REPORT

.z repo"ting burden for this coliectio
"rf ing aNG MAINTSINING the OB Nees
e-' inr 2t inyarmation, Inciuding wwgg

o 3r ey Suite 1204 Arhington VA

AD-A254 568
N

Form Approved
OMS8 No. 0704-0188

he 1IMe 107 reviewIng INSIIUCTIONS. YEarcmng existing data sources,
imments regarding this buraen estimate of any dther aspect of this
nrectoratre for information Qperations ang Reports. 1215 setterson
leguction Project (0704-0188) wasnington DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

FINAL ! Sep 88 - 31 Aug 91
TITLE AND SUBTITLE S. FUNDING NUMBERS
4"P;....kI'JNING AND CONTROL" (U) - 6426?00
DTIC | oo
6. AUTHOR(S) ELECTE

JuL2 7 19928

Professor Thomas Dean

8. PERFORMING ORGANIZATION
REPORT NUMBER

o 92 06 86

7. PERFORMING ORGANIZATION NAME(S) AND A
Brown University
Department of Computer Science

Providence RI 02912 AFOISR'TR'

10. SPONSORING / MONITORING

‘_
. ITORING AGENCY NAME(S) AND ADDRESS(ES)
3 SPONSORING/MON ()-. AGENCY REPORT NUMBER

AFOSR/NM
Bldg 410

Bolling AFB DC 20332-6448 . F49620-88-C-0132

——— A —
11. SUPPLEMENTARY NOTES

12b. DISTRIBUTION CODE
‘ -

UL

o e Y = ST 7T W VT3
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Apprm&‘”fbr public release;
Diatfibution unlimited

3
>

5
13. ABSTRACT (Maximum 200 words)

The research was devoted to the design of complex systems for applications in
robotics, automated manufacturing, and time-critical decision support

systems. In exploring the issues involved in the design of such systems, they
investigated techniques from artificial intelligence, control theory,
operations research, and the decision sciences. In the process, they
attempted to draw correspondences between concepts from the various fields.
However, this work was not intended as a grand unification of these
disciplines, even as they pertain to the specific issues of interest.

Instead, they presented tools from these areas as component technologies, each
playing a pivotal role in the design of complex autonomous systems.

o 0T7H
92-19946

UMBER OF PAGES
60

B VR
mwnmmmmmmw

RICE CODE

(14 SUBJECT TERMS
Y36 39/ &

T —————
17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
PrewcriDed Dy ANS: St 239.18

298102

2\

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

g Aooasat om For

- | NT1" aRdal 3 A
0

e BT PP fan
P Y i
PO S Uiz oo ol
1l GO P ' tJ
Tl Justileutton

D!Stl‘!butl‘n/

Final Report — = —

‘Vﬂllabi lity Codgg

1Avall and/or
Dist l $pecial

ARPA Order: 6426
Program Code: 8E20
Contractor: Brown University
Effective Date: September 1, 1988
Expiration Date: August 31, 1991
Amount: $440,000
Contract Number: F49620-88-C-0132
Principal Investigator: Thomas Dean (401) 863-7645
Program Manager: Abraham Waksman (202) 767-5028
Title: Coordinating Planning and Control

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 6426

Monitored by AFOSR Under
Contract No. F49620—88—C-0132

Planning and Control

Thomas L. Dean

Brown University

Michael P. Wellman
USAF Wright Laboratory

Morgan Kaufmann Publishers, Inc.

Preface

This book is devoted to the design of complex systems for applications in
robotics, automated manufacturing, and time-critical decision support sys-
tems. In exploring the issues involved in the design of such systems, we
investigate techniques from artificial intelligence, control theory, operations
research, and the decision sciences. In the process, we attempt to draw cor-
respondences between concepts from the various fields. However, this work
is not intended as a grand unification of these disciplines, even as they per-
tain to the specific issues of interest. Instead, we present tools from these
areas as component technologies, each playing a pivotal role in the design of
complex autonomous systems.

In our attempt to draw a coherent picture of the broad range of problems
and techniques considered here, we rely on the central themes of observation,
prediction, and computation. In an uncertain environment, we must employ
observation to augment our incomplete knowledge with evidence from the
senses. We invoke prediction to extrapolate from our knowledge and obser-
vations the effects of our actions over time. Revising and making effective
use of our knowledge requires computation to translate models and obser-
vations to meaningful action. The design of a system to control complex
processes consists largely of strategies for deciding dynamically what and
how to obsetve, predict, and compute.

In the 1980s, the traditional view of planning as offline computation r«-
lying on precise models and perfect information was challenged by research
in artificial intelligence on robotic control systems embedded in complex
environments. The challenge was met with proposals for reactive systems:
systems designed to respond directly to perceived conditions in situations
where there is little or no time to deliberate on how best to act. One dis-
concerting aspect of the focus on reactive systems was that it diverted effort
from planning: predicting possible futures and formulating plans of action
that take into account those possibilities. As research progressed, it became

vi Preface

apparent that there was significant overlap between the work on reactive
svstems and the work in control theory. This book connects traditional
research in planning with the constraints governing embedded systems, by
reformulating the process of planning in terms of control.

Viewed from a control perspective, reactive systems embody particular
strategies for controlling processes. In order to evaluate reactive.systems,
we have to analyze the connection between such strategies and the physical
systems they seek to control. The tools required to perform such analyses
are readily available from control theory, computer science, and artificial
intelligence. This book focuses on the issues involved in modeling processes
and generating sequences of commands in a timely manner. The practice of
constructing formal models of physical systems and then using those models
to develop programs to control processes is examined in some depth.

This book is intended for graduate and advanced undergraduate students
in computer science and engineering. It is meant for students trying to
orient themselves with respect to the many disciplines that have something
significant to say about planning and control for applications in robotics
and automation. The material in this book is suitable for a one-semester
course offered to graduate and advanced undergraduate students. Given
that the material covers a range of disciplines, we assume a somewhat varied
background.

From computer science, we assume some familiarity with the theory of
computation [12] and basic complexity theory [8]. Pidgin ALGoL [1] and
Edinburgh PROLOG [5] are employed in describing algorithms. Some back-
ground in logic [14] and its application in artificial intelligence are also ex-
pected [4, 15]. Elementary probability theory plays a role in the chapters
on uncertainty and stochastic modeling [11, 13]. While no background in
control theory is required, we assume some familiarity with linear algebra
and elementary differential equations [17]. We refer occasionally to standard
techniques in robotics and machine vision, but no detailed knowledge is as-
sumed. References, both general and specific, are provided at the end of
each chapter, so that readers can fill in any missing background knowledge.

The book introduces advanced techniques that derive from work in a
number of disciplines. The exposition of these techniques is largely self-
contained, with pointers to more detailed treatments. In particular, the text
explores the use of default reasoning [9] and temporal logics [18)] in modeling
processes, a framework for integrating techniques from control theory (6, 10]
into a theory of planning, and several methods for coping with uncertainty
derived from work in artificial intelligence [16], control theory (2], and deci-

Preface vii

sion analysis [3]. The phrase “Intelligent Control” was coined by Fu [7] to
describe the field corresponding to the intersection of artificial intelligence
and automatic control. Qur interests in this book often coincide with those
of the intelligent control community, and, where appropriate, we provide
pointers to this literature.

The original idea for this book came from a course on robot problem-
solving taught by Tom Dean at Brown University. In the Spring of 1989,
Dean began work on a textbook based on his lecture notes for this course.
Mike Wellman joined the project in the Fall of 1990. The collaboration
has worked out well, and we expect to continue working together on future
projects.

We consider this book as a tentative first step towards an integrated
view of planning and control. We expect that the ideas presented herein
will undergo major revision as the field proceeds to define itself. There were
times when we began exploring details that threatened to delay the book
by months if not years. Our editors, colleagues, and students persuaded
us, however, that it was more important to publish a first approximation
to the theory we were seeking in order to enlist the combined efforts of the
rest of the research community. In the end, we were content to provide a
rather high-level travel guide to exploring the territory. It is our hope and
expectation that this book will be rewritten every three or four years for the
foreseeable future; not necessarily by us, but by our students and colleagues
in a variety of disciplines.

Acknowledgments

We would like to thank Steve Cross, Bob Simpson, and Rand Waltzman
at DARPA, Abe Waksman at AFOSR, Nort Fowler at Rome Laboratory,
Sanjaya Addanki at IBM, and Ken Laws at NSF for their support of the
research that went into making this book possible.

A large portion of this book was completed while Tom1 Dean was spending
his sabbatical leave at Stanford University. Jean-Claude Latombe and Yoav
Shoham at Stanford provided a stimulating working environment that signif-
icantly influenced the final content of the book. Wonyun Choi—a graduate
student at Stanford—and Hideki [sozaki—a visiting scholar from Japan—
helped with some of the examples. Obtaining the early (junior) sabbatical
leave would not have been possible without the support of Eugene Charniak
and John Savage from Brown.

viii Preface

During the two years of preparation, we received encouragement and
feedback from several people. Nils Nilsson of Stanford was enthusiastic
about the book from its conception. We received useful feedback from Chris
Brown at Rochester, Jon Doyle at MIT, Greg Hager and Dan Koditschek
at Yale, Peter Ramadge and Elisha Sacks at Princeton, Stuart Russell at
Berkeley, Reid Simmons at Carnegie-Mellon, Rich Sutton at GTE Labo-
ratories, and Bill Wolovich at Brown. Many Brown students—Ken Basye,
Mark Boddy, Ted Camus, Robert Chekaluk, Seungseok Hyun, Jak Kirman,
Keiji Kanazawa, Jin Joo Lee, Moises Lejter, Neal Lesh, Oded Maron, Linda
Nunez-Mensinger, Margaret Randazza, John Shewchuk, and Tu-Hsin Tsai—
contributed to the research that went into this project. We are especially
grateful to Neal Lesh and Oded Maron, who wrote the code for most of the
examples used in the text. Finally, we wish to thank Mike Morgan for obtain-
ing reviews in a timely manner, urging us to focus the book, and generally
remaining enthusiastic and supportive throughout the whole project.

References

(1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The De-
sign and Analysis of Computer Algorithms. Addison-Wesley, Reading,
Massachusetts, 1974.

{2] M. J. Ashworth. Feedback Design of Systems with Significant Uncer-
tainty. John Wiley and Sons, New York, 1982.

[3] V. Barnett. Comparative Statistical Inference. John Wiley and Sons,
New York, 1982.

[4] Eugene Charniak and Drew V. McDermott. Introduction to Artificial
Intelligence. Addison-Wesley, Reading, Massachusetts, 1985.

[5] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-
Verlag, New York, 1984.

(6] Richard C. Dorf. Modern Control Systems. Addison-Wesley, Reading,
Massachusetts, 1989.

[7] K. S. Fu. Learning control systems and intelligent control systems:
An intersection of artificial intelligence and automatic control. IEEE
Transactions on Automatic Control, 16(1):70-72, 1971.

References ix

(8] Michael R. Garey and David S. Johnson. Computers and Intractibil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, New York, 1979.

[9] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Ar-
tificial Intelligence. Morgan-Kaufmann, Los Altos, California, 1987.

(10] Francis J. Hale. Introduction to Control System Analysis and Design.
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[11] Paul G. Hoel, Sidney C. Port, and Charles J. Stone. Introduction to
Probability Theory. Houghton Mifflin, Boston, Massachusetts, 1971.

(12] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory
of Computation. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[13] D. V. Lindley. Introduction to Probability and Statistics. Cambridge
University Press, 1980.

(14] Elliot Mendelson. Introduction to Mathematical Logic. D. Van Nostrand,
New York, 1979.

[15] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing
Company, Palo Alto, California, 1980.

(16] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan-Kaufmann, Los Altos, California, 1988.

[17] Albert L. Rabenstein. FElementary Differential Equations with Linear
Algebra. Academic Press, New York, 1975.

[18] Yoav Shoham. Reasoning About Change: Time and Causation from
the Standpoint of Artificial Intelligence. MIT Press, Cambridge, Mas-
sachusetts, 1988.

Chapter 1

Introduction

It is late and you are returning home after shopping at the grocery store.
You thread your car through the narrow streets of your neighborhood. and
maneuver carefully into a parking place barely large enough to accommo-
date vour vehicle. You gather up the groceries. walk up the steps to your
apartment., and grope vour way down the hall trying to feel] the light switch
so vou can find the right key. After setting the groceries on the kitchen
table. you put some leftovers in the oven, and step into the bathroom to
start running a hot bath. Returning to the kitchen. you begin putting the
groceries away. About midway through shelving the groceries. vou return to
the bathroom and adjust the faucets to ensure a comfortable temperature
for vour bath. When you return to the kitchen. you turn the oven down
hefore finishing with the groceries.

Parking a car. carrying groceries. heating food, and running a warm
bath are all examples of controlling processes. Quite often, we are engagedin
controlling several processes simultaneously, as in the ¢ase of running a bath
and heating leftovers. There are some processes that we have considerable
control over. such as those having to do with the movement of our arms
and legs. and other processes that we have very little control over, such as
the process governing how many people in an apartment building are using
the hot water at any given moment. There are limits, however. even to our
control over our arms and legs. The arms and legs in conjunction with neural
circuits in the spinal cord respond to stimuli without conscious effort: the
arm jerks the hand back from a hot surface. the legs move involuntarily to
save us from falling if we stumble. Many of the processes that we are used to

°®1990 Thomas Dean. All rights reserved.

dealing with on a day-to-day basis (€.g.. the weather) are completely outside
of our control. We learn how to influence tliose processes/we can exert some
control over. and adapt our behavior to cope with thosé«ve cannot.

This avenegraph is concerned with the design of programs that control
the behavior of physical processes. Intuitively, a process is just a series of
changes in the state of the world. Controlling a process cousists of mak-
ing certain changes in the state of the world in order to determine what

additional changes in the state of the world will occur and when. We dis- ,

tinguish between the controller. a device thal includes hardware to run a
control program. and the controlled process, often another device or group
of devices whose behavinr the controller is seeking to influence. In control
theory, the controlled process is refe;r2d to as the plant. In robotics. the con-
trolled process might correspond to certain mechanical componenis of the
robot such as a manipulator or a drive mechanism. or it might correznond
to the environment in which the robot is weant to function. The coutroller
exerts control over the controlled process and monitors its progress through
the use of auxiliary interface devices. Generally, these devices correspoud
to sensors and robotic mauipulators, but there are other sorts of interfaces.
For instance. the desiguer of a special-purpose microprocessor may view the
microprocessor as the controller and 1ts input and output ports as inturface
devices.

The distinction between coutroller and controlled process is quite nat-
ural from an engineer's point of view; the coutroller is a device that the
engineer designs and builds. It is important to keep in mind. however, that
the controller is itsell a process. Both the controller aud the controlled pro-
cess operate in the same spatial and temporal context: both are emibedded
in a larger process. The study of control is the study of the relationship
hetween controlling and controlled processes. This relationship is central to
our investigations.

In order to control the behavior of a process. it is often useful to have
sowme informaticn concerniug its current state. This inforination can be
obtained in two different ways: you can observe the state directly. or vou
can predict it from information about earlier states. In order to predict
the current state of a process fromw its past states, it is necessary to have a
model of that process. A model is a description of a process used to derive
information about present and future states of the process given information
about its current and past states.

H you see a projectile hurtling toward you, then you might predict that
the projectile will hit vou if you rewmain in your current position. and vou

2

kY
2

might use the prediction as a justification for your ducking. If vou know
that there is a protective barrier between vou and the projectile. or vou
know that the projectile is tethered on a short string, then vou can save
vourself the trouble of ducking. Determining how to act to satisfv certain
goals based upon predictions of possible future states is what is generally
referred tc as planning. There are situations. however. in which making
careful predictions is either unnecessary, impractical. or impossible.

When you place leftovers in an oven set at a certain temperature. vou
employ a very simple model to predict when those leftovers will 1,e ready to
eat. You could place a temperature sensor in the left. vers. and continually
check the sensor until it reached a preset value. This is what is referred to
as monitoring a process. Given the predictability of most ovens. it is hardly
necessary to monitor the warming of leftovers. There are processes that
are so unpredictable that they warrant constant monitoring (€.g.. air traffic
over a metropolitan area). The decision of whether to monitor or predict the
hehavior of a process is a complex one involving subtle tradeoffs. Deploy-
ing sensors for monitoring can be expensive in that the sensors may not be
available to monitor other processes. There are also often significant com-
putational costs associated with both monitoring and prediction. The study
of control is intimately tied up with utilizing scarce resources corresponding
to sensors, manipulators, and associated computing machinery. Planning
provides a framework for reasoning about tradeoffs and directly addresses
the problem of resource utilization. This moenegraph explores controi from
the perspective of planning, and planning from the perspective of control.
The idea being that the two are intinately related but emphasize different
aspects of the same problem.

In the rest of this chapter, we explore the notion of control and how it

relates to planning: in somewhat more detail. - Our discussion will revoive -

around the idea of modeling processes and using models to direct control.

1.1 Controlling Processes

So far, we have talked about processes as though they actually exist in the
world, whereas, in point >f fact, they exist in our heads for the -urpose of
explaining our observations of physical phenomena. A process is an abstract
description of physical phenowiena. Such a description makes use of some
vocabulary for speaking aboul the state of the world. For instance, we may
want to speak about the position (i, y, and = coordinates) of a robot with

()

e e e et e, k()

Figure 1.1: A simple control problem

respect to some frame of reference. or the charge (¢ measured in ampere
hours) on a battery used to power the robot. Variables such as z. y. =, and
c are referred to as statc variables. We assuimne that the state of the world
can be accurately described in terins of somefuumber of state variables. Of -
course. the notion of accuracy has to be defined with respect to a particular
task. Which brings us to an important question. Why do we want to
describe the state of the world at all?

Presumably, we are interested in controlling (i.c.. influencing the value
of) certain state variables. We are interested in other state variables insofar
as they provide us with information that enables us to exercise better control.
An example should make the discussion more concrete.

Figure 1.1 depicts a cylindrical tank containing fluid with one pipe lead-
ing in and one pipe leading out. There is a rotary valve mounted. on each
pipe that restricts the flow of fluid through the pipe. The position, 8, of
the valve leading in determines how much finid flows into the tank. In this
example, we are interested in maintaining the height, h, of the fluid in the
tank as close as possible to some preset value, say 3 meters, referred to as
the target value. We will assume that the valve mounted on the pipe leading
out is Jocked in position.

The process that we are interested in controlling can be described by the
two functions of time, 6(t) and h(?), corresponding to the two state variables,
A and h. As far as we are concerned, the state of the world at a particular
tinie t is determined by 6(t). and h(?). We can predict future states of the
process from past states if we have an appropriate model. For the process

8~
he)
24
=
14
[-
0 10 20
Minutes

Figure 1.2: Change in fluid height for a constant valve position of 10°

described above. a simple first-order diffcrential equation provides a suitable

model, ,
dh(t)
\/1\,,,0(1)-1\0.‘,/41)-.4 - /

where A, is the flow constant in cubic meters per degree inipute for the
valve governing ffow through the input pipe. K,y is the flow constant in
square meters per minute for the output pipe. and A is tfe surface area of
the tank. By solving this equation. we can predict the state of the process
at time t, given information about the state of the process at some earlier
time to. The solution to the above differential equation is

Kin
I\out

where (' is obtained from the initial conditions as,

h(t) = Ce= 530 4 g(ty)

C = hito) - ;49(,0,

Figure 1.2 shows the predictions made by the above model for a constant
valve position of 10°, where TI\L,:..".' = 0.2 meters/degree. bj-‘» 1 minute.
and the tank is initially empty. Note that if we are aware of changes in the
variable #. we can use this information and our model to make predictions
about changes in the variable . Given a sequence of changes in 8. we can
evaluate the effectiveness of that sequence using the predicted changes in /
and some set of criteria for effective control (e.g.. how rapidly & converges
to the target value).

