AD-A254 571 /
MNAEE R -

ELECTE ¥
AUG12 1992 §

A

Expert-System Development in Soar:

A Tutorial — (0%
=0y
——
Erik Altmann and Gregg R. Yost* — nﬁ \vo
June 1992 = n %
CMU-CS-92-151 = Q <
F——]
A\ =0
——
— N ©
School of Computer Science = E,?
Camegie Mellon University

Pittsburgh, PA 15213-3890

* Digital Equipment Corporation
111 Locke Drive (I.M02/K11)
Marlboro, MA 01752

Abstract

This is a tutorial for building an expert system in Soar using the TAQL programming language. It provides a
self-contained reference for the end-to-end development of a Soar system that accomplishes a particular task. It
presents a natural-language task description, a system design, and a sample implementation, including a documented
code listing. It also discusses chunking (Soar’s learning mechanism) in the context of the sample implementation.
{ “This docwment ha: Ber o o s i
for public release and saig; ity
distribution is unlimited

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Acronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 454336543 under Contract
F33615-90-C-1465, Arpa Order No. 7597. The research was also supported in part by Digital Equipment
Corporation and the Natural Sciences and Engineering Research Council of Canada. The views and conclusions

containcd in this document are those of the authors and should not be interpreted as representing the official policies,
cither expressed or implied, of DARPA, DEC, the Government of Canada, or the US Government.

9 8 3° 004

Table of Contents

1. Introduction
2. The Shipment Scheduling Assistant: Task Description

2.1. Description
2.1.1. Drivers, trucks, cities, and highways
2.1.2. Constraints

2.2. Test case

3. Designing a Soar Solution

3.1. Introduction
3.2. Notes on the Test Case
3.3. Problem Space Design
3.3.1, Task analysis
3.3.2. Dynamic behavior
3.3.3. Static structure
334, A detailed design
3.4. Notes on Chunking
3.4.1. Correctness, generality, and backtracing
3.4.2. Preventing incorrect chunks
3.4.3. Expensive chunks

4. Sample Implementation in Soar

4.1. Introduction
4.2, Program Listing
4.3. Execution Trace
4.4. Chunk Listing

Statement A
WL/AAAT

WPAFB,OH 45433

NWW 8/10/92

V0w Nl bW W

Accesion For
p——

NTIS CRagj
DTiC TAEB N
Unannounced
Justification

By . .
Distribution/
e
A‘/dfh.’j:;if)’ (DR
—]

. Avaii asdfo-
Dist Speriyi

]

e e ———" e .

per telecon Chahira Hopper

Alt!!:ygpchmnyt

List of Figures

Figure 1: Procedure that solves the shipment scheduling task
Figure 2: Trace of lookahead search

Figure 3: Static problem-space structure

Figure 4: Pseudo-trace corresponding to Figures 2 and 3
Figure 5: Simple backtracing example

Figure 6: Novalue: backtracking without chunking

Figure 7: Conditions that bind constants

Figure 8: Lookahead leading to search-control chunk p946
Figure 9: The search-control chunk p946

Figure 10 Backtracing to the trip3 condition

Figure 11: Conditions that prevent overgeneral search-control chunks
Figure 12: An expensive chunk

iid

1. Introduction

This is a tutorial for building a learning expert system in the Soar problem solving architecture
(Laird et al., 1990), using the TAQL programming language (Yost and Altmann, 1991; Yost,
1992). It provides a self-contained reference for end-to-end development of a Soar system,
beginning with a natural-language task description and ending with a sample implementation of
a system to accomplish the task. In between it illustrates a number of design and programming
techniques (without claims to complete coverage of such techniques, or independence from
personal style). It also discusses chunking (Soar’s learning mechanism) in the context of the
sample implementation.

Chapter 2 describes the task of the shipment scheduling assistant, which is to generate
schedules that coordinate trucks, truck drivers, and shipments. Chapter 3 presents a design that
outlines both the dynamic behavior of a system and the static relationship of its components.
The last section of this chapter presents a detailed view of chunks learned by a sample
implementation of this design. Chapter 4 presents the details of this implementation, including a
documented code listing, a trace of the running system, and a listing of the chunks learned during
the traced run.

For information about obtaining the code and other listings on-line, or to obtain this or other
documents concerning Soar and TAQL, send electronic mail to soar-requests@cs.cmu.edu, or
physical mail to The Soar Project, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213-3890.

2. The Shipment Scheduling Assistant: Task Description

This description was derived from a formal description of a larger set of problems in the
shipment scheduling domain (Filman, 1988a). The formal description is for the problem used as
an example in a recent expert systems paper (Filman, 1988b).

2.1. Description

The Big Giant Trucking Company ships materials among cities in the Midwest. Customers
contact the company and request that goods be transported from one city to another on a
specified day. Big Giant’s dispatchers collect the orders and create suitable delivery schedules.

A schedule consists of some number of #rips, where each trip has an itinerary, a truck, and a
driver. An itinerary is a list of cities and the highways that the driver should take from one city
to the next. The itinerary also states what shipments, if any, the driver should pick up and
deliver at each city (sometimes the driver will just pass through with no pickups or deliveries).

Producing a schedule is difficult because of the many constraints on the trips and the schedule
as a whole. For example, each driver can drive only one trip, and union drivers can only drive
trips that take less than eleven hours. The shipment scheduling assistant takes the set of
itineraries on the schedule (which we assume were put together by a dispatcher), and tries to find
an assignment of trucks and drivers to the itineraries that does not violate any constraints. If no
such assignment is possible, the assistant informs the dispatcher, who must then revise the
itineraries and try again.

The remainder of this description provides the information the assistant needs to try to find
valid truck and driver assignments.

2.1.1. Drivers, trucks, cities, and highways
Tables 1, 2, and 5 define the driver, trucks, and highways used by Big Giant.

Big Giant serves the following cities:
e In Illinois: La Harpe, Oregon, Thayer, Utica, Viola, Yale, and Zion.
e In Indiana: Attica, Bloomington, Cook, Delphi, English, Fowler, Gary, Hebron,

Indianapolis, Jasper, Kokomo, Mitchell, New Harmony, Paoli, Roselawn, Seymour,
and Warsaw.

Name |Union | License
Class
Brown | yes 3
Gray no 1
Green | yes 3
White | no 2

Table 1: Drivers

2.1.2. Constraints
The constraints on schedules and trips are:

e Each driver can drive only one trip, and each trip has only one driver.
¢ Each truck can be used on only one trip, and each trip has only one truck.

¢ The maximum weight of a truck’s load at any point during a trip cannot exceed the
truck’s rated weight limit. Big trucks can hold 32000 pounds, medium trucks 10000
pounds, and small rucks 5000 pounds.

¢ The maximum volume of a truck’s load at any point during a trip cannot exceed the
truck’s rated volume limit. Big trucks can hold 1280 cubic feet, medium trucks 640
cubic feet, and small trucks 400 cubic feet.

e The driver and truck assigned to a trip must be in the trip’s origin city to begin with.

e The license class of a driver must be at least as great as the license class required by
the truck he or she is assigned. Big trucks require class 3 licenses, medium trucks
require at least class 2 licenses, and small trucks require at least class 1 licenses.

e A driver can only drive trips whose duration is less than his or her maximum
allowable driving time. The duration of a trip is the sum of the driving times for
each segment on the itinerary, plus the time needed for loading and unloading
shipments during the trip. The driving time for a segment is the length of the road
used for that segment divided by the estimated speed for that road (as determined by
the weather and road grade, see Table 3). Union drivers can be on a trip ior at most
11 hours, while non-union drivers can be on a trip for at most 12.5 hours.

e White cannot drive on any trip that passes through a city in Illinois (he is wanted for
a crime there).

Name Class
Cannonball | big
Piper small

Queen Bee | medium
Traveler medium

Table 2;: Trucks

Road grade — |Primary | Secondary | Tertiary
Weather |

Fair 60 55 50
Rain 55 50 35
Snow 45 40 30

Table 3: Estimated travel speed, given road grade and weather

2.2, Test case

This section presents a simple test case that you can use to partially test your scheduling
assistant.

The weather throughout Big Giant’s area of operations is rainy. Drivers Brown and Gray are
in Gary, and drivers Green and White are in Indianapolis. Trucks Piper and Traveler are in Gary,
and trucks Cannonball and Queen Bee are in Indianapolis.

The dispatcher’s schedule has three trips. The shipments referred to in the trips are listed in
Table 4.
e Trip 1: Starting in Gary, pick up the typewriter shipment and take highway U30 to
Warsaw, followed by U31a to Kokomo, U31b to Indianapolis, and 174 to Attica.
Deliver the typewriter shipment in Attica.

e Trip 2: Starting in Gary, take U41a to Cook, I80b to Utica, and 180a to Viola. Pick
up the carpet shipment in Viola. Then, take 180a back to Utica, and I80b to Cook.
In Cook, deliver the carpet shipment and pick up the newsprint shipment.

o Trip 3: Starting in Indianapolis, take I70b to Yale, then take U41e to Attica.

One valid solution for this test case is to assign Gray/Piper to trip 1, Brown/Traveler to trip 2,
and Green/Cannonball to trip 3. Piper is the only truck in Gary that Gray is licensed to drive,
leaving Traveler (the only other truck in Gary) for Brown. White cannot drive trip 3, because it
passes through Illinois, so Green must do it.

Material Origin | Destination | Weight | Volume | Loading | Unloading
Time Time
Bicycles Roselawn | Bloomington | 500.0 ; 100.0 0.2 0.25
Books Oregon Mitchell | 1000.0{ 500 0.2 0.25
Carpet Viola Cook 500.0 | 100.0 0.2 0.25
Computers | Seymour Thayer 1000.0 | 150.0 0.2 0.25

Newsprint Cook | Indianapolis | 6000.0 | 400.0 0.2 0.25
Refrigerators | Kokomo { Warsaw | 9000.0 | 600.0 0.2 0.25
Toys LaHarpe| Oregon 1000.0 | 100.0 0.2 0.25
Typewriters Gary Attica 1000.0 | 200.0 0.2 0.25

Table 4: Shipments

Name Connects Grade |Length
I64a New Harmony, Jasper primary | 60.0
164b English, Jasper tertiary | 30.0
165 Seymour, Indianapolis | primary | 60.0
170a Thayer, Yale primary | 150.0
I70b Indianapolis, Yale primary | 90.0
174 Indianapolis, Attica primary | 60.0
180a Viola, Utica primary | 100.0
180b Cook, Utica primary | 90.0
190 Oregon, Gary secondary | 100.0
194 Zion, Gary primary | 60.0
S125 La Harpe, Thayer tertiary | 80.0
S25 Delphi, Attica tertiary | 40.0
S26 Delphi, Kokomo tertiary | 30.0
S37a | Bloomington, Indianapolis | secondary| 50.0
S$37b | Bloomington, Mitchell tertiary | 30.0
S37¢ Paoli, Mitchell tertiary | 10.0
S37d Paoli, English tertiary | 10.0
U231 Cook, Hebron tertiary | 20.0
U24 La Harpe, Fowler secondary | 180.0
U30 Gary, Warsaw secondary{ 70.0
U3la Kokomo, Warsaw secondary | 70.0
U31b | Kokomo, Indianapolis primary | 40.0
Udla Cook, Gary secondary | 20.0
U41b Cook, Roselawn secondary | 20.0
Udic Fowler, Roselawn secondary | 30.0
U4ld Fowler, Attica secondary| 30.0
Udle Yale, Attica secondary | 90.0
U41f Yale, New Harmony secondary| 70.0
Us0 Mitchell, Seymour tertiary | 30.0
USs1 Utica, Oregon secondary | 40.0
U67 Viola, La Harpe secondary| 50.0

Table §: Highways

3. Designing a Soar Solution

3.1. Introduction

This chapter discusses how to design a Soar system that solves the shipment scheduling task.
The guidance toward a particular implementation increases as the chapter progresses, allowing
novice Soar users to choose a stepping-off point, or to stick with the chapter to the end to gain
exposure to one particular set of design and programming methods. The particular
implementation, together with a trace and a chunk listing, is given in Chapter 4.

Section 3.2 presents a one-page analysis of the test case from Chapter 2, including a summary
of the various constraints on the solution.

Section 3.3 begins with an analysis of these constraints and a procedure for solving the task. It
then outlines the dynamic behavior and static structure of a Soar system. The dynamic and static
designs are depicted graphically, and then tied together in a Soar pseudo-trace. The last
subsection presents a detailed design, in textual form.

Section 3.4 introduces chunking, backtracing, and the problem of leaming from exhaustion. It
also discusses methods of manipulating data to prevent overgeneral chunks, including a case-
study of how certain conditions come to be included in a particular chunk.

3.2. Notes on the Test Case

The description of the three trips in the test case (Section 2.2, page 5) is reproduced below.
Relevant notes, compiled from the various tables, are made under each trip. A summary of
constraints, and a specification for the solution, are given afterwards.

o Trip 1: Starting in Gary, pick up the typewriter shipment and take highway U30 to
Warsaw, followed by U31a to Kokomo, U31b to Indianapolis, and 174 to Attica.
Deliver the typewriter shipment in Attica.

Notes: There are four segments. The time needed to drive them, and to load and
unload the single shipment, adds up to 3.7 hours, so any driver will do.
Similarly, the size of the carpet shipment (volume 200, weight 1000)
provides no constraint: any truck will do.

Drivers available are Gray and Brown, and trucks available are Piper (small)
and Traveler (medium). Possible assignments: Gray/Piper, Brown/Traveler,
Brown/Piper. (Gray is licensed only for Piper.)

Brown/Piper will cause the schedule to fail, because Trip 2 also starts in
Gary and Gray/Traveler is illegal.

e Trip 2: Starting in Gary, take U41a to Cook, I80b to Utica, and I180a to Viola. Pick
up the carpet shipment in Viola. Then, take I80a back to Utica, and I80b to Cook.
In Cook, deliver the carpet shipment and pick up the newsprint shipment.

Notes: There are six segments, counting loading the newsprint as the beginning of a
segments that is otherwise null. Drive time adds up to 6.5 hours, so any
driver will do. The size of the shipments provides one constraint: the weight
of the newsprint shipment (6000) requires a medium truck (Traveler).

Drivers available are Gray and Brown, and trucks available are Piper (small)
and Traveler (medium). Possible assignments: Gray/Piper, BrownTraveler,
Brown/Piper. (Gray is licensed only for Piper.)

Any assignment involving Piper will fail on the last segments because
Piper’s weight limit will not accommodate the newspaper shipment.

e Trip 3: Starting in Indianapolis, take I70b to Yale, then take U4le to Attica.

Notes: There are two segments. The rime needed to drive them is 3.4 hours, so any
driver will do. There are no shipments, so size provides no constraint.

Drivers available are Green and White, and trucks available are Queen Bee
and Cannonball. Possible assignments: all four pairs.

Any assignment involving White will fail on the first segment because Yale

is in Illinois.
Global constraints: <Brown, Piper, Trip 1> means Trip 2 cannot be covered.
Local constraints: <X, Piper, Trip 2> will fail because Piper is too small.

<White, X, Trip 3> will fail because White will be arrested in Yale.

Solution: <Gray, Piper, Trip 1>, <Brown, Traveler, Trip 2>, <Green, X, Trip 3>

3.3. Problem Space Design

3.3.1. Task analysis
A first step in developing a solution is to look at the source of difficulty in the task, which in
this case is the set of constraints listed on page 4.

The constraints fall into three categories:

1. Immediate constraints — These can be checked immediately, based on the
information in the tables given with the task description. For instance, a series of
table lookups can tell us that a particular driver is in the city in which a trip
originates, or is licensed to drive a particular class of truck.

2. Local constraints — These must be met for a particular assignment of a truck and a
driver to a trip to be successful (the constraints are local to a particular

assignment).

Checking local constraints requires some computation beyond looking up
information in the tables. For instance, the load in the truck at any one time is a
function of how the shipments are spread out across the trip, and checking that the
truck’s capacity is not exceeded requires simulating the effects of loading,
unloading, and driving.

Violations of local consiraits surface as the inability to complete a particular trip.

3. Global constraints — These must hold across assignments for the entire schedule
to be successful (they are global with respect to particular assignments).

For instance, consider the possibility of assigning Brown to Piper for Trip 1. This
assignment is successful, but leaves no remaining assignments for Trip 2, because
Gray is not licensed for Traveler. Thus the schedule as a whole will fail if it
includes the first assignment.

Global constraint violations surface as a situation in which there are trips left over
but no assignments for them.

These categories help to outline a procedure for solving the task, which is shown in Figure 1.
Step 1 generates assignments that satisfy the immediate constraints. Steps 2 and 3 check the
local and global constraints. Step 4 detects when the task is solved, and Step 5 recursively
invokes the procedure when it is not.

The procedure in Figure 1 can be mapped onto problem spaces as follows. If we associate
each assignment with an operator, each such operator presents an opportunity to check the local
constraints associated with that assignment. The effect of such an operator would be to simulate
a trip with a particular truck and driver, and generate a state in which either the schedule is
updated with that assignment, or in which a failure of the assignment (due to local constraints
being violated) is indicated. We can call this the simulate-trip operator. The operator itself
requires a sequence of steps, namely simulating the loading and unloading of shipments and the
driving of segments of the trip. Simulate-trip can be applied by a separa:e problem space that
executes these steps.

The immediate constraints can be incorporated in the proposal of simuiate-trip operators. This

10

1. Generate a set of possible assignments for unassigned trips that satisfy all
immediate constraints, and choose one assignment.

2. Check the local constraints on that assignment, by simulating the trip. If a
constraint fails, backtrack to some previous instance of Step 1 where alternatives
remain, and choose one. If there are no previous instances where alternatives
remain, halt with failure.

3. If no local constraints are violated, check whether any global constraints have been
violated by checking if there are trips left over but no assignments for them. If a
global constraint has been violated, backtrack to some previous instance of Step 1
or halt with failure (as in Step 2).

4. If no local or global constraints are violated, check whether we have a successful
schedule, by checking whether all the trips have assignments. If so, halt with
success.

5. Mark the trip as having been assigned, update the pool of available trucks and
drivers, and recurse to Step 1.

Figure 1: Procedure that solves the shipment scheduling task

will reduce the number of operators generated (and therefore the search involved in solving the
task) Further reduction in search comes if we base successive operator proposals on the updated
set of trips and the updated pool of available trucks and drivers (all of which shrink with each
successful assignment). These updates can be carried out by simulate-trip itself, upon successful
completion of a simulation. This updating also allows testing for success by detecting when no
more unassigned trips remain, and testing for violations of global constraints by detecting when
trips are left over but no assignments are left.

The states in this scheme will have to represent several kinds of information. First is that from
the tables presented in Chapter 2. This information implicitly represents many of the immediate
constraints, and therefore must be available when proposing simulate-trip operators. Second is
the dynamic information that changes from trip to trip. This includes the sets of unassigned
trips, available drivers, and available trucks; the schedule, as it grows withi each successful
assignment; and indications of local and glcbal constraint violations. Third is the dynamic
information that changes only from segment to segment within a trip. This includes resources
such as available drive time and truck capacity.

Finally, we need a mechanism for backtracking when constraints fail. One sim >l¢ mechanism
is depth-first search, in which the selection at the most recent instance of Step 1 is changed,
unless there are no more alternatives, at which point the procedure backtracks to the next mnst
recent instance of Step 1.

