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Abstract

In the framework of the proposed "continuous approach" to constrai-
ned optimization problems, we describe two new solution methods which re-
sulted from the research. The first is a continuous "inexact" method for sol-
ving systems of nonlinear equations and complementarity problems (along
the lines of the DAFNE Method), and the second is a continuous method
for solving the linear programming problems (along the lines of Karmarkar's
method) which is shown to be quadratically convergent.

Some numerical experience on a number of test problems is reported.
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1. Introduction

This is the final report on the work performed from September 1986
to December 1991, under contract n. DAA 45-86-C-0028 awarded to the
University of Rome "La Sapienza" on the research project "Numerical Opti-
mization", by the principal investigator Francesco Zirilli and his co-workers.

The objective of the research is described in par. 2, the results of the
research are described in par. 3, and some conclusions are in par. 4.

2. Objective of the research

The subject of the research was the field of those problems in con-
strained optimization which, starting from the linear programming problem,
can be formulated, with growing degree of generalization, first as linear
complementarity problems and second as nonlinear complementarity pro-
blems.

The objective of the research was to attack the above problems by
means of the so-called "continuous approach" to optimization (as opposed to
the so-called "pivotal" methods, such as the simplex method for linear pro-
gramming), with special consideration for the interesting cases of non-con-
vex or ill-conditioned problems, and problems with a very large number of
variables; and in particular the objective was to investigate the possibility of

applying to the above problems, suitably transformed into nonlinear equa-
tion problems, the methods developed by the principal investigator and his
co-workers for solving nonlinear equations and global optimization pro-
blems, based on the numerical integration of suitable ordinary or stochastic
differential equations (refs. [1] to [4]).

3. Results of the research

During the development of the research the complementarity pro-
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blems proved to be much more difficult than it had been anticipated and it
became clear that the original plans where somehow too ambitious.

The final outcome of the research, if judged against the original
plans, is therefore admittedly less satisfactory than it was originally hoped;
nevertheless a number of interesting results have been obtained, so that we

feel that the research is still to be considered at least partially successful.
The main results of the research are contained in the two papers

numbered [5] and [6] in the list of references, which are described in the fol-

lowing paragraphs 3.1 and 3.2, and enclosed as Appendix 1 and Appendix 2.
Report on some work performed in other directions along the lines of

the original research plan, together with some related results of auxiliary
and preliminary nature, were described in the Periodic Technical Reports;
see also the papers numbered [8] and [9] in the list of references.

The research has also stimulated scientific contacts with several ita-
lian and foreign scholars.

The above results have been disseminated by means of the aforemen-

tioned papers on high-standard academic journals, and seminars at Accade-
mia dei Lincei, Rome (ref. [7], which originated paper [8]), at two meetings
of CECAM, Centre Europen de Calcul Atomique et Mol~culaire, the first
in Ermelo (The Netherlands), ref. [10], and the second at CECAM main of-

fice in Orsay (Paris), France, ref. [11].

3.1. The first paper

The first paper (ref. [5], and Appendix 1) can be summarized as fol-
lows.

A class of algorithms is developed for the numerical solution of non-

linear systems of equations and complementarity problems, based on the
fact that the solution of complementarity problems can be reduced to the so-
lution of systems of nonlinear equations by means of a transformation first
suggested by Mangasarian.

The method is "continuous" since it looks for the solution of the non-
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linear system by following the numerical solution trajectories of a suitable

differential equation, as in previous work of the same authors such as the
method implemented in the package DAFNE, described in Refs. [1] and [2].

At each numerical integration step, the DAFNE method requires the
solution of an NxN system of linear equations, and the cost of solving such a
system when a large numer N of unknowns is involved is the most important

part of the computation.
The present method can be called "inexact", since it computes only an

approximate solution of the above linear system, by means of a conjugate-
gradient procedure which is suitably stopped before "convergence", i.e. after

a number mLN) of steps depending on the norm of the residual. For these
algorithms local convergence and Q-superlinear rate of convergence has

been proved. The algorithms have been used to solve three complementarity
problems derived from variational inequalities of mathematical physics very

successfully. The complementarity problems considered had up to 900 varia-

bles.

3.2. The second paper

The second paper (ref. [6] and Appendix 2) can be summarized as

follows.

The paper introduces a new method for solving the linear program-

ming problem, i.e. the problem of minimizing a linear cost function of seve-

ral real variables, subject to linear equality and inequality constraints.

Following Karmarkar [12], the paper considers the problem in the
"canonical" form

minimize f(g) = .eT

subject to
A=
z= 

xi > 0 i- ,...,n



-6-

where
=(x,,... n)Y ,

= (el,...,en) T =

are real column vectors with n elements, A is a real m x n matrix of rank in,
with A = .0, n > 2, m < n, and without loss of generality the objective fun-
ction f(x) may be "normalized", i.e. f( *)=0 if j* is a solution of the problem.

In this paper it is shown that Karmarkar's method [12] is in fact equi-
valent to applying, to a suitable initial value problem for a system of ordina-
ry differential equations, the numerical integration method known as Euler's
method with variable stepsize, and obtaining the problem solution .X* as the
limit, as t goes to infinity, of the numerically computed solution x(t) to the
initial value problem, starting from the initial point.x0 =(1/n).€.

The proposed method is also based on the above interpretation of
Karmarkar's method, but with two main differences:

1) the initial value problem is based on a different system of ordinary diffe-
rential equations;

2) the numerical integration method is a linearly implicit A-stable method
with variable stepsize.

The resulting algorithm is shown to be quadratically convergent.
The computational cost of one step of the proposed algorithm is

shown to be of the same order of one step of Karmarkar's algorithm.
While one step of the classical simplex algorithm [13] for linear pro-

gramming is much cheaper, it may be expected that - due to the quadratic
convergence - the number of iterations needed to solve a linear program-
ming problem to a given accuracy, should be approximately independent of
the problem size n.

Some numerical results are also reported, which appear to support
such expectation.

The algorithm was tested on ten test problems, one originating from
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the operations of an industrial plant in central Italy, and the other nine pro-
vided by the System Optimization Laboratory at Stanford University.

The results are reported in Table 1 where n is the number of varia-
bles, m the number of constraints, k is the index of the first step that verifies
the stopping rule

fX : 10-1 .Xo

and v k is the corresponding value of f(.s).

We note that the test problems with n,m < 5 are solved in about ten
steps, and that, while n and m vary by an order of magnitude, the number k
of steps needed to solve the problem varies only by a factor of two.

TABLE 1

Test problem m n k uk

1. ZIR1 304 543 21 2.41D-10
2. ADLITILE 57 141 21 3.16D-09
3. AFIRO 28 54 12 1.52D-12
4. BEACONFD 173 298 20 3.91D-09
5. BLEND 75 117 21 1.47D-12
6. ISRAEL 175 319 17 1.94D-10
7. SC105 106 166 13 1.36D-11
8. SC5OA 51 81 14 1.48D-14
9. SC50B 51 81 11 7.84D-10

10. SHARE2B 97 167 21 1.78D-10

4. Conclusions

The research resulted in two new methods, one for solving comple-
mentarity problems, and the other for solving the linear programming pro-
blems, both based on the so-called "continuous" approach to optimization.
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Successful solution was obtained for the complementarity problems
on test problems with up to 900 variables.

However, due to the great difficulty of complementarity problems - in
fact much greater than expected - the hoped for attack of much more diffi-
cult problems proved to be unsuccessful.

The linear programming method was shown to be quadratically con-
vergent, and was successfully tested on preliminary test problems with up to
about 300 variables and 540 constraints.
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An Inexact Continuous Method for the Solution

of Large Systems of Equations and

Complementarity Problems

F. ALUFFI-PENTINI.- V. PARISI - F. ZIRILLI(*)

Dedkcato alla memoria d; Carlo Cartaneo, maestro ed amkco

RIASSUNTO - Si considera un nuovo metodo per la risoluzione numeraca eta di
sistern. di eqiuazioni non lineari sia di problemi di complementaritd, die i basa Sul fatto
die Ia risoluzwone di problem. di complemcntarith si pu6 ricondurre alla risoluzione di
susterni di equozioni non lineari medtonte una trrufonnazionc suggerita do M'angaoar-
ion. Rl metodo i 'continuo" in quonto la soluzione del sustema viene cercata seguendo
le traiettorie ottenute per integrazione numcrica di un'opportuna equazione differenziole
- come in precedenti laoi degli outori - e si pu3 dire "inesatto* net senso che fa
uso di un metodo di gradients coniugoti, opporturaamente anrestato 'prima delta con-
vergenza', per la risoluzione del sic temo lineare die nasce nell'integrazione nuinerico
dell'equazione differenzrial. Rl metodo appare particolarinente efficiente per problemi in
cui compare un gran numero di variabili indipendenti, nei quali to parte prevalente dello
sforzo di calcolo i rapprrsentoa dalla soluuione di un susterna lineare ad ogni passo di
integrazione. Vengono dimoatrate la convergenas locale e Ia convergenza Q-superlineare
del metodo, e tiengono presentati akcuni risultati numeric: relotiti a problemi di corn-
plernentaried defla fiuica matemnatica.

ABSTRACT - We consider a new method for the numerical Solution both of non-
linear systems of equations and of complementority problems, based on the fact that

(')The research reported in this document has been made possible through the support
and sponsorship of the U.S. Government through its European Research Office of the
U.S. Army under contract n. DAJA 45-86-C-0028.
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the solution of complementarity problems can be reduced to the solution of nonlinear
systems of equations by means of a transformation first suggested by Mangasarian. The
method is "continuous' since it looks for a solution of the nonlinear system by following
the numerical solution trajectories of a suitable differential equation - as in previous
work by the present authors - and can be called "inaact' since it uses a conjugate.
gradient method which is suitably stopped "before convergence" for the solution of the
linear system arising in the numerical integration of the differential equation. The
method appears to be particularly effective for problems involving a large number of
independent variables, where the computational cost is dominated by the solution of a
linear system at each integration step. Local convergence and( :'.near convergence
of the method are proved, under suitable assumptions, and some numerical experience
on complementarity problems of mathematical physics is presented.

KEY WORDS - Numerical analysis - Nonlinear equations - Mathematical pro.
gramming . Complementarity problems.

