements, simultaneously,

the tasks of interpolation and noise filtering of the input images by applying

the recursive least squares (RLS) sequential estimation theory in the wavenumber

domain.

d iIn [1], the displacements of the images are assumed to be known. Actually,

I errors occur in the estimation of the relative displacement during image registration.

To combat this pr:,blem, we apply the Total Least Squares (TLS) method. This

U method is known to be very useful for improving the solution accuracy when errors

3 are present not only in the observation but also in the measurement matrix [2]. A

Recursive Total Least Squares (RTLS) algorithm was developed by C. E. Davila [3]

I in the context of the adaptive filtering problem.

"II 2
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I In Section 2, the image interpolation model which is formulated by using the

aliasing property of the Discrete Fourier Transform (DFT) is briefly described.

The algorithm for high resolution image reconstruction, described in Section 3, is

I obtained by transforming the original complex-data problem to an equivalent real

data problem to which the RTLS algorithm in [3] is applied. In Section 4, the

performance of the algorithm is verified by computer simulations.

I
2. Reconstruction Model of High Resolution Images

The k-th (M x N) undersampled observed image frame, fk(ij), i = 0,1,...,

I MM-1, j = 0,1,... N- 1, of the noise-free original continuous image, .f(A, y), can

3 be written as

U fk(i,j) = f(iT. + 6 .k,jTy+ 6yk), k= 1,2,...,p (1)

where b-5 k and b1 k are the estimated shifts and T, and Ty are the sampling periods

along the x and y axes, respectively (1]. We assume that the Fourier transform,

Fc(u, v) of the original continuous image f(x, y) is approximated by the bandlimited

constraint

[F'(u,v)l = 0, Jul > Lw,, and Jvi > L~wy (2)

3 for some finite integers L, and L. where w, = (2ir/T.) and wy = (27r/Ty).

The multiframe image restoration model given in (1] can be written in the form

I ZL = Yk'_F + Nk(3)

where the superscript t denotes the transpose operation, Zk is the value at the

3 wavenumber point (M, n) of the DFT of the k-th noisy undersampled frame, Nk is

I3
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I the corresponding noise term in the wavenumber domain, F is a vector containing

3 the p = 4L.L. interpolated components at wavenumber point (in, n) denoted by

F [F..(1), F,..(2),...,Fmn(p)]

I [fl, f2, .. ,"fp] (4)

3 and the coefficient vector Yk is defined as

Y2 A [Ok,1, Ok,2, ... Ok,p] (5)

I where

Tk, Tx j2P7rf 6.k( + + - yk + T-
T3 TV~ I 1  MT. T.' ±kNTy Y) 6

after defining the lexicographical ordering associated with row-wise scanning by

I, ~(r - 1)mod(2L.) - L, and 1. = [(r - 1)/(2L,)j - L1 . (7)

3 If there are J frames available(J > 4L.Ly), then eqn. (3) may be used to obtain

the matrix equation

I Zj = b•f•+ j (8)

5 where

I •---J =- (Y1, Y2,.. rJ1t

=Z = [Z 1 , Z 2 ,. .. ,Zj]t

Nj = [N1,N 2 ,... ,Nj)t.

By solving eqn. (8), we obtain the high resolution samples at the generic

I wavenumber point (M, n). The interpolating factors are, respectively, 2L, and 2LV

*4
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I along the x and y axes. The inverse DFT of the interpolated image gives the high

resolution image.

I 3.- Reconstruction of High Resolution'Image by RTLS Algorithm

1 The TLS algorithm provides a solution when there are errors in both the

observation vector and in the measurement matrix. Prior to [3], the solution was not

generated recursively. In [3], an algorithm was developed for the linear regression

problem to produce unbiased filter coefficients for FIR adaptive filters. To be able

3 to apply the result in [3] to the image reconstruction problem under consideration

here (with both observation noise and inter-frame displacement error present) it is

necessary to follow the procedure described below.

I To account for the errors in estimation of the shifts during the registration

phase, we define,

S 5 6k + Ab~k
(9)3 64k 6 yk + A6,k,

where 6 zk and 6yk are the actual shifts and A5.k, A6bk are the respective

I displacement errors along the x and y axes in the registration process. Substituting

3 eqn. (9) into eqn. (6), we obtain

3 ~Okkr = yy-eXP1 j27r{(b.,k +A, k)(jy-+ T)+(6yk+Abiik)( NT +-y}j (10)_ ~. TV. io

For small magnitudes of AI6k and Abyk, 7kr in eqn. (10) may be approximated by

I k,.•--r = Okr+ , (11)

*| 5
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I where Okr, defined in eqn. (6), is expressible as

I Okr & = 4 bk=

* and M z n I•

k,= j21r{A6-k(-;- + + Agyk( + ")l3 k, (12)

for

2r{A6zk(-- + T + Ab•k-T-•( + )}+ «1. (13)

Since the maximum values of m and n are, respectively, M - 1 and N - 1, the

1 inequality in eqn. (13) has only to be checked for the case when m = M - 1 and

n = N - 1. Substituting eqn. (7) in eqn. (13), simple sufficient conditions for the

3 bound in eqn. (13) to hold are

< T. - W, (14a)

IAbzki « 47r(L, + 1) 2(Lý + 1)

I and and 
.~yJ <T i (14b)

i/kI « 47r(L. + 1) 2(Lv + 1)'

Using eqns. (8) and (11) and after replacing the subscript J by k, we get

Zk = [Ak +-EkF + Nk (15)

1 where the (i,j)th element of the matrix Ek is eij of eqn. (12). The matrix Ek in

5 eqn. (15) is basically a perturbation of the coefficient matrix lk produced by the

delay estimation errors. We now consider the TLS pr-'blem formulated asI
minimize 1[[rk " Ed]I1 (16)

I subject to Zk - Nk = Ilk + Ek]f

1 6
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I where i denotes the Frobenius norm

U IBl 12  --Z Z 1,, 2

j 3

I on the matrix B = [bij]. Define

I [Z --k k ] ( 1 7 )

Wk [N_:Ek] (18)

5 and

Sq) -[1,--F,-f2,...,- ] . (19)

The TLS problem in eqn. (16) can be restated as:

I I m inim ize I I W ,II (2 0)

3 subject to [Ik + f•]kqk = 0.

From what is known in (4], the above constrained minimization problem can be

associated with the equivalent minimization problem

At(qk) = rain I lyk 112 = rmin qk --k !kkqk = "rain (21)
qk qk qk qk q___k_

U where the superscript H denotes the complex conjugate transpose operation,

3 referred to as Hermitian conjugation. The Hermitian matrix Rk in eqn. (21) is

defined as 
2R I kfik r (22)

where the star superscript denotes the complex conjugate operation and

rk = [Zk, -kl + Cki, Ok2 + Ek2,... ,Okp + Ct. (23)

7 7



I
I

I The minimization problem in eqn. (21) corresponds to the obtaining of the

3 eigenvector qj, associated with the smallest eigenvalue of Rk. Given the previous

eigenvector qk-1, we update it to obtain qk fromI
qk = qk-1 + akl/k, (24)I

as in [5], where ?/ is a correction vector, chosen in (3] to be the Kalman gain vector,I
O = Kk = Rj' Tk (25),I

and the scalar ak is derived from the minimization ofI _ _

I7(qk) = 71(qk-I + aklk) = qkHRkqq k (26)3 ~qk '1k

In order to update the Kalman gain, in our formulation we use the matrix inversion

lemma in the RLS algorithm. To get qk recursively, as in eqns. (24)-(26), we

3 provide a mechanism for transforming our problem involving complex variables to

an equivalent problem involving real variables where C. E. Davila's algorithm [31

I directly applies. To do this, let R(x) and !(x) denote, respectively, the real and

3 imaginary parts of x. Then express Rk and qk as

I Rk = Ak +jBk (27)

5 where

Ak = R(Rk) and Bk =!a(Rk),

and

Iqk = Ck + jdk (28)

I8
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I where

I Ck = R(qk) and dk = .(qk).

Since Rk is Hermitian, therefore Ak = A' and Bt = -Bk. Define

Gk A Ak Bk (29)

and

hk dk (30)

Then it can be verified that 77(qk) in eqn. (26) is expressible as

qiRqk)qH - htGkhk (31)
•?( qk) 9 k ht hkk

3 IIf we express the "Kalman gain" Kk in our problem as

SKk = Vk +jWk (32)

I where

Vk = R(Kk) and Wk a=(Kk),

I then an associated vector Mk is defined below.

IMk = Wk (33)

I Given hk-l, the updated vector hk in eqn. (30) is

3 hk = hk- 1 +f,3Mk, (34)

3 where the scalar flk is obtained by minimizing
ht Gkhk 35

i7(hk) = '(hk-1 -- Mk)- h=hk (35)

1 9



i To update Gk in eqn. (29), we need to update Ak and Bk from rk. We define

I
i = R(rk) and ek =!a(k) (36)

It can be easily shown that

I Ak = Ak-i + skSk + eke'k (37)

3 B= k Bk-_ + Ske - ek. (38)

I Substituting eqn. (34) into eqn. (35) and differentiating with respect tof/, we obtain

3 the quadratic equation

3 a32 + ba + c = 0 (39)

i where
htlGkbk.k - t Gk~kht 1 4k

b = ht Gkhk_10t Ok - t Gkqk (40)

Ic = ht Gkhk-lhtk-_Ok-i - ht-_.Gk¢k,

as in [31. It has been shown in [5] that eqn. (39) has only real roots. Choosing the

smallest root of this equation, we obtain the updated vector hk from eqn. (34). We

I now summarize the algorithm below.
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I MODIFIED ALGORITHM FOR COMPLEX DATA

3 4k =Mk

Ak =Ak. 1 + Skt + eket

k k
Bk = Bk-i + sket - ekskk k.

G k Ak Bk
= Bt AkSa =ht OGk~bkkht-$0k

b t Gkhk1t Ok -t tGkk

lc = Gkhk-' -h k - htk1 a-lGkhk kha10ka_ -hkGk~k

I j~a =-b - v/b2 - 4ac

2a

3 hk = hak_ +I 3 k4k

hk

hk lhk h

3 The final solution can be obtained by converting h& to qk and

I - (qk)l, (41)

3 where (qk)i is the i-th element of the vector qk,.

I 4. Computer Simulation

I In this computer simulated examples, a high resolution (256 x 256) image is

3 recursively reconstructed from a set of low resolution (128 x 128) noisy frames which

are shifted with respect to a reference frame. These shifts or displacements are not

I accurately known. In order to reduce the size of the arrays to be processed, the

I 11
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I input image was partitioned into 16 nonoverlapping sections each of size (32 x 32)

and the recursive Total Least Squares (RTLS) algorithm described in Section 3 was

independently applied to each such section. It is recalled that in [1] a similar

I approach was adopted but instead of RTLS -the recursive least squares (RLS)

algorithm was used. For each one of these 16 sections, the interpolation problem

corresponds to the reconstruction of a (64 x 64) image from a sequence of shifted

3 low resolution (32 x 32) noisy input frames when the inter-frame displacements

are not accurately known. To generate the K = 16 shifted low resolution input

frames required in the simulation from the available data, we use the DFT-based

3 interpolation technique described in [1]. After assigning one of the input frames to

be the reference frame, we label it as frame number 1 and the remaining ones are

sequentially labelled from k = 2 to k = 16. The relative shifts of these frames with

respect to the reference one along the z and y axes are denoted, respectively, by

45,k and ýyk for k = 2, 3,..., 16.

