
AD-A254 571 0mii lii i IIIL II lUi iDL !liii liii ..
DTIC

S ELECTE
AUG 12 19921

3 A
Expert-System Development in Soar:

A Tutorial

Erik Altmann and Gregg R. Yost* R
June 1992 MEMO Q

CMU-CS-92-151 __R__

School of Computer Science - ,
Carnegie Mellon University

Pittsburgh, PA 15213-3890

Digital Equipment Corpoation
111 Locke Drive (LM02/KI1)

Marlboro, MA 01752

Abstract

This is a tutorial for building an expert system in Soar using the TAQL programming language. It provides a
self-contained reference for the end-to-end development of a Soar system that accomplishes a particular task. It
presents a natural-language task description, a system design, and a sample implementation, including a documented
code listing. It also discusses chunking (Soar's learning mechanism) in the context of the sample implementation.

I This dociiment h : b-. . .; t
fox public release and ;uaf; it:i
distribution is unlimited.

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, Arpa Order No. 7597. The research was also supported in part by Digital Equipment
Corporation and the Natural Sciences and Engineering Research Council of Canada. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of DARPA, DEC, the Government of Canada, or the US Govenmen

*2 8 8 004

ii

Table of Contents

1. Introduction 1
2. The Shipment Scheduling Assistant: Task Description 3

2.1. Description 3
2.1.1. Drivers, trucks, cities, and highways 3
2.1.2. Constraints 4

2.2. Test case 5
3. Designing a Soar Solution 7

3.1. Introduction 7
3.2. Notes on the Test Case 8
3.3. Problem Space Design 9

3.3.1. Task analysis 9
3.3.2. Dynamic behavior 10
3.3.3. Static structure 12
3.3.4. A detailed design 16

3.4. Notes on Chunking 20
3.4.1. Correctness, generality, and backtracing 20
3.4.2. Preventing incorrect chunks 21
3.4.3. Expensive chunks 25

4. Sample Implementation in Soar 27
4.1. Introduction 27
4.2. Program Listing 27
4.3. Execution Trace 43
4.4. Chunk Listing 49

Accesioq For

NTIS C RA&I -
U-ianoui

cd
Justificationi -

....- .
By

DiY-tibuti,,a -

D i t A v i :,i y , -; . .

Statement A per telecon Chahira Hopper
WL/AAAT

WPAFB,OH 45433

NWW 8/10/92

List of Figures

Figure 1: Procedure that solves the shipment scheduling task 10
Figure 2: Trace of lookahead search 11
Figure 3: Static problem-space structure 13
Figure 4: Pseudo-trace corresponding to Figures 2 and 3 15
Figure 5: Simple backtracing example 20
Figure 6: Novalue: backtracking without chunking 21
Figure 7: Conditions that bind constants 22
Figure 8: Lookahead leading to search-control chunk p946 23
Figure 9: The search-control chunk p946 23
Figure 10: Backtracing to the trip3 condition 24
Figure 11: Conditions that prevent overgeneral search-control chunks 25
Figure 12: An expensive chunk 26

1. Introduction
This is a tutorial for building a learning expert system in the Soar problem solving architecture

(Laird et al., 1990), using the TAQL programming language (Yost and Altmann, 1991; Yost,
1992). It provides a self-contained reference for end-to-end development of a Soar system,
beginning with a natural-language task description and ending with a sample implementation of
a system to accomplish the task. In between it illustrates a number of design and programming
techniques (without claims to complete coverage of such techniques, or independence from
personal style). It also discusses chunking (Soar's learning mechanism) in the context of the
sample implementation.

Chapter 2 describes the task of the shipment scheduling assistant, which is to generate
schedules that coordinate trucks, truck drivers, and shipments. Chapter 3 presents a design that
outlines both the dynamic behavior of a system and the static relationship of its components.
The last section of this chapter presents a detailed view of chunks learned by a sample
implementation of this design. Chapter 4 presents the details of this implementation, including a
documented code listing, a trace of the running system, and a listing of the chunks learned during
the traced run.

For information about obtaining the code and other listings on-line, or to obtain this or other
documents concerning Soar and TAQL, send electronic mail to soar-requests@cs.cmu.edu, or
physical mail to The Soar Project, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213-3890.

3

2. The Shipment Scheduling Assistant: Task Description
This description was derived from a formal description of a larger set of problems in me

shipment scheduling domain (Filman, 1988a). The formal description is for the problem used as
an example in a recent expert systems paper (Filman, 1988b).

2.1. Description
The Big Giant Trucking Company ships materials among cities in the Midwest. Customers

contact the company and request that goods be transported from one city to another on a
specified day. Big Giant's dispatchers collect the orders and create suitable delivery schedules.

A schedule consists of some number of trips, where each trip has an itinerary, a truck, and a
driver. An itinerary is a list of cities and the highways that the driver should take from one city
to the next. The itinerary also states what shipments, if any, the driver should pick up and
deliver at each city (sometimes the driver will just pass through with no pickups or deliveries).

Producing a schedule is difficult because of the many constraints on the trips and the schedule
as a whole. For example, each driver can drive only one trip, and union drivers can only drive
trips that take less than eleven hours. The shipment scheduling assistant takes the set of
itineraries on the schedule (which we assume were put together by a dispatcher), and tries to find
an assignment of trucks and drivers to the itineraries that does not violate any constraints. If no
such assignment is possible, the assistant informs the dispatcher, who must then revise the
itineraries and try again.

The remainder of this description provides the information the assistant needs to try to find
valid truck and driver assignments.

2.1.1. Drivers, trucks, cities, and highways
Tables 1, 2, and 5 define the driver, trucks, and highways used by Big Giant.

Big Giant serves the following cities:

" In Illinois: La Harpe, Oregon, Thayer, Utica, Viola, Yale, and Zion.

" In Indiana: Attica, Bloomington, Cook, Delphi, English, Fowler, Gary, Hebron,
Indianapolis, Jasper, Kokomo, Mitchell, New Harmony, Paoli, Roselawn, Seymour,
and Warsaw.

Name Union License
Class

Brown yes 3

Gray no 1

Green yes 3

White no 2

Table 1: Drivers

4

2.1.2. Constraints
The constraints on schedules and trips are:

" Each driver can drive only one trip, and each trip has only one driver.

" Each truck can be used on only one trip, and each trip has only one truck.

" The maximum weight of a truck's load at any point during a trip cannot exceed the
truck's rated weight limit. Big trucks can hold 32000 pounds, medium trucks 10000
pounds, and small trucks 5000 pounds.

" The maximum volume of a truck's load at any point during a trip cannot exceed the
truck's rated volume limit. Big trucks can hold 1280 cubic feet, medium trucks 640
cubic feet, and small trucks 400 cubic feet.

" The driver and truck assigned to a trip must be in the trip's origin city to begin with.

" The license class of a driver must be at least as great as the license class required by
the truck he or she is assigned. Big trucks require class 3 licenses, medium trucks
require at least class 2 licenses, and small trucks require at least class 1 licenses.

" A driver can only drive trips whose duration is less than his or her maximum
allowable driving time. The duration of a trip is the sum of the driving times for
each segment on the itinerary, plus the time needed for loading and unloading
shipments during the trip. The driving time for a segment is the length of the road
used for that segment divided by the estimated speed for that road (as determined by
the weather and road grade, see Table 3). Union drivers can be on a trip ior at most
11 hours, while non-union drivers can be on a trip for at most 12.5 hours.

" White cannot drive on any trip that passes through a city in Illinois (he is wanted for
a crime there).

Name Class

Cannonball big

Piper small

Queen Bee medium

Traveler medium

Table 2: Trucks

Road grade Primary Secondary Tertiary
Weather I

Fair 60 55 50

Rain 55 50 35

Snow 45 40 30

Table 3: Estimated travel speed, given road grade and weather

5

2.2. Test case
This section presents a simple test case that you can use to partially test your scheduling

assistant.

The weather throughout Big Giant's area of operations is rainy. Drivers Brown and Gray are
in Gary, and drivers Green and White are in Indianapolis. Trucks Piper and Traveler are in Gary,
and trucks Cannonball and Queen Bee are in Indianapolis.

The dispatcher's schedule has three trips. The shipments referred to in the trips are listed in
Table 4.

" Trip 1: Starting in Gary, pick up the typewriter shipment and take highway U30 to
Warsaw, followed by U31a to Kokomo, U31b to Indianapolis, and 174 to Attica.
Deliver the typewriter shipment in Attica.

* Trip 2: Starting in Gary, take U41a to Cook, 180b to Utica, and 180a to Viola. Pick
up the carpet shipment in Viola. Then, take I80a back to Utica, and 180b to Cook.
In Cook, deliver the carpet shipment and pick up the newsprint shipment.

" Trip 3: Starting in Indianapolis, take 170b to Yale, then take U41e to Attica.

One valid solution for this test case is to assign Gray/Piper to trip 1, Brown/Traveler to trip 2,
and Green/Cannonball to trip 3. Piper is the only truck in Gary that Gray is licensed to drive,
leaving Traveler (the only other truck in Gary) for Brown. White cannot drive trip 3, because it
passes through Illinois, so Green must do it.

Material Origin Destination Weight Volume Loading Unloading

Time Time

Bicycles Roselawn Bloomington 500.0 100.0 0.2 0.25

Books Oregon Mitchell 1000.0 50.0 0.2 0.25

Carpet Viola Cook 500.0 100.0 0.2 0.25

Computers Seymour Thayer 1000.0 150.0 0.2 0.25

Newsprint Cook Indianapolis 60000 400.0 0.2 0.25

Refrigerators Kokomo Warsaw 9000.0 600.0 0.2 0.25

Toys La Harpe Oregon 1000.0 100.0 0.2 0.25

Typewriters Gary Attica 1000.0 200.0 0.2 0.25

Table 4: Shipments

Name Connects Grade Length

I64a New Harmony, Jasper primary 60.0

I64b English, Jasper tertiary 30.0

165 Seymour, Indianapolis primary 60.0

170a Thayer, Yale primary 150.0

I70b Indianapolis, Yale primary 90.0

174 Indianapolis, Attica primary 60.0

180a Viola, Utica primary 100.0

180b Cook, Utica primary 90.0

190 Oregon, Gary secondary 100.0

194 Zion, Gary primary 60.0

S125 La Harpe, Thayer tertiary 80.0

S25 Delphi, Attica tertiary 40.0

526 Delphi, Kokomo tertiary 30.0

S37a Bloomington, Indianapolis secondary 50.0

S37b Bloomington, Mitchell tertiary 30.0

S37c Paoli, Mitchell tertiary 10.0

S37d Paoli, English tertiary 10.0

U231 Cook, Hebron tertiary 20.0

U24 La Harpe, Fowler secondary 180.0

U30 Gary, Warsaw secondary 70.0
U31a Kokomo, Warsaw secondary 70.0
U3lb Kokomo, Indianapolis primary 40.0

U41a Cook, Gary secondary 20.0

U41b Cook, Roselawn secondary 20.0

U41c Fowler, Roselawn secondary 30.0

U41d Fowler, Attica secondary 30.0

U41e Yale, Attica secondary 90.0

U41f Yale, New Harmony secondary 70.0

U50 Mitchell, Seymour tertiary 30.0

U51 Utica, Oregon secondary 40.0

U67 Viola, La Harpe secondary 50.0

Table 5: Highways

7

3. Designing a Soar Solution

3.1. Introduction
This chapter discusses how to design a Soar system that solves the shipment scheduling task.

The guidance toward a particular implementation increases as the chapter progresses, allowing
novice Soar users to choose a stepping-off point, or to stick with the chapter to the end to gain

exposure to one particular set of design and programming methods. The particular
implementation, together with a trace and a chunk listing, is given in Chapter 4.

Section 3.2 presents a one-page analysis of the test case from Chapter 2, including a summary
of the various constraints on the solution.

Section 3.3 begins with an analysis of these constraints and a procedure for solving the task. It
then outlines the dynamic behavior and static structure of a Soar system. The dynamic and static
designs are depicted graphically, and then tied together in a Soar pseudo-trace. The last
subsection presents a detailed design, in textual form.

Section 3.4 introduces chunking, backtracing, and the problem of learning from exhaustion. It
also discusses methods of manipulating data to prevent overgeneral chunks, including a case-
study of how certain conditions come to be included in a particular chunk.

8

3.2. Notes on the Test Case
The description of the three trips in the test case (Section 2.2, page 5) is reproduced below.

Relevant notes, compiled from the various tables, are made under each trip. A summary of
constraints, and a specification for the solution, are given afterwards.

" Trip 1: Starting in Gary, pick up the typewriter shipment and take highway U30 to
Warsaw, followed by U31a to Kokomo, U31b to Indianapolis, and 174 to Attica.
Deliver the typewriter shipment in Attica.

Notes: There are four segments. The time needed to drive them, and to load and
unload the single shipment, adds up to 3.7 hours, so any driver will do.
Similarly, the size of the carpet shipment (volume 200, weight 1000)
provides no constraint: any truck will do.

Drivers available are Gray and Brown, and trucks available are Piper (small)
and Traveler (medium). Possible assignments: Gray/Piper, Brown/Traveler,
Brown/Piper. (Gray is licensed only for Piper.)

Brown/Piper will cause the schedule to fail, because Trip 2 also starts in
Gary and Gray/Traveler is illegal.

" Trip 2: Starting in Gary, take U41a to Cook, 180b to Utica, and 180a to Viola. Pick
up the carpet shipment in Viola. Then, take 180a back to Utica, and 180b to Cook.
In Cook, deliver the carpet shipment and pick up the newsprint shipment.

Notes: There are six segments, counting loading the newsprint as the beginning of a
segments that is otherwise null. Drive rime adds up to 6.5 hours, so any
driver will do. The size of the shipments provides one constraint: the weight
of the newsprint shipment (6000) requires a medium truck (Traveler).

Drivers available are Gray and Brown, and trucks available are Piper (small)
and Traveler (medium). Possible assignments: Gray/Piper, BrownTraveler,
Brown/Piper. (Gray is licensed only for Piper.)
Any assignment involving Piper will fail on the last segments because
Piper's weight limit will not accommodate the newspaper shipment.

" Trip 3: Starting in Indianapolis, take 170b to Yale, then take U41e to Attica.

Notes: There are two segments. The time needed to drive them is 3.4 hours, so any
driver will do. There are no shipments, so size provides no constraint.

Drivers available are Green and White, and trucks available are Queen Bee
and Cannonball. Possible assignments: all four pairs.

Any assignment involving White will fail on the first segment because Yale
is in Illinois.

Global constraints: <Brown, Piper, Trip 1> means Trip 2 cannot be covered.

Local constraints: <X, Piper, Trip 2> will fail because Piper is too small.
<White, X, Trip 3> will fail because White will be arrested in Yale.

Solution: <Gray, Piper, Trip 1>, <Brown, Traveler, Trip 2>, <Green, X, Trip 3>

9

3.3. Problem Space Design

3.3.1. Task analysis
A first step in developing a solution is to look at the source of difficulty in the task, which in

this case is the set of constraints listed on page 4.

The constraints fall into three categories:
1. Immediate constraints - These can be checked immediately, based on the

information in the tables given with the task description. For instance, a series of
table lookups can tell us that a particular driver is in the city in which a trip
originates, or is licensed to drive a particular class of truck.

2. Local constraints - These must be met for a particular assignment of a truck and a
driver to a trip to be successful (the constraints are local to a particular
assignment).

Checking local constraints requires some computation beyond looking up
information in the tables. For instance, the load in the truck at any one time is a
function of how the shipments are spread out across the trip, and checking that the
truck's capacity is not exceeded requires simulating the effects of loading,
unloading, and driving.

Violations of local consirauts surface as the inability to complete a particular trip.

3. Global constraints - These must hold across assignments for the entire schedule
to be successful (they are global with respect w particular assignments).
For instance, consider the possibility of assigning Brown to Piper for Trip 1. This
assignment is successful, but leaves no remaining assignments for Trip 2, because
Gray is not licensed for Traveler. Thus the schedule as a whole will fail if it
includes the first assignment.

Global constraint violations surface as a situation in which there are trips left over
but no assignments for them.

These categories help to outline a procedure for solving the task, which is shown in Figure 1.
Step 1 generates assignments that satisfy the immediate constraints. Steps 2 and 3 check the
local and global constrnints. Step 4 detects when the task is solved, and Step 5 recursively
invokes the procedure when it is not.

The procedure in Figure 1 can be mapped onto problem spaces as follows. If we associate
each assignment with an operator, each such operator presents an opportunity to check the local
constraints associated with that assignment. The effect of such an operator would be to simulate
a trip with a particular truck and driver, and generate a state in which either the schedule is
updated with that assignment, or in which a failure of the assignment (due to local constraints
being violated) is indicated. We can call this the simulate-trip operator. The operator itself
requires a sequence of steps, namely simulating the loading and unloading of shipments and the
driving of segments of the trip. Simulate-trip can be applied by a separa:e problem space that
executes these steps.

The immediate constraints can be incorporated in the proposal of simulate-trip operators. This

10

1. Generate a set of possible assignments for unassigned trips that satisfy all
immediate constraints, and choose one assignment.

2. Check the local constraints on that assignment, by simulating the trip. If a
constraint fails, backtrack to some previous instance of Step 1 where alternatives
remain, and choose one. If there are no previous instances where alternatives
remain, halt with failure.

3. If no local constraints are violated, check whether any global constraints have been
violated by checking if there are trips left over but no assignments for them. If a
global constraint has been violated, backtrack to some previous instance of Step 1
or halt with failure (as in Step 2).

4. If no local or global constraints are violated, check whether we have a successful
schedule, by checking whether all the trips have assignments. If so, halt with
success.

5. Mark the trip as having been assigned, update the pool of available trucks and
drivers, and recurse to Step 1.

Figure 1: Procedure that solves the shipment scheduling task

will reduce the number of operators generated (and therefore the search involved in solving the
task) Further reduction in search comes if we base successive operator proposals on the updated
set of trips and the updated pool of available trucks and drivers (all of whi,.h shrink with ea.-h
successful assignment). These updates can be carried out by simulate-trip itself, upon successful
completion of a simulation. This updating also allows testing for success by detecting when no
more unassigned trips remain, and testing for violations of global constraints by detecting when
trips are left over but no assignments are left.

The states in this scheme will have to represent several kinds of information. First is that from
the tables presented in Chapter 2. This information implicitly represents many of the immediate
constraints, and therefore must be available when proposing simulate-trip operators. Second is
the dynamic information that changes from trip to trip. This includes the sets of unassigned
trips, available drivers, and available trucks; the schedule, as it grows with each successful
assignment; and indications of local and glcbal constraint violations. Third is the dynamic
information that changes only from segment to segment within a trip. This includes resources
such as available drive time and truck capacity.

Finally, we need a mechanism for backtracking when constraints fail. One sim)!e mechanism
is depth-first search, in which the selection at the most recent instance of Step 1 is changed,
unless there are no more alternatives, at which point the procedure backtracks to the next wrost
recent instance of Step 1.

3.3.2. Dynamic behavior
Figure 2 shows an example trace of the procedure above as mapped onto problem spaces, with

an emphasis on how depth-first search works in Soar. Spaces are depicted as triangles, states as
circles, operators as lines emanating from states, impasses as down arrows, and subgoal results
are up arrows. The trace is annotated with examples of how each step of the procedure is
realized as a problem-space operation. (Figure 3 shows a corresponding pseudo-trace that
resembles actual Soar output.) The problem spaces shown are the task space, which contains the

11

simulate-trip operator, and the selection space, which implements depth-first search (usually
referred to as lookahead search in the context of Soar).

