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Abstract

We study bootstrap confidence intervals for three types of parameters in Cox's
proportional hazards model: the regression parameter, the survival function at fixed
time points, and the median survival time at fixed values of a covariate. Several
types of bootstrap confidence intervals are studied, and the type of interval is de-
termined by two factors. One factor is the method of drawing the bootstrap sam-
ple. We consider three such methods, which may be briefly described as follows:
(1) Ordinary resampling from the empirical cumulative distribution function, (2)
Resampling conditional on the covariates, and (3) Resampling conditional on the
covariates and the censoring pattern. Another factor is the method of forming the
confidence interval from a gi. n sample; the methods considered are the percentile,
hybrid, and bootstrap-t. We provide a theorem on the asymptotic validity of the
third method of bootstrap resampling. All the methods of forming confidence inter-
vals are compared to each other and to the standard asymptotic method via a Monte
Carlo study. The data sets for this Monte Carlo study are simulated conditionally
on the covariates and the censoring pattern, the situation appropriate for the third
method of resampling. One conclusion drawn from the Monte Carlo study is that
the asymptotic method is best for the regression parameter, but not for the survival
function or the median survival time. Conclusions about the bootstrap methods in-
clude the surprising result that, overall, the second method of drawing the samples
outperforms the third method. Also, there is an interaction effect between the two
factors, method of drawing the sample and method of forming the interval, espe-
cially for estimation of the regression parameter. Finally, the bootstrap-t intervals
are consistently outperformed by at least one of the two more rudimentary types of
bootstrap interval.

Key words and phrases: ancillarity principle, bootstrap-t, hybrid interval, percentile in-

terval, proportional hazards model



1 Introduction and Summary

The proportional hazards model of Cox (1972) specifies that the hazard rate for an indi-
vidual with covariate vector x is

A(tlx) = A(t)exp(#3'x)

where 18o is a vector of unknown regression coefficients and A, the underlying baseline
hazard rate, is an unknown and unspecified nonnegative function. Several parameters of
common interest in the Cox model are the regression parameter 80o, the survival function
S(tlx) associated with A(tlx), and the pth quantile of the distribution of the lifelength of
an individual with covariate vector x, p(x). The role of 11 2 (x) is analogous to the role
of the mean response, or the regression curve at the point x, in linear regression analysis.

For estimation of #o and S(tlx), there exists a well-developed asymptotic theory which
enables the construction of confidence intervals (Andersen and Gill (1982)). These con-
fidence intervals have been found to work well in practice, and they are available in
standard statistical computer packages, such as SAS and S. For estimation of ,p(x), the
results of Andersen and Gill (1982) must be applied in conjunction with a result on weak
convergence of the quantile process to derive asymptotic theory (Dabrowska and Doksum
(1987), Burr and Doss (1991)). The expression for the asymptotic standard error of the
estimator involves the hazard rate function A(4p(x)), just as the formula for asymptotic
standard error of the median of a simple random sample involves the underlying density
function. Estimation of density functions or hazard rate functions is a complicated en-
deavor; Silverman (1986) discusses many methods which have been studied. Because the
asymptotic theory for - timation of p(x) is only recently available and requires estimation
of the hazard rate, it is not widely applied.

This paper concerns the bootstrap method of forming confidence intervals in the Cox
model. A principal reason for this study is that the bootstrap is an alternative to methods
based on standard asymptotic theory. Before discussing further our motivation, it is useful
to describe three distinct methods of bootstrapping in the Cox model.

The data and model may be described as follows. Associated with individual i are
a covariate vector Xi, a lifelength Yi, and a censoring time Ci. We do not observe
Y directly, but rather we observe T = min(Y, C) and 6k = I(Y, _< Ci). Thus the
data is (Ti, i, Xi), i = 1, ... ,n. The underlying baseline cumulative hazard function is
A(t) = fo A(s)ds. Then, the distribution function of the lifetime of an individual with co-
variate x is F(tlx) = 1 - H-,,<t (I - A(du))exP(00'x). (See Section 2.1.) If / and A are Cox's
(1972) and Breslow's (1972, 1974) estimates of flo and A, respectively, then F(tlx) may
be estimated by F(tlx) = 1 - VH <t(1 - A(du))exp(4'x). Assume that the C,'s are iid -- G,
and let d be the Kaplan-Meier estimate of G based on the data (Ti, i, Xi), i = 1,... ,n.

Consider the following two methods of bootstrapping:
Method 1: Resample the triples (Ti, 6i, Xi), 2 = 1,... ,n.
Method 2: Generate Y* ,*-- F(tlXi) and C* ,- d, i = 1,...,n, all variables indepen-
dent. Form T.* = min(Y'i, C, ) and 6i = I(Y* < Ci*). The resampled data is then

(T,7,6,,X ), i = 1,... ,n.
Efron and Tibshirani (1986) discuss Method 1. In an interesting but unpublished

technical report which provided impetus for the present work, Hjort (1985) proposes
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Method 2 and develops some asymptotic theory for it. Suppose that we wish to estimate
the variability of some estimate, such as 4p(x). Method 1 is appropriate for estin. ding
the unconditional variance of 4p(x), i.e. averaging over the marginal distribution of the
covariates and of the censoring variables. Method 2 is appropriate for estimating the
conditional variance of 4p(x) given X, where X = (X 1 ,...,X,,). If the distribution of
the Xi's does not depend on the unknown parameters S and #0 then the usual ancillarity
arguments point to the conditional variance as the "right" quantity to estimate. This
situation is closely connected to bootstrapping in linear regression models, where one
can bootstrap by resampling from the pairs (responses, covariates), or one can bootstrap
by resampling from the residuals; see Freedman (1981). Many of the comments in the
discussion paper Wu (1986) are relevant here.

The ancillarity principle can be carried further in the presence of censoring, where the
censoring pattern is an ancillary statistic. The distribution of the Ci's does not depend on
the unknown parameters S and 30; therefore, if we knew the Ci's we would condition on
them. However, we don't see the Ci's exactly: If bi = 0 we see the exact value of Ci, but if
6i = 1 we know only that Ci > T. Denote this information on the C's by C. Then, what
we want to estimate is V.tr(4(x) I X,C). This idea leads to Method 3 of bootstrapping.
Method 3: Generate Y7" - F(tlXi). If 6i = 0, let C7 = Ti; if 6i = 1, generate Ci from
the Kaplan-Meier estimate of G, conditional on Ci > T, that is, from the distribution
(G(t) - G(T))/(1 - G(T)).

In deciding to study Method 3 of taking bootstrap samples, we were motivated by
consideration of a situation where this method appears to provide a large improvement
over Method 2. Suppose /0 is positive, so that large covariate values are associated
with large risk. Then a data point with a large covariate value, for which the lifetime is
large and uncensored, would be an influential point. The estimator 3 is pulled heavily
downward by such an influential point. For estimation of the bias of / conditional on
the covariate/censoring pattern, it appears intuitively true that Bootstrap Method 3 is
better than Method 2. The large lifetime will usually be censored in Method 2 bootstrap
samples, and in effect these bootstrap samples will be very similar to those arising if the
influential point did not exist. In contrast, Method 3 forces the large lifetime to remain
uncensored, and so this problem does not arise.

In the preliminary study that motivated our consideration of Method 3, when we
compared the bootstrap estimates of bias of 3 obtained from the three methods of taking
bootstrap samples, Method 3 had the lowest m.a.d. (median absolute deviation from the
true value) of the three methods. Details of an expanded version of this study are given
in Section 3.

We can now discuss more fully the motivations for the present work. First, although
asymptotic methods already exist for the main interesting parameters, in the case of 4p(x)
they are difficult to apply. Burr and Doss (1991) apply the asymptotic theory to formation
of confidence bands for 4p(x) and show good performance of the bands in some Monte
Carlo studies. They use a kernel function method to estimate A(4p(x)), for which the
bin width was carefully chosen to be suitable for the particular simulation study. They
caution that if it is not possible to exert such care in selecting the bin width in practice,
then the performance of the bands may be adversely affected. In addition, even when
the asymptotics are easily implemented, the bootstrap may outperform the asymptotic
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methods. Singh (198!) and Abramovitch and Singh (1985) give situations where the sam-
pling variability of an estimator is more accurately estimated using bootstrap procedures
than using standard asymptotic methods.