To simulate the errors Atýbk and ALbk, k = 2,3,..., 16, in the shifts in eqn. (9),

we use the expression in eqn. (12) after assigning to these displacement errors

uniformly distributed random values over the interval [- , 1]- Subsequently, an

I uniformly distributed zero mean noise was added to each input frame. These noise

3 sequences were statistically independent and the signal-to-noise ratio (SNR) was

chosen to be 20dB. The first simulation example uses the image of a girl given in

I Fig. 1. Fig. 2 shows 4 (out of a total of 16) low resolution (128 x 128) noisy input

3 frames, each having a displacement error with respect to the chosen reference frame

(naturally, the reference frame is defined to have zero displacement error), and an

I additive noise with SNR level of 20dB. The RTLS algorithm given in Section 3 was

3 12



I used to recursively obtain new estimates of the reconstructed high resolution image.

I The last estimate (the sixteenth) of this sequence is shown in Fig. 3. The visual

quality of the reconstructed image in Fig. 3 is very close to the original image in

I Fig. 1.

5 To illustrate the intermediate steps of the reconstruction, we provide in Fig. 4

a generic set of 16 (32 x 32) frames corresponding to a section of the iow resolution

U noisy image. From this set, a (64 x 64)-section image is obtained by application

of the RTLS algorithm. The sequence of estimates leading to the construction of

the high resolution filtered image is shown in Fig. 5. As expected, the first few

3 iterations of the RTLS algorithm provide poor estimates because the algorithm is

in a transient stage. Subsequently, the estimates improve and the algorithm could

be terminated even before the sixteenth iteration without seriously affecting the

3 visual quality of the reconstructed image.

The second simulation example uses the image of an aerial photograph given

in Fig. 6. Fig. 7 shows 4 (out of a total of 16) low resolution (128 x 128) noisy input

3 frames, each having a displacement error with respect to the chosen reference frame,

and an additive noise with SNR level of 20dB. The last estimate (the sixteenth)

obtained by application of the RTLS algorithm is shown in Fig. 8. Fig. 9 shows a

3 generic set of 16 (32 x 32) frames corresponding to a section of the low resolution

noisy image. From this set, a (64 x 64)-section image is obtained by application of

the RTLS algorithm. The sequence of estimates leading to the construction of the

3 high resolution filtered image for this section is shown in Fig. 10.
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5. Conclusion

I It is shown how the total least squares recursive algorithm for the real dlta FIR

adaptive filtering problem may be applied to reconstruct a high resolution filtered

image from undersampled, noisy, multiframes, when the inter-frame displacements

are not accurately known. This is done in the wavenumber domain after

transforming the complex data problem to an equivalent real data problem, to which

the algorithm developed in [3] applies. The procedure developed also applies to the

3 case when the multiframes are degraded by linear shift-invariant blurs, in a manner

similar to that achieved in [1], where the least squares sequential estimation theory

was applied. All the advantages regarding implementation via massively parallel

* computational architecture apply here as in [1], because of the decoupling resulting

from the type of processing carried out in the wavenumber domain - a feature also

in evidence in a different but related context [6].

1
I
I
I
I
I
I
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I Fig. 8. The final (256 x 256) reconstructed image by RTLS
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MULTIDIMENSIONAL SIGNAL PROCESSING: SENSOR ARRAY PROCESSING
N. K. Bose and L. H. Sibul, The Pennsylvania State University

3 Introduction

Multidimensional signal processing tools apply to aperture and sensor
array processing. Planar sensor arrays can be considered to be sampled
apertures. Three dimensional or volumetric arrays can be viewed as
multidimensional spatial filters. Therefore, the topics of sensor array
processing, aperture processing, and multidimensional signal processing can be
studied under a unified format. The basic function of the receiving array is
transduction of propagating waves in the medium into electrical signals.
Propagating waves are fundamental in radar, communication, optics, sonar, and
geophysics. In electromagnetic applications, basic transducers are antennas
and arrays of antennas. A large body of literature that exists on antennas
and antenna arrays can be exploited in the areas of aperture and sensor array
processing. Much of the antenna literature deals with transmitting antennas
and their radiation patterns. Due to the reciprocity of transmitting and
receiving transducers, key results that have been developed for transmitters
can be used for analysis cf receiver aperture and/or array processing.
Transmitting transducers radiate energy in desired directions, whereas
receiving apertures/arrays act as spatial filters that emphasize signals from
a desired look direction while discriminating against interferences from other
directions. The spatial filter wavenumber responoe is called the receiver
beampattern. Transmitting apertures are characterized by their radiation
patterns.

Conventional beamforming deals with the design of fixed beampatterns for
given specifications. Optimum beamforming is the design of beampatterns to
meet a specified optimization criterion. It can be compared to optimum
filtering, detection, and estimation. Adaptive beamformers sense their
operating environment (for example, noise covariance matrix) and adjust
beamformer parameters so that their performance is optimized [Monzingo and
Miller, 19803. Adaptive beamformers can be compared with adaptive filters.

Multidimensional signal processing techniques have found wide
application in seismology, where a group of identical seismometers, called
seismic arrays, are used for event location, studies of the earth's
sedimentation structure, and separation of coherent signals from noise, which,
sometimes, may also propagate coherently across the array but with different
horizontal velocities, by employing velocity filtering [Claerbout, 19763.
Velocity filtering is performed by multidimensional filters, and allows also
for the enhancement of signals which may occupy the same wavenumber range as
noise or undesired signais do. In a broader context, beamforming can be used
to separate signals received by sensor arrays based on frequency, wavenumber,
and velocity (speed as well as direction) of propagation. Both the transfer
and unit impulse-response functions of a velocity filter are two-dimensional
functions in the case of one-dimensional arrays. The transfer function
involves frequency and wavenumber (due to spatial sampling by equally spaced
sensors) as independent variables, whereas the unit impulse response depends
upon time and location within the array. Two-dimensional filtering is not
limited to velocity filtering by means of seismic array. Two-dimensional
spatial filters are frequently used, for example, in the interpretation of
gravity and magnetic maps to differentiate between regional and local
features. Input data for these filters may be observations in the survey of
an area conducted over a planar grid over the earth's surface. Two-
dimensional wavenumber digital filtering principles are useful for this
purpose. Velocity filtering by means of two-dimensional arrays may be
accomplished by properly shaping a three-dimensional response function
H(k 1 ,k,,,). Velocity filtering by three-dimensional arrays may be accomplished

through a four-dimensional function H(k 1,k 2,k 3,.) as explained below.

I -lI-
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i Spatial Arrays, Beamformers, and FIR Filters:

A propagating plane wave, s(x, t) , is, in general, a function of the

three-dimensional space variables (x 1,x 2 ,X3 ) A X and the time variable t. The

4-D Fourier transform of the stationary signal s(x,t) is

I.k, (x, t) e A dxldx2dx3dt(

which is referred to as the wavenumber-frequency spectrum of s(x,t) , and

(k,,k,,k 3 ) a k denotes the wavenumber variables in radians per unit distance and (
is the frequency variable in radians per second. If c denotes the velocity
of propagation of the plane wave, the following constraint must be satisfied

k2+ k 2 +k 2

I If the 4-D Fourier transform of the unit impulse response h(x, t) of a 4-D

linear shift-invariant (LSI) filter is denoted by H(k,w) , then the response

y(x,t) of the filter to s(x,t) is the 4-D linear convolution of h(x,t) and

s(x,t), which is, uniquely, characterized by its 4-D Fourier transform

Y(.k, ) = H(k,w)S(k, w) (2)

The inverse 4-D Fourier transform, which forms a 4-D Fourier transform pair
with (1) is

It is noted that S(kw) in (1) is product separable, i.e. expressible
in the form

i S(k,c) ý S,(k,)S,(k,)S,(k,)5,(W (4)

where each function on the right-hand side is a univariate function of the
respective independent variable, if and only if s(x,t) in (i) is also product
separable. In beamforming, S 1 (ki) in (4) would be the far-field beampattern

of a linear array along the x 1 -axis. For example, the normalized beampattern

of a uniformly weighted (shaded) linear array of length L is

S(k, e) s( 2~ire (5)

where I( kM) is the wavelength of the propagating plane wave and e is the
angle of arrival at array site as shown in Figure 1. Note that e is
explicitly admitted as a variable in S(k,8) to allow for the possibility that

for a fixed wavenumber, the beampattern could be plotted as a function of the
angle of arrival. In that case, when 0 is zero, the wave impinges the array
broadside and the normalized beampattern evaluates to unity.

The counterpart, in aperture and sensor array processing, of the use of
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I window functions in spectral analysis for reduction of sidelobes is the use of
aperture shading. In aperture shading, one simply multiplies a uniformly
weighted aperture by the shading function. The resulting beampattern is,
then, simply the convolution of the beampattern of the uniformly shaded
volumetric array and the beampattern of the shading function. Fourier
transform relationship between the stationary signal s(x,t) and the
wavenumber frequency spectrum S(k,c,) allows one to exploit high resolution
spectral analysis techniques for the high resolution estimation of the
direction of arrival [Pillai, 19891.

Discrete Arrays for Beamforming:

An array of sensors could be distributed at distinct points in space in
various ways. Line arrays, planar arrays, and volumetric arrays could be
either uniformly spaced or nonuniformly spaced, including the possibility of
placing sensors randomly according to some probability distribution function.
Uniform spacing along each of the coordinate axis permits one to exploit the

well-developed multidimensional signal processing techniques concerned with
filter design, DFT computation via FFT and high resolution spectral analysis
of sampled signals [Dudgeon, 1977]. Nonuniform spacing, sometimes, might be
useful for reducing the number of sensors, which, otherwise, might be

constrained to satisfy a maximum spacing between uniformly placed sensors to
avoid grating lobes due to aliasing, as explained later. A discrete array,
uniformly spaced, is convenient for the synthesis of a digital filter or
beamformer by the performing of digital signal processing operations (namely
delay, sum, and multiplication or weighting) on the signal received by a
collection of sensors distributed in space. The sequence of the nature of
operations dictate the types of heamformer. Common beamforming systems are of
the straight summation, delay-and-sum, and weighted delay-and-sum types. The
geometrical distribution of sensors and the weights w, associated with each
sensor are crucial factors in the shaping of the filter characteristics. In
the case of a linear array of N equispaced sensors, which are spaced D units
apart, starting at the origin x'=O, the function

W(k1 ) = we (6)

becomes the array pattern, which may be viewed as the frequency response
function for a finite impulse response (FIR) filter, characterized by the unit
impulse response sequence {wn}. In the case when w,=1, (6) simplifies to

I1• si•N) exp{ (N-l)k1 D. (7)
N sn( kD) -] 2

I2
If the N sensors are symmetrically placed on both sides of the origin,
including one at the origin, and the sensor weights are w,=l, then the linear
array pattern becomes

k1 ND
W~j = 1sin - 2S1 2
W(k1) - N sin k1D

For planar arrays, direct generalizations of the preceding linear array
results can be obtained. To wit, if the sensors with unity weights are

located at coordinates (kD,W), where k=O, t,,2.. -(• 1), and
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1 0, 1.2, .... .12-) for odd integer values of N and m then the array3 pattern function becomes

P.Mkj. k 2) E E eXP{-j(kjkD-k 2 D)

sin k1 ND si k 2 tMDNM sin( -D sin(---2--2 2

Routine generalizations to 3-D spatial arrays are also possible. The array
pattern functions for other geometrical distributions may also be routinely
generated. For example, if unit weight sensors are located at the six
vertices and the center of a regular hexagon each of whose sides is D units
long, then the array pattern function can be shown to be

L 1 +,sos -oo oso (9)
COB 1  2 2

The array pattern function reveals how selective a particular
beamforming system is. In the case of a typical array function shown in (7),
the beamwidth, which is the width of the main lobe of the array pattern, is
inversely proportional to the array aperture. Because of the periodicity of
the array pattern function, the main lobe is repeated at intervals of In.