In the top instance of the task space (TI), a set of simulate-trip operators is proposed (per Step
1). These tie, resulting in an impasse. The selection space (SI) is selected automatically for the
subgoal (by Soar's default productions). In the selection space, the default productions create an
evaluate-object operator for each tied alternative. The evaluate-object operators are given
indifferent preferences, so one is selected (at random or in a prescribed pattern; see the Soar
user-select command). Evaluate-object itself impasses, and in the resulting subgoal the default
productions cause the task space to be selected (T2). This subgoal is referred to as the
evaluation subgoal. The operator being evaluated is then selected automatically, under the
assumption that it might generate a state that either succeeds or fails (or might otherwise yield
information that allows the operator to be evaluated). This automatically-selected operator is
referred to as the lookahead operator.

In the left-most evaluation subgoal (T2), the lookahead operator causes a local constraint
violation. (The space that applies simulate-trip is omitted, but see Figure 3.) The violation is
detected (per Step 2), and results in a failure evaluation for evaluate-object. 72 exits, and a
second evaluate-object operator is selected.

TI (task)
Step 1: Propose a set of simulate-trip

operato. The operators tie, leadingto lookahead search. Select one in the :

evaluation subgoal. "

S I (selection)

.-. evaluate-object operators

T2 'f/3 Step 5: Having successfully simulated
_ I I one tip, propose a simulate-tripl . U [l operator for each reaing legal

' : I I assignment. These operaor tie
.," . leading to a new level of search.

Step 2: Check local constraints by /
applying the simulate-trip operator.
If a constraint is violated (as here),
si,,nal a failure condition. S2

Step 3: Check global constraints
by checking whether trips are Step 4: If no trips remain.
left over, with no assignments. sign a success condition.
If there is a violation (as here), n s s disignal a failure condition. T4 T5

Figure 2: Trace of lookahead search

12

The lookahead operator in T3 yields neither constraint violations nor success. A new set of
simulate-trip operators is proposed (based on the updated sets of unassigned trips and available
trucks and drivers). The resulting tie leads to a new instance of the selection space (52). Below
S2, in T4, the simulation leads to a global constraint violation (per Step 3). As with a local
constraint violation, this generates a failure evaluation, causing T4 to exit and another alternative
to be evaluated.

In T5, the lookahead operator violates no local constraints, and leads to a state in which only
one new simulate-trip operator is proposed. That operator is selected, and results in a state in
which no trips are left. The space exits with a success evaluation (per Step 4). The default
productions propagate success up to T1 (and would propagate it further if there were more
levels). This breaks the tie in TI, with the lookahead operator from T3 being selected. If
chunking was turned on, the success of the lookahead operator in T5 will have been learned as a
chunk that selects that operator after the first selection in T1, leading directly to a successful state
inTl.

For further details on lookahead search, consult the Soar manual. The depth-first behavior
described here is only one of many weak methods that can arise from the universal weak method
(Laird, 1984), depending on how much and what kinds of evaluation knowledge are available.
For example, hill-climbing arises if any state can be evaluated, and not just those that represent
failures or successes.

3.3.3. Static structure
The previous section outlined a procedure for solving the shipment scheduling task, and

described at a high level how that procedure could be cast in terms of states and operators. This
section describes in more detail a set of Soar problem spaces for performing the task. The first
part of the description is a diagram (Figure 3) that shows the static problem space structure, and
the second part (beginning on page 16) is a textual specification. Both the diagram and the
specification correspond directly to the code presented in Chapter 4, so ambiguities and other
confusions can be resolved by looking there.

Figure 3 shows the operators in each space, and the information that flows between spaces.
The name of each space appears at its top right-hand comer, and the operators appear in the
interior of the triangle. The lines connecting spaces denote impasses.

The remainder of this section traces through the figure, showing how the spaces work together.
Note that the diagram represents the static structure of the system. This explains how the task
space can be connected to two superspaces: it responds to impasses in both, at different times.
All the impasses represented in the diagram are operator no-changes; the diagram omits the
operator tie impasse that occurs in the task space (on simulate-trip operators), which leads to the
selection space. This interaction is described in Figure 2.

The do-task operator in the top space is applied in the task space. To carry out the task,
operators in the task space need access to the information from the tables, and initial values for
the trip, truck, and driver sets. When the task space exits, it returns the complete schedule to the
top space as the solution to the task.

13

top selection
do-task evaluate

simulate-uip;
copy of tie

table information; c failure V or GCV)
initial trip, truck, complete and sucess signals
and driver sets schedule

task

schedule-succed
global-constraint-failed

trip, we-tr,

and driver updates for trip, truck,
and driver sets;

updated schedule;~LCV signal

simulate-trip

local-constraint-faied

u pdates for resources;

segment, next segment;
resources L C- V signalsi u a esimulate-

Legend: drive segmentload, unload
LCV = Local Constraint Violation compute-resources
GCV = Global Constraint Violation ua-resources

Figure 3: Static problem-space structure

The simulate-trip operator in the task space is applied in the simulate-trip space. Simulate-trip
takes the particular assignment and simulates the trip. As part of its result, the space updates the
trip, truck, and driver sets by removing those involved in the trip it just simulated. It also returns
an indication of whether any local constraints were violated during the simulation. If not, it
returns the schedule as updated with the addition of the trip just simulated.

If a simulation generates a local constraint violation, the task space passes the violation signal
directly up to the selection space above, if the task space occurs in an evaluation subgoal. The

14

default productions in the selection space act on the failure by terminating the evaluate-object
operator and selecting a new one. However, if the simulation is successful, a new simulate-trip
operator is selected in the task space.

If after a simulation the task space finds that all trips have been assigned to, the
schedule-succeeds operator is proposed. This returns a success signal to the selection space if
this is an evaluation subgoal, or the complete schedule to the top space. If, on the other hand,
there comes a point where there are still trips to be assigned to but no simulate-trip operators
proposed, then the global-constraint-failed operator is selected. This returns a failure signal to
the selection space.

In the simulate-trip space, the simulate-segment operator is selected once for each segment of
the trip. If after any segment a resource (such as truck capacity) is found to have run out, the
local-constraint-failed operator is selected. This operator returns a failure signal to the task
space, causing the simulate-trip operator to terminate (thereby terminating the simulate-trip
subgoal). The task space then terminates as well, as described above. If, on the other hand, all
the segments are simulated with no violations, the trip-succeeds operator is selected. This
operator updates the trip, truck, and driver sets in the task space, and returns the updated
schedule.

The simulate segment operator, when selected, impasses, because simulating a segment
involves several operations. These occur in the simulate-segment space. The operations for
each segment consist of loading any shipments at the beginning of the segment, followed by the
drive to the next location, followed by unloading shipments to be delivered at that location.
Loading and unloading affect the volume and weight capacities remaining for that trip, and
driving affects the time the driver has been on the road. When the segment is complete, the
compute-resources operator computes the remaining resources and checks if any have run out,
and if so signals a local constraint violation on the superstate. If not, the update-resources
operator updates the resources on the superstate, in preparation for the next segment.

The Soar pseudo-trace in Figure 4 brings together both static and dynamic aspects of the
system. The labels for task and selection spaces from Figure 2 appear along the right margin.
The space and operator names are carried over from Figure 3. The impasse types are also given.

G:gl
P: p1 (top-space)
IC: al
0: *1 (do-task)
->G: 92 (operator no-change)

P: p2 (task) TI
S: *2

->G: g3 (operator tie)
P: p3 (selection) Si
S: s3
0: o3 (evaluate-object (simlate-trip ((gray) (piper) (trip2))))
->G: g4 (operator no-change)

P: p2 (task) 72
S: dl (duplicates s3)
0: al (simlate-trip (gray) (piper) (trip2))
=>G: g5 (operator no-change)

P: p4 (simlate-trip)
S: s4
0: o4 (simulatet-segment segmntl)

... ...angermtdiate segments
0: o20 (simlate-senint segmnt6)
->G: g2l (operator no-change)

P: p21 (aimlate-semnt)
S: &21
0: 021 (load (newsprint 6000.0))
0: *22 (drive)
0: *23 (compute-resouroes)
0: c24 (update-resources)

0: c25 (local-constraint-failure weight-limit-exceeded)
Evaluation of operator cl (smulate-trip) is failure

0: o26 (evaluate-object (simalate-trip ((green) (cannonball) (trip3))))
=)G: g22 (operator no-change)

P: p2 (task) T3
S: d2 (duplicates x3)
0: c2 (simlate-trip (green) (cannonball) (trip3))

... ..simulat ion is successfid
0: o27 (trip-succeeds)

->r.: g23 (operator tie)
P: p23 (selection) 52
S: &22
0: o28 (evaluate-object (simlate-trip ((brown) (piper) (tripl))))
->G: g24 (operator no-change)

P: p2 (task) R4
S: d3 (duplicates d2)
0: c3 (simlate-trip (brown) (piper) (tripl))

.i.. ermed jate trips
0: 040 (global-constraint-violation trips-left-over)
Evaluation of operator c3 (simlate-trip) is failure

0: 041 (evaluate-object (sin-late-trip ((gray) (piper) (tripl))))
->rG: g25 (operator no-change)

P: p2 (task) T5
S: 44 (duplicates d2)
0: c4 (simlate-trip (gray) (piper) (tripl))

0: *50 (simlate-trip (brown) (traveler) (trip2))

0: o70 (schedule-succees")
Evaluation of operator c4 (simulate-trip) is success

... ucces propagataes up to TI

Figure 4: Pseudo-trace corresponding to Figures 2 and 3

16

3.3.4. A detailed design
This section specifies the operators in more detail, giving their arguments (in parentheses) and

their semantics in terms of conditions, effects, and termination conditions. Where appropriate,
information about state contents and operator search control is also given.

top-space
1

State (also called the top state): Contains the invariant information from the tables,
which is used to initialize dynamic values like the trip, truck, and driver sets.

Operators:

1. do-task

Conditions: Proposed without conditions.

Also called the task operator. Applied in the task space.

Effects:2 Adds the completed schedule to the state.

Termination: Automatic, when a successful or failed state is reached in the
subgoal that applies it.3

IThe space itself is provided by TAQL by default.

2The effects of an operator applied in a subspace are carried out by the subspace.

3This termination is provided by TAQL's runtime support.

17

* task

State: Contains trip, truck, and driver sets, either initialized from the top state (when
below the top space), or duplicated from another instance of the task space (when
below the selection space).

Operators:
1. simulate-trip (trip, truck, driver)

Conditions: Reads the current state's trip, truck, and driver sets. Checks that
the assignment satisfies the immediate constraints that the driver and the
truck be in the city where the trip begins, and that the driver is licensed for
the truck.
Applied in the simulate-trip space, which checks local constraints by
simulating the trip with that truck and driver.

Effects: Updates the trip, truck, and driver sets by removing its arguments
from them. Updates the current schedule if no local constraints are violated.

Termination: Terminates (1) if the subspace updates the current schedule
with the simulated trip, or (2) if the subspace signals a loca, constraint
violation.

2. schedule-succeeds (complete-schedule)

Conditions: Proposed when the trip set is empty.

Effects: Signals success in the superspace, either via evaluation knowledge
(during lookahead search) or the goal test (when the superspace is the top
space). If the superspace is the top space, returns complete-schedule.

Termination: By higher decision.4

3. global-constraint-failed

Conditions: Proposed without conditions, but made worst. Consequently,
selected only when there are trips left over (inhibiting schedule-succeeds)
but no simulate-trip operators are proposed. This condition implies a global
constraint violation.

Effects: Signals failure in the superspace, either through evaluation
knowledge (during lookahead search) or the goal test (when the superspace
is the top space).

Termination: By higher decision.

4When information is returned that resolves an impasse in the supercontext, Soar terminates all lower selections.

18

simulate-trip

State: Contains resources (initially the time for which the driver can be on the road,
and the weight limit and volume of the truck), and the current segment of the trip
being simulated. Initialized from the superoperator, and updated by simulate-
segment.

Operators:
1. simulate-segment (segment, resources)

Conditions: Reads the segment and resources from the state.

Applied in the simulate-segment subspace, which loads, unloads, and drives
as necessary for that segment. The subspace signals if a resource went
negative, or any other local constraint was violated (such as White being
arrested because the segment ends in Illinois).

Effects: Changes the current segment to be the next segment, and updates the
resources on the current state. Signals failure on the current state if there
was a constraint violation (see local-constraint-failed).

Termination: Terminates (1) when the current segment becomes the next
segment, if there is no constraint violation; or (2) when a constraint violation
occurs.

2. trip-succeeds (assignment)

Conditions: Proposed without conditions, but made worst. Consequently,
selected only when there are no more simulate-segment operators and no
constraint violations.
Effects: Adds assignment to the current schedule on the superstate, allowing
the superoperator to terminate. Also updates the trip, truck, and driver sets
on the superstate.

Termination: By higher decision.

3. local-constraint-failed (failed-assignment)

Conditions: Proposed if simulate-segment signals failure, and selected
immediately when proposed.

Effects: Signals failure in the supercontext, allowing the assign operator to
terminate. Returns failed-assignment to the superstate, so we can figure out
what happened.

Termination: By higher decision.

19

* simulate-segment

State: Contains resources (weight, volume, time), initialized from the superoperator.

Search control: A segment begins with a load (if any), and ends with an unload (if
any). Therefore, for correctness with respect to the truck's weight limit and volume,
load must be selected before unload.

Operators:
1. load (volume, load-time, weight)

Conditions: Proposed if there is a shipment to load in the beginning location.

Effects: Updates weight, volume, and time, on the current state.

Termination: By direct application. 5

2. unload (volume, unload-time, weight)

Conditions: Proposed if there is a shipment to unload at the end location.

Effects: Updates weight, volume, time.

Termination: By direct application.

3. drive (time)

Conditions: Proposed without conditions (segments always involve driving).

Effects: Updates time.

Termination: By direct application.

4. compute-resources

Conditions: Proposed without conditions, but made worst. Consequendy,
selected when all other operations have been carried out.

Effects: Augments the state with a record of the remaining resources,
Indicates in the record whether resources went negative, or whether any
other local constraints were violated (such as White being arrested in
Illinois).

Termination: By direct application.

5. update-resources (resource-record)

Conditions: Proposed when the resource record has been computed.

Effects: Returns resource-record to the superstate. Changes the current
segment to be the next segment on the superstate, allowing the superoperator
to terminate.

Termination: By higher decision.

5When an operator is applied entirely by an apply-operator TC, edits in the TC terminate the operator.

20

3.4. Notes on Chunking
Section 3.4.1 discusses some general aspects of chunking in Soar. Section 3.4.2 examines

some of the code from Chapter 4 in light of how it affects chunking. Novice Soar users are
advised to skim this section for future reference, rather than read it for understanding
immediately. Section 3.4.3 briefly discusses a sample expensive chunk.

3.4.1. Correctness, generality, and backtracing
There are two aspects to good chunks: correctness and generality. These aspects trade off:

incorrect chunks are often that way because they are overgeneral. There is usually an
identifiably optimal degree of generality, in which the chunk conditions are the weakest that
guarantee that the knowledge contained in the action is correct. This applies to both forms of
chunks learned in the sample implementation (operator application chunks, which modify the
state, and search control chunks, which create preferences for operators).

Chunk conditions are created by a dependency analysis on subgoal results, called backtracing.
Backtracing is a form of operator regression (Mitchell et al., 1986). In Soar terms, backtracing
involves tracing through working memory elements that were added and deleted from working
memory during processing in the subgoal, beginning with the subgoal result and working back to
the working memory elements that it depends on.

Figure 5 shows a simple example of subgoal-result generation and backtracing. The initial
state is created from supercontext augmentations augl and aug2. Augmentations aug3 and aug4
are copied down directly from the supercontext. Operator 1 tests only the state, and generates
augmentation augS. Operator 2 generates aug6 from aug3 and aug4. Operator 3 generates aug7
from aug5 and aug3. Finally, Operator 4 generates aug8, the subgoal result, from aug7.
Backtracing follows this dependency path backwards, starting with aug8. Aug6, and before that
aug4, are irrelevant to the subgoal result, and therefore are not included in the chunk conditions.
Note that every operator must test the state, either to edit the state directly or to reach the objects
that will be edited, and therefore backtracing will always reach the augmentations used to
generate the initial state (augl and aug2, in the figure).

(^att augl problem solving
auqi ltaug2 au bactrcig (^art

.. auq32 'aug8 aug8)
* aug3) ug3

chunk hg4
conditions chunk

/ actions

subgoal

stae -opl- aug5 op3 aug7- op4

Xau g3
aug4 op2-aug6

Initial sate:
proposal Operatorl Operator2 Operator3 i Operator4

Figure 5: Simple backtracing example

21

Productions that create desirability preferences (other than the require and prohibit
preferences, which are special cases) are not backtraced through, even if they bring about a
particular operator selection. The underlying premise is that search control affects only the
efficiency and not the correctness of problem-solving (Rosenbloom et al., 1987). Consequently,
encoding various forms of knowledge in terms of search control rather than conditions on
opc:.itor proposal is a powerful mechanism for modulating the generality of chunks.

3.4.2. Preventing incorrect chunks
One of the main causes of incorrect chunks is the exhaustion problem. One way this can arise

is if an operator is proposed with very weak conditions, and made worst so that it will be selected
only when the set of other operators is exhausted. This is a convenient programming technique,
as illustrated by several operators in the sample implementation (global-constraint-failed,
selected when there are neither simulate-trip operators nor a schedule-succeeds operator
proposed; trip-succeeds, selected when all simulate-segment operators are exhausted; and
compute-resources, selected when the operations for a particular segment are exhausted). The
drawback relates to subgoal results based on effects of that operator: the weak proposal
conditions present little for backtrace to work with, so the conditions of the resulting chunk will
be wildly overgeneral.

The sample implementation shows two responses to the exhaustion problem. The first
response, which is to learn nothing, is illustrated in the TAQL constructs (TCs) in Figure 6 (they
appear in the code on pages 33 and 34). The global-constraint-failed augmentation is added by
task*ao*global-constraint-failed and detected by eo*,ask, which assigns the novalue evaluation
for that case. This triggers a Soar feature (use of the quiescence t goal augmentation) that allows
a production to return a result with no chunk being built. A novalue evaluation is interpreted as
knowledge that this path is fruitless, with no corresponding knowledge (or desire to generate it)
about how to assign credit.

(apply-operator task*ao*global-corstraint-failed
:space task
:op (global-constraint-failed ^reason <reason>)
(edit :what state

:new (global-constraint-failed <reason>)))

(evaluate-object eo*task
:space task
:what lookahead-state

symbolic-value (novalue
:when ((state 4global-constraint-failed)))

Figure 6: Novalue: backtracking without chunking

A second response is to make up for the lack of constraint in the proposal productions by
adding conditions, in either the proposal or the application TC for an operator. This is illustrated
in the TC in Figure 7 (which appears in the code on page 36). Sometimes these conditions arise
naturally, as when it is necessary to bind information that will be used later. For example,
Condition 1 binds the trip, truck, and driver elements that are removed by the edit clause of the
TC.