We still need to specify how the controller senses the world and how it
might act to control the height of the fluid in the tank. Figure 1.3 depicts
the two sensors used by the controller: one that provides information about
h. and a second that provides information about . In addition. we will
assume that the controller can influence 8 by issuing one of two commands:

(W)

("

i
3

1
1%

°
Faid Helght

Figure 1.3: Sensors for controlling processes

Vaive Pesiticn

0-10° | 10-15° | 15-20° | 20-39° | 30—60° | 60-180°
0.00-1.50m 1 1 | 1 1 0
1.50-2.50m 1 1 i 1 n -1
2.50-2.80m | 1 i 0 -1 -1
2.80-3.00m 1 0 -1 -1 -1 -1
3.00-3.20m -1 -1 -1 -1 -1 -1
3.20-4.00m -1 -1 -1 -1 -1 -1

Table 1.1: Table used by the function table_lookup

turn_right or turnleft. The first turns the valve mounted on the pipe
leading into the tank 5° in a clockwise direction. and the second turns the
same valve 5° in a counter-clockwise direction. For the time being, we will
assume that the changes initiated by these two commands happen nearly
instantaneously (i.e.. if 2 turn_right command is issued at time ¢. then
0(t + €) = 6(t) + 3, where ¢ is negligible). _

Now we can predict future states of the process, but how do we control
the process? Perhaps the simplest way is just to experiment and see what
works. Suppose that we have done just that, aud we have compiled a table
that tells us exactly what action to take in every situation. Such a table
is shown in Table 1.1. Recall that the task of the controller is to restore
the height of the fluid in the tank to the target value of 3 meters. Given
information about the current fluid height and valve position, Table 1.1
indicates 1 if the correct action is turn.right, —1 if the correct action is
turn.left, and 0 if the correct action is not to do anything at all. Using
this table, we define a simple control algorithm as follows:

Meters
Degrees

0 v 0
0 10 0

Minutes
Figure 1.4: The controller’s behavior with a | minute sample period

wvhile true ,
wait for_delay;
h — fluid height;
§ — valve_position;
r ~. tablelookup(/,®);
itr=1
then turn.right
else if r=-|
then turn.left
else do.nothing
where fluid_height and valve position read the corresponding sensors,
and table_lookup extracts the appropriate value from the table in Ta-
ble 1.1 using indices computed from the sensor readings. The procedure
wait_for_delay causes the controller to pause for a fixed interval of time
referred to as the sample period. Figure 1.4 describes the changes in A and
8. with @ controlled by the algorithm described above. the sample period set
to 1 minute. and the other variables as set for Figure 1.2.

As an alternative to experimenting in the real world. we could use the
model described earlier to experiment with various control strategies for
responding to information returned by the sensors. These model-based ex-
periments could then be used to compile a table very much like the one
shown in Table 1.1. If the model is reasonably accurate. then the resulting
table should look very much like the one developed from experimenting in
the real world. Of course. not only do we need an accarate model of the
controlled process, but we also need an accurate model of the controller in
order to compile an accurate table of responses. So far. we have neglected
discussing the controller at all.

In the preceding discussion. we made a number of assumptions (e.g..
the valve restricting the output pipe is fixed, and changes initiated by con-
troller commands are nearly instantaneous). Now it is time to review some

-1

he 4

e . r 80
34 40
- 30
24
b 20
14 [1o
0 ¥ [}
[} 1 2
Minutes

Figure 1.5: The coutroller’s behavior with a 1 second sample period

of those assumptions, and bring to light a number of additional assump-
tions that were implicit in our discussion of controliers and their response
characteristics.

To begin with, we reconsider the role of the sample period in our simple
control algorithm. In the description of the algorithin’s performance in
Figure 1.4, we mentioned that the sample period was set to 1 minute. What
if instead we set the sample period to 1 second? ‘Vell, for one thing, we ~
would get markedly improved performance, in the sense that the controller
would appear to rapidly converge on the target value. Figure 1.5 shows how
the controller would respond given a 1 second sample period, assuming that
the changes initiated by the commands turn right and turn_left occur
nearly instantaneously. When we are talking about commands issued every
minute. the consequences of such an assumption may bhe minor, but, if we are
talking about commands issued every second, we may be making unrealistic
assumptions about the hardware available for carrying such commands. The
magnitude of the controller’s response is governed by the controller’s gain (a
easure of how fast a controlled variable can change). Generally speaking,
the higher the gain, the more massive the controller, the more power it is

, likely to consume, and the more costly it will be to purchase. Qur (implicit)
model of the mechanical system for changing the position of the valve is
g_ inadequate for a careful analysis of the overall control system.

Another related aspect of the controller’s performance that we failed
to account for concerns the procedures and how quickly they run on some
particular computing hardware. How long does it take to read a sensor?
How long does it take to perforiu all of the auxiliary computatious required
in the control algorithm? Even table lookup takes time (e.g., time to page

the table into memory from disk and compute the indices). Procedures mav
invoke additional processes whose.effects may not be immmediately apparent
(€.g., the procedure corresponding to turn_right may take only a few micro
seconds to return. but the servo mechanism responsible for actually turning
the valve may take several seconds.to carry out the command). Suppose
that the controller issues the three commands. turn_left. turn_left. and
turn_right. in quick succession. Does the second turn_left command get

canceled out by the following turn_right command, or does the controller

swing a full 10° in a clockwise direction before swinging back 5° in a counter-
clockwise direction?

Designing good models to capture real-world phenomena can be quite
complex. A process model is an abstraction: an idealization appropriate
in only a limited context. In the model for a tank filling, we failed to
account for evaporation, condensation. malfunctioning valves, other agents
adding to or removing from the tank in unpredictable ways. and any of a
number of other factors. Correcting for such factors is not simply a matter
of providing a more accurate model or better servo mechanisms: hardware
has its limitations and, generally speaking, better models take longer to
compute and rely upon niore detailed information.

Fortunately, lack of precision in the model can be offset somewhat hy
relying upon the model only for short-terin predictions. Feedback through
frequent sensing can serve to correct {or errors in long term predictions
introduced by imperfect or faulty hardware. Sensing and feedback do not.
however. obviate the need to take long-term predictions into account. If
vou expect to he traveling to a foreign country in the next two weeks. vou
had better check that vour passport is in order today; you risk ruining vour
travel plans by waiting until the last minute.

Another thing to note is that not all predictions are equally useful. It is
not necessary—and generally not possible—to predict every consequence of
the events that you ohserve. A little rain may slightly increase the height of
fluid in the tank, but the effect is negligible given the flow through the input
and output pipes. On the other hand, predicting that someone is about to

optimal strategy for controlling the input valve. As we will see in Chapter,
predicting just those consequences that are useful in guiding behavior turn
ont to be difficult.

close the valve mounted on the output pipe could significantly change the

\.\s\

<2 ."&;‘&

oK

8,0 8,0
Mo
(X0 0,0

Figure 1.6: A more complex control problem

1.2 Planning

The problem described in Figure 1.1 is rather simple, and it is not difficult to
design effective control systems for solving such a problem. Consider what
happens when the control problem gets more complicated: several variables
to control. other agents to contend with, and sgme-degree of uncertainty
about the future. In the situation depicted in Figure 1.6, there are two
pipes leading into and two pipes leading out of a tank similar to the one
shown in Figure 1.1. Each of the four valves can be manipulated by a
separate dedicated servo motor. In Chapter 5, we will consider a variant of
this problem in which there is only one servo motor that can be positioned so
as to control any one of the four valves. In anticipation of this complication
requiring that the controller be mobile, we will refer to the controller as the
robot.

Now we have to specify what it is that the robot is supposed to do.
Figure 1.6 shows a tanker truck positioned under each of the two pipes
leading out of the tank. We will assume that at any given time there are
zero or more tanker trucks waiting in a queue to be filled up. In addition
to controlling the valves on the pipes leading into and out of the tank. the
robot can command a truck waiting in the queue to position itself under one
of the two pipes leading out of the tank. The two pipes whose valves are

10

—

laheled 8, and 6; carry two different chemicals. The control task involves
filling eacle tanker truck with a mixture containing approximately equal
proportions of the two chemicals. We will assume that mixing occurs in
the tank automatically and instantaneously. Any chemical mixture that
flows over the top of the tank is lost and cannot be recovered. The exact
proportion of the two chemicals pmmped into a tanker truck is not critical,
but. if the proportions of the two chemicals in a given truck differ by more
than 10%. the contents of the truck will have to he dumped. The robot gets
paid for each truck completely filled with an acceptable mixture, and the
robot is charged for any chemicals that flow through the two pipes leading
into the tank. The robot’s task is to maximize its net income.

Maintaining an acceptable mixture is simple if the robot has a separate
servo directly controlling ¢; and 6,, and the valves have identical flow char-
acteristics; the robot just adjusts the two valves in exactly the same way
to guarantee equal proportions of each chemical. The robot can keep the
height of the fluid in the tank at any level it chooses, but the higher the
level is the faster the mixture will flow through the pipes leading out of the
tank. and the faster the robot's earnings will accrue. Of course, there is
some risk of spilling fluid if the height is kept too near the top and one of
the output valves is suddenly closed, but we will assume that the robot has
complete control over all four valves and knows the exact capacity of each
truck waiting to be filled.

If we ignore the added task of positioning trucks, the problem of Fig-
ure 1.6 is really no more complicated to soive than the problem of controlling
a single valve. We could construct a table such as that shown in Table 1.1,
or we could derive a fairly simple algorithin to compute the values stored
in such a table. plementing the coutroller using table lookup is probably
not a good idea given'the size of the necessary table—the table would have
six dimensions (or indices) corresponding to the six state variables: A, ,,
82, 03, 84, and the capacity of the next tanker truck waiting in the queue.

Suppose that the robot knows that a tanker truck is within a cubic meter
of being completely filled. Using this information, the rohot can determine
exactly when the valve to the pipe heing used to fill the truck should he
completely closed. In fact, if there is only one truck to be filled. as soon as
the truck is positioned under one of the two pipes leading out of the tank, the
controller can use its model of the system of pipes and valves to determine
the complete sequence of valve manipulations required to fill the truck as
quickly as possible. This idea of using a model to formulate sequences of
actions is central to planning. In the following, we will examine some of the

11

todo(£il1(Truck) \{ime,¢,
plan([move(Truck,chute(outl)),
turn(valve(outi),180°,5°/2min),
turn(valve(ini1),90°,5°/3min),
turn(valve(in2),90°,5°/3min),
turn(valve(out1),0°,5°/2min),
turn(valve(ini1),0°,5°/3min),
turn(valve(in2),0°,5°/3min)],
(concurrently((2,3,41),
concurrently([S,6,73),
precedes([1],[2,3,4],0),
precedes([2,3,4],(5,6,7],capacity(Truck)/5}]1)):-
holds((position(valve(out1),0°),
position(valve(out2),0°),
position(valve(in1),0°),
position(valve(in2),0°),
in_queue(Truck),length queue(1)),Time).

Figure 1.7: Plan for filling a single truck

advantages and disadvantages of using such a technique. We begin with the
advantages.

One can easily imagine a situation in which the robot does not have
immediate access to information concerning all of the state variables. For
instance. the robot might actnally have to do some work to check on the
leight of fluid in the tank or the position of one of the valves. Hather than
coustantly perforn the work necessary to consult the sensors, the robot can
rely upon the model to generate an entire sequence of valve manipulations
in advance. We will not discuss how sequences of actions are proposed
uutil Chapter 5; for now, just assume that there is au oracle that produces
candidate sequences when asked. The model comes into play when the robot
wishes to compare different sequences in choosing the best one. The basic
idea Is quite simnple. Given a sequence of actions, the robot uses the model
to simulate the future as it would occur if the actions were carried out. The

nrays .7 .
simulation *{slls {fe roboflm?ormatnon ahout how long a particular tanker
truck will take to fill and whether or not there is any danger of spilling
chemicals using the proposed sequence of actions. This information can

12

then be used to suggest modifications to the proposed sequence of actions.
or to compare the prop-sed sequence with alternative sequences.

It is also possible to simply store an often used sequence of actions. and
index it in such a way that it can be easily retrieved when applicable. This
is analogous to the method discussed in the previous section for storing
responses in tables. For instance. the robot will frequently find itself in the
situation where all of the valves are closed. the tank is full. and a truck
suddenly appears in the queue. Rather than derive an effective sequencs
of actions every time it is needed. the robot might store a description of
such a sequence of actions—referred to as a plan—indexed so that it can be
easily retrieved when needed. Figure 1.7 shows a rule for retrieving such a
plan. The notation is that of PROLOG. but understanding PROLOG is not
necessary for our current discussion.

The rule in Figure 1.7 states that. if all of the valves are closed and there
is exactly one Truck in the queue at Time. then plan(Steps,Constraints)
is a plan for filling the truck starting at Time+¢, where the Steps con-
sist of seven commands numbered 1-7. and the Constraints deternrne
the order in which those commands are to be carried out. Issuing a com-
mand of the form turn(Valve,Angle,Rate) tells the hardware to turn the
Valve to the indicated Angle (in degrees) at the specified Rate (in de-
grces per minute). A constraint of the form concurrently(Steps) spec-
ifies that the Steps (indicated hy their order in the list of plan steps)
should begin at the same time aud run in parallel. A constraint of the
form precedes(FirstSteps,NextSteps,) specifies that the FirstSteps
should precede the NextSteps with a delay of A separating the last step to
finish in FirstSteps from the first step to begin in NextSteps.

If the computations required to derive what to do when a truck suddenly
appears in the queue are complex. then having a response stored away for
easy retrieval may reduce the amount of time trucks have to wait in the
queue. Plans such as the one shown Figure 1.7 can be generated off line
and evaluated using a model; complex plans for novel sitnations can also
be constructed on line from simpler plans and evaluated using a model to
ensure success. This idea of constructing complex plans from simpler ones
is integral to most theories of planning, and we will examine it in greater
detail in Chapter 5.

There are also potential disadvantages in generating sequences of actions.
The most obvious disadvantage is that the model may be inaccurate. and the
sequence of actions will fail to have the desired effect. Unless the controller
is really convinced of the accuracy of its model. it will want check that the

13

plan is proceeding according to expectations. This checking is referred to as
monitoring the execution of a plan. aihd may involve a considerable amount
of effort. If problems are detected. it may be necessary to stop the sequence
of actions specified in a plan in order to formulate a new plan or modify
steps in the original one. By relving less upon the model, and more upon
feedback from sensors, the controller will often save itself a lot of work in
generating sequences of steps that are never carried out.

Still, in determining what to do now. it is not as though you can alwayse
ignore thinking abont what you will do next. Once the controller predicts
when a truck will be full. it has to determine what steps are necessary to
ensure that the truck’s tank does not overflow. It is not enough to say “start
closing the valve.” Deternining when to start closing the valve and how
quickly requires anticipating the entire sequence of steps. keep in mind
that a controller only has limited control over its environment: if a valve
restricting the flow of fluid into a given truck is wide open. and the truck is
nearly full, then the controller will not be able to avoid spilling some fluid.
The real issue is not whether or not to plan—planning is an integral part of
control—but in what detail to plan. If planning were inexpensive, we would
not have to worry about this issue; a controller would always formulate
the most detailed pian possible. and there would be no loss if the detailed
sequence of steps was not carried out. Unfortunately, planning can be very
expensive.

While the problem of Figure 1.6 is a relatively easy one. there are simple
modifications that can serve to fundamentally change the problem. Suppose,
for instance. that the robot is charged a tax for the timme a truck waits
hetween entering the ueue and being successfully filled (we will allow the
robot to turn away trucks before admitting themn to the queue). Now, in
addition to its other concerns. the robot has to try to minimize the time
trucks spend waiting.

If the robot maximizes the flow of properly mixed chemicals from the
tank, and makes sure that full trucks are moved out as quickly as possihle
and replaced by empty trucks. the only other variable to control is which
truck should be filled next. Assuming that the tax is computed as a linear
functiom of the time a truck spends waiting, capacity is the critical factor
influencing the choice of next truck. Suppose that the capacity of a truck is
an integer-valued quantity. For a given queue of trucks waiting to be filled,
the robot will want t 1ssign each truck to one of the two pipes leading out
of the tank so as to minimize the amount of time that either one of the two
pipes is idle (see Figure 1.8).

14

:Lm

Sy A Y
::W\

SR oy P '

Figure 1.8: Scheduling tanker trucks of varying capacities

e

Rebet DW.&C*
P

Figure 1.9: A robot navigation problem

Even if we allow that the trucks be instautaneously positioned and the
valves instantaneously opened and closed, the problem of assigning the
trucks so as to minjmize idle tie is computationally complex. The problem
of determining the optimal assignment of trucks is equivalent to dividing a
set of n integers (the capacities of the trucks) into two sets (trucks to be
filled from the first pipe and trucks to be filled (rom the second pipe) so as
to minimize absolute value of the dilference (time either of the two pipes
is idle) of the sum of the integers in the first set (the time the first pipe is
being utilized) and the sum of the integers in the secund set (the time the
secoud pipe is being utilized). This problem is referred to as the purtition
problem (3], aud is known to be in the class of NP-complete problerus (i.e.,
the best known algorithms for solving these problems have running times
that are at least exponential in the size of their input—the number of trucks
in the queue in our case).

For the parsticular NP-complete problem described above. there are good
approximate solutious that run in polynowial time. If n is swmall. it wight
even be feasible to use an algorithm that computes the exact solution and

runs in exponential tiine. There is 2 tradeofl involving the timne = .ent in
deliberation and the time saved by computing a better answer. While the
robot is deliberating about how to fill the trucks. the trucks are wamug in
the queue. and the robot is losing money.

It may not seem critical that our robot takes a little extra time in filling
the tanker trucks. A simple first-in-first-out strategy for choosing the next
truck to fill mav prove to he quite eflective. There are. however. occasions
in which there is more at risk than just a little higher income. Figure 1.9+
shows a robot with a single sensor trying to navigate a hallway. In order to
avoid hitting the water cooler, the robot has to look to the right; in order
to avoid falling down the stairs, the robot has to look to the left. Whether
or not the robot can successfully deplov its sensor ' > avoid both obstacles
depends a lot on how fast the robot is moving and how fast the robot can
reorient its sensor and interpret the returned data. The designer could take
a conservative approach and limit the maximum speed at which the robot
can travel so as to ensure the robot’s safety, but such a measure is likely
to degrade performance significantly. It would be better if the robot could
somehow analyze each situation in which it finds itself, weigh its options,
and choose the option determined to be best.

The designer of control algorithms has to contend with the inherent
limitations of computing hardware and software. There are times when even
the simplest algorithms turn out to take too long. For instance. suppose
that vou wish to track a projectile. and suppose that vou have a sensor
that returns information concerning the current location of the projectile.
By the time vou get around to processing the sensor information. it may
be out of date. so you will want to label the sensor information with the
time that the data was gathered. The obvious thing to do is to label the
sensor data using the computer system’s on-board clock. The problem is
that reading the clock requires loading a procedure into memory. invoking
the procedure, and waiting for it to return an answer; ali of which takes
time. and. more importantly. different amounts of time depending upon
how memory is configured. whether or not the procedure has been invoked
recently. and any number of other factors. This differential in how long the
procedure takes to return an answer can adversely affect the usefulness of
the labeled sensor data. For a legged robot trying to walk [6. 2]. it can mean
the difference between falling or not: for a tennis playing robot [1]. it can
mean the difference between winning a match or not.

16

Actions Signais

Figure 1.10: A machine coupled to its environment

1.3 Dynamical Systems

Let us return to the question of what it means to control something, and
try to answer this question from the perspective of control theory. We begin
by providing a general description of a controller coupled to an environment
and given some task to achieve.

The controller is represented as a deterministic automaton that takes as
input a signal and outputs some action. The environment can be viewed as
another automaton that takes as input the controller’s action and generates
a signal to serve as the controller’s next input. The controller is said to
be coupled to its environment: the controller and its environment trading
blows in a continuous cycle of interaction. Figure 1.10 (after Rosschain
[7]) illustrates this cycle of interaction.

In the following. we describe the interaction between the controlier and
its environment in terms of a mathematical model called a dynamical system.
Since we are interested in the behavior of the system over time, we introduce
a set of time points or instnnts, T. At any given instant. the >nvironment
can be in any one of a large number of possible states. This set of staies,
X, is called the state space of the dynamical system.

The controller generallv cannot perceive the state of the environment at
any given instant. and so we introduce a set of outputs. . corresponding
to what the controller perceives of the state of the environment. Finally,
we represent the actions of the controller in terms of a set of inputs to the
environment. . Notice that the the terms “input” and “output™ assume
the perspective of the environment and not the controller; this is a stan-
dard convention in control theory, and we adopt it throughout this book.

17

Uunless further qualified (e.¢.. “the output of the controller™). the terms “in-
put”™ and “output.” refer to. respectively. the input to and output from the
environment.

Next. we introduce temporally indexed variables to represent the state.
x(t), input, u(t). and output. y({). at any given poiut in timme. {. We refer Lo
the different ways in which the state. input. and output can evolve over time
as histories. time lines. or. in the parlance of control theory, trajectories. The
set of all possible state histories or state-spuce {rajectories is defined as a sete
of mappings from time puiutsésliles.