D
These repetitive lobes are called grating lobes, whose existence may beinterpreted in terms of spatial frequency aliasing resulting from a sampling
interval D due to the N receiving sensors located at discrete points in
space. If the spacing D between sensors satisfies

D -e, (10)
2'

I where k is the smallest wavelength component in the signal received by the
array of sensors, then the grating lobes have no effect on the received
signal. A plane wave of unit amplitude which is incident upon the array at
bearing angle 0 degrees as shown in Figure 1 produces outputs at the sensors
given by the vector

Is = [exp (jO) exp(jkDsine). . . exp(jk, (N-1)DsinO)] t  (11)

where k, - 21 is the wavenumber. In array processing, the array output }g

may be viewed as the inner product of an array weight vector .W and the
steering vector 1. Thus, the beamformer response along a direction
characterized by the angle e is

ye (:wa = t I wkexp(jklkDsine). (12)k-O

The Leamforming system is said to be robust if it performs satisfactorily
despite certain perturbations [Ahmed and Evans, 1982]. It is possible for
each component sks of S to belong to an interval and a robust
beamformer will require the existence of at least one weight vector w which
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will guarantee the output ye to belong to an output envelope for each . in

the input envelope. The robust beamforming problem can be translated into an
optimization problem, which may be tackled by minimizing the value of the
array output power

P(e) = w(e)Rw (e) (13)

when the response to a unit amplitude plane wave incident at the steering

direction e is constrained to be unity, i.e. Mt(e)a(6)=I, and R is the

additive noise corrupted signal autocorrelation matrix. The solution is
called the- minimum variance beamformer and is given by

MV-
1 a() ( 

(14)

and the corresponding power output is

P'V (e) = - (15)

= . (c) R-'s8) (

The minimum variance power as a function of 0 can be used as a form of the
data-adaptive estimate of the directional power spectrum. However, in this
mode •f solution, the coefficient vector is unconstrained except at the
steering direction. Consequently, a signal tends to be regarded as an
unwanted interference and is, therefore, suppressed in the beamformed output
unless it is almost exactly aligned with the steering direction. Therefore,
it is desirable to broaden the signal acceptance angle while at the same time
preserving the optimum beamformer's ability to reject noise and interference
outside this region of angles. One way of achieving this is by the
application of the principle of superdirectivity.

Discrete Arrays and Polynomials:

It is common practice to relate discrete arrays to polynomials for array
synthesis purposes (Steinberg, 1976]. For volumetric equispaced arrays (it is
only necessary that the spacing be uniform along each of the coordinate axis

so that the spatial sampling periods D, and D, along, respectively, the ich

and jch coordinate axes could be different for i * j) the weight associated
with sensors located at coordinate (iD 1. i,D,, iD 3 ) is denoted by w(i,i 2 ,i)

The function in the complex variables z.,,z;, , and z3 that is associated with

the sequence (w(ili,,i,)} is the generating function ft. the sequence and is
denoted by

W(zI, Z2 1 Z3) =jj W(i,.1 2 1 '3)z1ZPIZ Z3' (16)
'1 

1
2 '3

3 In the electrical engineering and in the geophysics literature, the generating
function W(zl,z 2 ,z 3 ) is, sometimes, called the z-transform of the sequence

{w(i 1,i 2 ,is3 )1. When there are a finite number of sensors, a realistic

assumption for any physical discrete array, W(z1 ,z 2,z 3) becomes a trivariate

polynomial. In the special case when w(i,i",1 3 ) is product separable, the

polynomial W(z,,z,,z,) is also product separable. Particularly, this

separability property holds when the shading is uniform, i.e. w(i.,ii. 3 ) 1.

When the support of the uniform shading function is iefined by
i=0,I ... ,-i, -1 0,1,....,N 2 -1, and 13 = 0,1_. ,N3 -1, the associated
polynomial becomes
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wczl1, .z2 1, £ i (17)
• i2=0 i3.0

In this case, all results developed for the synthesis of linear arrays become
directly applicable to the synthesis of volumetric arrays. For a linear
uniform discrete array composed of N sensors with intersensor spacing D,
starting at the origin and receiving a signal at a known fixed wavenumber k,
at a receiving angle 8, the far-field beampattern

N-I

S(kJ,8) a s(e) = E e kr'i~ a

T-0

may be associated with a polynomial N z", by setting z, = e Jk1 .sin* This
r-O

polynomial has all its zeros on the unit circle in the z,-plane. If the array

just considered is not uniform but has a weighting factor w., for
r = 0,1_. ,N,-1, the space factor,

0(e) wei
r-O

may again be associated with a polynomial E WrZlr" By the pattern

multiplication theorem, it is possible to get the polynomial associated with
the total beam pattern of an array with weighted sensors by multiplying the
polynomials associated with the array element pattern and the polynomial
associated with the space factor Q(O) . The array factor 1Q(8) 12 may also be

associated with the polynomial spectral factor

3 £- i M,-1

1Q(e) 12 l WrZir E W;(Z)r, (18)
r-O 0-O

where the weighting (shading) factor is allowed to be complex. Uniformly
distributed apertures and uniformly spaced volumetric arrays which admit
product separable sensor weightings can be treated by using the well-developed
theory of linear discrete arrays and their associated polynomial. When the
product separability property does not hold, scopes exist for applying results
from multidimensional systems theory [Bose, 1982) concerning multivariate
polynomials to the synthesis problem of volumetric arrays.

Velocity Filtering:

Combination of individual sensor outputs in a more sophisticated way
than delay-and-sum technique leads to the design of multichannel velocity
filters for linear, planar, as well as spatial arrays. Consider, first, a
linear (1-D) array of sensors, which will be used to implement velocity

discrimination. The pass and rejection zones are defined by straight lines in3 the (k 1,,)-plane, where

V (v/sine)

is the wavenumber, w the angular frequency in radians/sec, v the apparent
velocity on the earth's surface along the array line, v is the velocity of
wave propagation, and e is the horizontal arrival direction. The transfer
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i function

1 L k1  2
10I otherwise,

of a "pie-slice" or "fan" velocity filter [Bose, 1985] rejects totally

wavenumbers outside the range, - s ! ksI and passes completely

wavenumbers defined within that range. Thus, the transfer function defines a
high-pass filter which passes signals with apparent velocities of magnitude
greater than V at a fixed frequency w. If the equi-spaced sensors are D
units apart, the spatial sampling results in a periodic wavenumber response

with period k, 1 Therefore, for a specified apparent velocity V, the

resolvable wavenumber and frequency bands are, respectively, - kD
2D 2D

and - ( a where -±- represents the folding frequency in radians/sec.I2D 2D 2D0
Linear arrays are subject to the limitation that the source is required

to be located on the extended line of sensors so that plane wavefronts
approaching the array site at a particular velocity excite the individual
sensors, assumed equi-spaced, at arrival times which are also equi-spaced. In
seismology, the equi-spaced interval between successive sensor arrival times

is called a move-out or step-out and equals s - . However, when the

sensor-to-source azimuth varies, two or more independent signal move-outs may
be present. Planar (2-D) arrays are then required to discriminate between
velocities as well as azimuth. Spatial (3-D) arrays provide additional scope
to the enhancement of discriminating capabilities when sensor/source locations
are arbitrary. In such cases, an array origin is chosen and the mth sensor
location is denoted by a vector (x,. x 2. xm.) and the frequency wavenumber

Ir response of an array of N sensors is given by

H(G),kJ, kZ,k) 1 IV Hr((0))exp[3 j ~27tkiX1m

I
where Hm(co) denotes the frequency response of a filter associated with the
mth recording device (sensor). The sum of all N filters provides flat
frequency response so that waveforms arriving from the estimated directions of
arrival at estimated velocities are passed undistorted and other waveforms are
suppressed. In the planar specialization, the 2-D array of sensors lead to
the theory of 3-D filtering involving a transfer function in the
frequency/wavenumber variables f,k, and k,. The basic design equations for
the optimum, in the least-mean-square error sense, frequency filters have been
developed [Burg, 1964]. This procedure of Burg can be routinely generalized
to the 4-D filtering problem mentioned above.
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i Abstract

A comprehensive analysis reveals several drawbacks of the neural network prob-

abilistic data association (NPDA) algorithm, which is an application of the Hopfield3 neural network to the data association problem for multitarget tracking in clutter.
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I 1 Introduction

Sengupta and Iltis [1] formulated the computation of the a posteriori probabilities for the

joint probabilistic data association filter (JPDAF) [2] as a constrained minimization prob-

lem. This technique based on the use of neural networks was also extended [3] to apply

to maneuvering targets. The a posteriori probability Oj' (for j 4 0) is the probability that

I measurement j originated from target t and 00 is th7e probability that none of the received

measurements originated from target t. By comparison with the traveling salesman problem

(TSP), they proposed a Hopfield neural network [4] to approximately compute the /St's and

called this neural network probabilistic data association (NPDA). In fact, f is approximated

by the output voltage V7 of a neuron in an (m + 1) x n array of neurons, where m is the

number of measurements and n is the number of targets. Sengupta and iltis claimed that the

performance of the NPDA was close to that of the JPDAF in situations where the numbers

of measurements and targets were in the ranges of 3 to 20 and 2 to 6, respectively. The

success of the NPDA in their examples was credited to the accurate emulation of all the

I properties of the JPDAF by the NPDA.

Since there are no strict guidelines for choosing the constant coefficients of the energy

function for the Hopfield neural networks [4], these coefficients in the NPDA were selected

3 essentially by trial-and-error [1]. However, with the chosen coefficients in [1], the architecture

of the neural network in [1] degenerates into individual columns with identical connections

and the input currents throughout the neural network are almost of the same amplitude.

Furthermore, the neural network in [1] has a strong tendency to converge to the VW's which

are close to 1/(m + 1) with the given initial values for the V/'s. In [3], a least-squares

approach was developed to optimize the last two coefficients of the energy function. The

I authors pointed out that this local optimization of the two coefficients is quite sensitive to

n, the number of targets. They chose the two coefficients by averaging their values for the

n = 2, n = 4, and n = 6 cases. As a result, the coefficients of the energy function in [3] are

I slightly different from the ones in the energy function of [1]. Because of the similarity between

the energy functions in [1, 3], the discussion in this correspondence will be focused on the

2
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energy function in [1]. Similar discussions on the energy function in (31 are documented in

detail in [5].

In Section 2, the Hopfield .,eural network used in [1] is briefly reviewed and some

comments are made on the assumptions which were used to set up the energy function in [1].

In Section 3, some criticisms on the implementation of the neural network in [1] are given.

Conclusions are summarized in Section 4.

I 2 Review of the Energy Function in the NPDA and Comments

U Suppose there are n targets and m measurements. The energy function used in [1] is repro-

duced below.

V- gr + ,_-o+(•,_ E V _1-).2(1
2 j=O t= = 12 lj0l=0 2

D mn n rnn n(V i(1

1:(V~t_ PL)2+ p E 2 .