3.3.2. Dynamic behavior

Figure 2 shows an example trace of the procedure above as mapped onto problem spaces, with
an emphasis on how depth-first search works in Soar. Spaces are depicted as triangles, states as
circles, operators as lines emanating from states, impasses as down arrows, and subgoal results
are up arrows. The trace is annotated with examples of how each step of the procedure is
realized as a problem-space operation. (Figure 3 shows a corresponding pseudo-trace that
resembles actual Soar output.) The problem spaces shown are the rask space, which contains the

11

simulate-trip operator, and the selection space, which implements depth-first search (usually
referred to as lookahead search in the context of Soar).

In the top instance of the task space (T1), a set of simulate-trip operators is proposed (per Step
1). These tie, resulting in an impasse. The selection space (S1) is selected automatically for the
subgoal (by Soar’s default productions). In the selection space, the default productions create an
evaluate-object operator for each tied alternative. The evaluate-object operators are given
indifferent preferences, so one is selected (at random or in a prescribed pattern; see the Soar
user-select command). Evaluate-object itself impasses, and in the resulting subgoal the default
productions cause the task space to be selected (T2). This subgoal is referred to as the
evaluation subgoal. The operator being evaluated is then selected automatically, under the
assumption that it might generate a state that either succeeds or fails (or might otherwise yield
information that allows the operator to be evaluated). This automatically-selected operator is
referred to as the lookahead operator.

In the left-most evaluation subgoal (T2), the lookahead operator causes a local constraint
violation. (The space that applies simulate-trip is omitted, but see Figure 3.) The violation is
detected (per Step 2), and results in a failure evaluation for evaluate-object. T2 exits, and a
second evaluate-object operator is selected.

T1 (task)

Step 1: Propose a set of simulate-trip 4
o ookanea searth oot one e : x?
evaluation subgoal.

j r S1 (selection)

O\O/O ' evaluate-object operators

L Step 5: Having successfully simulated
one trip, propose a simulate-trip
operator for each remaining legal

i t. These operators te,
leading to a new level of search.

applying the simulate-trip operator. -
If a constraint is violated (as here), *

siznal a failure condition. . S2
Step 3: Check global constraints

by checking whether trips are Step 4: If no trips remain,
left over, with no assignments. signal a success condition.
If there is a violation (as here), :

signal a failure condition. :
TS5

Step 2: Check local constraints by ,"'. ,.-". / /

Figure 2: Trace of lookahead search

12

The lookahead operator in T3 yields neither constraint violations nor success. A new set of
simulate-trip operators is proposed (based on the updated sets of unassigned trips and available
trucks and drivers). The resulting tie leads to a new instance of the selection space (S2). Below
S2, in T4, the simulation leads to a global constraint violation (per Step 3). As with a local
constraint violation, this generates a failure evaluation, causing T4 to exit and another alternative
to be evaluated.

In T3, the lookahead operator violates no local constraints, and leads to a state in which only
one new simulate-trip operator is proposed. That operator is selected, and results in a state in
which no trips are left. The space exits with a success evaluation (per Step 4). The default
productions propagate success up to T1 (and would propagate it further if there were more
levels). This breaks the tie in T1, with the lookahead operator from T3 being selected. If
chunking was turned on, the success of the lookahead operator in T5 will have been learned as a
chunk that selects that operator after the first selection in T1, leading directly to a successful state
in T1.

For further details on lookahead search, consult the Soar manual. The depth-first behavior
described here is only one of many weak methods that can arise from the universal weak method
(Laird, 1984), depending on how much and what kinds of evaluation knowledge are available.
For example, hill-climbing arises if any state can be evaluated, and not just those that represent
failures or successes.

3.3.3. Static structure

The previous section outlined a procedure for solving the shipment scheduling task, and
described at a high level how that procedure could be cast in terms of states and operators. This
section describes in more detail a set of Soar problem spaces for performing the task. The first
part of the description is a diagram (Figure 3) that shows the static problem space structure, and
the second part (beginning on page 16) is a textual specification. Both the diagram and the
specification correspond directly to the code presented in Chapter 4, so ambiguities and other
confusions can be resolved by looking there.

Figure 3 shows the operators in each space, and the information that flows between spaces.
The name of each space appears at its top right-hand comer, and the operators appear in the
interior of the triangle. The lines connecting spaces denote impasses.

The remainder of this section traces through the figure, showing how the spaces work together.
Note that the diagram represents the static structure of the system. This explains how the task
space can be connected to two superspaces: it responds to impasses in both, at different times.
All the impasses represented in the diagram are operator no-changes; the diagram omits the
operator tie impasse that occurs in the task space (on simulate-trip operators), which leads to the
selection space. This interaction is described in Figure 2.

The do-task operator in the top space is applied in the task space. To carry out the task,
operators in the task space need access to the information from the tables, and initial values for
the trip, truck, and driver sets. When the task space exits, it returns the complete schedule to the
top space as the solution to the task.

13

selection

failure (LCV or GCV)
and success signals

task

trip-succeeds
local-constraint-failed
simulate-segment

simulate-
Legend: segment
LCV = Local Constraint Violation

GCV = Global Constraint Violation

Figure 3: Static problem-space structure

The simulate-trip operator in the task space is applied in the simulate-trip space. Simulate-trip
takes the particular assignment and simulates the trip. As part of its result, the space updates the
trip, truck, and driver sets by removing those involved in the trip it just simulated. It also returns
an indication of whether any local constraints were violated during the simulation. If not, it
returns the schedule as updated with the addition of the trip just simulated.

If a simulation generates a local constraint violation, the task space passes the violation signal
directly up to the selection space above, if the task space occurs in an evaluation subgoal. The

14

default productions in the selection space act on the failure by terminating the evaluate-object
operator and selecting a new one. However, if the simulation is successful, a new simulate-trip
operator is selected in the task space.

If after a simulation the task space finds that all trips have been assigned to, the
schedule-succeeds operator is proposed. This returns a success signal to the selection space if
this is an evaluation subgoal, or the complete schedule to the top space. If, on the other hand,
there comes a point where there are still trips to be assigned to but no simulate-trip operators
proposed, then the global-constraint-failed operator is selected. This returns a failure signal to
the selection space.

In the simulate-trip space, the simulate-segment operator is selected once for each segment of
the trip. If after any segment a resource (such as truck capacity) is found to have run out, the
local-constraint-failed operator is selected. This operator returns a failure signal to the task
space, causing the simulate-trip operator to terminate (thereby terminating the simulate-trip
subgoal). The task space then terminates as well, as described above. If, on the other hand, all
the segments are simulated with no violations, the trip-succeeds operator is selected. This
operator updates the trip, truck, and driver sets in the task space, and returns the updated
schedule.

The simulate segment operator, when selected, impasses, because simulating a segment
involves several operations. These occur in the simulate-segment space. The operations for
each segment consist of loading any shipments at the beginning of the segment, followed by the
drive to the next location, followed by unloading shipments to be delivered at that location.
Loading and unloading affect the volume and weight capacities remaining for that trip, and
driving affects the time the driver has been on the road. When the segment is complete, the
compute-resources operator computes the remaining resources and checks if any have run out,
and if so signals a local constraint violation on the superstate. If not, the update-resources
operator updates the resources on the superstate, in preparation for the next segment.

15

The Soar pseudo-trace in Figure 4 brings together both static and dynamic aspects of the
system. The labels for task and selection spaces from Figure 2 appear along the right margin.
The space and operator names are carried over from Figure 3. The impasse types are also given.

G: gl

P: pl (top-space)

s: 8

0: ol (do-task)

==>G: g2 (operator no-change)
P: p2 (task) TI

S: =2
=>G: g3
P: p3
S: 83
0: o3
=>G:
P:
S:
O:

(operator tie)
(selection) Si

(evaluate-objact (simulate-trip ((gray) (piper) (trip2))))

g4 (operator no-change)

P2 (task) Y3
dl (duplicates s3)

el (simulate-trip (gray) (piper) (trip2))

=>G: g5 (operator no-change)

P: p4 (simulate-trip)
S: =4
O: o4 (simulate-segment segmentl)
... ...intermediate segments
O: 020 (simulate-segment segmenté)
==>G: g2l (operator no-change)
P: p2l (simulate-segment)
S: s2l1
0: 021 (load (newsprint 6000.0))
O: 022 (drive)
0: 023 (compute-resources)
0: 024 (update-resources)
O: 025 (local-constraint-failure weight-limit-exceeded)

Evaluation of operator cl (simulate-trip) is failure
O: 026 (evaluate-object (simulate-trip ((green) (cannonball) (trxip3))))

=>G:
P:
S:
O:

g22 (operator no-change)

p2 (task) T3
d2 (duplicates s3)

c2 (simulate-trip (green) (cannonball) (trip3))

e ..Simulation is successful
O: 027 (trip-succeeds)

>G: g23 (operator tie)

P: p23 (selaction) 2
S: 822

0: 028 (evaluate-object (simulate-trip ((brown) (piper) (tripl))))

== g24 (operator no-change)

p2 (task) T4
d3 (duplicates d2)
c3 (simulate-trip (brown) (piper) (tripl))

:99?§

. ...intermediate trips
O: 040 (global-constraint-viclation trips-left-over)
Bvaluation of operator c3 (simulate-trip) is failure

O: o4l (evaluate-cbject (simulate-trip ((gray) (piper) (tripl))}))

=>G: g25 (operator no-change)
P: p2 (task) TS5
8: d4 (duplicates d2)
0: e4 (simmlate~trip (gray) (piper) (tripl))

0: 050 (simulate~trip (brown) (traveler) (trip2))
6;.070 (schedule-succeads)

Evaluation of operator c4 (simulate-trip) 1is success
e ..Success propagates up to T!

Figure 4: Pseudo-trace corresponding to Figures 2 and 3

16

3.3.4. A detailed design

This section specifies the operators in more detail, giving their arguments (in parentheses) and
their semantics in terms of conditions, effects, and termination conditions. Where appropriate,
information about state contents and operator search control is also given.

o top-space!

State (also called the top state): Contains the invariant information from the tables,
which is used to initialize dynamic values like the trip, truck, and driver sets.

Operators:
1. do-task

Conditions: Proposed without conditions.
Also called the task operator. Applied in the task space.
Effects:2 Adds the completed schedule to the state.

Termination: Automatic, when a successful or failed state is reached in the
subgoal that applies it.3

1The space itself is provided by TAQL by default.
2The effects of an operator applied in a subspace are carried out by the subspace.
3This termination is provided by TAQL’s runtime support.

17

e task

State: Contains trip, truck, and driver sets, either initialized from the top state (when
below the top space), or duplicated from another instance of the task space (when
below the selection space).

Operators:

1. simulate-trip (trip, truck, driver)

Conditions: Reads the current state’s trip, truck, and driver sets. Checks that
the assignment satisfies the immediate constraints that the driver and the
truck be in the city where the trip begins, and that the driver is licensed for
the truck.

Applied in the simulate-trip space, which checks local constraints by
simulating the trip with that truck and driver.

Effects: Updates the trip, truck, and driver sets by removing its arguments
from them. Updates the current schedule if no local constraints are violated.

Termination: Terminates (1) if the subspace updates the current schedule
with the simulated trip, or (2) if the subspace signals a locai constraint
violation.

2. schedule-succeeds (complete-schedule)
Conditions: Proposed when the trip set is empty.

Effects: Signals success in the superspace, either via evaluation knowledge
(during lookahead search) or the goal test (when the superspace is the top
space). If the superspace is the top space, returns complete-schedule.

Termination: By higher decision.¢
3. global-constraint-failed

Conditions: Proposed without conditions, but made worst. Consequently,
selected only when there are trips left over (inhibiting schedule-succeeds)
but no simulate-trip operators are proposed. This condition implies a global
constraint violation.

Effects: Signals failure in the superspace, either through evaluation
knowledge (during lookahead search) or the goal test (when the superspace
is the top space).

Termination: By higher decision.

4When information is returned that resolves an impasse in the supercontext, Soar terminates all lower selections.

18

e simulate-trip

State: Contains resources (initially the time for which the driver can be on the road,
and the weight limit and volume of the truck), and the current segment of the trip
being simulated. Initialized from the superoperator, and updated by simulate-
segment.

Operators:
1. simulate-segment (segment, resources)

Conditions: Reads the segment and resources from the state.

Applied in the simulate-segment subspace, which loads, unloads, and drives
as necessary for that segment. The subspace signals if a resource went
negative, or any other local constraint was violated (such as White being
arrested because the segment ends in Illinois).

Effects: Changes the current segment to be the next segment, and updates the
resources on the current state. Signals failure on the current state if there
was a constraint violation (see local-constraint-failed).

Termination: Terminates (1) when the current segment becomes the next
segment, if there is no constraint violation; or (2) when a constraint violation
occurs.

2. trip-succeeds (assignment)

Conditions: Proposed without conditions, but made worst. Consequently,
selected only when there are no more simulate-segment operators and no
constraint violations.

Effects: Adds assignment to the current schedule on the superstate, allowing
the superoperator to terminate. Also updates the trip, truck, and driver sets
on the superstate.

Termination: By higher decision.
3. local-constraint-failed (failed-assignment)

Conditions: Proposed if simulate-segment signals failure, and selected
immediately when proposed.

Effects: Signals failure in the supercontext, allowing the assign operator to
terminate. Returns failed-assignment to the superstate, so we can figure out
what happened.

Termination: By higher decision.

e simulate-segment
State: Contains resources (weight, volume, time), initialized from the superoperator.

Search control: A segment begins with a load (if any), and ends with an unload (if
any). Therefore, for correctness with respect to the truck’s weight limit and volume,
load must be selected before unload.

Operators:

1. load (volume, load-time, weight)
Conditions: Proposed if there is a shipment to load in the beginning location.
Effects: Updates weight, volume, and time, on the current state.
Termination: By direct application.’

2. unload (volume, unload-time, weight)
Conditions: Proposed if there is a shipment to unload at the end location.
Effects: Updates weight, volume, time.
Termination: By direct application.

3. drive (time)
Conditions: Proposed without conditions (segments always involve driving).
Effects: Updates time.
Termination: By direct application.

4. compute-resources

Conditions: Proposed without conditions, but made worst. Consequently,
selected when all other operations have been carried out.

Effects: Augments the state with a record of the remaining resources,
Indicates in the record whether resources went negative, or whether any
other local constraints were violated (such as White being arrested in
Illinois).
Termination: By direct application.

5. update-resources (resource-record)
Conditions: Proposed when the resource record has been computed.

Effects: Returns resource-record to the superstate. Changes the current
segment to be the next segment on the superstate, allowing the superoperator
to terminate.

Termination: By higher decision.

SWhen an operator is applied entirely by an apply-operator TC, edits in the TC terminate the operator.

19

20

3.4. Notes on Chunking

Section 3.4.1 discusses some general aspects of chunking in Soar. Section 3.4.2 examines
some of the code from Chapter 4 in light of how it affects chunking. Novice Soar users are
advised to skim this section for future reference, rather than read it for understanding
immediately. Section 3.4.3 briefly discusses a sample expensive chunk.

3.4.1. Correctness, generality, and backtracing

There are two aspects to good chunks: correctness and generality. These aspects trade off:
incorrect chunks are often that way because they are overgeneral. There is usually an
identifiably optimal degree of generality, in which the chunk conditions are the weakest that
guarantee that the knowledge contained in the action is correct. This applies to both forms of
chunks leamned in the sample implementation (operator application chunks, which modify the
state, and search control chunks, which create preferences for operators).

Chunk conditions are created by a dependency analysis on subgoal results, called backtracing.
Backtracing is a form of operator regression (Mitchell et al., 1986). In Soar terms, backtracing
involves tracing through working memory elements that were added and deleted from working
memory during processing in the subgoal, beginning with the subgoal result and working back to
the working memory elements that it depends on.

Figure 5 shows a simple example of subgoal-result generation and backtracing. The initial
state is created from supercontext augmentations augl and aug2. Augmentations aug3 and aug4
are copied down directly from the supercontext. Operator 1 tests only the state, and generates
augmentation qug5. Operator 2 generates aug6 from aug3 and augd4. Operator 3 generates aug7
from aug5 and aug3. Finally, Operator 4 generates aug8, the subgoal result, from aug7.
Backtracing follows this dependency path backwards, starting with aug8. Aug6, and before that
augd, are irrelevant to the subgoal result, and therefore are not included in the chunk conditions.
Note that every operator must test the state, either to edit the state directly or to reach the objects
that will be edited, and therefore backtracing will always reach the augmentations used to
generate the initial state (augl and aug2, in the figure).

(ratr & " augl problem solving -
1 *
5 aug2 4§ g2 backmacing g § Cate
R ags 1 augh)
E ‘. N
hunk :
zondin'ons ‘"84 chunk
actions
tate -—opl-—augs 3——aug7——-op4/
°P2—w86
mlsme

Wﬂ:OpuﬂorliOpc:uorZéOpaawr3§0paatm4

Figure §: Simple backtracing example

21

Productions that create desirability preferences (other than the require and prohibit
preferences, which are special cases) are not backtraced through, even if they bring about a
particular operator selection. The underlying premise is that search control affects only the
efficiency and not the correctness of problem-solving (Rosenbloom et al., 1987). Consequently,
encoding various forms of knowledge in terms of search control rather than conditions on
opz. itor proposal is a powerful mechanism for modulating the generality of chunks.

3.4.2. Preventing incorrect chunks

One of the main causes of incorrect chunks is the exhaustion problem. One way this can arise
is if an operator is proposed with very weak conditions, and made worst so that it will be selected
only when the set of other operators is exhausted. This is a convenient programming technique,
as illustrated by several operators in the sample implementation (global-constraint-failed,
selected when there are neither simulate-trip operators nor a schedule-succeeds operator
proposed; trip-succeeds, selected when all simulate-segment operators are exhausted; and
compute-resources, selected when the operations for a particular segment are exhausted). The
drawback relates to subgoal results based on effects of that operator: the weak proposal
conditions present little for backtrace to work with, so the conditions of the resulting chunk will
be wildly overgeneral.

The sample implementation shows two responses to the exhaustion problem. The first
response, which is to learn nothing, is illustrated in the TAQL constructs (TCs) in Figure 6 (they
appear in the code on pages 33 and 34). The global-constraint-failed augmentation is added by
task*ao*global-constraint-failed and detected by eo*iask, which assigns the novalue evaluation
for that case. This triggers a Soar feature (use of the quiescence t goal augmentation) that allows
a production to return a result with no chunk being built. A novalue evaluation is interpreted as
knowledge that this path is fruitless, with no corresponding knowledge (or desire to generate it)
about how to assign credit.

(apply-operator task*ao*global-constraint-failed
:space task
:op (global-constraint-failed “reason <reason>)
(edit :what state
:new (global-constraint-failed <reason>)))

(evaluate-object eo*task
:space task
:what lookahead-state

:symbolic-value (novalue
:when ((state “global-constraint-failed)))
<)

Figure 6: Novalue: backtracking without chunking

A second response is to make up for the lack of constraint in the proposal productions by
adding conditions, in either the proposal or the application TC for an operator. This is illustrated
in the TC in Figure 7 (which appears in the code on page 36). Sometimes these conditions arise
naturally, as when it is necessary to bind information that will be used later. For example,
Condition 1 binds the trip, truck, and driver elements that are removed by the edit clause of the
TC.

22

(apply-operator simulate-trip*ao*trip-succeeds
:space simulate-trip
:0p (trip-succeeds “assignment <new>)

:when ((operator (car <new>) Condition 1
“trip <trip> “driver <driver> “truck <truck>))

;; the chunks that update the schedule in the supercontext will
;; loop unless we’re careful, because one chunk rejects the

;; current head of the list, and a second adds the new head.