Hy& {hyx:T — X}.
Similarly, we can define the set of output historizs.
Hy& (hy: T —Y).

We generally restrict the set of state histc.ies L7 requiring that the evo-
lution of the system state obey certain laws. ‘I'hese laws governing the
hehavior of the environment are often <ferred to as the system state equa-
tion(s). We represent th@4lale equation by a function that maps states and
inputs to states,

(. + 1) = f(x(t), u(t)).

Here we employ a difference equation, but we might have used a system of
differential equations. a finite-state automaton, a stochastic process. or a set
of axioms .a a suitable ':gic. The choice of representation will depend on
the structure of time (e.y., integers or the real numbers), the nature of the
physical processes we are trying to model, and our own preferences.

Since the controller cannot directly perceive the state of the environment,
we also restrict the set of output histories hy defining an output function
that maps states to outputs corresponding to the signals received by the
controller’s sensors,

y(t) = g(x(1)).

This signal invariably contains less information than we would like. and. in
most cases, it is noisy and difficult to interpret.}

It is the uncertainty resulting from this noisy signal and the fact that information
about the state of the environment is frequently delaved in processing that give rise Lo the
need for a systematic treatment of control [3].

18

So far. we have said nothing about the role of the controller. As with
states and outputs. we can define a set of input histories desc:ibing the
evolution of the actions taken by ihe controller over time.

Hy & {he: T = U}

We restrict input histories according to the hardware and software available

to build controllers. We describe the set of possible controllers in terms ofe-

functions from the set of sequences of outputs. denoted 1"°. to inputs.
a .
P={p:Y"=U}.

These functions are called c;&d control laws or policies. In the simplest
case. the output function. g, is just the identity function. only the last state
is relevant to the decision regarding what action to take. and the set of
policies is defined as

PE{p: X =U).

Now we need some objective for the controller to pursue. We begin with
a rather ideal objective and define the controller’s task, i’. as a relation on
the cross-product space of input/output pairs,

KcCcYxU.

Actually specifving ' can be quite difficult given that A" indicates exactly
what the controller is to do in every possible circumstance.

It may seem more natural to think of a task specified in terms of the
hest action for a given slate,

KcXxU.

Intuitively, we ought to be able to state the task independent of the partic-
ular signals received by the controller. Recall. however, that as far as the
controller is concerned. the set of states collapses into a set of equivalence
classes determiuned by the controller's ability to perceive its environment.

Defining a task is a direct method of specifying the desired behavior of
a controller. Less direct methods involve somehow specifying restrictions on
the state histories of the dynamical system. For instance. we might define
a goal as a subset of the set of state histories,

G C Hy.

19

x(t) ¥(1)
fixit),u(t)) g(x(1)

u(t) . x(1)
r(x()) e(y(1))

Figure 1.11: A dynamical system

In this case, we wish to find a policy. p € P. such that a controller following

p restricts the behavior of the dynamical system to G. Such a policy is said

to achieve G, and the solution is referred to as a satisficing solution.
Alternatively, we might define a value function,

V":Hy—R.

that allows us to compare different state histories. In this case. we wish to
find a policy, p € P. such that a controller following p forces the the state
of the dvnamical svstem to evolve according to a history that is maximal
with respect to V'. Such a policy is said to mazimize V. and the solution is
referred to as an optimizing solution. We Will refer to the problem of finding
a policy to achieve a goal or maximize a value function as the control problem.

By providing the ‘controller with a computational model of how certain
properties of the environment change over time. we can program the con-
troller to extrapolate from a set of signals to predict what will happen with
regard to those properties. A controller equipped with such a model can rea-
son about the consequences of its own actions and those of other processes.
It is this aspect of reasoning about change over time that is mostly closely
associated with the work in planning. The results of the reasoning are used
to comstruct a plan or special-purpose policy to direct the controller’s be-
havior. It is not required. however, that the reasoning be performed by the
controller at the time the actions are being executed. The reasoning might
be performed at some earlier time and the decisions as to what actions to
take compiled into a compact program realizing a particular policy.

20

As with most complex problems. it is useful to decompose the control
problem into component problems. For instance. the control problem is often
decomposed into the state-estimation or observation problem and the input-
requlation problem. The observation problem is concerned with recovering
the svstem state from the system output. In the simplest case. designing a
state estimator or observer consists of choosing a function from the set.

ES{c:Y =X} .

The output of the observer at time. !, is denoted, #, indicating that it is an
estimate. Similarly, designing a regulator consists of choosing a 4 function
[rom the set,

RE(r:X=0).

Figure 1.11 shows a block diagraiu illustrating the various components of a
dynamical system and controller.

A good deal of the work in planning implicitly assumes that the observa-
tion problem can be solved. and focuses on the input-regulation part of the
control problem. But planning need not. indeed should not. be conceived
of so narrowly. As we will see. in many problems. the state-estimation and
input-regulation problems interact in a complex manner.

There are cases in which we can tackle the control problem by considering
the state-estimation and input-regulation problems independently. In the
case of linear dvnamical systems corrupted by Gaussian noise and subject
to quadratic performance criteria. the two problems are said to be separable.
and the dvnamical systems are said to satisfy the separation property.

What this means in practice is that one engineer can go off and design
an observer that is optimal by some established criterion (¢.g.. produces an
estimate minimizing the expectation of error). Then another engineer can
independently design a regulator that is optimal with regard to a second
criterion (e.g.. optimizes a particular value function over state histories).
Separability guarantees that, when the observer and regulator are coupled
together. the resulting controller will be optimal with regard to the stated
criteria. This means that the actions taken by the regulator have no adverse
affect on the ability of the observer to recover the system state. Conversely,
the particular measurements taken by the observer have no adverse affect
on the ability of the regulator to control the system state.

Note that separability does not hold in general. Consider. for example,
what separability would mean for a medical diagnosis and treatment prob-
lem. If the problem were separable. then we would not consider the cost of

21

iii. iv.

Figure 1.12: Interactions between observation and regulation

perforning tests when generating 3 diagnosis. In particular. there would be
no reason to avoid eviscerating the patient in order to determine cause of

The symptoms.

As another example. consider the task of a robot navigating in an office
environment. Suppose that the robot is required to cross the room shown
in Figure 1.12.i. The robot is to enter by the door shown at the bottom of
the figure and leave by the door on the Hght at the top of the figure. Unfor-
tunately, the robot’s sensors do not provide accurate information regarding
the robot’s position and orientation. If the robot remains close to walls and
it knows its initial position. it can generally do a good job of keeping track
of its position with respect to the room. U, however, the robot roams off

22

into the middle of the room. then it is likelv to lose track of its position. In
particular. if the robot tries to take the direct path rather than the wall-
hugging path as shown in Figure 1.12.ii. then it may very well exit by the K{/
wrong door. 1t is clear in this case that observation and regulation interact
strongly.

Plauning can play an important role in problems for which the separa-
tion property does not hoid. By nsing appropriate models. the controller
can reasou about the consequences of performing procedures given certaiw
iuformational states, and. if necessary, design policies that result in the con-
troller obtaining additional information. In Figure 1.12.iii, the controller,
possessing a model of the robot’s possible movement errors, designs the fol-
lowing plan. While positioned near the door. the coutroller aims the robot
so that by attempting to drive straight it will either go through the door or
arrive at a wall at which point it can move to the right hugging the wall to
exit by the correct door. This plan is guaranteed to succeed assuming that
the controller has an accurate wodel for movement errors. and will alwavs
be bhetter than hugging the wall from very start.

In Figure 1.12.iv, the controller uses a somewhat different strategy. In
this case. the controller directs the robot to head straight for the door on
the left. The robot exits by the first door it finds. but we assume that the

robot can someliow distinguish between the offices that the two doors lead [c2+

to. If wt\lae robot perceives that it is in the wrong office, then it exits the e or 't

office. using the wall-hugging strategy to find the office next door. +o&—) " R S
vy

The main point of this discussion is that as far as we are concerned the
planning problem and the control problem are the saimne problem. In the rest
of the book, we continue to talk about planning and control separately as a
eans of emphasizing particular issues or techniques closely associated with
one or the other of the corresponding academic and engineering disciplines.

1.4 Embedded Systems

The primary computational task of a robot controller is to make decisions
concerning what to do next. What to do next is generally thought of in
terms of what actuator command to issue next, but there are often other
decisions to be made concerning what computations are to he performed and
when. Robot decisions are made with regard to certain desirable hehaviors
(r.g., avoid running into obstacles. or avoid spilling expensive chemicals).
These behaviors and the environment in which they are to he achieved de-

23

Tactical Stramgic

Figure 1.13: Two dimensions of control -

termine how the corresponding decision processes are to he implemented.
As mentioned in the beginning of this chapter, it is often convenient to dis-
tinguish between the controllez and the controlled process. We can think
abhout what we would like a c:troller to do. but. when it comes down to
building a controller, we have to commit to specific hardware and software,
and this commitment will determine what decisions the controller is mpabli&—
of making. The controller is said to be rmbedded in its environment. T3
analyze a controller, we have to bhe able to relate the state of the controller
and the state of the processes the controller is seeking to control. How well a
controller can cope with a giver: environment will depend upon the amount
of time between sensing a situation and being required to respond to that
situation. and the availability and volatility of the information potentially
nsefnl in deciding how to respond. These factors snggest two dimensions
useful in categorizing control problems and their solutions (see Figure 1.13).
The less information available and the less time the robot has to process
that information. the less likely that the robot’s response will account for
the possible consequences of its actions. The more information available
and the more time that the robot has. to reflect oun it. the more likely that.
the robot v.ill be able to generate a response that avoids nnpleasant conse-
quences and takes advantage of pleasant ones. These dimensions are quite
different from those used to categorize problems and solutions in most areas
of computer science.

Computer science concerus itself primarily with off-line computing tasks
(i.c., data processing tasks). There are two distinct criteria for such tasks:
correctness and speed. Most computing tasks in robotics are concerned with
rontrolling processes, and, in particular, controlling processes indirectly and
in real time. ‘The notion of correctness in the traditional framework assumes
some absolute standard that abstracts away from time. What a control
algorithm should compnte depends upon the sorts of proceases it attempts

24

to control and the information about those processes it can extract from the
environment.

Suppose that a controller generates a sequence of actuator commands
that would have enabled the robot to perform a complex maneuver had
they been generated a few seconds earlier. As it is, however, the robot fails
to perform the inaneuver and tumbles down five flights of stairs. At first
blush. it would appear that the coutroller has failed in its assigned task.
but we may be taking too narrow a view. [erhaps the robot was usin§ X
most of its available computational resources to figure out how to disarm
its malfunctioning nuclear self-destruct unit: a task that it did manage to ,('W\\/\ v
carry out successfully.

The problem faced by a robot controller is essentially that of optimizing
a large number of factors (e€.g.. time. money, mechanical wear) simultane-
ously. In order to imake such optimizations. a controller has to !uild up
a representation of a complex situation (e.g., one spread out in time and
space) and then decide what to do by taking into account how the various
pieces of the picture are predicted to interact with one another. For the
vptimizations to be ellective, however, the robot must respond in a timely
manner. It would be nice to prove that a given controller satisfied some
specified criterion for correct behavior. Unfortunately, for most interesting
applications in robotics. such a proof would be prohibitively complex.

Most existing planning systems tend to be far too committed to the plans
they formulate and tend to rely heavily on models of the environment and
not enough on the enviromment itself {4]. Such systems do not tailor their
decision making to the situation at hand. Given the same abstract task
to achieve. these systems will perform the same computations no matter
how much time and information is available. They cannot determine when
further planning is futile. and they do not have the eapability to consider
alternative strategies when pressed for time.

Most existing control systems tend to take a rather narrow view of the
world and the processes that they seek to control. As long as the world sub-
scribes to the controller’s model. these systems behave effectively. Sooner
or later. however, unanticipated influences intrude to render the model's
predictions inaccurate, resulting in undesirable, and sometimes disastrous,
cousequences. Building a wore complicated mmudel is not always the solution.
A complicated model may require more time to compute, thereby reducing
the system’s response time. An alternative to building a more complicated
model is to employ several simple models, each one tuned to a different
range of situations. The controller then tries to determine which simple

25

model applies. and changes the model when circumstances dictate. In some
sense. this multi-model controller is emploving a more complicated model.
but it is a model that—at least implicitlv—takes into account the computa-
tional capabilities of the underlving hardware and the anticipated behavior
of the processes being controlled. Chapter 8 develops a framework for taking
such considerations into account explicitlv. in order to dvnamically allocate
computational resources to suit a given situation.

In subsequent chapters. we will explore a number of methods for con-.
structing and evaluating models of complex systems. We will consider how
models are used to control processes. and what sort of tradeoffs have to
be made in building effective control systems. The discussion covers both
theoretical and practical considerations. The former due to our need to jus-
tify design decisions in terms of acceptable mathematical foundations. The
latter due to our primary motivation in terms of programming robots to
perform useful work. We begin by discussing the theoretical foundations for
modeling processes.

26

Bibliography

(1] Andersson, Russell L.. A Robot Ping-Pong Player: Exrperiment in Real-
Time Intelligent C'ontrol. (MIT Press. Cambridge. Massachusetts. 1988).

[2] Donner. Marc D.. Rcal-Time Control of Walking, (Birkhauser. Boston.
Massachusetts. 1987).

[3] Garev. Michael R. and Johnson. David S.. Computing and Intractibil-
ity: A Guide tv the Theory of NP-Completeness. (W. H. Freeman and
Company, New York. 1979).

(4] Georgeff. Michael ., Planning. Tranb. J.F.. (Ed.), Annual Review of
Computer Science, Volume 2. (Annual Review Inc. 1987).

[5] Koditschek. D.. Robot Control Systems. Shapiro. Stuart. (Ed.). Encyelo-
pedia of Artificial Intelligenec. (John Wiley and Sons. New York. 1987).
902-923.

(6] Raibert. Marc 1I.. Legged Robots That Balance. (MIT Press. Cambridge.
Massachusetts. 1986).

[7] Rosenschein, Stan. Formal Theories of Knowledge in Al and Robotics,
‘lechnical Report ('SLI-87-84. C'enter for the Study of Language and
Information, 1987.

27

-

Chapter 2

Dynamical Systems

For our purposes. a process model is a device that. given certain information
about the state of a physical svstem. cnables us to determine certain other
information about that system. The device usually includes some mathe-
matical characterization of the system’s properties and how they relate to
one another. It also includes some sort of a calculus whereby an engincer
or a machine can compute the predictions of the model given some initial
conditions.

Process maodels are nsed by engineers to design control svstems. In
some cases. the process model is used only to evaluate a given controller.
In other cases. the process model becomes an integral part of the control
svstem. In this chapter. we consider a few of the large number of process
modeling techniques available to the engineer. and develop some notation
for describing process models that will be used in subsequent chapters.

. - e .

2.1 Constructing Physical Models

To construet a model for a process, we have to identify those properties
of the world that determine the behavior of the process. First. there are
those properties that prompted our int-rest in the process to begin with. In
the case of the tank-filling process described in Chapter 1. we are primarily
interested in the height of the Huid in the tank. Second, there are those
properties that atlect the properties that we are interested in. In order to
account for the level of fluid in the tank. we have to know the dimensions
of the tank. the flow characteristics of the input and output pipes, and the

°©1990 Thomas Dean. All rights reserved.

27

pe sition of the valves. It is easv to underestimate the difficulty of this part
ol the modeling task.

Textbooks typicallv just give the student the set of physical properties
that he or she needs to be concerned with. There is an implicit assumption
that these are all and ouly the properties that need to be considered. How
do we know that the temperature of the fluid does not alfect the height of the
fluid in the tank? Well. of course. we don’t know this. The temperature may
aflect the fluid height by changing the rate at which the fluid evaporates; <
however. given that the temperature dves nol vary substantially, the effect
of temperature on fluid height is negligible.

Almost anv property of the world cen have an impact on the level of
the fluid in the tank: agricultural trends affect global weather patterns that
affect local tewperature and humidity that ultimately affect fluid height.
The predictions 1:ade by a particular iodel are likely to be accurate only if
certain assumptions hold. Whether or not to account for a given property
of the world in a particular model depends on a number of factors: the
magunitude of the effect (i.e., does it result in substantial changes in the
properties of interest), the probability of the effect (i.e.. do the changes
occur with high frequencv), and the complexity of the model (i.e.. what
additional computations are required to account for the property in the
wmodel).

This last is particularly important. and. vet. it is often overlooked in
evaluating a model. There is often some utility in getting an answer to a
question quickly. If this were not the case. you would alwavs want the model
that wakes the most accurate predictions possible. Given that time has to
be taken into account. there is a tradeoff to be wade regarding the accuracy
of the model and the time that it takes to compute its predictions.

The following sections describe some basic mmethods for modeling physical
processes in control theory. Section 2.2 considers the use of the differential
and integral calculus for wodeling processes and analyzing the behavior of
control systems. focussing on ideas from classical control theory. Section 2.3
considers the general problem of modeling dynawmical systems and introduces
ideas from linear system theory. drawing upon results from modern control
theory.

28

2.2 Mathematical Modeling in Control Theory

Much of control theory depends ou the nse of mathematical models hased

on the techniques of the integral and differential calculus. These techniques

enable the control theorist to model a wide variety of mechanical. electri-

cal. fluid. and thermodyvnainic svstems. By modeling both the controlling

process and the process being controlled as a set of differential equations?
the control theorist is able to analyze hehavior of the combined system. and

predict the performance characteristics of the controlling process (¢€.g.. how

fast the system responds to a disturbance or change in input). In this sec-

tion, we summarize some of the issues involved in modeling physical svstems

nsing the techniques of control theory.

Anvone who has taken a course in differential equations or advanced
calculus has seen nunierous examples of mathematical models of physical
systems. Most introductory texts on the differential calculus inciude ideal-
ized models of population growth. the decay of radioactive materials. and
the fluctuation in prices as a function of supply and demand. If vou took
a physics course. you were early on exposed to Newton's laws of motion.
Newton’s second law of motion states that the product of a hody’s mass
and the acceleration of its center of mass is proportional to the force acting
on the body. Let z be a function that depends on ¢ and denotes the position
of the center of mass of the object as measured from some fixed point along
a vertical line. Let Af be the mass of the object. and be the force acting
on the object in the direction of travel. The following differential equation

2
.\lil-dt—f=; 3]
is called the equation of motion of the body.! If we know something about
the forces acting on the body. then we can use this equation to make pre-
dictions about the motion of the body.

If z is the directed distance upward of the object as measured from the
surface of the earth. and rg is the object’s initial velocity. then. assuming
that the only force acting on the object is gravity, Equation 2.1 becomes

0z

M—=- .
Idt? Mg {2.2)

'To simplify the discussion. we implicitly adapt the standard system of unita for mea-
suring mass. distance. and time so that the constaut of proportionality is one.

29

where is ¢ is the acceleration due to gravity near the surface of the earth. \We
can solve this simple second-order differential equatiou. by integrating twice
and using the initial conditions to determine the constants of integration.
The following formula

1
(1) = —_-2-_'/12 + vot (2.3)
describes the position of the object at t > 0 given the initial conditions

dr(0)

r(0) =0. 7t

= vu’

and assuming that the object is propelled npward at time ¢+ = 0. From
Equation 2.}, we can predict the maximum height (v3/2g) reached by the
object and the time it takes the object to fall back to the surface of tue
earth (2v,/g). Equation 2.3 together with tocis of the differential calculns
provide us with a simple model of an object falling through a gravitational
field. _

We know that Equation 2.3 is only approximate in that it . >giects several
important influences on ob jects falling through a relatively dense atmosphere
under the influence of gravity. For instance, Equation 2.3 treats gravity as
a cunstant acceleration whereas we know that Newton’s inverse square law
provides a more accurate estimate of tiie force due to gravity acting on an
object. If the earth is assumed to be a sphere of radius R. and r denotes the
distance trom the center of mass of the object to the center of the sphere.
then ‘ ﬁ . MgR?

e T rd

can provide a more accurate estimate of the position of the object thas that
provided by Equation 2.1. especially in the case of an object that travels a
significant fraction of the distance R.