A.M.S. CLASSIFICATION: 65H10 - 65K05

1 - Introduction

Let IRN be the N-dimensional real euclidean space, let x =

(1 1 ,z 2 ,... ,ZN)T E 1Rj be a vector, and for x,y E IR'v let (x,y) =
N

E X,y,, lxii -(x,x) 11 2 be the eucidean scalar product and norm; where

necessary [[. will indicate also the matrix norm induced by the eu-

clidean vector norm. Given f : IR : _ IRN we will be concerned with two
classes of problems in this paper: the problem of solving the system of
simultaneous nonlinear equations

(1.1) f(x) = 0

that is: find x" E RiN such that f(x °) = 0, and the complementarity
problem

(1.2) x > 0

(1.3) f(x) > 0

(1.4) (x, f(x)) :0

where x > 0 means z, 0, i = 1,2,... ,N, and similarly f(x) > 0 means
f1(x) _ 0, i = 1,2,...,N, fi(x) being the components off, that is: find
x" such that: x" > 0, f(x*) _ 0, (x*,f(x')) = 0.
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The importance of the problem of solving a system of simultaneous
equations is well known. When f(x) = Ax + b is an affine map the
(linear) complementarity problem has been considered by COTTLE and
DANTZIG in [1] and contains as special cases the linear programming and
the quadratic programming problem. In the case when f(x) is a possibly
nonlinear function of x the (nonlinear) complementarity problem is a
rather general problem and contains as special cases the Kuhn-Tucker
first-order necessary conditions for the nonlinear programming problem
and has been widely studied; see for example GOULD and TOLLE [2].

The linear and nonlinear complementarity problems have applica-
tions in such diverse areas of flow in porous media (31, image reconstruc-
tion [4], [5], game theory [6].

In this paper we will be concerned with the problem of the numerical
solution of nonlinear systems of equations and complementarity problems.
Usually complementarity problems are approached numerically with piv-
otal methods (for example the simplex method for linear programming).
The pivotal methods are usually of the "step by step" improvement type,
that is, given a problem for which a solution is sought, the standard
approach is to attempt to define recursively a sequence of approximate
solutions which have the basic property of making an improvement in a
suitable "objective function". When the problem satisfies some convexity
and/or monotonicity assumptions the pivotal methods are guaranteed to
converge and if only a moderate number of independent variable is in-
volved (up to few hundreds) their numerical performance is satisfactory.

In recent years there has been a growing interest in the use of con-
tinuous methods in nonlinear optimization; see for example ALLGOWER
and GEORG [7] for a review of simplicial methods in the computation
of fixed points and the solution of nonlinear equations, and BAYER and
LAGARlAS [8] for the interpretation of Karmarkar's linear programming
algorithm as a method that follows a trajectory of a suitable system of
ordinary differential equations. In particular the present authors have
developed a method for solving systems of nonlinear equations bard on
the numerical integration of an initial-value problem for a system of or-
dinary differential equations inspired by classical mechanics [91, [10], [11],
[12] and a method for global optimization based on the numerical inte-
gration of an initial value problem for a system of stochastic differential
equations inspired by statistical mechanics [13], [14], [151. In section 2 the
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algorithms introduced in [10) to solve systems of nonlinear equations are
modified to obtain an "inexact" solution of the linear systems appearing
in each iteration in the spirit of DEMBO, EISENSTAT and STEIHAUG [161.
These new algorithms are particularly effective for problems involving a
large number of independent variables where the computational cost is
dominated by the solution of the linear system at each step. Under suit-
able hypotheses local convergence and Q-superlinear convergence of these
new "inexact" algorithm for nonlinear systems of equations are proved.
In section 3 the complementarity problem is transformed into a nonlin-
ear system of equations following MANGASAR.IAN [17] and therefore the
algorithms previously developed provide a class of locally convergent Q-
superlinear methods, which are not of the "step-by-step improvement"
type, for the solution of complementarity problems. Finally in section 4
some numerical experience obtained with the algorithms of section 2 and
3 on some complementarity problems of mathematical physics is shown.

Some of the results of this paper have been announced in [18].

2- Some inexact algorithms for nonlinear systems of equations

Let f(x)=(fl(x),f2(x),...,fN(x)) T E IV , where f,(x), i = 1, 2,..., N,
are real-valued regular functions defined for x = (z1 , T2, .. . , ZN)T E IR .

In order to solve the system of simultaneous equations

(2.1) f(x) = 0

we define

N

(2.2) F(x) = f(x)T f(x) = Ef?(x).
i=I

It is easy to see that x" is an isolated minimizer of F(x) and F(x*)

0.
In (9], [10], (111, [12] the idea has been proposed and developed of

associating to the nonlinear system (2.1) the following system of second-
order ordinary differential equatinns:

d2x dx
(2.3) i -(t) = -gD j(t) - VF(x(i)) t E 10, +oo)
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Where D is a N x N positive symmetric matrix, p,g are positive con-
stants, VF(x) is the gradient of the function F(x) with respect to x.
The equation (2.3) represents Newton's second law (mass x acceleration
= force) for a particle of mass p moving in IjN subject to the force -VF
given by the potential F and to the dissipative force -gDdx/dt.

If x" is an isolated minimizer of F(x) then x(t) = x', V t E [0,+00),
is a solution of (2.3); consider the Cauchy data

(2.4) X(0) = fo

(2.5) L(0) = dx0

and let x(t,f 0 ,q 0) be the solution of the Cauchy problem (2.3), (2.4),
(2.5).

It can be shown that there exists a neighborhood U C IRF 2v of (X, I
JEL2NV such that if [no E U we have:

(2.6) l'm IIx(t, fo,,i)- x 11 = 0

Hence in order to solve the system of nonlinear simultaneous equa-
tions by integrating numerically the Cauchy problem (2.3), (2.4), (2.5),
we are primarily interested in the equilibrium points reached asymptoti-
cally by the trajectories of (2.3) (hopefully solutions of (2.1)) rather than
in the accuracy of the numerical scheme. So that of particular interest are
numerical methods enjoying a special stability property called A-stability
[101.

Let t E IR, let Yfo E IV and P(t,y) E IR' be a given function
continuous in t and continuously differentiable with respect to y, such
that the initial-value problem:

dy
(2.7) Tt (t) = A(t,y) t E (0, +oo)

(2.8) y(O) = fo

has a solution y(t,fo) for t E [0, +oo).
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The simplest choice of A-stable linearly implicit method to integrate
numerically (2.7), (2.8) is:

(2.9) (I - 0.)(y.+- y.) = hip n = 0,1,2,...

(2.10) Yo = Co

where y,, is the numerically computed approximation of y(nh,fo), I is
the identity matrix acting on IR' , h > 0 is the stepsize, for n = 0, 1,2,...
tn = nh, p,, = iP(tnyn), 4n = §(tn,yn) where I(t,y) = Op/Oy is the
jacobian of jp with respect to y. We note that when ((t,y) = Ay is a
linear map (2.9) reduces to the backward Euler method.

After rewriting (2.3) as a first-order system

dx(2.11)-- -
dt

(2.12) d.-.v = _ -Dv - VF(x)
dt (2.

formulae (2.9), (2.10) with variable stepsize hn,n = 0,1,... (i.e. to = 0,
n- It,= hi, n = 1,2,...) are applied to (2.11), (2.12), (2.4), (2.5). In this
i=O

case the map p: IR2N IRIN will be given by

(2.13) wP: [1 [~v

so that its jacobian matrix is given by

(2.14) § -)

where

(2.15) L(x) = 2 J(x)TJ(x) + " (x)H,(x)]

J(x) = Of(x)/Ox is the jacobian of f with respect to x and H,(x) is the
hessian of f,(x).
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Let sn = Xn+1 - xn, n = 0,1,2,...; after some simple algebra (2.9)
becomes:

(2.16) [L. +1 T.- + gD"Il gn = -VF. + - v

Sn'

(2.17) vn+1= - n =0,1,2,...

(2.18) xn+1 = x. + S.

where L. = L(xn), VF, = VF(x.). In order to avoid the computation

of Hi(x), i = 1,2,..., N, at each iteration and since we are looking for
N

points x" such that f(x*) = 0 the term T fi(x) in (2.15) is dropped so

that L(x) is substituted by

(2.20) L(x) = 2J T (x)J(x).

Equation (2.16) will be replaced by

(2.21) Ans = bn

where

(2.22) A(xh) =L(x)+ [ +gD

and

(2.23) A. = A(x,,h,,)

(2.24) b, = -VF. + -v.

we note that the matrix An is symmetric and positive definite.
We have the following theorem:
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THEOREM 2.1. Let f : 1Rl - RN be twice continuously differen-
tiable, F(x) = f(X)Tf(X) and L(x) be given by (2.15). Let x" E IRN be
such that f(x*) = 0, J(x') is nonsingular (i.e. x" is a nondegenemte
solution of the system (2.1)) and the following Lipschitz conditions holds:

(2.25) JlL(x) - L(x*)Il _< 711x - x'i V x E S = {x lix - x1 < 6}

for some constants y and 6 greater than zero. In the iteration (2.21),
(2.17), (2.18) let {h,},n = 0,1,2,..., be a sequence of positive numbers
such that

(2.26) Urn hn = 00

then there exists h > 0 such that for h,, > h, n = 0, 1,..., x" is a point
of attraction of (2.21), (2.17), (2.18) and the rate of convergence is

(i) Q-superlinear if h-I < 7 i 1 lVF(x,,)ll, -y > 0, n > no, for some ,
no >0.

(ii) Q-quadratic if hn;' < -2lVF(x,)ll 2, "r2 > 0, n > no, for some 72,

no >0.