;; we can prevent looping by making the chunks specific to the
;; current head of the list. <current-trip-name> matches a

;; constant, and that constant will appear in the chunk:

:when ((superstate “current-schedule <current>)
(operator (car <current>) “trip <current-trip>)
(tzip <current-trip> “name <current-trip-~name>)) Condition 2

(edit :what superstate

;; push the new trip onto the head of the schedule list:
:replace (current-schedule :by <new>)

:remove (trip <trip>)
:remove (driver <driver>)
:remove (truck <truck>)))

Figure 7: Conditions that bind constants

Frequently, however, building hazard-free chunks requires a comprehensive approach,
combining an appropriate representation of the data with correct manipulations at run-time. The
Soar manual (beginning on page 119) discusses data representation issues, among them
techniques for achieving maximally general (but still correct) chunks. The remainder of this
section presents methods of manipulating data to affect chunk generality.

Returning to Figure 7, Condition 2 uses constant binding to ensure that chunks built from
replacing the head of a list do not cause problems. Constant binding exploits the fact that Soar
replaces object identifiers in chunks with variables but leaves constants in place. Thus, binding a
constant makes the chunk specific to the name of the element pushed on the list. If this were not
done, the chunk built from severing the pointer to the first element of the list would fire
whenever that pointer were set.

Condition 2 also has a less obvious effect. Consider the two simulate-trip operators in the
trace excerpt in Figure 8 (the excerpt begins on page 44). As the second simulation (0380) is
being carried out, a constraint violation occurs. The default productions convert the violation
into a failure evaluation (for the first simulate-trip operator, since it is the one being evaluated).
The failure evaluation results in a search-control chunk (p946) that in the future will reject
operators similar to ¢374 under similar circumstances.

Figure 9 shows p946 (with some of the more ghastly conditions excised; the full chunk appears
in the chunk listing on page 52). The effect of Condition 2 is to cause the brown/traveler/trip1
assignment to be rejected specifically when the previous assignment involved trip3. There is no

23

34 O: 0344 (((brown) (traveler) (tripl) simmlate-trip) evaluate-object)

38 . “o: c374 ((brown) (traveler) (tripl) simulate-trip)

68 .“o: 0419 (trip-succeeds)

69 0: 0380 ((gray) (piper) (trip2) simulate-trip)

112 " "0: 0938 (weight-limit-exceeded local-constraint-failed)

Evaluation of operator c¢374 (simulate-trip) is failure
Build:p946

Figure 8: Lookahead leading to search-control chunk p946

clear purpose for this condition, in terms of knowledge usefully captured by the chunk. In fact,
this condition makes the chunk overspecific, since the relevant information is only that trip2
cannot be completed with a small truck (such as piper).

Questions of usefulness aside, the trip3 test illustrates how chunking can be affected by

(sp p946
(goal <g2> “desired <d4> “problem-space <pl> “state <d2>
“operator +)
(problem-space <pl> [...] “name task)
(state <d2> ~dummy-att* true “Adriver <d3> “truck <t4&> “trip <ts>
“current-schedule <11>)
{(driver <d3> “drive-time 12.5 “name gray)
(truck <t4> “volume 400 “weight-limit 5000 “type small “name piper)
(trxip <t3> “name trip2 ~first-segmant <slb>) trip2
(segment <sl1> “name segmentl ~trip trip2? “scurce gary “next-segment <s2>)
(segment <32> “name segment? “trip “rip2 “next-segmant <s3>)
(sagment <s3> “name segment3 “trip trip2 “next-segment <s7>)
(segment <s7> “load-shipment carpet ~-*locad-shipment NIL “name segmentd
“trip trip2 “next-segment <s8>)
{sagment <s8> “unload~-shipment carpet -“unload-shipment NIL
“name segmentS “trip trip2 “next-segment <s9>)
(sagment <s9> “load-shipment newsprint -“lcad-shipment NIL “name segmenté6
Atrip trip2)
(list <11> “car <cl>)
(operator <cl> “trip <t2>)

(trip <t2> “name trip3) trip3

(operator [...] “name simulate-trip
‘txip <t5> “truck <tl> “driver <d1>)

(trip <t5> “name tripl) tripl

(tzuck <tl> “volume 640 “weight-limit 10000}

(driver <dl> “~drive-time 11)

(goal <gl> “object NIL “state <s6>)

(state <s6> “shipmant <85> <s4> ~license <12> “city <c2>)

(shipment <85> “name newsprint “weight 6000.0 “volume 400.0
*load-tima 0.2)

(shipmant <s4> “name carpet “weight 500.0 “voluwe 100.0 “unload-time 0.25
“load-time 0.2)

(license <12> “truck-type small “holder gray)

(city <c2> “name gary “truck piper “driver gray)

-——>
(goal <g2> “operator -)) -

Figure 9: The search-control chunk p946

24

manipulating the data. Figure 10 shows how backtracing comes to include trip3 in the chunk
conditions. The simulate-trip*2o*trip-succeeds TC (of Figure 7) replaces the current-schedule
augmentation while testing trip3. In Figure 10, the new current-schedule augmentation is Lo (I
because we know it is a list object, and xox because unlike with operators we can not determine
its icentifier from the trace). This creates a dependency of 1xxx on trip3. When Ixxx is tested
during the application of 0938 (the simulate-trip*ao*local-constraint-failed TC is on page 37),
the dependency is extended to the subgoal result. When the chunk is built, 0938 acts as a bridge
from the result to Ixxx, and 0419 acts as a bridge from Ixxx to trip3. Trip3 was copied directly
from the higher task context, so backtracing includes it in the chunk conditions. The general
technique for ensuring that a particular condition (based on a supercontext augmentation) is
included in a chunk is 1o ensure that each operator in the subgoal extends the dependency, by
creating an augmentation while testing a previous augmentation that depends on the one from the
supercontext.

Note that the augmentation created by one operator to be tested by the next need not be
meaningful beyond the function of extending the dependency. In a variant known locally as
beading, the augmentations are simply new ider.tifiers, each replaced by the next. Backtracing
then strings up the identifiers like beads, backtracing through whatever augmentations were
tested in creating them.6

task
trip3 / <o0l> -
selection .
evaluation /
state-copy ----
task
\c374\ 0380 /
trip3 Ixxx
23N\ Jivah\
simulate-tnp 5 \ H
S N4l . \0938

: : :when (trip3) :
! Problem space @ :replace (current-schedule :by <new>)

Figure 10: Backtracing to the trip3 condition

A second instance of constant binding, shown in Figure 11, does provide a useful constraint on
p945. During the application of 0380 (between decision cycles 69 and 112 in Figure 8),
Condition 3 causes frip2 to be included in the backtrace and eventually in the chunk conditions
(Figure 9). This test is semantically relevant to the constraint that small trucks are not able to
complete this trip.

For completeness, we also account for the appearance of trip! (the third and last trip name) in
the conditions of p946. The tripl test occurs because of the simulate-trip*ao*local-constraint-
failed TC (page 37), which applies 0938. The relevant condition (corresponding to Condition 2)

6The bead metapaor is due to Rick Lewis.

25

(apply-operator simulate-segment*ao*compute-resources
:space simulate-segment
:0p compute-resources

;; add the updated resources to the object:
(edit :what (:none resources <resources>)

;; add the trip, to make sure that the segment and trip siay
;; tied together in the chunks that update the resources.

;7 if we don’t do this, the chunks could transfer

;; incorrectly to the same segment of another trip.

:new (trip <trip-name>
:when ((segment <segment> “trip <trip-name>)}) Condition 3

Figure 11: Conditions that prevent ov-rgeneral scarch-control chunks

tests the name of the last trip pushed onto th.2 cw.ent schedule (tripl, by 0419). Note that 0938
accesses tripl through 1xxx, extending the dependency of the subgoal result on trip3 as described
at the top of the previous page.

3.4.3. Expensive caunks

The problem of expensive chunks (Tambe et al., 1990) is a manifestation in Soar of the utlity
problem in explanation-based learming (Minton, 1985). It can arise whenever a representation
uses sets (multi-attributes), such as that of the top state of the sample implementation.

The chunk in Figure 12 implements the task operator (the chunk also appears on page 56). It
reads the top-state and creates the solution (the actions are elided). It is expensive to match
because of the combinatorics in the <s4> condition (second from the top). The Nicense test can
match 33 ways, the “city test 22 ways, the “driver test 33 ways, etc. The match cost is
proportional to the product of these terms.

For this task, a set-based representation is a great convenience. However, the general solution
to expensive chunks is to use structured representations, such as lists.

26

(sp pl548

(goal <gl> “object NIL “state <sé> “prcblem—-space <pl> “operator)

(state <s4> “dummy-att* true “license <13> <12> <11> “city <c2> <cl>
Adriver <d2> <dl> <d3> “truck <t4> <t3> <t5>
*erip <t6> <t2> <tl>)

(problem-space <pl> “name top-—space)

(license <13> “truck-type small “holder gray)

(city <c2> “name gary “truck piper traveler “driver gray brown)

(license <12> “truck-type big “holder green)

(city <cl> “name indy “truck cannonball “driver grean)

(license <11> “truck-type msdium “holdexr brown)

(driver <d2> “names gray “drive-time 12.5)

(truck <t4> ~type small “name piper “volume 400 “weight-limit 5000)

(txip <t6> “name tripl ~first-segment <s3>)

(segmant <s3> “source gary)

(driver <dl> “drive-time 1l “name grean)

(truck <t3> “volume 1280 “weight-limit 32000 “type big “name cannonball)

(txip <t2> “name trip3 ~first-segment <s2>)

(segmant <s2> “source indy)

(driver <d3> “drive-time 11 “name brown)

(txuck <t5> “volume 640 “weight-limit 10000 “type medium “name traveler)

(txip <tl1> “name trip2 ~first-segment <sl>)

(segmant <sl> “source gary)

(operator “name do-task “control-stuff* <c3>)

(control-stufft <c3> “edit-from-subgoal-anabled* true)

..)

Figure 12: An expensive chunk

27

4. Sample Implementation in Soar

4.1. Introduction

This chapter presents a sample implementation for the shipment scheduling assistant. This
implementation serves as a reference for the design given in Chapter 3.

Section 4.2 is a program listing, organized by problem space. Section 4.3 is an execution
trace, followed by statistics on the run and the source code. Section 4.4 is a listing of the chunks
generated during the run, useful for cross-referencing with the trace, and as a reference for the
discussion of learning in the previous chapter. For information on obtaining on-line versions of
these files, send mail to soar-requests@cs.cmu.edu.

4.2. Program Listing

...
R A N Y N N N NN N A N R R RN E N RN RO]

;::;:; File : /afs/cs.comm.edu/user/altmann/taql/truck/truck.taql
:::: Author ¢ Brik Altmann

;7:;; Created On : Sat Sep 28 20:56:38 1991

;2;; Last Modified By: Brik Altmann

;7::; Last Modified On: Wed Jun 3 20:14:15 1992

;::; Update Count : 113
::::; Soar Version : 5.2.1
;::: TAQL Version : 3.1.4
;::; PURPOSE

HHY Soar implementation of the Shipment Scheduling Assistant,

;;;; a.k.a. the Trucking Task. Runs with chunking on. See trace.txt
;::; for a trace, and chunks.soar for the corresponding chunks.

;;:; TABLE OF CONTENTS

A In terms of spaces: top-space, task, simulate-trip, and

;:;: simalate-segment. To reach the code for SPACE, search for

;:;; "ps*SPACE”, which will locate the propose-space TAQL construct

;::: for that space.

;2:: (C) Copyright 1991, Carnegie Mellon University, all rights reserved.

...

A A R A R N NN N RN NN

;; object/attribute pairs for Soar trace. the value of each attribute
;; will be printed.

(trace-attributes ’ (;; attributes of the simulate-trip operator (in the task space):
{(cperator driver)
{(operator truck)
(operator trip)

;:; attributes of operators in the simmlate-trip space:

(operator segment) ; simulate-segment
{operator reason) ; trip-succeeds

;: attributes of operators in the simmlate-segment space:
(operator shipment-name)

(opesrator volume)

(operator load-time)

(operator unload-time)

(operator weight)

(operator time)

))

;:; the top context contains the task state and the task operator. the
;: task-state contains all the static information for the task. the
;: task operator is bare.

;:; the space is proposed automatically by taql’s run-time support, so
;; there is no ps*top-space tc.

(propose-task-state pts*task
:new (weather rain)

:new (driver
((driver “nams green “union yes “drive-time 11))
((driver “name white “union no “drive-time 12.5))
((driver “name brown “union yes “drive-time 11))
((driver “name gray “union no “drive-time 12.5)))

;; the hierarchy of licenses is implicit in the “holders:
;; everyone holds type 1, fewer hold type 2, fewest hold type 3:

:new (license
((license “name class3 ~truck-type big
“holder green + &, brown + &))
((license “name class2 ~truck-type medium
“holder green + &, brown + &, white + &))
((license “name classl “truck-type small
“holder green + &, brown + &, white + &, gray + &)))

:new (truck
({truck “name cannonball “type big “weight-limit 32000 “volume 1280))
((txruck “name piper “type small “weight-limit 5000 “volume 400))
((truck “name traveler ~type medium “weight-~limit 10000 “volume 640))
((truck “name queen-bee ~type medium “weight-limit 10000 “volume 640)))

:new (city

((city “name gary “state indiana

“driver brown + &, gray + &

~truck piper + &, traveler + &))
((city “name indy “state indiana

~driver green + &, white + &

“truck cannonball + &, queen-bee + §))
((city “name utica “driver nil “truck nil “state illinois))
({city “name viola “driver nil “truck nil “state illinois))
((city “name warsaw “driver nil “truck nil “state indiana))
((city “name kokomo “driver nil “truck nil “state indiana))
((city “name attica “driver nil “truck nil “state indiana))
((city “name cook “driver nil “truck nil “state indiana)))

:new (shipment
((shipment “name typewriters “weight 1000.0 “volume 200.0
“load-time .2 “unload-time .25))
((shipment “nane carpet “weight 500.0 “volume 100.0
“load-time .2 “unload-time .25))
((shipment “name newsprint “weight 6000.0 “volume 400.0
“load-time .2 “unload-time .25)))

;; trip 1:
:new (trip

{(trip “name tripl ~first-segment <sl>)

(segmant

(segment

(segment

(segmant

;: trip 2:
:new (trip

<sl> “nama segmantl “road u30 “source gary “dest warsaw
“load-shipment typewriters

“unload-shipment nil

“trip tripl

“next-segnent <s2>)

<82> “name segment?2 “road u3dla “source warsaw “dest kokomo
“load-shipment nil

“unload-shipment nil

“trip tripl

“next-segment <s3>)

<s83> “name segment3 “road u3lb “source kokomo “dest indy
“load-shipment nil

“unload-shipment nil

“trip tripl

“next-segmant <s4>)

<s4> “nams segmentd “road 174 “source indianapolis “dest attica
“load-shipment nil

“unload-shipment typewriters

“trip tripl)))

((trip “name trip2 “first-segment <sl>)

(segment

(segment

{segment

(segment

(segment

<sl> “name segmentl “road udla “source gary “dest cook
~load-shipment nil

“unload-shipment nil

“trip trip2

“‘pext-segmant <s2>)

<s2> “name segment2 “road i80b “source cook “dest utica
“load-shipment nil

“unload-shipment nil

“trip trxip2

“naxt -segment <s83>)

<83> “name segment3 “road i80a “source utica “~dest viola
“load-shipment nil

“unload-shipment nil

“trip trip2

“next-segment <s4>)

<s4> “name segment4 “road i8Ca “source viocla “dest utica
“load-shipment carpet

“unload-shipment nil

“trip trip2

“next -segment <s85>)

<85> “name segment5 “road i80b “source utica “dest cook
“load-shipment nil

“unload-shipment carpet

“trip trip2

“naxt-segment <s6>)

;; note the several nil fields. trip2 ends oddly, with doing a load:

(segment

;. trip 3:
:new (trip

<86> “name segmenté “road nil “source cook “dest nil
“load-shipment newsprint

“unload-shipment nil

~trip trip2)))

((trip “name trip3 ~first-segment <sld>)

(segment

(segmant

<sl> “name segmentl “road 170b “source indy “dest yale
“load-shipment nil

“unload-shipment nil

“trip trip3

“next-segment <s82>)

<s2> “nams segment2 “road ud4le “source yale “dest attica
“load-shipment nil

“unload-shipment nil

“trip trip3l)))

29

30

:new (road
((road “pame u30 “grade secondary “length 70.0))
({zoad “name u3la “grade secondary “length 70.0))
((xoad “name u3lb “grade primary “length 40.0))
((road “name 174 “grade primary “length 60.0))

((zxoad “name ud4la “grade secondary “length 20.0))
((road “name 180b “grade primary “length 90.0))
((road “name 180a “grade primary “length 100.0))

((road “name 170b “grade primary “length $0.0))
((rvad “name udle “grade secondary “length 90.0)})))

;; entailments thac encuode maximum speeds for variocus road grades,
;; given the weather. the speeds augment the corresponding road
;; objects.

7

;; entallments for fair and snow are missing, but aren’t necessary
e for the given task.

(augment a*top-space*speed-when-rainy-on-primary
:space top-space
:when ({top~state “weather rain “road <r>))
:what (:none road <r>)
:new (speed S55)
:when ((road <r> “grade primary)))

(augment a*top-space*speed-when-rainy-on-secondary
:space top-space
:when ((top-state “weather rain “~road <r>))
:what (:none road <r>)
:new (speed 50)
:when ((road <r> “grade secondary)))

(augment a*top-space*speed-when-rainy-on-tertiary
:space top-space
:wban ((top-state “weather rain “road <r>))
:what (:none road <r>)
:new (speed 35)
:when ((road <r> “grade tertiary)))

;; once the speeds are computed, the time to traverse each road can be
;; computed, given the length. the times also augment the road
;; objact.

(augment a*top-space*time-from-length-and-speed
:space top-space
:wban ((state “road <zr>)
{road <r> “length <1> “speed <s3>))
:what (:none road <r>)
:new (time (compute <1> / <s8>)))

;: propose doing the scheduling task:

(propose-task-operator pto*task
:op do-task)

e ————
rre -

;:; the task space

eee
e

;; applies the schadule operator from the top-apace, by trying various
;. assignments of trucks and drivers to trips.

(propose-space ps*task
:function (apply operator do-task)
:space task)

{propose-initial -state pis*task
:space task

;> create a set each of the available drivers and trucks and the
;; trips that have to be covered. we’ll update this set as
;; assignmants are made (rimulate-trip*ao*trip-succeeds).

icopy (driver truck trip)

initialize the current-schedule. use a dummy simulate-trip
operator, so that the various conditions that test the name of
the last assignment on the current-schedule for chunking purposes
will work without a special case for the empty list.

Ne %o e wy e

note: below, "list” is a data macro. this clause creates a
list whose car is the dummy operator. the syntax used is the
third form of ACTION-SPRC (see the TAQL manual, p. 52).

e w
Ne Ne Se % N Se we W

:new ((“current-schedule (list <dummy>))
(operator <dummy> “name simulate-trip “trip <dummy-trip>)
(trip <dummy-trip> “name dummy)))

31

32

~e

~ v
LT TR PR LR TR TR PR 1)

Se wa % oNa N

generate an assignment (a <driver, truck, trip> tuple), and propose
simiulating the trip.

the conditions of the operator proposal generate the assignments
that embody the immediate constraints, like the truck and the
driver being in the first city of the trip. these constraints
are easy to test, given the structure of the information on

the top state.