2 =Ot=1 2j=Ot=IT=1 1=0r $t 1l.0j

In (1), Vt is the output voltage of a neuron in an (m + 1) x n array of neurons and is

the approximation to the a posteriori probability 13' in the JPDAF [2]. This a posteriori

probability, in the special case of the PDAF [2] when the probability PG that the correct

measurement falls inside the validation gate is unity, is denoted by pý. Actually, PG is very

close to unity when the validation gate size is adequate, as shown in Table 5-1 in [2]. In (1),

A, B, C, D, and E are constants.

In the NPDA, the connection strength matrix is a symmetric matrix of order n(m + 1).

3 With the given energy function EDAP in (1), the connection strength Tj' from the neuron

at location (r, 1) to the neuron at location (t,j) is

I -(C + D + E(n- 1)), if t = r and j = I "self feedback",

i -A, if t 5 r and j = I "row connection",I -(B + C), if t = rand j $/1 "column connection", (2)

0, if t$ r and j $ 1 "global connection".

3
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3 The input current Ii to the neuron at location (t,j), fort = 1,2,..., n, and j = 0,1,...,m,

is

11t = C + (D + E)p + - I - ).(3)

I Clearly from (2) and (3), the input current I' but not the connection strength T'7 depends

on the pý's, which are computed from the measurements that comprise the input data.

Ironically, in the neural network for the TSP [4], only the connection strengths depend on

the input data which, in this case, are the distances between pairs of cities.

In order to justify the first two terms of EDAP in (1), the authors of [1] claimed that

U the dual assumptions of no two returns from the same target and no single return from two

targets are consistent with the presence of a dominating Vj7 in each row and each column

of the (m + 1) x n array of neurons. However, these assumptions are not constraints on

the values of the O/'s in the original JPDAF. Those assumptions should be used only in the

generation of the feasible data association hypotheses, as pointed out in [2, p. 224]. As a

matter of fact, there could be two 1Q's of comparable magnitude in the same row and in the

same column as shown in chapter 4 of [5]. Therefore, the presence of a dominating V1 in

each row and each column is not a property of the JPDAF.

The third term of EDAP is used to constrain the sum of the V7's in each column to

unity i.e. • V. = 1. This constraint is consistent with the requirement that ZI• = 1 inj=o j=0

both the JPDAF and the PDAF [2]. Therefore, this constraint, by itself, does not permit us

to infer whether the 0,'s are from the JPDAF, or from the PDAF. The assumption used to

3 set up the fourth term is that this term is small only if Vt is close to p', in which case the

neural network simulates more closely the PDAF for each target rather than the intended

3 JPDAF in the multitarget scenario. Finally, the fifth term is supposed to be minimized if Vil

is not large unless for each r $ t there is a unique 1 $ j such that pr is large. Unfortunately,

this constrained minimization may not be possible as shown in [5]. This is consistent with

the heuristic nature of the derivation of the energy function in [1], which could lead to the

problems in the implementation of the NPDA as discussed next.

4
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3 Criticism of the Implementation of the NPDA

Since there are no guidelines for choosing A, B, C, D, and E in (1), these coefficients are

usually set through simulation. In the implementation of the NPDA [1], the simulations

I provided the following set of values for A, B, C, D, and E for tracking two to six targets

with three to twenty measurements.

A=0 B=40 C=1000

D=30 E=10

After substituting the above set of values into (2), the only connections between neurons

which are nonzero are those due to "self feedback" and "column connection", as evident from

(4) below.

-(1030 + 10(n - 1)), if t r and j =1 "self feedback"

T'r 0, if t -r and j = 1 "row connection"
-1040, if t = r and j yI "column connection"

0, if t 5 r andj 1 1 "global connection".

Since 0 < p' < 1, the upper and lower bounds of the input current I' in (3) can be

3 obtained.

1000 < Pj < 1030 + 10(n - 1). (5)

The upper bounds of the input current 1• in [11 are 1040, 1060, and 1080 for n = 2, 4, 6,

respectively. Clearly, the maximum range of variation of the input current Ij is only a

small percentage of the value of C. Therefore, the input current It is dominated by C for

n = 2,4,6. In other words, the pý's do not have much influence on the solution obtained

3 from the neural network.

One may argue that C does not dominate the behavior of the neural networks if the

dynamic equation (32) in [1] is considered. For the purpose of the discussion, this equation

with A = 0 is reproduced below.

I
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I d•SO 1 1=0

TI

+(D + E)pý + E(n - I P)" (6)

In (6), so is the time constant of the neural network and u'. is the input voltage of the neuron

located at (t,j) in the array of neurons. When the neural network is initialized so that each

neuron approximately outputs

I m
the third term is almost zero because E VW is close to unity. However, we must keep in mind

1=0
that this neural network has not been developed for implementation on a digital computer.

Instead, it has been developed for possible implementation using an analog network. If it is

I implemented on a digital computer, (6) is replaced by (38) in [1], which is reproduced below

for ready reference.

I 
m n

+C(D + E)pt + CE(n - 1- •_j ;), (8)I l
In (8), C is the iteration step and 12 multiplications are sufficient for implementing each

iteration. A total of 400 iterations was used to guarantee the convergence of the neural

network to a satisfactory solution [1]. There are altogether n(m + 1) equations like (8) for

tracking n targets with m measurements. Therefore, the total number of multiplications

required to compute the Pt's does not exceed n(m + 1) * 12 * 400. Comparing this number

with the entries in Tables 2.4, 3.3, and 3.4 in [5], we can conclude that the implementation

of the neural network on a computer is far more computationally expensive than the direct

Icomputation of the )3,"s. If this neural network is implemented on an analog circuit, the

dynamic equation of the network is

- T TV1, + Ij, (9)
ds 60 r=1 1=0
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* as shown in (3) of [4]. Therefore, in this example because of the I, term in (9), it is seen

from (5) that C becomes a dominan . -- tor in the neural network. Since the range of

variation of I5 is only a small percentage of C, any perturbation in the implementation of

the current source due to noise would contribute to the output voltage V7, which is supposed

to approximate i35. Since C is significantly larger than A, B, D, and E, the network has a
m

strong tendency to be locked into a state where E V1' = 1. With the above initialization,
1=0

identical connections, and nearly uniform input currents, it is even easier for the network to

converge to the normalized V!'s which are close to 1/(m + 1). Therefore, it is possible for

some Vj's to be not 0 even if the /3's are 0. As a result, the state of target t is updated in

part by measurement j which is not inside the validation gate of target t.

Finally, it is worth mentioning that the example given in [1] for tracking six targets is

m not actually a six-target-tracking problem from the JPDAF point of view. In multitarget

tracking, targets are grouped into clusters before applying either the JPDAF or the PDAF.

Targets are in the same cluster if there is at least one measurement in each of the intersections

of the validation gates of these targets. The JPDAF is only applied to a cluster which contains

more than one target. Otherwise, the PDAF is applied. If the targets in the examples given

in [1] are grouped into clusters, the largest size of a cluster of targets is 3. In such cases, the

o3i's can be easily computed by the algorithms proposed in chapters 2 and 3 of [5] and also

* reported in [6].

m1 4 Summary

It might be a good idea to use the neural network to approximately compute the a poste"'ori

probability /35 in the JPDAF. However, the neural network developed in [1] has been shown

to have improper energy functions. This resulted from misinterpretations of the properties

of the JPDAF which the network was supposed to emulate. Furthermore, improper choices

of the constant coefficients in the energy function in [1] make the situation worse. Therefore,

further study of the properties of the JPDAF is needed to construct a better energy function

for the NPDA.

7I
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I Abstract

In this paper. three fast algorithms have been developed to solve the problem

of data association in multitarget tracking in clutter. In the first algorithm, the

problem of data association is identified as an exhaustive search problem in general.

Subsequently, a mathematical model is proposed for the problem of data associa-

Ition in the joint probabilistic data association filter (JPDAF). Based on the model.

a depth-first search (DFS) approach is developed for the fast generation of data

association hypotheses and the computation of the conditional probabilities of the

hypotheses in the JPDAF. With proper preprocessing. I he number of multiplications

in the computation of the conditional probabilities is less than twice the number of

data association hypotheses. Therefore. the computational complexity of the algo-

rithm is analyzed in terms of the number of data association hypotheses in the worst

case and also in the average case. When the density of targets is moderate, an even

more efficient algorithm is developed to directly compute a posteriori probabilities

in the JPDAF without generating the data association hypotheses. In the third al-

gorithm, the interference among closely spaced targets is simplified. This lead us to

develop an approach to approximately compute the a posteriori probabilities in the

.IP I) A F.

"This research has been sponsored by SDIO/IST and managed by the Office of Naval Research under
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I Introduction

In inultitarget tracking in clutter, often there are more than one measurement available

for updating the state of a single target. To solve the problem of data association between

targets and measurements. two typical approaches have been reported in the literature

in the 70's. One is called the track-oriented approach in which each measurement is

assumed to have originated from either a known target or clutter, as in Probabilistic

3 Data Association Filter (PDAF) J,21 and Joint Probabilistic Data Association Filter

(JPDAF) 1,31. The other is called a measurement-oriented approach in which each

measurement is hypothesized to have originated from either a known target. a new

target. or clutter A4i. In both approaches, the number of data association hypotheses

I could increase rapidly with the increase of the number of targets and the number of

measurements. Therefore. the computational cost in generating the data association

hypotheses would overwhelmingly dominate in a multitarget tracking algorithm when

the number of targets and the number of measurements are relatively large. In the

PDAF. time computational cost for data association is reduced drastically by isolating

targets from each other. Only the measurements which lie in the validation gate of 0

target are considered in data association. A validation gate is a specific region around

the predicted position of a target. Since the PDAF ignores the interference from other

targets, it may, sometimes. ca,ise mistracking of closely spaced targets. as discussed

by Fortmann, Bar-Shalom and Scheffe I31. This difficulty is greatly reduced by using

the JPDAF ý31, which accounts for the fact that a measurement which falls inside the

intersection of the validation gates of several targets could have originated from any

3 one of these targets or from clutter. In the JPDAF, targets are divided into clusters.

The targets are in the same cluster if there is at least one measurement inside each of

the intersections of their validation gates. The computational cost for data association

is reduced by grouping targets into clusters. The iumber of different data association

5- hypotheses in each cluster is still an exponential function of the number of targets in the

cluster. Due to the complexity of the problem of data association, the implementation

2I
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of a multitarget tracking algorithm has only been carried out in a 2-target case 13,4,.

except in 5:. III 15!, an initial version of the depth-first search (DFS) algorithm prop)osed

in this paper was used to track 11 non-maneuvering and mianeuvering targets through

the implementation of JPDA filtering and smoothing. Details of the proposed algorithm

were not discussed previously.

To reduce significantly the computational c6st for data association, several approx-

imnations of the JPDAF and the algorithm in ý41 have been reported in literature. A

I first version of the approximate. or "cheap", JPDAF was published in !61 where the

probability of association of target t with measurement j was computed by an ad hoc

formula. The author of 6 developed his approach further in *7%. In iT. the performance

of various versions of the approximate .JPDAF's were tested. The "cheap JPDAF" in

6 performed fairly well in case of two targets but failed to track four targets f8j. In

1 8. the .JPDAF was emnulated by a neural network which is capable of handling two to

six targets and three to twenty measurements with a set of carefully chosen coefficients

3 for the network. In the neural network approach, the a posteriori probabilities, 0,'s, of

association of target t with measurement J were computed in parallel subject to the as-

Ssumption that one out of all '3s for any particular target t is significantly larger than the

5 remaining O 's for the same target. With this assumption, the resulting approximation of

.JPDAF is transformed more or less into the nearest-neighbor JPDAF 7. Furthermore,

in the neural network approach, targets are not grouped into clusters before calculating

3' as proposed in the original .JPDAF 3i. Alternatively, Nagarajan. e al. 91 arranged

the hypotheses in the measurement-oriented approach 14i in a special order so that the

probabilities of the hypotheses are proportional to the product of certain probability fac-

I tors already evaluated. The algorithm locates the N globally best hypotheses without

evaluating all of them. For tracking multiple maneuvering targets in clutter, the authors

of i8l introduced the approach of joint probabilistic data and maneuver association in

1 10i.