22

(apply-operator sim-late-trip*ao*trip-succeeds
: space sl ate-trip
: op (trip-succeeds ̂ assigment <new>)

:when ((operator (car <new>) Condition 1
"trip <trip> ,driver <driver> "truck <truck>))

the chunks that update the schedule in the supercontext will
loop unless we're careful, because one chunk rejects the

; current head of the list, and a second adds the new head.
; we can prevent looping by making the chunks specific to the
; current head of the list. <current-trip-name> matches a
; constant, and that constant will appear in the chunk:

:when ((superstate Acurrent-schedule <current>)
(operator (car <current>) Atrip <current-trip>)
(trip <current-trip> 4naume <current-trip-name>)) Condidon2

(edit : what superstate

;; push the new trip onto the head of the schedule list:
:replace (current-schedule :by <new>)

:remve (trip <trip>)
: remove (driver <driver>)
:remove (truck <truck>)))

Figure 7: Conditions that bind constants

Frequently, however, building hazard-free chunks requires a comprehensive approach,
combining an appropriate representation of the data with correct manipulations at run-time. The
Soar manual (beginning on page 119) discusses data representation issues, among them
techniques for achieving maximally general (but still correct) chunks. The remainder of this
section presents methods of manipulating data to affect chunk generality.

Returning to Figure 7, Condition 2 uses constant binding to ensure that chunks built from
replacing the head of a list do not cause problems. Constant binding exploits the fact that Soar
replaces object identifiers in chunks with variables but leaves constants in place. Thus, binding a
constant makes the chunk specific to the name of the element pushed on the list. If this were not
done, the chunk built from severing the pointer to the first element of the list would fire
whenever that pointer were set.

Condition 2 also has a less obvious effect. Consider the two simulate-trip operators in the
trace excerpt in Figure 8 (the excerpt begins on page 44). As the second simulation (o380) is
being carried out, a constraint violation occurs. The default productions convert the violation
into a failure evaluation (for the first simulate-trip operator, since it is the one being evaluated).
The failure evaluation results in a search-control chunk (p9 4 6) that in the future will reject
operators similar to c374 under similar circumstances.

Figure 9 shows p946 (with some of the more ghastly conditions excised; the full chunk appears
in the chunk listing on page 52). The effect of Condition 2 is to cause the brown/traveler/tripl
assignment to be rejected specifically when the previous assignment involved trip3. There is no

23

34 0: o344 ((brown) (traveler) (tripl) sizmlate-trip) evaluate-object)

38 0: c374 ((brown) (traveler) (tripl) simlate-trip)

68 0: o419 (trip-succeeds)

69 0: o380 ((gray) (piper) (trip2) simlate-trip)

112 0: o938 (weight-limit-exceeded local-constraint-failed)

Evaluation of operator c374 (simlate-trip) is failure
Build: p946

Figure 8: Lookahead leading to search-control chunk p946

clear purpose for this condition, in terms of knowledge usefully captured by the chunk. In fact,
this condition makes the chunk overspecific, since the relevant information is only that trip2
cannot be completed with a small truck (such as piper).

Questions of usefulness aside, the trip3 test illustrates how chunking can be affected by

(sp p96
(goal <g2> Adegjr <d4> Aprbla-1space <pl> Astate <d2>

Aoeraor <0i> +)
(problem-space <pa> [...) Anm task)
(state <d2> AIdwy.att* trae Adriver <d3> tX.uck <t4> ^trip <ta>

(driver <d3> Adrive-time 12.5 -name gray)
(truck <t4> AIvlm 400 Aweight-limit 5000 Atype small Aam piper)
(trip <t3> -IAm trip2 Afirstsement <sl>) trip2
(segment <*I> Anams segmenti ftrip trip2 Ascurc gazy Anext..segment <.2>)
(segment <s2> Aflame segmt2 Atrip, trip2 Anext-segmmnt <s3>)
(segment <s3> Aflame segmsnt3 Atrip trip2 ^zext-segment <s7>)
(segment <a7> Aload-shipment carpet -Aload-shipment NIL Anams segwent 4

Atrip trip2 Anext-segmnt <s8>)
(segment <*8> Aunload-shipment carpet -Aunload-shipmnt, NIL

Aname segmentS Atrip trip2 Anxt.egment <s9>)
(segment <s9> Alad-shipment newsprint -Alcad-shipment NIL ^ame segment6

"trip trip2)

(operator <ci> ftrip, <t2>)
(trip <t2> Aam trip3) trip3
(operator <ci> [... I1 Anams simalate-trip <01>

Atrip <t5> truck <tl> Adrivar <dl>)
(trip <t5> Aname tripi) trip]
(truck <ti> A"volm 640 Awight-.limit 10000)
(driver <d3> Ariv-tim 11)
(goal <gi> Aobjc NIL Astate <s6>)
(state <06> Ashipmnt <sS> <s4> "licese <12> Acity <c2>)
(shipment <s5> Aname newsprint Aweight 6000.0 A^.olum 400.0

Aload..tims 0.2)
(shipent <s4> Aname carpt Aweight 500.0 A'volm 100.0 Aunload-.tjme 0.25

Aload..tims 0.2)
(license <12> Atruck..type smiall AIolder gray)
(city <c2> ^am gazy Atruck piper '-driver gray)

(goal <92> Aoperator <i) <>-

Figure 9: The search-control chunk p946

24

manipulating the data. Figure 10 shows how backtracing comes to include trip3 in the chunk
conditions. The simulate-trip*ao*trip-succeeds TC (of Figure 7) replaces the current-schedule
augmentation while testing trip3. In Figure 10, the new current-schedule augmentation is Exit (I
because we know it is a list object, and xz because unlike with operators we can not determine
its identifier from the trace). This creates a dependency of lxxx on trip3. When lxxx is tested
during the application of o938 (the simulate-trip*ao*local-constraint-failed TC is on page 37),
the dependency is extended to the subgoal result. When the chunk is built, o938 acts as a bridge
from the result to lxxx, and o419 acts as a bridge from lxxx to trip3. Trip3 was copied directly
from the higher task context, so backtracing includes it in the chunk conditions. The general
technique for ensuring that a particular condition (based on a supercontext augmentation) is
included in a chunk is to ensure that each operator in the subgoal extends the dependency, by
creating an augmentation while testing a previous augmentation that depends on the one from the
supercontext.

Note that the augmentation created by one operator to be tested by the next need not be
meaningful beyond the function of extending the dependency. In a variant known locally as
beading, the augmentations are simply new idertifiers, each replaced by the next. Backtracing
then strings ap the identifiers like beads, backtracing through whatever augmentations were
tested in creating them.6

task
trip3 -

selection
evaluation

tas state-copy

c374\ o380\

o41 N .o938/

:when (trip3)
:.Problem space *replace (current-schedule :by <new>)

Figure 10: Backtracing to the trip3 condition

A second instance of constant binding, shown in Figure 11, does provide a useful constraint on
p946. During the application of o380 (between decision cycles 69 and 112 in Figure 8),
Condition 3 causes trip2 to be included in the backtrace and eventually in the chunk conditions
(Figure 9). This test is semantically relevant to the constraint that small trucks are not able to
complete this trip.

For completeness, we also account for the appearance of tripl (the third and last trip name) in
the conditions of p946. The tripl test occurs because of the simulate-trip*ao*local-constraint-
failed TC (page 37), which applies o938. The relevant condition (corresponding to Condition 2)

6The bead metapnor is due to Rick Lewis.

25

(apply-operator s -,late-segment*ao*compute-resources
:space si-ulate-segment
:op compute-resources

add the updated resources to the object:
(edit :what (:none resources <resources>)

;; add the trip, to make sure that the segment and trip r .ay
;; tied together in the chunks that update the resources.
;; if we don't do this, the chunks could transfer
;; incorrectly to the same segment of another trip.

:new (trip <trip-name>
:when ((segment <segment> ^trip <trip-name>))) Condition 3

Figure 11: Conditions that prevent ov'rgeneral strch-control chunks

tests the name of the last trip pushed onto tL cui:ent schedule (tripl, by o419). Note that o938
accesses tripl through lxxx, extending the dependency of the subgoal result on trip3 as described
at the top of the previous page.

3.4.3. Expensive caunks
The problem of expensive chunke (Tambe et al., 1990) is a manifestation in Soar of the utility

problem in explanation-based learning (Minton, 1985). It can arise whenever a representation
uses sets (multi-attributes), such as that of the top state of the sample implementation.

The chunk in Figure 12 implements the task operator (the chunk also appears on page 56). It
reads the top-state and creates the solution (the actions are elided). It is expensive to match
because of the combinatorics in the <s4> condition (second from the top). The Nlicense test can
match 33 ways, the "city test 22 ways, the "driver test 33 ways, etc. The match cost is
proportional to the product of these terms.

For this task, a set-based representation is a great convenience. However, the general solution
to expensive chunks is to use structured representations, such as lists.

26

(up p1 5 4 8

(goal <gi> Abjent NIL Att <a4> 0Aprblemspace -<p1> Aoparator <01>)
(stat. <*4> "douiny.att* true A'licecee <13> <12> <11> Acity <c2> <cl>

Adriver <d2> <dl> <d3> '*truck <t4> <t3> <t5>

(problem-space <pl> Aiam top-space)
(license <13> ftruak-type small "bolder gray)
(city <c2> Aam gary truck piper traveler 'driver gray broon)
(license <12> ftruak-type big Ahdldar green)
(city <ci> Aa icily fruck cannonball A&river green)
(license <11> ftruck-type mediumn 'bolder broom)
(driver <A2> *-ame gray 4dzyv-tim 12.5)
(truck <t4> ftype small Aflame piper Avolum 400 Avight-1lIint 5000)
(trip <t6> -namm tripl Aftrst.segmt <s3>)
(segment <s3> Ascurce gary)
(driver <dl> A dzive..ti.e 11 Aflame green)
(truck <t3> Avolum 1280 Aueight-14Imt 32000 Atype, big Aceame cannonball)
(trip <t2> Aam trip3 Aftrat..egoat <s2>)
(segment <s2> A1source indy)
(driver <A3> Adzive...tii 11 ',nameo brown)
(truck <t5> A'volums 640 Aeight-1i-it 10000 Atype mediumi naxa traveler)
(trip <tl> Anazoo trip2 Afirst-segment <si>)
(segment <&I> Aso.rce gary)
(operator <o1> A name do-task AeoagtrolStUff* <c3>)
(control-stuff* <c3> Aedit-from=.subgoal-anabled* true)

Figure 12: An expensive chunk

27

4. Sample Implementation in Soar

4.1. Introduction
This chapter presents a sample implementation for the shipment scheduling assistant. This

implementation serves as a reference for the design given in Chapter 3.

Section 4.2 is a program listing, organized by problem space. Section 4.3 is an execution
trace, followed by statistics on the run and the source code. Section 4.4 is a listing of th, chunks
generated during the run, useful for cross-referencing with the trace, and as a reference for the
discussion of learning in the previous chapter. For information on obtaining on-line versions of
these files, send mail to soar-requests@cs.cmu.edu.

4.2. Program Listing
;*- Mode: TAQL -'-

P;;; File : /aesca. .edu/uer/altman/taql/truck/tuck. taql
A;;; Iuthor : Erik Altmann
Created On : Sat Sep 28 20:56:38 1991

*;;; Last Modified By: Erik Altmann
;; Last Modified On: Wed Jun 3 20:14:15 1992
;;; Update Count : 113
;;; Soar Version : 5.2.1

";;" TAQL Version : 3.1.4

PURPOSE
•;;" Soar implementation of the Shipment Schechling Assistant,

a.k.a. the Trucking Task. Runs with chunking on. See trace.txt
for a trace, and chunks.soar for the corresponding chunks.

TAI OF CONTENTS
In terms of spaces: top-space, task, simlat-trip, and

-imlate-segment. To reach the code for SPACE, search for
"ps*SPACE", which will locate the propose-space TAQL construct
for that space.

(C) Copyright 1991, Carnegie Mellon University, all rights reserved.

object/attribute pairs for Soar trace, the value of each attribute
will be printed.

(trace-attributes '(;; attributes of the simulate-trip operator (in the t3ak space):
(operator driver)
(operator truck)
(operator trip)

;; attributes of operators in the simlate-trip space:
(operator segment) ; simalate-secgWnt
(operator reason) ; trip-succeeds

attributes of operators in the simulate-segment space:
(operator shipment-name)
(operator volume)
(operator load-time)
(operator unload-time)
(operator weight)
(operator time)

28

top-space:

the top context contains the task state and the task operator. the
task-state contains all the static information for the task. the

;; task operator is bare.

the space is proposed automatically by taql'a run-time support, so
;; there is no ps*top-space to.

(propose-task-state pts*task

:new (weather rain)

:new (driver
((driver 'a green Aunion yes Adrive-tims 11))
((driver 4naam white 'union no Adrive-tim 12.5))
((driver 'name brown ^union yes Adrive-time 11))
((driver "name gray Aunion no Adrive-time 12.5)))

the hierarchy of licenses is implicit in the 'holders:
everyone holds type 1, fewer hold type 2, fewest hold type 3:

:new (license
((license 'name class3 ^truck-type big

Aholder green + &, brown +))

((license 'nammg class2 Atruck-type medium
'holder green + &, brown + &, white +))

((license Aname classl 'truck-type small
'holder green + a, brown + &, white + 6, gray + 6)))

:new (truck
((truck 'name cannonball Atype big 'weight-limit 32000 -volume 1280))
((truck nanm piper Atype small Aweight-limit 5000 volum 400))
((truck Aname traveler 'type sdium 'weight-limit 10000 ^volum 640))
((truck 'name queen-bee ftype medium 'weight-limit 10000 Ivol. 640)))

:new (city
((city 'name gary 'state indiana

^driver brown + 6, gray + &
Atruck piper + &, traveler +))

((city ^me indy state indiana
-driver green + &, white + a
Atruck cannonball + &, queen-bee + 1))

((city 4nate utica *driver nil 'truck nil 'state illinois))
((city 'name viola Adriver nil 'truck nil 'state illinois))
((city 'name warsaw Adriver nil 'track nil ^state indiana))
((city Aname kokomo 'driver nil ftruck nil Astate indiana))
((city ^name attica ^driver nil ^truck nil ^state indiana))
((city name cook ^driver nil Atruck nil Astate indiana)))

new (shipment
((shipment 'name typewriters Aweight 1000.0 ^volm 200.0

^load-tim .2 'unload-tim .25))
((shipment ^name carpet ^weight 500.0 'volume 100.0

Aload-timo .2 'unload-tim .25))
((shipment ^name newsprint "weight 6000.0 ^volume 400.0

Aload-time .2 Aunload-tims .25)))

29

trip 1:
:now (trip

((trip **name tripi "firs*-asmant <81>)
(segment <s3.> -"m segmntl *road u30 ^source gary ^dest warsaw

4load-shipmt typewriters
"tmload-shipment nil
"trip tripi
A"xt..seet. <s2>)

(segment <&2> "name segmnt2 ^road u3la "source warsaw "dest kokono
Aload...sipmerit nil
"unload-shipment nil
"trip tripi.
"me t-semnt, <s3>)

(segment <a3> "name segmnt3 ^road U31b ^source kokomo Adest indy
"load-shipment nil
"lmload-shipment nil
^trip tripi
Anas-egent <&4>)

(segmnt <s4> Anm segmnt4 "road 174 "source indianapolis "dest attica.
Aloadsipment nil
"unload-shimnt typewriter&
"trip tripi)))

trip 2:
:new (trip

(segment <*1> ^name semntl "road u4la Asource gary Adest cook
"load-shipment nil
"unload-shipment nil
"trip trip2
"next-semet <s2>)

(segment <s2> Anam segmnt2 "road iflob "source cook "dest utica
"load-shipment nil
"unload-shipment. nil
"trip trip2
^nazt-semnt. <&3>)

(semnt <s3> "name segmnt3 "road i*Oa "source utica ^dest viola
"load-shipment nil
" unload-shipment nil
"trip trip2
"next-segment. <s4>)

(segment <s4> "name segment4 "road ifSOa "source viola "dast utica
"load-shipmnt carpet
"unload-ship ment nil
"trip triLp2
" next-segment <sS>)

(segment <a5> "name segmnt5 "road i80b "source utica. "dest cook
"l-oad-shipment nil
"unload-shipment carpet
"trip trip2
"next-segment <&6>)

note the several nil fields. trip2 ends oddly, with doing a load:
(segment <&S> "name segmnt6 "road nil "source cook ^dent nil

"load-shipment newsprint
"unload-shipment nil
"trip trip2)))

trip 3:
new (trip

((trip "name trip3 "first-segment, <&1>)
(semnt <s1> "name segmntl "road 17Ob "source indy "dest yale

"load-shipment nil
"unload-shipment nil
trip trip3
"next-segmnt <s2>)

(segment <&2> "name segmnt2 "road u4le ^source yale "dust attica
"load-shipmient nil
"unload-shipment nil
^trip trip3)))

30

:new (road
((road 'name u30 **grade seondary ^length 70.0))
((road -*nm u3la Agrade seodr'length 70.0))
((road Alhm u3lb 'grade primary 'length 40.0))
((road Aname 174 ^grd primary ^length 60.0))

((road 'nm u4la Agrade secondary 'lengtb 20.0))
((road A'ii iSOb 'grade primary 'length 90.0))
((road Aflame ISO& Agrade primary Alength 100.0))

((road Anon 17Ob Agad primary Alength 90.0))
((road 'unsm u4lo ^grade secondary 'length 90.0))))

;entailment& thai. encode maximm speeds for various road grades,
given the weather, the apesd" aumnt the corresponding road
objects.

;; entailments for fair and snow are missing, but aren' t necessary
for the given task.

(augment a*top-space*speed-when-rainy-on-primary
:space top-space
:when ((top-stat. Aweather rain Aroad Cr>))
:what (:none road <r>)
:new (speed 55)
:when ((road <r> ^grade primary)))

(augment a~o-po~po-bnriyo-eodr
space top-space

:when ((top-state 'weather rain 'road Cr>))
:what (:none road <r>)
:new (speed 50)
:when ((road <r> ^grade secondary)))

(augment &*o-pc~po-bnrii-ntrir
space top-space
:when ((top-state Aweather rain Aroad <r>))
:what (:none road <r>)
new (speed 35)

:when ((road <r> 'grade tertiary)))

once the spees are coumted, the time to traverse each road can he
computed, given the length. the times also augment the road
object.

(aumnt &*o-pc~i -rnlnt-n-pa

Space top-space
:when ((state 'road <r>)

(road <r> Alength <1> AspeedCs)
:what (:none read Cr>)
:new (time (compute <1> / <s>)))

;propose doing the scheduling task:

(propose-task-operator pto*task
:op do-task)

31

*;the task space

applies the schedule operator from the top-apace, by trying various
assignments of trucks and drivers to trips.

(prpose-space ps~task
:function (apply operator do-task)
:space task)

(propose-initial-state pis*taak
:space task

create a set each of the available drivers and trucks and the
;trips that have to be covered, we'll update this set as

assignments are made (,ienlate-trip*ao*trip-succeeds).

:copy (driver truck trip)

initialize the current-schedule, use a damy st-late-trip
operator, so that the various conditions that test the name of
the last assignment on the curnt-scbedule for chunking purposes
will work without a special a&* for the eimpty list.

note: below. "list" is a data macro, this clause create& a
list who&* car is the dummy operator. the syntax used is the

;;third form of £CTION-SPIC (see the !AQL manual, p. 52).

:new ((Acurrent-schedule (list <dummy>))
(operator <dummy> aams siinlats-trip Atrip <dusuzy-trip>)
(trip <dmiy-trip> ^nam dummy)))

32

;; generate an assignment (a <driver, truck, trip> tuple), and propose
simlating the trip.

the conditions of the operator proposal generate the assignments
that embody the immdiate constraints, like the truck and the

;; driver being in the first city of the trip. these constraints

are easy to test, given the structure of the information on

the top state.