(propose-cperator task*po*simulate-trip

Se ona e
PEE TR TR PR Y

:space task
:when (;; bind a driver, truck, and city:
(state “driver <driver> “truck <truck> “trip <trip>)

;; constrain the driver and truck to be in the same city:
(top-state “city <city>)

{city <city> “name <city-name> “truck <truck-name> “driver <driver-name>)

(truck <truck> “name <truck-nams>)
(trip <trip> “name <trip-name> “first-segment <segmant>)
(segment <segment> “source <city-name>)

;; constrain the driver to be licensed to drive the truck:
(top-state “license <license>)

(driver <driver> “name <driver-name>)

(truck <truck> “type <truck-type>)

(license <license> “truck-type <truck-type> “holder <driver-name>))

:op (simulate~trip “driver <driver> “truck <truck> “trip <trip>))

simalate-trip is applied in a subgoal, by the simulate-trip space.
it succeeds if no local constraints are viclated, such as resources
going negative. the termination conditions are in tbe next two TCs.

note: the simulate-trip cperator itself is as an easy way to
represent an assignment, so we build up the schedule by adding
simalate-trip operators to a list, called “current-schedule.

; simulate-trip succeeds when the simulate-trip operator itself has
; been added to the current schedule (by the subgoal). terminate the
; operator when this happens:

(apply-operator task*ao*simulate-trip*trip-succeeded

;e
)
s
)
;e

X

:space task

:op simulate-trip

:terminate-when ((state “current-schedule <schedule>) ; bind "cons cell"
(operator (car <schedule>) “trip <trip>) ; bind its "car"
(operator “~trip <tripd>)))

terminate simulate-trip if the subgoal signals an local constraint
violation. local-constraint-failed is detected as a failure
condition by eo*task (below).

note: multiple :terminate-when clauses in one TC are conjunctive,
80 we need two apply-cperator TCs to represent the two conditions.

(apply-operator task*ao*simulate-trip*constraint-viclation

ispace task
top simulate-trip
:terminate-when ((state “local-~constraint-failed)))

;; when there are no trips left, we’re done:

(proposa-operator task*po*schedule-succeeds
:space task
:when ((state “current-schedule <last-assignment> - “trip))
iop (achedule-succseds “complete-schedule <last-assignment>
“reason no-trips-left)

;: bind the name of the previous trip. this causes the search
;; control chunks that arise from detecting the success of this trip
;: to include the previous trip name in their conditions:

:when ((operator (car <last-assignment>) “trip <last-~trip>))
)

;; we know that the current schedule is complete, so put that

;; information on the state. this signals success (via eo*task, below).

(apply~operator task*ao*schedule- ds
:space task
:0p (schedule-succeeds “complete-scheadule <schedule>)
(edit :what state
:new (complete-schedule <schedule>)))

;; be prepared for a global constraint violation. propose an operator
that represents such a violation ocourring, then make it worst. if
at some point there are trips left but no assignments for thea,
then neither simmlate-trip nor schedule-succeeds will be proposed,
80 global-constraint-failed will be selected by default.

note: this illustrates a general prograsming technique, which is
to use the selection of an operator with a worst preferences to
implicitly represent the knowledge that each of a set of options
;7 has been exbausted. however, because such a selection is not

HH based on any explicit knowledge that can be backtraced through,
B chunks learned from results of such operators can be vastly

H overgeneral. one solution is to not learn from such results (see
;3 eo*task) .

{propose-~-operator task*po*global-constraint-failed
:space task
:wvhen ((state “trip))
:op (global-constraint-failed “reason trips-level-over))

(prefer task*p*global-constraint-failed*worst
:space task
:op global-constraint-failed
:value worst)

(apply-operator task*ao*global-constraint-failed
:space task
:op (global-constraint-failed “reason <reason>)
(edit :what atate
:new (global-constraint-failed <reasond>)))

33

34

;; signal task sucoess and local and global failures. this TC causes
;; 8 lookabead instance of the task space to exit, causing another
;7 simulate-trip alternative to be tried out.

(evaluate-ocbject eo*task
:space task
:what lookahead-state

; succeed when there’s a complete schedule (generated by
; task*aotschedule-succeeds). Soar’s dafault productions

; propagate sucocess to the top of the lookabead-search stack,

; causing Soar to learn search-control chunks that remember the
; sequence of simunlate-trip operators.

Se e Nu we

:symbolic-value (success
:when ((state “complete-schedule)))

;; backtrack if there’s been a global-constraint-failed. the novalue
;7 evaluation tells Soar not to learn anything. we don’t know
;; which assignment caused the problea or why, so there’s nothing
;; useful to learn (see note at task*po*global-~-constraint-failed).
:symbolic-value (novalue

:when ((state “global-constraint-failed)))

;; backtrack (and learn that the last assignment was a bad choice)
;; 1f there’s a local-constraint-~failed (created by
;; task*ao*simulate-trip*constraint-violation).

:symbolic-value (failure
:when ((state “local-constraint-failed))))

;; goal-test knowledge, to datect sucocess and failure when not in
;; lookahead search. replicates the knowledge in eso*task.

(goal-test-group gtg*task*success
:space task
:group-type success
:vhen ((superspace “name top-space)
(state “complete-schedule)))

(goal-test-group gtg*task*failure
:space task
:group~-type failure
:wben ((superspace “name top-space))

;; disjunctive failure teat.
:test (failure

:whan ((state “global-constraint-failed)))
:test (failure

:wben ((state “local-constraint-failed))))

;; return the complete schedule to the top state.

HH note: with this TC, Soar builds a chunk that applies the task

;2 operator (proposed by pto*task) after learning. without this TC,
H no chunk will be learned for the task operator (TAQL's runtime

HA support automatically terminates the task operator when a

HH succesaful or failed state is reached in the space that applies
HH it): after learning, the task operator will impasse, and chunks
b learned during lookahead search will guide Soar directly to a

Y solution in the subspace without further impasses.

(result~superstate rs*task*success
:space task
:group-type sucoess
{(edit :what superstate
:vhan ((state “complete-schedule <schedule>))
:new (complete-schedule <schedule>)))

the simulate-trip space

s we e

.
.
»
v

~a %o “e

;; applies the simulate-trip operator from the schedule space.

if the simulation succeeds, trip-succeeds pushes the superoperator
onto the current-schedule list on the superstate. if it fails (due
to a local constraint failure), local-constraint-failed pushes this
assignment onto the current achedule, and returns that as the value
of “local-constraint-failed.

Ne e Ne ve %
Ne % Ny we v

{propose-space ps*simulate-trip
:function (apply operator simulate-trip)
:space simulate-trip)

copy the trip/truck/driver set down from the superstate, for
convenience. establish the volume and weight-limit of the truck,
and the maximum time the driver can drive, as initial values of
those resources.

I3
.
v
.

Ne ws we e

(propose-initial-state pis*simulate-trip
:space simulate-trip
:when ((superoperator “truck <truck> “trip <trip> “driver <driver>)
(driver <driver> “Adrive-time <drive-time>)
{truck <truck> “volums <volume> “weight-limit <weight-limit>))
:naw (driver <driver>)
:new (truck <truck>)
inew (trip <trip>)
:new (initial-resources ((resources “current-times <drive-time>
“current~volume <volume>
“current-weight <weight-1imit>))))

;; simmlate the driver driving the truck over each segment of the trip
;; in turn. after each segment, the simulate-segment operator updates
;; the resources.

(propose-operator simulate-trip*po*simulate-segment
:space simulate-trip
:salect-once-only ; so first segment is only done once

;; propose doing the first segment, using the initial resources:
:op (simulate-segment “segment <first> “resources (list <res>)
:when ((state “trip <trip> “initial-resources <res>)
(trip <trip> “first-segment <first>)))

;; at each segment, propose doing the next one, using the current
;; resources:
:op (simulate-segment “segment <next> “resources <res>
iwhen ((operator “segment <curreat>)
(segment <current> “next-segment <next>)
(state “current-resources <res>))))

; operator simulate-segment is applied i1 a subgoal, in the

; simulate-segment space. the space returns a resource cbject,

; pushing it onto the list “current-resources (creating the list if
; it has to). the rescurce object specifies the seguent it was

; constructed in, allowing us to test we can terminate the operator.
; the resource cbject also specifies “failed true if any resource

; (volume, weight-limit, time) ran out during the segment, or if

; other constraints were violated (see

; simulate-segment*ao*compute-resources).

(apply-operator simulate-trip*ao*similate-segment
:space simulate-trip
:op (simulate-segment “segmant <segment>)
:terminate-whan ((state “current-resources <res>)
(resources (car <res>) “segmant <segment-name>)
(segment <segment> “name <segment-name>)))

35

36

;; be prepared to declare the simulation successful. propose
;; trip-succeeds and make it worst, so that it’s selected only
;; when there are no segments left to drive over.

in the proposal, create a new list whose car is the current
assignment, and whose cdr is the existing schedule from the
superspace. make this new list an argusent to the operator,
which can return it directly to the superstate (becoming the
updated schedule).

N3 e e Se we we o n
e Ne Mo ss Sy v n

{(propose-operator simulate-trip*portrip-succeeds
:space simulate-trip

;; bind the supercperator, and the current schedule:

:when ((superstate “current-schedule <last-assignment>)
(supergoal “operator <so>))

;; put the updated achedule on the operator, so that the operator
;; application TC can return the updated schedule to the

;; superstate. (updating and returning requires two steps, so

;; doing the update here allows the apply-operator TC to return
;: the result.)

:op (trip-succeeds “assignment (cons <so0> <last-assignment>)))

(prefer simulate-trip*p*trip-succeeds*worst
:space simulate-trip
:op trip-succeeds
:value worst)

;; if the assignment succeeds, return the new schedule to the
;; supercontext, and update the suparstate’s trip/truck/driver sets.

(apply-operator simmlate-trip*ao*trip-succeeds
:space simalate-trip
:op (trip-succeeds “assignment <new>)

;; bind the information we need to update the trip/truck/driver sets:

:when ((cperator (car <new>)
“trip <trip> “driver <driver> “truck <truck>))

the chunks that update the achedule in the supercontext will
loop unless we’'re careful, bhecause one chunk rejects the
current head of the list, and a second adds the new head.

we can prevent looping by making the chunks specific to the
current head of the list. <current-trip-name> matches a
constant, and that constant will appear in the chunk:

Ne Ne Ne v NN,
Se Se N Ne v,

:when ((superstate “current-schedule <current>)
(operator (car <curreant>) “trip <current-trip>)
(trip <current-trip> “name <current-trip-name>))

(edit :what superstate

;; push the new trip onto the head of the schedule list:
:replace (current-schedule :by <new>)

;; trip is taken care of:
:remove (trip <trip>)

;: driver and truck are used up:
:remove (driver <driver>)
:remove (truck <truck>)))

37

;: the simmlation fails if a resource went negative. the value of
;; “reason is printed in the trace (see trace-attributes).

(propose-operator simulate-trip*po*local-constraint-failed
:space simmlate-trip

;; as in simulate-task*po*trip-succeeds:
:wvbhen ((supergoal “operator <so>)
(superstate “current-schedule <last-assignment>))
:op (local-constraint-failed ~failed-assignment (cons <so> <last-assignment>)
“reason <reason>)

;; failure condition:
:when ((state “current-resources <res>)
(resources (car <res>) “failed true “reason <reason>)))

;: 1f local-constraint-failed is proposed, select it immediately.

(prefer simulate-trip*p*local-constraint-failed*require
:space simulate-trip
:op local-constraint-failed
:value require)

;; 1f the simulation fails, return local-constraint-failed to the
;; suparcontext. don’t bother updating the trip/truck/driver sets,
;; bescause the supercontext will signal a failure condition and exit

(apply-operator simulate-trip*ao*local-constraint-failed
:space simulate-trxip
:op (local-constraint-failed “fajiled-assignment <schedule>)

;; to prevent chunks that will loop in other cases (as in
;; simulate-trip*aoc*trip-succeeds):
:when ((superstate ~current-schedule <current>)
(operator (car <current>) “trip <current-trip>)
(trip <current-trip> “name <current-trip-name>))

;: failure termination condition on the supercperator:
(edit :what superstate
:new (local~constraint-failed <schedule>)))

38

* mmew- - - - -
g

;: the simulate-segment space

------------------------ ——————
s

applies the simulate-segment operator from the simulate-trip space.

the space succeeds if the segment can be completel with the volume
and weight currently available in the truck, and if the time lcft
the driver is enough to cover loading, driving, and unloading. it
fails otherwise. the return value is a resources object, pushed
onto the “current-resources list of the superstate. the list is
created if it isn’t there. if the segment fails, the resources
object is flagged with “failed true and a “reason.

L P e R L T
LT T T O S

e v
.~

the compute-resocurces operator represents the oddball const.aint
tuat white can’t drive :hrough illinois.

S e S

e we

(}Tc0se-space ps*simulate-segment
:function (apply operator similate-segment)
:spacae simulate-segment)

;; the arguments to the superoperator are the segment to do and the
;; resources to do it with. unpack the resources so we can modify
;; them locally. unpack the segment fcr convenience.

(pr~~ je-initi.l-state pistsimulate-seqment
lepace simulate-segment
:when ((superoperator “segment <seg> “resocurces <res>)
(resources (car <res>)
“current-volume <volume> “current-time <time> “current-weight <weight>))
:new (segmant <seg>)
:new (current-volume <volume>)
:new (current-time <time>)
:new (current-weigh:- <weight>))

:; when tae “shipment-name of a seg.uent is non-nil, then propose loading
;:; that shipment:

(propose-operator simulate-segment*po*load
:space simulate-seguant
:select-once-only ; load only once per segment
:op (load “shipment-name <shipment-name> ~volume <volume> “load-time <load-time>
“weight <weight>)
:wben ((top-state “shipment <sh>)
(shipment <sh> “name <shipment-name> “weight <weight>
Avolume <volume> “load-time <load-~time>))
:when ((state “segment <suy>)
(segment <seg> - “load-shipment nil “load-shipment <shipment-name>)))

;; load the shipment by adjusting the resources:

(apply-operator simulate-rogment*ao*load
space simulate-segmant
op (load “weight <weight> “volume <volume> “load-time <load-time>)
:when ((state “current-weight <current-weight> “current-volume <current-volume>
“current-time <current-time>))
(edit :what state
:xaylace (current-weight :by (compute <current-weight> ~ <weight>))
:replace (current-volume :by (compute <current-volume> - <volum>)) -
:replace (current-time :by (compute <current-time> - <load-time>))))

39

;; similarly for unloading. for correctness, loading has to be done before
;; unloading (see the explanation above simmlate-segmentc*load*unload*better).

(proposes-ocperator simulate-segment*po*unload
:space simulate-segment
:select-once-only ; unload only once per segment
iop (unload “shipment-name <shipment-name> “volume <volume>
“unload-time <unload-time> “weight <weight>)
:wbhen ((top-state “shipment <sb>)
(shipment <sh> “name <shipment-name> “weight <weight>
“volume <volume> “unload-time <unload-time>))

:when ((state “segment <seg>)
(segment <seg> - “unload-shipment nil “unload-shipment <shipment-name>)))

(apply~operator simulate-segmant*ao*unioad

:space simulate-segment

:op (unload “weight <weight> “volume <voluma> “unload-time <unload-time>)

:when ((state “current-weight <current-weight> “current-volume <current-volume>

“current-time <current-time>))

{(edit :what state
replace (current-weight :by (compute <current-weight> + <weight>))
replace (current-volume :by (compute <current-volume> + <volume>))
:replace (current-time :by (compute <current-time> - <unload-time>))))

b
.

;: adjust the time resource by the length of time it takes to drive
;; the segment.

(propose-cperator simulate-segment*po*drive
:space simulate-segment
:select-once-only ; drive only once per segment
:op (drive “time <time>)
:when ((top-state “road <road>)
(state “segment <seg> “road <road-name>)
(segment <seg> - “~dest nil)
(road <road> “name <road-name> “time <time>))) :; entailed

(apply-operator simulate-segment*ao*drive
:space similate-segment
:op (drive “time <time>)
:when ((state “current-time <current-time>))
(edit :what state
:replace (current-time :by
(compute <current-time> - <time>))))

;; be prepared to update resources when no more resource-consuming
;: actions remain.

(propose-operator similate-segment*po*compute-resources
:space simulate-segment
:op compute-resources)

(prefer simalate-segment*p*compute-resources
:space simulate-segment
:op compute-resources
:value worst)

;; update resources by building a new resource object on the current state.

(apply-operator simulate-segment*ao*compute-resources
:space simulate-segment
:op compute-resources

;; bind information required to build the resource object:
:when ((statc ‘curren*-weight <weight>

Acurrent-volume <voluma>

“current-time <time>

“segment <segment>))

40

;:; create a new resource object and attach it to the current state:
:bind <resources>
{(edit :what state

:new (resources <resources>))

;; add the updated resources to the cbject:
(edit :what (:none resources <resources>)

;; add the segment, so that when the rescurce cbject is returned
;; to the superstate, the superoperator will be able to tell

;; when to terminate (its segment parameter will be the zame as
;; the segment of the head of the current-resources list):

:new (segment <segment-name>
:when ((segment <segment> “name <segmant-name>)))

;; add the trip, to make sure that the segment and trip stay
;:; tied together in the chunks that update the resources.

;; if we don’t do this, the chunks could transfer

;; incorrectly to the same segmant of another trip.

:new (trip <trip-name>
:when ((segment <segment> “trip <trip-name>)))

;: add the resources:

:new (current-weight <weight>)
:new {current-volume <volume>)
:new (current-time <time>))

;; failure conditions arise when a rescurce has fallen below zero:

(edit :what (:none resources <resources>)
:new (failed true)
:new (reason weight-limit-exceeded)
:when ((state “current-weight < 0.0)))

(edit :what (:none resocurces <resources>)
:new (failed true)
:new (reason volume-exceeded)
:when ((state “current-volume < 0.0)))

(edit :what (:none resources <resources>)
:new (failed true)
:new (reason time-exceeded)
:wvhen ((state “current-time < 0.0)))

;; this is the failure condition in which white is wanted for a
;; crime in illinois. the chunks built are more specific than
;; they need to be, because they include all sorts of other
;; resources that have nothing to do with failure condition.

(edit :what (:none resources <resources>)

:new (falled true)

:new (reason whites-a-criminal-in-illinois)

:when ((top-state “city <city>)
(city <city> “name <city-name> “state illinois)
(state “segment <segment>)
(superstate “driver <driver>)
(driver <driver> “nams white)))

) ; end of simulate-segment*ao*compute-resources

41

;; when the resources object is built, propose returning it:

(propose-oparator simulate-segmant*po*update-rescurces
:space simulate-segment
:op (update-resources “resources <res>)
:when ((state “resources <res>)))

;; push the resource object onto the list »i current resources. if
;7 the list has not been created yet, create it.

(apply-operator simulate-segment*aoc*update-resources
:space simulate-segment
top (update-resources “resources <resd>)

;; bind the name of the current segment (see below):
:whan ((state “segment <segment>)
(segment <segment> “name <segment-name>))

(edit :what superstate

;; 1f the current-resources list exists already:
:replace (current-resources
:by (cons <res> <res-list>)
:when ((superstate “current-resources <res-list>)
;; prevent looping chunks:
(resources (car <res-list>) - “segment <segmert-name>)))

;: Af there’s no current-resources list:
:new (current-resources (list <res>)
:when ((superstate - “current-resources)))))

;; for a given segment, “load-shipment non-nil means load at the source
;; city, and “unload-shipment non-nil means unload at the destination.
;; so0 for correctness wrt weight-limit and volume, loads have to come first.