PROOF. Let us rewrite (2.21), (2.17), (2.18) as

(2.27) x.t 1 = G(x., h.) + 1j A,' (x. - xn-1) n = 0, 1,2,...

where

(2.28) G(x,h) = x - A(x,h)-VF(x)

with the initial conditions xo = fo,x-I = fo - h-.%, and h- 1 = ho,
that is (2.21), (2.17), (2.18) can be interpreted as a two-step iteration.
Since x" is a nondegenerate solution of the system (2.1) x" is an isolated
minimizer of F(x) and VF(x') = 0. Moreover for h > 0 the symmetric
matrix A(x,h) is positive definite so that A(x,h) - I exists that is G(x,h)
is well defined for x E IR and h > 0 and x" is fixed point of G(x, h).
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Let ,3 = IIL(x*)-I and let 6 E (0,(20)-') then there exists 6 > 0
and h > 0 such that:

9IL(x) - A(x,h)jl : e Vx E S {xI lix - x' l < 6}(2.29)L
Vh>h

In fact

IIL(x') - A(x, h)ll _ JIL(x') - L(x)ll + IL(x) - A(x, h)ll

since L(x*) = L(x*) there exists 6 such that:

JIL(x') - L(x)i < 1 XE S2S

and for a suitable h > 0

(2.30) IIL(x) - A(x,h)lI - X!I + gDl < V h> h

From (2.29) and the perturbation lemma (lemma 2.3.2 p. 4 5 of Oi-
TEGA and RHEINBOLDT [19]) it follows that A(x,h)-' satisfies

(2.31) IIA(x,h)-'il < a = V x E S, V h >h

Moreover

(2.32) IG(x, h)- x'll <c (x,h)llx- x'll VXE S, Vh >

where

(2.33) w(xh) = a[IIA(x, h) - L(x)ll + IIL(x) - L(x')l + Ilq(x)ll]

and

q(x) = IVF(x) - VF(x-) - L(x')(x - x)l X

IIx -x'l xx"



530 F. ALUFFI-PENTINI - V. PARISI - F. ZIRILU [10]

In fact

IIG(x,h) - x11 = IIA(x,h)- [A(x,h)(x - x-) - VF(x)] 11:5

1 a{ [IIA(x, h) - L(x)ll + JIL(x) - L(x*')II] lx- '11+

+ IIL(x)(x - x') + VF(x') - VF(x)ll}

Moreover from (2.25) and proposition 3.2.5 p. 70 of [19] we have

(2.34) IIq(x)J < oijjx - x'll V x E S

Hence from (2.30), (2.25), (2.33) and (2.34) for some constants a2, a 3 > 0

we have

(2.35) w(x,h) c 0 2 + a311x- x0 11 VxES, Vh>

From (2.27), (2.31), (2.32) for x,,, x.,I E S and h.,h,_- > h we have

I1x.+i - x" II -<

< IIG(xn, h)-xll + IA'[(X-x')+(x -xn.O)] 11<

(2.36) <+[hx,, h. ] '"a l - x ll + ;Ilx jjx.- x*lI <

<[36 + 02 + iX. - x11 + hl_--X--I1 - x ' 11

Moreover from (2.36) eventually changing the values of 6 and h we
have

02 4k 1
73 = 036 + <2 + <

(2.37)
pal1

74 =  <

so that

(2.38) IIx"+, - x11 < 7311x. - x'l + 'Y4Ix.-i - x11
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with a4 = 73 + 74 < 1 that is x,,+ E S. In particular we have shown that

(2.39) lim x,, = X"
n-oo

that is x" is a point of attraction of (2.27).
In particular for n > n0 > 0, x,, E S, using (2.36) the required

order-of-convergence estimates follows from:

(x.+0 - x',] _< [ac- + a311X,, - x-11 iix. - x*II+
(2.40) h

+ a lix,, - x,,-111 for n > no > 0

and the fact that

(2.41) IliVF(x.)l _< (lIL(x')Il + C)iix, - x'll

where lUM e,, = 0.
fl00

Using the method given by (2.21), (2.17), (2.18) requires the solution
of the linear system (2.21) at each step. Computing the exact solution
with a direct method such as Gaussian elimination is very expensive when
a large number of unknowns is involved and may not be worthwhile when
xk is far from x'. In this case it seems natural to solve the linear system
(2.21) by an iterative procedure and to accept an approximate solution.
In particular since the matrix A,, is symmetric and positive definite we
may use conjugate gradients. When the method given by (2.21), (2.17),
(2.18) is used to solve (2.21) with an iterative procedure, accepting an ap-
proximate solution, we will describe this procedure as an inexact method.

Let i,, be the approximate step computed by the iterative proce lure
when solving (2.21) and

(2.42) rn = An in - bn

be the residual. When r, = 0 the linear system is solved exactly. Let
us assume that the approximate step computed in satisfies the following
condition:

(2.43) 1lr,11 < 3,,I]b,O n = 0,1,...
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for some forcing sequence {i3,}, n = 0, 1,... We have the following theo-
rem:

THEOREM 2.2. Let f : IR - t" be twice continuously differ-
entiable, F(x) = f(x)T f(x) and L(x) be given by (2.15). Let x' E ]RN
be such that f(x*) = 0, J(x*) is nonsingular and the following Lipschitz
condition holds:

(2.44) JIL(x) - L(x')Il 5 -Ilix - x'1 V x E S = {xjlix - -' < 6}

for some constants y,6 greater than zero. In the iteration (2.21), (2.17),
(2.18) let {hn}, n = 0,1,2,..., be a sequence of positive numbers and let
the linear system (2.21) be solved approximately in such u way that the
residuals r, given by (2.42) satisfj the condition (2.43) for some forcing
sequence {/3,}, n = 0,1 . if 0 < /. < 13m < 1, n = 0,1,..., then
there exists h > 0 such that if h, > h, n = 0, 1,..., then x" is a point of
attraction of the inexact method (2.21), (2.17), (2.18).

PROOF. Since J(x*) is nonsingular and L(x*) = 2J(x*)TJ(x ") we
cfine the following norm:

(2.45) Ilxll. = IIL(x*)xll V x E IR

we have

(2.46) 1xiI lixil. UijjXjj V x E
j11

where

(2.47) Jl = max {lL(x-)ii, IIL(x1)-IlI}

Moreover it is easy to see that under the stated hypotheses for any
e > 0 there exists 6 > 0 and h > 0 such that:

(2.48) IA(x,h) - L(x)iU < c V X E S = {xI jIx - x11 < 6}, h > h

(2.49) IIA(x,h) 1 - L(x1)-l c V XE S = {xj ilx-xil < 6, h> h
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IIVF(x) - VF(x*) - L(x')(x - x*)jj eIlx - x11
(2.50) V X E = JX x 11- < 6}

We have
(2.51)

L~x)(:.+,- x*) = I + L(x*)(A- 1 - Lx)'

.J.+ (A. - L(x-))(*,. - x-) - [-, - VF(x') - Lx)i.- x)

and taking norms:

I~i+~ x~. <1 + IIL(x*)IlI 1A' - L(x)'I]

(2.52) 4[iirnlI + UlAn - L(x*)II Ilin -X*11+

+11 - b.- VF(x*) - L(x*)(*,, - x*))IJ

from (2.24) if *,. E S and h,, > A using (2.48), (2.49), 2.50) we have:

Ilk-l+I - x*11. S: 11 + Apie] [AIuvF(*knI + 2,Ii~k - X'11+
(2.53) + A 0 ( + f3)(Jj*n - xlII + !!X* - n1)

moreover from

(2.54) VF(.) = L(x*)(* 1 - x) +(VF(i.) - VF(x)- L(x*)(k* - x)]

we have

(2.55) IIVF(kn)I : Ilk. - X*11. + IIlk. - X'II.

Finally from (2.47), (2.53), (2.55) we have:

Il-I- x*11.1 + 141C] [,,.~(l + 6141) + C,.x (2 +

(2.56) -xfjl.+[1 +pd010 + #.m.)IIkn..I -X*Il

= GSin - X*11. + a611kn-.I - X11l
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where

= [+pz] f3ma(1 + ti)+ -ell (2+ £)
(2.57) a6 =(l+pe)(l +i )(' )

choosing the values of e and h so that a5 + O' < 1 fror (2.56) we have
that if *,,_, E S then x,, E S and

';m f, = X"

TaEOLEM 2 3. Let f I-.---+ ILN be twice continuously differ-
entiable, F(x) = f(x)Tf(x) and L(x) be given by (2.15). Let x' E IRN
& such that f(- ') = 0, J(x*) is nonsingular and the following Lipschitz
condition holds.

(2.58) IiL(x) - L(x*)ll _ "rllx - x'11 V x 5 = {xl Ilx - x'11 < 6}

In the iteration (2.21), (2.17), (2.18) let {h,,}, n = 0,1,..., be a
sequence of positive numbers and let the linear system (2.21) be solved
approzimately in such a way that residuals r,. given by (2.42) satisfy the
condition (2.43) for some forcing sequence {1,, n = 0,1,...}, such that

0 < , <Im.x < 1, n = 0,1 . Then there exists h such that if h,, > h,
n = 0,1,...,x" is a point of attraction of the inexact method (2.21),
(2.17), (2.18) and the rate of convergence is:

(i) Q-superlinear if h;' < 7iIIVF(*,,)I, -t > 0, n > no for some
yi, no > 0 and Lim O, = 0

(ii) Q-quadratic if h;1 5 '211VF(*,,)II 2, 7y2 > 0, n > no and /, <

7l2 lVF(i.)fl, 72 > 0, n > no, for some 72, no > 0.
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PROOF. From Theorem 2.2 we have that x" is a point of attraction
of the inexact method (2.21), (2.17), (2.18) so that we can assume that
lim *, = x" and it remains to prove the rate-of-convergence results.

We have:
+- x- A1l {r + [Am - L(x*)] (Sc, - x)

(2.59)
-[ - VF(x) - L(x)(. - x')]

and taking norms
- x'II _< A'IIA(lirnI + iA. - L(x*)Ii Ilin - x'11+

(2.60) + IIVF(*k) - VF(x') - L(x*)(*, - x')Il+

+ A / n- ns1

Let e, 6,h be chosen in such a way that (2.29), (2.34), (2.35) hold
then there exists n' such that for n > n'+ 1, kn E S = {xI IIx-x'll < 6}
we have:

Ili.+1- x'll < t[ .llVF(*n)II+

(2.61) + (aI + Q'311k - x-11) Ilkn - x',l+

+alumk - X*112 + +hh7,- n-l

and the desired rate-of-convergence results follow from (2.41).

3 - Complementarity problems and nonlinear systems

Let f : IRN . j. be given, the complementarity problem associ-
ated with f is

(3.1) x > 0

(3.2) f(x) > 0

(3.3) (xf(x)) = 0
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and let : JR -. JR be a strictly increasing function such that 0(0) = 0.
In [171 MANGASARIAN has shown that x* E JRN is a solution of the
complementarity problem (3.1), (3.2), (3.3) if and only if x" is a solution
of the system of nonlinear equations

(3.4) g(x) = 0

where g(x) = (g(x),g2(x),... ,gN(x)) T and

(3.5) g,(x) = #(If,(x) - x,1) - 0(f(x)) - (z,) i = 1,2,... ,N

for later purposes let us introduce

(3.6) G(x) = g(x)Tg(x)

DEFINITION 3.1: Let x" E ]RNv be a solution of the complementarity
problem (3.1), (3.2), (3.3) we will say that x" is nondegenerate if x" +
f(x') > 0.

DEFINITION 3.2: Let f be continuously differentiable and J(x) =

Of/Ox be the jacobian of f with respect to x, if for 61 = 1,2,...,N each
principal minor ((Of,/Ox,)),i,j = 1,2,...,fi, is nonsingular we say that
J(x) has nonsingular principal minors.