(propose-operator task*po*smulate-trip
:space task

:when (;; bind a driver, truck, and city:

(state 'driver <driver> 'truck <truck> 'trip <trip>)

;; constrain the driver and truck to be in the same city:
(top-state 'city <City>)

(city <city> Anane <city-name> ftruck <truck-name> Adriver <driver-name>)
(truck <truck> 'naxm <truck-name>)

(trip <trip> ^name <trip-name> Afirst-segment <segment>)

(segment <seamnt> Asource <city-name>)

;; constrain the driver to be licensed to drive the truck:
(top-state 'license <license>)
(driver <driver> nams <driver-name>)

(truck <truck> Atype <truck-type>)

(license <license> ^truck-type <truck-type> ^holder <driver-nae>))

:op (simlate-trip 'driver <driver> Atruck <truck> ^trip <trip>))

slmlate-trip is applied in a subgoal, by the samlate-trip space.

it succeeds if no local constraints are violated, such as resources
going negative, the termination conditions are in the next two TCs.

note: the simulate-trip operator itself is as an easy way to
represent an assignment, so we build up the schedule by adding

simlate-trip operators to a list, called 'current-scbedule.

simlate-trip succeeds when the aimlate-trip operator itself has

been added to the current schedule (by the subgoal). terminate the

operator when this happens:

(apply-operator task*ao*siAulate-trip*trip-suceeded
:space task

:op simlate-trip
terminate-when ((state A current-schedule <schedule>) ; bind "cons cell"

(operator (car <schedule>) 'trip <trip>) ; bind its "car"

(operator ftrip <trip>)))

terminate simalate-trip if the subgoal signals an local constraint

violation, local-constraint-failed is detected as a failure
condition by eo*task (below).

note: multiple :terminate-when clauses in one TC are conjunctive,
so we need two apply-operator TCs to represent the two conditions.

(apply-operator task*ao*simulate-trip*constraint-violation

:space task

:op simulate-trip

terminate-when ((state Alocal-constraint-failed)))

33

when there are no trip. left, we're done:

(propose-operator task*po*schedule-sucoeeds
: space task
:when ((state out-schedule <last-assignmnt> - ^trip))
:op (sohedule-succeeds Acouplete-schedule <last-assignmnt>

Areason no-trips-left)

blad the name of the previous trip. this causes the search
;; control chunks that &rise from detecting the success of this trip

to include the previous trip name in their conditions:

:when ((operator (car <last-assignment>) 4trip <last-trip>))

we know that the current schedule is complet, so put that
information on the state. this signals success (via eo*task, below).

(apply-operator task* o*schedule-succseds
:space task

:op (schedule-succeeds complete-schedule <schedule>)
(edit :what state

:new (complete-schedule <schedule>)))

be prepared for a global constraint violation. propose an operator
that represents such a violation occurring, then make it worst, if
at soms point there are trips left but no assignments for them,
then neither simulate-trip nor schedule-succeeds will be proposed,
so global-constraint-failed will be selected by default.

note: this illustrates a general prograing technique, which is
to use the selection of an operator with a worst preferences to
implicitly represent the knowledge that each of a set of options
has been exhausted. however, because such a selection is not
based on any explicit knowledge that can he backtraoed through,
chunks learned from results of such operators can be vastly
overgeneral. one solution is to not learn from such results (see
eo*task).

(propose-operator task*po*global-onstraint-failed
: spa task
:when ((state 'trip))
:op (global-constraint-failed Areason trips-level-over))

(prefer task*p*global-constraint-faild*worst
:space task
:op global-constraint-failed
:value worst)

(apply-operator task*ao*global constraint-failed
:space task
:op (global-constraint-failed 'reason <reason>)
(edit :what state

:new (global-constraint-failed <reason>)))

34

sigma tak success and local and global failures, this TC causes
;a lookahead instance of the task space to exit,* causing another
si-late-trip alternative to be tried out.

(evaluate-object eo*task
:space task
:what lookahead-state

;succeed when there's a complete schedule (generated by
task*ao*schedule-xucceeds). Soar'sa default productions
propagate success to the top of the lookahead-searob stack,
causing Soar to learn search-control chunks that remmber the

;sequence of alilatei-trip operators.

symbolic-value (success
:when ((state 'complete-schedule)))

backtrack if there's been a global-contraint-failed, the novalue
;evaluation tells Soar not to learn anything. we don't know

which assignment caused the problem or why, so there'sa nothing
;useful to learn (see note at taak~po~lobal-conatraint-failed).

symbolic-value (novalue
:when ((state ^global-constraint-failed)))

backtrack (and learn that the last assignment was a bad choice)
If there's a local-constraint-failed (created by
task~ao*& silat-trip*constraint-violation).

symbolic-value (failure
:when ((state ^local-constraint-failed))))

goal-test knowledge, to detect success and failure when not in
;lookahead seareh. replicates the knowledge in eo*task.

(goal-test-group gtg*task* success
aspace task
g roup-type success
:when ((auperapace 'name top-apace)

(state ^ccmplete-achedule)))

(goal-teat-group gtg*taak*failure
space task
:group-type failure
:when ((xuperspace Anams top-space))

;disjunctive failure test.
:test (failure

:when ((state 'global-constraint-failed)))
:text (failure

:when ((state 'bocal-constraint-.failed))))

return the comlete schedule to the top state.

note; with this !C, Soar builds a chunk that applies the task
operator (proposed by pto'task) after learning. without this TC,
no chunk will be learned for the task operator (!AL' a runtims
support automatically terminates the task operator when a
successful or failed state is reached in the apace that applies
it); after learning, the task operator will impasse, and chunks
learned during lookabead search will guide Soar directly to a
solution in the subspace without further impasses.

(result-superstate rs*task*success
space task
gqroup-type success

(edit :what superstate
:when ((state 'complete-schedule <schedule>))
new (complete-schedule <schedule>)))

35

the msimulate-trip space

applies the siinlate-trip operator from the schedule "pae.

if the simulation succeeds, trip-ucceeds pushes the superoperator
onto the current-schedule list on the superstate. if it fails (due
to a local constraint failure), local-constraint-failed pushea this
assigmnt onto the current schedule, and returns that as the value
of Alclcntan-ald

(propose-spae pgs4-1<e-trip
: function (apply operator simlate-trip)
:sapace aimlat-trip)

copy the trip/truck/driver set down from the superstate, for
convenience, establish the volum and wight-limit of the truck,
and the naimu tim the driver can drive, as initial values of
those resources.

(propos-initial1-state pis*mimlato-trip
:sapace simulate-trip
: when ((superoperator ^truck <truck> Atrip <trip> Adriver <driver>)

(driver <driver> Adrive.tim <drive-time>)

: new (driver <driver>)
: new (truck <truck>)
:new (trip <trip>)
: new (initial-resources ((resources Auret-tim <drive-tim>

Auret-volms <volume>

simulate the driver driving the truck over each segment of the trip
in turn, after each segment, the similate-segment operator updates

,the resources.

(propose-operator s-imalte-trip~po~simlate-segmant
: space simlate-trip
* select-once-only so first semnt is only done once

;propose doing the first segment, using the initial resources:
:op (simulate-segment Asegment <first> ^resources (list <roe>)

:when ((state Atrip <trip> Ainitial-.resuces <res>)
(trip <trip> Afirst-segment <first>))

at each segment, propose doing the next one, using the current
resources:

* op (simulate-segment Asegment <next> Aresources <roe>
:when ((operator Aemnt, <current>)

(semnt <current> Anext-segiment, <next>)
(state Acuretresouces <roe>))))

operator simulate-segment is applied it. a subgoal, in the
,, imlate-semnt space. the space returns a resource object,

pushing It onto the list Acuret-resources (creating the list if
it has to). the resource object specifies the segment it was
constructed in, allowing us to test we can terminate the operator.
the resource object also specifies A failed true if any resource
(volme weight-limit, time) ran out during the segment, or if
other constraints were violated (see
simulate-segment*ao*coupute-reaources).

(apply-operator simulate-trip*ao*simulateagmkent
: space simulate-trip
: op (simulatei-segment ^semet <segmnt>)
terminate-when ((state Auretresouces <res>)

(resources (car <roe>) Aseimnt <segnnt-nm>)
(segment <segmnt> Aflame <segment-name>)))

36

;; be prepared to declare the simlation successful. propose
trip-succeeds and sake it worst, so that it's selected only
when ther are no segments left to drive over.

;; in the proposal, create a new list whose car is the current
;; ssignmnt, and who" cdr is the existing schedule from the

super;pace. make this new list an azgument to the operator,
which can return it directly to the superstate (becoming the

;; updated schedule).

(propose-operator isul& ate-trip*po*trip-succeeds
:space simalate-trip

;; bind the superoperator, and the current schedule:

:when ((superstate 4current-schedule <last-assignment>)
(supergoal Aoperator <so>))

;; put the updated schedule on the operator, so that the operator
application TC can return the updated schedule to the

;; superstate. (updating and returning requires two steps, so
doing the update here allows the apply-operator TC to return
the result.)

:op (trip-succeeds 4assignment (cons <so> <last-assignment>))))

(prefer sml ate-trip*p*trip-succeeds*worst
:space s&mlate-trip
:op trip-succeeds
:value worst)

if the assignment succeeds, return the new schedule to the
supercontext, and update the superstate's trlp/truck/driver sets.

(apply-operator simlate-trip*ao*trip-suceedf
:space simalate-trip
:op (trip-succeeds assignmsnt <new>)

;; bind the information we need to update the trip/truck/driver sets:

:when ((operator (car <new>)
Atrip <trip> 'driver <driver> ^truck <truck>))

the chunks that update the schedule in the supercontext will
loop unless we're careful, because one chunk rejects the

;; urrent head of the list, and a second adds the now head.
; we can prevent looping by making the chunks specific to the

current head of the list. <current-trip-name> matches a
;; constant, and that constant will appear in the chunk:

:when ((superstate current-schedule <current>)
(operator (car <current>) trip <current-trip>)
(trip <current-trip> name <current-trip-nams>))

(edit :what superstate

;; push the new trip onto the head of the schedule list:
:replace (current-schedule :by <new>)

trip is taken care of:
:remov (trip <trip>)

;; driver and truck are used up:
:remove (driver <driver>)
:remove (truck <truck>)))

37

the simslation fails if a resource went negative, the value of
'reason is printed in the trace (see trace-attributes).

(propose-operator s4ilatetrip*po*local-constraint-failed
space simulate-trip

;as in simulatst-task~poftrip-succeeids:
:when ((supergoal. -*operator <so>)

(superstate 4current-schedule <last-assignment>))
:op (local-costraint-failed ^failed-assignxient (cons <so> <last-assignment>)

Areason <reason>)

;failure condition:
:vhen ((state Acurrent-resources <res>)

(resources (car <rem>) Afailed true ^reason <reson>)))

if local-constraint-failed is proposed, select It Immdiately.

(prefer alatk-trip*p*local-constraint-faild* require
:space salate-trip
:op local-constraint-failed.
:value require)

if the simulation fails, return local-constraint-failed to the
supercontext. don' t bother updating the trip/trck/driver sets,
because the supercontext will signal a failure condition and exit

(apply-operator &imlate-trip*ao*local-constraint-failed
:space simlate-trip
:op (local-constraint-failed "failed-assignment <schedule>)

;to prevent chunks that will loop in other cases (a in
simalata-trip*aaftrip-succeeds):

:when ((superstate -current-schbedule <cur rent>)
(operator (car <current>) 'trip <current-trip>)
(trip <current-trip> Anaime <current-trip-namie>))

;failure termination condition on the superoperator:
(edit : what superstate

:new (local-constraint-failed <schedule>)))

38

the simalate-segment space

;applies the &J-11iate-sagment operator from the simlate-trip space.

the space succeeds if the segment can be completed with the volum
and weight currently available in the truck, and if the time left
the driver is enough to cover loading, driving, and unloading, it
fails otherwise, the return value is a resources object, pushed
onto the 'curet-resources list of the superstate. the list is
created if it isn't there, if the segmnt fails, the resources
object is flagged with 'failed true and a 'reason.

the compute-resources operator represents the oddball const.aint
L.at white can't drive through illinois.

(pr-#ose-space pa*&Imulate-segment
function (apply operator simulate-segment)
aSpace simlate-semnt)

the arguments to the slaperoperator are the semnt to do and the
resources to do it with, unpack the resources so we can modify
then locally, unpack the segment fe r convenience.

(pr-- ;e-initi..l-state pis*simulate-segmmnt
:pace simulate-semnt

:when ((superoperator 'segment <sag> 'resources <res>)
(resources (car <res>)

'current-volme <volume> 'current-time <time> ^current-weight <weight>))
:new (segment <sag)
new (current-volum <Volume>)
:new (current-tim <time>)
:new (current-wisigbh; <weight>))

when tae 'shipment-name of a seg.aent is non-nil, then pxopose loading
that shipment:

(propose-operator ximulIe-segmsnt*po*load
aspace simulate-segxw3nt
select-once-only load only once per segmnt
:op (load ^shipment-name <shipment -nam> 'volume <volume> ^load-time <load-time>

-weight <weight>)
:when ((top-state 'shipment <sh)

(shipment <sh> ^name <.shipmant-name> 'weight <weight>
'volume <volume> 'load-tim <load-time>))

:when ((state ^segment <s&u,>)
(segment <sag> - 'load-shipment nil 'load-shipment <shipment-name>)))

load the shimnt by adjusting the resources:

(apply-operator similate-rscgmsnt*ao*load
aspace simulate-segment
op (load ^weight <weight> 'volm <volm> ^load-tims <load-time>)

:when ((state 'current-weight <current-weight> 'current-volm <Current -volume>
'cnrrent-tim <current-time>))

(edit :what state
rer lace (current-weight :by (compute <current-weight> - <weight>))
:replace (current-volume * by (compute <current-volume> - <volumw.>))
replace (current-tim :by (compute <current-tims> - <load-time>))))

39

similarly for unloading. for correctness, loading has to be done before
unloading (see the explanation above sinalate-segmntc*load*unload*better).

(propose-operator simlate-segmsnt*po*unload
:space simulate-segment
:select-once-only ,unload only once per segment
:op (unload 'shipmnt-nam <shipment-name> 'volums <volume>

4unloadtim <unload-tim.> 'weight <weight>)
:when ((top-state Ashipmnt <sh>)

(shipment <sh> 4name <sipmnt-nams> 'weight <weight>
Avolume <volm> 4unload-time <unload-time>))

:when ((state ^segmnt <seg>)
(semnt <seg> - 'unload-shipment nil 'unload-shipment <shipment-nam>)))

(apply-operator s4Imuat*-seginnt*ao*uuload
:space ail1at-segment,
op (unload 'weight <weight> Avolume <volume> Aunload-time <unload-time>)
:when ((state ^current-weight <cur rent-weight> Acurrent-volume <current -volume>

'current-tim <current-time>))
(edit :what state

:replace (current-weight :by (compute <current-weight> + <weight>))
:replace (current-volume :by (compute <current-volume> + <volume>))
replace (current-tims :by (compute <current-time> - <unlIoad-tim>))))

adjust the tim resource by the length of tim it takes to drive
,the segment.

(propose-operator sIaulate-segment*po*drive
space sindate-segment
sel1ect-once-only drive only once per segment

:op (drive ^tim <time>)
:when ((top-state 'road <road>)

(state -segment <seg> -road <road-name>)
(semnt <seg> - Adest nil)
(road <road> 'name <road-name> ^tim <tims>))) entailed

(apply-operator simulate- segment*ao*drive
space si-1late-segment

:op (drive Atime <time>)
:when ((state Acurrent-tims <current-time>))
(edit :what state

replace (current-tim :by
(compute <current-tim6> - <time>))))

,be prepared to update resources when no more resource-consuming
actions remain.

(propose-operator simalate-segment*po*compute-resources
space simlate-semnt
:op compute-resources)

(prefer slilate-msent*p*compute-resoures
space simulate-Segment
oCp compute-resources

:value worst)

update resources by building a new resource object on the current state.

(apply-operator simulate- segment*ao*compute-resources
space SiLiate-segment
:op computeb-resources

;; bind information required to build the resource object:
:wben ((statn 'curre&-weight <Cweight>

'current -volum <volume>
^current-time <time>
^segment <segment>))

40

create a new resource object and attach it to the current state:
:bind <resources>
(edit :what state

:new (resources <resources>))

add the updated resources to the object:
(edit :what (:none resources <resources>)

;; add the seent, so that when the resource object is returned
;; to the superstate, the superoperator will be able to tell

when to terminate (its seent parameter will be the same as
the segment of the head of the current-resources list):

:new (segment <segmnt-name>
:when ((segment <segmmnt> -name <segment-nam>)))

add the trip, to make sure that the semnt and trip stay
tied together in the chunks that update the resources.

;; if we don't do this, the chunks could transfer
;; incorrectly to the same segment of another trip.

:new (trip <trip-name>
:when ((segment <segment> Atrip <trip-name>)))

add the resources:

:new (current-weight <weight>)
:new (current-volume <Voli>)
:new (current-time <time>))

failure conditions arise when a resource has fallen below zero:

(edit :what (:none resources <resources>)
:new (failed true)
:new (reason weight-limit-exceeded)
:when ((state Acurrent-weight < 0.0)))

(edit :what (:none resources <resources>)
:new (failed true)
:new (reason volume-exceeded)
:when ((state ^current-voluma < 0.0)))

(edit :what (:none resources <resources>)
:new (failed true)
:new (reason time-exceeded)
:when ((state *Current-timo < 0. 0)))}

this is the failure condition in which white is wanted for a
crime in illinois. the chunks built are more specific than
they need to be, because they include all sorts of other
resources that have nothing to do with failure condition.

(edit :what (:none resources <resources>)
:new (failed true)
:new (reason whites-a-crimnal-in-illinois)
:when ((top-state Acity <city>)

(city <city> Aname <city-namo> Astate illinois)

(state Asegment <segnt>)
(superstate Adriver <driver>)
(driver <driver> Anaam white)))

end of sim2late-segmnt*ao*ompute-resources

41

when the resources object is built, propose returning it:

(propose-operator simulate-segment*po*update-reaources
a pace saimlate-semnt
:op (update-resources ^resuces <me>)
:when ((state Arsources <rem>)))

push the resource object onto the list -3i current resources. if
the list bas not been created yet, create it.

(apply-operator simgIate-segmant*ao*update-reaources
aspace 8imlate-segmant
op (update-resources resources <rem>)

;bind the nam of the current segmnt (see below):
:when ((state Asegmont <Csegmeont>)

(segwiunt <segment> Anaimo <segment-name>))

(edit :what superstate

;if the current-resources list exists already:
:replace (current-resources

:by (cons <rem> <re-list>)
:when ((superstate Auretresources <res-list)

;prevent looping chunks:
(resources (car <res-list>) - ^segment <aegmez.t-naine>)))

if there's no current-resources list:
:new (current-resources (list <rem>)

:when ((superstate - carretresources)))))

for a given segment, Aload..sipaint non-nil moans load at the source
city, and Aunload-shipment non-nil means unload at the destination.
so for correctness wrt weight-limit and volm, loads have to come first.

(compare c*loadeunload*better
space simulate-segment

:opl load
:op2 unload
:relation better)

other than that, it doesn't matter what order resources are
consumid in, but it doesn't hurt to do it in a sensible one.

(compare c*load*drive*better
:space sizulate-segment
:opl load
:op2 drive
relaticu better)

(compare c*drive*unload*bettor
:space simulate-segment
opl drive

:op2 unload
relation better)

42

;soar hacks:

;this production replaces a soar default production that monitors
evaluations of lookahead operators. it print& the id of the

;operator copy, rather than the source of that cop". this Is an
improvement, because the copy shows up in the trace, so the id is

;useful for reference.