(compare c*load*unload*better
:space simulate-segment
:opl load
:op2 unload
:relation better)

;; other than that, it doesn’t matter what order resources are
;: consumed in, but it doesn’t hurt to do it in a sensible one.

(compare c*load*drive*better
:space simulate-segment
:opl load
top2 drive
:relation better)

{(compare c*drive*unload*better
:space simulate-segment
:opl drive
:op2 unload
:relation better)

42

soar hacks:

~e ne ~
~o we v

this production replaces a soar default production that monitors
evaluations of lookahead operators. it prints the id of the
operator copy, rather than the source of that copy. this is an
improvemant, because the copy shows up in the trace, so the id is
useful for reference.

Ne %o Na e
~e %o %e e v

(sp default*monitor*operator*evaluation
{goal <top> “object nil -“verbose false)
{goal <g> “object <ag> “state <s>)
(state <a> “tried-tied-operator <obj>)
(goal <sg> “operator <so>)
(operator <so> “type evaluation “evaluation <e>)
(avaluation <e> 4 << numeric-value symbolic-value >> <n>)
(<class> <ob3j> “name <name>)
-—>
(tabatop <tab>)
(write2 (cxlf) (tabto <tab>) " Evaluation of " <class> " " <obj> " ("
<name> ") is " <n>))

;;:; end of code

43

4.3. Execution Trace
;; =%*- Node: Indented-Text -*-

....... s a8 e e0enss s s v eraseecsans s IR
R R R R R R R R R R R R R R R R R A R R R R R R R R R R A R R R R R R

/afs/cs.cmi.edu/user/altmann/taql/truck/trace.txt
Brik Altmann

Wed Jun 3 20:25:47 1992

Brik Altmann

Wed Jun 3 20:26:34 1992

1

Aathor

Created On

Last Modified By
Last Modified On
Update Count

; File

~.

PURPOSE

Trace of a sample implementation of the Trucking Task, aka the
Shipment Scheduling Assistant. The source code is in truck.taqgl, and
chunks produced from this trace are in chunks.soar.

e Se Ne Ne We We %o Na e Ne S Sy oo
e Mo Ne W N

ne Ne N

TABLR OF CONTENTS
The trace, followed by print-stats and taql-stats.

Copyright 1992, Carnoq:lo Mellon Univcr-ity

Se Ne Ne Na o,
Ne nh wa S N o8,

~e
.
.
e
e
e
~
~e
.
-~
.~
~
-
~
~
~
~
~
~
-~
-~
~
~
-~
~
~
-
~
~
-~
-~
-
~
-~
-~
-
e
-~
~
-
~
~
-
-
~
-
-
~
~
.
-~
-
~
-~
~
-~
-~
~
~
~
-
~e
~
~
~
~
-~
Y
-
-~
~
~
~
~
~
~
~
~

Starting Soars ...
Allegro CL 3.1.12.2 {DECstation] (11/19/90)
Copyright (C) 1985-1990, Franz Inc., Berkeley, CA, USA

Soar (Version 5, Release 2)

Created August 26th, 1991

Bugs and questions should be sent to Soar-bugs@cs.cmu.edu
The current bug-list may be obtained by sending mail to
Soar-bugs@cs.cmi.edu with the Subject: line "bug list"
This software is in the public domain.

This software is made available AS IS, and Carnegie Mellon
University and the University of Michigan make no warranty
about the software or its performance.

See (soarnews) for naws.

; Loading /usr0O/altmann/.soar-init.lisp.

; Loading /usr/misc/.Soar5/bin/SoarS5.latest.patches.lisp.
<cl>

<cl> (load "/usr/misc/.Soar5/1ib/taql/load.lisp™)

; Loading /usr/misc/.Soar5/l1ib/taql/load.lisp.

Disabling selected dafault productions: #vir§sfrfrfrfrfangrfajengngs
Loading TAQL support productions:
AR R R R RN R AR AN R R TR R AR RN AR RN TR R RN AR R AR R AR AR AR A AR A AR ERAARR AR RAANRRAR AR AR R

TAQL 3.1.4
Created July 15, 1991

Bug reports should be sent to Soar-bugs@cs.cmu.edu.
Send comments on TAQL to Gregg.Yost@cs.cmu.edu or Erik.Altmannf@cs.cmu.edu.

t
<cl> (load "/afs/cs.cmu.edu/user/altmann/taql/truck/truck.taql”)
; Loading /afs/cs.cm.edu/user/altmann/taql/truck/truck.taql.

AR RAAR AR AR R AR AR RN RN R AR AT RN R AR AN ARRRR AR NRRAR IR AR AR ARSI ARARNRRA NN R AR AR AR R AR RAAR AR AR RS AR AR Ah

wrdt§ (axcised DEFAULT*MONITOR*OPRRATOR*EVALUATION)

t

<ecl> {user-select) ;; for documentation
first

<cl> (learn on) ;; turn learning on

Learn status: on all-goals print trace

on
all-goals
print
trace

<cl> (run)

Learn status: on all-goals print trace

0 G: gl

1 P: pd (top-space)

2 S: 873

3 Q: 069 (do-task)

4 ==>G: g76 (operator no-change)

5 P: p83 (task)

6 S: 8104

7 ==>G: gl30 (operator tie)

8 P: pl3l (selection)

9 S: s138

10 0: 0143 (((green) (cannonball) (trip3) simmlate-trip) evaluate-cbject)
11 ==>G: gl71 (operator no-change)

12 P: p83 (task)

13 S: di181

14 0: cl82 ((green) (cannonball) (trip3) simulate-trip)
15 =>G: g21l2 (operator no-change)

16 P: p21l9 (simmlate-trip)

17 S: 8230

18 0: 0232 ((segmentl) simnlate-segment)

19 a=>G: g238 (operator no-change)

290 P: p245 (simulate-segment)

21 S: 8255

22 0: 0257 (compute-resources)

23 0: 0272 (update-rescurces)

Build:p277

24 0: 0278 ((segment2) simulate-segment)

25 ==>G: g280 (operator no-change)

26 P: p287 (simulate-segment)

27 S: 8297

28 0: 0299 (compute-resources)

29 0: o03l1l4 (update-rescurces)

Build:p319

Build:p320

30 O: 0235 (trip-succeeds)

Build:p323

Build:p324

Build:p325

Build:p326

Build:p327

31 »=>G: g331 (operator tie)

32 P: p332 (selection)

X] S: 8339

34 0: o344 (((brown) (traveler) (tripl) simulate-trip) evaluate-object)
35 ==>G: g363 (operator no-change)

36 P: p83 (task)

37 s: d373

38 0: ¢374 ((brown) (traveler) (tripl) simulate-trip)
39 ==>G: g396 (operator no-change)

40 P: p403 (simulate-trip)

41 S: 8414

42 O: 0416 ((segmentl) simulate-segment)
43 =u>G: g422 (operator no-change)

44 P: p429 (simulate-segment)

45 S: 8439

46 O: o441l (typewriters 200.0 0.2 1000.0 load)
47 Q: 0443 (compute-resources)

48 O: 0464 (update-resources)
Build:p469

49 O: 0470 ((segment2) simmlate-segment)
50 =u>G: g474 (oparator no-change)

51 P: pd48l (simumlate-segment)

Build:p558
Build:p559
61
62
63
64
65
66
67
Build:p609
Build:pé610
68
Bulld:p613
Build:p6l4
Build:pél15
Build:p6lé
Build:pé617
69
70
71
72
73
74
15
76
77
78
Build:pésé
79
80

Build:p730
Build:p731
85

86
87
88
89
90
Build:p775
Build:p776
91
92

Build:p82s8
Build:p829
98

99

100

101

102

s:
0:
0O:

8491
0493 (compute-resources)
0508 (update-resources)

0: 0515 ((segment3) simulate-segment)

==>G:
P:
8:
[+ H
0:

g519 (operator no-change)
p526 (asimunlate-segment)

8536

0538 (compute-rescurces)
0553 (update-resources)

0: 0560 ((segment4) simulate-segment)

=-=>G:
P:
8:
0:
o:
o:

g562 (operator no-change)

p569 (aimulate-segment)

8579

o581 (typewriters 200.0 0.25 1000.0 unload)
0583 (compute-resources)

0604 (update-resources)

0: 0419 (trip-succeeds)

O: 0380 ((gray) (piper) (trip2) simulate-trip)
==>G: g621 (operator no-change)

P: p628 (simulate-trip)

S: =639

O: o641l ((segmentl) simulate-segment)

=D
P:
S:
o:
O:

g647 (operator no-~change)
pé54 (simulate-segment)
8664

0666 (compute-rescurces)
0681 (update-resources)

0: 0687 ((segmant2) simylate-segment)

==>G:
P:
S:
O:
O:

g691 (operator no-change)
p698 (simulate-segment)
8708

0710 (compute-rescurces)
0725 (update-resources)

O: o732 ((segment3) simulate-segment)

: g736 (operator no-change)

: p743 (simulate-segment)

8753

: 0755 (compute-resources)
: ©770 (update-resources)

0: 0777 ((segmentd) simulate-segment)

==>C:
P:
S:
0:
[*H
Q:

g781 (operator no-cbhange)

p788 (simulate-segment)

8798

0800 (carpet 100.0 0.2 500.0 load)
0802 (compute-resources)

0823 (update-resources)

0: 0830 ((segmentS5) simulate-segment)

=>Q:
P:
8:
0:

g834 (operator no-change)

p8dl (simulate-segmant)

s851

0853 (carpet 100.0 0.25 500.0 unload)

45

46

103
104
Build:p88l
Build:p882
105
106
107
108
109
110
111
Build:p93é
Build:p937
112
Build:p943
113
Build:p945

Build:p946
115
116
117
118

O: 0855 (compute-resources)
© 0876 (update-resources)

0: o883 ((segmanté) simulate-asegment)
==>G: g885 (operator no-change)
P: p892 (simulate-segment)
S: 8902
0O: 0904 (newsprint 400.0 0.2 6000.0 load)
0: 0906 (compute-resources)
0: 0931 (update-resources)

0: 0938 (weight-limit-exceeded local-constraint-failed)
0: @365 (failure final evaluate-state)
Evaluation of operator c374 (simulate-trip) is failure
O: 0346 (((gray) (piper) (tripl) simulate-trip) evaluate-object)
==>G: g948 (operator no-change)

P: p83 (task)
S: 4958

Firing 119:915 p9%46

119
120
121
122
123
124
125
126
127
128
129
Build:pl054
130
131
132
133
134
135
Build:p1098
Build:pl099
136
137
138
139
140
141
Build:pl143
Build:plld4
142
143
144
145
146
147
148
Build:pll94
Build:pll195
149
Build:pl198
Build:pll99
Build:pl200
Build:pl201

0: 959 ((gray) (piper) (tripl) simulate-trip)
=>G: g98l1 (ocperator no-change)
P: p988 (simulate-trip)
S: 8999
O: 01001 ((segmentl) simulate-segment)
==>G: gl007 (operator no-change)
P: pl0l4 (simulate-segment)
S: s1024
0: 01026 (typewriters 200.0 0.2 1000.0 load)
O: 01028 (compute-resources)
0: 01049 (update-resources)

0: 01055 ((segment2) simulate-segment)
=>G: gl059 (operator no-change)
pl066 (simulate-segment)

81076

01078 (compute-rescurcas)

: 01093 (update-resources)

oounw

O: 01100 ((segmant3) simulate-segment)
==>G: gl104 (operator no-change)
: pllll (simulate-segment)
S: sll2l
0: 01123 (compute-resourcas)
0O: 0l138 (update-resources)

L

0: 01145 ((segment4) simulate-segment)
==>G: gll47 (operator no-change)
P: plliS54 (simulate-segment)
: 81164
01166 (typewriters 200.0 0.25 1000.0 unload)
01168 (compute-resources)
01189 (update-resources)

ooomn

0: 01004 (trip-succeeds)

Retracting 150:1170 p946

Build:p1202
150

0: 0966 ((brown) (traveler) (trip2) simulate-trip)

151 ==>G: gl206 (operator no-change)

152 P: pl2l3 (simmlate-trip)
153 S: sl224
154 C: 01226 ((segmentl) simmlate-segment)
155 ==>G: gl232 (operator no-~change)
156 P: pl239 (simulate-segment)
157 S: 81249
158 0: 01251 (compute-resources)
159 0: 01266 (update-resourcas)
Build:pl271
160 0: 01272 ((segmant2) simmlate-segment)
161 ==>G: gl276 (operator no-change)
162 P: pl283 (simulate-segment)
163 S: 81293
164 0: 01295 (compute-resources)
165 0: 01310 (update-resources)
Build:pl315
Build:pl316
166 0: 01317 ((segment3) simulate-segment)
167 ==>G: gl321 (operator no-change)
168 P: pl328 (simulate-segment)
169 S: 81338
170 0: 01340 (compute-resources)
in 0: 01355 (update-resources)
Build:pl360
Build:pl361
172 0: 01362 ((segmentd) simulate-segment)
173 ==>G: gl366 (operator no-change)
174 P: pl373 (simulate-segment)
175 S: 81383
176 O: 01385 (carpet 100.0 0.2 500.0 load)
177 0: 01387 (compute-rescurces)
178 O: 01408 (update-resources)
Build:pl413
Build:p1414
179 0: 01415 ((segmentS) simulate-segment)
180 =>G: gl41l9 (operator no-change)
181 P: pl426 (simulate-segment)
182 S: 81436
183 O: 01438 (carpet 100.0 0.25 500.0 unload)
184 0: 01440 (compute-resources)
185 O: 0l461 (update-resocurces)
Build:pl466
Build:pl467
186 0: 01468 ((segmenté) simmlate-segment)
187 =>G: gl470 (operator no-change)
188 P: pld77 (simulate-sagment)
189 S: 81487
1%0 0: 01489 (newsprint 400.0 0.2 6000.0 load)
19 0: 01491 (compute-resaocurces)
192 0: 01512 (update-resources)
Build:p1517
Build:pl518
193 0: 01229 (trip-succeeds)
Build:pl521
Build:pl1522
Build:pl1523
Buila:pls24
Build:pl525
194 0: 01526 (no-trips-left schedule-succeeds)
195 O: @950 (success final evaluate-state)
Build:pl534
Evaluation of operator c959 (simulate-trip) is success
Build:pl535
Build:pl536
Build:pl537
Evaluation of operator ¢l82 (simulate-trip) is partial-success
Build:pl538

196 0: 0106 ((green) (cannonball) (trip3) sismlate-trip)

48

Firing 197:1573 p323
Firing 197:1573 p327
Firing 197:1573 p324
Firing 197:1573 p325
Firing 197:1573 p326
Firing 197:1575 p94é
Firing 197:1575 pl1535
197 0: oll5 ((gray) (piper) (tripl) simulate-trip)
Firing 198:1580 pll9s
Firing 198:1580 pl202
Piring 198:1580 pl20l
Firing 198:1580 pl199
Firing 198:1580 pl1200
Retracting 198:1582 pl535
Retracting 198:1582 p946
198 0: oll2 ((brown) (traveler) (trip2) simulate-trip)
Firing 199:1587 plS521
Piring 199:1587 pl525
Firing 199:1587 pl1522
Piring 199:1587 pl523
Firing 199:1587 p1524
199 O: 01542 (no-trips-left schedule-succeeds)
200 0: 0102 (final-state)
Space task succeeded in goal g76.
Build:pl548
Bulld:pl549
201 O: o6 (balt)
Applied task operator 069 (do-task). Final state is a73.
End -- Explicit Halt
nil
<cl> (list-chunks "/afs/cs.cmi.edu/user/altmann/taql/truck/chunks.soar"”)
Copying chunks to file /afs/cs.cm.edu/user/altmann/taql/truck/chunks.soar.

t

<el> (print-stats)

Soar (Version 5, Release 2)
Created August 26th, 1991

Run statistics on June 3, 1992
Allegro CL 3.1.12.2 [DECstation] (11/19/90) DECstation id: 385 Ultrix TRICERATOPS.SOAR.CS.CMU.EDU

362 productions (6491 / 27250 nodes)
69 chunks (69 / 362 productions)
109.383 seconds elapsed 25.353 seconds chunking ovarhead
202 decision cycles (541.50006 ms per cycle)
707 elaboration cycles (154.71428 ms per cycle)
(3.5 e cycles/d cycle)
2040 production firings (53.61912 ms per firing)
2.8854313 productions in parallel
9415 RHS actions after initialization (11.61795 ms per action)
392 msan working memory size (1041 maxisum, 350 curreat)
3347 mean token asmory size (9279 maximum, 1802 current)
21814 left tokens added, 19337 right tokens added, 41151 total tokens added
21369 left tokens removed, 17980 right tokens removed, 39349 total tokens removed
80500 token changes (1.358795 ms per change)
(8.549278 changes/action)
nil
<ecl> (tagql-stats)
TAQL 3.1.4
Created July 15, 1991

TAQL statistics on June 3, 1992
Allegro CL 3.1.12.2 [DECstation] (11/19/90) DECstation id: 385 Ultrix TRICERATOPS.SOAR.CS.CMU.EDU

47 TCs (46 user, 1 default)

compiled into 124 productions (101 user, 23 default)
t

<cl> ;; end of trace

4.4. Chunk Listing

: -~ Mode: Boar -*-

49

{dxiver <dl1> ~drive-tims 11)
(stats <44> Atruck <t2> -))

{sp p323

SIS iiiiIEIINIIIINIINNrINNIiiiiiiiiiiiiiiiiiiised
Jii: ¥Ale : /ate/cs.cmn.edu/usex/al /taql/ X/ ks . soar
; Anthor : Brik Altmann

Cxeated On : Wed Jun 3 20:26:56 1992

: Last Nodified By: Erik Altmann
: Last Modified On: Wed Jun 3 20:27:22 1992
Updats Count i1
::: Soar Versiom : 5.2.1

PURPOSR

Chanks genexated by a run of the sample implemantation of the

Trucking Taak, aks Shipping Scheduling Assistant. The source
oode is in truak.tagl. The trace from which these chunks were
: genersted is in trace.txt.