In [17] MANGASARIAN has shown that if x" is a nondegenerate solu-
tion of the complementarity problem (3.1), (3.2), (3.3) such that J(x*)
has nonsingular principal minors and 0 : IR -o IR is a strictly increasing
differentiable function such that dO/dt(O) + dO/dt(t) > 0, V t > 0, then x"
is a solution of the nonlinear system (3.4) and Og/N(x') the jacobian of
g with respect to x is nonsingular.

For simplicity we choose 0(t) = t/2 so that in a neighborhood of
a nondegenerate solution of the complementarity problem (3.1), (3.2),
(3.3) the function g(x) given by (3.5) has the same regularity properties
of f(x). Given the local character of the convergence theorems of section
2 this is satisfactory. In section 4 the method for solving nonlinear system
described in section 2 will be applied to (3.4) with 0(t) = t/2 for some
test complementarity problems.
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4 - Numerical experience

The inexact method (2.21), (2.17), (2.18) has been implemented as

follows:

i) since A, is symmetric and positive definite the linear system (2.21)

has been solved by the conjugate gradient method (C.G.) introduced

by FLETCHER and REEVES [20]. This procedure solves an N x N

linear system in at most N steps. Hovewer we stop the conjugate
gradient procedure after a number of steps which is usually consider-

ably lower than N. In fact let s(k) be the approximate value for the

solution s,, of the linear system (2.21) obtained as the result of step

k of the conjugate gradient iteration; the iteration is stopped after

step m if
IIAs(-) - b.11 _</3.1lb,.11

ii) We have chosen:

C0 = 170 = 0

j&=g=l

D = I (the identity matrix)

s(°) =.0 n = 0,1,...

and the following very simple variation laws for the time integration
step-length h, and the forcing sequence 4.,:

h,+1 = rnin(1Ohn,hmn) n= 0,1,2,...

with ho = 1, hmax = 103

2 /i ,&J n = 0, 1,2....

where flo is given and &, is automatically chosen by the program
among the two values 0.1 and 0.5.

iii) The program stops in any case the conjugate-gradients iteration after
N steps in order to avoid possible non termination due to the finite
arithmetic of the computer.
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Finally the method given by (2.21), (2.17), (2.18) (i.e. exact solution
of the linear system (2.21)) is obtained simply setting &o = 0.

The stopping rule adopted is G(k,) < 10 0 for the inexact method
and G(x.) _< 10- 1 for the "exact" method (i.e. /3o = 0). These methods
have been coded in the Pascal programming language and the program
has been run on a Hewlett-Packard 9816 computer.

We have tested the proposed algorithm on three complementarity
problems of which two are linear and one is nonlinear.

The first problem considered arises as a one-dimensional free-boun-
dary problem in the lubrication theory of an infinite journal bearing,
i.e. a rotating cylinder separated from a bearing surface by a thin film of
lubricating fluid (21]. The finite-difference approximation used by CRYER
in [21] leads to

PROBLEM A (called Problem 3D by Cryer): Find x, w E IR' such
that

(4.1) w=q+Mx, w>0, x>0,

(4.2) (w,x) = 0

where M = ((Mij)), i,j = 1,2,... ,N, is an N x N matrix with elements
Mij given by

Mij = -(//i+1/2) s , if j=i+1,

Mi = [(Hi+1/2)- + (Hi-/ 2)3], if j= i,(4.3) Mij = -(Hi. 1/ 2)3 , if j=i-1,

Mij = 0 otherwise

and q = (ql,q 2,. .. ,qN) T is a vector with elements qi given by

T
(4.4) q- N + 1

[H i+112 - H- 112], i = 1,2,... N

where

2 N+11
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and the function H(y) is given by

(4,6) H(y) = (1 +e cos ry) > 0

with

(4.7) T=2, e=0.8

We note that the matrix M given by (4.3) is symmetric and positive-
definite.

The second problem arises as a two-dimensional free-boundary prob-
lem in the theory of the steady-state fluid flow through porous media.
Some of these problems can be formulated as a variational inequality af-
ter an ingenious transformation proposed by BAIOCCHI and others (ref.
[13]). The discretization used on the "model problem" ([3], p. 4) leads to

PROBLEM B: Find x, w E IRN such that

(4.8) w=q+Mx, w>0, x>0,

(4.9) (wx) = 0

where M, an N x N real matrix, and q = (qi,q 2 ,.. .,q)T E IRN are

defined below.
Given n., n, (positive integers) and X, Y (positive real numbers), let

N = nt 2 ,

Dx = X/n + 1,

Dy = Y/n, + 1,

a = Dy/Dx,

let A be the n, x n, tridiagonal matrix having all the main diagonal
elements equal to 2(a + l/a), and the paradiagonal elements (i.e. im-
mediately above or below the main diagonal) equal to -a, and let B be
the n. x n, diagonal matrix with diagonal elements equal to -1/a. The
matrix M is an n x n matrix with a block-tridiagonal structure (n. x n.
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blocks), having each main-diagonal block equal to the matrix A, and each
paradiagonal block equal to the matrix B. We note that M is a positive-

definite symmetric matrix. The vector q is defined as follows. Given W
(0 < W < Y), and using the Kronecker symbol 6w,, let

gL(Y) = -

1gR(Y) = i(W4 - Y3), if Y < Wi <W,

gR(1))=0, if y>W,

9D(Z) = Y2 /2 - (y 2 _ W 2)(z/2X),

gu(Z) = 0,

r, = -DxDy + blagL(jDy) + j,.ag(jDy)+

+ 6,,(l/a)gD(iDz) + &, 1(1/a)gu(iDz),

i = 1,2,...,n., j = 1,2,...,n% .

The elements q,q,... ,q,, of q are given by

(4.10) qk=ri, with k=(j-1)n,+i

Our last problem, which is defined below, can be interpreted as a
finite-difference approximation of a nonlinear variational inequality.

PROBLEM C: Find x,w E I'N such that

(4.15) w=Mx+p(x)+q, w>0, x>0

(4.16) (w,x) = 0

The problem dimension N, the quantities Dx, Dyj and the matrix
M are defined as in problem B, given n, n., X, Y. The nonlinear term
p(x) is a vector in IRN with components pi = z', i N. The
vector q = (qi,q2,...,q,)T is defined by equation (4.10) where rij =

DxDysin(2riDz/X), i = 1,2,... ,n, j = 1,2,... ,n.
The numerical results obtained with the previously described meth-

ods on Problem A, B, C are shown in Table 1, 2, 3 respectively.



[21] An Inexact Continuous Method for the Solution etc. 541

Table 1 - Results of Problem A

1o--1 no 00

n. ot total n. 3.1t total n.
steps of C.G. steps of C.G.
(2.21) steps (2.21) steps

30 10 79 7 210
40 12 121 8 320
50 16 238 8 400
60 14 240 8 480
70 15 318 9 630
80 i5 369 9 720
90 19 650 9 810

100 18 556 10 1000

Table 2 - Results of Problem B
(with X = 1.62, Y = 3.22, W = 0.84)

io1 _ __0_

U. of total n. n. of total n.
n. ny N steps of C.G. step of C.G.

(2.21) steps (2.21) steps

6 9 54 13 170 6 324
8 12 96 15 250 8 768

10 15 150 17 483 10 1500
12 18 216 19 746 12 2592
14 21 294 19 867 14 4116
20 30 600 34 2405 21 126000

Table 3 - Results of Problem C

(withX=5, Y=5)

D. of total n. n. of total n.
nz n. N steps of C.G. steps of C.G.

(2.21) steps (2.21) steps

5 5 25 5 37 4 100
10 10 100 6 99 S00
15 15 225 8 278 6 1350
20 20 400 10 407 6 2400
25 25 625 10 535 8 5000
30 30 900 10 893
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In tables 1, 2, 3 the adavantage of using "inexact linear algebra" with
respect to complete solution of the linear system for problems A, B, C is
shown, and the advantage is increasing with the number of unknowns.
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ABST&ACT

A new method to solve linear programming problems is introduced. This method
follows a path defined by a system of o.d.e.. And for nondegenerate problems is
quadratically convergent.

1. INTRODUCTION

Let R" be the n-dimensional real Euclidean space, and
x =(xj,..)T G R". where the superscript T means transpose. For x.
y G R' let x~v be the usual Euclidean inner product. and let e IT
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A linear programming problem consists in minimizing a linear function over
a region defined by linear equality and inequality constraints. We will say
that a linear programming problem is in canonical form when it is written as
follows:

minimize c T I

subject to

Ax = 0, (1.2)

eTx=, (1.3)

x > o. (1.4)

with side conditions Ae 0 0, where

= ,,. ,> ,,n<n.

and c E R" are given, and the inequality (1.4) is understood componentwise.
that is,

x>J 0, j- L.... n.

Moreover, we assume that the matrix A is of rank m.
We note that on these hypotheses (1/n)e is a feasible point, so that the

feasible region is not empty.
The simplex method applies to linear programming problems in standard

form, that is,

minimize dry (1.3)

yE

subject to

Cy > b. (1.6)

y O. (1.7)

where d e R'. b r R', C - R " '.r 4 s. are given, and the inequalities (1.6),
(1.7) are understood componentwise. In [11 it has been shown that a linear
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programming problem in standard form with a finite solution can always be
redu.ed to canonical form. Moreover. Kannarkar assumes that the objective
function of the problem (1.)-(1.4) is such that

"* = cTxO* =0

for any feasible point x* that is a solution of the linear programming problem
(1.1)-(1.4). The problem (1.1)-(1.4) with this extra assumption is called a
problem in canoni-al form with a nonnalized objective fuaction. In oc: work
te assumption of hating a nomialized objective furction is riot necessary,
ho-vever, since this assumption simplifies some of the foll'minc algebraic
manipulations. we \,ill keep it.

Let fl denote the subspace fl = (x E R IAx = 0), let .A le the simplex
. = (x E R" Ix >0. erx = 11. and finally let

A = r) (S)

be the polytope of the feasible points. Then the problem (1.1)-(1.4) can he
rewritten as Folio- s.

minimize crx. (1.9)

In this paper we will introduce a new method to solve .inear program-
ming problems in canonical form with a nonnalized objective function. This
class of problems is the one con idered by N. Karmarkar in his celebrated
paper [2].

In the late 1940s G. B. Dantzig [3] developed the simplex method to
solve linear progr,-mming problems. In 1972 V. Klee and G. L. Minty [41
showed that the worst case complexity of the simplex method is combinato-
rial. Here the term "complexity" means the number of elementary operations
necessarv to solve a linear programming problem in the standard form
(1.5)-(0.7). Since the simplex method finds the solution after a finite nurner
of iterations, Klee and Minty [41 were able to give an example where ,.Ie
simplex method has complexity

p=O(rs2').