In this paper, three fast algorithms have been developed. In the first algorithm,

3
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ia xiathenatical model is proposed for the problemn of data association in general. This

model is based on exhaustive search. Specifically, this model is tailored to the problem of

Idata association in the JPDAF. Each feasible data association hypothesis in the JPDAF

is equivalent to a solution to the exhaustive search problem for data association. Based

on the proposed model, a depth-first search (DFS) algorithm is developed to generate

data association hypotheses efficiently for the .JPD-AF. The manner in which the data

association hypotheses are generated by the DFS algorithm suggests an approach to

j further reduce the number of multiplications in the computation of the conditional prob-

abilities of the data association hypotheses. In fact. after proper preprocessing, the total

3 number of multiplications in the computation of the conditional probabilities for the data

association hypotheses in the JPDAF has been found to be less than twice the number

I of data association hypotheses generated by exhaustive search. The computational com-

Splexity of the proposed DFS algorithm is evaluated in terms of the number of hypotheses

both in the worst and the average cases. The proposed DFS algorithm is most suitable

for ground-based surveillance system with a large centralized computational capability,

where accurate result is desired.

I However, in a small tracking system or a missile guidance system where computa-

tional capability is limited, an even more faster algorithm is desired. The second and

the third algorithms proposed in this paper are designated to be implemented in a small

system or a system with multiprocessor. In the second algorithm, the a posteriori prob-

abilities. 3"s, are computed directly without generating the data association hypotheses

I in the .JPDAF when either the density of targets is not very high, or the size of the

largest cluster of targets is less than or equal to 4. For the case in which the size of

Scluster of targets could be larger than 4. an approximation of the sec,)n( algorithm is

developed. In the approximation, only the interference from the neighboring targets of

target t are considered in the computation of /3'. A target is a neighbor of target t if

Sthere is at least a measurement inside the intersection of the validation gates of the two

targets. The second and the third algorithms are equivalent when the size of a cluster

I
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j of targetS is 2. The important feature of the third algorithm is that .3, for each target is

computed indep endently as in the PDAF algorithm.

A description of the prob)lem of interest is provided in Section 2. In this section, the

K .1PDAF is briefly reviewed to explain the motivation behind this research. Furthermore.

an alternate formula for the conditional probabilities of the data association hypotheses

is derived in order to simplify the notation in the development of the three algorithms.

In Section 3.1. a comparison between a general exhaustive search problem and the one

i of data association in multitarget tracking is discuss.ed. This leads to a mathematical

model for the problem of' data association. In Section 3.2 sorme unique features of the

I)roblem of data association are pointed out as a prelude to a specialized DFS algorithm

for generating all data association hypotheses. In Section 3.3. the advantage of the DFS

algorithm is further demonstrated in the computation of the conditional probabilities

3 of the data association hypotheses. l.a Section 3.4. the computational complexity of

the proposed DFS algorithm is analzed. In Section 4, an algorithm is proposed to

I compute .3' directly when the density of targets is not very high. An approximation

of the direct computation algorithm is pres, nted in Section 5. Finally, in Section 6.

computer simulation is carried out for tracking inultitarget in different scenario.

I5
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I
2 Problem Formulation

I Let m, and n he the numbers of ineasuremnents and targets. respectively, in a particular

cluster. 3' is the a posteriorit probability for no measurement to originate from target t

and J'(j ;tc 0) is the a posteriori probability for measurement j to originate from target

It. In the JPDAF. the computation of 3"s begins with the construction of a so-called

validation matrix Q for the n targets and 7n measurements. The validation matrix SI is

j a m (n. 1) rectangle matrix defined as [3J

t

3 0 1 2 n

I 11 -1:12 -1':n n

1 2 -'22 2 2

1 rI m2 m Wmn mJ

£ where c0=o 1, L, -= 1 if measurement J is inside the validation gate of target t and

jt =- 0 if measurement J is outside the validation gate of target t for j = 1,2,... ,rm,

and t 1 1.2 ..... n. Based on the validation matrix Q, data association hypotheses (or

feasible events ;3,) are generated subject to the following two restrictions:

3 1. each measurement can have only one origin (either a specific target or clutter).

1 2. no more than one measurement originates from a target.

This leads to a combinatorial problem where the number of data association hypotheses

increases exponentially with the number of targets and the number of measurements.

I Each feasible event E is represented by a hypothesis matrix 9 in 13ý. f has the same

siz( as the validation matrix Q. A typical element in 92 is denoted by ' where L =1I
only if measurement 1 is hypothesized to be associated with clutter (I - 0) or target

5 t (t / 0). After each Q is obtained, the conditional probability of the corresponding

6!
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data association hypothesis or feasible event is calculated by a formnula given in 3.. A

simplified version of this formula is given in (2). where lime index k is omitted.

p(E(f2) ;Z) - (p,,)inin(,.,n) '.. 1 P' (2)
C 

J

for j 1,2 ..... t and t 1.2 ..... J .

Swhere Z is the set of all measurements received up to current time index k, c is a

normalizing constant, ma is the number of targets detected in this feasible event &,

3 u)t = 1 indicates that measurement j is associated with target t in the event, and

3 P N(';O0., SL)PD if wij P)

0 otherwise

3PO' A (I1-PD) Po. (4)

for j 1,2,... n. 7 and t - 1.2 .....

In (3) and (4), A is the clutter density, PD is the probability of detection, and N(i; 0, S')

3 is a normal distribution density function with zero mean and covariance matrix S'. It

is understood that the normalizing constant c in (2) is obtained by the summation,

I •(n) P(P(E f)Z). Therefore. c is omitted hereafter. The a posteriori probability '3' is

computed from the conditional probabilities in (2) by

I m-- I

forj 1,2,...,m, andt = 1,2.... ,n.

I In order to have a better understanding of how each •3 is calculated, consider an

5 example. Suppose, there are two targets. In one radar scan, three measurements are

received and suppose one of these falls inside the intersection of the validation gates of

5 the two targets. The iiathematical representation of this situation may be described by

a validation matrix 12:

I
!7
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I

I ~0 12

1I 010I2 a$i i. (7)

With the two restrictions given above, 8 feasible events E(01,) (1 -- 0, .... 7) may be

I constructed. The hypothesis matrices are

I ( 0 ( 1 0If () ' ( 0 1 01)

1 01 0 0 1 0 0

1 0 01 1 0 0 10 0

1 0 1 ( 1 0 0

00 1 7 1 0 0

1 0 0 0 0 1

SThe conditional probability P(E(fi 1)IZ) can be easily calculated by using (2). Subse-

quently. all 3i 's may be computed. For example,

- P(&(fI,)IZ) ± P(6(f12)iZ) + PV(f1•()Z)

The problems of interest here in the implementation of the JPDAF for any number

of targets and measurements are the efficient generation of hypothesis matrices (l• and

3 fast computation of f3t.

8
I

8

I



1 3 The Depth-First Search (DFS) algorithm

-- 3.1 Mathematical Model for Data Association

I As pointed out earlier, data association in multitarget tracking is a combinatorial prob-

lem. The computational cost of data association increases exponentially with n, the

I number of targets, and rn. tile number of measurements. The efficiency of the algorithm

used in the generation of the data association hypotheses is especially important when

n and rn are relatively large. In order to develop an efficient algorithm to generate all

3 data association hypotheses. it is necessary that its nature be well understood. So a

mathematical model is developed for data association.

-- A well-known model for a combinatorial problem is called exhaustive search with

• -- certain constraintsIl . The general description of a typical exhaustive search problem

is following:

There are rn variables X, (j 1,2,... ,m). The value of each X, belongs

to a set Z,. where Z, is finite and linearly ordered. A candidate solution for

this problem is a rn-tuple

(X 1 .X?'.. ..I XM).

The objective here is to find either one solution or all solutions each of which

satisfies the imposed constraints.

5 An efficient algorithm to solve the above problem is a depth-first search (DFS) procedure

which involves backtracking IIll. In the DFS procedure, a solution is found by checking

5 the rn variables in a rn-tuple one by one from left to right, as shown in Fig. 1. In Fig. 1,

GET NEXT(Z,,.Y,) is a logical function. It is true only if Xj E Zj, X, has not been

used in the DFS procedure yet. and X 1 , X 2 , ... , and X, satisfy the given constraints.

3 Otherwise, it is false.



3 In the context of tracking multitarget in clutter. however, data association can
be modelled as an exhaustive search p)roblem with a set of proper notations. Let X,

I (j 1. 2...m) denote measurement j. The value of X, identifies the target or clutter

which is hypothesized to be associated with measurement j. For example, X 3 implies

that measurement j is hypothesized to be associated with target 3. However. if Xj = 0,

3 measurement J is hypothesized to be associated with clutter. Z, is, therefore, a set

of clutter denoted by 0 and those targets for which = = 1 in the validation matrix.

3 Equivalently,

Zj {tIwt 1}, 1,2,..,m, and t - 0,1,2,...,n. (8)

Note that since Loj 0 is equal to 1, therefore 0 C Zj for j - 1,2,... ,ti. If measurement

I j falls inside the validation gate of target t, t e Z,. For the example discussed in the

previous section, the Z,'s (J - 1.2.3) are:

z, o. Z2  {0.1.2}; Z3 {0,2}.

In the JPDAF scenario, the two constraints which have to be satisfied for a feasible

event can be easily translated into the language of exhaustive search problem for data

I association. Hence, a m-tuple

(X, X 2 , ... . .. X,, X,)

is a solution if the following two constraints are satisfied.

I
1. Ifp t q, Xp 7 0, and Xq / 0, then Xp - Xq.

2. If Xp -- X and p i q, then Xp = X, = 0.

All data association hypotheses can be generated by solving the exhaustive search

I ~problem described above. In the next section, a DFS algorithm will be discussed in detail

for generating all data association hypotheses.
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5 3.2 Generation of Data Association Hypotheses

In the previous subsection, the similarities between the I)roblelm of exhaustive search and

that of data association have been discussed and, subsequently, a mathematical model

I has b)een proposed for the problem of data association in multitarget tracking. It has also

been pointed out that the DFS procedure is an efficient algorithm for finding solutions

for the problem of exhaustive search. In this subsection, a specialized depth-first search

5 DFS algorithm for the generation of data association hypotheses will be proposed. Before

the DFS algorithm is given, it would be worthwhile to observe some differences between

the problem of exhaustive search and that of data association.

Usually, there are no solutions that are known in advance in a general exhaustive

search problem. However. in the problem of data association, a solution, which is always

5 known in advance, is (0,0.....0). The remaining solutions can be generated system-

atically from various valid combinations of non-zero values of the elements. In order

3 to illustrate how this idea works. consider again the example in the previous sections.

There are 2 targets and 3 measurements, and one of the 3 measurements is shared by

U the 2 targets. X 1 , X 2 , and X, denote the 3 measurements and the corresponding Z,'s

i are:

:Z, {0,1}; Z2 = {0,1,2}; Z3  {0,2}.