(sp p277
(goal <gl> “state <s2> “oparatoxr)
(stats <s2> -“current-resourcss “dmmy-att* true)

(operator <el> “nams simalate-segment * t <s1> * <Ql1>)
(segmant <sl> “name segaantl “trip trip3)

(1ist “gar <rl>)

(Tesources <rl> “current-volume 1280 “current-tims 11

-—m‘ ’
-~
({state <s2> “carrent-rescurcas <12> &, <12> +)
(list <12> “ear <r2> 4+ “adr nil + “type* list +)
(<xr2> “segmant 14+ sntl & Atrip tripd + trip3 &

“cmxrent-welght 32000 + 32000 &
“current-volume 1280 + 1280 & “current-tima 11 + 11 &))

(sp p319
{goal <gl> “state <s2> “oparator <old)
(stats <52> “dummy-att® trus “current-resources <ll1>)
(list <11> “aar <xdl>)
(<rl> -“segment 2
“ourrent-weight 32000)

lume 1280 “current-tims 121

{operator “names simnlate-segment <a1> 4 <s1>)
{(segmant <sl> “name segmanit2)
~>
{state <s2> “current-resourcas <11> -))
{sp p320
(goal <g1> ~st <s2> <01>)
{state <a2> Q-y-att‘truw:omQD)
(u-e <11> “aar <rl>)
{ <xl> -“seguant 2 4 lume 1280 ~ time 11
‘ourrent-welght 32000)
{opeTator “‘zame simmlate-segment “z 11> “seg <sl>)

(segeent <sl> “mame segment2 “trip tripld)
~=>
(state <82> “current-resourcas 12> §, <1> +)
{(list Q2> “oar <r2> + “adr Q1> + “type® Uist +)
{ <> 4 2+ gmant2 & “trip trip3 + txip3d &
‘m-'d.m 32000 + 32000 &
‘ourrent-volume 1280 + 1280 & “current-time 11 + 11 §))

{sp p323
{goal <gl> “state <dd> * <al>)
(state <db> “Gmmy-att® t.tu “current-sacbedals <11>)
(list <A1> “oar <43>)
{opexzater <43> “trip <42>)
(txip <4> “name dmmy)
{operator <al> “name simulate-trip “driver <d41> “truak <tl> ~trip <t2>)
(driver <dl> “drive-time 11)
{truck <tl> “voluma 1280 “waight-limit 32000)
-~>
(state <di> “current-scheduls <11> -))

{(sp p324
(goal <gi> ~ <4a> 4 <cl>)
(M%‘q—u&'mwﬁb‘m schadule <11>)
(tzuck <t2> “velums 1280 “weight-limit 32000)
(st 41> “car <dD>)
{opezator <43> “trip <4d>)
(trip <42> “Dame dommy)
(opezatezr <al> “name simmlste-trip ~truck <t2> Adriver <41> *¢rip <ti>)

{goal <gl> “stats <44> “operator <cl>)
(state <44> Adummy-att*® true ~dri <43>
(dxivex <43> “drive-time 11)
(1ist Q1> “car <d2>)
(opezator <d2> “trip <dl>)
(trip <dl> “name dummry)
{(opszator “name simmlate-trip “driver <43> ~“trucxk tl1> “trip <t2>)
(truck <t1> “volume 1280 “weight-limit 32000)

-=>
{state <4i> “driver <d43> -))

hedule <11>)

(sp pI2¢
(goal <gl> “etate <44> “operater <cl>)
{state <44> “dummy-att* true “current-scheduls <11> “trip <t2>)
(1ist Q1> “aar <d¥>)
(opezator <43> “trip <d2>)
{tzrip <42> “name dmmy)
(opezator <al> “name simnlate-trip ~trip <t2> ~driver <dl> “truck <ti>)
{driver <4l> “drive-time 11)
(tzuak <tl> “volume 1280 “weight-limit 32000)
-=>
(state <dd> ~trip <t2> -))

(sp p327
{goal <gl> “gtate <dd4> “oparater <ald>)
(state <4i> ‘dummy-att®* true “curxrent-schedule <115>)
(list Q1> ~car <43>)
(opazator <d3> ~trip <42>)
(trip <42> “name dummy)
(opaxator <cl> “nams simmlate-trip “driver <dl> “truck <tl> “trip <t2>)
(driver <dl> “drive-time 11)
(tzuck <tl> “volume 1280 “weight-limit 32000)
-—>
(state <d4> ~current-scheduls <12> &, <A2> +)
(list <12> ~type* list + “odr <11> + “car <cl> +))

(sp paéd
(goal <g2> “state <sd> “operator)
{state <sé> -“current-resources “dummy-att® true)
{opezater “name d—hu—w gasat <s3> *;
(segment <a3> “~load it -~load-shipmant NIL
‘nane segmentl “t.::.p tripl)
(list 11> “car <x1>)
<1> * lune 640 “current-time 11
“current-weight 10000)
(goal <g1> “object NIL “s%ate <s2>)
{state <82> “ghipmant <s1>,
{shipment <sl> “name typewriters “weight 1000.0 “volume 200.0
*load-~-tine 0.2)

<1>)

-

-->
(state <si> “current-rescurces <12> &, <12> +)
(M@‘mcb+wm+‘tm'un+)
¢ <> ~ 1+ 1 & “tTip tripl + tripl &
“m-vd.ﬂt $000.0 + 9000.0 ¢
“current-volume 440.0 + 440.0 ¢
“‘caxrent-tire 10.8 + 10.8 ¢))

(sp p313
{goal <gl> “state <s2> “oparater)
(state <s2> ~4mmy-att® true ~ourrent-rescurces <i1>)
(mt <al> “car <rd>)
<zly> -+ lame 440.0
w-u— 10.8 “ourremt-weight 9000.0)

” A

{oparator ‘“name simnlate-segment * Q1> <81>)
(segment <sl> “name segment2)
-=>
(state <s2> “gcurremt-resources <l1> -))
{sp pS14
(goel <gi> “state <a2> “oparator)
{stats <s2> ~dammy-att® trus “curreat-resources <11>)
{(1ist Q1> “aar <xrl>)
{ <xl> -“segment 2 lume 440.0
‘m-ﬂ- 10.8 “ourrent-weight 9006.0)
{opszator “nams simmlate-segmant “ <11> ~ <8l1>)

(segmant <g1l> “name segment? “trip tripl)
->

50

(state <s2> “current-resources <12> §, <A2> +)

(st Q2> “car 2> + “adr Q1> + “type® list +)

[¢ <x2> “segm ant2 4+ gnant2 & “trip tripl + tripl ¢
‘current-walght $000.0 + 9000.0 ¢
‘current-volume 440.0 + 440.0 &
“gurrent-time 10.8 + 10.9 &))

(sp p553
{(goal <g1l> “state <s2> “opezater)
(state <s2> “dmmmy-att* true “current-resources <l1l>)
(list AL> “oar <rl>)

(<xl> -“segment segmant3 “current-volume 440.0
tine 10.8 ight 9000.0)
(operator “name simmlat o ax <11> “segment <s1>)
(segmant <sl1> “name segmentl)
-->
(state <22> “current-resouross <11> -))
(sp p559
{goal <gl> “stats <a32> “operator)
(state <s2> “dummy-att® true “current-rescurces)
{list <11> “aar <xl>)
(<xl> -4 segment’ “current-volume 440.0
~ time 10.6 4 ight 9000.0)
{opexator “name simmlate-segment ~r <11> “segmant <sl>)

(segment <sl> “name segment’ “trip tripl)

~=>

(state <z2> “current-Tesources <12> &, Q2> +)

(list <12> “car <T2> + “adr <11> + “type* list +)

[t <2> 3 + segment3 & “trip tripl + tripl &
WMMOOOQNOOG
‘current-volume 440.0 + 440.0 &
~gurremt-time 10.8 + 10.8 &))

(sp p6O9
(goal <g2> “state <sd> “operator)
(state <sé> “dammy-att® true “cxxrent-resources <ll>)
{(list Q1> “aar <L)

[§ <xl> -+ ant antd *) 440.0
~¢u-:-z-u- 10.8 “current-welight $000.0)

(opsTator “pams simmlat. <ai> » _mt <83>)

(segmant <e3> “unload-shi _*t,[it -W-m_nzm

‘name segmentd)
(goal <gl> “cbject NIL “state <s2>)
{stats <s2> “shipment <sl>)
(shipment <sl> “name typewriters “weight 1000.0 “volume 200.0
“unload-time 0.25)
-—>
(state <sé> “current-resources <l1> -))

(sp péi0
{goal <g2> “state <sd> “opsxator)
(state <sd> “dmmy-attt trus “curreat-resources)
(st AL1> “eaax <)

3 <El> - ot 4 Jame 440.0
‘m-u- 10.8 ‘mt-'dm $000.0)

(operator “name simxlat <11> “segmanit <s3>)

(segmant <s3> “unload-shipmamt typewri -*mnloed-shipmant WNIL

‘name segmentd “txip tripl)
(goal <g1> “cbject NIL “state <s2>)
{state <s2> “shipmant <sl>)
(sbimment <sl> “name typewriters “weight 1000.0 “volume 200.0
“mnload-time 0.23)
-=>
(stats <si> “curremt-rescuross <12> g, <12> +)
(list <12> “car <r2> 4+ “odr <Al1> + “type* list +)
¢ <> entd + t4 & “trip tripl + tripl ¢
*m-ﬂ# 10000. o + 10000.0 &
‘current-velume €40.0 + 640.0 &
“current-tims 10.53 + 10.53 g))

(sp p613
(goal <g1> “state <d2> “oparatexr <cld>)
(states <d42> “dmmmy-stt® true “currect-schedule <11>)
{list <A1> “oar <od>)
(opazator <c2> “trip <t3>)
(tzip <t3> “mame tripl)

{opexater <al> “nams simmlate-trip “driver <dl> “truck <tl> “trip <t2>)

(dziver <d1> “drive-time 11)

{tzuck <t1> “volume €40 “weight-limit 10000)
-

(state <d2> “curreat-schedule <l1> -))

(sp pSIs
{(geal <gi1> “gtats <d2> “epsxzater)

(state <d2> “dommy-att® trus “truck <t3> “current-schadule <1l>)
(truoak <t3> ‘volume 640 “waight-limit 10000)
(list <A1> “cax <a2>)
(opezator <a2> “trip <t2>)
(tzip <t2> “name txipl)
({opezator <cl> “Dame simmlate-trip “truck <tI> “driver <d1> “trip <ti1>)
{dxriver <dl> “drive-tims 11)
-—>
(state <d2> “truak <t3> -))

(sp pé23
(goal <g1> 4 <a2> <al>)
(state <42> “dummy-att* uu - <41> hedule <11>)

(driver <di> “drive-time 11)
(st <11> “cax <a2>)
{oparater <a2> “trip <t3I>)
(tzip <t3> “name trip3d)
(opszator <al> “name simmlate-trip “driver <dl> “truak <tl> “trip <t2>)
(tzoak <t1> “volume €40 “weight-limit 10000)
->
{state <d2> “driwer <di1> -))

(sp p&1S
(goal <gl> “stata <42> “operator <cl>)
{state <d42> “Gamy-att*® true “current-scheduls <l1> “trip <t3>)
{list <A1> “car <a2>)
(opexater <c2> “trip <t2>)
(trip <t2> “name tripd)
(opezator <cl> “mams simnlate-trip ~trip <t3> ~driver <dl> “truck <tl1>)
{driver <41> “drive-time 11)
(truck <tl> “volume €40 “weight-limit 10000)
-->
(stats <d2> “tTip <t3> -))

(sp p6L7
(goal <gi> 4 <42> “op <a2>)
{stats <i2> “dumsy-att® true “current-schedunla <1il>)
{list <Al> “aar <aly)
(opazator <al> “trip <tI>)
(tzip <t3> ‘name trip3)
(opezator <a2> “name simulate-trip “driver <dl> “truck <tl> “trip <t2>)
(ariver <dl> Adrive-time 11)
(trock <t1> “volume 640 “waight-limit 10000)
—-—>
(state <42> “current-scheduls <12> &, <12> +)
{list <12> “type* list + “odr <11> + “car <e2> +))

(sp pes6
(goal <gl> “state <s2> “cparater)
(stats <22> ~ACUXTERt-THSOUrOes ‘_y—ntt' trus)
{opazator <sl> “name simmlat ~ mt <sl> ~ <11>)
(segmant <s1> “name segmantl ‘tri.p txip2)
(list 11> “oar <xrl>)
<1> lume 400 “curzent-time 12.%
“current-weight 35000)

-->
{stats <s2> “current-resources <l.> &, QD +)
(n-tdb‘nzcb+*&m+*txp'un+)
{ <x2> A st + tl & ~trip trip? + trip2 ¢
Am-mm 5000 + 5000 & “current-volume 400 + 400 &
“gurrent-time 12.5 + 12.8 §&))

(sp p730

(goal <g1> “state <a2> <o1>)
(stats <s2> “dummy-att® ttu “current-resources <ll>)

lume 400 “currect-time 12.5

(opezator “name simulate-segment “n <I1> 4 t <s1>)

{ <c1> -4 it 2 A -volume 400 “current-time 12.5
‘m-‘-ﬂm $000)
(epazator <sl> “name simmlat <11> “gegment <sl>)

wobﬁn—-m“ud.pW)
~=>

{state <a2> “current-rescurcas 12> &, <2> +)
(mequcboquo&m-uuo)

¢ <2> *segm o + segment2 & ~trip trip2 + trip2 ¢

*aurrent-weight 35000 + 3000 & “curremt-voluma 400 + 400 &
“gurrent-time 12.8 + 12.5 &))

(sp pT773
(goal <g1l> “state <82> “eparator)
(stats <a2> “dummy-att® true “current-rescuross <11>)
(u.u <i1> ‘“oar <1>)
<z> I
m—ﬂm 5000)
(opazator “name simmlat
(segmant <sl> “nane segment))
-—>
(state <a2> “current-resources <11> -))

lums 400 “current-time 12.5%

<11> 4

<s1>)

(sp p776
{goal <gl> “states <s2> “oparator)
(state <52> “dummy-att® true “current-resources <1l1>)
(M@“ﬂtcb)
<xl> -4 3 ~
“gurrent-weight 3000)
(operator “name simmlat
(ma»mmww)
-
{state <s2> “current-rescourass <12> §, <12> +)
(M@‘mcbo‘e&ﬁbi&mﬁu‘tﬂ
[} <> » 3 4+ gaent3 & ~trip trip2 + trip2 ¢
‘m-nuu 5000 + 5000 ¢ “curremt-volums 400 + 400 ¢
‘current-time 12.5 + 12.5 &))

lume 400 “curTemt-time 12.5

<QAil> 4

@ <s1>)

(sp p82s
{goal <g2> “state <s4> “oparater <old>)
{state <sé> “dummy-att® trus “current-resource- <l1>)
{list Q1> “oar <rl>)
{ <> -4
Aourrent-weight SMO)
{opaxator “name simmlat
(segment <83> “load-shipment au'p.e
(goal <g1l> “cbject WIL “state <s2>)
(state <82> “shipmemt <al>)
(shipment <s1> “pame carpet “weight 500.0 “volume 100.0 “load-time 0.2)
-->
(states <sé> “current-rescurces <11> -))

lume 400 “curremt-tiae 12.5

<11> “sag <83>)

load-shirment WIL “name segmantd)