We can also account for the dariping force exerted on the object by the
atmosphere as the object moves along its trajectory. If the damping force is
pruporti~nal Lo the object’s velocity, and C is the damping constant. then

d3z MgR? dz
L\Id—tz———;i——cd—t (2.1)

will, at least potentially. provide a hetter estiinate than evuations that ne-
glect friction. Potentially. hecause. having identified that some property of
the environment influences a particular process, you still have to determine
the form and the magnitude of that influence. There are situations in which

30

Figure 2.1: A spring-mass-dashpot svstem

the damping force is more nearly proportional to the square or the cube of
the velocity. In addition. the damping “constant” may not be constant at
all. dependent as it is on the shape of the object and the density of the air
through which the object is moving. If you are not careful. youn can actually
reduce the predictive accuracy of a model by trying to account for additional
properties.

As another example of physical modeling, Figure 2.1 shows a block of
mass M suspended from the ceiling by a spring and connected by a rigid
rod at its base to a damping device called a dashpot. The spring counteracts
the force of gravity and the dashrot tends to inhibit vertical motion in
either direction. Suppose that the force exerted by the spring is equal to the
product of the distance that the'spring is stretched or compressed and A'.
the spring constant. Let d be the distance past the spriug’s resting length
such that the force of the spring completely offsets the force of gravity, and
the block will remain at rest (i.e.. Mg = K'd). The equation of motion for
the block. neglecting the dashpot. is

2
M%;; =Mg=-RK{x+d)= Rz (2.5)
To account for the dashpot. we assume that the damping action of the
dashpot is proportional to the velocity of the block and introduce another
term into Equation 2.5. The result is

d*r de .
.Ugt—z-’-('ﬁ-*!\r-o (2.6)

31

t 1 1 =
0 4]
-1 n g Y nl B 4 - Y
° 10 20 Y 0 10 20 30
L i

Figure 2.2: Response of the spring-mass-dashpot syvstem in the (i) under-
damped and (ii) overdamped cases.

where (' is the damping constant.

There are three different solutions to Equation 2.6 depending on whether
the quantity C? is less than. greater thau. or equal to the quantity 4M K.
These solutions correspond to the underdamped. overdamped. or critically
damped cases. If C? < 4A'M. then the specific solution to Equation 2.6
that satisfies the initial conditions.

dz(0
is given by
z(t) = roe™t (cosut + gsin ut) .
where
_C L] - 1211/2
q-'21|l’ o= 2AI(4MI\ C*)e,

In this (the underdamped) case. the mass oscillates ahout the equilibrium
point. its amplitude decreasing exponentially with time as shown in Fig-
ure 2.2.i. If C? > 4/ M, then the specific solution to Equation 2.6 satisfying
the same initial conditions is given by

z(t) = ji'o (de"" - ae"”') .

o -Q
where
n=-at [-c +(C? - 4411\')1/2] J= e [-C -(C? - uux‘)‘/’]
2M) 2M '

32

)

Figure 2.3: An external force acting on a spring-mass svstem

Figure 2.2.ii illustrates the hehavior of the resulting overdamped system.
‘The important thing to note lLere is that. assuming A is fixed. we can varv
Ik and C' to achieve different hehaviors.

Control theorists are often interested in how a physical system responds
to a particular input signal. The step input. corresponding to a fixed-size in-
stautauneous change in the reference or a disturbance, provides a convenient
basis for comparing performance. In the case of the spring-mass-dashpot,
a step input might correspond to the block being displaced from its equi-
librinm point or given some initial velocity. Equation 2.6 might serve as
a simple model for an automobile shock absorber. The input signal would
correspond to a force acting on the mass (e.g.. the automobile hitting a
butup in the road). The eugineer designing such a system is interested in
the characteristics of the output signal corresponding to the changes in the
position of the mass. tn particular. the engineer wants to know whether or
not the control system he or she designs is stable. A system is said to be
stable if its response to a bounded input is itself bounded. In the case of our
spring-mass-dashpot system, il we displace the mass a small amount from
its equilibrium point, it will eventually return to that point. Similarly, if we
give the mass some small initial velocity, it will also eventually return to its
equilibrium point.

Unstable systems can tuanifest underirable and sometimes violent he-
havior (e.g., thermal runaway in a nuclear power plant). Suppose that we
eliminate the dashpot from our spring-1nass-dashpot system and introduce
an additional, external force acting on the mass as pictured in Figure 2.3.

33

--1» K
N

08 -
0.6 4

04 T

00 T
0.0 0.2 0.4 0.6 os 1.0

Figure 2.4: Transient respouse to a step input indicating I’y (delay time)
the time required for the controlled variable to reach 50% of the target, T,
(settling time) the tiine required for the controlled variable to achieve and
waintain a value £5% of the target. T, (peak time) the time at which the
controlled variable achieves the largest value above the target, and M (peak
overshc:t) the largest value of the controlled variable above the target.

Suppose that the external force is periodic of the form
r(t) = Rsinwt

where R is a positive constant. The equation of motion is

2 ‘ . :
M% + 'z = Rsinuwt.

fw=/{ Ix'/M)'/ 2, then the amplitude of the oscillations will increase due to
the phenomenon of resunauce [10]. The model predicts that the oscillations
will increase iudefinitely, but. of course, there will come a point past which
the mathematical model is no louger appropriate and other physical prop-
erties will come into plav (e.g.. the spring breaks or the device generating
r(t) reaches saturation).

Stability is just one aspect of a system’s transient response to a step
input (i.e., the behavior of the system in transition from one stable state to
another as a result of a step input). An engineer usually is also interested
in the system’s settling time (i.e.. the amount of time it takes the system to

34

achieve a state in which .ie value of the controlled variable is within some
small percentage of the target value). the system'’s strady-state error (1.c..
the percent error of the svstem in the limit). and the svstem’s overshoot
(i.f.. the maximum past the target that the svstem achieves in responding
to step input). Figure 2.4 illustrates some of the important characteristics
of a system’s transient response 1o step input [6. 12].

Peak overshoot is a particularly important transient response character-
istic in a number of applications. In some cases, the sort of underdamped
behavior shown in Figure 2.2.i is unacceptable. In attempting to restore
equilibrium. the system overshoots the target or equilibrium point. In the
case of a robot arm positioning a part. overshoot might correspond to the
part striking a surface. In the case of the liquid-level system of Chapter 1.
nvershoot might mean that the level of fluid in the tank goes ahove the top
of the tank, spilling finid on the floor.

A good deal of control theory is concerned with analvzing the perfor-
mance of control systems with regard to criteria such as stability, settling
time. steady-state error, and overshoot. One way to analyze a control system
is to build a mathematical model as a system of differential equations. solve
the equations. and then examine the hehavior of the system in the time
domain. This is essentially what was done in our analysis of the spring-
mass-dashpot system ahove. This method of analysis can he complicated
hy the fact that the equations for any reasonahly complex control system
are likely to be difficult to solve. and. in order to find parameters for the
control system that provide good performance, it may he necessary to to
look at a large number of special cases. While there exist effective methods
for analvzing control systems in the time domain. one of the great successes
of what is called classical controi theory has been the development of math-
ematical techniques that enable an engineer to recast a control problem as
a problem in the frequency domain. Most of these techniques rely of the use
of the Laplace transform.

The Laplace transform enables the control theorist to avoid working with
differential eqnations by replacing these generally difficnlt-to-solve equations
with simpler algebraic equations. Siuce the Laplace transform exists for
many linear differential equations encountered in control systems design,
inethods based upon the use of the Laplace transform are widely employed
in the analysis of control systems. The Laplace trausform of a function of

time. f(t). is defined as
F(3)=/' fi)e™tde = L(f(1). (2.7)
U

The Laplace transform of the derivative of a function can bhe obtained
from Equation 2.7 using integration by parts

¢ (L) = scirin - s
t

However. it is usually not necessary to derive the Laplace transform of a

function every time that the cogineer is faced with a new problem. Ta-

bles of functions and their Laplace transforms have been compiled for most

functions commonly encountered in engineering applications.

The Laplace transform of a sum of two functions is just the sum of
the Laplace transform of the first function with that of the second. Using
this fact and the tables of Laplace transforms, the control engineer can
rather easily obtain the Laplace transform for many differential equations
used in modeling physical systems. The advantage is that the resuiting
algebraic equation usually can be easily solved for the variables of interest.
The transfer function of a control system is defined to he the ratio of the
Laplace transform of the input variable to the Laplace transform of the
output variable. By analyzing a control system in terms of the relation of
the Laplace transform of the inputs to the Laplace transform of the outputs.
it is possible to gain a good understanding of the svstem’'s performance
properties.?

To make the analysis of control systems even easier, there are tables that
provide the transfer functions for many of the differential equation relations
encounted in control systems. An engineer can design a control system using
various control components connected to one another by the way in which
thev pass signals. From these separate components, the engineer can derive
the transfer function for the complete control aystem algebraically. The fa-
miliar block diagrams displayed in the control theory literature provide a
convenient graphical representation of the underlying process model. The

2 Frequency-domain methods involving transfer functions are 50 named because they
allow the engineer to analyze the hehavior of a syatem in Lerma of its responne to inpnta of
varying {requencies and amplitudes. By evaluating the transfer function. T'(s). at s = jw
for any w € R*. we obtain 2 complex nomber. I'(jw) = a(w) + jd(w), whose magnitude.
Vud(w) + 33(w), represents tlie response of the system in steady state Lo a sinusoidal
input of frequency, w. in terms of the ratio of the output to the input amplitude.

36

Gz (2) C(3)

H(s)

Ei|
Rin) -2) | G(s)= G| (s) Gz(:) C(s)

H(s)

R(3) ——{ T(s)m= G - Cls)

1 +G(s) Hl3)
ik

Figure 2.5: Block diagrain of a control system utilizing feedback

37

hoxes in such diagrams are usually labeled with the trausfer function “or the
corresponding svstem component and the arcs indicate the signals passing
hetween components. [igure 2.3.i depicts the block diagram for a control
svstem in which the output of the plant is fed back through some sort of a
filter or amplifier and combined with the input to provide an error signal
used by a compensatort in controlling the plant. The control system pictured
in Figure 2.5.i illustrates a simple instance of error-driven feedback. in which
the system reference signal is continuously compared with the system’s out-
put in order to adjust various svstem parameters.3

Block diagrams can be simplified hy algebraicallv combining the transfer
functions of connected components according to a few simple rules [6]. For
instance. the two blocks labeled Gy(s) and G(s) in Figure 2.5.i can be

combined to form. c
, (s) .
= e—— G , -

G(3) £0o) 1{8)Ga(s)
noting that C(s) = E(£)G1(s)G2(s). The shplified block diagram is shown
in Figure 2.5.ii. The simplest block diagram is just a single hox labeled with
the transfer function for the complete control system. For instance, we can
reduce the block diagram for the system shown in Figure 2.5.ii to a single
component with input R(s), output C'(s), and transfer function.

_ Cls) _ G(s)

) =5 S T+ G BEG)

noting that E(s) = R(s) = H(2)C(s) and C'(s) = E(s)G(s). This simplest
block diagram is shown in Figure 2.5.iii. The function. T{s), known as the
rlosed-loop transfer function. is the basis of many existing control systems. -

Much of the control theory found in textbooks deals with what are called
linear systems. A systew is said to be linear iu terms of inputs and outputs if
and only if it satisfies the properties of superposition and homogeneity [6]. A
system satisfies the property of homogeneity il for any constant A" and input
z for which the output of the system is y, if the system is input I'z. the
system outputs i'y. A systew satisfies the superposition property if for any
two inputs z; and r; with corresponding outputs y; and yy, if the system
is input zy + 73, the system outputs y; + y2. At first blush. the restriction
to linear systems would seem to relegate much of control theory to a purely
academic pursuit given that most natural systems are nonlinear at least

*In some texts, errar-driven feedback is synonymons with unity feedback. correaponding
to the case in which H(s), in Figure 2.5.i, is the identity function.

38

in some range of their variables. Fortunately. we c..u develop reasonably
accurate linear approximatious by identifving almost-linear regions in the
operating range of nonlinear svstems. If the natural operating conditions of
a svstem vary over a wide range. it uay he necessary to develup several linear
approximations and switch between them when necessary. This method of
switching between controllers is the basis for a technique used in adaptive
control called gain scheduling. .

Other approximations are often mnade to simplify analysis and imple-
mentation. For instauce. it is often possible to eliminate some of the higher-
order terms in a wodel involving differential equations. By eliminating the
higher-order terms. the subsequent analysis may ignore effects due to high-
frequency inputs. Hopefully. these effects will not pose a problem in prac-
tice. but no model should be relied upon without careful experimentation
comparing the performance of the modeled svstem with that of the real one.

While we have emphasized modeling continuous processes. control theory
provides tools for modeling discrete processes as well. The discrete analog of
a differential equation is called a difference equation and is used extensively
not only to model discrete systems. but also to approximate continuous sys-
tems using digital hardware. Analog computers still play an importaat role
in engineering, but, with the introduction of inexpensive digital comput-
ing hardware. a great deal of attention has been given to discrete modeling
techniques.

Digital computers are limited in that they can only sample system vari-
ables at discrete points in time. Usually. the delay between samples is fixed
of duration r. By introducing a new complex variable

=€’
we can define a discrete version of the Laplace transform called the :-
transform for a discrete function f(k) as

Z(fk) = F(z1= Y fk)z™,
k=0

There exist techniques, analogous to those hased on the Laplace trans-
form, for usiug Lhe :-trausform to analyze the response characteristics of
control systems [3]. Analysis using the :-trausform is complicated some-
what by the fact that information is irretrievably lost in a sampled system.
[t is generally necessary to identifv the various frequency components of the

39

&
<
; >‘\ .
b} v
% !
Lohy

- A—
¢

s v

input signal in the Fourier domain. and adjust the sampling rate accord-
ingly to avoid cffects due to signai aliasing (i.c.. mistakenly associating high

frequency components of th@sigmal with lower frequency components). Ac-
cording to a theorem omw aliasing can be avoided entirelv by

ensuring that the sampling frequency (1/7 samples per unit time) is at least
twice the frequency of the highest frequency component of the input signal
[4]. Of course. it may not be possible for the digital hardware to sample
that quickly or perform the necessary computations required to generate an
appropriate response. The problem of implementing complex control strate-
gies that keep pace with a rapidly changing environment will be addressed
frequently in this monograph.

There exist processes for which we know the form of an appropriate
model (e.g.. we know that the process can be modeled using a kth-order
linear differential equation with constant coefficients), but we do not know
the parameters of the model. For instance. the system we are trving to
model might be a black box that we know to be a single-input single-output
linear system. but the model parameters do not correspond to any known
physical parameters such as the spring constant or the damping constant
in the model for the spring-mass-dashpot system. In this case, it may be
possible to find vaiues for the parameters of the model by sampling the
input and output of the system. and “fitting” the parameters of the model
to the data. This is a special case of what is called system identification,
and constitutes an important part of the branch of control theory known as
adaptive control [1, 11]. System identification can be done off line during
the design of the control system as prologue to the sort of analysis described
above. In adaptive control. svstem identification is done on line by the
control system. and the results of svstem identification are used to adjust
the parameters of a controller. This approach to control is particularly useful
if the physical system that vou are attemnpting to model changes over time
(e.g.. a plant with mechanical parts that are subject to wear).

One particularly convenient feature of the mathematical models used in
control theory is that, at least as far as the analysis is concerned. what one
learns about design in one area is inmediately applicable in another area for
which there exists appropriate analogical apparatus mapping the variables
hetween the two systemns [6]. For instance, the engineer familiar with the
analysis and design of electrical control systems can often apply what he or
she knows to the analysis and design of mechanical or fluid control systems.
The basic models and their corresponding equations appear again and again.
and hence much of what is learned can he compiled into tables, tools. and

10

cookhook-stvle methods for dealing with conimonly occurring spec .ic cases
(4].

In this section. we considered some of the basic techniques involved in
inodeling physical systems. We brieflv touched upon some of the methods
and terminology of control theorv. specifically what is referred to as classical
control theorv. As was mentioned. classical control is most closelv associated

with analysis in the frequency domain. In the next section. we introduce a”

particular class of physical systems important from the standpoint of control.
and consider modeling techniques drawn from modern control theory.

2.3 Modeling Dynamical Systems

The techniques described in the previous section are primarilv useful for
physical systems that can be modeled with a single input and a single out-
put variable. In this section. we consider svstems modeled with any finite
number of input and cutput variables. We restrict our attention to a limited
class of physical systems called dynamical systems. A dynamical system is
delfined by the following mathematical objects and axioms governing them.?

o A set of time points T C R
o A set of states .X

A set of inputs [/ /

e A set of outputs Y

7
T . @S
e A set of input [unctions . UJb‘a M’L((gp_f Y
i . : ~. .) /7(()
= {a@l } A ev et
/,m* €
e A state transition function

[TxTxXxU—=X

whose value is the state r(t) = f(t;7.r.0) € X resulting at time
t € T starting from an initial state z(r) at time r € T influenced hy
the action of the input o.

‘The definitions provided lere roughly follow those of KKalman [9) though we have
sacrificed rigour in some places to avoid lengthy technical commentary. Our objective
lere is to set the ntage for a discussion of practical methods. and not. as in the case of
Nalman's work, the precise description of inathematical ahstractions.

41

-

e An output function
U X =Y

We impose some additional restrictions. In particular. for any t; < 15 < 14
and o € T we have

flta; 1. 2.0)= f(fg:fg,f(tg;fl.x.d).d).

and for any two input functions @ and @’ that agree on the interval (t. 1) we
have
fltir.r.o)= f(i:r.x. o).

The first of these restrictions provides a reasonable property that allows us to
compose inputs. The second is often referred to as the principle of causality
[2].* Given an input function ¢ € T and an interval of time (#,.t;], an input
segment 0y, 1.} is just o restricted to (ty,2;]. We require that. if 7.0’ € T
and t) < t; < t3. then there exists o € T such that o}, .1 = 0y, 1, and
n;’,"‘sl = O(t,.t5)- Lhis last property is called conratenation of inputs [9]. and
provides us with a useful closure property for the set of input functions.

We also assume that the response of a dynamical system is independent
of the particular time at v-hich it is exercised. We say that a dynamical
system is time invariant if the following properties hold.

o T is closed under addition.
o T is closed under the shift operator. :* : ¢~ o', defined by
ad(t)=o(t+9)
forall s.teT. -
o For any s.t.7 € T. we have

fltir.r,o)= f(t+ 87+ s.2.2%)

¢ The output function g(t..) is independent of ¢.

*There is a tendency in mathematical control theory to refer to certain assumptions
ot restrictions as principles. This is particularly the case where the mathematics would
be difficult or impossible without imposing some restrictions. In some cases. such as the
principie of causality described here. the restrictions seem innocuous enough. but in others
they appear to motivated by nothiug more than mathematical convenience or necessity.
\Witnese the fact that superposition. which underlies linearity, is often introduced as the
“principle of superposition™ [9).

42

-r

Ve will be concerned with continuous time dvnamical svstems (i.e.. T is
the real numbers) and discrete time dvnamical svstems (i.€.. T is the inte-
gers). For mathematical purposes. we may introduce additional restrictions
such as smoothness and linearity. but it should be pointed out that manyv
physical systems cannot he modeled exactly under such restrictions.

We represent a continuous time-invariant dynamical system as

r(t) = flz(t). u(t))
(1) a(z(t), u(t))

where the first equation is called the state equation and the second the output
equation. The state and output equations tvpically consist of differential
equations such that for any initial state z(to) and input u both equations
have unique solutions. The discrete counterpart of the continuous system is
represented as

ok +1) f(z(k), u(k))
yk) = g(z(k), u(k))

where the state equation in this case is a difference equation.

So far. we have treated states, inputs. and outputs as simple unstructured
sets. Generally, the states, inputs. and outputs have considerable structure:
it is often reasonable to ~epresent each in terms of a multidimensional vector
space (e.g.. R"). Each dimension of the space corresponds to a component
variable of the corresponding vector space. For instance. in designing a
dvnamical system to model the fluid flow in and out of a holding tank. we
might employ three state variables. the height of the fluid in the tank. the
angle of the input valve, and the angle of the output valve. The resuiting
state space would be a subset of R3. In designing a system to model a
robot. we might use the position in z, y, and z, and orientation in 4 ,, 8,.,,
and .., for a six-dimensional state space, R®. In general, the state, input.
or output variables may be boolean. real, integer, or discrete valued, and
can correspond to any representable quantity or its derivatives, as long as
the resulting space satisfies the requirements for being a finite-dip =_sional
vector space [5). By characterizing the states, inputs. and outputs in terms
»f linear vector spaces, we can bring to bear the considerable power of linear
algebra and linear systems theory.