3 The starting solution is (0,0,0). The next solution we look at is (1,0,0), obtained by

setting X, - 1. Since I is already in the previous solution. the only non-zero value X 2

I may have is 2. Therefore, after (1,0,0), the solution (1,2,0) is obtained. Now, all non-zero

values in Z2 which can been used to generate new solutions have been used up. Reset

X 2 to 0 and go on to check if there is any non-zero value in Z-; which will lead us to a

new solution. In this case, by setting X.3 to 2, another solution, (1,0.2), is found. After

all non-zero values in both Z 2 and Z3 are used up, X, is reset to 0 and is kept as 0 for

Sthe remainder of the search process. At this stage, X2  I will not cause any conflict.

Hence, a new solution, (0,1,0) is generated. This process can go on until all solutions are

1
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3 found. In this particular example, the complete set of solutions is

m £ ( (0,0.0)). E (1.0.0). 82 (1,2,0).

. (1,0.2), £4 - ((.1.0). E-5 (0, 1.2),

3 £ (0,2.0), E7 (0.0,2).

5 For a better view of the solution generation process. all solutions can be arranged

into a tree. which is called hypotheses tree, as shown in Fig. 2. Each node in the tree

I 8Level 0

£ Level 1

I £5 Level 2

Figure 2 The graph arrangement of E,

stands for a solution or a data association hypothesis. The root of the tree is E0, which

implies that all 3 measurements are hypothesized to be associated with clutter. Each

node at level i is associated with i non-zero variables in the corresponding 3-tuple. This

also implies that i out of 3 measurements are hypothesized to be associated vwith i out

of 2 targets. In Fig. 2. the height of the tree is 2. In general, the height of the tree is

I rnin(n. m) since i must be less than both n and 7n.

As pointed out above, the number of non-zero variables in a 3-tuple indicates the

level at which the corresponding node is located. However, the locations of the nodes

I at the same level are decided by which variables are non-zero and their values. Suppose

that, there are two 3-tuples £, and 6. and that both of the two 3-tuples have 2 non-zero

variables. In £E, variables X1 , and X 2 are non-zero and in E., variables Y,, and Y,, are

1 non-zero. £7 is to the left side of 4y if either

13I



I w

*1" and I;.' when )Ii -- < and /2 or

I ° .h j; and .b

SFor example, E.2 (= (1,2,0)) and £: (2 (1.0.2)) have 2 non-zero variables. By letting E2

be E and E3 be E., we have X, 1. X 2 - 2, Y, 1. and( Y - 2. Since JI 1 and

S2 ,1 •2* 3, E2 is at the left side of as shown in Fig. 2. Therefore, the information

about a data association hypothesis is contained in the non-zero variables in the 3-tuple.

I This is also true in the case of n targets and in measurements.

Because of the above distinguish features of the data association hypotheses, only

non-zero variables in a hypothesis are stored in a stack of integer pairs in the imple-

I mentation of the DFS algorithm. For example. E4 (= (0. 1,0)) is represented by ((2,1)).

The first integer in the pair indicates which variable is nion-zero in 64 and the second

Sinteger is the value of that variable. In general. any m-tuple with L non-zero variables

is represented by

0,21 X31)
I ~(j 2,, 1

(jL,.X, )

where X.,, XJ2, ... , and XjL are non-zero and L is the pointer of the stack ± which is

pointing at the last pair of integers in the stack. The flowchart of the DFS algorithm for

the generation of the data association hypotheses is shown in Fig. 3. The proposed DFS

algorithm is designated to visit every node in a hypothesis tree. Similar as in Fig. 1,

GET NEXT(ZJ, XJ) in Fig. 3 is a logical function. It is true only if X) E_ Z, and X, is

not equal to X 1. X 2 , ... , and Xj,. Otherwise. it is false.

14
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I
| L - L = I(Visit oes a

NoL/ (Bckrakig (ene L)
I
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L >_I__________ Y,

I . J .L ______--___J,____tL - L -1I (Visit a nodecat
(Backtracking) level L)

Figure 3 The flowchart of DFS procedure for data association
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3.3 Computation of the Conditional Probabilities

After each data association hypothesis is generated, the conditional probability of the

hypothesis is computed by using the formula in (2). However. if the data association hy-

potheses are arranged in such a order that a factor of a conditional probability is included

in another conditional probability, the computation of the two conditional probabilities

can be saved by sharing the common factor. The data association hypotheses generated

by the proposed DFS algorithm are in such a special order that the common factors in

the conditional probabilities can be shared in the most efficient way. If a little more

complex example than the one considered in the previous sections, the advantage of the

common factors in the computation of the conditional probabilities may be easily demon-

strated. Suppose, there are 3 targets and 4 measurements. measurement 2 is inside the

intersection of the validation gates of targets I and 2. and measurement 3 is inside the

intersection of the validation gates of targets 2 and 3. Conventionally, this situation may

be represented by a validation matrix f:

t

0 1 2 3

1 1 0 0 1

1 1 1 0 2

1011)1 0 1 1 0

1 0 0 1 4

However. it may also be represented by the notations introduced in the mathematical

model, exhaustive search with constraints, proposed for data association. In the second

representation, four variables, X 1, X 2 , X 3 , and X 4 , arc used to denote the 4 measurements

and the corresponding Z,'s are:

Z, :- {0,1}; Z2  {0,1,2}; Z3  {0,2,3}; Z4  {0,3}.

16



I When the DFS algorithm is applied to this example. the following sequce of solutions

or data association hypotheses are generated

I 4) (0.0.0.0)., ,- (1.0.0,0) 2 -E (1.2.0,0),

I -3 (1. 2,.' 0), E4 : (1.2.0.3). '' 5- (1.0.2.0).

E,- (1.0.2, 3). 67 (.0,3,0), E8 - (1,0,0,30.

I The partial hypothesis tree for the solutions listed above is shown in Fig. 4. Now, the

conditional probabilities of the data association hypotheses Ej (1 - 0, 1,..., 8) can be

computed using (2). Recalling that Z denotes the set of all measurements received up

to the current time index as defined on page 7.

P(£oiZ) _ (Po) 3. P(p£ 1 lZ) (Po)2 Pl', P(&2,Z)= PoPiP ,

I P(E3 Z) Pj'P2P',3  P(64 1Z) P1
1P2P•, P(&,rZ) = PoP,'P,

p (6 Z) = p,2IPjpI P(•'7 Z) PPP1), P(68 Z)= POP,'Pýj.

It is not difficult to identify that Pi is the common factor used in the computation of

P (£,jZ) (I 1.2. 8). However, the common factors, PIP, and P1 Pj, need a closer

examination. P,'P2 is used in the computation of P(£EIZ) (I = 2,3,4), while Pj'P3" is

I used in the computation of P(E 5 1Z) and P(£ 6rZ).

I IfP's, Po, (P0 )2, and (P0 )' are computed in advance for this example and the three

common factors mentioned above are used in the computation of P(Ej Z) (I J1 .... ,8),

the number of multiplications required in the computation of P(EiIZ)'s may be obtained.

For example, there is no multiplication required to obtain P(EojZ). To calculate P(Ej 1Z),

the product of (P0 )2 and P1 is required. In the computation of P(E 2 !Z), the product of

P0 , P 1,, and P22 is required. Therefore, P(E, IZ) and P(E 2 1Z) are computable with one and

two multiplications. Since the product, PP2-, is obtained in the computation of P(C 2 1Z),

there is only one multiplication required to compute of P( 31Z) (= P1
1 P2P],). The number

of multiplications required in the computation of the conditional probabilities. P(&IfZ)'s.

of the data association hypotheses at different levels in the hypothesis tree is listed in

Table-1.

17



In general. the computation for Pt P0. (PO) 2 . and (Po)mln(nr'n) is called pre-

processing, which facilitates the use of common factors in the computation of the condi-

t ional probabilities of the data association hypotheses. The details of the multiplications

re•quired in the computation of the conditional probabilities of the data association hy-

potheses at each level of the hypothesis tree is summarized in Table-2.

Let ND, denote the number of nodes at level i and Al be the total number of

multiplications required in the computation of P(61jZ)'s. From Table-2, it can be inferred

that

min(n,ln)- I

S NDI, 2 > ND, 2 - NDmjrinm
t22

min(n.rn)

2 >3 ND,. (11)
t- 0

(11) shows that M is less than twice the number of data association hypotheses if pre-

processing and common factors are used. This enables us to analy~e the computational

complexity of the DFS algorithm in terms of the number of data association hypotheses

or the number of nodes in the hypothesis tree.

6o Level 0

Level I

, E84 Level 2

&3 E4 EC, Level 3

Figure 4 The partial hypothesis tree for the example given in this section
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Table I Number of multiplications required in the (.omI)utati -n of P(&l Z)'•

C (7onditional Probabilities Number of Multiplications

SP( El!Z)0

P (E 2 Z). P (E.5 Z), P (E7 Z), P (ES iZ)2

P(EVZ) P(E 4ýZ). P(E&jz)1

Table 2 Number of multiplications required in the computation of P(EjIZ)'s in generai

I Hypotheses at Level i Number of Multiplications

2 2

2

rain(n, ?n) 12

min(rn,in) 7

11



I
5 3.4 Computational Complexity

3 With the prep)roc(ssing discussed in the previous subsection, the computational coin-

plexity analysis is simplified as counting the number of data association hypotheses or

3 the number nodes in the hypothesis tree. In general. as we can expect. it is impossible

to count the number of the nodes in the hypothesis tree for any situation. In this sub-

section. the computational complexity is analyze(d in two cases, the worst case and the

average case. Suppose that there are n targets and m measurements. According to the

mathematical model for data association. to variables. Xj U := 1,2 )..... )) are used to

£ ldenote the in measurements. Each variable X, is defined on a set Z1. In the worst case.

Z, assumes the following form:

Z {O.1,2,...,n} forj -- 1,2,...,n. (12)

I In (12). each Z3 contains n non-zero values. In the average case, however, the number

of non-zero values in each Z3 is much less than the total number, n, of targets. In the

following, the worst case analysis is considered first. Then, the average case analysis is

5 discussed.

3 3.4.1 The Worst Case Analysis

I Let S(n. in) denote the number of data association hypotheses or the number of nodes

in the hypothesis tree in the worst case. Suppose, n = 1. In this case, either this target

is hypothesized to be associated with one of the m measurements or all mn measurements

3 are hypothesized to originate from clutter. Therefore, S(1, mn) = in + 1. Similarly, when

in -- 1, the total number of data association hypotheses, S(n, 1), is equal to n + 1. In

3 general. the DFS algorithm starts at the root of a hypothesis tree, where all variables are

zero. Then. X, is set to 1. The Iotal number of valid combinations of non-zero values of

Sthe variables X, (. 2,3,...in) is S(n - 1, - 1). Since X, = 1, the remaining m i

variables Xj (3 = 2.3,... , rn) can only have n I non-zero values, i.e., 2,3, ... , n. After

2
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5 all combinations of* non-zero values of the variabhles Xj (j 2.3 . in) are generated,

XA is set to 2. As just discussed, the total number of valid combinations of the variables

3 X, (j 2,3 ..... .i) is S(n 1. ti - 1). This process can go on until all nion-zero values

of X, are used. Since there are n different non-zero values for variable X 1 , the number

U of data association hypotheses in which X, is non-zero is nS(n - 1, in - 1). Once all the

3data association hypotheses with X, J 0 are generated. the DFS algorithm goes back

to the root of the hypothesis tree and resets XA to 0. The remaining data association

3 hypotheses are then generated based on n-n 1 variables Xj (j = 2,3, . .. , m) and n non-

zero values for each variable. Therefore, the number of data association hypotheses with

3X, -: 0 is S(n, in - 1). It is obvious now that the number of data association hypotheses

or the number nodes in a hypothesis tree in the worst case can be represented by a

difference equation,

3S(n. i,) - nS(n -- 1.rn - 1) S(n.-1). (13)

|with boundary conditions.