Note that in (1.5) y R'. Moreover. in 1981 S. Smale in [5] showed that the
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"average" complexity of the simplex method is

p = O(rs2 ).

where r, s are the dimensions of the matrix C in (1.6).
In spite of its worst case combinatorial complexity, the simplex method

has been very successful in solving linear programming problems. The
feature of the simplex method responsible for its worst case combinatorial
complexity is that it moves on the boundaiy of the feasible region

Q = (yE R'ICy > b. y > 0}.

In recent years a great deal of effort has been spent in the attempt to find a
new algorithm for linear programming whose complexit in the worst case is
polynomial. It is believed that these new methods will go through the
interior of the feasible region Q.

In 1979 L. G. Khachijan f6] introduced the first method of this class,
called the ellipsoid ntiod. The worst case complexity of this method is

p = O( S')

Here. howe~er, the meaning of the term -complexitx" has been slightly
changed. In fact the ellipsoid method does not step after a finite number of
iterations, so that "complexity" means the number of elementan operations
necessary to arri, e in a predetennined neighborhood of the solution. More-
over, the method introduced by Khachijan is onl. of theoretical interest,
since its practical perfonnance is rather poor.

In 1984 N. Karniarkar [2) presented a new, linear programming method of
polynomial worst case complexity

p=O( s35).

This algorithm is called the projective medod when applied to a linear
programming problem in canonical form with a normalized objective func-
tion. This algorithm is of theoretical and practical importance.

Since 1984 a great deal of work has been done in deseloping new
methods for linear programming. Several "interior point algorithms" have
been proposed. P. E. Gill. W. Murray. M. A. Saunders. J. A. Tomlin. and
M. H. Wright in (7] have interpreted Karmarkar's algorithm as a "logarithmic
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barrier method- an ! have suggested a new algorithm with good practical
performance.

In the framework of logarithmic barrier function methods we can recall
the work of several authors. In [81 J. Renegar lowered Karmarkar's complex-
ity bound. In [91 C. Gonzaga lowered Renegar's complexity bound. In [10] M.
Iri and H. lmai, with the hypothesis of being able to perform exact line-
searches, introduced a quadratically convergent algorithm fo. the linear
programming problem, In (111 N. Megiddo studied the geometricra. r"er-
ties of the paths derived from "weighted logarithmic barrier functions.-
Finally, J. A. Tomlin in [12] reports on considerable numerical experimenta-
tion with this kind of algorithms.

In this paper, as suggested by D. A. Bayer and J. C. Ugarias in [131 we
will show that Karmarkar's projective method can be obtained by applying
Euler's method with variable stepsize to a suitable initial value problem for a
system of ordinary differential equations. In fact. Karmarkar's method obtains
the solution x* of the linear programmine problem by computing

where x(t.(I/n)e) is the solution of a svstem of ordinary differential equa-
tions with initial condition (1/n)e. using Euier's method with variable
stepsize. The idea of obtaining the solution of nonlinear programming
problems as limit points of the trajectories of systems of ordinary differential
equations has been widely used; for a review see [14]. In particular. in
(15-171 quadratic-ally convergent algorithms for nonlinear systems of equa-
tions have been obtained from methods based on the numerical integration of
trajectories of systems of ordinary differential equations.

The interpretation of Karmarkar's projective method as the numerical
solution of an initial value problem raises two natural questions:

(i) Can the system of ordinary differential equations used in Karmarkar's
projective method be changed to a new one that will generate an interesting
algorithm?

(ii) Can the Euler method with variable stepsize that is used in Kar-
markar's projective method be replaced with some other numerical scheme
that will generate interesting algorithms?

An answer to question (i) has been given by D. A. Bayer and J. C.

Lagarias in [131 and J. L Nazareth in [181, who replaced Karmarkar's vector
field with the affine cector field. Question (ii) has been considered by N.
Karmarkar, J. C. Lagarias, L. Slutsman, and P. Wang in (191, where they tried
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to approximate the path x(t,(I/n)e) with a power series expansion. obtaining
encouraging practical results. In this paper we give two new answers to
questions (i) and (i); in fact, we propose a vector field which is different
from the ones previously considered, and we use a linearly implicit A-stable
integration scheme [14] to solve the initial value problem considered. In this
way we obtain a quadratic-aly convergent algorithm for linear programming
problem. Moreover our algorithm shows good practical behavior.

In Section 2 Karmarkar's projective method is interpreted as the numeri-
cal integration of an initial value problem with Euler's method and variable
stepsize. Moreover, to a linear programming problem in canonical form with
normalized objective function is associated a new system of ordinary differ-
ential equations. If we assume that the solution of the linear programming
problem is unique. this solution can be obtained as the limit point of a
suitable trajectory of the system of ordinary differential equations.

In Section 3 an initial value problem for this system of ordinary differen-
tial equations is integrated numerically, using a linearly implicit A-stable
method with variable stepsize. It is shown that this is a quadratically
convergent algorithm for linear programming.

Finally, in Section 4 we compare the computational cost of our step with
that of Karmarkar's projective algorithm and that of the simplex algorithm.
and we present some numerical experiments.

2. THE USE OF ORDINARY DIFFERENTIAL EQUATIONS
IN LINEAR PROGRAMMING

Let x* =(x,.x,.....x,,)r C R", X* r ''" Ie given by X* =((X,*))
Diat'x*), that is. X,* = xYS,,. i.j = 1,2..... n. where 6,,, is the Kronecker
symbol.

DEn-rr,% 2.1. . minimizer x* of the problem (1.1-(D1.4) is t-alled
nondegenerate if it has exactly n - i - I null components.

Let ,, = (1.2 ..... i)and S ={s,.s .. . ... s .). in + 1 < n, be an ordered
set of indices such that SC_ J,,. Let z =(:,-, ..... :,) R" be a vector. We
denote by z. the \ector z, = ....... z,) R'". Moreover. gixen a

vector v E R.. and a matrix Q e R"".I,, of rank in + 1. we denote h% Q,
the submatrix Q, = [q".q . '-.-.. ]C] R1 -.1) ,, f. '. where q1 is the jth
column of Q. If B is an ordered set of indices such that B _ J. and
N - B. then the system

Qz=v (21)
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can be rewritten in the following form:

QBZB + z = v. (2.2)

DEFINITI N 2.2. Let B be an ordered set of m + 1 indices. Then B is a
set of basic indices for the system (2.2) if there exists a matrix Q . E
R( * ' l~x° ' - " -I and a vector V e R ' such that the system (2.2) is equiva-
lent to the system

z + Qz = . (2.3)

LEI., 2.3. Let B be an ordered set of ti + 1 indices such that B is a set
of basic indices for the system (2.2). Then QB is an invertible matrix.

Proof. It follows immediately fim the equixalenCt' of the linear s\ tenis
(2.2) and (2.3). U

Let a>0. x >0. x'=(x,'.x.. x')rER ". and X"C R.. be the
matrix X" = Diagyx*).

LEMMA 2.4. Let a ; 1 and x* be a nondegenerate minimizer of the
linear programming problem (1.1)-(1.4). Then AX**AT is an incertible ma-
trix.

Proof. Let

= R

be the matrix A with the extra row e' added. Since x* is a nondegenerate
minimizer of the problem (1.1)-(1.4) and M has rank m + 1, then there
exists an ordered set of m + 1 indices B such that x ; E R "' ". has all nonzero
components and x.. RE" - is the zero vector, where N = ], - B. More-
over. B is a set of basic indices for the system

My = u. (2.4)

where u = R' ° is given and y r R". Let X;'"2 b.e the
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matrix X 1
1 2 = Diag(x "'2 ). and X.,'i2 r R(- Ix),--) be the matrix

. Diag(x.",'/ 2 ). that is. the null matrix. So from Lemma 2.3, Mae

R(, + 1)x(m - 1) is invertible, which implies that M sX/
2 is invertible. More-

over, since B is a set of basic indices for the system (2.4), we have

MX*MT: _MX / + B 1/2.vT +x v*,/12mT

-',;l+ f. ,'/ ) a "B "N ".\')

= B BYx/2 )(x;"/Mr. (2.5)

Since MBX* 1/ 2 is invertible, from (2.5) it follows that MX*MT is invertible,
so that an easy computation shows that AX*AT is invertible. Therefore it
follows that AX * '/ 2 is of rank m. so that L *a/2 is of rank mn and kX *AT

is invertible. 8

LEMMA 2.5. Let a = 1 or a = 2, and let x* be a nondegenerate
minimizer of the linear programming problem (1.1)-(1.4). Then there exists
p* > 0 such that AXGAT is invertible for x e S(x*,p*), where S(x*,p*)
{x E R" I l x- x*11 < p*}.

Proof. The proof follows immediately from the continuity of -AX"A
with respect to x E R", from Lemma 2.4. and from J. N1. Ortega and W. C.

Rheinboldt [20. Lemma 2.3.2. p. 451. U

Let x =(x 1,x'..... x.)T E R": let XC R"'" be given by X = Diag,(x): let
D E R i'", m 4 n. be a matrix, and D- the subspace

D- =( ER"ID x=0[ (2.6)

and let rloD( ) be the orthogonal projection on D-. The projector [i0 - )

always exists. and if D has Full rank is given b%

lD-(Y) I=[ - Dr( DDT)'DJy y E R". (2.7)

Let r be

r ={x c RIx > o), (2.8)
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and t be its interior:

P={xERnIx>O}. (2.9)

The set f is called the positive orthant.
For a>0 and xeF let X i '2 ER y " be the matrix X0-

Diag(x *,/' 2,- X 2 ,-. X,,"" 2 ). We observe that R -can always be ex-
pressed in the form (2.7). In fact, let r be the rank of the matrix ..- V2: if
r = m, then 11(AX.'1.' is given by (2.7). If 0 < r < in. we can consider the
matrix AE R "" obtained from A by eliminating the in - r rows of A with
indices equal to those of the m - r rows of AX* 2 that are linearly
dependent. Since (AX' 2 . (AX*,,2)_. we have

nl. = l- . (2.10)

where l'H.,, -)- is given by (2.7). Finally if r = 0 we have that -(.Ax* :,_ = I,
where I is the n x n identity matrix. Let h(x) R" he the following vector
field:

h(x) =-X(I -eeTX)FlI.,.( Xc) xE R". (2.11)

The vector field h(x) is known as Karmarkar's vector field (2. 13). Let
S(x*,p*) be the open ball of Lemma :'S and let us consider h(x) for
x -r u S(x*,p*).