Much of linear control is concerned with linear time-invariant svstems of
the form

x(t) = Ax(t)+ Bu(t)

43

y(ty = Cxit)

where x is the n-dimensional state vector. u is the p-dimensional input vec-
tor. y is the g-dimensional output vecror. and A. U. and (' are. respectivelr.
nx n.nxp,and ¢ x n real constaut matrices.

As a simple example illustrating how to construct a linear dvnamical
svstem, consider a single-degree-of-freedom robot of wass. J/. acted upon
by a force. . Let = he the position ol the robot in some arbitrary frame
of reference. We assume that the plaie of motion is horizontal and that
there are no frictiona! forces acting on the robot. The relationship between
position. z. and the force. 7. is completely determined by Newton's second
law of motion.

Mi=r

The dynamic behavior of the robot can be described in termns of the position
and velocity of the robot. and. hence. we deline the state vector to be,

()
x(t)=] . .

(t) [(1)
Eqnating the system output and the svstem state. we can write down the
state and output equations as follows.

01 0
[o o]"“"'[l/M u(t)

x(t)

x(1)

y(t)

Generally. the system output contains incomplete information from which
it is necessary to reconstruct the systein state. In subsequent chapters. we
consider some of the issues involved in attempting to infer the system state
fromn incomplete information.

The restriction of linearitv is a critical one that causes some researchers
to dismise much of mathematical control theory as a purely academic pursuit
with no practical consequences. Most physical systemns are nonlinear. and.
hence. we can only approximate these systems using linear models. In many
cases. such approximations are valid over only a limited range of the systems
operating conditions. While these problems make it difficult to apply results
from linear systems theorv. the methods of linear systems theory are so
powerful that the effort is often well spent. It seems unlikely that a general
method for analvzing nonlinear svstems will emerge {7]. and that instead

+4

P

bt

Figure 2.6: Inverted pendulum mounted on a cart

researchers will divide the class of noulinear systems into a set of more
manageable subclasses for which there exist special methods of analysis,
much of which will be based on ideas drawu from linear systems theory.

To illustrate how to approximate a nonlinear system by a linear one. we
consider a classic example in control that involves inodeling an inverted pen-
dulum mounted on a cart that can move back and forth along a horizontal
track. This problemn is often cited as an analogue of the problem of control-
ling a missile balanced ‘atop its booster rockets [6, 8]. The presentation here
follows that of Gopal [8]. We assume that the controller can exert a force
on the cart to propel it to the right or left along the horizontal track. Let
= be the horizontal position of the cart’s center of gravity, and z + Lsiné
the horizontal position of the center of gravity of the pendulum. where L is
the distance from the pivot to the center of gravity of the pendulum. Simi-
larly, L cos @ is the vertical position of the center of gravity of the pendulum.
Figure 2.6.i shows the basic configuration of cart and pendulum.

The state of the system is completely described by the position and
velocity of the cart and the angular position and angular velocity of the

45

pendulum. Thus we have the state vector:

=(t)
(1)
ft1)
6(t)

X(t) =

In order to set up the dvnamical equations. we have to establish somg.
additional parameters. Let m be the mass of the pendulum. M the mass of
the carriage, and J the moment of inertia of the pendulum with respect to
its center of gravity.

The forces acting on the pendulum are the force of gravity, g, acting on
its center of gravity, a horizontal reaction force. H. and a vertical reaction
force. 1°. Figure 2.6.ii depicts the forces acting on the pendulum and the
cart. Taking moments about the center of gravity of the pendulum, we have

Jé(t) = VLsin#(t) — HL cosd(t).

Summing all of the forces acting on the pendulum in the horizontal and
vertical directions. we have

» d2
V-mg = m-df—z(Lcosa(f))
2

d .
H m-u—z(z(t)-}-bsm&(t)).

Summing all of the forces acting on the cart, we have
u{t) = I = M3{¢t),

where u{t) is the (control) input.

Since the task is to keep the pendulum upright. we will assume that @
and 6 will remain cluse to 0. On the basis of this assumption. we make the
standard approximations. s ind =~ 6 and kps 8 = 1. obtaining

m@)«i—(mﬂl@)

(J = mL®)8(t) + mL(1) = mgLé(t)

u(t)
0

We introduce values for &he remaining parameters.

M :‘kg. m=015kg, L=1m

—
46

ON
Using any mecbanics or physics textbook. we get ‘;x e
‘,l A}
9 = 9.81 m/sec? / > g ‘((,/
o2 2 N
= 5”![1 =0.2 l\g'm . % / C\’
Using these equations and parameter values. ye obtain [),;’ i
i , ' &
0.1560(t) + 1\53(t) = ult) \o‘n ¢ f‘/
0.356(t) + 0.155(1) — 0.15x 9.814(¢) = 0 : "
S Yo e -

to arrive at the following state and output equations for the dynamical

where we assume realistically that the only component of the output that
is directly observable is the angle, &, corresponding to the tilt of the missile
in the case of the booster rocket.

In Chapter 4, we highlight results from linear systems theory that allow
us to establish important properties (e.g., stability and controllability) of
dynamical systems, using simple tests on the matrices that define the state
and output equations. The inverted pendulum is particularly interesting as
it represents a dynamical system that is not stable, but is controllable.

Before leaving this chapter, we introduce some additional concepts and
terns. We will develop similar concepts in the next chapter, in some cases
using the same terms and in other cases introducing new terminology. Where
the terminology differs, we will point out the conceptual similarities. An
event is simply a pair consisting of a time point and a state (e.g., {t, 1)
where t € T and € X). The event (or phase) space is the space of all
possible events, T x X.® A state-space trajectory is simply a mapping from

$\Ve follow Kaiman [9) in our nse of the term phase space. You may alro see the term
used to refer to the space of poesible positions and velocities. A state variable obtained
from a system variable and its derivative is referred to as a phase variable [8].

47

e oIS frﬁ—
£ [0 1 0 am=°
by (< |00 04| 0921 |
&9. x() ha 00 x(0 u) v
oo [0 0 &2 ~0.3947 K3
& . ® \V
= Ax(t)+ Bu(?) /
yit) = [0 0 1 0]xt) /'
= Cx(t) X"

the real interval (o the state space. /i : [0.1] — X defined by a particular
transition function. [. input. <. and initial conditions. 110) = vq. In the
following chapter. we turn our attention to the use of logic in modeling
physical svstems.

2.4 Further Reading
.

For a general introdnction to modeling from the perspective of control. see
the texts by Dorf [6] or Bollinger [3]. For an emphasis on modern control.
titne-domain analysis. and. in particular. linear system theory. see (‘hen [5)
or Gopal [8]. Our treatment of dvnamical systems follows that of Kalman:
KKalman's chapter in (9] provides a verv general formulation of dynamical
systems and an introduction to the necessary mathematical abstractions.

-

Bibliography

(1] Astrom. Karl J. and Wittenmark. Bjérn, Adaptive Control, (McGraw-
Hill. New York, 1989).

(2] Bellman. Richard, Adaptive Control Processes. (Princeton University
Press, Princeton, New Jersey, 1961).

[3] Bollinger, John G. and Duffie. Neil A., Computer Control of Machines
and Processes, (Addison-Wesley, Reading, Massachusetts, 1988).

[4] Borrie, John A., Madern Control Systems: A Manual of Design Meth-
ods, (Prentice-1lall, Englewood Cliffs, New Jersey, 1986).

[5] Chen. C.T.. Introduction to Linear System Theory, (Holt, Rinehart,
and Winston. New York, 1970).

[6) Dorf. Richard C., Modern Control Systems, (Addison-Wesley, Reading,
Massachusetts, 1989).

[7] Gibson, John E., Nonlinear Automatic Control, (McGraw-Hill, New
York. 1963).

(8] Gopal, M.. Modern Control System Theory, (Halsted Press. New York.
1985).

[9) Kalman, R. E., Falb. P. L., and Arbib, M. A., Topics in Mathematical
System Theory, (McGraw-Hill, New York, 1969).

{10} Rabenstein, Albert L.. Elementary Differential Equations with Linear
Algebra, (Academic Press, New York, 1975).

{11] Sastry, Shankar and Bodson. Marc, Adaptive Control: Stability. Con-
vergence, and Robustness, (Prentice-1lall, Englewood Cliffs. New Jersey,
1989).

19

‘12] Wolovich. William A.. Roboties: Dasic Analysis and Design. (Holt.
Rinehart and Winston. 1987}

Chapter 3

Temporal Reasoning

Section 3.1 considers the use of temporal logic in reasoning about processes
with an emphasis on the issues that arise in dealing with incompiete infor-
mation. The temporal logic makes use of the differential calculus to reason
about continuously changing parameters while at the same time providing
precise semantics for reasoning about discontinuous change and incomplete
information. In Section 3.2, we develop a computational language imple-
menting many features of the temporal logic, and investigate some issues
that arise in building practical systems for modeling processes.

3.1 Modeling Change in Temporal Logic

In this section, we consider methods for modeling physical systems based
upon the first-order predicate calculus. We begin by identifying the sorts of
entities that we need to resson about. Whereas the methods of the previous
chapter focus on the behavior of reai-valued variables over time, in this sec-
tion the representations are designed primarily to facilitate reasoning about
the truth value of propositions at various points in time. The propositions
that we consider may correspond to statements about the value of real-
valued variables, but we are not restricted to statements of that form.
There is a long history of calculi for reasoning about time in philoso-
phy, computer science, and artificial intelligence. Rather than debate the
advantages and disadvantages of the many existing techniques, we take the
expedient of adopting a particular temporal logic that suits our basic needs
for modeling physical systems. We then augment that logic to handle the

°©1990 Thomas Dean and Michael Wellman. All rights reserved.

50

o

s-ecific requirements of the applications considered in this monograph. In
Section 3.3, we briefly consider some competing approaches to reasoning
about time and provide references to papers dealing with complications not
adequately addressed by our treatment.

To model physical processes, we need to reason about the truth of propo-
sitions over intervals of time. The propositions correspond to properties of
the worid that are subject to change over time. For instance, we might want,
to say something about whether or not a particular furnace is turned on
at a particular time; to do so, we introduce a relation, on, and a constant,
furnacei?, denoting the furnace that we have in mind. Since the furnace is
on at some times and off at others, the proposition, on(furnace17), must
be interpreted differently with respect to different times. The temporal
logic :hat we employ here is essentially a calculus for reasoning about the
associai.on between time intervals and propositions.

In the following, we choose to treat time points as primitive and reason
about intervals in terms of points. Time points are denoted t or ti, i € Z
(e.9., t1, t2). Variables ranging over time points are denoted tor ¢;,,i € Z
(e.g., t1,t3). Later when we incorporate our temporal notation into PROLOG,
we will adopt standard PROLOG syntax and notate time variables as T or
Ti, i € £ (e.g., T1, T2). We introduce a binary relation, <, on time points
indicating temporal precedence. If t1 and t2 are time points, then (t1,t2)
is an interval. The formula ((t1,t2),p), where p is a propositional symbol,
allows us to refer to the association between (ti,t2) and p. Following
common practice in artificial intelligence, we substitute holds(t1,t2,p) for
((t1,t2),p). The full specification of the syntax for the logic is described
below.!

o TC: a set of timo. point sy;nboh

o C: a set of constant symbols disjoint from TC

e TV: a set of temporal varizsbles

e V: a set of variables disjoint from TV

o TP a set of fixed-arity temporal function symbols

o F: a set of fixed-arity function symbols disjoint from TF

' The syatax for the first-order case and the semantics for the propositional case are
borrowed directly from Shoham (58).

51

¢ R: a set of fixed-arity relation symbols

e <: a binary relation symbol

The set of temporal terms (TT) is defined inductively as follows:
1. (TCUTV)CTIT

2. ¥ trmy € TT,...,trm, € TT, and £ € TF is an n-ary function
symbol, then f(trmy,...,trm,) € TT.

The set of nontemporal terms (NT) is defined similarly with TC replaced by
C, TV replaced by V, and TF replaced by F.
The set of well-formed formulae (wffs) is defined inductively as follows:

1. f trmy € TT and trm, € TT, then trm, = trmy and trm,< trmy are
wils.

2. If trmg € TT and trmy € TT, trmy € NT,...,trm, € NT, and r € R
is an n-ary relation symbol, then
holds(trm,, trmy, T(trm,. . ., trm,)) is a wif.

3. If ¢y and @3 are wils, then so0 are) A ;3 and —¢,.
4. Hpisawflandz€ (TVU V), then Vz ¢ is a wif.

We assume the standard definitions of V, D, =, and 3, and we make use
of the following shorthand:?

holds(ty,t3,1 Aw2) = holds(ty,t3,41) Aholds(ty,ts,ws)
holds(t,,t3,~p) = —-holds(ty,ts,¥) '
and so on. Finally, since the structure of time is generally isomorphic to

the integers or the reals, we assume that the addition and subtraction of
temporal terms is well defined. For instance,

v, .ta[((t: — t1)>8min) Dholds(t;,t3,¢)

is meant to indicate that ¢ holds in any interval longer than five minutes.

By introducing appropriate relation and function symbols, we can de-
velop notations for representing a variety of phenomena using the above
syntax. For instance,

?Note that the lefi-hand sides aze not well formed; heace, we use = indicating s rewrite
rule rather that = indicating logical equivalence.

52

holds(ti,t2,tcap(room32)>72°)

is meant to represent the fact that the temperature in a particular room
is greater than 72° throughout the interval (t1,t2). The following three
formulae illustrate the use of quantification.

Vit ,t
holds(t;,t3, (~on(furnacei7) V temp(room32)>72°))

th t?n
holds(t;,t3, (on(furnacei?) A in_room(r, houl032)))
holds(ty,tz,temp(r)>72°)

Vt] »la ltSIt4 3 iy rle
((ty<ta<ta<te) A ((t3 — t3)>30min) A
holds(?;,t,temp(outside)<20°) A
holds(t;,t3,temp(room32)>70°)) D
((t3=<ts<tg<t3) Aholds(ts,ts,on(furnacel?)))

The first formula is meant to represent the fact that it is always the case
that either the temperature in a particular room is greater than 72° or the
furnace is not on. The second formula is meant to represent the fact that,
whenever the furnace is on, all of the rooms in the house are above 72°. The
third formula is meant to represent the fact that, if the temperature in a
particular room is greater than 70° throughout an interval of greater than
30 minutes in length during which the outside temperature is less than 20°,
then the furnace was on for some subinterval of duration 5 minutes or longer.
There are also things that can not be represented in this logic. For instance,
the logic is not poweriul enough to represent the fact that the furnace was
on for at least 5 minutes during a given 10 minute interval, where that 5
minutes could be spread out over an indeterminate number of subintervals.

We introduce some additional notations and conventions to simplify our
notation. To simplify making statements about an assertion being true at a
time point, we introduce the following abbreviation:

Vt holds(2,t,p) =holds(t,y)

It will frequently be useful to state that certain properties are timelessly
true; for convenience, we define the “always” operator, O, as

Vt;,t; holds(ty,ty,p) =0y

53

" inally, we dispense with universal quantifiers that range over a textually
isolated formula and assume that all free variables are universally quantified
of scope the entire formula in which they are contained. For instance, in the
following formulia

holds(t,,t;, (—on(furnace17) v temp(room32)>72°))

we assume that the two temporal variables are universally quantified.

The two things that logicians are most concerned about in a logic is its
proof theory and its semantics. Since we will not be concerned with proving
theorems in the traditional sense, we will not bother with a proof theory
for our logic. We are, however, concerned that our notations have precise
meaning. Later, when we consider an algorithm for deriving statements
from a set of other statements, we want to be assured that our conclusions
are valid; for this, we require a semantic theory for our temporal logic.

Intuitively, the formula holds(t1,t2,on(furnacei7)) should be true
just in case the furnace is on at every time point between t1 and t2. In
a modal logic, we can make that intuition concrete by thinking of time
points as possible worlds. A possible world roughly corresponds to a model
in traditional Tarskian semantics (i.e., an assignment of true or false to
each proposition). The different possible worlds are related to one another
by the ordering relationship <. In the first-order temporal logic presented
here, we take a different approach to characterizing the meaning of formulae;
we think of each proposition (e.g., on(furnace17)) as denoting a set of time
intervals. In this case, holds(t1,t2,on(furnacei7)) should be true just
in case (t1,t2) € on(furnacei7). To make this more precise, we provide
the semaantics for the propositional form of our temporal logic.?

The propositional case of our temporal logic is similar to the first-order
case described above with the exception that there are no nontemporal vari-
ables, constants, or function symbols, and, instead of complex terms and
relations, we have P a set of propositional symbols. In order to communi-
cate the essential semantic properties of the logic, it should suffice to provide
the semantics for the propositional case.

Az interpretation is a triple (TW, <, M) consisting of a nonempty uni-
verse of time points, TW; a binary relation, <, on TW; and a two-part

i fnnct'n,M= M,M,WhCNMTC—OTW d My: P =
;1%. io (M1, M) 1 and M,

IThe propositional interval logic ailows quantification over time points ss in the first-
order case, but is restricted so that ¢ in holds(t1,t1,¢) is s propositional formuls.

54

A variable assignmentis function VA: TV — TW. Ifu € (TCUTV),
we define VAL(u) to be My(u) if w € TC, and VA(u) if u € TV. An
interpretation S = (TW, <, (M), M3)) is said to satisfy a wiff @ under the
variable assignment VA (written S = o[VA]) under the following conditions:

1. Sk (w = u2)[VA] iff VAL(%;) = VAL(u,)

2. § k= (u1=< u3)[VA] iff VAL(u;) < VAL(u3)

3. S k= holds(uy, u3, ¢)(VA] iff (VAL(u1), VAL(43)) € Ma(y)
4. S| (¢1 A @2)[VAL iff S k= [VA] and S = [VA]

5. S k= ~p[VA)iff S £ o VA]
6

. § & (Yvp)[VA] iff S = ¢[VA'] for all VA’ that agrees with VA every-
where except possibly on v.

An interpretation S is said to be a model for a wff ¢ (written S |=) if
S |= p[VA] for all variable assignments VA. A wif is said to be satisfiableif it
has a model, and a wif is said to be valid (written |=) if its negation is not
satisfiable. We will have to augment the above semantics as we extend the
logic to handle more complicated forms of inference, but the basic semantics
relating temporal intervals and propositions will be retained.

In order to reason about processes, it is often natural to speak in terms
of events that precipitate change in the world. For instance, the toggling
of a switch corresponds to an event that has as a consequence changes in
an electrical circunit. The occurrence of an event corresponds to a particular
type of proposition holding over an interval. Shoham [58] provides a clas-
sification of proposition types that enables us to distingunish between those
corresponding to the occurrence of events and those corresponding to other
sorts of phenomena.

Most of the propositions that we have seen so far (e.g., on(furnace),
temp(room32) >70°) are said to be liguid in Shoham’s classification. A
proposition type is liquid if, whenever it is is true over an interval, it is
true over every subinterval (except possibly the endpoints), and, addition-
ally, whenever it holds for all proper subintervals of some nonpoint interval
(except possibly the endpoints), it holds over the nonpoint interval. Events
are generally thought of as corresponding to propositions that are not liquid;
they are said to be gestalt in Shoham's classification scheme. A proposition
type is gestalt if, whenever it holds over an interval, it does not hold over
any proper subinterval. To emphasize the role of events in reasoning about

55

change, we : e occura(t,,t;,p) instead of holds(t;,t3,p) where ¢ is a

gestalt proposition type corresponding to the occurrence of an event. /
Suppose that the set of time points is isomorphic to the integers. For

any given time point t, there exists a unique next time point t + 1. We can

specify a simple law of change as follows:

Ri: (holds(¢,-on(furnacel7)) A "
occurs(t,toggle(switch42))) D holds(t + 1,on(furnace17)’

Of course, this rule is not quite right; the furnace does not always come
on when you toggle its switch. Use “aziom” instead of “rule.” Indicate
that what we really want is a weaker approzimation of R1, but that we can-
not provide such an approzimation within the classscal logic. The fuse on
the circuit feeding power to the furnace has to be intact, the furnace has
to be mechanically and electrically sound, and any number of additional
conditions must hold in order for the furnace to come on as a consequence
of toggling its switch. Unfortunately, it generally will not be possible to
epumerate all of the necessary conditions, and, even if you could enumerate
them, the rule would be useless given that you could never know enough
to establish whether or not all of the conditions are met in a given situa-
tion. The conditions specified in the antecedent of a rule such as R1 are
meant to correspond to conditions that are readily known and usually suf-
ficient to warrant the conclusion. The idea is that, if you frequently come
to the right conclusion and only occasionally come to the wrong conclusion,
then the small reduction in reliability will be offset by potentially enormous
computational savings.