S(1, m) - +

3 S(n, 1) n +l1.

3 Since (13) is not a constant coefficient difference equation, its solution is not very

(easy to get. To avoid the trouble, return to the structure of the hypothesis tree. Recalling

that the nodes at level i represent the hypotheses that i out of rn measurements are from

i out of n targets. There are (C' choices to get any i out of rnn measurements, where{- f•o(,) for 1 < i- in

1 for i -- 0.

5 Among nr targets, there are A, different ways of associating the i measurements

with the i out n targets., where

I IA f n(n 1)---(n -i) for l< i< n

[1 for i - 0.

21

If



I So. the number of nodes ill the tree is

in i[( n, r)

I=0

It can be shown that the solution satisfies (13). From the solution, it is apparent that

the computational cost is highly increasing with the increase of n and m. In Table-3,

I some S(n, rn)'s are listed with different numbers of targets and measurements. From the

listed values, we can see that even when the number of targets is as small as six, the

number of nodes in the hypothesis tree could be greater than one million in the worst

c ase.

Table 3 Sample values of S(n, i)

ii m S!(n.,n) n rn S (?In)

I2 4 21 4 8 3,393

229 6 12 1,442,173 !;

I In practical situations, however. when the densities of target and clutter are not very

high, the number of non-zero values in each Z1 is much less than that of measurements,

in. Consequently, the number of hypotheses is much less than S(n, in). One can derive a

tighter upper bound by introducing additional assumptions to modify (13). For example,

the number of non-values in each Z, is less than or equal to two. which means that any

measurement cannot be shared by more, than two targets. With this assumption, (13)

may be changed to

S(n, rn) - 2S(n - 1,,m - 1) - S(n,m- 1). (15)

In next subsection, a simple practical upper bound for the number of data association

hypotheses is derived in the average case where the number of non-zero values for each

variable X, is much less than that of measurements, in.
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I
5 3.4.2 The Average Case Analysis

3 (:oiionly, it is assumed that there are on the average two measurements inside the

validation gate of each target. In other words, the number of non-zero values in each

3 Z, is less than or equal to two under this assumption. For each target, there are three

different associations with the two measurements. That is, the target is hypothesized to

be associated with one of the two measurements and the target is not associated with any

I one of the two measurements. Therefore. on the average, the number of data association

hypotheses is bounded by

n

S *(n,,in) = ,3,* ... *3 -= 3'. (16)

I In the example discussed in Section 2. there are 2 targets and 3 measurements and

there are 2 measurements inside the validation gate of each target. The number of data

association hypotheses obtained from the worst case analysis is 13 and the upper bound

3 obtained from (16) is 9. The actual number of data association hypotheses in this case is

8. The upper bound given in (16) can be easily extended to the case where the number

-- of measurements inside the validation gate of each target is in'. That is,

S.(nn) 1(i rin'). (17)
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4 Direct Computation of 3'

As discussed in the previous section. the computational cost for the generation of the data

association hypotheses is very high when ii. the number of targets in a cluster, and n.,

the number of measurements, are relatively large. To further speed up the computation

of the a posteriori probability i, an algorithm which applies to certain special situation

is proposed in this section. This t)rocedulre does not requires the generation of the

data association hypotheses. This algorithm is applicable when the density of targets

is moderate. Specifically, the formulae for computing j3' directly are developed for the

cases when n equals 1, 2. 3, or 4.

When a cluster is composed of only one target the PDAF is applied. Using the

notations in (3) and (4), we have

""3J P] for - 1,2...,m, (18)

I0 Po. (19)

Every 3' is normalized by

I m t(20)
J=1 3=0

I The normalized 0' is the one occurring in the PDAF presented in I1 with PcG - 1, where

Pc is the probability for the correct measurement to fall inside the validation gate.

I
For the example given in Section 2, there are 2 closely spaced targets and 3 measure-

iments are received. One of the 3 measurements is inside the intersection of the validation

gates of the two targets. Therefore, these two targets are in the same cluster. In this

Scase, each ' is a sum m ation of the conditional probabilities of som e data association

hypotheses. For example,

#•=P(6(f21)IZ) + P(E(Ai)IZ) +- P(0(f3)14)

If the notations in (3) and (4) are used. the above equation can be simplified as,

2P 0
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I

In (21). there is no reference to the conditional probabilities of data association hypothe-

Ses , l-.1, and 11,,. 3' is directly computed from PJ and P,. In general, for 2 targets and

nm measurements. 3J can be obtained by the following equations. For j 1,2 .2.-. m.

1, - 1, 2. for i = 1.., and t1 I .2,

:1,' P '1(P -' Pt2) (22)

I (L) P 12 (23)

whereI
P o EP PL for t 1,,2. (24)

J-1

In (22), the term p tP P2 is dropped because P" P" is the conditional probability for

measurement j to originate from target tj and 12, which violates the two restrictions 1'3

given in Section 2.

Similarly, for 3 targets and m measurements, 0' can be computed by the family

of equations given below. Forj 1.2.... , rn, t, = 1.2.3. for i = 1.2,3, and tl # tq if

p q,

I3 I ptj,(pt2 Pt 2 )(pt 3 - pi3) -- P/*P/t', (25)

/3o = Po(Pi2p t3 2 P t 3) (26)

0 1=1

When the number of targets in a cluster is increased to 4, the set of equations for

3 t l)ecomes much more complex. For j 1,2,... ,m, t, 1,2,3,4, for i -1,2,3,4, and

tp p tq if p € q,

4 Mn Mr' pt P J'lI(p. P1,)- (PI -t2 ) >_2 1 i'l,/p (P13- p'3 ) Pe2P,4-) 
-- (P P

a=2 I= 1=!

(P t . _ P',) 11 p 12p 11 3 2 P P ,2P(3P 41 (27)
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PO(fH P" P" P, pt 3 ptt4  Pt3\ rJ)YPI4

'2 I -I I--I

pt4 - ply2p/,- 2YLPt-3PI4') (28)
I I :IA

When the number of targets is larger than 4, the equations for computing 1d3 can

be derived with careful consideration. However, the complicated equations themselves

may require a lot of inemory. In a small system, excessive requirement for memory may

not be suitable. Therefore, in this section. the equations for direct computation of 0'

are derived for the cases in which the number of targets in a cluster is less than or equal

to 4. The normalizing constant c in all cases is obtained from
•rn

- -. (29)
1-0

In to order to compare with the DES algorithm, the number of multiplications

required in the computation of Ijt in the algorithm proposed here is estimated from

the above equations in all cases. Since the computational costs for obtaining 0' in the

two algorithms are the same when there is only one target in a cluster, the following

(discussion is focused on the cases in which the size of a cluster of targets is larger than

1. In the worst case, in the case of 2 targets and m measurements, one multiplication is

required by (22) and one by (23). Therefore. the total number of multiplications required

to compute all 3's in this case is 2(rn - 1). If the DFS algorithm is applied, the total

number of multiplications can be obtained by using (11). Suppose. rn - 2. Then.

A1Mm - A '-,'

rn(m + 1)

(> 2 1) (30)

where A'C' is the number of nodes at level i in the hypothesis tree as discussed in the

complexity analysis in the previous section. Similar comparisons can be made between

the DFS algorithm and the direct computation formulae for /3 in the case of 3 and 4

targets, as shown in Table-4. In Table-4, DC and DFS stand for direct computation
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and depJth-first search algoritinms, respectively. The results in Table-4 are based oil the

assumption that m is larger than or equal to n. Generally speaking, the number of

multiplications required in the, direct comlputation of .3' is less than that required in theJ

DFS algorithm as shown in Table-4. However, this is not true when n and m are equal to

4. Therefore, it is quite possible that the number of multiplications required in the direct

computation algorithm could be larger than that required in the DFS algorithm when

ii -, 4 and rn is almost equal to n. In the implementation. it would be a good idea to

combine the two algorithm together. For each cluster of targets. the direct computation

algorithm is applied if n, the size of the cluster, is less than or equal to 4. Otherwise,

the DFS is applied.

Table 4 Number of multiplications required in the two algorithms

D DC DFS

2 2(m t- i) m(m-t 1)

3 3(m,2  21n-1-2) rn (m 2 + 3m -1)

4 4(57n2 A Ori ; 6) ,.j.,•- 2m2 - rn -ý 2)
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5 Approximation of 3'

I Unlike the two algorithins which have been developed in the previous sections to compute

j efficiently, in this section, an algorithm is proposed to compute 3.' approximately

without coinputing the conditional probabilities of the data association hypotheses in

3 the JPDAF. In the original JPDAF, the interference from all the targets in the same

cluster is considered in the computation of 3'. This results in high computational cost

for the data association. To reduce the computational cost for the data association,

only the interference from the neighbors of target t is considered in the approximation

I of 3 t. A target is a neighbor of target t if there is at least one measurement inside

the intersection of the validation gates of the two targets. It is not necessary that two

i targets in the same cluster are neighbors. For example. targets 1, 2. and 3 are in the same

cluster if targets I and 2 are neighbors of target 3. However, if there is no measurement

inside the intersection of the validation gates of targets I and 2, targets 1 and 2 are not

neighbors.

i In the direct computation algorithm, each 3' is computed as following.

j P'•pFi for t - 1,2,...,n, andj 0,1. 2 m. (31)

In (31). FP is the interference from the other targets in the same cluster. Comparing

(31) with (18), the interference FP may be considered as a weight on P1. To see what

effect of the weight Ft has on the value of 3'. let us consider the example in Section 2.

In that example. there are 2 targets and 3 measurements. Among the 3 measurements.

measurement 2 is inside the intersection of the validation gates of the two targets. Using

(22) and (23). we have

I - POJ,,I 1~ 2~) -P ,(2

31
1 Pl(Po + P.2 j P2) - Po1Fi , (33)

-2 P2 (Po+Pz) - P1F 2 . (34)

From the above equations, it is obvious that F. is less than both F.' and F,. This means
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I

that more Weight is put oin measurement I than on "easurement 2 since measurement

2 is inside the intersection of the validation gates of the two targets. In other words.

a measurement is less likely to come from target I if the measurement is inside the

intersection of the validation gates of target t and other targets. If F's are equal for

0, 1. ..... n, then there is either no interference from any other target or the effect

of the interferences on the values of O's are equal. This happens when there is no

intersection between the validation gates of target I and the other targets. The value of

,3' obtained from tihe joint data association with the other targets is the same as that of

3' from the data association for target t alone. Generally, if targets are not grouped into

clusters, the value of 3' for each target and each measurement is the same as that of 3'

after targets are grouped into clusters. However, much more computation is needed to

compute 3' if targets are not grouped into clusters. So, it is very important that targets

are grouped into clusters before considering data association.