We observe that for x S F U S(x*, p*). AX is of rank m. Then h(x) is a
continuously differentiable function of x for x E u S(x*,p*). Let A be given
by (1.8), and A be given by

A= A nr (2.12)

We will consider the initial value problem

dx
- = h(x). (2.13)

x(o) = -e. (2.14)
n

1t is easy to veri fy that I/n )e E A.
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LEIAt. 2.6. Let

B = [IeJ R

be the matrix ALX with the extra row e' added. and let y = x/an -1).

where x E (0. 1) is a parameter. For xt E A let

Xk = Diag(x&)k B k A -

and let Atk be given by

A,,(±-IfI .(Xkc) 11-eTx, n,,7(x,.) (2.13)
n-y

Then Euler's method applied to the initial calue problem (2.13). 12.14) with
cariable stepsize Atk given by (2.13) produces the sequence (xk). k =

0.1,2 ..... generated by Karmarkar's algorithm [2. pp. 37S-379i applied to
the linear programming problem with normalized objectire function
(1.1-(1.4).

Proof. We observe that AIk > 0 for xte. (see [2, Theorem 5. pp.
381-.3821. so that. integrating (2.13). (2.14) with Euler's method and variable
stepsize Atk, we have

1
" _ -e (2.16)

xX+k +Atkh(xi) k =O.1.2. (2 1)

The thesis follows front a straightforard computation.

For a> 0 let

g(x,a) = lm* ,. X ° '"c). nG r. (2.18)
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We note that for a = 2, g(x.2) is the affine scaline factor of [131. and

g(x. 2) = I]".X) (Xc) (2.19)

can be defined for x r RO so that

h(x) = -X( I -eerX)g(x,2). x E R". (2.20)

We have:

Ti1EOFE,,i 2.7. For 0 < a 4 2 let x = A be a feasible point for the linear
programming problem with normalized objective finction (1.1 )-( 1.4). Then

III Ax" :b( X * 2c) = 0 (2.21)

if and only if x is a minimizer of the linear prog-ramming problem with
normalized objective function (1.1 )-( 1.4).

Proof. Let x = Xe be a minimizer of the problem 1.1)-(.4) with
normalized objective function. Then

!-ir . (X /c) -0. (2.22)

In fact, if we assume that

rtAX' (XO/ 2c) * 0. (2.23)

then there exists z = (-i .:2. z, ) R" such that

E a,)X' :, 0 O, i 1..m. (2.24)
)-I

that is. z E(AX/ 2 ) and

-cjxI/2z 0. (2.25)
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that is, X ' 2 c is not orthogonal to z. We can assume without loss of
generality 8 > 0. Let us define

j= 10/2 s. j =1.2. n. (2.26)

Since > 0. there exists j such that ,* 0. If wj 0 for j -1,2..... n. we
choose E > 0: otherwise we choose e as follows:

xi

O<E< min - (2.27)
J cc, > 0 W

We recall that x , ;i 0 for j = 1.2..., n. Let

ci = X - Ewj, j = 1,2 ,..., n. (2.28)

From (2.27) we have

V j>O, j=1,2. n. (2.29)

and

E. > O. (2-30)
i-

Let us define
LJ

Vu , . j - 1.2 ... n. (2.31)

The point u =(u.u ... u,)r is a feasible point; in fact,

Au =O. (2.32)

eTu 1. (2.33)

u >O. (2.34)
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Moreover.

Ecsu E (c xs - Ecsu)

J J-

CT(.

Since x has been assumed to be a minimizer of the linear programming
problem (l.l)-(1.4) and the objective function is normalized, we have

crx = 0. (2.36)

Therefore the objective function assumes a negative value at u. and this is
absurd.

Let us assume now that x E A and that Equation (2.21) holds. We will
show that x = Xe is a minimizer of the linear programming problem with
normalized objective function (1.1)-(1.4). In fact, from (2.21) we have

e TV -a/2r i(.AX-) x - ( X 
/2'C ) = 0. (2.37)

Using A instead of A as in (2.10), when AX@° ' 2 is of rank less than m we
have

0 = eTX I-& /2[Ir.AX • ( X0" 2c)

= eXI--/2[1 -X/A"T(-XaAr) -'AX. /2]X*2c

= erXc -eTXAT(.4XaAT) - 1AX'c = erXc = cr. (2.38)

Therefore we have that x is a feasible point where erx = 0. that is, x is a
minimizer for the linear programming problem with normalized objective
function (1.1)-(1.4).
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Let I be the set given by

I - (x E R"JAx = O, erx = 1). (2.39)

LEMMA 2.8. Let i* be a nondegenerate minimizer of the linear program-
ming problem with normalized objective function (1.1 )-(1.4), and let h(x) be
given by (2. 11). Then we have

h(x*) =0. (2.40)

Moreover.

Ah(x) =0, x E . (2.41)

erh(%) = O, x (= , (2.42)

where Z is given by (2.39).

Proof. In fact for x E Z we have AXe = 0, eTXe = 1. and
.- x,I- (Xc)-= 0. so that

Ah(x) U - A AxV X) + .LXee Tx ' (,_ Xc) = 0 (2.-43)

and

erh(x) = -e T X'l(Ax)-(XC) +eTXeerXlax-(Xc) = 0. (2.44)

Moreover. from Theorem 2.7 we have (2.40). U

Let x r R". and E, r R" be the matrix given by

E, = Diag (l', ,,.(Xc)). x E R-. (2.45)

Let ]I,(x)G= R" " be the following matrix:

J()=-I - Xeer)xI(AXI-EI -[erXll(A 1 Xc) 1I1. x eR"

(2.46)

I
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For x E R" in (2.46) we will use A instead of A. as in (2.10). when AC is of
rank less than in. An elemientarv computation shows that the matrix
XI-I%. - I  can be defined for x e R" so that J(x) is defined for x - R".

Let

) = {x - R"IAX 2 AT is invertible). (2.47)

For x E W. Jh(x) is the Jacobian matrix of h(x) xvith respect to x. Morepcer
let S(%*.p*) be the open ball of Lcrnma 2.5: we observe that fir x -- f U
S(x*.p*). since ..LV is of rank in. the matrix Xl-l,,.\_X -' is well defined
and continuous. So Jh(x) is continuous for xE r'S(x*.P*), and since
R'l..) - (X*c) -0. we have

Jh(x*) = 0. (24)

From Lemmna 2.8. we conclude that any solution x" of the linear protaram-
ming problem with normalized objective function (1.1")-(1.4) is an equilib-
rium point of (2.13). that is. h(x*)= 0.

Hoveer, due to the sinvular Jacobian of h(xl at x* [that is. to (2.48)L the
use of a linearly implicit A-stable method to inte.rate the initial value
problem (2.13). (2.14). as suggested in [8] in the context of nonlinear
programming, will not produce a quadratically converaent nethod for linear
programming. To overcome this difficulty we introduce a new vector field
f(x) R" defined for x e R" given by

f(x)=-(I-Xeer)[Xc-XA (.AAT)-'A.c] xER". (2.49)

where we use X instead of A, as in (2.10). if AXAT A is of rank less than m.
Let us consider Rx) for x e t U S(x*,p*). We observe that -LXAr is

in\ertible. From (2.49) we have that Rx) is a continuously differentiable
function of x for x E r u S(x*.p*). For later purposes we observe that fix) for

X e r can be rewritten as follows:

f(x) = -(1- XeeT)xI./2 
5 ,2 .(X'/"C), xe r. (2.50)

or

f(x) - X1/(l_ X-'" 2eeTXI, 2)g(x. ). iE r. (2.51)

From Equations (2.20). (2.51) and Theorem 2.7 it follows that if x* is a
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minimizer of the linear programming problem. then ix*) - h(x*- 0, that is,
x* is an equilibrium point of the vector fields h(x). fKx). For x E A the vector
field K(x) can be obtained as the steepest descent vector associated to the
function CTx with respect to a particular metric. In [13] D. A. Bayer and J. C.
Lagarias have introduced the idea of looking at Kanmarkar's vector field h(x)
in teims of steepest descent directions.

Let xO be a feasible point of the linear programming problem (1 1)-(1.4),
and F. be the affine subspace

Fo = x0 + (v e R tIAv = 0, erv = 0). (2.52)

LE N IA 2.9. The vector field Rx) given by (2.51) is the steepest descent
vector associated to the objective function b(x) = crx of the linear program-
ming problem (1.1)-(1.4) restricted to Fo r t with respect to the Riemannian
metric G(x) = X- '= Diag(x '), defined on the positive orthant r. where F,
is given by (2.52).

Proof. We consider the following transformation for x E F. n r

x = G-'"2 (x)y =X'' 2v. (2.33)

We have

b~t(y)) -(.\-I,,' Tr

and F, assumes the following form:

Fo= xu + (u G R IAX'/u 0 0, erXI/2u 0). (2.55)

The gradient vector of b(x(y)) with respect to y is

ab-y ft x / 2e " (2 .56 )

The gradient vector db/dy projected on [xx j is given b%

n , -(x' 'c). (2.57)
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where we ,ise X instead of A, as in (2.10), if AXAT is of rank less than m.
Since AXe - 0 from (2.57), using (2.7) we have

X1/ 2c- xI'AT(AXV'A -Xc.' XI/ eeTXC. (2.58)

Since eTXAT(AXAI)- 1AXc = o, we have

= (i - x ^2 eeTX /2 )fl( AX' ."2X 2c). (2.59)

Finally, applying (2.53) to . we have that the gradient Nector ;(x) is given
by

,(x) = VA = X', 2 ( 1 - Xl2eeTX)1 ) , , 2c), (2.60)

This concludes the proof. U

Let A be given b% (1.8).

LE .t A 2.10. Let x r A, and r be the rank of the matrix A.A'. Then

- .AX" I (X' 2 c) = (I - Xi/ 2eeTX1/Z) li(Ax,.:,(X'/ 2 c), (2.61)

where we use A instead of A, as in (2.10). wher r is less than in.