A second reason for this investigation on bootstrap confidence intervals in the Cox
model is that "the bootstrap" method of forming confidence intervals is not in fact
uniquely defined. There are two aspects to this problem: First, it is often true that
when dealing with complex data structures there are several ways to draw the bootstrap
samples; second, many methods for forming bootstrap confidence intervals from a given
sample have been proposed. A major thrust of the present work is to study the effects of
method of taking the sample and method of forming the interval, on performance of the
bootstrap in interval estimation of the parameters of most interest in the Cox model.

So many types of bootstrap confidence intervals have been proposed that the variety
available can be overwhelming. Types which are frequently studied in the literature
include the percentile, hybrid, bootstrap-t, and Efron's BC0 , all of which are discussed by
Martin (1990). Here we study only three kinds of bootstrap confidence intervals in order
to keep the work focused, and to simplify the conclusions drawn. We study the percentile,
hybrid, and bootstrap-t intervals. These intervals are described in Section 2.2 below.

The percentile method is considered because even though the theoretical justification
for this method is the weakest (Hall (1988)), these intervals are the simplest to use and ex-
plain, and are the most frequently used in practice. We study the hybrid method because
this is precisely the method which is justified by asymptotic results for the bootstrap in
complicated models, such as the Cox model. That is, let 0 represent a parameter to be
estimated, 0 an estimate of it, and d* the estimate computed from a bootstrap sample.
Suppose we know that V/i(0* - 0) has almost surely the same limiting distribution as
V/ ( - 9). Then we would want to use the distribution of (0* - 0) to approximate that
of (9 - 0); if we do this to form confidence intervals for 9, then the intervals obtained
are the hybrid ones. The bootstrap-t and the BC,, intervals are comparable in that both
have been demonstrated theoretically to be "second-order correct" for one-sided intervals
in some relatively simple situations; see Hall (1988). The bootstrap-t stood out as a
star performer in recent empirical work of Owen (1988), which dealt with nonparametric
interval estimation of the mean from a random sample. In addition, the bootstrap-t is
usually more automatic to apply than the BC0 method. For these reasons, we study the
bootstrap-t rather than the BC, method in this work. However, we must also note here a
problem with the bootstrap-t which was especially apparent in our work on applying it to
forming confidence intervals for p(x). The recent work which has shown good behavior
of the bootstrap-t has dealt with simple cases, such as estimating the mean of a random
sample. It is well-known that in more complicated situations, stability of the estimate of
scale needed for the bootstrap-t is crucial to its good performance. It may be very difficult
to estimate this scale parameter, and in fact, the bootstrap-t method is not uniquely de-
fined since many different scale parameters, and different estimators of these parameters,
could be tried. In this work, we have taken the approach of building on known asymptotic
results in order to lessen the computational labor of the bootstrap-t; that is, we estimate
the standard error of our estimators by formulas derived from asymptotic theory. This
approach did not work for 6 1 2(x). See Section 2.2 for a discussion of the bootstrap-t for
estimation of ¢p(x), and for detailed descriptions of the three methods we study.
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Asymptotic results for estimators in the Cox model are based on martingale central-
limit theorems. It is an unfrtunate feature of this martingale theory that it is capable of
producing only first-order results. That is, there are no tools available which are analogous
to the Edgeworth expansions that yield the currently available theoretical comparisons of
the various types of intervals. When faced with the impossibility of obtaining a theoretical
comparison of the various bootstrap methods for forming confidence intervals using the
existing theory, comparisons must be done by Monte Carlo studies. Here, the Monte
Carlo studies are carried out in the situation appropriate for Method 3 of bootstrapping,
that is, conditional on the covariates and the censoring pattern; this is explained in more
detail in Section 3.1.

There is an enormous number of possible Monte Carlo studies that could be carried
out, particularly since we condition on the covariates and the censoring pattern. We
have carried out simulations for a wide range of the factors involved. In choosing which
studies to present here, the decision was complicated by inconsistencies in the results
among the different situations we studied. In particular, there were marked changes in
the relative performances of the different methods for low and high percent censoring.
We present in detail in this paper the results for a situation with high percent censoring
(55%), over several sample sizes and several covariate/censoring patterns. We selected
the high percent censoring case because it is our experience that many applications of the
Cox model involve high percent censoring due to a fixed endpoint of the clinical trial. We
also report results of a single study with an influential point of the sort described above
in our motivation for Method 3 of bootstrapping.

Before carrying out the Monte Carlo studies, we had anticipated that confidence in-
tervals would improve with increasing sophistication of the method of drawing bootstrap
samples and method of forming the intervals. However, this was not the case. Even in
the restricted set of studies we report on here, the results are not simple to describe; there
is no single "winner" among the bootstrap methods. To begin with, different conclusions
are drawn for each type of parameter studied, f0, S(.), and p(.). For forming confidence
intervals for /3o, the asymptotic method is consistently better than, or at least as good as,
all the bootstrap methods considered. This is not true for the confidence intervals for S(-)
or (-). Nevertheless, we venture to make the following general statements here. One
surprising result is that Method 2 overall outperforms Method 3, except in the study with
the influential point. Also, there is an interaction effect between the two factors, method
of drawing the sample and method of forming the interval, especially for estimation of 30.
Finally, the bootstrap-t intervals are consistently outperformed by at least one of the two
more rudimentary bootstrap methods.

In Section 5 we deal with asymptotics, and we consider the simpler case where #o is
known to be zero. This corresponds to the familiar setup of the Kaplan-Meier estimator.
In the case of the Kaplan-Meier estimator, Methods 1 and 2 of bootstrapping are identical
(Efron (1981)). It has been shown for Method 1 (or Method 2) that the Kaplan-Meier
estimator computed from the bootstrap sample, when standardized, converges weakly
to the same Gaussian process to which the standardized Kaplan-Meier estimator itself
converges (Akritas (1986); Lo and Singh (1986)). We show the same result for Method 3.
Thus Methods 1 and 3 may be regarded as "asymptotically equivalent."

The rest of the paper is organized as follows: Section 2 gives a detailed description of
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the notation and algorithms needed for estimation of the Cox model parameters and for
description of the bootstrap confidence intervals. Section 3 describes the set-up for the
Monte Carlo studies and reports results of the studies. Section 4 gives a summary and
states conclusions. The theoretical result is stated and proved in Section 5. The figures
and chart for Section 3 are contained in the appendix.

2 Notation and Algorithms

2.1 Estimation of the Cox Model Parameters

Here we describe the estimators of 0, S(tlx), and 4p(x), and the estimators of the standard
errors of these estimators. Several estimators are possible for each of these parameters.
The particular estimator used has an impact on the bootstrap procedure, particularly
because of the many ties in the bootstrap samples; therefore it is necessary to include
many details in this description, which will be given in counting process notation, following
closely that of Andersen and Gill (1982) (henceforth AG).

In the counting process formulation of the likelihood, we use Xi, the q-dimensional
vector of covariates, but rather than using T and bi directly we instead define the counting
processes

Ni(t)=I(T t, bi=l) for t>0

and the processes
J,(t) =I(Ti t) for t ' O.

In this notation, conditional on Xi= xi, i = 1,..., n, the partial likelihood of /0 at time
7- is

L(1 ,,)= n J1 (u)exp(3'xi) dN (u)

The maximum partial likelihood cstimator of #30 at time r is the value/ = 13(r) of /3 that
maximizes L(3, r). In practice, of course, one uses the value of # that maximizes the
partial likelihood at time co; see the discussion in Section 4 of AG. In the case of ties, we
use the usual Peto approximation (Peto (1972)). Other solutions are possible, but they
are more computationally intensive; we considered such solutions impractical because the
number of ties in the bootstrap samples can be quite large.