Even after clustering, the computation to obtain FP could be still very costly if n,

the number of targets in a cluster, and m, the number of measurements, are relatively

large as discussed in the previous sections. To reduce the computational cost, in the

approximation of .3, only the interference from the neighbors of target t is considered

in the computation of F. Let Bt denote the set of neighbors of target t. That is, a

target belongs to B' if there is at least one measurement inside the intersection of the

validation gates of this target and target t. Then, the computation of FP is simplified as

shown below.
m

F ' P 0 Po + P/ for j 1 ,2,..,?n, (35)
,r-Bt I =I

0 PO P1 '. (36)

Substitute F into (31), to obtain

/i -- P'F' for t - 1,2,.... n, and j 0,1,2,..... m. (37)

Finally. ý/ is normalized by the constant c in (29).
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From the manner in which F' is computed. this algorithim is actually a approx-

imation of the direct computation algorithm presented in the previous section. When

ii - 2. (37) is equivalent to (22) and (23). Comparing with PDAF 2:2,, the computational

Cost of this approximation algorithm is increased slightly because of computing Ft. Fur-

thermore, it is expected that the performance of the approximation algorithm could be

close to that of the JPDAF because the interference from neighboring targets of target t

is considered in the computation of 30. The computer simulation of the approximation

algorithm is presented in the next section.

I

I
I
I
I
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I
6 Computer Simulation

In the simulation, the dynamic models for the targets have been digitized using the

sampling period T normalized to Is and the state vectors have been represented in

S2-dimensional Cartesian coordinates (or in X Y plane). Furthermore, only position

measurements have been assumed to be available. The surveillance region used in the

simulation is a 35kmi by 35krn square and the initial positions and velocities of 16 targets

j in 2-dimensional Cartesian coordinates are given in Table-5. The performance of the

three algorithms proposed are tested in two separate cases in the simulation. In the first

case, suppose that the dynamic characteristics of all targets are known, i.e., every target

moves at a constant velocity. In the second case, however, some targets could nmake a

I maneuver at any time. In the simulation, target 10 and 11 are capable of making a turn

with a centripetal acceleration. The maneuver parameters of the two targets are given

I in Table-6.

Since every target is nonmaneuvering in the first case. the generic target dynamic

model has the following form:

x(k + 1) = Fx(k) + Gw(k) (38)

z(k) = Hx(k) + v(k), (39)

where

x (k) x(k) -ý(k) y(k) ,)(k) w (k) - w,(k) ?,,2(k)

E{w(k)} - 0, E{w(k)w'(j)} -- Q6(k- A,

1 T 0 0 T 2 /2 0

0 1 0 0 T 0
F G

0 0 1 T 0 T 2 /2

0 0 0 1 0 T
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1H

E{fv(k)} - 0. E{v(k)v'(j)}l R((k

For maneuvering targets, a higher order of dynamic niode. is required to describe

the characteristics of these targets. In the simulation, the modified Singers model de-

veloped in [121 is used for all targets in the second case. The state and observation

equations in the modified Singer's model are described by

xIm(k + 1) = Fmxm(k) •- (k) (40)

z(k) = Hmxm(k) i-v(k). (41)

In (40) and (41), xm(k), Fr, and Hm are defined as

xm(k) = ((k) i(k) 37(k) y(k) p(k) i)(k)

I (f(T) 0 ((0 T
Fm0 f(T)

0 0 1

Hm ( 0 0o1 0 0 0 0 0

The statistical properties of v(k) in (41) are identical to those of v(k) in (39). In (40) and

(41), the two noise terms, u(k) and v(k) are still assumed to be mutually independent.

The state noise u(k) is a zero-mean Gaussian white random process with covariance

matrix Qm(k) of the following form:

(T)TV!20 T',18 T 3/6C)

Q .•k} = a0 ayk~ (T) l q, qT) T /8 T /3 T !
0 y(k) q() T3/66 TV/2 T
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where o is the maneuver correlation coefficient. and (7 (k) and a,(k) are. respectively,

thc X and Y' components of the maneuver magnitude variance. Both a,(k) and a,(k)

are adaptively estimated in the -,imulation.

The correct returns from a target are generated by adding noise to the computed

true position of the target. The standard deviation of the measurement noise has been

selected- as v/R = 0.15km fo: both the X and Y -components. The correct return would

pass a detector with probability of detection Pj) -- 0.99. The clutter is generated uni-

forinly over the whole surveillance region. The total number of clutter returns observed

in the region is a Poisson random number. The. density of the clutter, A, is selected to

be 0.05. kmn2. This has given an average of 0.5-2 clutter per gate in the examples given

1,blow. The threshold g2 for the validation gate is set to 17.0.

The efficiency of the three algorithms is estimated in terms of CPU time used in

the data associatict, in a single sample run. The simulation is performed on a VAX 8550.

The exact CPU time for each example could vary from time to time, depending upon

the load of the computer. The robustness of the three algorithm is evaluated using the

success rate in tracking both maneuvering and noninaneuvering targets in clutter. The

su -ess rate means the number of sample runs finished without lost tracking of a single

I target in 100 different sample runs.

In the simulation. three examples are used to track 5, 9, and 16 targets with different

t•,inamic models given in (38) and (40). The initial parameters of the 5 targets in the

first examnple are taken froIn targets 4, 6, 7, 11, and 13 and the initial parameters of the

targets in the second example are taken from targets 1, 2, 4, 6, 7, 8, 10, 11. and 16 in

Table-5. In the third example, all targets listed in Table-5 are . When all targets

are supposed to be nonmaneuvering, the three examples are shown in Figs. 5. 7, and 9.

If the modified Singer's modl in (40) is used for all targets, the trajectories of all targets

in the three examples are shown in Figs. 6, 8, and 10.

The CPTJ times used in the data association in one sample run in the three algo-
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I
ritiiias are listed in Table-7. In Table-7. DFS. AC. and DC stand for depth-first search.

approximnate computation. and direct computation algorithms, respectively. In the first

j example. as shown in Figs. 5 and 6. the largest size of cluster of targets is 3. But most

of the tirne during simulation. the sizes of clusters are I and, occasionally. 2. When

there is oie target in a cluster, a PDAF is applied for tracking this target. In the three

Salgorithms. the equations used to compute 13' are the same when the size of a cluster is 1.

As a result, in this example. the CPU times used in the data association are almost the

same in the three algorithms for tracking nonmaneuvering and maneuvering targets. In

the second example, as shown in Figs. 7 and 8. the total number of targets is increased

to 9 and the largest size of cluster of targets is increased to 4. Most of the time in the

sinmulation the size of the largest cluster at each time instant is about 2. Therefore,

the increases of the CPU times in the three algorithms are roughly proportional to the

increase of the number of targets. However. in the third example as shown in Figs. 9 and

10. the size of the largest cluster is frequently ranging from 6 to 8, and it is sometimes as

large as 9. This leads to a significant increase of the CPU time used for data association

in the DFS algorithm. For the approximate computation (AC) algorithm, the increase

of the CPU time is proportional to the increase of the number of targets because of the

way in which che data association is considered in this algorithm. Although the AC

algorithm is much more efficient than the DFS algorithm when the targets are nonma-

neuvering, the AC algorithm is not suitable for use to track 16 targets when there are

possible maneuvers. Since the size of the cluster of targets is frequently larger than 4 in

this example, the direct computation (DC) algorithm is not applicable.

The success rates of the three algorithmis are listed in Table-8. When targets are

rionmnianeuvering, target 11, as shown in Fig. 9, causes most of the mnistracking. However,

when the dynamic model given in (40) is used, the two maneuvering targets are the

major cause of the ,nin:tracking. Of course, the different layout of the targets could lead

to different success rates. Especially, the success rates might be improved if either target

11 is removed or it is moved to a different position. However, the current layout of the
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target- could help us understand the limitation of the joint data probabilistic association

technique. In all examples, the available succes.s rates of the DFS and the DC algorithms

are the same. as expected. when the density of targets is not high. But the DC algorithm

is computationally more efficient than the DFS algorithm. The high success rate of the

DFS algorithm is accompanied by high computational cost in comparison with the AC

algorithm. The success rate of the AC algorithm in the case of tracking 16 maneuvering

targets is not available in Table-8 due to the same reason given above. The performance of

the DFS and the AC algorithms deteriorates with the increase in the number of targets.

This difficulty is caused by the increase of the number of measurements inside each

gate. Therefore. additional information is needed to reduce the uncertainty in the data

association. Practically, the choice of the three algorithm in the design of a tracking

system will be dependent upon the computalional capability and the requirement of

tracking accuracy.

I

I
I
I
I
I
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I Table 5 The initial positions and velocities of 16 targets

5 Target Position (kr) Velocity (kmn,s)

X y £ y

1 0.72 0.12

2 3.0 7.8 0.72 -0.12I __

3 10.0 2.0 0.45 0.60

4 6.0 10.0 _0.62 0.35

5 6.0 12.0 0.62 0.35

6 5.0 24.0 0.50 0.22

7 5.0 30.0 0.50 -0.50

8 4.0 34.0 0.70 -0.31

5.0 20.5 _ 0.62 0.00'

10 4.0 18.0 !0.70 0.00

S11 11.0 7.0 0.45 0.55

12 18.0 34.2 10.10 -0.68

3 .0 29.0 0.71 0.00

14 11.0 33.0 0.60 -0.60

15 12.0 7.0 0.35 0.65

16 4.0 .26.0 0.60 0.25

Table 6 The maneuver parameters of target-10 and target-li

Trajectory Acceleration i Turn Started Turn Finished

5I a,. (7n / s') at (s) at (-S)

10 -0.05 10 25

* _____ 0.08 15 300

3I
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Table 7 CPU Time Used in Data Association in Seconds (one sample run)

:/ of targets Nonmaneuvering (38) Maneuvering (40). . .. .._ T -.. . . . .

- DFS AC DC DFSI AC DC
I 5 0.14 0.14 0.09 J0.22 0.11 0.12

9 0.36 0.17 0.24 !0.41 0.19 0.24

16 35.98 0.39 N/A 78.80 N/A NIA

Table 8 The success rates of the three algorithms in 100 runs

of targets Nonmaneuvering (38) Maneuvering (40)

DFS AC DC DFS AC DC

, 5 100 100 100 94
S 9 100 99 100o 70 69 70

16 85 80 N/A 32 N/A N/At
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Figure 5 Tracking 5 nonnianeuvering targets.
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Figure 7 Tracking 9 nonmaneuvering targets.
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Figure 8 Tracking 9 maneuvering targets.
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Figure 9 Tracking 16 nonmaneuvering targets.
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Figure 10 Tracking 16 maneuvering targets.

43



7 Conclusion

In this paper, three algorithms have been proposed for fast computation of the a posteri-

ori probability ,3 in the JPDAF. As shown in the simulation. the CPU time is increased

drastically when the largest size of the cluster of targets is relatively large. Therefore, the

DFS algorithm is suitable for implementation in a tracking system and in a ground-based

surveillance system with a large centralized computational capability. Furthermore, the

JPDAF implemented with the DFS algorithm could serve as a standard for any future

attempt to approximate the JPDAF. The advantages of the AC algorithm proposed in

this paper are that the computation of the a posteriori probability •3 is very efficient

and that the success rate is relatively high in comparison with the JPDAF without any

approximation. Especially, the AC algorithm is suitable for implementation in a multi-

processor system. The DC algorithm is more efficient than the DFS algorithm and can

be implemented in a multiprocessor system. However, right now, it is only applicable

when the density of targets is not high.

Although the discussion here is focused on the target-oriented approach, i.e., JPDAF

31. it is not difficult to extend the DFS algorithm to the measurement-oriented approach

4j. Furthermore, the DFS-based technique is applicable to three dimensional validation

matrices which occur in Markov models of system parameters for maneuvering targets

in clutter i101 and in multiscan correlation [41.
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