However, even if you are m].lmg to accept the reduction in reliability that
results from unng R1, you may not be willing to u:cept another, more serious
consequence of using rules of this form. The more serious consequence has
to do with handling situations in which it is known that some necessary, but
unaccounted for condition is not satisfied. For instance, you may know that
the fuse on the circuit providing power to the furnace is open, rendering the
switch useless. Unfortunately, the consequent of R1 still follows from the
antecedent and you are left with a conclusion that you know to be false.
What you would like to say is that the furnace will be on if you toggle
its switch unless you have some information to the contrary. Formalising
this sort of inference is actually quite complex. The problem of reasoning
about the conditions required for an event to have a given consequence
is referred to as the qualification problem and is of considerable interest
to researchers working i1 the area of default reasoning and nonmonotonic

56

logic. We introduce some additional synt- x that a.ttempts to address the
qualification problem as follows:

R2: (holds(t,-on(furnacel?)) A
occurs(t,toggle(switch42)) A
-abnormal(R2,t)) Dholds(t + 1,on(furnacel?))

where abnormal (R2,¢) is meant to indicate that R2 is inappropriate to apply
with respect to ¢; in this case, R2 is said to be disabled. The status of the
abnormal antecedent in R2 is different from that of the other two antecedents
in the rule. The intent = that the conclusion should follow as long as there
is no evidence that the rule is abnormal. We can now add rules that will
serve to disable R2 in appropriate circumstances. For instance,

Q1: (holds(t,open(fuse43)) Aoccurs(t,toggle(switchd42))) D
abnormal(R2,t)

indicates that the conclusion of R2 is not warranted whenever a certain fuse
is open.

The intent behind R2 is that holds(t+ 1,on(furnacel?)) should follow
from the axioms (i.e., be a theorem) just in case holds(t, ~on(furnace1?))
and occurs(t,toggle(switch42)) follow, and ~abnormal(R2,t) is consis-
tent with the axioms. Unfortunately, if you use such a criterion to construct
the set of theorems, you may get different answers depending upon the or-
der in which you consider candidate formulae for membership in the set of
theorems. In some cases, we can avoid ambiguity regarding the set of theo-
rems by requiring that only a minimal number of abnormalities are allowed
to occur. We can make our intended mumng pmu by an;mcntmg our
semantic theory.

First, we introduce the xdea of a pa.rtul ordmng or pnfm. <, on
models for a given set of axioms. Let I' be the set of axioms describing how
events precipitate change in the world. T would include rules such as R2,
qualifications such as Q1, and additional axioms indicating initial conditions,
observations, or proposed actions. We denote the set of all models of T (:.e.,
{M : M = T}) by Mod(T'). Assuming that there are no infinite (descending)
sequences of models My, M3, My. .. such that M; € M;, My € M,,.. ., the
notion of the set of all minimal (with respect to <) models is well defined;
we denote this set as Min(<, Mod(I')). We define a particular < such that
M, € M; just in case:

1. My and M; agree on the interpretation of all function and relation
symbols other than abnormal.

57

2. For all z and ¢, if M, = abnormal(z,t), then M; = abnormal(z,t).

3. There exists some z and t. for which M3 = abnormail(z,t),
but M, f abnormal(z,t).

We say that I preferentially entails ¢ with respect to « (written I' F¢)
just in case

¥ M € Min(<, Mod(T)), M & o. -

To illustrate, consider the following two observations:

01: occurs(1,toggle(svwitch42))
02: holds(1,-on(furnaucei?))

indicating that the furnace was not on at time point 1, and that the switch
was toggled at that time. Suppose that the set of axioms is

T = {01,02,R2,01}.

In this case, holds(2,on(furnacei7)) is true in all models minimal with
respect to <, and, hence, we have

I' ¢ holds(2, on(furnacei?)).

Unfortunately, there are situations in which our augmented semantics runs
counter to our expectations. For instance, suppose that we complicate our
furnace scenario, and add a new rule indicating that, whenever a power surge
occurs and we have no reason to believe that there are other complications,
the fuse on the circuit providing power to the furnace qverheats, leaving the
circuit open.

R3: occurs(t,surge) A ~abnormal(R3,t) Dholds(t + 1,open(fuse43))
In addition, suppose that we have observed a power surge at time 0.
03: occurs(0,surge)
Given the set of axioms
T = {01,02,03,R2,R3, Q1},
one might expect to conclude:
Ci: holds(1i,open(fuse43)) A ~holds(2,on(furnace(17))

58

However, while there are models minimal with respect tr <« that satisfy C1,
there are also minimal models satisfying:

C2: -holds(1,open(fuse43)) Aholds(2,on(furnace(17))

[t seems more plausible that evidence for an abnormality come from the past
rather than from the future; hence, we should prefer models that allow us to
conciude C1 over those that allow us to conclude C2. In general, we prefer
models in which the fewest abnormalities occur, and those that occur do 80
as late as possible. The minimal models with respect to this preference are
said to be chronologically minimal We make this more precise by defining
a new preference, <., such that M, < M3 just in case there exists a time
t such that:

1. My and M, agree on the interpretation of all function and relation
symbols other than abnormal.

2. For all z and t'< t, if M3 |= abnormal(z,t'), M, |= abnormal(z,t').
3. Forall z and ¢'<¢, if My |= abnormal(z,t'), M; |= abnormal(z,t').

4. There exists some z, for which M; | abnormal(z,t),
but M; ¢ abnormal(z,t).

Given the set of axioms {01, 02,03,R2,R3,Q1}, C1 is true in all models min-
imal with respect to <.

The above discussion outlines some techniques for reasoning about what
things change as a consequence of events occurring, but we haven’t said
anything about what things do not change. If you toggle the switch to the
farnace, what happens to the color of the car in the garage? Presumably the
color of the car remains the same as it was before you toggled the switch,
but the axioms do not support this inference. We could provide an axiom
like

R4: (holds(t,color(car45)) A
occurs(toggle(svitch42))) D holds(t + 1,color(car4s))

but we would have to write a lot of axioms: one for each event/proposition
pair,* and moure if we are to account for combinations of events happening

‘We would also have to add an “sbnormal” condition a8 in R2 to handle that rare, but
possible situation in which toggling the switch to your furnace somehow does change the
color of your caz.

59

at the same time. R4 is called a frame ziom, and the problem of reasoning
about what things do not change as a consequence of an event occurring
is called the frame problem.> In considering how to deal with the frame
problem, we begin by considering the case in which time is modeled after
the integers.

In the following, we attempt to augment our temporal logic so that
propositions, once they become true, tend to persist in lieu of any informs:
tion to the contrary. This augmentation is often referred to as the defauit
rule of persistence [43), or the common-sense law of inertia [37]. The jus-
tification for adding this default rule is not based on any natural law. In
fact, it does not appear to be appropriate for reasoning about propositions
in general. We claim, however, that it is appropriate for reasoning about
propositions describing many of the processes that we humans cope with on
a day-to-day basis. This claim is based on an assessment of our perceptual
and cognitive capabilities; we simply cannot cope with processes whose im-
portant properties are not discernible by our senses or that change so rapidly
or seemingly randomly that we cannot keep track of them.

We begin by introducing a special case of abnormality. Since propositions
tend to persist, times at which they change should be rare or abnormal. We
refer to the abnormality in which a proposition ¢ changes its truth value at
time ¢t as a clipping, and notate it as clips(t,). Note that there are prob-
lems with our treatment of clipping. In particular, the predicate clips ranges
over other predicates. We took care to indicate that holds(t,,t;,y) was just
syntactic sugar for ((t1,t3),p), but here we will probably just let it slide rather
than get bogged doun in complicated details.

The following axiom schema allows us to infer clippings in appropriate
circumstances: ' e T

AS1: (holds(t,¢) Aholds(t+ 1,~¢)) Dclipsa(t,yp)

The common-sense law of inertia is captured in the following formula, which
is logically equivalent to AS1:

AS2: (holds(t,y) A -clips(t,p)) Dholds(t+1,¢)

Since theorems of the form —clips(¢,y) generally do not follow from
the axioms, for any t and ¢, there will be models in which ~clips(t,y)

*The name derives from the intuition that since very kittle changes from one frame to
the next in 8 movie film, if you are told what does change, it should be simple to infer
what does not [43).

60

\

is true and those in which it is false. We can use the same basi tech-
nique of minimizing temporally ordered abnormalities (i.e., clippings in this
case) that we used to deal with the qualification problem to ignore models
with unwanted or unmotivated clippings. However, we have to be careful
that clippings and other sorts of abnormalities do not interact in a coun-
terintuitive manner. One way to control unwanted interactions between the
two different sorts of abnormalities is to prioritize them using the following
modification of <€,: :

2'. For all z and t'< ¢, if M3 |= abnormal(z,t'), then
M, = abnormal(z,t'), and, if M, |= clips(z,t'), then
M, = clips(z,t').

3. For all z and t'<t, if M; | abnormal(z,t'), then
M, = abnormal(z,t'), and, if My = clips(z,t), then
M; k= clips(z,t').

4’. Either there exists some z, for which M; |= clips(z,t), but
M, [clips(z,t), or for all z, if M; = clips(z,t), then
M, = clips(z,t), and there exists some z, for which
M; = abnormal(z,t), but M, j abnormal(z,t).

Chronological minimisation does not always perform according to our
intuitions. To explain why not, we distinguish between two different sorts of
temporal reasoning, referred to as projection and ezplanation.® Projection is
the problem of reasoning forward in time from some initial state of affairs to
determine the future course of events. Explanation is the problem of reason-
ing backward in time from some final state of affairs to determine the past
course of events. Chronological minimisation satisfies most of our intuitions
regarding projection; unfortunately, it provides some rather counterintuitive
results regarding explanation. For instance, suppose that the furnace is ob-
served to be on at 9:00 in the evening and off at 8:00 the next morning.
Chronological ignorance would have us conclude that the furnace was on all
night and was turned off at the last possible moment before it was observed
to be off at 8:00 AM. This inference strikes most as completely arbitrary,
and is therefore an undesirable consequence of chronological minimigation.

There has been a significant amount of work on designing a temporal
logic that satisfies our intuitions regarding both projection and explanation,

*Here we assume the deterministic versions of these problems ia which s specified initisl
[Anal] state of affairs uniquely determines the succeeding [preceding] course of events. Note
that determinism in one direction does not necessarily imply the other.

61

and we will review this work briefly at the end of .is section. Most of
the deterministic problems that we consider in this book can be posed as
projection problems of one sort or another. There is a real advantage to be
had in casting a problem in terms of just projection or just explanation. In
particular, the decision procedure used to automatically derive conclusions
from a given axiomatic theory can exploit the (often linear) structure of
time to expedite inference resuiting in substantial computational savings.
We return to deal with computational issues in Section 3.2.

Thus far, we have focused on modeling techniques that are suitable for
reasoning about processes in which both time and change are discrete. While
discrete modeling techniques provide suitable approximations for many con-
tinuous processes, we will find it convenient to extend our temporal logic to
reason about continuous time and change. From now on, we assume that
time is isomorphic to the reais. We have to reformulate the axiom schemata
for dealing with the frame problem to handle continuous time.

AS17: ((H1<t=<Xt) A
holds(t,,t, @) Aholds(s,t;,-~9)) Dclips(t,p)

AS2’: ((ty<t=<t3) Aholds(t,t,9) A
=38 ((t<t’<13) Aclips(t’,¥))) Dholds(t,ty,)

In addition, our rules of change will look a bit different. For instance,
we might change R2 to look like:

R2’: ((t;<t) Aholds(t;,t,—on{furnacei?)) A
occurs(t,toggle(switch42)) A ~abnormal(R2’,t)) D
3t; ((t+e€)<t3) Abholds(t + ¢,t;,on(furnacei?))

where ¢ corresponds to a small delay between the time that the switch is
toggled and the time that the furnace actually is on. This delay is meant to
capture the intuition that causes precede effects. The delay is particularly
appropriate here in that, were we to allow simultaneous cause and effect in
this particular case, we would have an instant of time in which the furnace
was both on and off.” This has to be corrected. We still have the problem
that the furnace is both on and off at some time.

"This need not be true. We have not been careful to state whether ot not our intervals
(ti,82) aze closed, half open, or what. From our treatment of degenerate intervals (e.g.,
(¢,¢)), however, one might conclude that at least some intervals are closed. The sdditional
notstion sad machinery necessary to resoive all of the issues concerning the status of
time intezvals is not deemed worthwhile for this discussion. We will continue to avoid
such issues wherever possible, sdmitting that they would have to be resoived in a more
complete treatment.

62

Say something more about the preference criterton for continuous time.

We will also find it useful to reason about quantities that change con-
tinuously as functions of time. Rather than invent new machinery within
the interval temporal logic, we will try to import into the logic as much of
the differential calculus as is needed for our anticipated control applications.
Our treatment here roughly follows that of Sandewall [54].

First, we introduce a set, U, of real-valued parameters closed under thg
differential operator, 8. If u € U, then 3™u € U, where 3 u is the nth
derivative of u with respect to time. We can trivially extend the syntax to
represent statements about the values of parameters at various time points.
For instance,

holds(t1,t2,y = 3.1472)

is meant to indicate that the parameter y has the value of 3.1472 through-
out the interval (t1,t2). By restricting y to remain constant throughout
the interval (t1,t2), we also restrict Gy to remain 0 throughout the same
interval.

To guarantee this intended meaning, we have to augment the semantics
somewhat. In addition to a set of parameters U/, we assume that each
interpretation includes a function Q : (R x U) — R, where we employ the
set of real numbers, R, for the set of time points as well as for the set of all
parameter values.

Since we will find it convenient on occasion to model abrupt changes in
the value of parameters as they change over time, we introduce the notion
of a breakpoint. We assume that a physical process is modeled using a set
of differential equations that describe continuous changes in the parameters
over intervals of time, and a set of axioms that determine what equations are
appropriate over what intervals. Breakpoints are times at which the axioms
signal a change in the differential equations used to model a given quaatity
or set of quantities. Generally, at a breakpoint, there is a discontinuity in
some time-varying parameter.

We have to augment the semantics to account for the behavior of param-
eters with respect to breakpoints. Each interpretation must include a set of
breakpoints 5 C R, so that for all u € U, Q(¢,u) is continuous over every
interval not containing an element of §, and for all t ¢ S, g = (¢, 8v).
Strange things can happen at breakpoints, but not so strange that we will
aliow a parameter to take on two different values. To avoid such anomalies,
we will have to introduce some additional machinery.

63

At time to, we have a set of differential equations and a set uf initial
values® for all of the parameters; thése equations and initial vaiues are known
to hoid until some indeterminate time t,, when a breakpoint occurs and
the axioms determine a new set of differential equations and a new set
of “ipitial” values. In order to establish breakpoints and the values for
parameters immediately following breakpoints, we need to refer to the values
of parameters “just before” and “just after” breakpoints. To do so, we defirme
the left and right limits of a parameter z at time ¢ as:

ot 1m o)

Qt,2") ¥ lim Q(r,2)

A discontinuity occurs at t with regard to a parameter z whenever the left
and right limits are not identical:

Q(t,z') # Q(t,2")

As long as there are no discontinuities, the differential equations tell us
exactly how the parameters vary with time. The axioms determine whea
breakpoints occur and what differential equations and initial conditions
should be used to model processes between breakpoints. Discontinuities
play a role in reasoning about real-valued quantities analogous to the role
played by clippings in reasoning about the persistence of propositions. Just
as the axioms do not rule out spurious models resulting from unexplained
clippings, neither do they rule out models resulting from unexplained dis-
continuities. _ ,

Consider the following example. Suppose that we have two objects mov-
ing toward one another along a horisontal line. To keep the example simple,
we assume that the surface is frictionless, the objects are represented as iden-
tical point masses, and there are no external forces acting on the objects.
Let z; and z; represent the parameters corresponding to the position of
the first and second objects, respectively, as measured from some reference
on the horisontal line. At time 0, the first object is located at position 0,
and the second object is located 10 meters to the right. A positive velocity
indicates movement to the right. We make use of the standard notational
conventions for position (z), velocity (82 = £), and acceleration (§2z = 2).
Here are the axioms indicating the initial conditions:

1t is 2ot necessary that the axioms establish the exact values for all parameters. The
logic described here is well-suited to ressoning sbout inequalities sad parameter ranges.

64

holds(0,z; = 0) holds(0,z; = 10)
holds(0,z; = 2) holds(0,z; = -3)
holds(0,%, = 0) holds(0,i; = 0)

where velocity is in units of meters per second. The next axiom determines
the new velocities immediately following a collision breakpoint.

O((z1 = 22) A((£1 - 22) > 0)) D ((£] = £3) A (2} = 7))

For the most part, the propositions corresponding to equations involving
the parameters in U are constantly changing. In order for us to make useful
predictions, however, certain equations have to persist over intervals of time.
Suppose you zre told that at time 9,2 =0,2 =2, a0d 2 =0. If2=0
persists, then there will be discontinuities in £ and £. If # = 0 persists, then
2 = 2 has to persist or be discontinuous in order to avoid a discontinuity
in 2, and z is completely determined by £ = 2. However, if none of z = 0,
z = 2, or £ = 0 persist, there need not be a discontinuity in any one of z, 2,
or £, but neither is there any way of predicting the changes in z over time.
In this example. we force an interpretation by stating that the accelerations
for the two objecis ar€ always 0.

O((21 = 0)A (23 = 0))

Using a preference analogous to <, that minimizes discontinuities, there
is & single discontinuity in the acceleration of the objects two seconds after
time O, after which the objects, having exchanged velocities, head in opposite
directions forever. We assume that the values of parameters are established
in intervals not containing breakpoints by differential equations.

Note that, by our definition of clipping (i.e., axiom schema AS1’), a
discontinuity is a clipping only in the case that the discontinuity immediately
follows a positive length interval in which the parameter is constant. We
distinguish propositions corresponding to real-valued parameters taking on
specific values (e.g., £ = 2) from propositions corresponding to truth-valued
parameters (¢.g., on(furnace1?)).

In the previous example, O((2, = 0)A(Z2 = 0)) serves as the model
for zy and z;. In other cases, it may be convenient to infer a change in a
model that persists over some indetermirate interval of time, just as we are
able to infer changes in propositions that persist over intervals of time. To
handle this sort of inference, we introduce a particular type of proposition
pmod(z,m) where z is a real-valued parameter and m is a model for z. If

65

m is an nth-order differential equation, then it is assumed that the nth-
order equation determines all higher-order derivatives, and all lower-order
derivatives are known as part of the initial conditions. By stipulating O(% =
0), we implicitly indicated holds(0,pmod(z,Z = 0)) and that z = 0 and
z = 2 were the initial conditions at 0. Propositions of the form pmod(z,m)
persist according to chronological minimization. To illustrate how models
might change over time, consider the following example. -

Suppose that we want to reason about the temperature in a room heated
by a furnace, and suppose that the furnace is controlled by a thermostat set
to 70°. To make the example more interesting, suppose further that the
thermostat has a 4° differential (i.e., the furnace starts heating 17h.en the
temperature drops to 68° and stops vhLen the temperature climbs to 72°).
To represent parameters “dropping to” or “climbing to” certain values, we
define trans([] | 7], u,v) where u € U and v € R as follows:

holds(t,trans({| | T],u,v)) =
(Q(t,u) = v) A (3'<t, V< t"<t,Q(t", u)[> | <]Q(t,u))

Propositions of the form trans([| | 1],u,v) are used to represent point
events of the sort that trigger changes.

To model changes in the room'’s temperature when the furnace is off, we
use Newton’s law of cooling

dr
7= -x1(r — a)

where r is the temperature of the room, a is the temperature outside the
room, and x;j depends on the insulation surrounding the room. To model
changes in the room’s temperature when the furnace is running, we use

dr

5 =(f =) - m(r-a)

where f is the temperature of the furnace when it is running, and x; depends
on the heat flow characteristics of the furnace. The following axioms describe
the temperature in the room over time.