Next we must specify the estimators of S(tlx) and 4p(x), and for this it is first necessary
to give an estimator of A. The "Nelson-Aalen" estimator of A is

A(I) = ( Jj(s)exp('xj))d(Z Ni(s)).
0j=1 =

The estimator A(t) increases only by jumps, which occur at the uncensored deaths. Bres-
low's (1972, 1974) estimator of A(t) is the continuous estimator obtained from the Nelson-
Aalen estimator by linear interpolation between observed failure times. There are two gen-
eral approaches to estimation of S(tlx) available in practice. The Tsiatis/Link/Brcslow
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approach takes an estimator of the form

S(tlx) = exp(-A(tlx)),

for some estimator A of A. Tsiatis (1983) uses this form for estimation of S(t) with the
Nelson-Aalen estimator of A(t); Link (1984) takes the same form but uses the Breslow
estimator of A(t). We note that the relationship

S(t) = exp(-A(t))

is only valid for continuous T. The other approach is to use the product integral;
Kalbfleisch and Prentice (1980, p. 86) provide a nonparametric MLE for S(tlx) using
this approach. We use the product integral, which is described as follows. Note that for
an arbitrary cumulative hazard function H (which may contain discrete or continuous
components or both), the survival function corresponding to H is the product integral

S(t) = l(1 - H(ds)). (2.1)
s<t

See Gill and Johansen (1990) or Kalbfleisch and Prentice (1980, sec. 1.2.3). Then, given
an estimator H(t) of H, the product-integral estimator of S(t) is

S(t)= l (1-H(ds)). (2.2)
s<t

To specify the estimator of S(t) it remains to give our estimator of the cumulative hazard
function. We use the Nelson-Aalen estimator of A(t), which is a step-function estimator.
(We later do a linear smooth of S(tjx); see Remark 3 below.) in this paper we study the
baseline survival function; however, we also need to decide on an estimator of S(t Ix) for the
purpose of defining an estimator of ,(x). Taking care to specify the model appropriately
for an arbitrary distribution, c.g. such as a discrete bootstrap distribution, we use the
following relationship between A(tlx) and A(t)

1 - A(dtlx) = (1 - A(dt))e p(OO-). (2.3)

See Kalbfleisch and Prentice (1980, sec. 2.4.2 & 4.6.1). The above relationship combined
with 2.2 yields the following estimator of S(tlx)

S(t Ix) = j (1 - A(ds))exp(0z). (2.4)
s<t

A more detailed explanation for this estimator appears in Burr and Doss (1991).

Remarks on Computational Details

1 As is commonly done in fitting the Cox model, we assume covariates have been centered
at their mean; so, we take the baseline hazard function and baseline survival function
to be at the mean covariate values. That is, to be fully precise, in Equation (2.4), the
Nelson-Aalen estimate A(t) of A(/) is computed at mean-centered covariates, and the
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covariate vector x in the exponent must be mean-centered. To keep notation as simple
as possible, from now on we assume covariates have already been corrected for the
mean. In this paper we study the estimator of the baseline survival function, S(tIY),
which we refer to from now on as S(t).

2 If any factor (1 - A(ds)) is less than zero, then S(tlx) is taken to be zero.

3 The function S(tlx) is a step function, with jumps at the observed uncensored survival
times. We actually use here a smoothed version of S(tlx), Sk(tlx), which may be de-
scribed as follows: Say that the number of unique uncensored survival times, plus the
last censored observation if it is the last observation overall, is n", with ordered values
denoted T (l),... T Also, set T (O) = 0. For 0 < t < T(l)/2, Sc(tlz) = 1. Let
Wuli) = S(tu(i._)Ix)- S(tu0(1)x) be the weight assigned to the it h uncensored observation

by S(tljx) as given in Equation (2.4) and Remarks 1 and 2 above. Then "smear" half of
W,(i) left, the other half right, where the smearing is done by linear interpolation from
Tu(i) to halfway between Tu(i) and the adjacent uncensored observation. If n, = 0 the
estimator is undefined; these cases were skipped in the bootstrap resampling. Beyond
the last observation T,,), the linear extrapolation uses the slope of the previous seg-
ment, until the point to is reached for which SC(tolx) = 0; then for t > to, Sc(tix) = 0.
Note that as a result of this definition, the survival function does eventually decrease
to zero, even if the last observation is censored.

To estimate p(x) we note that the pth quantile of 1 - S is (1 - S)-'(p). Here and
throughout the paper, for an arbitrary increasing function f, f-1 denotes the right con-
tinuous inverse of f defined by f-(t) = sup{s : f(s) < t}. For the case of the survival
function given by Equations (2.1) and (2.3), this gives

)= sup{s: 1 - 1J (I - A(du))exp'z) < p}. (2.5)
U<.9

Substituting A for A and / for i30, we obtain the estimate

)= sup{s: 1 - II(I - A(du))exp(4 'x) < p}. (2.6)
u<s

In fact, we use a continuous version ,(x) of p(x) based on the continuous version of

S(tlx) described in Remark 3 above. That is, ,(x) can be obtained by solving for t in the

equation Sk(tix) = i-p. From now on, for the sake of brevity of notation, the superscript
cis omitted in SC(tlx) and c(x).

Further notation is needed in order to give the formulas for the standard errors
of , S(t), and 4(x). The notation below follows closely that of AG. For a q-vector
w = (w,,... ,wq), w2 denotes the q x q matrix whose (2,j)th entry is wiw3 . Define
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1 ins(o)(0, t) = E J i(t) exp(3'x),
n 1=1

Sl)(fl, t ) _=- _1 id(t) exp(o'xi),

in

S(2 )(jt)_- _1 xj,(exp(, 3 xi), (2.7)

E(3,n) =
EP, 0 -s(0, t)'

and
v(0t) - s(p)(, t) - (E(3, t))®2

S(0 )( 3, t)

It is shown in AG that a consistent estimator of the asymptotic covariance matrix of
V# (,3 - 30) is given by

-i {f V(,,)s(o)S0,t)dA(t)} . (2.8)

Next we discuss estimation of the standard error of S(t). The results of AG may be
used to easily show that the asymptotic variance of vf/(A(t) - A(t)) may be consistently
estimated by

= a(t) + k/(t)t% ,b(t), (2.9)

where

a(t) = '(S(°)(3,u))-dA(u),

)= o (j,u)dA(u). (2.10)

Since S(t) = H-8 <t(I - A(ds)), we can apply a functional version of the 6-method to
obtain the asymptotic variance of yr/-(S(t) - S()). See Gill and Johansen (1990). On a
less technical level, we can write .5(t) - exp(-A(t)) and apply the standard 6-method.
The two answers obtained are identic.l, and the variance so obtained can be estimated
consistently by

&2 &2 exp(-2A(t)). (2.11)
v-. = /A(t)U~i

Dabrowska and Doksum (1980) and Burr and Doss (1991) derive the asymptotic variance
of p(x), which depends upon the baseline hazard rate A(t). To describe our estimator of
the asymptotic variance of 4w, we must define our estimator of the baseline hazard rate
A(t). Possibilities include methods based on splines (Whittemore and Keller (1986)) and
those based on kernel smoothers. Kernel smoothers are computationally convenient, and
in addition their asymptotic properties in the present context have already been studied
by Ramlau-Hansen (1983). To describe them, let R be a function of bounded variation
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with support on [-1, 1], and whose integral is 1, and let {b,} be a sequence of positive
constants such that as n -+ cc, we have b,, -+ 0 and nb' --+ cc. Define the kernel estimate
of A(.) by

A(t) = R('i)dA(s). (2.12)

The specific choices of R and {b,} are discussed, in the context of ordinary density
estimation, in Silverman (1986, pp. 40-72). Details of our algorithms are provided in
the Remarks below. Having specified a choice of R and {b, } we may define an estimate
of a'(Vfnp(x)). Using the notation 7r = log(1 - p), we have the estimate

- (p)(x)) (bG P(x)) + irxexp(-l'x)y 1 (b( p(x)) + 7rxexp(-l'x)

~/i4(z) (( ))+ A( p(x) ) ) A( p(x)) I

(2.13)

Remarks on the Kernel Estimator of the Hazard Rate

1 In this paper we use the biweight kernel

R~)=15 (1 -t2)' Itl < 1 (2.14)
15R(t) -( 16I-K1(.4

2 In choosing the window widths b, we have followed Ramlau-Hansen (1983) in allowing
varying window widths over the range of survival times. These would generally be

increasing as t increases to cope with the scarcity of data for larger t. In particular, we
allowed four different intervals of the time axis with different window widths in each.
The window widths were taken to be inversely proportional to n 1 3 , and the choice of
constant of proportionality was made subjectively, using one or two simulated data sets
for each simulation situation.