(sp default*aonitor*operator*evaluation
(goal <top> ",objc nil -Averbose false)
(goal <g> 'object <sg> *state <2>)
(state <a> Atrio -tied-operator <ob)
(goal <sg> -operator <so>)
(operator <so> 'type evaluation 'evaluation <*>)
(evaluation <a> A < numric-value symbolic-value > <n)
(<class> <abj> Aam <nar)

(tabstop <tab)
(vrite2 (crlf) (tabto <tab>) " Evaluation of " <class> - <obj>

<=am*> ") is

end of code

43

4.3. Execution Trace
N-*- Mod: Indented-Text -*-

File : /afs/o.cz. e u/user/altmann/taql/truck/trace.txt

; Author Erik Altsann
Created On Wed Jun 3 20:25:47 1992

Last Modified By: Erik Altmnn
Last Modified On: Wed Jun 3 20:26:34 1992
Update Count : 1

PURPOSE
Trace of a ample implementation of the Trucking Task, aka the

Shipment Scheduling assistant. The source code is in truck.taql, and

chunks produced from this trace are in chunks.soar.

TABLE OF CONTEUTS
The trace, followed by print-stats and taql-stats.

Copyright 1992, Carnegie Mellon University.

Starting Soar5 ...
Allegro CL 3.1.12.2 [DECatation] (11/19/90)

Copyright (C) 1985-1990, Franz Inc., Berkeley, CA, USA

Soar (Version 5, Release 2)
Created August 26th, 1991

Bugs and questions should be sent to Soar-bugsacs.cei.edu
The current bug-list may be obtained by sending mail to
Soar-bugs@s.u.edu with the Subject: line "bug list"
This software is in the public domain.

This software is made available AS IS, and Carnegie Mellon
University and the University of Michigan make no warranty
about the software or its performance.

See (soarnews) for news.
; Loading /usrO/altmann/.soar-mnit.lisp.
; Loading /usr/=isc/. SoarS/bin/SoarS, latest patches. lisp.

<cl>
<cl> (load

"
/usr/misc/.Soar5/lib/taql/load. lisp")

; Loading /usr/misc/.Soar5/lib/taql/load. lisp.

Disabling selected default productions: *
Loading TAOL support productions:

TAgL 3.1.4
Created July 15, 1991

Bug reports should he sent to Soar-buqs@cs. .edu.

Send coments on TAQL to Gregg.Yost@cs.c=m.edu or Erik.Altmann@cs. ca.edu.

t
<cl> (load */afs/cs. =m. ed/user/altmann/taql/truck/truck. taql

")

; Loading /afs/ca. c. edu/user/altaann/taql/truck/truck .taql.

**** (excised DKF&ULT*MOU!TOR*OPZERATOR*IVLUATION)
t
<cl> (user-select) for documentation
first
<c1> (learn on) :; turn learning on
Learn status: on all-goals print trace

44

on
all-goals
print
trace
<c1> (run)

Learn status: on all-goals print trace

0 G: gl
1 P: p4 (top-space)
2 S: s73
3 0: 069 (do-task)
4 ->G: q76 (operator no-change)
5 P: p83 (task)
6 S: s104
7 ->G: g130 (operator tie)
8 P: p131 (selection)
9 S: .138
10 0: 143 (((green) (cannonball) (trip3) simulate-trip) evaluate-object)
11 ->G: g171 (operator no-change)
12 P: p83 (task)
13 S: d81
14 0: c182 ((green) (cannonball) (trip3) simulate-trip)
15 ->G: g212 (operator no-change)
16 P: p219 (simlate-trip)
17 S: z230
18 0: 0232 ((segmentl) simulate-segmnt)
19 ->G: g238 (operator no-change)
20 P: p 2 4 5 (simulate-segment)
21 S: &255
22 0: o257 (compute-resources)
23 0: .272 (update-resources)
Build:p277
24 0: o278 ((segment2) simlate-segmant)
25 ->G: g280 (operator no-change)
26 P: p287 (simulate-segment)
27 S: &297
28 0: o299 (compute-resources)
29 0: o314 (update-resources)
Build:p319
Build:p320
30 0: 0235 (trip-succeeds)
Build: p323
Build:p324
Build:p325
Build:p326
Build:p327
31 ->G: q331 (operator tie)
32 P: p332 (selection)
33 8: s339
34 0: o344 (((brown) (traveler) (tripl) simulate-trip) evaluate-object)
35 ->G: 9363 (operator no-change)
36 P: p83 (task)
37 S: d373
38 0: c374 ((brown) (traveler) (tripl) simulate-trip)
39 ->G: q396 (operator no-change)
40 P: p403 (simulate-trip)
41 S: s414
42 0: o416 ((segnmentl) simulate-segment)
43 ->G: q422 (operator no-change)

44 P: p429 (simalate-segment)
45 S: s439
46 0: o441 (typewriters 200.0 0.2 1000.0 load)
47 0: 0443 (copute-resources)
48 0: 0464 (update-resources)
Build:p469
49 0: 0470 ((segment2) simulato-segment)
50 ->G: g474 (operator no-change)
51 P: p481 (si4,late-&egnnt)

45

52 S: *491
53 0: *493 (compute-resources)
54 0: *506 (update-reaources)

Build:pS13
55d~51 0: 0515 ((Saemnt3) simlate-sgment)

56 ->G: g519 (operator no-change)
57 P: p526 (Siinlate-semnt)

*58 8: *536
59 0: *538 (compute-resources)
60 0: o553 (update-resources)
ftild: p558
Build:p559
61 0: *560 ((&Oemnt4) &ImaLat-egmnt)
62 ->0,: g562 (operator no-change)
63 P: p569 (ai-lat-segnent)
64 8: 4579
65 0: o581 (typewriters 200.0 0.25 1000.0 unload)

66 0: o583 (compute-resources)
67 0: o604 (updates-resources)
Build:p609
Build:p6l0
68 0: o419 (trip-succeeds)
Build: p613
Suild:p614
Raild:p615
Build: p616
Build:p617
69 0: 9380 ((gray) (piper) (trip2) al-late-trip)
70 ->Gv: q621 (operator no-Change)
71 P: p628 (si-Ilate-trip)
72 S: &639
73 0: o641 ((segmnti) sisudate-egment)
74 ->G: g64 7 toperator no-change)
75 P: p654 (simlate-segmnt)
76 S: 4664
77 0: 0666 (Comqzte-resourefts)
78 0: *681 (update-resources)
Build:p686
79 0: o687 ((segmant2) simlat-egmant)
s0 ->G: 9691 (operator no-change)

82 S: .708
83 0: @710 (computo-resources)
84 0: @725 (update-resources)
Ruild:p730
Build:p731
85 0: o732 ((segsat3) sialate-segment)
86 ->G: q736 (operator no-change)
87 P: p7 43 (simulate-semnt)
as S: s753
89 0: *755 (ccoqute-resouroes)
90 0: o770 (update-resoure)
Build:p775
Build:p77

92 ->G: g791 (operator no-change)

93 P: p788 (siinalat&-segment)
94 S: a798
95 0: o800 (carpet 100.0 0.2 500.0 load)

96 0: @802 (compute-resources)
97 0: o823 (update-resources)
Waild:p828
Duild :p829
98 0: @830 ((segmnt5) simu1ate-segisent)
99 ->G: q834 (operator no-change)
100 P: p841 (siulate-semnt)
101 3: 851
102 0: o853 (carpet 100.0 0.25 500.0 unload)

46

103 0: @855 (comspute-resolrces)
104 o876 (update-resouroes)
Build:p881
Build: p882
105 0: o883 ((segmmt6) siiulate-segment)
106 ->G: g885 (operator no-change)
107 P: p892 (silate-segmnt)
109 S: *902
109 0: o904 (newsprint 400.0 0.2 6000.0 load)
110 0: o906 (cospute-resources)
ill 0: o931 (update-resources)
Build:p936
Build:p937
112 0: o938 (wight-liait-exoeeded local-constraint-failed)
Suild: p943
113 0: e365 (failure final evaluate-state)
Build:p945

Evaluation of operator c374 (similate-trip) is failure
Build:p946
115 0: o346 (((gray) (piper) (triLpi) a-lato-trip) evaluate-object)
116 ->G: g948 (operator no-change)
117 P: p83 (task)
118 S: d958
Firing 119:915 p946
119 0: c959 ((gray) (piper) (tripi) simlate-trip)
120 ->G: g981 (operator no-change)
121 P: p9 8 8 (simulte-trip)
122 S: 8999
123 0: o1001 ((semnt1) simd1ate-sgment)
124 =>G: g1007 (operator no-change)
125 P: p1014 (slAte-segment)
126 S: s1024
127 0: o1026 (typewriters 200.0 0.2 1000.0 load)
128 0: 01028 (ooqiute-esources)
129 0: o1049 (update-resources)
Build:p1054
130 0: o1055 ((xegeent2) silate-segment)
131 ->G: q1059 (operator no-chauge)
132 P: p1066 (simlato-semnt)
133 S: s1076
134 0: 01078 (conqute-reaOuroes)
135 0: o1093 (update-resources)
Build~pO9S
fuild:p1O99
136 0: @1100 ((semnt3) simalate-smekt)
137 ->G: g1104 (operator no-change)
138 P: p1111 (sim.~ate-segamnt)
139 S: a1121
140 0: o1123 (cospute-resouroes)
141 0: o1138 (update-resourcea)
Build:p1143
Build:p1144
142 0: o1145 ((segmnt4) sisslat-segmant)
143 ->G: g1147 (operator no-change)
144 P: p1 1 5 4 (simulate-sgent)
145 S: &1164
146 0: o1166 (typewriters 200.0 0.25 1000.0 unload)
147 0: o1168 (compute-resources)
148 0: o1189 (update-resources)
Build:p1194
Build:p1195
149 0: @1004 (trip-succeeda)
BuIld:p1198
DuIld:p1199
Build:p1200
Duild:p1201
Retracting 150:1170 p

9 46

Daild:p1202
150 0: o966 ((brown) (traveler) (trip2) siml-ate-trip)

47

151 ->G: g1206 (operator no-change)
152 P: p1 21 3 (similate-trp)
153 S: s1224
154 0: 01226 ((s.mntl) sailate-segaent)
155 ->G: g1232 (operator no-change)
156 P: p1239 (sillate-segment)
157 S: &1249
158 0: 01251 (co te-resources)
159 0: 01266 (update-resources)
Build:p1271
160 0: o1272 ((segmt2) cis4late-segnant)
161 ->G: g1276 (operator no-change)
162 P: p1283 (simlate-segment)
163 S: &1293
164 0: o1295 (c mcute-resources)
165 0: 01310 (update-resources)
Build:p1315
Build:p1316
166 0: o1317 ((segnt3) simalate-sent)
167 ->G: g1321 (operator no-change)
168 P: p1328 (samlate-segment)
169 S: &1338
170 0: 01340 (compute-resources)
171 0: o1355 (update-resources)
Build:p1360
Build:p1361
172 0: o1362 ((saent4) 1alate-se&gent)
173 ->G: g1366 (operator no-change)
174 P: p1373 (*imlate-segnent)
175 S: &1383
176 0: 01385 (carpet 100.0 0.2 500.0 load)
177 0: 01387 (cmpute-resources)
178 0: 01408 (update-resources)
Build:p1413
Build: p1414
179 0: 01415 ((segmentS) simulate-sgment)
180 >: g1419 (operator no-change)
181 P: p1426 (similate-segment)
182 S: s1436
183 0: 01438 (carpet 100.0 0.25 500.0 unload)
184 0: 01440 (comute-resourcea)
185 0: 01461 (update-resources)
Build:p1466
Build:p1467
186 0: 01468 ((segment6) sialate-sement)
187 ->G: g1470 (operator no-change)
188 P: p1477 (simalat-segment)
189 S: s1487
190 0: 01489 (newsprint 400.0 0.2 6000.0 load)
191 0: 01491 (compute-reaources)
192 0: 01512 (update-resources)
Build:p1517
Build:plSlS
193 0: 01229 (trip-succeeds)
Build: p1521
Build:p1522
Build:p1523
Bui.l:plb24
Build: p1525
194 0: 01526 (no-trips-left schedule-succeed.)
195 0: e950 (success final evaluate-state)
Build:p1S34

Evaluation of operator c959 (simluate-trip) is success
Build:p1535
Build: p1S36
Build:plS37

Evaluation of operator c182 (simulate-trip) is partial-success
Build:p1538

196 0: o106 ((green) (cannonball) (trip3) s&Ialate-trip)

48

Firing 197:1573 p323
Firing 197:1573 p327
Firing 197:1573 p324
Firing 197:1573 p325
Firing 197:1573 p326
Firing 197:1575 p9 4 6

Firing 197:1575 p1535
197 0: o115 ((gray) (piper) (tripi) sim-1ate-trip)
Firing 198:1580 p119 8

Firing 198:1580 p1202
Firing 198:1580 p1201
Firing 198:1580 p1199
Firing 198:1580 p1200
Retracting 198:1582 p15 3 5

Retracting 198:1582 p3 4 6

198 0: o112 ((brown) (traveler) (trip?) aimilate-trip)
Firing 199:1587 p1 5 21

Firing 199:1587 p1525
Firing 199:1587 p1522
Firing 199:1587 p1 5 2 3

Firing 199:1587 p1524
199 0: 01542 (no-trips-left schedule-succeeds)
200 0: o102 (final-state)

Space task succeeded in goal q76.
Ruild:p1548
Build:p1549
201 0: @6 (halt)
Applied task operator o69 (do-task). Final state is &73.
End -- Explicit Balt
nil
<cl> (list-chunks "/afs/cs .cma. edu/user/altaan/taql/trck/chunks. soar")
Copying chunks to file /af s/cs. -uu.ed/usr/altaann/taql/truck/chunks.soar.

t
<ci> (print-stats)
Soar (Version 5, Release 2)
Created August 26th, 1991

Run statistics on June 3, 1992
Allegro CL 3.1.12.2 [DECstationj (11/19/90) DECstation id: 385 Ultrix TRICEP.ATOPS.SOAR.CS.C24U.EDU

362 productions (6491 / 27250 nodes)
69 chunks (69 / 362 productions)

109.383 seconds elapsed 25.353 seconds chunking overhead
202 decision cycles (541.50006 as per cycle)
707 elaboration cycles (154.71428 = per cycle)

(3.5 e cycles/d cycle)
2040 production firings (53. 61912 =s per firing)

2.8854313 productions in parallel
9415 PBS actions after initialization (11.61795 as per action)
392 man working mmoy size (1041 asxima, 350 current)
3347 man token inmory size (9279 aimm, 1802 current)
21814 left tokens added, 19337 right tokens added, 41151 total tokens added
21369 left tokens removed, 17980 right tokens removed, 39349 total tokens removed
80500 token changes (1.358795 a per change)

(8.549278 changes/action)
nil
<ci> (taql-stats)
TIOL 3.1.4
Created July 15, 1991

TAQL statistics on June 3, 1992
Allegro CL 3.1.12.2 CDRCstation) (11/19/90) DECstation id: 385 Ultrix TRICERA1TOPS.S0AR.CS.CMU.EDU

47 Wes (46 user, 1 default)
compiled into 124 productions (101 user, 23 default)

t
<cl> ;;end of trae

49

4.4. Chunk Listing
-2- no": Suaez* (driver "L), -drive-timme 11)

(state C4> -track <t2>-)

Author zulk Altmann (sp p325
Creatud on a". oi 3 20:26:56 1992 (Woal <51> ^wtata <W> operator <ci>)
Lest. Modified By: Sulk AIMM (state <C4> 'domyat%* true -driver <d3> -inruet-chadcle <11>)
Last Modified Ou: Ned OMe 3 20:27:22 1992 (driver "43:0 'riwe-tins ii)

... Update coast I 1julst <11> -ca <42>)
soar Version 3 .2.1 (operator <42>~l -trip eii)

(trip (41> dmo
FQRV (operator <01> -Sam simaglate-trIp -driver <43> -trucr .t2.> -trip <t2>)

Cheks femerated by a rue of the suq. iM~maatot~o of the (track <tU> 'y01n 1280 'Auigbt-itsit 32000)
Trucking Task, aka ipo floodalih4 Assistant. The __>
code is In truck.teal. fTe trace frm ai- these cmks war. (state <44> -driver <43>-)
geerated is In traoestrt.

(Ap p32
Cagyrigkt 1902, CAMnegi Maln University. (9oaL <91> ^dtate <Ud> ^Operator <0i>)

... (state <44> ^doyi-att* true I en-sheule <11> -trip <t2>)
Wast <12> 'ae <43>)

(operator <d3> ^tzip <42>)
(mp p277 (trip 442), -am*uor

(goal 401> ^stat. <42> 'ap-ao <*I>) (operator Cl> 'am ainlate-trip ^trip <t2> -driver <di> -trck <tU>)
(state <82> -ind-raoiue -att* tru) (driver <41> 'drive-tins 21)
(operator <01> 'am .imlat&.seg t -saamt <81> resources <2U>) (track <Ui> -vumsr 1280 '-vit-lialt 32000)
(segmet 461> ^3m segot. ftrip trip) >
(list <13.> ^mz~ (81>) (att <44> ^trip -)
(resources <ri> 'nmt-vo1~n 1280 ycrrmt-tiin 11

^00reat-we~obt 32000) (op, p227
__> (goal <91> ^state <44> loveetor <02>)

(state <92> Wr -romans <12> 6, <22> 4) (state <Ud> -gatt* tzue moerent-sahedule <ii.*>)
(List 4a. ^'mx 4c82>+ ^Oft all2 + 'tlp *list 4)(list 401> -car <d3>)
(resuce <v2> -segmn se U + oopmtl 4 -trip trWp 4 trip) a (operator "U3 ftrip <A2>)

inr~u-weig.t 32000 +~ 32000 a (trip <42> ^a- doa)
mm-vo1ua 1280 + 1280 & ^mxrent-timf 11 +411 a)) (operator 4Cid> -ama aIMiate-trip -driver <01> -track 'trip <U2>)

(driver <41> -drive-tins 11)
(up p319 (truck -volma 1280 'vaight-14nit 32000)

(goal <91> Asatot <a2> 'Op eo <01>
(State <52> '4=-attt true 'anrmQt-rsourcos <11>) (state <44> 'inrrent-sedel~ <12> 6, <12> 4)
(List <11> ^oar (81l>) (list <12> 'types list + 'cdr <11> 4 ^car <cl>4)
(resourcesa (81> -^'semt seMat2 fturmet-voiinm 220 'mxrsdnt-tmft 11

'anremt-ueight 32000) (up p469
(operator <01> 'a a i=InLat.-s"Omt 'resourcs <11> ^'se t <&1>) (goal. <g2> ^state, <a4> lop-era <01>)
(sedienrt Col> 'xmm .. g2) (state <84> -- r-rsouae ' -att- true)

__> ~(operator -Cal> 'mm &imlAt-ogmt ^aemt <s3> 'rescarces <U1>)
(state <82> 'arn-resources <11> -)(sequawt <43> 'leed-sbiaut typorriters, -lad-shipet VIL

^Im seg-ti ^trip tripi)
(up p320 (list <13> 'ca r 8>)

(goal <91:> Astate, <82> 'operator <01>) (resores (81> 'inz-vo1m "40 'rot-tims 11
(state <82> ^dmm-tt* true amauucs 1> 'r -weight 10000)
(list <11>- ^car <81>) (goa" <91> 'eb~.St N=? 'sa-t. "2>)
(resrose (81> -'eemma sagma2 ^Om -vo*ue 1250 orit-tia, 11 (state <.211 -'ehi m <a81>)