O(trans(},r,68°) A on(furnacei?)) D
pmod(r,0r" = —xy(r - a))

O(trans(T,r, 72°) A on(furnace1?)) D
pmod(r,0r" = ky(f - r) — x1(r - a))

66

7.1 80
74 < 70
72 4 0
70 1 S0
“ 40

r v v v - 3 < Y -

° 2 L4 © L 100 [} 108 00

Figure 3.1: Different behaviors for a thermostatically controlled furnace

Suppose that we are interested in the temperature in the room over the
interval from time 0 to time 10. We are told that the temperature outside
is 32° throughout this interval, and that at time 0 the room is 75° with the
furnace on but currently not heating. We represent these facts as follows:

holds(0,r = 75°)

holds(0,10,a = 32°)

holds(0,8r = —x3(r — a))

3t (0<t) Aholds(0,t,on(furnacei?))

We might expect the above axioms to support the following inferences.
The temperature drops off exponentially® from 75° to 68° at which point
the furnace starts heating and continues until the temperature reaches 72°,
after which the furnace oscillates on and off forever with the temperature
always between 68° and 72°. This expected behavior is shown on the left
in Figure 3.1. Unfortunately, chronological minimisation of discontinuities
does not support this inference. There are chronologically minimal models in
which this is the case, but there are also chronologically minimal models in
which on(furnace17) is clipped just at the time the temperature first drops
to 68°, and instead of cycling forever between 68° and 72° the temperature in
the room approaches 32° asymptotically as shown on the right in Figure 3.1.

We can eliminate the unintended models by not allowing simultaneous
cause and effect. You can think of trans([] | 1], u,v) events as a particular
sort of causal trigger, and the propositions constraining parameters (e.g.,

*The behavior of the system can be described in terms of a piecewise continu.
ous fanction in which the specific soiutions for esch piece are given, alternstely y; by
7(t) = 32° + (ro - 33%)e" and r(t) = C+(ro = C)e~("*"1) where C = :z.°°£.t.m'_. , 7o
is the initial temperature of the room for that particular piece and ¢ is the tnne dspoed
from the beginniag of that piece.

67

dr = s(r — a)) as a particular sort of effect. The general form of a causal
rule is

holds(t, [antecedent conditions]) A

occurs(t, [trigger event type]) A

—abnormal(t, [rule identifier]) D

3t ((t+ A)<t') Aholds(t + A,t', [consequent effects]) .

If A =0, then the antecedent conditions, the trigger event, and the conse-
quent effects all compete with one another in the process of chronological
minimization. Models in which the antecedent conditions are mysteriously
clipped are equi-preferable to models in which the consequent effects occur
as expected and result in clippings or discontinuities of their own.

Much of the work in temporal reasoning in artificial intelligence has
focused on making precise the intuitions behind cause-and-effect reasoning.
By requiring that causes precede effects, we not only avoid certain problems
with unintended models, but we also subscribe to some of the basic intuitions
about causal reasoning.

Our physical model for the thermostatically controlled furnace is not by
any means complete. For instance, if we were to add the axiom

3t (8 <t) Aholds(8,t,on(furnacei?))

we would arrive at the inappropriate conclusion that, if the furnace was
heating at time 8, then it would continue to do so indefinitely. To avoid
this unwanted inference, we might add rules saying that whenever anything
resuits in the furnace “becoming” off, then the temperature in the room is
governed by some default set of equations. To express thia as an event trig-
gered causal rule, we might define an analog of trans([] | 1], u, v) for truth.
valued parameters. Suppose that becomes(yp) corresponds to the event of
¢ becoming true. Adding the following axiom

holds(t,becomes (—~on(furnacei?))) D
e (((¢t +)< t') Aholds(t +¢,t’ ,pmod(r,fr" = —x3(r — a))))

ensures that we will infer something reasonable in the event that the power
to the furnace is cut off.

Note that we can always substitute a set of models that persist over
different intervals of time for a single model that is true for all time but
with additional parameters that make the model behave differently over
different intervals of time. In the furnace example, we might state that

68

O(dr = xy(f - a) — x1(r — a))

and then have rules that govern the value of f over different intervals of time.
Whether we vary the model or empioy a single model and vary the param-
eters of the model, we have to provide some means for certain propositions
corresponding to equations involving parameters to persist over time.

There remain many open issues in modeling physical systems using tem-
poral logic that are not considered in this section. We will, however, return-
many times to consider both computational and representational issues in
reasoning about time and change. In particular, the next section is con-
cerned with automating temporal reasoning, Chapter 5 discusses how the
temporal logic of this chapter can be used for planning, and Chapter 7 is
concerned with temporal reasoning about stochastic processes.

Introduce the concepts of histories, time lines, chronicles and relate them
to the notion of state-space trajectories introduced in the previous section.

3.2 Temporal Logic Programming

This section is concerned with the design of practical temporal reasoning
systems. We describe a system that combines features from several existing
systems to provide the support that we require for applications in planning
and control. The resulting system is presented as an extension of the logic
programming language PROLOG (9, 39] augmeated with features, such as
forward chaining, normally found in deductive retrieval systems [31).

In the last section, we presented a logic without regard to the complexity
of determining whether or not a given formuls was valid. Given that boolean
satisfiability is NP-compiete [21], we cannot expect to implement a decision -
procedure that is guaranteed to provide correct and timely answers to all
possible queries. To ensure reasonable response time for our temporal rea-
soning system, we restrict the syntax for both queries and data. In addition,
for some types of query, we provide only partial decision procedures (i.e.,
procedures that occasionally report “don’t know” in response to a query).
This section represents a catalog of concessions to complexity. Complete-
ness, expressiveness, and response time have to be carefully considered in
the design of any program intended to serve as part of a control system.
In Chapter 8, we consider tradeoffs in the design of decision procedures in
some detail; in this section, we are primarily concerned with presenting the
basic functions required for practical temporal reasoning, and pointing out
potential sources of complexity.

69

For the most part, we adopt the syntax of PROLOG. Conditional rules
(i.e., PROLOG Horn clauses) are notated A— B where A is an atom (i.e., a
predicate of zero or more arguments) and B is a conjunction of zero or more
atoms. We make use of the negation-as-failure operator, not, to implement
various forms of nonmonotonic icference. (The query not(yp) succeeds just
in case ¢ fails.) We assume the standard semantics for logic programs (3]
augmented where needed with informal procedural semantics.

To speak about the structure of time itself, we refer to points (or instants)
of time, and sntervals (or periods) of time. We distinguish between a general
type of event or proposition (e.g., “I ate lunch in the cafeteria”) and a
specific instance of a general type (e.g., “I ate lunch in the cafeteria this
afternoon”). The latter are referred to as time tokens or simply tokens. A
token associates a general type of event or proposition with a specific interval
of time over which the event is said to occur or the proposition hoid.

Our calculus for reasoning about time will be concerned with manipu-
lating time tokens. Given some set of initial tokens corresponding to events
and propositions, we will want to generate additional tokens corresponding
to the consequences of the events. First, we have to be able to enter new
tokens into the PROLOG database. We notate general types of events and
propositions using PROLOG predicates and their negations. For instance,
the proposition “the loading dock is unoccupied” might be represented as
empty(loading dock), and its negation as —~empty(loading dock). Simi-
larly, the event type “truck #45 arrives at the loading dock” might appear
as arrive(truck45,loading.dock). To enter a new token, we assert an
expression of the form, token(type, symbol), where type corresponds to a
general type of event or proposition, and symbolis a tam that will be asso-
ciated with an interval of time. Asserting

token(arrive(truck45,loading dock),arrivalis).

adds a new token of type arrive(truck45,loading.dock) and interval
arrivali4 to the database.
It is often convenient to refer to the points corresponding to the begin-

ning and end of intervals. If arrivali4 denotes an interval, then begin(arrivalis)

denotes its begin point and end(arrivali4) denotes its end point. Initially,
the interval of time associated with a token is completely unconstrained (i.e.,
it could correspond to any interval). Intervals can be constrained using ord:-
nal (e.g., < or <) and metric constraints on their beginning and end points.
If arrivali4 and departure23 are both intervals, then asserting

end(arrivali4) < begin(departure2d).

70

constrains the first interval to end before the second begins. For any interval,
int, it is necessarily the case that

begin(int) < end(int).

Metric constraints allow us to bound the amount of time separating
points. The notation distance(t;,t;) € [low, high] is used to specify that
the distance in time separating t; and t; is bounded from above by high
and bounded from below by low, where bounds are specified in the form,»
hours:minutes. For instance, if noon is a reference point corresponding to
12:00 PM today, asserting

distance(noon,begin(arrivali4)) € [2:55,3:08].

- .nstrains the interval associated with the arrival of truck4b to occur at
3:00 ¥M, give or take 5 minutes. If the upper and lower bounds are the
same, we use = instead of € and one number instead of & pair of numbers.

Given the Aours:minutes notation for specifying metric constraints, we
have committed to a set of time points isomorphic to Z. We could have made
it hours:minutes:seconds, but some concession ultimately has to be made to
the finite precision of arithmetic on the target machine.

To indicate that a bound is unconstrained, we introduce the special
symbol oo, so that

seo0>nVneZ
e+ =0+n=00,YneZ
e ow-—00=10

Allowing both metric and ordinal constraints introduces some special prob-
lems in propagating (i.e., combining) constraints to determine the best
bounds on a pair of points (i.e., the greatest lower and least upper bounds
on the time separating the two time points). Propagation is simplified by
adopting s single representation that captures both types of constraint. We
do so by introducing yet another symbol ¢ with the following properties:

ee>0
ense<r,VneZVvVre Rt

e ct+e=2%€>¢

71

Using the above, we define the following!®
e t; <t => distance(ty, t;) € le, o0].
e t;<t;=>distance(t;, ;) €10, 00].

e t; =t; > distance(t,t;)€{0,0].

We treat events and propositions somewhat differently in our calculus.
We assume that the durations of events are specified precisely. For instance,
we might state that the evert corresponding to the arrival of truck45 took
one minute.

distance(begin(arrivali4) ,end(arrivali4))=0:01.

For tokens corresponding to propositions, we would like to predict how

long the propositions persist once they become true. For instance, suppose
that were interested in reasoning about a robot forklift truck that moves
appliances around in a warehouse, and suppose we make the following as-
sertions to the database:
token(location(forklift,loading area),locationi).
token(location(forklift,staging area),location2).
distance(noon,brgin(locationl))=1:15.
distance(noon,begin(location2))=2:30.
Assuming the forklift can only be in one of staging_area or loading area,
we conclude that the interval locationi should not persist past 2:30 PM.
In general, we require that the interval corresponding to a token persist
no further than the first subsequent interval corresponding to a token of 8
contradictory type. For any proposition type ¢, @ and —~¢ are said to be
contradictory. Additional contradictory types have to be explicitly asserted.
For instance, the assertion

contradicts(location(X,L1),location(X,L2)) «~ L1j#L2.

indicates that any two tokens of type location(argl,arg®) are contradic-
tory if their first arguments are the same, and their second arguments are

19The constraints on time points sre represented internally as pairs of complex numbers
of the form (a,f) for a + f¢, where a,8 € Z. For instance the bounds, (¢, 1] would be
represented as ((0,1),(1,0)]. The resuiting calculus—first introduced by Leibnits [33) for
studying the foundations of real analysis—provides a convenient basis for propagsting and
manipulating sets of equations including both ordinal and metric constraints.

72

locationl location(futlm.loaflng_uu)
1
I |

-

{oc:ﬁonz location(forklift staging sres)
I —t—

Figure 3.2: Tokens in the TEMPLOG database

different. The process of modifying the bounds on token intervals corre-
sponding to propositions to ensure that tokens of contradictory types do
not overlap is referred to as persistence clipping. One token is clipped by a
second in accord with the following rule.
clips(K,begin(J)) «

token(P,K),

token(Q,J),

contradicts(P,Q),

begin(K) < begin(J).

The syntax for our temporal logic programming language severely re-
stricts what can serve as a proposition type and what can be said about two
different proposition types being contradictory. The consequences of these
restrictions will become clearer as we explore the details query processing.

In the course of our discussions, we will be adding various capabilities
to PROLOG to support applications in planning and control. We call this
extended logic programming language TEMPLOG in recognition of the central
-nle of time. For the time being, we assume that TEMPLOG automatically
i ---««mns persistence clipping for all tokens stored in the database. Later we
will have to relax this requirement to deal with the computational complexity’
of reasoning sbout partially ordered events.

It will help in this and subsequent chapters if we can display the contents
of a TEMPLOG database graphically. To that end, we introduce the follow-
ing graphical conventions. Time tokens are represented with a vertical bar
indicating when the corresponding interval begins and either a second ver-
tical bar providing some indication of when the interval ends or an arrow
—, indicating that the end of the interval is far enough in the future that
it caa’t be drawn in the diagram. The delimiters for tokens are connected
by a horisontal bar (e.g., —). Each token is labeled with a symbol cor-
responding to its associated interval and a formula denoting its type. The
tokens are laid out on the page so as to indicate their relative offset from
some global reference point. Figure 3.2 depicts the information stored in the
TEMPLOG database as a consequence of the four assertions listed in the pre-

73

vious paragraph. In Figure 3.2, the token interval locationl is constrained
to end before the beginning of the token interval location2 by the process
of persistence clipping.

Given a database of time tokens, one is generally interested in answering
queries concerning what propositions are true over what intervals of time.
We begin by defining two primitive queries involving tokens and the bounds
on the distance separating pairs of points. All of our other temporal queries
can be defined in terms of these primitives.

[4

o token(type,int) succeeds once for each token in the database unifying
with type and int.

o distance(t;,t3) € [[,h] succeeds just in case GLB < ! < h < LUB,
where GLB and LUB correspond to the least upper and greatest lower
bounds on the distance in time separating t; and t; given the closure
of the set of constraints. If either ¢; or t; are not bound, the query will
fail. If one or both of | and h are not bound, then, assuming that the
query would succeed otherwise, it does so with the variables bound to
their respective least restrictive bounds.

A temporal guery of the form holds(t;,t3,y), where is an atom,
should succeed just in case there is a token in the database of type ¢ con-
strained to begin after or coincident with ¢; and not constrained to end
before t;. We can stite this in terms of token and distance as follows.
holds(T1,T2,P) ~

token(P,X),
distance(begin(K),T1) € [0,00],
not(distance(end(X),T2) € [¢,00] .

and add an additional PROLOG rule to handle degenerate intervals
holds(T,P) ~ holds(T,T,P).

Complex temporal queries involving conjunctions and disjunctions can
be defined in terms of atomic queries using the standard PROLOG notational
conveations (i.e., (P,Q) and (P;Q) are, respectively, the conjunction and
disjunction of P and Q). Conjunctive temporal queries are defined by

holds(T1,T72,(P,Q)) « holds(T1,T2,P),holds(T:,T2.9).
One way of defining disjunctive queries is

holds(T1,T2,(P;.)) ~ holds(T1,T2,P).
holds(T1,T2,(.;Q)) ~ holds(T1,T2,Q).

74

While this definition is simple to implement, it fails in some cases where we
might expect it to succeed. For example, according to the definition above, if
all we know is holds(t1,t2,p) and holds(t2,t3,q),holds(t1,t3,(p;q))
fails. As an alternative definition, we might have holds(t;,t3, (¢;; 7)) just
in case for all t; <t<t; either holds(t,y,) or holds(t,yp;). The alterna-
tive definition does not, however, conform to the semantics of our logic of
time intervals as given in the previous section; hence, we adopt the original
definition from here on.

Using negation as failure, we can achieve some, but not all, of the func-
tionality of true negation. For instance, we might define

holds(T1,T2,n0t(P)) «~ not(holds(T1,T2,P)).

where not(holds(t;,¢3,9)) succeeds just in case holds(t;.2;,) fails.!?

(Queries involving the negation-as-failure operator can be confusing to
the uninitiated. As an example, the behavior of temporal queries in TEM-
PLOG involving unbound variables and the negation-as-failure operator is
dependent upon the order of conjuncts just at it is for atemporal queries in
PROLOG. For instance, assuming that holds(t1,t2,p(a)) and holds(t1,t2,q(b)),
holds(t1,t2, (p(X),not(q(X)))) will succeed whereas holds(t1,t2, (not(q(X)),p(X)))
will fail.)

While there is no direct mapping from negation in our logic to negation
as failure in PROLOG, there are certain properties of the negation-as-failure
operator that we might want to preserve in our temporal extensions of PRO-
LOG queries. For instance, in PROLOG, not(not(¢)) succeeds if and only if
¢ succeeds. Note that holds(t,,?;,n0t(not(¢))) is (procedurally) equiv-
alent to holds(?y,%3,%) using the first definition but not using the second.
We adopt the first definition in the following.

We assume that TEMPLOG processes both atomic and complex tempon.l
queries efficiently. To illustrate TEMPLOG query processing, suppose that the
following five queries are initiated in the database depicted in Figure 3.3.

bholds(begin(servicel),end(servicel),
location(truck45,loading dock)).

11 The two formulae holds(t;, 13,00t (p)) snd holds(t;,t3,~¢) should not be confused.
It is best to think of ~y as s particular string defined to stand in some relationship to the
string 9, where that relstionship is defined by the operstion of clipping. Alternatively, we
might deflne holds(t;,f3,n0t(y)) to succeed just in case there is some point t, such that
t1 < t<t; and holds(t,) fails.

75

location] location(forklift loading_area)
[]
i 1

location2 location(forklift staging ares)
F —

{oclion.'! location(truck45 Joading_dock)
-

servicel routine_service(assembler)
service2 routine_service(forklift)
Figure 3.3: TEMPLOG database for illustrating query processing

holds(begin(servicel),end(servicel),
(location(forklift,staging.area);
location(truck45,loading dock))).

holds(begin(service2),end(service2),
(location(forklift,staging.area)),
location(truck45,loading.dock))).

holds(begin(service2),end(service2),
(location(Object,staging area),
location(Object,loading dock)).

holds(begin(service2),end(service2),’
(location(Objectl,staging.area),
location(Object2,loading.dock)).
The first three queries succeed; the fourth fails, and the fifth succeeds with
Objectl bound to forklift and Object2 bound to truck4s.

There are also abductive versions of holds that are useful for building
plasning systems. The query holds(?,,t3,y) fails if either of ¢, or t; are
unbound. However, the abductive version of this query, Oholds(t,,t;,¢),
succeeds under a superset of the conditions that holds(¢;,t;,4) does. In
particular, if either ¢, or ¢; are not bound, then new (i.e., totally uncon-
strained) points are created and bound to the variables. Once bound, the
query succeeds if the set of constraints can be augmented so that the non-
abductive query succeeds. The set of constraints necessary for the abductive

76

queryv to succeed are referred to as abductive constraints. Abductive con-
stra.nts are accumulated during backward chaining and withdrawn during
backtracking similar to the way in which variable bindings are handled in
PROLOG. Consider the database resulting from the following assertions.

token(p,j). distance(begin(j),end(j))=s.
token(q,k). distance(begin(j),begin(k))=3.
distance(ti,t2)=3. distance(begin(k),t1) € [-5,5].

Of the following six queries, those on the left fail while those on the right '
succeed.

holds(ti,t2,p). Oholds(t1,t2,p).
holds(ti,t2,q9). Cholds(ti,t2,q).
Obolds(t1,t2,(p,q)). Oholds(t1,T2,(p,q)).

We will say more about abductive query processing in Chapter 5.

Persistence clipping is one type of routine inference important in res-
soning about time and change. There is a second type of routine inference,
called projection, that we would like TEMPLOG to perform for us. Projection
is concerned with inferring the consequences of events based on a model spec-
ified in terms of the cause-and-effect relationships that exist between various
event types. To notate such relationships, we use the following form

project (antecedent_conditions, trigger_event, delay, consequent_effects)

to indicate that, if an event of type trigger event occurs, and the antecedent
conditions hold at the outset of the interval associated with trigger event,
then the conseguent effects are true after an interval of time determined by
delay. The trigger event is specified as a type, the antecedent conditions
and consequent effects are specified as types or conjunctions of types, and
the delay is specified as a pair consisting of a lower and an upper bound on
the time between the end of the trigger event and the manifestation of the
effects. If the upper and lower bounds are the same, a single bound can be
substituted for the pair. We assume a convenient notational filter so that
the delay argument can be left out of assertions and queries; in the former
case, & default delay of [e¢,e] is provided. The rule R2 from the previous
section can be encoded as follows.

project(~on(furnacei?),toggle(svitch42) ,on(furnacei?))