2.2 Description of Confidence Intervals

Four methods are used to form approximate confidence intervals for the parameters 30,
S(t), and p(x). Here we first give brief descriptions of these methods, followed by further
discussion of the bootstrap-t. We also describe a method of refining each of the types of
bootstrap intervals, called the iterated bootstrap, which we do not study in this work,
but which we refer to in discussions of our results.

Denote the parameter being estimated by 0, its estimator by 9 and the estimate of
standard error of 0 by &. In forming the confidence intervals described below, we have
used the estimators 0 and & defined in Section 2.1. The nominal approximate coverage
probability of the intervals is 100(1 - 2o). The (1 - a)th quantile of the standard normal
distribution is denoted z(O). The standard method, based on asymptotic theory for the
Cox model, gives the interval (+±&Za) (2.15)

Three bootstrap methods are studied. We refer to an estimate computed from a bootstrap
sample as 0", and we let K denote the bootstrap distribution of O*. The percentile interval
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is
(K'(a), K-'(1 - a)). (2.16)

In the hybrid method, tht bootstrap distribution of 0" - 9 is used to get approximate
quantiles of the distribution of 0 - 0. This leads to the interval

(2b6- K-'( - a),20 - g-'(a)). (2.17)

See Efron (1990, p. 14). For the bootstrap-t, consider the bootstrap distribution of
T* = (0* - 0)/&*, where &* is the estimate & computed from a bootstrap sample. Call
this bootstrap distribution Kt. The bootstrap-t interval is

(0- Kt-l( - a)&,9 - Kt-'(a)&). (2.18)

In the Monte Carlo studies reported in Section 3, the four types of confidence intervals
described above are studied for all the parameters considered, except that bootstrap-t
intervals are not studied for 6/2(). Because estimates of the standard error of 1M() are
inherently unstable, especially in situations with high censoring, the bootstrap-t using
the asymptotic formula for & did very poorly. One could attempt use of the bootstrap
estimate of standard deviation of p(x) in the denominator of the bootstrap-t. That is, in
Equation 2.18 above, use the bootstrap estimate of a rather than the asymptotic formula
fo. &. Note that then, in order to compute the bootstrap statistic T*, the denominator
&* is obtained through a second layer of bootstrapping, and the amount of time that this
takes on a single sample is so large that Monte Carlo studies of this method are impossible
on workstations commonly available today. Also, even with the bootstrap estimate of
standard deviation, the bootstrap-t may do poorly. Doss and Gill (1991), in an example
where they are estimating the quantiles of the survival function ii, the random censorship
model of survival analysis, had difficulties with unstable bootstrap-t intervals when they
attempted to use the bootstrap estimate of standard deviation. On a theoretical level, the
performance of bootstrap confidence intervals for quantiles takes on a different character
from their performance for quantities such as the mean: The difference between nominal
and actual coverage is O(n- 1 /2 ) not O(n-'); that is, these intervals are only first-order
accni ate, not second-order. See the related work of Hall and Martin (1988). We make one
final comment here, in which is indicated some hope for the bootstrap-t in this situation:
Doss and Gill (1991) try other measures of scale for the denominator of the bootstrap-t
in their example, and they settle on a particular interquantile range which led to stable
bootstrap-t intervals. However, we have not attempted to do this here.

In this context, it is important to mention some recent research on the iterated boot-
strap method of refining confidence intervals which was discussed by Beran (1987). Dc-
scriptions of the use of the method for coverage correction of confidence intervals may
be found in Martin (1990) and DiCiccio, Martin and Young (1990). Here we give a brief
description of the idea behind this method. Suppose we want to form a 90% percentile
confidence interval. The idea is to estimate the actual coverage probability of the per-
centile intervals for several nominal levels, and then use the percentile interval which has
estimated coverage probability exactly equal to the desired level of 90%. The estimation
of coverage probabilities is done through a second layer of bootstrapping; that is, from
each bootstrap sample used in forming the original confidence interval, many bootstrap
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samples are drawn and the percentile interval formed. So, this method is extremely com-
putationally intensive. The recent work of DiCiccio, Martin and Young (1990) is on an
analytic method to replace the Monte Carlo simulation in the inner layer of bootstrap
sampling, for the problem of constructing confidence intervals for a parameter 0 that is
expressible as a smooth function of vector means. Their work does not apply to boot-
strapping in the Cox model. We did not attempt the iterated bootstrap in our work, but
we refer to it in discussion of the results of the Monte Carlo studies.

3 The Monte Carlo Studies

First, we mention an important aspect of our discussion of the Monte Carlo results. We
compare the various methods in terms of coverage probability and average or median
length. A method with higher coverage probability and smaller average length than
a second method is certainly better than the second method. However, we often find
that the method with higher coverage probability also has larger average length, and in
this case it may be that the iterated bootstrap would produce a good interval. Or, one
could devise a way to compare the methods by adjusting all lengths to be equal and
then comparing coverage probabilities, as in Owen (1988). We have not done this here;
rather, we discuss the results simply through direct comparisons of coverage probability
and average length, which generally leads us to call some method "best" for a particular
situation if its coverage probability is the closest to the nominal level and its length is
not exorbitant relative to the other methods. In our choices of the "winners," we admit
to some conservative prejudice in favor of accuracy of coverage probability over shortness
in length.

In Section 3.1, we describe in a general way how we simulate the data sets conditionally
on the covariate/censoring pattern. In Section 3.2, we list the factors determining the
simulations and state the levels of these factors which were included in the main computer
experiment which we report on here. In Section 3.3, we summarize the results of this main
study. Finally, in Section 3.4, we describe the study with an influential point and state
briefly the main results from it.

3.1 General Description of a Simulated Dataset

Assume we have decided upon the sample size n, the regression parameter 30, the co-
variate distribution Fx, the lifetime distribution F, and the censoring distribution G.
The data sets in our simulation studies were generated to be compatible with a fixed
covariate/censoring pattern according to the following steps.

1 Get one set of data (Xi,T,6i), i = 1,... ,n as follows: First, generate the covariate
values Xi - Fx, the survival times Y -- F(tXi) = 1 - (I - F(t))exP(o1x ' ), and the
censoring times Ci ,-, G; next, form the data points (Xi, Ti, 6) where T = min(Yi, C,)
and 6, = I(Yi < C2 ).

2 Generate one data set compatible with the covariate/censoring pattern (X,C) obtained
in Step 1, as follows. For i = 1,...,n,
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a. Let X[ = Xi;

b. Generate Y' as in Step 1.
c. Generate C' conditionally on C, as follows. If ,i = 0, then C[ = Ti. If ,5 = 1, then

generate C[ from the conditional distribution of C given that C > T. For example,
if G is the Exponential(l) distribution, then using the memoryless property of the
exponential distribution, we let C = T + rexp(, where rexp() denotes a random
draw from the Exponential(l) distribution.

d. Form T' = min(Y ', C'), b = I(Y' < C).

3 Repeat Step 2 many times. (Each time get confidence intervals for the parameters of
interest by the several methods and record relevant information such as whether the
intervals contain the true value, and the length of the intervals.)