(sp p829
{goal <g2> “state <sé> “operator <w1>)
(state <sé> “¢uamy-att? trus “gurrent-resources <11>)
{l1ist <A1> “car <rl>)
{ <xl> ~*segm
“ourrent-weight $5000)
(oparator “name simmlate-segment “r
<83> “loed-shi Pet -*load: P
“trip trip2)
(goal <g1> “cbject NIL “state <a2>)
(state <s2> “shipmemt <sl1>)
(shipment <s1> “name Garpet “weight 500.0 “volume 100.0 “losd-time 0.2)
-->
(state <si{> “current-rescurdces 12> &, <12> +)
(Mdb“mcb*‘*db#‘tm'nﬂ:ﬂ
¢ <r2> ~segment 4 + sagmentd ¢ ~trip trip2 + trip2 ¢
m—-ﬂm 4300.0 4+ 4500.0 &
‘current-volums 300.0 + 300.0 &
“gurrent-time 12.3 + 12.3 g))

~~~luss 400 “current-time 12.5

<11> “segmant <s3>)
NIL “nDama segmantd

(seguent

(sp posl
(goal <g2> “state <sd> “operator <ol>)
(state <s4> “dammy-att® true “curreat-resources <11>)
{list Al> “oar <xrl>)

[¢ <xl> -4 ot ts ~ lume 300.0
time 12.3 ~ ~welight 4300.0)
{opaxzatar <ol> “pame d-hu-nm for - Q1> 4 <83>)
(segment <e3> “wnlead pet -“unload-ship »IL
“name ms)

(goal <g1> “cbject NIL “state <ad>)
(state <s2> “shipment <sl>)
(shipment <s1> “name carpet “waight 500.0 “volume 100.0
“mnlead-tine 0.283)
-=>
{state <s4> “aurrenmt-rescurces <1i> -))

(sp pos2
(goal <g2> “state <sd> “opezator <ol>)
(state <al> “dummy~att® trus “current-resources <11>)
(1ist AL> “oar <>}
<el> -4
- time 12.3 4

~volume 300.0
eight 4500.0)

51

(m <ol> ‘nane m—m “re Q1> 4
snt <83> “unload -*unload-shipment NIL
“name up-:t.s “txip Mpz)
{goal <gl> “cbject NIL ~state <s2>)
(state <s2> “ashipment <s1>)
(shipment <s81> “name carpet “weight 500.0 “volume 100.0
“unload-time 0.25)

<83>;

~~>
(state <s4> “current-resourcas 12> &, <A2> +)
(M@‘ﬂ«b#‘o&:@)#‘tﬂnﬂmﬂ
¢ <2> 4 & ~trip tIipZ + trip2 &
m—w sooo 0 + 5000.0 &
“current-volume 400.0 + 400.0 &
‘curTent-time 12.05 + 12.05 §))

(sp p336
(geal <g2> “state <sd> “operator <ol>)
(state <sé> “dammy-att* trus “currect-rescurces <11>)
(list Q1> “aar <x1>)
({resources <xrl> -‘up-u mt ‘ourrent-volume 400.0
time 12.08 ight $000.0)

mab‘a—dL‘“ gnent Ty <:u.>‘ gment <g3>)
{cagment <s3> “load-shipment newsprint -“load-shipment NIL
‘nane segmenté€)
(9ol <gl> “cbhject EIL “state <s2>)
(stats <52> “shipment <s1>)
(shipment <s1> “name newsprint “weight 6000.0 “volume £00.0
*load-time 0.2)
-—>
(state <sé4> “current-rescurces <ll> -))
(sp P37
(goal <g2> “state <sé> “operator <ol>)
(state <sé> “Gmmy-att* true “current-resources <ll>)
(l4st A1> “car <1>)
( <x1> -4 ot segmanté “ lume 400.0
time 12.05 4 -weight 5000.0)
{opezator <o0l> “name simmlote-segment “r <1> 4 <83>)

(segmant <23> *load-shipment newsprint -“load-sbipment NIL “nane segumanté
~trip trip2)
(goal <g1> “object NIL “sta’s <s2>)
(state <s2> “ghipment <s1>)
(shipment <s1> “name Dewsprint “weight €000.0 “volume £0C.0
“load-time 0.2)
-=>
(state <sl> “current-resourcas <12> &, <12> +)
(M@‘mcb#‘e‘r@#‘tmﬂnnﬂ
{ <<2> “seg gnenté + & “txip trip2 + trip? ¢
‘m-ﬂm -1000.0 + -1000.0 &
‘current-volume 0.0 + 0.0 & “current-tine 11.85 + 11.85 &
“failed true 4 true &
“Tesson weight-limit-azaeedad + weight-limit-exceeded &))

(sp p9e3

{goal <g2> “states <d2> “operator <ol>)

{state <42> “dmmmy-att® trus “current-scheduls <11>)

(list <11> “oar <cl>)

(opezator <al> Atrip <t3>)

(txip <c3> “mame tripl)

(opazator <ol> “name simmlate-trip “driver <di> “truck <t2> ~irip <tl>)

{driver <d1> “drive-tims 12.8)

(tzroak <t2> “volume 400 “weight-limit 35000)

(tzip <tl> “first-segmant <sl>)

(segment <s1> “name segmamtl “trip txip2 “npaxt-ssgment <s2>)

(segmant <82> “name segeent? “trip txip2 “naxt-segment <s3>)

(segnent <23> “name segmant3 “trip trip2 “naxt-ssgment <sdd>)

(segmant <si> “load-shigmant carpet -“load-shipmast NIL “Dane segnentd
~cxip W ‘Daxt-segment <s6>)

(sagment <s6> “unlosd t -~mnload-shipmant WIL
“name w ‘:ra.p trip2 “naxt- m <29>)

(segmant <39> “load P -*load-sh FIL “name segment¢
~trip W)

(9ol <gi> “abject NIL “stats <s$>)

(state <s8> “ahigment <s7> <a5>)

(abipment <s7> “name aewspxivt “weight €000.0 “volume 400.0
“load-time 0.2)

(ahipment <s3> “name carpet “weight 500.0 “volume 100.0 “unload-time 0.2¢
“load-time 0.2)

{

->
(state <d2> “local-constraint-falled <12> &, <A2> +)
(l4st <A> ~type* list ¢ “odr <l1> + “car <ol> +))

(sp poés
(goal <g3> “problem-wpace <Pl> “state <s10> “object <gl> “operator <ol>)
{problem-space <pl> “name selactisn)




52

(goal <g1l> “preblem-space PI>) {llomnse <12> “truck-type amall “ho’der gray)
{problem-spece <pI> -“dont-oopy-anything (aity <o2> “name gary “truck piper Adriver gray)
~-*dopt-copy cuxTemt-schedule trip truok driver -—>
Sy -att* (goal <g2> “opezator <ol> -))
~*two-leval-attributes curremt-schednle trip tyuak
driver dmwy-atte (sp p10S4 .
-“all-attributes-at-level two -“cne-level-attributes (goal <g2> “state <sé{> “opsrator <ol>)
“name task) (state <sé> -“current-rescurces “dummy-stt® true)
(state <sl10> “evaluation <al>) (oparator <ol> ‘pame simnlate—segment * <a3> . <al>)
(evaluation <al> “abject <o2>) (segmant <s3> “load-shipmant typewriters -*load-shipment WIL
(operator <o2> -*domt-copy trip Dame truck driver “pame simmlate-trip “Dame segasmutl ~trip tripl) N
“trip <t3> “truck <tl> “driver <d1>) {list Q1> “osr <L)
(txip <tS> “name tripl) ( <x1> A 400 t-time 12.5
(troak <tl> ‘volume $40 “weight-limit 10000) Acurrent-weight 5000)
(axiver <dl> Adrive-time 11) (goad <gi> “object NIL “state <s2>)
{opexator <ol> “types evaluatism “attribute cparatoxr (stats <s2> “shipmamt <s1))
‘default-state-ospy yes ‘default ~Qopy yes {shizment <s1> “name typewriters “waight 1000.0 “volune 200.0
“ebjact <o2> “supecp .,.—qb‘ <d43> “load~time 0.2)
“desired <db>) >
(state <43> “dummy-atts® true Adriver <d2> “truak <td> “trip <t3> (stata <s4> “current-yescurces <12> §, <A2> +)
“current-sahedule <11>) (list <12> “orr <x2> + Aodr ail + “type* list +)
{driver <42> “drive~time 12.3 “mame gray) { <> ~ ant 1+ gaantl & ~tTip tripl + tzipl &
(tzuc™ <td> “volume 400 “weight-limit 5000 “type small “name pipar) *m-u# 4000.0 + 4000.0 &
(trip <t3> “name tripd Afirst-segment <sl1>) * axrvemt-volume 200.0 + 200.0 &
(segment <sl> “name segmantl “tzip trip2 “source gary “Daxt -seghent <s1>) “current-time 12.3 + 12.3 §))
{sagmant <a2> “nama segnant? *trip trip2 “next-seguent <a3>)
(u’m«»‘mwwumm-owa) (sp p1098
<a7> “load L st -“load-ship ¥IL “nane segmentd (goal <gl> “state <a2> “opsrator <old)
“tcrip f.x:p! “Daxt -~ up-n <s8>) (stats <s2> “dummy-att® true “current-resources <l1>)
(sagm <s8> “unload -*mmload-ghi nIL (1ist <11> “car <ri»)
“wwummw«») { <rl> -~*segmen mt2 ~ 't lume 200.0
{ <s9> “load print -“load-shipmsnt NIL “name segmanté A time 12.3 4 t-weight 4000.0)
“crip t.:spz) (opezator <ol> “pams simmlat <11> “segment 2s1>)
(1ist Q1> ~car <ol>) (seghent <s1> “Dame segmant2)
{opexator <al> “trip <t>) -->
(trip <t2> “nams trxipd) {stats <s2> ~“curremt-resourcas <1i1> -))
i{goal <g2> “object NIL “state <s®)
(state <s6> “shipmamt <s3> <as> “licunse <12> “aity <o2>) {sp p109%9
{shipment 738> “name newsprint “weight 6000.0 “volume 400.0 {goal <gl> “stats <s2> “oparztor <old>)
“load-time 0.2) (state <s2> “dummy-att® trus “current-resouross <il>)
{shipment <s4> “Lwme carpet “weight 500.0 “voluma 100.0 “unload-time 0.25 {(1ist <11> “ear <xl>)
*load-time 0.2) { <xl> -“segm ghent2 * it lmme 200.0
{license <12> “truck-typs amall “holdar gray) time 12.3 ot -waight 4000.0)
(city <a2> “name gixy “truck piper “driver gray) {opaxater <ol> “mame simmlast <11> “segmant <sl>)
-—> (segnant <s1> “name segmeant2 ‘txtp tripl)
{evaluation <a > “gymbolic-value failure +)) -—>
{state <«2> “current-rescurces <12> &, <12> +)
(sp poes (1ist Q2> “car <x2> + “adx <11> + “type* list +)
(goal <g2> “desired <d4> “problem-spacs <pl> “state <d2> { e <x2> 4 2+ gnent2 ¢ “trip tripl + tripl &
“oparstor <ol> +) *m-nw 4000.0 + 4000.0 &
(problem-space <pl> -“two-level-atiributes dummy-att® driver truck trip “cnrrent-volums 200.0 + 200.0 &
curzent-scheduls ‘ouryent-tims 12.3 + 12.3 &)}

~-*domt-copy dummy-att® driver truck =rip
current-echedule -~one-level-attridutes {sp pl14s

-+all-attributes-at-level two -“doat-aopy-smything {(goal <gi> “state <s2> “operator <ol>)
“default -op -00py Do -“defanlt-state-copy no (stata <s2> “¢mmmy-stt® true “current-resourcss <ll1>)
“name task) (l.i.lt <11> *“aar <rl>)
{state <d2> “dummy-stt* true Adriver <d43> “truck <td> ‘trip <t3> <xrl> -“segman gmant3 ~ et lums 200.0
‘aurrent-scheduls <11>) ‘ time 12.3 + nt dght 4000.0)
(dxiver <43> “drive~tims 12.3 “pame gzay) (opexator <ol> “name simmlat. gmat <Qi> gment <sl>)
(troak <td> “volume 400 “weight-limit 3000 “type small “name p'per) {segmant <sl1> “name seghant3d)
(trip <t3> “nams txip2 Afirst-segmest <s1>) -->
{(segment <sl1> “mame segmantl “trip trip2 “sourdas gery “next-segmant <s2>) (state <s2> “current-rescurces <1l1> -))
{sagment <a2> “Dame segmant2 ~tzip trip2 “next-seguent <s3>)
(-ﬁ@*—-wmwwwab) {sp pllds
( ant <s7> “load-shi pat -“load-shipment FIL “Dame segantd {goal <gl> “state <82> “cperator <ol>)
“trip esiw “aaxt-segaent <st>) {strte <52> “daamy-att* true “current-resources <l1>)
t t <s8> ‘unload pot -‘wumlosd-shipment WIL (1ist 11> “aar <rl>)
mwmwwma») { <xl> -“segm gmentd ~ ent-volume 200.0
{ nt <s9> “load-sh hi t NIL “name segmenté time 12 3 dght 4000.0)
t-rul) (opezator <o01> “name simnlat <11> “gegmint <sl>)
{(1ist <11> “oar <aly) (sogmant <sl> “name segmantd “trip tripl)
{opaxator <al> “trip <t2>) -=> N
{txip <t2> “nmme txip’) (state <s2> “current-reseurces <12> §, Q2> +)
(opezater <ol> -“dont-copy trip same treuack driver “name simulate-trip {list <A2> “car <=2 + “ofr <Al> + “type* list +)
“trip <t5> “truck <tl> ‘driver <di>) { <z2> 3 + segmentd ¢ “txip tripl + tripl & -
(txip <tS> “name txipl) ~carrest-weight 4000.0 + 6000.0 &
(troak <t1> “volums €40 “weight-liait 10000) “ourrent-volume 200.0 + 200.0 & -
{dvivar <41> “drive-tiae 1), “current-tims 12.3 4+ 12.* &)) X
(goal <g1> “ebject NIL “rcate <s®)
(state <s6> “shipmnt < §> <s4> “licenss 2> “aity <o2>) (sp plLIS4
(shipment <85> “Dams me ssprint “weight 6000.0 “volume 400.0 (goal <g2> “state <sé> “eperator <ol>)
“load-t e ¢.2) {state <sd4> “dmmmy-att? trus “current-resources <’ 1i>)
(shipment <si> “name carp.* “weigbt 500.0 “volume 100.0 “wmlosd-time 0.2% (liet A1> “oar <xld>)
“load-time 0.2) ( <xl> -*segmant segmantd ~ eot-volume 200.0




“gurrent-time 12.3 ‘m—ﬂ# 4000.0)

(opaTator <ol> “name simalat. <Al> “gegmant <s3>)

(segmant <2)> “wmnload-shipment typewriters -“unload-shipment ¥IL
“nams seguamtd)

(NWW“M@)

(stat. ~shigment <sl>)

(M <s8l> “name typwwritars “weight 1000.0 “voluma 200.0
“mload-tins 0.25)
-—>
(state <sd> “‘current-resources <11> -))

(sp p1295
{goal <g2> “stats <sé4> “opazator <ol>)
(state <sé> “dmy-stt* true “curreat-rescurces <11i>)
(Li.lt <dl> “aar <1>)

<xrl> -4 ant antd “corrent-volume 200.0
time 12.3 A aight 4000.0)
(m «D‘n--‘—‘—‘ “Te <Al1> “segm <s3>)
gaent <a3> “wmnloed-skipment typewri —ranload-ahi wIL

“name segmantd “trip tripl)
(goal <g1> “chject NIL “state <s2>)
(state <s2> “ghipment <sl>}
(shipment <s1> “nsme typewritezrs “weight 1000.0 “volume 200.0
“unload-time 0.25)
-=>
{stats <s4> “curremt-rescurces <12> &, <12> +)
(uudb‘mc»*‘&@#“tm‘mto)
<> 4 ant antd + 4 ¢ “txip tripl + tripl &
‘mw 3000.0 + 3000.0 &
“cuzTent-volume 400.0 + 400.0 &
“onrrent-time 12.05 4+ 12.08 &))

(sp plL198
(goal <gl> “state <d2> “operator <al>)
(stats <d2> “dummy-att® trus “current-schadule <l1>)
{list QA1> “car <a2>)

{oparator <ald> “mame simnlate-trip Adriver <dl> “truck <tl1> *trip <t2>)

(driver <A1> “drive-time 12.9)

{truak <t1> “volume 400 “weight-limit 35000)
-=>

(state <d2> “‘current-scheduls <i1> -))

(sp PiL99
{goal <gl> “state <d42> “opsrator <al>)
{state <d2> “dmmy-att® true “truck <t3> ~current-schedule <11>)
(truck <t3> “volume 400 “waight-limit 5000)
(list Q1> “car <a2>)
(opezator <a2> “trip <t2>)
{trip <t2> “pame tripd)

(oparator <al> “name simmlate-trip “truak <t3> “driver <di> “trip <ti1>)

{driver <dl> “drive-time 12.5)
-->
{states <d2> “¢ruak <t3> -))

(sp p1200
{(goal <gl> “state <42> “oparator <al>)
{state <42> “dmmy-att® true “dri <dl> ~
{dxivar <dl> “drive-time 12.5)
(list <11> “aar <a2>)
(opezator <c2> “trip <th)
(trip <t3> “neme tripd)

chedule <11>)

(oparator <cl> “pame simmlate-trip ~driver <dl1> “truck <tl> “trip <t2>)

{tzruck <t1> “volmme 400 “weight-limit 5000)
-=>
(states <d2> “dzriver <dl> -))

(sp p1201
{goal <gl> “state <d2> “operator <al>)
(state <d42> “dummy-att® true “current-schedule <11> “trip <ti>)
(list Q1> “gar <a2>)
{opazateor <o> “trip <)
(trip <t2> “name tripd)

(opazater <al> “nams simnlate-trip Atrip <t3> Adriver <dil> “truck <tl>)

(4river <dl> ~drive-time 12.8)

{truak <t1> ‘volume 400 “weight-limit 3000)
-3

{state <d2> “trip <> -))

(sp pr202
(goal <gl> “state <42> “operator <a2>)
{state <42> “mmmy-att® trus “current-schedule <11>)
{list AL1> “oax <al>’
{opaxater <cl> “trip <tI>)

53

(tzip <t3> “asme trip3)
(oparateor <a2> “name simmnlate-trip “driver <dl> “truck <tl> “trip <t2>)
(drivexr <dl> “drive-time 12.5)
(truck <tl> “volume 400 “waight-limit 5000)
-=>
{state <d2> “current-schednle <12> g, <A2> +)
{list <12> “type* list + “odr <11> + “car <e2> +4))

(sp p1271

(goal <gl> “state <a2> “op <ol>)

(atate <s2> ~~current-rescurces “ﬁ-y-ntt' true)

{opazator <ol> “name simmlat <81> “r <11>)

(segmant <s1> “name segmantl “t.dp e:&pz)

{list 11> “car <L)

[¢ <xi> ~ 640 time 11
‘gurrent-waight 10000)

-=>
{state <22> “current-resources <12> §, <A2> +)
(list 2> “car <x2> + “odr nil + “type* list 4)
{ <x2> “ gaentl + antl ¢ “trip trip2 + trip2 ¢
*m—nuat 10000 + 10000 ¢
‘ourrent-volume 640 + 640 & “currant-time 11 + 11 &))

{sp P1313
(goal <g1> Agtate <s2> “opsrator <ol>}
(state <s2> “dummy-att® true “currect-resources <li>)
{1ist Q1> “car <cd>)
{ <xl> ot2

“mw 10000)

(opsrator <ol> “nams simmlat <11> “segment <sl>)
(segment <sl1> “name segmant2)

-—>
{state <s2> “current-resources <li> -))

~volume 640 “currest-time 11

{sp p1316
(goal <gl> “stata <s2> “oparator <ol>)
(stats <s2> “dummy-att® tzue “cuXTent-resocurces <ll1>)
{(list Q1> “car <1>)

{ <zl> -4 at2 ~volums 640 “current-time 11
‘m-nw 10000)
(opszator <ol> “name simmlat <11> “segmant <s1>)

(segmant <sl1> “name segment2 “t.:t.p trip2)
-=>
(state <s2> “curremt-resources <l2> §, <12> +)
(1ist 12> “car <xr2> + “odr <11> + “type* list +)
( <x2> t2 + guant2 & “trip trip2 + trip2 §
‘WM 10000 + 10000 &
‘current-volume 640 + 640 & “currsnt-time 11 + 11 &))

{sp plI&o
(goal <gl> “gtate <s2> “operator <ol>)
(state <32> “dummy-att* true “current-resocurces <ll>)
(nlt <dl> “aar <zrl>)

<z1> -~ gnant)
‘m-utpt 10000)

(opaxator <ol> “name simunlat ~ <11> “segmant <sld>)
(segment <sl> “nane segment3)

-—>
(state <s2> “current-resources <l1> -))

~volume €40 “current-time 11

(sp p1361
(goal <gi> “state <22> “operator <old>)
{stats <22> “dmmmy-att* true “current-resources <11>)
(.u.-t <11> “ear <rl>)
<cl> mt)
*mw 10000)
{oparator <ol> “pame simmlat <11> “segmant <sl>)
{segmant <sl> “nans segmentl "tﬂ.p txip2)
-=>
{state <s2> “gurrent-resouroess Q2> §, <12> +)
(Mdb‘m:cb#‘&db‘*q”'nﬂ:ﬁ)
<x2> 4 3 4+ segmantd & “txip trip2 + trip2 ¢
Amw 10000 + 10000 &
“current-volume €40 ¢+ €40 & “curremt-time 11 + 11 §))

lume €40 ~ ~time 11

(sp pl413

(goal <g2> “state <s4> “operator <ol>)

{stats <sé> “4mmy-att® trus “ourrent-resocurces <Q1>)

{list Al> “car <L)

(rescurces <rl> -“segmant segaantdi “current-volums 640 “current-time 11
Aqurzent-veight 10000)

(oparator <ol> “mame simmlate-segment T <11> “segmect <a3>)

(segmant <53> “lesd-shipment carpet -“load-shipment NIL “name segmantd)

{(goal <g1> “edject NIL “state <s2>)

{stats <s2> ~shipment <sl>)




54

{shipment <s1> “name carpet “weight 500.0 “volume 100.0 “load-time 0.2)
-->
(stats <s&> “current-resouxroes <11> -))

(sp plAl4
(goal <g2> “state <s&> <o3>)
(muwwm-uu‘mm@)
{list Q1> “aar <1>)

(Tesources <zrl> -‘segmant segmentd lume 640 + time 11
“current-weight I.MO)
(oparater <ol> “name simmlat <11> <a3>)

(segmant <s23> “load-shigment =“load-shi
“trip trip2)
(goal <g1> “cbject NIL “state <s2>)
(state <s2> “shipmant <sl>)
(shipmant <s1> “nams carpst “weight 500.0 “volume 100.0 “load-time 0.2)
-=>
(state <si> “current-rescurces <12> &, Q2> ¢)
(mto.b‘urwo‘drd.x>+‘tm-u‘tﬂ
( <x2> “seguent seguantd + segmantd & “trip trip2 ¢ trip2 ¢