'in -weight 32000) (sblpast -Cal> 'mm typewriters ^weight 1000.0 'volume 200. 0
(operator <01> 'amal.mlat-somt 'resourca %12> 8meht <81>) 'load-tium 0. 2)
(Sediment "si> 'm soint2 ^trip trip)__

_>(state <")-, rm-r~me <12> 6, <12> 4)
(state 482> 'inrzon-rsounco <12> 8. <22> +) (List <12> -car (82> + -odr oil + -type- istt 4)
(list, <2231, ^car (82> + ^Ofr <11> + ftype' list +) (resourcom <82> '..mm 5e.1ut + s8a~st1 & 'trip tripi + tripl G
(resources <r2> 'e.V t oseM2 + degaot2 G 'trip tzip3 + trip a 'mwvt-matght 9000 .0 +49000.0 a

'mizou-eigbt 32000 4 320008a 'inrmet-volme 440.0 + 440.0 S
'muot-wola 1280 + 1280 & 'mxrzent-time 11 + 11 a)) 'marrent-tip., 10.8 + 10.8 6))

(OP p323 (up p613
(goal <91> 'state, <di> 'prater 46U>) (goal <91> ^wtat. <&..> 'perator <01>)
(state <64> 'dmm-attt true 'r t-achdalm, <11.>) (state <823> d'mmV-&t* true 'crrnt-rousoo s <11>)
(List <12> Ar <43>) (lift <11> -car (81)
(Operator 4"3> 'trip <42>) froraca 81 -'eOmmt soma2 'inxent-yolm 440.0
(trip <42> I-m doe) 'imn -tum 10.8 'inrint-weight 9000.0)
(operater <42> 'name samlato-tuip, 'drivar 4di> ftrock '<zip C%2>) (Operater <01> 'a siinat-at -resources <11> -segment <81>)
(driver <62> '4dwa-tive 11) (semet <82> ^i- aeawt2)
(track 4tl> 'volue 1280 'weigtt-limit 32000) _2

__> (state <02> 'inrmot-re.eaoce <U1>-)
(state <46> 'r-~e e<1

imp p514
(up p324 (goal <gi> ^stt <82> 'or-ar <01>)

(goal <1>, 'State 444:0 ^Operator <01>) (state <82> dmm-att* tUna 'mxrat-roemxcas <11>)
(state <44> '*=I-att5 true 'tuck fta> 'mzesft-sawaede <U.>) (List <11> 'car (81>)
(trc ft2> -voaumm 1.280 'weight-liait 3,2000) (resource. (81> --'Um~t Sepat2 -OUVOt-Volint 440.0
(Lift 411> -car <63>) . , -timm 10.8 'mxrent-veigbt 9000.0)
(oprator <43> '<sir <42>) (oparator <01> 'uam stmalate-eamt ^reaource8 <U> 's8 t <61>)
(trip <42> ^i- dae) (segmet <61> -m oaa-t2 ^trip tripl)
(oparator <a1> 'mmW BineLAt-trip ftruck <t2> 'driver <413- 'trip ti>) -- >

50

(state <&V) mln-romsinoa 412) G, <22) fa (tat. <42) ^dm-tt* tao. ^tzuk <t3>. 'urat-schadule <11>)
(list -MV) car 4w2). + -ar 411)* ftypee List 4.Itreek <t32) ^Va01in "0 %Ai~jt-24ai4t 10000)
(resources <z2)- AoPat es.a2 + anennt2 a 'trp tnip + tzip a (list 411) ^Ma <02)

inaref-mLee 9000.0 + "000.0 (oponat- <02) ftrip ft2)
AMaa4=-wl 440.0a.+440. 0 a (trip VL231 'ama txwp)
A,, t-tim 10.0 + 10.0 a)) (Opoinato <61) m simuat-trip -truck ct3) -4atvz <41> -trip <ti>)

(goal <91) ^State <82) ̂ opezater <.1)) (state <42) -track <t3>)
(state <62> ^dm-att* true Gazaont-resources 11)
(list <L31) mac 4.1)) (sp pas5
(resources 4.1) -^segmet 5aegm ^' n-weLm 440.0 (904.1 <92) Astate <42) ^IPeWatoa <@IL)

inazm-tise 10.3 *inxmwt-uaoLt 3000.0) (state <422, 'domyatt* tao. Idwziy a > Acrret-schodule <11>)
(operator <013. 'ama s1late-s.m - aasinaas 411) -0s t "*1>) (ftiwe <41) -dbLwa-time 11)
(sawmoat <s1) ftaa sepa3) (list 411) 'mer <C2)

__> ~(operats <42) fta*p <t)
(state <&2) ~i m-resources <U1>-) (trip <U1 ^I-m taiS)

(operator <a1) -&am simalt-taip -daivar -CAU> ^truck <tI> -trip <U>)
(op p559 (tac 411) %olons "0 Agaiht-14a4t 10000)

(goal <91> satate <&2) ^opertar "X>) --1>

(list 411) ^car .1)
(resootoos <.1) -- Me sspm3 -anwa-walu 440.0 (5p P6

~-tims 10.6 inrm-aig*t 9000.0) (go-l <91) 'stats 412) ^eaator .1)
(operator <.1) am "ainate-ssmt "Seoza" 411) segomt <83>) (state <42 '7=m-att* tas ^, as t-Schdule <11> -trip <t3>)

(spst<si) 'amw segont3 'trip taipi) (list 401)o -ca <2)

(Operator <02) 'trip 4t2)
(state <a2) tr>era <2) a, <12)4.) (trip <t2> 'Ui- tripS)
(list <12) 'ma <a2> + ^air 411)*+ ftyp. list 4.) (operator <a3> 'ame simate-taip -trip <t3> -drivsr <41) -track <tl>)
(resources <.2) -sgen saSn + sanmt3 a 'trip taipi + txipi a (driver <41) 'brios-tims 11)

inzwru-aLg 9000.0 +. 3000 .0 a (truak Ctl) 'volma 60 'uSlght-limit 10000)
1, -.-- yolu 440. 0 + 440. 0 a -- 1>
'marrent-timw 10.3 + 10.0 a)) (stats <42) -taip %t3>)

(sp P609 (sp p417
(9oa1 <92) atato <s) 'opratr ".1)) (goal <g1) ^#stt <42) ^espouter <c2)
(state <4>4 dam-Att* trus 'inroact-arsotoas <11)) (state <d2 '-oatt* true 'CMzTinb-te&~LjA <11>)

(list <11) ^Ca 4.1)) (list 41.1) -ca 41)
(reaoras 4.1) -- Ssm sametA icnt-vol 440.0 (oprator 4.1) 'trip 423)

'n t-taM 10.0 ^ma -we1.it 9000. 0) (trip <2> -ama tripS)
(Operator <"1) 'UMO SiMLat-W~ 'asseatoa 411) ^'ss l <93>) (operator <CQ -'mm almlate-taip -driver <41) -track 411> 'trIp <t2>)
(seo~a <&3> 'oaload-ki~ typewriters -'mWoAPd-ohipa~t N=L (bluer <41) 'bLuLe-ti 11)

'msevot4) (tam <U)> -volume "a0 'omght-Limit 10000)
(goal <91) ^000*~ NI= ^stat. <s2>) -- 1>
(state <&2) 'sil4 t <&I>) (state <d2) 'inrreal-dele <12) a 41<2)4.
(shipmsmt <.1)> 'oma typewrters 'weight 1000.0 'yolm 200.0 (Mant -a2) 'type* list +. 'afr <11.2> +'car <c2>)

'inLead-tim 0. 25)
__> (sp P400

(st* <.4) 'inrrt-ws.zoas 411) -)) goa <3> 'sta <AV) 'oPerato <01)
(state <82)-'iz-e m 'dm-att- true)

(sp p610 (eocator <01) ' aim2ate-s. t ^aseat <6l) 'resources <n1)
(goa1 <92) ^state <s4) 'operator 4.1)) (seot 4.1)> 'am a mt ss 1trip trip)
(stats <4>4 'dmm-atts tam o r-ret-omuroas 411)) (list 411) ^ass Z .)
(list <11) ^Cox 4.1)) (rourcs 481) 'insa~t-vgli 400 'mazoant-time 12.5
(resources 4.1) -'saOsat sanot 'mrzen-olmm 440.0 'cozz-9"40ght 5000)

A - -tim 10.3 'inrmot-w"O~t 9000.0) --1>
(operator <02:0 ' mm iinIoat.s rasoartes 411) -Semet <&3>) (state <82) 'Guzz rsources 41..) 4, -412)
(Bego~t <93> 'ua1.d-himot typowiture -^o.1a_-shlamt 31= (list 4a2) -ca -WA) + -aft .1 + 'type' List 4.)

^I-mag s 4t 'trip taip) ("m~amas 482) -"gust seout1 + uegat1 a 'trip trip2 + trip2 A
(goal <g1) ^objeft NMM ̂ state <s22) 'inmt-walot 50004+ 5000 G 'crat-Volms 400 + 400 a
(esta <s2> ^sbi~ 4m1)) A~ It-time 12.54+ 12.5 a)
(shipeat 421) 'am typeoriters '..igbt 1000.0 ^wlmm 200.0

-'ulsod-tLo 0. 25) (op p730
__> (goal <01) -state <&a> 'opewator <01)

(stats <84) 'inrsst-mron 412) a, 41L2)4.) (stats <a2) 'dmm-tt* true 'irnit-auzoas <11)
(list 4U.2) 'ma 4M22-. '+ 411)t 4.L +'type' list 4.) (lit 411) '^am 481l)
(resorces 4z2) 'sam "954t + smgmt4 a ftrip trWp +. thlpl a (rasmams Cc&> -'segment sagont2 'marsat-volma 400 'curremi-timm 12.5

'amr-waoLt 10000.0 4. 10000.0 aaz 'ir -melght 5000)
'rwlm-.vel 640.04 +40 .0 d. (operator <61>)- 'a a simat-sst 'rasoeras <U1669eout 481>)
'irnr-time 10.55 +. 10.55 4)) (asgosat <&1) 'ama supwt2)

(op pCL3 (state s 452) 'mat-rsouroas 411 -)
(goal <p1> 'srtate 42) ^prater <021)
(sate 442) 'doomatts tame 'mr-s-otbl 411)) (op p731
(list 411) 'ma <a2) (goal <01> 'otate 4s2) <Oeao 01)
(operator 420 ^trip AM3)) (state 402) -*mwp-att* true auzzmt-wsoas <1)
(tz~P ft> 'a- trip) (list 411) 'ma 4C1)

$operator 401) 'mm ailabttip ^ftiVer <41) 'btamk 411) 'trp 422)) (r..isurm 481) -- se~ sequt2 'inrmt-oolum 400 ^'inrect-tIa. 12.5
(drios a > 41 'Ias-time 11) 'inrroi-weight 5000)
(taa <U1) -VOL=* 60 'oeigh-1imit 10000) (epocater <01> -amea smlate-e t -resources <41) 'se t <81)

-- 1. (syot <&:1) 'a- .eomt2 'trIP trip)
(state <42) 'inOEW@t-okodrLt 411) -))-

(state 4&2>m-zam m 41L2) a, 4=>).
(up P624 (List 41L2) 'or 4M23- +. ^Oft 411)4.+ 'type Lift4)

(oal <61) 'atata 442) 'oa ta 401)) (rem 482)> ^N.mmt aaOt2 +. Ia a 'trip trip2 +. trip2 a

51

'inrvent-Weiot 500 + 5000 & mcrvaut-voluss 400 + 400 & (operator <0l), ftm aimlatl-Geg. 'zefouzoe..(3.1) ^60at <s3>
4curam-tima 12.5 + 12.5 9)) (maqent <83:- -valM-shb* nt carpet -'vaiload-shipmet XU

^-m soph-t 'trip trip)

a(State <02> ^ ..mV&tt* true 'irr-raoeacca -=.>) (shimet (.1)- 'am carpet 'Weioft 508.8 'welan, 100 .0

(resom... (81) -sagom magomt3 'inr..t-volin 400 ^aman-tiamm 12.5 -- >

(operater <01) -mma 841&ato-eWmt 'Z&Orces <1) -Segmet <&I>) (LInt, 4a2) -ar (W2), + -0r <1) +. 'type* lint 4.)
(segmet <61> 'mm a g~) (ream.OS (*23. -ae~n magam + mOftt a -trip trip2 + triP2 A

-- b.n~-ei 5000t gh S .0 + 5000.0
(state (;&2> <m~raar. 13)-) mr 1-yolz 400.0 + 400.0&

'inrwou-tim 12.05 + 12.05 a))
(sp p776

(usal> -atmt <.) (stateto <" dmeat1))s-rmunm x

(resources (81) -'aen soemt3 --- -volm 400 'cmizva-tm, 12.5 (LA 4. -me (8)
'izn-uetit 5000) (resm... (81> -^Sa.~ segent 't -yolmn 400.0

(Operator (@1 'am uI&t egamt ^Zeman"". (1.1) ^"oNt 4dn -Ome-tim 12.05 -crzn-eigbt, 5000.0)

__> ~(Gaga <03) &2one-iait aaprint. -'1.ad-sipmst NIL

(list <L2) -Oar (M2> +. -aft <U> + -'typ * 14t 4.) (9a82 <4l.) ^*"-).n U!! 'tate -2)1)
(besources (823 -"mt .eamtS +. meget3 a -- Zip trip 4 trip a (satet <92> -shipmn <91)

-ir -weight 5000 + 50006G 'urzaat-ylu, 400 +. 400 a (ob~put (.1) '3um newsprint 4weight. 6000 .0 'volvz 400.0
'iro-timw 12. 5 + 12.~ 5)) '1...d-tina 0. 2)

(up P@8 (satet (84) 'cmzt-rores (1)-
(goal <92) 'atta. (84) -operaor (.)
(sate t&& (.4) o a-tt* true <U>tr~era-(1) (up p*37

(re.nmman (81)2 -'AM.gl Magmas AMr-Volm 400 'inrZt-ti,, L2.5 (satet <.4> '-MItt8 true inurmrensuee <11)
^'orat-uaiGbt 5000) (lint <U.1 ^0%r (8)

(Operator (.1) 'a stuiin l-aemt ^r"ace". (11) '"aut (<3)) (rescurces (81) -- amount "amts mrmtz-.yolum 400.0
(segmet (*"> 'loai-abi m carpet -^load-bh4mmt NIL '3m SeamutA) -~acet-tins 12.05 -crmet-wight 5000-0)
(ol (gi> '*bjeat EM1 ^stat. (82)) (operator Cal> =amulte.~ ^ream..e <11> ^Aegamat <s3)
(satet (.2) 'abIpmn <*1>) (Segen <83) AlOed-hit newsprint -1.ad-shipuat NIL -amsoagua.v
(-%49i@t <92) '3m Carpet 'Weight 500 .0 ^Volim 100.0 ^la&-tin. 0.2) 'triLp trip)

__>ga (9-1)1 'a1blet NI!. 'sate~ <22)
(satet <.)'6rmtr&>e 11) (satet (82) -shimet (81)

(shimet (81) n3 ewsprint -weight 4000.0 'voluse 400.0
(ap, pa29 'lod-times 0. 2)

(9-.1 <42> ^satet <.4) 'operator <*I) _
(satet <84> ^dmmmyatC true ^Gmat-ronmuaa (1.1)) (atot 48&> '0mren-re.m'* -12) a, (4.2) 4.)
(list 4C.1) ^oar (81).) (list (12) ^Oar (82) 4. 'air <11> +. ftype' list 4.)
(resoures (81) -- ageat sopmt4 -cozzt-.m 400 'ir.-timne 12.5S (resurces ft2) 'Go.mt o.aott + Segmets & ^trip trip2 4. trip2£

'msrzon-eight 5000) mracau-wight -1000.0 4. -1000.0 A
(operator (.1) 'am smmlat-..guet, 'resoumvesai 11) 'ae t <&3>) 'aarzAM-a).m 0.0 4. 0.0 & ^aartlt-tiu. 11.85 +.11 .25
(seaseft (93> ^10ed-kimt oarpet -'l..d-.mipat m= '3mm segetA 'failed true 4. true &

^trip trip2) 'resasa weigt-liait-.aoe6ed +. Waight-Lizait-xcode4 6))
(go"1 <91> ^db~eat MM 'eatet <a2)
(satet (@2) -. bipmn (81)) (or P9,43
(Shhmes (*1) 'sm, Mrpot ^Weight 500.0 ^Val,,, 100.0 A108.4timme 0.2) (gol (f2) ^watet <d2> 'aperar (-1)

__> (satet <d2) *'muartt- trme mrn-scheftle (11)
(satet (.4> 'murzent-rsomae <L2) &, (12) 4.) (list 4=.1 ^Car <01)
(lint <22) 'ar 0:2) 4. -a&r 0.) 4. 'type* list 4.) (Operator (01) -trip (t)
(resources <82) ^agommt sepgat 4. seand:t 6 'trip trLp2 4. tripW (trip <83) 'mm tr:103)

curs -moist 4500.0 +. 4500.08G (evrter <01> '3am hil~t.-tip ^driver <Al) 'truck (12) ^trip <U>)
1irn-valumm 300.0 +. 300.0 A (driver <di> -dwo,-timm 12.5)

-rrmt-tim.a 12.3 +. 12.3))(trunk ft2) -Voaum 400 -weight-limt 5000)

(OP post ~~(-V- &) I 09 trip 1-4) 'firnt-e (81

(gal (32) -ea"t <ad> -oerator (01)) (Sent <82> ^i- sage2 ftrip, trip '3ac-agamat <83)
(atate (84) dm-att* true 'rt-remura 4=.>) (a ()mmid <" ^- eg 3 'trip trWp ^-et-agmt <s4)
(lint 41.1) 46.r (81)) (oog= <014> 'la0d-hi t Carpet -^load-mbipeeat mmL ftam BgetA
(ream...s (81) --'.mf maysets 'r -v3. 300.0 'trip trip 'ma- a.o t <86>)

-'mrzht-tiin 12.3 A,,rmt-Weight 4500.0) (Sequet <04> -naleas-Ohient m~pet -'..LoaS&-%4~mt =ZI
(operator <01> m u&U t.b-e t 'renoeromal 11 'emt (&3)) 'mm sovks"5 'trip triP! '3.&t-aegaoat 89)
(maga; (0L3> 'ndlp m erpeft -'o -=~tm ("Insit <483- '1nva-boiat nlewsprint -'1.0&d-.biPemt NIL 'nms 8egatf

soam ft) 'trip trip)
(go" 4612> ^Gbi.t mm ^satet (82>)ao g) ^01"4f N 31 'tt (8)

(Ahipamat (.1) Anms, Orpet -'Vh 500.0 'Yln100.0 (ShIipmnt <87> -m awpriat 'wait. 4000 .0 'roium 400.0
-un..d-timm 0.25) l2s.4-tim 0.2)

_> ~(Shimet (85> -mao arpet -vatobt 500.0 'Voam 100.0 ftmload-tia 0.2!
(satet (84> ' r -Were. (1 -U) 'lbad-tim 0. 2)

(sp p462 (satet <d2> ^l..l-aaatr4iat-failed (12) a. 02) 4.)
(gal <022 -satet (4) -aperator (01>) (list -CL2> 'type

8
lift 4. ^air <1> +. ^oar (.1)4.)