3.2 Factor Levels Included in the Experiment

From the above description of a simulated data set, it is clear that the factors affecting a
simulation are:

1 Fx, the covariate distribution

2 F, the lifetime distribution

3 The Cox regression parameter 30

4 The form of the censoring distribution G

5 The average percent censoring

6 The sample size n

7 The particular covariate pattern

8 The particular censoring pattern

In the study we describe here, we use the Uniform(0,1) distribution for the covariate-.
Also, we use the standard Exponential distribution for F, we take O0 = 2, and we use
the Uniform distribution for G. We take the mean of the censoring distribution to be
.25 for approximately 55% average amount of censoring. The sample sizes considered are
n = 30, 40, 50, 60, 70,80, 90,100. For the smaller sample sizes of n = 30, n = 40, and
n = 50, there are three distinct covariate/censoring patterns; for the larger sample sizes
of n = 60 and up, there are two distinct covariate/censoring patterns.

We report 90% confidence intervals for the parameters 30, S(.106), S(.255), 1/2(.5),

and 6/2(.939). The values of t at which the function S(-) is studied, t1 = .106 and
t2 = .255, are the .25 and .50 quantiles of the distribution of S(tlx = .5). The values of x
at which the function 6/2() is studied, xi = .5 and x 2 = .939, are such that 6 1 2(xI) = t2
and 1/ 2(X2) = ti. The four types of confidence intervals are studied for all the parameters,
except that bootstrap-I intervals are not attempted for 1/2('). The bootstrap intervals
are formed from bootstrap samples taken by each of the three methods of forming the
bootstrap sample. Therefore teii methods are studied for /0 and S(.), and seven methods
are studied for 1/2('). The number of simulations in all the studies is 2000.
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3.3 Summary of Results of the Monte Carlo Studies

The performance of 90% confidence intervals for each of the five parameters listed above is
studied in terms of coverage probability and average length. For the confidence intervals
for 6 12 (x), we report median rather than mean length; this is explained when those results
are discussed. The results of the studies are summarized by plots of coverage probability
versus sample size and plots of average (or median) length versus sample size. In studying
the results, we found that plotting the mass of numbers enabled us to make much more
sense of them than simply scanning them in a table. The plots are grouped according
to the type of parameter being estimated (1o, S(-), or 1/2(-)), and are arranged in nine
figures. The plots and an explanation of them are in the Appendix.

Consider 8o first, with results plotted in Figures 1 and 2. For this parameter, we
note a strong interaction effect between the two factors which determine the confidence
intervals, the method of drawing the sample and the method of forming the interval from
a given sample. For example, the variability among the coverage probabilities of the
three methods of drawing the samples is much less for the percentile intervals than for
the other two types of intervals. Also, Method 1 of drawing the sample produces the
best bootstrap-t intervals, but the worst percentile intervals. Now we give the practical
implications of the results for Po0. Overall, the asymptotic method seems to do the best in
this study. It has close to or slightly above the nominal coverage probability throughout,
yet its average length is at worst only very slightly greater than the average length of any
of the nine bootstrap methods. It has slightly larger average length than the bootstrap-t
intervals (henceforth referred to as boot-t intervals) but the boot-t intervals all have low
coverage probability. Among the bootstrap methods, a close competitor to the asymp-
totic method is the hybrid interval from Method 2 samples (henceforth referred to as
hybrid/Method 2). These intervals give substantially greater coverage probability than
the asymptotic intervals (and greater than the nominal level), at the cost of greater aver-
age length than the asymptotic intervals. The difference in average length is substantial
only for the sample sizes up to n = 50. We mention one other important result about the
bootstrap methods here. This is that the percentile/Method 1 intervals are bad: They
have larger average length than the other methods for sample sizes up to n = 60, yet no
better, or worse coverage probability. The hybrid/Method 1 intervals, which are the same
length as the percentile/Method 1 intervals, have very high coverage probability. So for
estimation of 10, when taking the bootstrap sample by the simplest method, the most
obvious methods of forming bootstrap intervals are bad because they are too long. In the
case of the percentile intervals, which are the most often used, they are not only too long,
but they get the "wrong" part of the bootstrap distribution and thus have low coverage
probability as well.

Figures 3-6 summarize the results for estimation of S(.), for two values of t. We can
make a general statement here regarding the methods of forming the intervals: Roughly
one could say that the coverage probabilities of the boot-t intervals are too high, the cov-
erage probabilities of the hybrid intervals are too low, and the coverage probabilities of the
percentile intervals are closest to nominal. Next we give the practical implications for this
parameter. The asymptotic intervals have unacceptably low coverage probability through-
out; they lose. (This fact was noted by Link (1984), who tried several transformations to
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improve upon the standard asymptotic method.) The winner is the percentile/Method 1
interval, with the percentile/Method 2 interval a close second.

In the case of estimation of (-), all of the methods of forming confidence intervals
produced occasional very long intervals; the distribution of the length of confidence in-
tervals was strongly positively skewed. We noted that for the three methods of taking
bootstrap samples, the most erratic fluctuation of length and largest mean length was
with Method 3, then Method 2. Method 1 was the most stable. The median length
provides a more relevant comparison of the three methods.

Figures 7-9 show the results for estimation of u(.), for two values of x. Rather than
average length of the intervals, the median length is plotted, in Figure 9. The most
striking thing about the plots is that the hybrid intervals have extremely low coverage
probability. The asymptotic intervals have somewhat low coverage probability for (x1 ),
for the sample sizes of n = 60 and up, and they have high coverage probability for

(x2 ). Regarding the performance of the three methods of drawing bootstrap samples
in conjunction with percentile intervals, Method 2 is best for estimation of (xi); it has
close to the nominal coverage probability and the shortest median length of the three
methods. Method 3 is actually the worst of the three, at least for sample sizes up to
about n = 80. In the case of estimation of C(x2), Method 3 is not such a clear loser; it
has low coverage probability but also has markedly shorter median length than the other
methods. Methods 1 and 2 are very close competitors here.

3.4 The Study With An Influential Point

This study consisted of only one situation, as contrasted with nineteen situations included
in the main study. Therefore it is reported here simply to give an indication of the
differences that arise when an influential point is included.

The data sets in this simulation study were generated as described in Section 3.1,
conditional on a covariate/censoring pattern. The data set which was conditioned on was
handpicked to include an influential point, and the lifetime and censoring distributions
were constructed so that this handpicked data set was a possible occurrence in the model.
This was done through the use of mixture distributions for the lifetime Y and the censoring
time C.

To make this clear, it is perhaps best to spell out the details for the particular situation
considered. The sample size was taken to be n = 30, and the regression parameter O0
was taken equal to 2. Then, X1 , the first covariate value, was chosen to be unusually
large. That is, twenty-nine out of the thirty covariate values were generated initially from
the Uniform(0,1) distribution, whereas X1 was taken equal to 1.5. Since the regression
parameter is positive, lifetimes associated with X = 1.5 would tend to be much smaller
than the other lifetimes. An influential point would be one with large X but large lifetime.

The lifetime distribution F was taken to be a mixture of Exponential distributions,
one with mean 50 occurring with probability .04, the other with mean 1 occurring with
probability .96. For the unusual lifetime distribution with mean 50, if X = 1.5 the mean
lifelength is 2.49.

The influence of such a point is likely to be lost by censoring, so a mixture distribution
on C was used to allow the possibility that such a point would remain uncensored. The
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censoring variable was taken equal to 3 with probability .04 and otherwise Exponential
with mean 1.0, so that average percent censoring was about 25%.

In getting the initial data set as in Step 1 of Section 3.1, the lifetime associated with
the large covariate value X1 = 1.5 was set equal to the median of the unusual lifetime
distribution (mean = 50) for that value of X, and it was forced to be uncensored.

The performance of 90% confidence intervals is summarized in Table 1 in the Appendix.
One observation is that the asymptotic method is no longer best for estimation of 13o;
both Method 2 and Method 3 percentile intervals beat it uniformly, that is, with higher
coverage probability yet shorter average length. We also see that Method 3 of drawing
the bootstrap samples does much better than it did in the other studies. We note that
no one method is uniformly better than the others for all the parameters, and Methods 2
and 3 of drawing the samples are close throughout.