Proof. Let 0 < r < m. The projector 1 A X - is defined as follows:

n [ .,,:]. = , [ x 1"/2 IT .,X /2 I [ .'-L,-' I T* A. (/2 .6 )n, AX T xI LJ(L/2 ]x12 ] TL1/ (2.62)

Let us compute the matrix

114-([ AX12/X

I~~~U -X 1/2 [I er 1/2llll II |
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Since AXe = 0 and erXe = 1, we have

Af =K A 0]. (2.63)

An elementary computation gives us

.. X'/ 2c) = X" - XIA A '.AXC XI/ 2 eeTXC. (2.64)

From eT-.T = 0 we have

q=Xi/"eer.AT(AXAT) - c- 0 (2.65)

and

ll[ 'I =1(X'/2c) = rI'(AX' ,-(X' 2 c)- X/ 2eeX'/ 2c+q. (2.66)

With an eas. iomputation from (2.66) %%e obtain (2.61). Let r = 0. and
0 E R" . be the null matrix. We ha% e that

O = (erx12) - and n-U.1 .

so that (2.61) holds. U

LE\i\ik 2.11. Let x* be a'nondegemrate minimizer of the lin'vr pro-
grarnming problem uwith normalized objective finction (1.1)- 1.4): let fi} be
given by (2.49) and 1 be given by (2.39). Then we have

f(%*) = 0. (2.67)

oreoter

Af(%) = 0. x CE . (2.68)

erf(,) =0. xE . (2.69)
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Proof. Let a = 1. From Theorem 2.7 we ha\e

I1(.x., ,( X*I 2 c) = 0. (2.70)

so that

f(*) 0. (2.71)

Let x E Z. Since U'e = 0 and eTXe = 1, we have

Af(x) (A - )AX ee T C . -AT( A.AL-)A - cI =0 (2.72)

and

erf(x) = (er -eTXeeT)[c- VIT( .XAT ) A'.AkcI = 0. (2.7.3)

This concludes the prof

LEIi.,, 2.12. Let Rx) be gicen by (2.49), and x,, R" be such that

Axo = 0, (2.74)

ex 0 = 1. (2.75)

Then the solution x(t) of the initial value problem

dx
dT" = x)"  (2.76)

x(O) = x0 (2.77)

satisfies the constraints

Ax(t) = 0, (2.78)

erx(t) = 1 (2.79)

for all ralues of t where x(t) is defined.
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Proof. From Lemma 2.11 we have

dt

e d- = erf(x)= 0, (2.81)
dt

so that the thesis follows immediately from the assumption (2.74), (2.75) on

x0 and the fundamental theorem of calculus.

For x E R' let E E R"Xn be the matrix given by

E = Diag(AT( ,AXAT) - 'AXc), x f Rn, (2.82)

and C E R be the matrix C= Diag(c). Let f(x)E R " " be the following
matrix:

J(x)=-[I-.tAT(.LAT)-'A-XeerJ(C-E)+(eTXc)I, X -R.

(2.83)

where we use A instead of A, as in (2.10). if AXAT is of rank less than m.
Let Y be the set (2.47). An elementary computation shows that for x C ),
J(x) is the Jacobian matrix of Rx) with respect to x. Moreover let S(x*, p*) be
the open ball of Lemma 2.5. We observe that for C r u S(x.p*). since the
matrix UXAT is inertible. J(x) is continuous for xE r u S(x*.po).

THEOREM 2.13. Let us assume that the linear programming problem
(1.1)-(1.4) has a unique nondegenerate minimizer x*, and let J(x*) be given
by (2.3). Then J(x° ) is invertible as an operator restricted to the sub-space[AI .That is. J(x*)v 0 for each v * 0 such that

V A ::
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Proof. First of all we show that for i = 1.2 ..... n we have

(C- E),, 0 if and only if r,** 0.

Let X* = Diagx*). From Theorem 2.7 for a = I we have

X*''2( C - E) = Dia.((n,,.., :,.(X'/2c))) = 0. (2.84)

Since C - E is a diagonal matrix. from (2.84) we have that X,* * 0 implies
(C - E),,= 0 for i = 1.2,..., n. Let us show that (C - E),, 0 implies
X87 * 0 for i = 1,2 ..., n. In fact if we assume that there exists h such that
(C - E)hh = 0 and xh* = 0. then from the assumption that x* is a nondegen-
erate minimizer of the linear programming problem (1. )-(1.4) it follows that
there exists a pivot transformation that makes the hth component of x*
nonzero. Let y* be this new basic feasible solution correspOnding to x* via
the pivot transformation. Since only one pi'ot operation has been made. the
nonbasic components other than the Ith component are still nonbasic. that
is, y,* = 0 for each i * h such that x,* = 0. Let =Diat,(,l*. ,.... .*)-

From (2.84) we have

Y*(C- E)=0. (2..5)

Moreover, since erY*Ar = 0, from (2.85) we have

0 = eTy*(C - E)e = eTY*Ce-er '*AT(A *Ar)T .*c = ery*c = cTV* .

(2.86)

Therefore y* would be a new minimizer of the linear programming problem

(1.1)-(1.4). different from x*. and this is absurd.
We have J(x*) =(C- E) . In fact it is obvious that vE(C- E)

implies v E J(x*)-. Moreover, let

M= [AT(AXAr) - 'A -ee]T(C - E). (2.87)

Then

(x')(c - E) - M, (2.88)

so that J(x*)v = 0 implies (C - E)v = X*Mv. Since X* is a diagonal matrix.
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we obtain (X*Mv), =(X*)(Mv),, i = 1.2. n. We have two cases:

(i) X,, - 0. which implies ((C - E)v), = 0:
(ii) X* i* 0, which implies (C - E),. - 0.

Summarizing. we have that ((C-EM, -0, i= 1,2..... n, that is. v e
(C- E)L.

Now let u E R" be such that

Au = 0. eru = 0. (2.39)

We assume that u E J(x*) '; since x* E (C - E) -, then z = x* + u rJ (x*)i.
Moreover,

Az = 0, eTz=1 (2.90)

and z E J(x*)-' implies z E(C - E) ' . If z C (C - E)" , then z, = 0 for each
i such that x,* = 0. this condition, together with (2.90), is a characterization
of the minimizer x* of the linear programming problem (1.)-(1.4). There-
fore u = 0. This concludes the proof. U

TIIEORE\t 2.14. Let x* be the unique nondegenerate minimizer of the
linear programming problem with nonnalized objectice function (1.1)-(1.4).
and fx) be given by (2.49). We consider the initial calue problem

dx
-t = fX). (2.91)
dt

I
x(0) = -e. (2.92)

-- n

Then a solution x(t.(I/n)e) of (2.91). (2.92) exists for t E[0.x). and

I'
lim x t.-e = x*. (2.93)

n/

Proof. The standard existence and uniqueness theorems for the initial
value problem for ordinary differential equations guarantee that the solution
of (2.91). (2.92) exists locally. From Lemma 2.9 it follows that Rx) is
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tangential to A. so that from Lemna 2.12 and the fact that (/n)e E A we
have that x(t,(I/n)e)G .A. Moreover fur x E A we have

T ( t.= - V -X " < 0. (2.94)

that is. the objective function crx is monotonically decreasing along the
trajectory x(t,(I/n)e). Since the minimum of crx on .A is zero. x* is the
unique minimizer of crx on A. and Rx*) = 0, from G. Sansone and R. Conti
[21, p. 311 we have that x* is the unique limit point of -dt.(l/n)e) and

lim xt. e(2.95)

This concludes the proof

3. THE QUADRATIC ALGORITHM FOR LINEAR PROGR-kM.MING

Let xE R'. DC R' be an open set. and D be the closure of D: let
w: Dc R" -. R" be a function continuously differentiable in D. whose
Jacobian matrix is denoted by Q(x) = dw/dx. Let us consider the initial
value problem

dx
=-,(X). (3.1)

x(0) = x,,. x, r D. (3.2)

Let I be the n x n identity matrix, hk > 0. k = 0, 1.2 ..... be a sequence of
stepsizes. and tk = E',-o.,. Then any solution x(t,) of (3.1). (3.2) can beapproximated with xk computed as follows:

x0 1x,, (3.3)

11-hQ(x')]sk= hkw(x), k - 0. 1.2.. (3.4)

x'=x +sA. k =0.1.2 ..... (3.5)

.
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The numerical scheme (3.3)-(3.5) to integrate the initial value problem (3.1).
(3.2) is A-stable and linearly implicit, and hasJbeen studied by ). D. Lambert
and S. T. Sigurdsson in [221.

Let Rx) be the vector field given by (2.49). and J(x) be its Jacobian
matrix given by (2.83). We will apply the numerical scheme (3.3)-(3.5) to
the initial value problem

dx
-t = Qx). (3.6)
dt

X(q) = -e (3.7)
n

considered in Section 2. Let f be given by (2.9). By Lemma 2.5 there exists
a neighborhood S(x*,p*) of x* such that Rx) is a continuously differentiable
function in r u S(x*, p*).

LEM M 1A 3.1. Let x* be the unique minimizer of the linear programming
problem with normalized objective function (1.1)-(1.4). Let us apply the
numerical scheme (3.3)-(3.5) to the initial ralue problem (3.6). (3.7). More-
over let

hi *(erXtc) -  for k=0.1.2 ..... (3.5)

l-hJ(xk) beinrertible for k =0,1.2._. (3.9)

Then the sequence {x' '. k = 0. 1.2 . encrated by (3.3)-(3.5) exists, and
st satisfws

Ask =0. k =0. 1.2 ..... (3.10)

e T = 0. k =0. 1,.2 ..... (3.11)

Proof. We note that x"=(1/n)e is - feasible point of the linear
prugramming problem.(1.1)-(0.4) and that sk is defined by

(1-hkj(hh)IsA =h ~f(xk). k 0.1.2..... (3.12)

In Lemma 2.11 it has been shown that if z' is a feasible point for the linear
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programming problem (1.1)-(1.4). we have

Af(x ) =0, (3.13)

erf(xk ) = O, (3.14)

so that applying A to both sides of (3.12). we obtain

A[I - hkJ(x')]s = 0. (3.15)

From (2.83) we have

AJ(x') = (erXk c)A. (3.16)

Therefore %%e have

[1 - h,(eTX, c)] As' = 0. (3.17)

so that from (3.8) we have As' = 0. k = 0, 1.2,.
Moreover it is easy to verifv that

eTj(x') = (erXc)erl. (3.18)

so that from Lemma 2.11 we have

eT[I - hJ(x*)]s' = 0. (3.19)
which implies

[1 - h,(erXkc)Jersk = 0. (3.20)

So that from (3.8) we have ersk = O, k = 0.1.2.... 

Let D C R" be an open set and Do C D be a convex set.

DEFINITIO.% 3.2. Let w(x): D 9 R"- R" be a continuously differen-tiable function. Let 4 E R'". D, be an open neighborhood of 4, and T: D x
Dt C R' X R- -. L(R-). where L(R") is the set of the n x n matrices. Then

T(1_ C) is a consistent approximation to the Jacobian matrix Q(f ) of w(x) on
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Do C D if 0 e R" is a limit point of D, and

lim T(x.) -Q(x) (321)
I-#e

uniformly for x e Do. Moreover. if there exist two constants c > 0 and r > 0
such that

IIQ(x) - T(x, ) c1411 (3.22)

for each x e D,, and e D, r S(0. r), where S(0. r) = {t e R"II l < r).
then T(x. 4) is a strongly consistent approximation to Q(x) on D,,.