(saftet <. ^*mjFwt true 'mrz-ea maeno <U1)
(lift (11> '003(8C1),) (up, P84

(remmi(81 -- amn @SIMON ' -valm 300. 0 (gaol (91), ^Problm-epeo. Vp1) ^atet (810) 'abj.ot, <g2> ^Operator <1)
Aamt-tia.& 12.3 -crrnt-wight, 4500. 0) (Prob-ap.. <P1) 'am sleota)

52

(goal2q1> 1a denblm -enr p> lm. >truak-typ. man heo-dw gray)
-^dt-. im-pa (23-4ntaceueti r*dv. (Ci.ty <02> mms vary -tu*kplm 'rA s gray)

-~s-attibtes i30-sbeftle trip teak
driver domeAtt* (sp p1054

-. ll-attx22ute-at-loval two -_-.,.lattbtnn (ol(usa.(.>%ttn .>
fto tant) (stat. <923 -tae ">-operato <o.t tue

(oealutia (.1 h-mo.0f trp(emstac rie)mm (sgmet <63> '1064-04~ tYPOIitIMS -- Xoad- sactN

(opezaa. (.2 -4031. trpack 4trc -drir 4um ^1-ae-ri -9u 4- a. trip tripi)

(trip (to> Assam, (ti 'iyp (l> (lint <Ll> 'mr Cvl>)

(trip* t> AVO,, "at SgWj44t1l)0 (roamee 'at> 'inr-Vs2m 400 'm t-tim 1.2.5

(tr <C> Adivwl ms 540 'uiO-zt 000)'n-weipt 5060)

(operator <01> 'tye evaluating 'attri~to Vwaito (Statl (2> ^Obh1 (ml sae) 0>

dmoultet 40&S-Prb PS p..> 'd.*alt-qattog- Cw y (ShiPet (&1> 'urns typsmitsms 'W~tift 1000 .0 -vOl- 200 .0

'deeired 4d4>)
ot=02

(State (43>1 'dmM tt* true -diver <42> ftruok <t,> trip 4"3> (tt a>'n~z~a...>4 >4
'auzz-oabo1a 4C2.>) (1.Stt <84> 'w:rut <L4 .4, t <12>i 4)

(driver <42> ^'zjw-tir 12.5 gmm gay) (lift.je IC23 'a.r s.ftl + -aft1 SL +ti trip listp.

(trip 4%.> -wom tr00 -ttot-osgasse 5000> 'tp aiGDa ie)m-wmt 4000.0 + 4000.0 A
(trip t3> '3m t~i. Iht-. -.> " s.s-VOw 200. 0 + 200. 0 a

(segen <42> 'Mam seamg ftS~ip tripe ^Somm gory ^Dm .5et <82>) 'mm-time 12.3 + L2.3 Q)-sgmn <a2> -mmmm 'trip tripe 'asft-eegomt <03>)
(NOWt <&3> 'mm sg.3 'trip tri 1 'et-O.wt <.7>) (Sp p1000
4"Paa <07> *&sd..1 epot -lead-ruent M 'am semt4 (goal <g3> 'state <02> -operator (02>)

'trip tripe ^Ac-moyent <84>) (State <s2> d4om-tts true mrc-renourosn (11>)
(s49ma US> 'Umoed-iM1t Oinpt -- aed-sbipsft 3D= (lift .22> ^Gar 4M2>)

^m OOP." 'trip tripe ^uext-**~m <nO>)(eos. 21-.t.. t iutol 200
(segment <89> 'losm-s4mmt newsprint 4'loa-shi, 3D.eaom 'sane s.^*Ognrmtir 12.3 'corast-vaeit 400.00

,trip tripe) (operator 401> 'nms sinalato-s. t 'rasnmrcasn > 'aant :41>)
(lint <2> -Aac (.1>) et(1>'rs5at
(operator (01> -trip 412>) (emn 9>'mmspmU

(trip .2> ^I-n tripe) (State (.2> 'inrm4trnournn <.1>-)

(State <@"> Ahs1t <83> <A4> ^11i00,00 (12> 'city (<W>) (sp p1050
(Shipent US 'ma a..qWist fts1o* 4000 .0 'om400.0 (goal <O1> ^stat. <22> 'oparztor <01>)

^'0oad-time 0.2) (state <82> ^duqatt* true 'mwrot-resnmos. 0.1>)
(Sbipent -ad L G arpot weiObt 500 .0 -yolin 100.0 'umL0ad-ttm. 0. 25 (list <21> ^02r Cc1>)

'load-tilb 0.2) (wm 2>-5at5~t sa~or.20.
(urn=s. 'track-type SSai 'holder MrY) "Oocs<> 'nrP-tia 12.3O 'ur4W-weI~s 200.0,

__>t (0 1 mmgoy 'truk p1iew ^driver gr) (Operator <01> 'ur sllt.-seat 'rasOurus <11'> s--,Mat (si>)

(4V&Q~tiM .> -4~boje-,WUq CIU"(sgen <81> 'mm s.gat2 'trip trip)

o pg(State <-2> 'mntasmes.2> &, <.2> 4)

(goa <9p04 mrg- pq4mp~ ("ant wle> 'O&Z (C2> + -af <U2> + 'tn.* 1ist 4
(gol 51 dai~d(4> p~bln-pas p1> -state. (<>(dsscs2> > s.-t -9-042 4 ma-t2 6 -trip t.1 + tripi &

<0eatt(1> +) mr-W&Wlt 4000.0 + 4000.0 4
(problrn-spas (cp1> am"-~vlatr~~ d e-tt, driver truck trip 'rt-volum 200.0 + 200.0 a

ir-sabdrl. 'acreat-tia 12. 3 + 12.3 &)I
-^d--w a -- att. driver truck 'Lrip

-'el1-attr1buts-at-lewal two -- den-mapy-anythtog (goal 492> 'stat. <82> -operator <.I>)
-'dsonut-oator-o~w no-.d82ault-stat-opy so (ntate <&2> '-aWt5 tin. 'inrrnt-r.o as <11>)
mm tank) (List <21> -mar (21>)

(state <42> 'dm=.-tts tram -'IVer (4"> 'tuCkt (tA> -trip 113> (roa"Mses (21> -'se9W- 80e~3 'mm-voims 200. 0
cr:-sabdole <21>j ^4mroc-tim 12.3 1 r-weight 4000. 0)

(drver 4d3> 'delvW-tIm 11.5 Amm. gray) (prtr(1 m ine..git'e~a 1>'amn .>
(track <t&> 'ulm% 400 -. &tot-litnt 5000 'type mall Sme Ppe) Oermato <1> MAMS saa.t) got-oams<I>-emn 8>

(trip (ts> 'I- tawp ^first-o.e w <02>) >
("s.s "L1> amm s .Semn'-trip tripe 'smog0 garY <m-.a .2>) (state <82> 'oarrent-razourcs 21

-Sgmn 462> e oate 'tr tripe se gmt <83>)
(segment <03,> 'mu em2 'trip tripe ^aszt-segait (.7.) top plit"
(04~t <87> ^100d-Shpmst arpet -'lnad-sJmgmt NM. 'mSSVMt4 (go"l 441> 'stat. <02> 'op~Srtor <04L>)

'tr4p <&U ~ - 5t s> (ft~t. <82> -dm-att* trom 'inmtr.Sourm&s 211>)
(s~gmt nO> ulnd-lgmt gipt -'eled-ekmmt3D.(list 401> 'oar (2>)

' son- 'trip tripe ' -. ookot <89>) (2oarm... (21r> -. s~ 5 esW-3 'inr --vol 200.0
(segen <89> '1oa-.ipm sewspri-'ldhpmta . mseast 'cure-time 12 3 'murrmt-waiot 4000.0)

'trip trip) (operator <02> ^ous sioe1*ta-.i 'ra~OGC=S <21> 'segm Mt (1)

(Operator 401> 'ti <tzq(emn
21 xmssgme ti

)w
(trip <t2> 'm trip) (Stat. 63 (ad> N-eoaro <2> 4, <L2>4+)
(Operator <01> 'doutp tmwr m truc driver .0. simat.-triv (lint .. 2 'oCar (22a> + ode .21> + 'tpe lint 4

trrip ftO> "atae (2> isvel(l (2.8omm.a (rI> ^-@-= 000O3 + segmt3 G 'trip tripi + tripi

(tripk fto> 'V2-" Mttud t0000) ^CM4-gaib 4000.0 + 4000.0 G

(0-1uor <(=-, 'mrivate 13; wl-l 100) ort~-vol 200.0 + 200.0 a

(goal, Cql.> 4ahject WND '&t. <06>) I-tm123+2.4)

fiat% <043. -Shimn <'O 4> UOlmas. .. 2> ciLty (02>) (sp p1194
4aklPam <AS> ^=us WOOsPCIRL ^'miqt 6000.0 vsolme 400.0 (gool <p> AStat. <m4> -operator "@1>)

'.4.La0.2) (state <.4> '-ett@au true 'm2rmt-rnoesuosr(e >
(.bipmet <.4> ^m"* OWEP." ^'v 500.0 'velsm 100-0 'ulo.4-tin. 0.25 (list <21> 'ArS <zl>)

'lA04-im 0~)(rasmas. (21r> - 'gs.ft meot 'vit-ol 200.0

53

(segen <.> u1a-b1t tpaWWt._ _A=,jad-abit NL (driver "12- ^fi-tim L2.5)
-am "qmmmd4) (truck (41> ^volum 400 ,migt-1tmt 5000)

(goal <gl> -"Sea M &ta <82")>
(satot (.2> ^sb1memi 4813) (fatet <i2> in2rectsolboul <.2> 9. 0.2> 4.)
(shimea <81> 'ur t"paIZitee 'Ai~gt 1000.0 -Vasee 200.0 (List <L2> -typa- list +~ 'udz 0.1> +. -car <C25.)

'inloai-tins 0.25)
__> (Sp p1271

(state 4> 'atrvt-zd> ouincts 4>) (9-a 491> ̂'ut <02> 'tz*#~p 4z1)

(r~~aa(stat <.2> -'aaof-rsoxm ^dwm.4tt tiro2.n20. nw)U1It100

(sa m (uS> '1a- jrita 'ima-.itNI ht <*I> 'mxw 4.2>4. ' .11 + tpa -"hat <&>4.)rcs<I
(ga <2 mm& " aaA 'exIp i) (*m~om <82> aaegMlt .atatl 4..t l tiWti2+ ap

(state <o> ^'*mq tt U. m 'a&wutwsozn (.2>) (Listw~ 10000 lo 10000
(aitt <.1> ^cm <3ht waouam (41>) 'inzcen-w1u 640 4f 60 z ouzaan-tme 114)
(ramh5mt .> '3omm eoptA. 'arrmt-m 1000.0 Aavolrn~it 200.0)

^nzwam4-tina 0. (upz p131500.) _

(optator (84> 'iz iZmaaaa-squu 0.2> uea <L. 0.2>4.) o3> (atate <&2> ^co-att'ovco tam inm-zuaa <22>
(linMt <M2> ty@,mxo 4.2>odSh 4.en N]M.>4 tp~ it (list 0.1 Anne 4=2>)+^d i fys it+

(state .2> '.apmut <s&>) 4.~ltvo~ "0~t + "0ai t&p 4.rru-tm tr1p + 1zmfa 4)>)a~a~2 ztv1 60'mzc-~
(misp 5000. 4.sm 5yertr wib 000.0 4wlb 200.0a*t1000

Amazoac-tim 0.2.5).20) (.a pL315maat

(goa (51>l <qt&t -stat <62at> (81>)r <l

(staatx <(.2ccn-eeucs<L>aU2>ti (U) (satet (82> 'don"att* true mxt-resomxa. 11>)
(list (M2> ^car t=a+ip c M)) t~*lit (list 0.1> 'Gax 4.1>)
I-arta <r> ^oeom uiinlatA +sgt ip 'mivax +41 'tmk(1tripl f6> (rasources 4.1> -'Oagout aagotw2 inxzmt-vol "0 'marraot-tie 11

(daauzdl zia-tmio 2. 005 0 + 00.0G uaz w~t 10000)
(tamak-ol~ 400.0 +w~ 44 uit-h 000& (opeator (01> -3 ailwalat...agomt ^xaoezoas <4> ^aagoeat <&I>)

(at t (d2>8 (state.~l 0.1> -))ot-eorcs<

(goal <9i> satet <42> 'oGiaator (01l>)(aooo.42 at at4.at £'ipxlp+tl#4
(satet <=2> ^dumy&tt* tam. Nta - U -sc at-.onle l <.1>) (apu~~ 10001. 0006

(lift 0.1> -oar 42>) (ol<1 sae<2 oeao *>
(oparator <G2> ^trip (42>) (at <@>p1360t to GUzwooo'eS<.
(trip <tS> 'mm trip) (Lial (01> 'atmt (.> 'pzto.>
(opaxater Aeon uiinlate-tlp -tuk U driva-rc (41>o ftrip (41>) (atot (.2> '-^semt tamr -v-a~molum "00.1>)-tme1
(drivar <dl> -dxIv.-tim. 12.5) (1184 0.1> 'Oar 4.1>)

--2 k<l voue40ASgh-44 00 (operator 4.1l> -amt sl.slt3- -res-orce <4 'arn-t>a1

(satet <42> -tsuhedu>le) 'in-vi> 10000
(steatr <62> -cc'nmmeure .lt-CLIt 6,aaza <2 1> +) gat .

(up P12t" (agot <.> ^or a,2 ot3)l +'7- tt+
(goal (<"> ̂ satet <42> ^oparator <">) (eors x--aao eat eeu2a^xpt:P r
(Atat. (42> -*-att* txm 'driver <t> -owrout-soladoa 03.1>) 1000t0 (.+ 10000asnm 0.>

(lifat <l> ^as <i.t>)a125
(lierto 0.1> 'tri 4t2> (up p1361

(trip <t2> 'mm trip) (at-t <9.2> ^wtatt&2 tam.t 'inolaaoam.0.
(operator (01> A,,, alunlato -tzip ftatckg td>>-dtiver (61> 'txip <t2>) (lstt 0.1> ^'Oar 4.1 tae>)rot-acoos1>
(truakr <d1> ^'vmi 4012.it1it500 (listaaa < .1> ^car~ <at 'ntYo 4 caat-a

(stat <42>-truc ft'>A -wight 10000)

(aaot <1> Anmmt slagoatesemn ^rtrurce <11 ^egan l
(up p&201 -- get28>- seo3

(goal (<12> -sate ta2> 'opeata 4.1l>) (a_ .(2>'_>or~a02 4 .>.
(satet (42> AOM &t trm. -divr <t-a> -o,. 0.1> 'trip (U>) (litt <2>-r424.' 01>. tpalt4)

(Lift 0.1> ^car <=) (aa.a.. 4.>'a at 4 aIM ti tl24 rp
(operator <42> 'trip (42>) (go"-v1* 100004 10000e <s4Apr~o
(trip (4t> Ames trip) (statevol <80264 4dmm atrut-im tru +crotreoe 1 4))

(opres (41> fltm. 12.5)-rp^riw<l>'rc <l trp<> (Lis <413. m c>
(tack (Ul> 'voim 400 'uaight-lhait 5000) (Zgl(51 't. (.4>g~ oeqarat (.1>) _sLt"0-~re "1

(state (42> tdrive <u,- (operto <6.1> mxa 4.1>) -ogm teor -= sgmn 8>
(ragmn. 4.> -'at3 ^atri aetvom64 mratti.

(up p1201 'igwt 000
(goal (51>- -state (42> 'aperstor (02>) (sptat. <&2> <12m 6,nt..~ <12>mam 0.>'a)t .
(satet <42 '40m-tt* taue 'marmt-.okadula 0.1>) <3> (Lis <L(.or52> +aa-ads mapat+ -'1a-~ NIL *m Liftn4)
(lint 0.1> -am <a*>) (geolce <g2> -abou NL at spt. +a2>)6-ti ti2+ r

(operates <a&> 'trip (42>)o-ri (atrt. <t3> ^driver <a>-t1>)<a

54

(ohison <81> 'Amm, carpet ',.iLt 500.0 'voim 100 .0 'load-tim 0.2) -trip tai1

(state IA4> 'rmxzt-ainoss 4M> -"(state 482> -dL4 m <al>)
(Alpwmt 2.> ftmm, Amsrpcint ^weih 6000.0 'yo2w 400.0

(Sp p1414 'load-tinws 0.2)
(g9al <92> ^State <04> qsezatsz 404>) >
(state ad> dumu-attt tuen 'inmm-aours <34>) (state <54> 'mrO -rSeint (11> < 4.: (,1<> 4)
(lint (11> 'or ftl>) (lifst 4122> 'car (.2> + ^Oft (01> + ftyped list 4
(rsOMOaS <.1> -'seom smemsA Aarsat-volan "0 ^Amrst-tim 11 (ZOsnm 412> 'ssF~ Ss4~t + spme A -trip trWp + trip2

m=Z -md4il 1000) 'm -arsiob 4000.0 + 4000.0 a
(Operator <oall'. m s imlate-sov~ 'reeasse (1> -sgen (<3>) ' - 3 240.0 + 240.0 a
(sgmet <83> -20&aadshi Carpet -'2.AAAd--4;AAAt WnI -MM s.que4 'r -tim 10.35 + 10.35 a))

ftrip trIFp)
(goal <91> aebleaft 32= 'stats (52>) (sp p1521

(shipsa <91> 'mm Carpet 'wibt 500.0 'VOlus 100.8 'load-tins 0.2) (stat. <du> 'dom-att*t true 'marent-aS&Ofle, <11>)
__> ~(list GI>3 q,Ag C"I>)

(state <*&> 'inrzm-zssma 412> a, <L2>) (Operator (01>0 ^%zip (OS>)
(lint <L2> 'oar AM2> + ^Af <L1>4+ fty'ps list 4)(trip 4M3> -m tz1)
(reorcs .WJ ^seat ssdN* + sstA a 'tr:Lp trWp 4 twWp a (OPINCtAIM <02> ^amM aXinlts-tr:LP ^dzIvsr <d> ^trul (ti> ^trip <2>)

' --ya2m 540.0 + 540.0 6 (trus tl> ',um 6"0 'uaigt-1.t. 10000)
'inrren-t~nm10.8 + 0.4 Q) __>

(a pa"(state <42> 'r -obefle <dl>-)

(goal <92 ^stata <54> 'oporater <"1>) (sp PI522

(l"at <.1> 'oar 4=.>) (state <42> 'dom'-attw tue ftruak <U3> Acrrat-casole (11>)
(resources <CIL> -^Ose m segm=U '-zr -weo3 540. 0 (track (t3> ',o2s 640 A',iqt-li-4t 10000)

'irm-tas10.8 'Anre n-weight 9300.0) (list (11> -car <01)
(operator <OIL> 'mm sinzat-s ot. -reources (1.1> 'sowst <83>) (Operator (01> ftrip (02>)
(sgmet <s3> ^MoA-0sbit carpet -'uload-si~et. NI (trip <t1> ^mm trip)

AS,, aegastl) (Operator <01> 'mm sinslate-trip 'trash <U3> 'driver (dlp> -trip <tl>)
(goal <91> ^Object NIL ^state 4s2>) (driver "2l> -drive-time 11)
(state <&2> --sh ~ -CAI>) >
(si~t <8l> 'am mrpet -Weight 500.0 ',olm 100.0 (state <d2> 'truck (03>-)

U'I44ad-tis 0.25)
__> (op p1323

(ap p2467 (driver <4l> 'diva-tion 11)

(state <.4> '-matt' truea 'Crrt-rsoures <11>j (operator <61> 'trIp (tS.)
(list <31> 'oAAz r >) (trip (01> ^3- trzw)
(Arsouraea <zl> -'segat aswit5 ' --ol 540. 0 (Opratsr el> ,a srimuLats-trip Adriver <4dL> 'truck (01> ^trip <t2>)