4 Discussion

Our first comment is that although bootstrap methods do not improve upon the asymp-
totic method in the case of 30, they do compete closely with the asymptotic method for
/30 and offer substantial improvement for S(.) and 6/2(). For the practitioner who wants
to use the bootstrap in the Cox model, results of the Monte Carlo studies suggest which
bootstrap methods would be preferred among those now readily available. We would like
to be able to recommend a single method appropriate for all parameters, but as mentioned
earlier, this is not possible. The performance of the methods was markedly different from
parameter to parameter. A summary of conclusions drawn from the Monte Carlo studies
is as follows. For /30, we recommend the hybrid/Method 2 intervals. For S(-) and 1/2('),
we recommend the percentile/Method 2 intervals. (Method 1 did slightly better than
Method 2 for S(-), but its advantage was so slight that it hardly seems worth the extra
effort of using a different method of resampling.)

Regarding the methods of drawing the bootstrap samples, overall this factor appears
to be less important than the method of forming the intervals in its effect on performance
of confidence intervals. However, some effects of this factor were noted. First, the most
sophisticated way of drawing the samples, Method 3, gives much more erratic results than
the two simpler methods, and we would prefer to avoid this method. Also, Method 1 was
unreliable for estimation of /3o, and therefore we would prefer to avoid this simplest method
of resampling as well.

An important lesson learned from this work is that the choice of method of forming
the interval is not one to be made lightly. There are big differences among the methods we
studied in terms of coverage probabilities. In particular, the bootstrap-t was very unstable
throughout, and the hybrid method had very low coverage probability for 1 12(). Our
results contrast sharply with those of Owen (1988), who included five bootstrap methods
in a large-scale Monte Carlo study of confidence intervals for the mean from a random
sample, and found the bootstrap-t to be a clear winner throughout.

However, it is important to realize that the present work does not provide the final
word on bootstrap confidence intervals in the Cox model. Use of the iterated bootstrap
refinement seems especially appropriate for the bootstrap-t intervals for 3o and S(-). These
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intervals were erratic in length and coverage probability in that they were either very
short with low coverage probability or very long with high coverage probability. However,
they never lost out to another method by having both lower coverage probability and
greater length; and so, this leads us to believe that the bootstrap-t interval, corrected
by the iterated bootstrap method, could prove to be useful. The same comment applies
to the percentile/Method 3 intervals, except for estimation of 1/2 (X 1 ), indicating that
Method 3 of sampling might prove useful if further refined, particularly in light of its
good performance in the study with the influential point. Monte Carlo studies of the
performance of the iterated method will only be feasible if one can develop analytic
techniques to replace the inner layer of resampling in this method, as is done in DiCiccio,
Martin, and Young (1990) for a simpler problem.

5 Asymptotic Validity of Method 3 of Bootstrap-
ping

Asymptotics for the bootstrap in the Cox model have been dealt with to date in two
unpublished technical reports. Gu (1991) gives arguments for the asyi .?totic validity of
Method 1 and Hjort (1985) for asymptotic validity of Method 2. These authors deal with
use of the bootstrap to approximate the distributions of the estimates of the regression
parameter and of the baseline survival function (Theorem 4.2 Part 5 and Theorem 5.2
Part 2 of Gu (1991); the proposition on p. 13 of Hjort (1985)).

In the present paper, we consider Method 3 of bootstrapping. Instead of looking at the
Cox model in full generality, we consider the mathematically simpler situation i;. which
/30 is known to be zero. This corresponds to the familiar framework for which the Kaplan-
Meier estimator (henceforth KME) is the well-known and well-studied estimator of the
survival function. We prove that when bootstrap samples are taken by Method 3, the
standardized KME computed from the bootstrap sample converges weakly to the same
Gaussian process to which the standardized KME itself converges. (In his unpublished
Ph.D. dissertation, Kim (1990) gives an alternative proof of this result.)

Although the model that we consider is a special case of the Cox model, the arguments
that we use can be used to prove the analogous results for the Cox model. The reason we
consider the simpler case here is that it is possible to give a complete proof in a reasonable
amount of space. At the end of this section, we very briefly indicate how the arguments
need to be modified in order to deal with the general model.

The notation here is chosen to be as similar as possible to that used in the rest of
the paper. Since there is no covariate vector Xi, associated with individual Z are just
a lifelength Y and a censoring time Ci; the observed data are Ti = min(Y,Ci) and
6, = I(Yi < C,). Of course the KME's P and G of the lifetime and censoring distributions
depend on the sample size n, as do the relevant stochastic processes. However, here we
suppress the subscript n to simplify notation and to be consistent with the rest of the
paper.
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Theorem 1 Assume the random censorship model where the failure time Y has continu-
ous distribution function F and the censoring time C has continuous distribution function
G. Let H be the distribution function of the observed time, i.e. H = 1-(1-F)(1-G). Let
P* be the Kaplan-Meier estimate of computed from the data resampled by Bootstrap
Method 3. Then as n --+ oo

/n*(F* F) d 6 W in D[0, r] a.s. (5.1)

for any r < sup{t : H(t) < 1}, where W is a mean zero Gaussian process with independent
increments and variance function given by

Var(W(t)) = 1 dF(s). (5.2)Var(W))1=,t] (1 - F(s)) (I - H_ (s))

The notation "a.s." in (5.1) signifies that the weak convergence result holds along almost
every infinite sequence (T1 , b), (T 2, 62), ...

Remark The assumption that F and G be continuous is actually superfluous (we discuss
this at the end of the proof); we use the notation F_ and G_ so that the formulas will
continue to be valid if F and G are not continuous.

Proof We rely heavily on Gill (1980), who establishes weak convergence of the KME
for the nonbootstrapped case, using the machinery of counting processes and martingale
central limit theorems. A good reference for this material is the first two chapters of
Fleming and Harrington (1990). To prove Theorem 1, we apply the arguments of Gill
(1980) conditional on the particular infinite sequence {(T,, 6,); i = 1,2,.. .} (we shall see
below that the weak convergence statemen. in (5.1) actually holds along every sequence
such that P -_- F and G --* G).

For Bootstrap Method 3, we first resample Yi* PF, Ci* - Li, where Li is represented
as

(G(t) - G(T:))I(t E [Ti, 0o))
Li(t) = 1(6, = O)I(t E [Ti, o)) + 1(6, = 1)(t -(T)t (5.3)1 - G (Ti)(5)

We then form Ti* = min(Yi', Ci*) and 6b = I(Y i" < Ci*), for i = 1,...,n. (For the sake of
definiteness, d in (5.3) is taken to be 1 at the largest observation and beyond, whether
the 6 corresponding to this observation is 0 or 1.)

Our situation is complicated by the following three factors.

1 The survival distribution function F varies with n.
2 The function F is discontinuous. Thus the standard counting processes associated with

the pairs (Ti, 6i) may jump at the same time, so that they do not form a "multivariate
counting process".

3 The censoring distribution function Li varies with i as well as with n.
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We refer to the standardized version of F* as Z*; that is,

Z()= v/nF()-Ft
1-F(t) 

(54

Let
Ft(t) = F(t A T ,)), (5.5)

where T(*)= max{T,. . .,T,*}, and let

Q*(t) = Ft(t) (5.6)
(Iv- Ft(t)]

The proof of Theorem 1 proceeds in roughly the following three steps.
1 We show that the process {Q*(/), t E [0, r]} can be represented as the stochastic integral

of a predictable process with respect to a martingale and is therefore a martingale.
2 We show that the martingale Q" satisfies Conditions (I) of Theorem 4.2.1 of Gill (1980),

which gives weak convergence of Q* to the process W with variance function given by
(5.2).

3 We show that the processes Z* and Q* are asymptotically equivalent.

Let ,(t) be the cumulative hazard function associated with F, i.e.

dP(s)

1Jt)]j 1 - F_(s)

For i = 1,. . . , n, define the processes

Ny(t) = I(T7 t, 67 =1),

g.U (t) = I(T <t, 6* =0),
V(t) = I(T 0 t),

A*(t = Vi*(s)dA(s),

Al1(t) = N(t)- A,(t).

Define further, for each i, the filtration

Ti0 = a((N(s),NiU (s)); s < t), t E [0, T].