LEiI, 3.3. Let DCR" be an open set, and w:DCR'-R' be a
continuotsly differentiable function on the convex set D,, C D. Let Q(x)=-
Lip,( D,). that is. let Q(x) be a Lipschitz continuous function for x e Do with
Lipschitz constant y > 0. Then

1 w(y) -w(x) - Q(x)(y)- I%) It;x -i-1 (3.23)

for each x. y e D1..

Proof. See J. NI. Ortega and \W. C. Rheinholdt [20. Theorem 3.2.12.
p. 731. U

TiiEOrFtE 3.4. Let x* be the unique nondegcnerate minimizer of the
linear pro.'ramming problem with normalized objective function (11 )-(1.4).
and let

and B - be giten by (2 S). Moreover. let fix) be given by (2.49). and

It ,k k = o. 1. 2- (3.24)

where ar > a > 0 is a bounded sequence such that hi * (erXkX)P. Then
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there exists p, > 0 and an open neighborlood S(x*,p,)= (x E RIx -x*11 <
p1) of x* such that if ;,, E S(x*.p,)t r . wher, is given by (2.39). then the
sequence (xk). k = 0. 1.2..... generated by

X" = ,(325)

[I-hJ(x')](x'- ' -x')=hf(x), k =0.1.2..... (3.26)

where J(x) is given by (2.83) and the linear system (3.26) is suted in B -. is
well defined. xLk  S(x*,p,)) 1 for k = 0. 1.2 ..... and (xk). k =0. 1.2 .....
converges quadratically to x*.

Proof. \Ve argue b% induction on the index k. Let

k = O. 1.2..... (3.27)

and

4)(x'.) - I+ J ) k =o.1.2,.... (3.2s)

We observe that (3.26) can be rewritten as follows:

_ D(XI.f )(11 -I _ k) = f(xt ), k = 0. 1,2... . (3.29)

it is easy to see that (x. f) is a strongly consistent approximation of J(x) on
r when f goes to zero. We have seen in Lemma 3.1 that if v E R" andk e we have

= (eTXkc¢ fk)Av (3.30)

e To(x'. f)v = (erXkc - f& )eTV. (3.31)

From (3.24) and (3.27) it follows that fk * er XC for k = 0.1.2. so that
We have

(D(xl.fk)vEB "- ifandonh% if vEB'. (3.32)
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From Theorem 2.13 we have that J(x*) restricted to B " is invertible and

tJ( X*)] 8.I[j(1*) - (xk. f&)a 1< 1 (3.33)

for x' k S(x*.p,) in a suitable neighborhood of x* and G in a suitable
neighborhood U of zero. The perturbation lemma (see J. M. Ortega and
W. C. Rheinboldt [20. Lemma 2.3.2. p. 451) implies that the inverse of the
linear operator t?(x. G) restricted to the subspace B exists when x
S(X*, P1), G C U. From Lemma 2.11 we have that x k E implies Rxk ) 6 B J"

When xk S(x*,pl)nl and ftrU, from the fact that fx)eB " and
(3.32), (3.33) it follows that x'-' is well defined and xk"I 1. Moreover
there exists i > 0 such that

and we have

]-X *11 = t )(XI f(xk)J

,< 7(llt(X'. , -A(,x -I * 11x ) ]x )l b' x

+ 7 11 f(y,*) - R( ,,,) - j( X )( ,, - ,)II (3 .-35)

Since we can always choose p, > 0 such that J(x)G- Lip.(S(x*.p,)) for some
y > 0. from Lemma 3.3 we have

il41 - _ xIl* l .krtx k - x11 + r7ylb k _ 1*112 + 7 I~k _ k .111

4 (i fk )!!c - x!I. (3.36)

where

w,(x"., ,) = 2it + Iq x  - (3-37)

The neighborhoods S(x*. p) and U can be chosen in such a way that

a(x.I ) kx < 1, xk ES(xkp,)n 1. k e L-U. (3.38)
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From (3.36) and (3.38) we have

kIx" - x-l < xllx - x*ll. xk E S(x*p.,)n 1. (3.39)

Therefore xk - I E S(x*, P)' 1. oreo'er wve have

4, -1 _ x*1i < x, - lix" - x*ll, (3.40)

so that the iterates {xk), k = 0, 1.2 ..... given by (3.26) are well defined if
xo E S(x*,p,)n n and

lir xL = xA . (3.41)
k -z

Moreover, since Rx) is a continuousl\ differentiable function in a neivhbor-
hood of x* and fRx*) = 0. there exists a constant At > 0 such that

l1f(x ) I .<1 xL - X-II, x 4 s(X*.p,) ) . (3.42)

From (3.24) we obtain

fA 4 1 )lR " ' _4M 4 -X*1, X kr=S(x*, p,) n-. (3.43)
ak a,.

That is. the sequence {xk) converges quadratically to x*. This concludes the
proof. U

4. NUMERICAL EXPERIMENTS

We begin by comparing the computational cost of a step of the algorithm
introduced in Section 3 with that of a step of the simplex algorithm or of a
step of Karmarkar's algorithm.

We consider the linear programming problem in the canonical form
(1.1)-(1.4). It is easy to verify that the computational cost of a step of the
Simplex algorithm is given by

mn + lower order terms (4.1)
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The computational cost of one step of Karmarkar's algorithm is essentially

due to the computation of the matrix

AXAT (4.2)

and to the solution of the rn X m linear system

( 4.X2AT)y = .-L 2c. (4.3)

Since the matrix AX 2AT is symmetric, its computation requires

mn2n
- + lower order terms (4.4)

elementary operations. while the solution of the linear system (-,.3) requires

m3

- + lower order terms (4.3)6

elementary operations. Since m < n, we can conclude that the computational
cost of one step of Karmarkar's algorithm is roughly

=n + lower order terms (4.6)

elementary operations. This cost can be reducei Ising some special proce-
dures: for example. in [21 Karmarkar has shown that the use of successive
rank-one modifications to compute (4.2). (4.3) reduces the "aeraze" compu-
tational cost of each step to

cn" 2 + lower order terms (4.7)

elementary operations. for some constant c > 0.
The computational cost of one step of the algorithm introduced in Section

3 is essentially due to the computation of the matrix

.AxATr. (4.5)
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to the solution of the linear system

( .- K.- r )y = .L , ':.(4.9)

to the computation of the matrix

AT(..AXX, A (4.10)

that appears in the texpression of the Jacobian ](x) (2..3). and to the solution
of the linear system (3.26). The computational costs of (4.S). (4.9) are

analogouts to those of (4.2). (4.3) respectivel. Nioreo\er the computational
cost of the solution of the linear sx stem (3.26) is

- + lower order tenns (4 11):3

elementar\ operations.
In order to compute (4.10) we use the Chlesk\ decomposition of .- XAT.

that is.

A.LVA r = LL r ,  (4.12)

where L E R.... is a nonsingular lower triangular matrix. So we Ivwe

(..L 4 T)- L-')rL_ I (4.13)

an

AT(AXA r ) -'A =(L-'AV )( L -'A). (4.14)

since in order to compute L- 'iA

m 3  r 2 n
- + - + lower order terms (4.15)6 '2

eLk,nentar\, operations are necessan, and the matrix (L-IA)T(L-'A) is

J.
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symmetric, the computational cost of (4.10) is

min
- + lower order terms (4.16)
2

elementary operations. Since m < n, we can conclude that the computational
cost of one step of the algorithm introduced in Section 3 is

T'n3 +lower order terms (4.17)

elementary operations. Moreover, if we use successive rank-one modifica-
tions, as proposed in [2], we can decrease the -average" computational cost of
each step to

cY n 3 + lower order terms (4.18)

elementary operations. for some constant c'> 0. Moreover, to improve the
value of c' it is possible to use any combination of the ideas proposed in [7.
23, 241.

To conclude, the computational cost of one step of the algorithm intro-
duced in Section 3 is of the same order as that of one step of Karmarkar's
algorithm. while one step of the simplex algorithm is much cheaper. How-
ever, due to the quadratic convergence of our algorithm, we expect that the
number of iterations needed to solve a linear programming problem to a
given accuracy should be approximately independent of the problem size n.

We present now some numerical results that support our expectation.
The algorithm described in Section 3 has been implemented using two
special expedients to avoid failure due to the ill-conditioning of the problem
considered.

The matrix A E R" " given bv (1.2) is replaced %%ith the matrix A e
R".... to reduce its condition number; A is obtained using the singular % alue
decomposition of .LAT This decomposition has a computational cost of ordc r
n , so it costs the same as one step of the algonthm described in Section 3.
Let AAT = QTDV be the singular value decomposition of A.: then the
matrix A is given b%

A = (QrD'V)A, (4.19)

where Do e R'.... is a diagonal matrix such that (D) I/D,, if D,, > 0
and (D*),, = 1 if D,, = 0 for i 1. m.
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In the first k, steps of our algorithm (k1 , 5 in our numerical experi-
ments), the Riemannian metric

G(x) = .X = Diag(x-) (4.20)

is replaced with

C (x) = .IkX, (4.21)

where M = X- 1 = Diag(xT ') and x. is the current point at step k. We note
that in order to apply our algorithm is not necessary to have a normalized
objective function-that is. is not necessary to know% the value of the
objective function at the minimizer. Howeser, in our numerical experiments
we use test problems with normalized objective function. The stopping rule
used is

v =c rx < 1.0x0-"(cr) (4.22)

We have considered ten t'st problems. Problem 1 (Z I R 1) is a problem
coming from the operation of an industrial plant in central Italy. The other
problems come from the System Optimization Laboratory at Stanford Uni-
versity and have been made available to us through \ETLIB [251. The
numbers of variables (n) and of constraints (m), shown in Table 1, are those
relative to the problems in canonical form. Finally, k denotes the index of the
first step that verifies the stopping rule (422).

We note that in Table 1. while n. m vary by an order of magnitude, the
number k of steps needed to solve the problem varies only by a factor of two.
Moreover, test problems with n. mn < 5 are solved in about ten steps.

TABLE 1

Test problem m n k VA

1. ZIR1 30-4 543 21 2.41l-10
2. ADLITTLE 57 141 21 3.16.-09
3. AFIRO 2S 54 12 1.52D-12
4. BEACONFD 173 29 20 3.91-09
5. BLEND 75 117 21 1.47o-12
6. ISRAEL 175 319 17 1.94o-10
7. SC105 106 166 13 1.36t-11
8. SC5OA 51 81 14 1.48r-14

9. SC5O0 51 81 11 7.84D-10
10. SHARE2B 97 167 21 1.78D-10
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The algorithm has been coded in FORTRAN and tested on a VAX/VMS
Version V5.1 in double precision arithmetic.
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