‘current-weight $300.0 ¢ 9300.0 &
“current.-volume 340.0 + 340.0 &
“current-time 10.8 ¢ 10.8 &))

‘m‘nuw

(sp pr46EE
(goal <g2> “stats <sd> “oparator <old>)
(state <si> “dammy-att® true “curremt-resources <ll>)
(IM Q1> “aar <rl>)

¢ <x1> -“segeant segments t-voluma 540.0
A -time 10.8 ight 9500.0)
{opezator <ol> “name aimmlat b o <l1> “segm <a3d>)
( I nt <a3> “mml 4. 4 P -*anl d 4 wIL
“‘name segmentS)
(goal <g1> “obijsct NIL “state <s2>)
(state <a2> “shiyment <s1>)
(shipmant <s1> “pame carpet “weight 500.0 “voluma 100.0
“unload-time 0.2%5)
-->
{state <s4> “current-resources <l1> -))
(sp p1467
(goal <g2> “state <s4> “oparator <ol>)
(stats <si> “dummy-att® true “cxrrent-resources <11>)
(list Q1> “car <xl>)
¢ <rl> -“segaen o s lume 540.0
ol time 10.8 4 -weight 9500.0)
(oparator <o0l> “pame simmlate-segment “r <A1> 4 <a3>)
! - <43> “mml d-ghi =hanl d 4 nIL

“name w& "ttip txip2)
(goal <g1> “cbject FIL “state <s2>)
{state <s2> “shipment <s1>)
{shipment <s1> “name “weight 500.0 “volume 100.0
“unload-time 0.29%)
-—>
(state <si> “current-rescurces 12> §, <A2> +)
(M@‘mcbt‘e‘:@#‘em'mtﬁ
<2> ~ S 4+ segm & “trip txip2 + trip2 ¢
‘m—ﬂ# 10000.0 + 10000.0 &
“current-volume €40.0 + 640.0 ¢
“carrent-time 10.3%5 + 10.35 §))

(sp p1517
{(goal <g2> ~state <si> “oparator <ol>)
(state <si> “dammy-att® true “ourrent-resources <11>)
(u-t <1> “oar <rl>)

<zxl> -*saguen guent$ lume 640.0
- tine 10.33 aight 10000.0)
{oparator <ol> “name simmlat 't Ar <A1> “sege <83>)
{segment <s3> “load-shigmamt A -4loed-shi ¥IL
“same sogmant$)

(goal <gl> “ebject NIL “stats <s2>)
(state <s2> “chipment <sl>)
(shipment <sl1> “name newsprint “waight €000.0 “volume 400.0
*load-time 0.2)
-—>
{stats <si> “curremt-rescuroes <1li> -))

{sp P1518

{goal <g2> “state <sd> “opazator <ol>)

(state <(si> “Gmmy-att® true “current-resourass <11>)
(1ist Q1> “aar <rl>)

<1> -4 € - lame 640.0
‘“-u- 10.58 “current-weight 10000.0)

(m«bmmmmwammn
({segmant <83> “load-ahipment P -*load-ahi

¥IL “mame segmenté

‘erip trip2)

(goal <gl> “object NIL “gtate <s2>)

(state <82> “shipmamt <s1>)

{shipsant <s1> “name newsprint “weight 6000.0 “volume 400.0

“load-tine 0.2)
-=>

(state <sé> “cxrrent-Tessuroes <12> &, <AD +)

(st <12> “car <2> + “ofr Q1> + “type* list +)

( <r2> “seguamt segmamt$ + € & “trip trip2 + trip2 &
‘carrent-waight 4000.0 + 4000.0 &
“gurrent-volums 240.0 + 240.0 &
“current-time 10.35 + 10.3S5 &))

(sp p1321
{goal <gl> “gtats <42> “cperstor <ol>)
(state <d2> “dommy-stt* trus “current-scheduls <11i>)
(list 11> “car <acl>)
(opsrator <al> “trip <tI>)
(trip <t3> “pame tripl)
{opazater <el> “name simmlste—trip “driver <dl> “truck <tl> “trip <t2>)
{€river <41> Adrive-time 11)
{tTuck <tl> “volums 640 “waight-limit 10000)
-=>
(stats <42> “current-scheduls <11> -})

(sp p1322
{goal <gl> “state <d2> “operater <ol>)
{state <d2> “dummy-att? true “truck <t3> “current-schedule <11>)
(trook <t3> “velume 640 “weight-limit 10000)
{1ist <A1> “car <ol>)
{opazator <al> “trip <t2>)
(trip <t2> “name tripl)
(opezator <ol> “name simmlate-trip “truck <t3> “driver <d1> “txip <tid>)
(dxiver <41> “~drive-time 11)
-=>
(state <42> “truak <t3> -))

(sp p1523
(goal <gl> “state <42> “operator <old>)
(state <d2> “dommy-att® trus “driver <dl> “current-schedule <l1>)
{ériver <d1> “drive-tims 11)
(1ist 1> “car <a'd>)
(opezator <al> “trip <t3>)
(tzip <t3> “mame tripl)
(opazator <ol> “name simnlate-trip “driver <dl> “truak <tl> “trip <t2>)
({truak <t1> “volume 640 “waight-limit 10000)
-—->
(state <d2> “driver <d1> -))

(sp p1324
{goal <gl> “gtats <d2> “opsrzator <old>)
{state <42> “dummy-att® true “current-scheduls <11> “trip <t3>)
(st 11> “car <al>)
{opazator <al> “trip <t2>)
(tzip <t2> “nams txripl)
(opezator <ol> “name simnlate-trip “trzip <t3> “driver <d1> “truck <tl1>)
(driver <d1> “drive-tims 11)
({trock <tl> “volume 640 “waight-limit 10000)
-->
(state <A2> “trip <t3> -))

(sp p1325
(goal <gi> “gtate <d2> “operatoer <old>)
(stats <42> “Gmmy-stt®* true “current-schedule <11>)
(list A1> “aar <al>)
{opaxator <al> “trip <tI>)
(txip <t3> “name tripl)
(opezator <ol> “name simmlate-trip “driver <4l> “truck <ti> “trip <t2>)
{drivar <41> “drive-tims 11)
{tzuak <t1> “velums 640 “waight-limit 10000)
-
(state <A2> ‘current-schedule <12> &, <A2> +)
{(list 12> “type* list ¢+ “adr <l1> + “car <ol> +))

(sp p1534
{geal <g3> “‘preblam-space <Pl> “state <s3> “cdject <g2> “operator <ol>)
(preblen-space <pl> “name selection)
(goal <g2> “preoblem-space G2>)
{problem-space <Pp2> -*dont-copy-anything
-“dont-copy current-schedule dummy-att® trip truck
driver

bates

~*two-level dals dummy-att*®
trip truck driver
~*all-sttributes-at-leval two -“one-level-attridutas

‘same task -“name salection)




({state <83> ‘evaluation <al>)

(evaluation <al> “objeat <o2>)

(opazater <02> -“4omt-CQopy trip Dame truck driver “name aimmlate-trip
erip <t3> “truck <tl> “driver <dl>)

(txip <t3> “zame tripl)

{tzruak <tl> “volmme 400 “welght-limit 5000)

{dxiver <41> “drive-time 12.5)

{opaTator <ol> “t,’- evaluation “sttribute ocperator

1t-state-copy yes ~defanlt yos
W@‘m—-w@b “suparstate <43>
“degized <dd>)

(state <43> ‘dmmp-att? true “drivar <d2> “truck <td> “trip <t3>
‘curreat-schedule <11>)

{dTiver <42> “pame Meowm “drive-time 11)

(truck <t4> ‘type medium “name traveler “volume 640 “weight-limit 10000)

{tzip <t5> “nams trip2 ~first-segmant <s2>)

(segment <s2> 4 sary)

(iist <11> “car <al>)

{opszatoxr <ol> “txip <t2>)

(trip <t2> “name trip3)

(goal <gl> “object EIL “state <sl>)

{state <s1> “licanse 12> “aity <a2>)

{liosnse 12> “trock-typs madiumm “holder bxown)

{alty <a2> “name gary “truck ler ~dri

-—>
(evaluation <el> “symbolic-value success +))

(sp p1333
(goal <g2> “desired <d4> “problem-space <Pl> Agtate <d2>
“opezater <ol> +)
(pxoblem-space <pl> “name task -“name selection
-“two-level-attributes driver truck trip dummy-att®
ourrent-schadule
-*dont-qopy driver truck trip dummy-atte
aurrent-schedule -“cne-level-attridutes
“u.l-ntt:uut..—at level two -“dont-copy-anything
Q0pY Do -“default-state-copy no)
(m@*ﬂ-a&'“‘kt&(ﬂ>*&u&<ﬂ>‘tﬂp«s>
“current-schedule <11>)
(drivar <43> “name brown “drive-time 11)
{txuak <td> “type medimm “nams traveler “volume 640 “waight-limit 10000)
{tzip <t5> “name trip2 “first-segaent <s2>)
(segment <a2> 4 qary)
{1ist <11> “gar <ald>)
{opeTator <ol> “trip <t2>)
(tTip <t2> “name trip3)
(opsxator <ol> -“domt-copy trip name truak driver “name simulate-trip
Atrip <t3> “truck <tl> Adriver <d1>)
(trip <t3> “name tripl)
{trook <t1> “volmme 400 “weight-iimit 5000)
{drivaxr <41> “drive-tims 12.85)
(goal <gl> “object NIL “state <sl>)
{state <s1> “license <12> “aity <a2>)
(lLoanse 12> “truck-typs msdium “holder browm)
{aity <a2> “name gary “truak traveler “driver brown)
->
{(goal <g2> “opsrator <ol> >))

(sp p1336
(goal <g3> “cbjedt <g2> “‘problem-space <pl> “desired <dd> “state <d2>
“opazstexr <ol> ¢)
{(goal <g2> “stats <s3> “opsrator <o2>)
(problem-space <pl> -4 state-copy no -“defanlt-opx COpY Do
-Adont -oopy-anything
~*demt-gopy current-schednle dummy-att® trip truck

driver
-“two-lavel-attridbutss ourrent-schedule dammy-att®
trip truck driver
~Aall-attributes-at-level two -“cve-lavel-attributes
“nane task -“aame selection)
(stats <d2> “dummy-astt® true “driver <43> “truck <td> “trip <ts>
‘current-schedule <11>)
(driver <43> “nsme brown “drive-time 11)
(truck <t4> “type medium “Dams trsvaler “volume €40 “weight-limit 10000)
{trip <t3> “name trip2 ~first-segmant <s2>)
( ant <s2> 4 gary)
{state <s3> “evalmation <el>)
(list A1> “oar <ol>)
{opazatsr <al> “trip <t2>)
(trip <t2> “mame trip))
(opazater <02> “mame evaluate-obiject “desired <d4> “evalustion <el>)
{operater <ol> -“dont-copy driver truck name trip “nase simulste-trip
“erip <tI> “truck <t1> “‘driver <dl>)
(trip <t3> “name tripl)
(truck <t1> “volume 400 “weight-limit 5000)

55

{Geiver <d1> Adrive-time 12.3)

(goal <g1l> “cbject NIL “stats <s1>)

(state <s1> “License Q> “gity <a2>)

{liommse 2> “truck-typs medize “holder hxrown)

{aity <a2> “Dams gary “truak travelsr “drivar browm)
-=>

(evaluation <sl> “symbolic-value partial-success +))

(sp p13837

(goal <g3> “state <s5> “abjesct <gl> “opexator <o2>)
{goal <g1l> “problem-space <Ppl>)
{(problem-space <pl> -*all-attributes-at-lavel two -“cne-lswvel-asttributes
-“two-level-attributes current-schedole trip truck
driver émmmy-atts
-*dont-~copy ourrent-scheduls trip truak driver
dmy-stt® -~dont-ocopy-anything
-*dafanlt-state-copy Do -“default-operator-copy Do
“aame task -“name selectiomn)
(etate <a5> “gwaluatiomn <sl>)
(operator <02> “name evaluste-cbject “type evaluation “attributes operato:
“defanlt-state-copy yes “dafault-oparator-copy yes
“gvaluation <eal> “supezproblem-space <pl> “suparstate <sl>

Adrivar <d5> <4i> “current-schedule <11>)
(txip <t© “name trip2 “fizst-segaent <sd>)
(sagment <sd> 4 gaxy)
{tzruck <t3> “type madimm “name traveler “volume 640 “weight-limit 10000)
(driver <45> “name hrewd “drive-time 11)
{dziver <d4> “drive-time 12.5 “name gray)

{trock <t2> “‘volmme 400 “waight-limit 5000 “type small “Dame piper)
(trip <t4> “name tripl “first-segment <s2>)
(segment <s2> 4 gary)

{opszator <ol> -“dont-oopy trip name truck dzriver “pame simulate-trip
“erip <t3> “truck <tl> “driver <dil>)
(trip <t3> “name trip3)
{truck <tl> “volume 1280 “weight-limit 32000)
(driver <dl> ~drive-time 11)
(Ust AL> “asr <4dD)
{opazator <d43> “trip <d2>)
({tzip <42> “name dmmy)
{goal <g2> “abject NIL “state <a3>)
(etate <53> “license 13> <12> “city <cl>)
{(licmnse A “treck-type msdimm “holder brown)
(city <al> “name gary “truck lexr piper “dri brown gray)
(license A2> “truck-type small “holder gray)
-->
{evalmation <el> “symbolic-value partisl-succeas +))

(sp p1538

(goal <g2> “desired <46> “problem-spacs <pl> “state <sl>
“operator <ol> +)
{problem-space <pl> ‘“nake task -“‘nDame selection
-“two-level-attridbates dummy-att® driver truck trip
m-t‘m
-“dont-copy dammmy-att® driver truck trip
ouryent-scheduls -“dont-copy-anything
-“one-level-attributes -“all-attributaes-at-level two
- Py Do dafault-stats-copy no)
(m«b*_—m-uum«owwabw
“driver <45> <d4> “current-schedule <11>)
t.::l.p <t6> ‘“nama trip2 “first-segment <sié>)
( ant <sg> * gary)
(tsﬂ«!)‘typo-d.-‘t—m ‘volume 640 “weight-limit 10000)
{drivexr <45> “name bhrown “drive-time 11)
({driver <d44> ~drive-time 12.5 “name gray)
(tzuak <t2> “volwme 400 “weight-limit 5000 “type small “mams piper)
(tzip <t4> “name tripl “first-segment <s2>)
{segmant <82> “seuxce gary)
{1ist Q1> “aar <43>)
{opazator <43> “trip <dd>)
{trip <42> “mame dummy)
{oparator <ol> -Adont-copy trip name truck driver “name simnlate-trip
“trip <t3> “truak <t1> “driver <dl>)
(trip <t3> “pame trip3)
{truck <tl> ‘volmme 1200 “waight-limit 32000)
(driver <41> Adrive-tims 11)
(geal <g31> “ebject FIL “state <a3>)
(stats <a3> “licemnss <13> AP “city <ol>)
(1iommse Q3> “truck-type medium “helder browm)
{aity <cl> “zame gary “truck travelar pipar “driver kaown gray)
(1icense <12> *truck-type small “holder gray)
-=>
{goal <g2> “oparxator <ol> >))




56

(goal <g1> “cbject NIL “state <sd> “p pace <pl> “operster <old>)
(state <s&> ‘dmmy-stt® tres “licsnse <13> <12> <4l1> “clty <a2> <al>
Adriver <42> <d1l> <d3> “truck <td4> <t3> <t3>

trip €t6> D <L)
(problem-space <pld> “name tep-space)
(license Q3> “truck-type amll “bolder gray)
(city <a2> “name gaxy “tzuck piper trawvaler “driver gray browm)
(license <12> “truck-type hig “helder green)
(city <al> “mame iady mball “dri green)
(licmnse <A1l> “truck-type medimm “holder brown)
(driver <d2> ‘mame gray “drive-time 12.35)
{truck <t4> “type mmall “nams pipar “volume 400 “weight-limit 5000)
(trip <t© “name tripl “first-segmant <s3>)
(segment <s3> 4 gary)
( <di> “drive-ti 11 “name green)
(tzuck <t3> “volume 1280 “weight-limit 32000 “type big “name cannonball)
(txip <t2> “name trip3 “first-segaent <s2>)
( ot <e2> 4 indy)
(driver <d3> “drive-time 11 “name browm)
(truck <t3> “volume 640 “weight-limit 10000 “type medium “name lex)
(trip <t1> “name trip2 ~first-segasut <sl>)
(segmant <al> “source gary)
(opexrator <ol> “name do-task “comtrol-stuffe <oid>)
(coatrel-stufft <al> “edit-fram-ssbgoal-ensbled® true)
-->
(control-stuff* <a3> “‘edit-fram-subgoal-enabled® trus -
‘adds* <al> + <al> §)
(aug®* <ul> “camplete-scheduls AT &, AT + AT + AN §)
(list <A7> “Cype* List + “odr A + “car <od> +)
{control-stuff* <afd> “edit-fram-subgoal-enablad® true +
“reconsider-disabled* true +)
(operator <o3> “name simmlate-trip + “driver <d2> + “truck <té&> +
“trip <t + “control-stuff* <S> =, <a%$> +)
{list <15> “type* list + “adr <14&> + “oar <o2> +)
{control-stuff* <al> “edit-from-subgoal-enshled® true +
“Teccnsider-disabled® trus +)
(opexrator <d3> “mame simulate-trip + ‘trip <dd> +)
(add* <al> “class state + “id <sl> + “ang <al> &, <1> +)
(trip <44> ‘“name dmmy +)
(list 4> “type® list ¢+ “odr nll + “car <d5> +)
(op 3 <o2> “ ~stuffs <od> + <ob> = “trip <t2> ¢+ “truak <t3> +
~Mriver <d1> ¢+ “asms simmlate-trip +)
(control-stufft <a$> “reconsider-disadbled® trus +
‘edit-frem-subgoal~anabled® true +)
(1ist <A© “car <o3> + “odr <13> + “typet list +)
{op <od> ~ 1-stuff® <of> + <of> = “trip <tl> + “truck <t5> ¢+
“driver <d3> 4 “pame simmlate-trip +))

(sp pises
(goal <gl> “edjeat FIL “state <sé> “problem-space <pl> “operator <ol>)
(state <s4> “dummy-att® trus “license Q3> Q2> <11> “alty <a2> <cl>
Adriver <43> <42> <41> “truck <t5> <t3> <tl>

(truak <t3> “typs mmall “mame piper Avolume 400 “weight-limit 5000)
(trip <t4> “mame tripl “first-segment <s2>)

( <> 4 gaxy)

(driver <41> “nama gresn “drive~time 11)

{truck <ti> “type big “name canmemball “volume 1280 “weight-limit 32000)

(goal <gl> “epezater <ol> §))




57

References

Filman, R. E. (1988). The Big Giant Trucking Problem. Intellicorp, Inc. 1975 El Camino Real
West, Mountain View, CA 94040. Unpublished.

Filman, R. E. (April 1988). Reasoning with Worlds and Truth Maintenance in a Knowledge-
Based Programming Environment. Communications of the ACM, 31(4), 382-401.

Laird, J. E. (1984). Universal Subgoaling. Doctoral dissertation, Computer Science
Department, Camegie Mellon University.

Laird, J. E.; Congdon, C. B.; Altmann, E.; and Swedlow, K. (October 1990). Soar User’s
Manual: Version 52 (Tech. Rep.). Electrical Engineering and Computer Science
Department, The University of Michigan. Also available from The Soar Project, School of
Computer Science, Carnegie Mellon University as CMU-CS-90-179.

Minton, S. (August 1985). Selectively Generalizing Plans for Problem-Solving. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence. 596-599.

Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T. (1986). Explanation-Based
Generalization: A Unifying View. Machine Learning, 1(1), 47-80.

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. (August 1987). Knowledge Level Leamning in
Soar. Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87).
499-504.

Tambe, M.; Newell, A.; and Rosenbloom, P. S. (August 1990). The Problem of Expensive
Chunks and its Solution by Restricting Expressiveness. Machine Learning, 5(3), 299-348.

Yost, G. R. (May 1992). TAQL: A Problem Space Tool for Expert System Development.
Doctoral dissertation, Computer Science Department, Camegiec Mellon University.
Available as CMU-CS-92-134.

Yost, G. R. and Altmann, E. (1991). TAQL 3.1.3: Soar Task Acquisition Language User
Manual. School of Computer Science, Camnegie Mellon University, December, 1991.
Unpublished.







‘School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not
to discriminate in admissions and employment on the basis of race. color, national origin, sex or
handicap in violation of Title Vit of the Civil Rights Act of 1964, Title IX of the Educational Amendmenis
of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or localtaws or executive
orders. in addition, Carnegie Mellon University does not discriminate in admissions and employment
on the basis of religion, creed, ancestry, belief, age, veteran status or sexual orientation in viotation
of any federal. state, or focal laws or executive orders. Inquiries concerning application of this policy
should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pitisburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-2056.

e’y