It is well known that with respect to the filtration Ft( ' M i" is a martingale with pre-
dictable variation process

< M,*, M.* > (t) = A*(t) (5.7)

(cf. Theorem 1.3.1 and Theorem 2.5.2 Part I of Fleming and Harrington (1990)). Let F'
be the join of F-(') for i = 1,... ,n, i.e.

.Ft = a((N (s), N;U(s)); s < t; i = 1,...,n).
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Then since the pairs (Y, Ci) are independent, it is easy to see that with respect to the
filtration Ft, the M,'s are still martingales and their predictable variation processes are
still given by (5.7) (see for example Lemma A.1 of Doss and Chiang (1990)); moreover,
with respect to Ft, the M,'s are orthogonal (Lemma 2.6.1. of Fleming and Harrington
(1990)).

We now proceed to show that Q* is a martingale. Define the processes
n

M*(t) = _M I(t),
:=1

n

V'(t) = V 1 (5.8)
t=1

J*(t) = I(V*(t) > 0),

Let Tn be any number such that F(T,1 ) < 1. We then have the identity

Q*(t) = [ 1 FI_.(s) J-(s) dM*(s) for t E [0, r,], (5.9)
J0,tl I - F(s) V-(s)

which follows from Equation (3.2.13) of Gill (1980). (Here and throughout, 0/0 is defined
to be 0.) Because the integrand in (5.9) is F1,-predictable, we see from (5.9) and the fact
that M" is a martingale, that Q* is the stochastic integral of a predictable process with
respect to a martingale, and is therefore a martingale.

We are now in a position to apply Theorem 4.2.1 of Gill (1980), which gives conditions
that entail weak convergence of processes that are stochastic integrals with respect to
M*. This theorem is general enough to accommodate our situation. It requires implicitly
that Assumption 3.1.1 of Gill (1980) hold, i.e. that there exist a filtration with respect to
which the processes Mi's are orthogonal martingales, with predictable variation processes
given by (5.7). We have just shown that this structure holds. To use the theorem, we
need to verify Conditions (I) of Theorem 4.2.1 of Gill (1980). For the infinite sequence
(T,, 61 ), (T2,b 2),..., these conditions are as follows.

A F converges uniformly on [0, r] to F as n --+ oo; A = f ' dF is finite on [0, r].
B There is a function h that is left continuous with right-hand limits and is of bounded

variation on [0, 7-] such that ( 1-F) 2 j* converges uniformly on [0, 7] in bootstrap
probability to h.

C V*(t) --* c in bootstrap probability as n --+ co for each t E [0, r].

We shall show that Conditions A, B, and C are satisfied for any infinite sequence
(TI,,l), (TMb2),... for which

sup JP(t) - F(t)l -+ 0 and sup IG(t) - G(t)l --+ 0. (5.10)
o<t<r O<t"<T

We note that the set of such sequences has probability one by the results of F6ldes, Rejt6
and Winter (1980).

So from now on we assume that the infinite sequence (TI,6 1), (T 2, 62),... satisfies
P.

(5.10). Let E., Var., P., and a denote expectation, variance, probability, and conver-
gence in probability under bootstrapping, respectively, i.e. these are taken conditional on
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the sequence (T 1, 6k), (T2, 62), .... The first part of Condition A is then obviously satisfied
and the second part follows from the definition of T. We will show that Condition B is
satisfied for h given by

h (I- F_) 2  1 (5.11)h ~ I -_ 1-_

If F and G are continuous, then h is left continuous with right limits and is of bounded
variation on [0,r].

We deal first with the term n/V* in Condition B, where V*(t) = '=l I(Ti* > t). Note
that E*(V*(t)) = E=n(1 - f)(1 - L,_). We will need the following lemma, which gives
a surprising connection between the Li's and G.

Lemma 1 For L, given by (5.3) we have

in1 Z L,(i) G )

i=1

Proof of Lemma 1 Let T(1 ) < T(2) < ... < T'm) be the distinct ordered observations.
Without loss of generality we can assume that censored and uncensored observations are
not tied. If they are, censored times are considered to have occurred just after uncensored
times, following the usual convention. Let 6'1) < b'2) < ... < b',m) be the corresponding
indicator variables and let v',) < V(2 ) < .. < V be the number of ties. Writing
1 = 1(,, = 0, T, <_ t) + 1(,, = 1, Ti <_ t) + I(T > t), we have

inn
1--ZL(t) = ~-I( 1 = 0, Ti t)+I(6,=i, Ti t)+I(Ti>t))

n i=1

I GI(t) - G(Ti)1( = 1, T < 01

n i=1 G(Ti)

- n- n G(t,) I(i 1,1 I(T > t) + T <_t)n _ i ~ l ( T i )

__1: I(T > t) + G_, b1,i )
n :T, t. ( ) V~)

i=1 G(T')

Since G(t) is a self-consistent estimator we have

G~) L'il' I(T > t) + E_ G () ,))

n=1 i:T<t G(T')

See for example Miller (1981, pp. 52-57) for the definition of the self-consistency property
and a proof that it holds for the KME. His proof is for the case of no ties but can be
easily modified for the case of ties with the above notation. Hence we have

I- ->Li(t) = Gt
n
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and this proves the lemma.

From the lemma we see that E.(V*(t)/n) = 1 - /._(t) and Var.(V*(t)/n) -- 0.
Therefore,

V*(t) - (1 - /k/(t)) - 0 (5.12)

n
for each t. As explained on p. 70 of Gill (1980), the results of van Zuijlen (1978) give that
the convergence in (5.12) is uniform over RI. By (5.10), H(t) -* H(t) uniformly on [0, r],
and this implies that

n n 1 - 0 uniformly for i E [0,r]. (5.13)
V*(t) 1 - H_(t)

By Theorem 4.1.1 of Gill (1980) we have supo<<, If*(t) - F(t) -- 0. This, together
with (5.10) gives

1r ,. 1-F_ uniformly for t E [0, r]. (5.14)
1- F 1-F

Let us now consider J*(t) defined by (5.8). We have
ft

P.(J*(t) #7 1 for some t E [0, r]) = P.(T* <r)
i= 1

n

1 -(1-P*(T _> 7))

< 1- exp(-F_-(r)(1 - Lj_())) (5.15)
t=1

= exp(-nF_(i)G_(7-))

= exp(-nH-tir))

--+ 0,

where in the above the third line follows from the inequality 1 - x < exp(-x) and
the fourth follows from Lemma 1. This, combined with (5.13) and (5.14), shows that
Condition B is satisfied for any sequence (T 1, 1 ), (T 2, b2),... satisfying (5.10). Condition
C is trivially satisfied by (5.12).

We can now apply Theorem 4.2.1 of Gill (1980) to conclude that (5.1) holds if,(-P0

is replaced by Q*. (Note that since as n - oo we have F(r) -- F(r) < 1, the represen-
tation (5.9) is valid over [0, r-] for large n.) To see that the difference between Z' and Q*
is negligioie, we note that

P.1 sup IQ*(t) - Z*(t)l 3 0}= P.{T ) < T"} 4 0

by (5.15). This concludes the proof of Theorem 1.

For the case in which F and G have discontinuities, the same result can be proved by
the arguments of Akritas (1986, p. 1037). If we look carefully at those arguments, we see
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that the distributions of the censoring variables Cj" has no role, so that the arguments
can be applied directly to our situation.

Let us now return to the Cox model, and suppose that Conditions A-D of AG are
satisfied. Gu (1991) and Hjort (1985) show that if * and Ss(.) are the estimates of the
regression parameter and baseline survival function computed from the data resampled by
Method 1 or 2, then with probability one, V\(#*-, S*(.)-S(-)) converges in distribution
to the same process to which the process v ( - 0, S(-) - S(.)) converges. Gu deals with
Method 1 and Hjort with Method 2. Their proofs rely heavily on the machinery developed
in AG. They both focus effort on establishing second-order properties, whereas here we are
concerned with first-order results only. To prove the same result for Bootstrap Method 3
one proceeds in a similar way. The heart of the proof involves checking Condition B
("asymptotic stability") and this is done via an analogue of Lemma 1. Unfortunately, the
details needed to give a rigorous proof are lengthy and not straightforward, and this is
the reason we have limited our result to the case where the regression parameter is known
to be 0.
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Appendix

This appendix contains the plots referred to in Section 3.3, and Table 1 referred to
in Section 3.4. Here we explain in some detail the construction of the plots. The plots
summarize the results of 19 (nineteen) simulation studies, all from the same main set-up:

1 Fx, the covariate distribution, is Uniform(0,1).

2 F, the lifetime distribution, is standard Exponential.

3 The Cox regression parameter f0 is 2.

4 The form of the censoring distribution G is Uniform.

5 The average percent censoring is 55% (The mean of G is .25).

The 19 studies are for the sample sizes n = 30,40,50,60, 70,80,90, 100, with three
distinct covariate/censoring patterns for the sample sizes n = 30,40, 50 and two distinct
covariate/censoring patterns for the sample sizes n = 60,... , 100.