'mcaet-tins 10.5 'arat-weigut 9500.0) (trust (01l> voelges 640 'usLght-14ait 10000)
(operator <0l> ^smms almletw-magamt ftemoseo <11> ^s~ (5<3>) >
(segamt <83> -m"les-1u earpot -'eos-bin 32 (state <dl> -driver <dI>-)

^I- ss.5at ftrip tripS)
(gOal <91> 'obleft 322. 'state (42>) (srp p1524
(state <02> ^-shimmt <81>) (goal <(21> 'state <d2> -operator <a.'.)
(--himort <8I> 'm 0"r70t '..igkt 500.0 'volue. 100.0 (state <42> '-wmatt* true Ion m-schedule <3.1> ̂trip (t03>)

'=lad-tiin 0.25) (List 4m1> 'oAr <01>)
__> (operator (01> 'trip (t2>)

(List <L2> -'in (2> + -adc <11 + -typs', list 4) (opersao "1> 'mm Sinalate-trip -trip (<3> -driver <dl> -track (tl>)
(resO=Cos <el> '5Vam ss.S" + DefutS A ^tip trip + trip2 a (driver (dl> 'driVO-ti,, 11)

Amrn-VOai 14000.04+ 10000.0 A; (trus* t > 'voInW "0 -Wsigft-lhait 10000)
'inrm-voms 640.0 + 640.0 G5_
'incot-tims, 1.0.55 + 10.55 4)) (Stat. (dl>0 -trip (t3>-)

(Sp pW51 (Arp P1525
(goal <92> 's1tat. <4> 'oparater Cal>) (oal (40> 'state <d2> 'operator <02>)
(stat. (.4> 'A~m-att* true 'inrrmt-rosoums -U>) (stat. <42> '-mrAtt' true 'irn-odtle <11>)
(list <U> or <.1>) ("ant 411> -der (01>)
fresoures <E> -'55N~ asomat 'i a-woln 640. 0 (operator (01> 'trip <t3>)

^Omrvo-tius 10.55 'inmvt-e&tot 10000.0) (trip (0)> 'amm tript)
(operator <*I> ^wnm aimlate-somat 'resouoas <.1> 'segmet <a3>) (operator (01> 'mm simate-tirip 'driver <41> 'truck (.1> 'trIp <">)
("six <83> -leod- ut, insprint -'load-shIpowt NIL (driver <41> 'dtivs-ting 11)

'mm nowa) (trunk (<w. -volume 640 'usiLt-liait. 10000)

(state <82> -shimn <81>) (state 40l> -awrowt-mabodus .12> 6, 412> 4)
(skipaumt <a1> ftgrm asOprint -Meibt 6000.0 -volme 400.0 (List <=2> 'typ41 list 4 -ofr (11> + 'oar <a1>4)

'lad-.tine 0.12)
__>(Op PIS"4

(state <" orot-eo.(1> -)(goal (uS> ^psehim-pano 401> 'stat. <83> ^Objeat (92> 'Operater (01>)
(poe-pma (pW> 'mw ma*lactia)

(lip #1515 (goal <40 'IALA-apace 40>)
(goal <12> -sate (<4> 'oper-ao (.1>) (prohimw-apsos (52> -^4smtL-osAA-aAAtbImq
(srtte Cs4> ^'-eatte tou" 'rinit-resooross <311>) -'4A-OOM -r-scedle 4w~m-att* trip truck
(list <11> 'oar (.1>) driver
(rSsonem (.1> -'sa As 'irm-values 640.0a -^tme-lawsl-attrimtos anrmt-Sabdal dwm-att.

'inr~a-tim 10O.55 'MrZ40-wtit 10000.0) trip trck drivsr
(opersao <03> 'IMM silsae-5 'asoro e ee (11> 'seout <&>) -^all-attribuas-at-lavel two -'m-lvel-attribrotas
(saaet <&3> ^lAad-Shimen Asupp t rin st S N MM 'mm s td '3M task -'maNs *leton)

55

,satet.0 > eyalwatan .> (driver <(ii> 'drive-tims 12.5)

(operator <0221 -^deft a trip amm track driver 11Mm ailuae-taip (itate "I1> Aname <M ^City <c2>)
,ti ftmo ftruk (tl> -driver <dl>) f(llama. <LZ> &trud-ty"e bam hAlse bramn)

(tip4k as tzWp) (city <023 4am guy 'truak travelar Adrivez brown)
* tZWck <tl> Aw~n 400 ft*1lt-l 4-4t 5000) >

4 driver <41> ^drive-tift 12.5) (.valuatim (m> Asyubella-vaLu. pmrtial-auacas)
(opermter <01> -Lyp1 evaation -attribute operator

^deamut-tate-aepy yea 'daault-parater-W I- (sp p1537
^010eft 40), 'AerprebLm-P&Ma 42 ^uparstate <d3> (goe" <933 ^tate <aS>, Aabjet <91> ^operator <92>)
-desired <">) (o-l 40), 'pealm-aps- 4*1>)

(satet <43). '-matt* tam, Afiver Cd2> -track fta> -tip ftS> (yp..M- -(p1> -'&att-eibueat-leval, to -Aam-lal-attribta
'inm~towma. <L>) -tuo-lve.att4iota anr~-nkoftle trip track

(driver <42>0 Asme tr -fti-timem 11) driver dumayOtto
(tUax <ta> Atype ie -na m trevelar VeIn "40 'umLt-liat 10000) -'jor1t-upy ir -a dule trip truck driver
(trip ft)> .3mm trip -2rat-aegpmt <82>) demny tt* -'d--aM-Aqythinq
(segmn 482)> ' -ar gary) -Adagalt-stato-aqpy no -Adefault-parator-copy o
(Liat CL> maa <42>) .3am task -- nmm seetin
(operator <W1> ftrip <t2>) (satet <&S> -evelmat, "m>)
(trip ft230 -amm tri) (operator <o)> ^mmam evalate-obdect fty e valuation 'attribute operatox
(9-L <91> objec MMsatet <81>) ^deaualt-stat-ow yea 'dmaulnt-Operator-cp yes
(satet. 4A1> 'llaa CL)> -city <42>) 'eaumtion <&I> Auaprbla-pece <p1) aparatata <&I.;
(liama. 42D, ftrk-tp m adiat -bolder brown) -ob~oft <a%> -deuired <44>)
(city <02). ^am pay 'truck traveler '4rivez brown) (fatet 4&1> '-wINt- tasn -trip fte)> <u> 'tuck 4t5) Ctu>

-- > 'drivr (4=1 (44> ^inr -nkadelm C21>)
(evaluation (.1> Isa11l-valum, succs fl) (trip ftG> 'am trip2 'frat-omut 4.4)

(semen <s4> leasa veay)
(Sp P153

5
(trc <tB> -tp Madimn 'nam traveler -Values "0 'Vaigt-limit 10000)

(goal <42). 40OLaai <4> 'PROkM-pa (p1> 'satst <42> (d:iver (i> Aeon brn 'drive-tim 11)
'Oparster <01> +) (driver <66i> Aftve-tim 12.5 'Acm gray)

(Problm-apeas 451> 'am task -ftam meleatio. (truck 4t2> yAvlews 400 'wAeit-14-4t 5000 -typo mUal -nama piper)
-'to-uernl-attribeta driver truck trip eume-att* (trip <tA4> 'mm twirl Ifivat-aapmt 4&220)

aozz~mtacbod~e(segment <62> 'amtm, ply)
-'4mmt-ftm driver twak trip dome-atte, (operator <01> -'4-ctpy trip mon tauck driver 'ma.. sanmzat.-tnip

-^ell-attzibta-at-lvel to-1d-opp-aythag (trip <t3> 'am trip)
-'default-ag cator-aspy no -'d*fault-XtAt.-py no) (truck V(U> Yvin L200 'uuiqt-It-t 32000)

(satet 42> -aem-atte true -driver <=3> -truck <k4> -trip <k)> (driver -deive-tins 11)
'ita-achadela 0.>) (14,t 4a> 'aQr <43)

(driver fA3> Aamm brown 'drive-time 11) (operator 4iS> 'trip <d2>)
(track <u4> 't7 edian 'Amum traveler 'vo1me "0 'weitght-limit 10000) (triLp <dZ> 'm mow)
(trip <k)> 'amm trip ^ftrot-eamot <AL2>) (go" <f23 ^Ghjeft NUL ^satot <&3>)
(segmt 4&2> ^ gaa py) (satet "a)> 'liom 4M5> 112> -city <01>)
(liat 0.1> ^oar <4&>) (lUma <.3 'truck-type ftora -bolder brawn)
(operator <G1> 'taip ft2>) (city <cli> ftom gamy 'tunk travel.. piper 'driver brown gray)
(trip ft2> ^a- trip) (licama. <222 'tmuck-typ. small 'bolder gray)
(operator <.1> --dent-ampy trip non track driver 'am aionlat.-trip -- >.

-trip 4k)> -truck ft).> -driver <dl>) (evelatin <&3> 'aymbela.vlum Partial-uccess4)

(track fti> 'v.3mm 400 ^WeIghk-liit, 5000) (up, p1532
(driver <dl> -drive-tim 11.5) (pual <92> 'desired <46> *Vveblo-opeee <V1> ^satet <.1>
(goal <91> 'ahbet NUM ̂satet (81>) 'operator <01> 4)
(satet <81> -llama.i <.2). -ty <c2-) (Problmn-apac. 4*1> Anmm task -Anam, aelection
(Liama.m <122 'tauw-tno edlam 'bolder Irm -ftvo-loel-attrib.tem do-att- driver truck trip
(Gity <C2 'Amt payT 'taun traVe2AW 'driverW) m -abUa"

-- > -'dowt-mW d-att* driver truck trip
(go"l <92> 'Operator <01> >)) r -se~dcle -'dout-aop-anytb~nq

-'me-levl-&ttribtt" -'all-attribtea-at-lovel, two
(sp p1534 -dmault-operateray me -'daault-ate-cop no)

(goal <93>. ^Objo-t <92>1 ^prChi-spece <p1> 'dmaized -C4> -stat. <d2> (satet <&L> -dme-att- true 'trip Ctg> <tA> 'truck <tS> <=2>

(goal <9> ^satet <a)> 'opstatax <02>) (trip <4kB> ̂ Im trip 'firft-a.at <84:)
(prolm-pace, 4p1> -'detmult-atat-aof no -'6mtault-operator-co" na (a.yet <a00. 'sam pery)

'^d-t -0aythimm; (twoc 4k)> 'tye mumxf ^xam travel.. ^v1mm 440 'weight-hulkt 10000)
-'dust-o CM r~akd l-att' trip track (dive <i> 'ur beam 'drive-tim. 11)

driver (driver 444> 'drive-Urnm 12.5 fa gra)
-'tuu-lovl-attribtes mr-ackd*& umy-atte (trunk tk> -Volans 400 -Weight-1it, 5000 'type mall -AMS piper)

trip truck driver (trip <tA> 'nmm trip -firat-aeut (823-)
-'ell-attrlba-t-avul toe -^ma-1.,el-attributea (semn (aM- ^-er pary)
Am,, task _Amm seeiaon) jlist .1> Anne 443>)

(satot 442> -e -t
8 true -driver <iS> -truck ft&> -trip <t5> (operator <i3> 'trip <i2.)

'in~-ed L. .1>) (trip <d2> 'urne A
(driver <40> 'rnm 'drive-tim. 11) (operator <*1> ^dmt aG" trip -on truck driver Aaa aiilate-trip
(truck fkd> -type Radus -2am travelor '.mm 440 'weight-limit, 10000) -trip ft)> --rack <tl> -driver <"l>)
(trip 4&J> ^am trip ^Zirt-op-t -2>) (trip <t3> .3mm twr)
(aepast (al2> 'asseerompy) (trunk <tl> 'vela 1120 'weigt-limt 32000)
(satet <"), -oaelusttius <*I,') (driver 441> 'drive-tims 11)

* (hat 0.1> 'ama <al>) (pel 491>, 'ebleft U. .at~t. <1a))
*(operatar <411 'trip I>23) (satet "aS> 'limams <3. <.I> 'Uty <01>)

(trip (4=0 'mm trip) (liens <U> Atktp median 'older brwn
(Opertor <0ml> ovmelat-obl.&t -dmeired (44> 'avaluatius <*I>) (alty <-I> 'am pery 'truck traveLer VApe 'drive~ rv gray)
(oparatar <eu. - -amg driver trunk aome trip -am" simlate-trip (Licema. <0> ftruc-type smalh ^older gray)

Atrip (U>i Atruck <tl> 'drivnr (dl>) >
(trip <t3> m twrp) (p-l <@2> ^operator >))
(truc 4k).> 'v.1mn 400 'weigmt-14mit 5000)

56

(or PL548
(goa 40) ^obet MM ^Stota <'A> ^- oLon-spine <p1) 'uSats 401)
(state <4> - Watt- twe -lious -a3> <12) <1) -city <CO 4cl)

ft m42> 441) 443> ftru <4>4 <t3> ft3)
ftwir V 4:22> 34f1)

(Liam 413) *Zana-tpP OU -bolder Igay)
(city 422 ^mm, Iszy , piper tmww&Ls ^drive gray bror)

(lins" 41) 'trugh.tp soxi -ouse ram)

(driver <d2) 'mmas gray A4.ive-tis 1.2.5)
(track <t&> -tpp msU 'mm lii ^olagm 400 ^VULMt-11mit 5000)
(trip 484) 'sm taip1 Utzut-asgrint <53)
(sea- 483> ^gams ~oy
(driver dl) -drio-tg 11 Assm grace)
(truck <t3> -volme 1280 'majikt-1gAlt 32000 ftyp big 'ama, -mahh)
(trip <tn. -mm trip ^fist-seyout 4@0)

(driver <43) 40iwv-to 11 'mma bown)
(truck 483)- 'wam 440 -osioi-1iit 10000 ftype amdin -nmm traveler)
(trip 481) 'mmss trips fz-aom <81)
(sept ft1) ^oumrce ~ay
(operator 81) 'mm do-task 'mmutzol-utuft <.3)
(costrox-atmff' <as> dtfr-nge1mald trum)

(rntsroL-staft* 463) 3, -rringa-ald true -
-ad"a* <&L> + <&I> 6)

(aug (81)> -'a ate-subdd I a47) 6, 4M7), +17)4 + 17> 8)
(Is t 417) -type 14 at +' Agar 4as)4 -ams <4> 4)
(aaotz.1-stuf O 404). 'est-ra-sugaL-smled* true +

-zooms - mb~ed* true +)
(operator <63) 'mmu alunLato-trip +' 'driver <42) + ^tweak <t&) +

'trip 484). + ^=ffA~ze-stftO <65) . <as> 4)
(11-st 415) ftype' lift + o' <M40 +1) -as <*2:o-)
(cautr.1-statO 44) > i-r-elmb~d true +

-wamaseido-diahldt true 4')
(operator <43) 'msm ininLat-trip +' ftrp <4) +')
(add' <&I> ^aLs state. + ^AA <44 + 'aug 4.1> 9, <u.1))
(trip 4d), *I-a d- +)
(list <14) Atype' list +' ^odr nil +' -u 443)
(operator <o2) fteetwel-stfs <ad) + <.&) - -trip 482)4 + trak 483)4+

'40toer <41o 'lam, milate-trip +')
(contr.1-otuff <as 4.5)ecanaidan-disabLede true +

'e41-frmaakgal-m&4*true, 4)
(list <14) 'USz 403), +' -aft <M5) +type* List +')
(operator <44 ^ountrel-stftO 4.4),+ 4od . 'trip 481) + 'truck 485) +

'driver <43).4 'mma siinat.-tsip4)

(ap p1549
(0-al <9) '.b~ject 5Th Astute <4> ^pralom- 4CL) ^operater 4.1)
(state <84) -Ei-att- true -U~s" <L3> <2) <U1) -city <42> 4.1)

^driver 443 <AM -M1) truck tS <8 t3> <t3.)
'trip <t84)484)4<2)

(polose V&> ^I- top-or-s)
(uaga, <11) 'tra-tpe nodivi 'holder hr)
(city7 <c2 'sm gry trat travelar pie 'dri.ver Ioo gray)
(11am. 412) 'trait-type, ml.1 'bolder gray)
(driver 4"3). mm bow drive-time 11)
(traik tS 3 'typ udim -m travexar 'vo~mo 640 'waight-1hndt 10000)
(trip 484) 'am trips -first-spont <63)

(21im <11) 'trawk-typse 'bolder Gra)
laity <01) 'MM IN~f 'traM GSWASlba 'dCLver gran)
(driver 4d23) Iamgry 'deive-tine 12.5)
(tweak t 3)'p mU 'amipe d -lm 400 ftveiht-14Iat 5000)
(trip 484 ^lm- twrl 'Uzft-om <so)
(sawst 482) ^e-woo ~oy
(drive <41) Amgamsu drive-tine 11)
(traam <U1. 'typ b"g 'mmo ammoba 'aln 1200 'weigh-1iA~t 32000)
(trip 482) -m trips 'tizu-sp~ <81)

(operator 4.) doe4-task)

(oal 461) 'operator <*I>6)

57

References

Filman, R. E. (1988). The Big Giant Trucking Problem. Intellicorp, Inc. 1975 El Camino Real
West, Mountain View, CA 94040. Unpublished.

Filman, R. E. (April 1988). Reasoning with Worlds and Truth Maintenance in a Knowledge-
Based Programming Environment. Communications of the ACM, 31(4), 382-401.

Laird, J. E. (1984). Universal Subgoaling. Doctoral dissertation, Computer Science
Department, Carnegie Mellon University.

Laird, J. E.; Congdon, C. B.; Altmann, E.; and Swedlow, K. (October 1990). Soar User's
Manual: Version 52 (Tech. Rep.). Electrical Engineering and Computer Science
Department, The University of Michigan. Also available from The Soar Project, School of
Computer Science, Carnegie Mellon University as CMU-CS-90-179.

Minton, S. (August 1985). Selectively Generalizing Plans for Problem-Solving. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence. 596-599.

Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T. (1986). Explanation-Based
Generalization: A Unifying View. Machine Learning, 1(1), 47-80.

Rosenbloom, P. S.; Laird, J. E.; and Newell, A. (August 1987). Knowledge Level Learning in
Soar. Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87).
499-504.

Tambe, M.; Newell, A.; and Rosenbloom, P. S. (August 1990). The Problem of Expensive
Chunks and its Solution by Restricting Expressiveness. Machine Learning, 5(3), 299-348.

Yost, G. R. (May 1992). TAQL: A Problem Space Tool for Expert System Development.
Doctoral dissertation, Computer Science Department, Carnegie Mellon University.
Available as CMU-CS-92-134.

Yost, G. R. and Altmann, E. (1991). TAQL 3.1.3: Soar Task Acquisition Language User
Manual. School of Computer Science, Carnegie Mellon University, December, 1991.
Unpublished.

58

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not
to discriminate in admissions and employment on the basis of race. color, national origin, sex or
handicap in violation of Title Vt of the Civil Rights Actof 1964, Title IX of the Educational Amendments
of 1972 and Section 504 of the Rehabilitation Act of 1973or other federal, state, or local laws or executive
orders. In addition. Carnegie Mellon University does not discriminate in admissions and employment
on the basis of religion, creed, ancestry, belief, age, veteran status or sexual orientation in violation
of any federal, state, or local laws or executive orders. Inquiries concerning application of this policy
should be directed to the Provost, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh, PA
15213. telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-2056.