The results are summarized with plots of coverage probability versus sample size and
plots of average (or median) length versus sample size. We found in studying the results
that plotting the mass of numbers enabled us to make much more sense of them than
simply scanning them in a table.

Consider first the results we need to summarize for O0 and S(.). There are ten types
of confidence intervals studied, the asymptotic and nine types of bootstrap intervals. A
bootstrap interval is determined by two factors-the method of sampling and the method

of forming the interval from a given sample.
For plotting the coverage probabilities of the ten methods in the nineteen studies, we

would like to be able to compare the results for the ten methods in a single plot of coverage
probability versus sample size, but this produced too much overlap: We could not distin-
guish readily the symbols for the ten different methods. So, here we use three different
plots, corresponding to the three methods of forming the intervals from a given sample.
Thus the plot labelled "Percentile," for instance, contains coverage probabilities for three
bootstrap methods: Percentile/Method 1, Percentile/Method 2, and Percentile/Method3.
The coverage probabilities for the Asymptotic method are included on each of the three
plots, so that this method can easily be compared to any bootstrap method and also as
a reference to enable easier comparison of the results on the three different plots. The
horizontal line at coverage probability .90 also enables easier comparison among the three
plots. Two additional reference lines are drawn at coverage .90 ± 2(.90 x .10/2000)1/2. If
a method has exact coverage .90 then roughly 95% of the observed coverages should lie
within the band formed by these lines.

With only four types of points to follow in one plot, there is relatively little problem
with overlap. Here we are adhering to graphical principles put forth in Cleveland (1985,
Ch. 3).

The horizontal axis in these plots is labelled sample size. However, at each sample
size we had either three or two separate studies. We wanted to be able to distinguish
the results of the different studies. Therefore, for the first covariate/censoring pattern at
n = 30, we have plotted the covrage probabilities for the four methods exactly vertically
aligned above the sample size n = 30; for the second covariate/censoring pattern at
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n = 30, we have plotted the coverage probabilities for the four methods exactly vertically
aligned, slightly to the right of n = 30, and so forth. We have used lines to connect
symbols for the same method in different studies, both to enable the reader to more easily
see the trend with sample size, and to aid the reader in identifying all points from the
same study. That is, for example, without the lies it may be difficult to judge which
points come from the second covariate/censoring pattern for n = 30. So this plot is a
connected symbol graph, a kind of graph which is often used in time series but which has
other uses as well; see Cleveland (1985, p. 181 and pp. 188-189).

The lengths of the percentile and hybrid intervals are the same, so there are only two
plots of average length for #o and S(.). Since bootstrap-t intervals were not attempted for

1/2('), there are only two plots of coverage probability for 1/2(-) and one plot of median
length. For each of the five parameters studied, there are two figures, one for coverage
probability and one for average length. The only exception to this is that the two plots
of median length for the two values of x at which 1 2 (x) is studied are put into a single
figure, Figure 9.
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Figure 1: Coverage Probability vs. Sample Size
for Beta

1 - Method 1,2 Method 2. 3 Method 3, a - Asymptotic

a.a

* /2.. ,aa /3- --

o

a 2 a a

NP

3".9'1 3 --- - -

"3

0

30 40 50 60 70 80 90 100

PERCENTILE

1 11 1

c 1 1

2 a ---- .-. 2 . ... , .. ...... 21 1
1  

1 1
2",....... ...... -..... ........ 22.......... 2

aa"_ 2' 3 " -o*2 -----

3 3a I 
- - ---'I i.1 3

/ 33

0

3

i iI I I I

30 40 50 60 70 8o 90 100

HYBRID

a, -

a a - -
aa ---------- .a .........

a 22

%\ ----- --- - 3e -- 3-

A 12----...... 3 1 33 
3

"" 33--
33

Nl 3. -CC! 3 -
o3

30 40 50 60 70 80 90 100

BOOT-T



Figure 2: Average Length vs. Sample Size
for Beta
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Figure 3: Coverage Probability vs. Sample Size
for S(.106)
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Figure 4: Average Length vs. Sample Size
for S(.106)
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Figure 5: Coverage Probability vs. Sample Size
for S(.255)
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Figure 6: Average Length vs. Sample Size
for S(.255)
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Figure 7: Coverage Probability vs. Sample Size
for Median Survival at X = .5
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Figure 8: Coverage Probability vs. Sample Size
for Median Survival at X = .939
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Figure 9: Median Length of Percentile and Hybrid Intervals vs. Sample Size

for Median Survival at Two X Values
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Table 1. The Study with an Influential Point: Coverage Probabilities and Average or
Median Length of Confidence Intervals.

/3 S(.10) S(.25) (.54) (.99)
Coy. Ave. Cov. Ave. Coy. Ave. Coy. Med. Cov. Med.

Pr. Len. Pr. Len. Pr. Len. Pr. Len. Pr. Len.
P1 .88 2.80 .88 .253 .89 .342 .89 .262 .89 .145

2 .85 2.32 .88 .250 .89 .327 .89 .256 .86 .139
3 .85 2.28 .90 .262 .90 .330 .90 .251 .87 .139

H1 .88 2.80 .84 .253 .89 .342 .77 .262 .78 .145
2 .83 2.32 .84 .250 .87 .327 .76 .256 .77 .139
3 .80 2.28 .S4 .262 .86 .330 .75 .251 .76 .139

TI .81 2.29 .95 .301 .97 .407
2 .79 2.25 .95 .293 .96 .392
3 .78 2.24 .95 .293 .95 .381

A .84 2.35 .86 .246 .85 .298 .86 .232 .92 .150

Note: P = percentile intervals, H = hybrid intervals, T = boot-t intervals, A = asymptotic
intervals. 1, 2, 3 refer to Methods 1, 2, and 3, respectively, of forming the bootstrap
samples.
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Abstract

We study bootstrap confidence intervals for three types of parameters in Cox's
proportional hazards model: the regression parameter, the survival function at fixed
time points, and the median survival time at fixed values of a covariate. Several
types of bootstrap confidence intervals are studied, and the type of interval is de-
termined by two factors. One factor is the method of drawing the bootstrap sam-

ple. We consider three such methods, which may be briefly described as follows:

(1) Ordinary resampling from the empirical cumulative distribution function, (2)

Resampling conditional on the covariates, and (3) Resampling conditional on the

covariates and the censoring pattern. Another factor is the method of forming the
confidence interval from a given sample; the methods considered are the percentile,
hybrid, and bootstrap-t. We provide a theorem on the asymptotic validity of the

third method of bootstrap resampling. All the methods of forming confidence inter-
vals are compared to each other and to the standard asymptotic method via a Monte

Carlo study. The data sets for this Monte Carlo study are simulated conditionally
on the covariates and the censoring pattern, the situation appropriate for the third

method of resampling. One conclusion drawn from the Monte Carlo study is that
the asymptotic method is best for the regression parameter. but not for the survival
function or the median survival time. Conclusions about the bootstrap methods in-
clude the surprising result that, overall, the second method of drawing the samples
outperforms the third method. Also, there is an interaction effect between the two
factors, method of drawing the sample and method of forming the interval, espe-
cially for estimation of the regression parameter. Finally, the bootstrap-t intervals
are consistently outperformed by at least one of the two more rudimentary types of
bootstrap interval.
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