To specify that, whenever the forklift moves from one location to an-
other, it will appear in the new location after a delay determined by the

77

-

(spatial) distance to be traveled and the minimum and maximum rate of
travel allowed by the forklift, we would assert the following

project(location(forklift,Locl),
move(Loci,Loc2),
((distance(Locl,Loc2) + max.speed),
(distance(loci,loc2) + min_speed)],
location(forklift,Loc2)). .
As another example, suppose that the robot forklift is also responsible
for installing options in appliances (e.g., installing an ice maker in a stock
refrigerator). The following projection stipulates that whenever the robot
turns on a particular assembly unit when an appliance and an appropriate
option are on the input conveyor, then 30 minutes later, give or take five
minutes, the appliance will appear in the output conveyor with the option
properly installed.
project((status(assembler,oft),
location(Appliance,in conveyor),
instance of (Appliance,home_appliance),
location(Option, in conveyor)
instance_of (Option,option for(Appliance))),
push_button(on),
[00:25,00:35],
(installed(Appliance,Option),
location(Appliance,out_conveyor),
part_of (Option,Appliance))).

In order to determine whether or not an event has an effect at a particular
time, we define the following

causes(E,R,T) +~ project(P,E,R),occurs(E,T),bholds(T,P).

The projection rules presented above allow for a very restricted form
of causal reasoning. In particular, they do not provide for any means of
dealing with the qualification problem described in the previous section. By
modifying our causes rule slightly, we can reason about qualifications in a
manner similar to that described in the previous section.
causes(E,R,T) ~—

project(P,E,R),

occurs(E,T) ,holds(T,P),
not (abnormal(E,R,T)).

The rule Q1 from the previous section can be encoded as follows.

abnormal(toggle(switch42) ,on(furnacei?),T) ~
holds(T,open(fuse43d))

78

We include the typ~ of the trigger event and the type of the consequent effect
because the qualiication is likely to depend on them. Note that neither is
sufficient alone, since the event of toggling the switch may have other effects
(e.g., the switch may make a noise whether or not it makes or breaks a
connection), and other events may have the effect of turning the furnace
on (e.g., attaching it directly to a backup diesel generator that bypasses
the fused circuit). For more complicated applications, it may be useful to
allow disabling rules that serve to disable other disabling rules. We dow-
not do so here, but it would be straightforward to extend the above to
handle a hierarchy of disabling rules (i.e., a set of disabling rules arranged
hierarchically with a projection rule at the root so that each disabling rule
in the tree is allowed to disable its immediate ancestor in the tree).

Qualifications in projection rules allow us to introduce a very restricted
form of quantification. A: an example, consider the following rule.

project((clear(X),clear(Y),on(X,J),puton(X,Y),on(X,Y)).

For an event of type puton(blocki,block2) to have the consequent ef-
fect on(blocki,block2), there have to be tokens in the database of type
clear(blocki) and clear(block2). Alternatively, we can use the following
projection rule

project(on(X,.) ,puton(X,Y),on(X,Y)).
coupled with the following qualification
abnormal (puton(X,Y),on(X,Y),T) « holds(T,(on(_,X);on(_,Y))).

to ensure that puton(blocki,block2) has the effect on(blocki,block2)
just in case there are no tokems in the database with appropriately con..
strained intervals corresponding to something being on either blocki or
block2.

Projection is the process of generating new tokens from some set of ini-
tial tokens—roughly corresponding to the boundary conditions in a physics
problem—using a set of projection rules. The basic algorithm for handling
both projection and persistence clipping is rather simple to implement. To
simplify its description, we assume that all trigger events are point events.
Whenever tokens or constraints are added to or deleted from the database,
the system carries out the following steps.

1. Delete all tokens and constraints added the last time the algorithm
was run.

79

2. Place all tokens in the database whose types correspond to events on
the open list.

3. Let token be the earliest occurring token in the open list.
4. Find all rules whose trigger event type unifies with the type of token.

5. For each rule found in Step 4 whose antecedent conditions are satisfied, .
add to the database tokens corresponding to the types specified in the
consequent effects, and constrain them according to the specified delay.

6. For each new token added in Step 5 whose type corresponds to an
event, place it on the open list.

7. For each new token added in Step 5 whose type does not correspond to
a fluent, find all tokens of a contradictory type that begin before the
newly added token and constrain them to end before the beginning of
the new token. '

8. Remove token from the open list.

9. If there are no tokens remaining on the open list, then quit, else go to
Step 3.

We will assume that TEMPLOG uses an algorithm similar to the above to
ensure that the database contains all and only those tokens warranted by the
set of initial tokens, and the projection rules stored in the database. Updates
can be performed in time polynomial in the size of the initial conditions and
the set of projection rules. Query processing is performed by searching
through the set of tokens generated by the projection algorithm, using the
types of the tokens and the constraints on token intervals to guide the search.
The above projection algorithm supports basic reasoning about the truth or
falsity of propositional formulae; in the following, we consider extensions to
handle real-valued parameters.

Les U be a set of real-valued parameters, and P be a set of boolean-
valued propositional variables.? In addition, we introduce two mappings
Q:RxU —2R and V:Rx P — 2(truefelss} The task of projection is to
determine Q and V for some closed interval of R. We begin by considering
the completely determined case in which both @ and V' map to singleton
sets (i.e., Q: R x U — R and V:R x P — {true, false}).

13Due to the presence of varisbles and complex terms, templog rules are schemaia for
propositional axioms. The underlying logic remains purely propositionsl.

80

At the initial time point, w: assume that the values of all parameters
and propositional variables are known. In addition, we are given a set of
events specified to occur at various times over the time interval of interest.
We assume a set of projection ruies as before. In addition, we sssume a set
of modeling rules for parameters in /. A modeling rule is just a special sort
of projection rule; the basic form is the same as that introduced earlier in
this section, the only difference being that the delay is always assumed to be
¢, and the consequent effects consist of parameter assignments in the fornf
of ordinary differential equations!3 with constant coefficients (e.g., u = 2
or B¥u = 30u + 5u + 4).

The projection rule from the last section for reasoning about the tem-
perature of the room in the case that the furnace is off is encoded as follows.

project(on(furnacei?) ,trans(],r,68°) ,pmod(r,dr" = —xy(r - a))).

To make sure that persistence clipping is handled correctly, we state that a
given parameter can have only one model at a time.

contradicts(pmod(X,M1),pmod(X,M2)) — M13#M2.

Now we can state the basic algorithm for perforring projection given
some set of initial conditions and a projection interval [t,,ts]. To sim-
plify the description of the algorithm, we assume that all events are point
events (i.e., if e is a type corresponding to the occurrence of an event,
token(e, k) D (begin(k) = end(k))), and all events described in the initial
conditions begin after t,. Let A be the set of all currently active process
models (i.e., all m such that holds(¢., pmod(z,m)) for some z). Let £ be
the set of pending events (i.e., the set of all events, token(e, k), generated
so far such that t.< begin(k)). Let C be the set of current conditions (i.e.,
all u = v such that there exists m € A such that holds(t.,pmod(z,m)),
u = 3"z for some n, and holds(t.,u" = v).

In the cagses that we are interested in, we can recast a set of ordinary
differential equations and their initial conditions as a system of first-order
differential equations. We can then solve these equations using numeri-
cal methods based on the Taylor expansion (e.g., the Runge-Kutta meth-
ods (50]) and various forms of linear and nonlinear extrapolation (e.g., the
Adams-Bashforth and Adams-Moulton methods {56, 46]). The particular

13To expedite the necessary computations, we sssume that all equations are 5th order
or less, and that they can be rewritten so that highest-order term is algebraically isolated
on the left-hand side of the equation.

81

numerical method chosen is not important for our discussion. In the follow-
ing, we simply assume the ability to generate solutions to ordinary differ-
ential equations efficiently, and refer to the procedure for generating such
solutions as the eztrapolation procedure. Given a set of initial conditions
and a projection interval [t,,ts], projection is carried out by the following
algorithm.

1.
2.
3.

10.

Set t. to be t,.
Set £ to be the set of events specified in the initial conditions.

Using A, C, and the extrapolation procedure, find ¢, corresponding to
the earliest point in time following t. such that the trigger for some
projection rule is satisfied or t; whichever comes first. If ¢, # ¢4,
then t, could be the time of occurrence of ihe earliest event in £, or
it could be earlier, corresponding to the solution of a set of equations

(e.g., ((31 = 22)/\((i1 - 22) > 0)))

. If t, = ty, then quit, else set ¢, to be t,.
. Find all projection rules with the trigger found in Step 3.

. For each rule found in Step 5 whose antecedent conditions are satisfied,

add to the database tokens corresponding to the types of the conse-
quent effects except in the case of consequent effects corresponding
to parameter assignments (e.g., z} = zj). Constrain the new tokens
according the delay specified in the corresponding rule.

. For each token added in Step 6 whose type corresponds to an event,

add it to €.

. For each token added in Step 6 whose type does not correspond to

an event, find all tokens of a contradictory type that begin before the
newly added token and constrain them to end before the beginning of
the new token.

. If the trigger found in Step 3 corresponds to the type of an event token

in £ whose time of occurrence is ¢., remove it from €.

Use the consequent effects corresponding to parameter assignments
found in Step 6 and the results of extrapolation to determine C. The
parameter assignments corresponding to the consequent effects of pro-
jection rules take precedence over the extrapolation results.

82

11. Go to Step 3.

There are lots of other rules that we would have to specify in order to
model the operation of the assembler in enough detail to support useful
prediction. We would have to state that pushing the on button when the
assembler is off causes it to become on,
project(status(assembler,off),

push_button(on),
status(assembler,on)).
and that a machine can not be on and off at the same time,

contradicts(status(X,S1),status(X,S2)) « S1#S2.

In fact, there are potentially an infinite number of rules that would be
required to correctly model the behavior of the assembler under every set of
circumstances. Note that the assembler requires power, and the appliance
and the options to be installed must be in some reasonable state of repair,
and there can’t be anything blocking the output conveyor; all of these con-
ditions and more would have to be made explicit in the rules if we required
a model guaranteed to produce correct predictions in every conceivable sit-
uation. This proliferation of antecedent conditions was addressed in the
context of the qualification problem discussed in Section 3.1. There is also
a problem with consequent effects; If the robot places a part in a box, then
the part is in the box. If the robot then places the box in a truck, then the
part is still in the box, but it is also in the truck. If the robot then drives the
truck to a new location, then, by virtue of being in the box which is ir the
truck, the part is in the new location aiso. Keeping track of all of the con-
sequences of an action has been termed the ramification problem (18], and
constitutes a significant problem in building practical temporal reasoning
systems.

The TEMPLOG rules that comprise a physical model are intended as an
approximation. Greater accuracy can often be obtained by adding more
rules, but there is a price to be paid in terms of computational overhead,
and the increased accuracy may not result in a significant increase in perfor-
mance. The idea behind causal modeling is that an appropriate model will
efficiently generate those common-sense predictions that are likely to have
the greatest impact on the performance of the robot. It is u to the program-
mer to determine what rules are necessary to generate these common-sense
predictions.

This is where the material on reasoning about partial orders and uncer-
tainty should go (separate section?). What if the initial conditions are not

83

:zact, but, rather, are specified in terms of intervals or disirtbutions. Talk
about the use (and abuse) of Monte-Carlo methods for reasoning about un-
derspecified initial conditions. Introduce the notsion of possible time lines,
and connect this with model theory developed in Section §.1. Finally, moti-
vate the uncertainty issues developed in Chapter 7.

3.3 Further Reading

Perhaps the best known approach to reasoning about change in artificial in-
telligence is the situation calculus. 40, 42, 34]. McCarthy is generally given
credit for the basic idea, but many researchers have contributed to the de-
velopment of what today is referred to as the situation calculus. A situation
corresponds to the state of the world at a particular instant in time. Chaage
resuits as a consequence of actions occurring in situations, where an action
can be thought of as a function from situations to situations that maps the
situation in which the action occurs into the nezt situation. While some
attempts have been made to incorporate reasoning about continuous pro-
cesses within the situation calculus [30], many researchers have considered
other approaches for reasoning about real-world processes.

In the late 1970’s, Hayes issued a challenge to the research community to
formalize a large corpus of knowledge about physical processes [28]. Hayes
got things started by proposing an axiomatic theory of how liquids behave
[29]. Hayes’s theory describes change over time using four-dimensional pieces
of space-time called histories. Other researchers, interested in reasoning
about physical phenomena whose spatial properties are less central, adopt
a variety of temporal logics in which change is modeled in terms of some
form of causal relation (2, 43). The frame problem appeared in ail of these
logics in one form or another and some researchers believed that the frame
problem could be solved by employing some form of nonmonotonic reasoning
(41, 52, 44).

This belief that nonmonotonic reasoning would solve the frame problem
was dealt a blow by the work of Hanks and McDermott, which showed that
a straightforward application of existing nonmonotonic logics was not suf-
ficient to solve the problem: (24, 25]. The rese.rch community immediately
countered with several proposals for solving the particular temporal reason-
ing problem posed by Hanks and McDermott (36, 33, 57], all based on some
variation on the idea of chronological minimisation. Subsequent work has
focused on formalising causation to solve the frame problem (37, 27), and

84

—

coping with problems that involve reasoning both forward (projection) and
backward (explanation) in tirie (45, 38, 4, 55]. Say somethirtg about the
possible worids approach to reusoning about action: [22, 63].

The idea of preferring certain models over others in order to define a
notion of semantic entaiiment for nonmonotonic logics 1s due to Bossu and
Siegel [6] and (independently) Shoham [58]. Shoham's formulation is the
more general of the two. The idea of selecting models that are minimal with
respect to some property and some ordering relation is developed in Lifschit?
[36], Kautz [33], and Shoham [57]. The term “chronologicai minimization” iz
due to Shoham [57]. See also Doyle cnd Wellman [16] »n some fundamental
limstations of nonmonotonic logics based on preference orders.

Much of the work in the philosophical literature has focused on the
use of modai logics to model time (49, 53, 59]). This has also been the
case for theoretical computer science in designing logics to reason about
computational processes (26 48, 19, 47]. In the case of computer science,
one important reason for the emphasis on modal logic is that such logics are
somewhat easier to analyze in terms of the complexity of their respective
decision problems. As far as expressi--® power is concerned, giver that it is
possible to transiate any modal logic with standard Kripke semaatics into
classical logic, it would seem that the interval logic presented here is at least
as expressive as any modal logic of time {58, 59].

The syntax and semantics for the propositional case of the temporal
logic that we adcpt were introduced to the artificial intelligence community
by McDermott (43]. Shoham [58] provided the semaatics for the firut-order
case, and it is a syntactic variant of his formulation that we use here.

There has been a significant amount of work in arti” ial intelligence
on modeling phyeical processes without employing the sort of quantitative
analysis prevalent in engineering. This work, involving gualitative reasoning
about physical svitem: ginerally makes use of discrete value spaces and a
special type of differential equation to draw conclusions about the behavior
of continuous processes [5'. Given that the applications that we consider in
this monograph typically require some sort of quantitative analysis, it seems
reasonable to incorporate into our logic those parts of the differential calculus
that seem made for the job [51). The semantic treatment presented here is
based on the work of Sandewall (54, but the basic approach to reasoning
about processes was influenced significantly by the work of Forbus [20] and
de Kleer [11].

The practical problems in building useful temporal reasoning systems
are manifold, and have given rise to a rich technical literature. Much c< the

85

early work makes use of the situatijon calculus. Green describes a method
for applying automated theorem proving to reasoning about time in the sit-
uation calculus [23]. Later work sought to avoid the need for frame axioms
by introducing some form of nonmonotonic inference into the operation of
the temporal reasoning algorithm. Fikes et al.} implicitly make use of the
common-sense law of inertia in their implementation of STRIPS [17]. The
temporal reasoning system described in this section is based on the work
of Dean (15, 12], but was influenced significantly by other event-based ap-
proaches to reasoning about time and causality (e.g., [1, 35, 60, 61)).

Davis discusses the computational issues involved in propagating met-
ric constraints for reasoning about time [10], and Dean considers the issues
involved in organizing large amounts of temporal information so as to ez-
pedite the sort of causal reasoning described in this section [13]. Wilkins
provides a wealth of practical advice for systems designers building the tem-
poral reasoning component of a planning system; in particular, his discussion
regarding the limited use of quantifiers in causal rules is worth reading [62].
It should be mentioned that the simple projection algorithm described above
is not guaranteed to work properly if the tokens corresponding to the initial
conditions are partially ordered. The general problem of predicting the con-
sequences of a set of partially ordered events is potentially intractable [§]. To
deal wnth this potential source of complezity, partial decision procedures have
been developed to avoid ezpending too much effort in performing projection
[14].

86

Bibliography

[1] James Allen. Maintaining knowledge about temporal intervals. Com-
municatjons of the ACM, 26:892-843, 1983.

[2] James Allen. Towards a general theory of action and time. Artificial
Intelligence, 29:125-154, 1954.

[3] Krzysztof Apt and M.H. van Emden. Contributions to the theory of
logic programming. Journal of the ACM, 29:84/1-862, 1982.

[4] Andrew B. Baker and Matthew L. Ginsbery. Temporal projection and
ezplanation. In Proceedings 1JCAI 11. JJCAI, 1989.

[5] Daniel G. Bobrow, editor. Qualitative Reasoning and Physical Sys-
tems. MIT Press, Cambridge, Massachusetts, 1985.

[6] G. Bossu and P Siegel. Saturation nonmonotonic reasoning, and the
closed-world assumption. Artificial Intelligence, 25:173-189, 1985.

[7] Ronald J. Brachman, Hector J. Levesque, and Raymond Reiter, edi- .
tors. Proceedings of the First International Conference on Principles
of Knowledge Representation and Reasoning. Morgan-Kaufmann, Los
Altos, California, 1989.

[8] Dewid Chapman. Planning for conjunctive goals. Artificial Intelligence,
38:333-377, 1987.

[9] W.P. Clocksin and C.S. Mellish. Programming in Prolog. Springer-
Verlag, New York, 1984.

(10] Ernest Davis. Constraint propagation with interval labels. Artificial
Intelligence, 52:281-331, 1987.

87

[11] Johan de Kleer. Mult‘,le representations of knowledge in a mechanics
problem solver. In Proceedings IJCAI 5, pages 299-304. IJCAI 1977,

[12] Thomas Dean. An approach to reasoning about the effects of actions for
automated planning systems. Annals of Operations Research, 12:147-
167, 1988.

(13] Thomas Dean. Using temporal hierarchies to efficiently maintain large”
temporal databases. Journai of the ACM, 36(4):687-718, 1989.

[14] Thomas Dean and Mark Boddy. Reasoning about partially ordered
events. Artificial Intelligence, 56(3):375-399, 1988.

[15] Thomas Dean and Drew V. McDermott. Temporal data base manage-
ment. Artificial Intelligence, 32(1):1-55, 1987.

(16] Jon Doyle and Michael P. Wellman. Impediments to universal
preference-based default theories. pages 94-102, San Mateo, CA, 1989.
Morgan-Kaufmann.

(17] Richard Fikes and Nils J. Nilsson. Strips: A new approach to the ap-
plication of theorem proving to problem solving. Artificial Intelligence,
2:189-208, 1971.

(18] Joseph Jeffrey Finger. Ezploiting constrainis in design synthesis.
PA.D. Thesis, Stanford University, 1987.

(18] Michael Fischer and Richard Ladner. Propositional modal logic of pro-
grams. In Proceedings of the Ninth Annual ACM Symposium on The-
ory of Computing, pages £86-294, 1977.

(20] Kenneth D. Forbus. Qualitative process theory. In Bobrow (5], pages
85-168.

(21] Michael R. Garey and Dawid S. Johnson. Computing and Intractibility:
A Guide to the Theory of NP-Compieteness. W. H. Freeman and

Company, New York, 1979.

[22] Matthew L. Ginsbery and David E. Smith. Reasoning about action i: a
possible worlds approach. Artificial Intelligence, 35:165-195, 1988.

(23] Cordell C. Green. Application of theorem proving to problem solving.
In Proceedings IJCA: 1, pages 219-239. IJCAI, 1969.

88

[24] Steve Hanks and Drew V. McDermott. Default reasoning, nonmono-
tonic logics, and the frame problem. In Proceedings AAAI-86, pages
328-333. AAAI 1986.

[25] Steve Hanks and Drew V. McDermott. Nonmonotonic logic and tem-
poral projection. Artificial Intelligence, 33:379-412, 1987.

[26] Dawid Harel. First-Order Dynamic Logic. Springer-Verlag, New York,
1979. -

[27) Brian Haugh. Simple causal minimizations for temporal persistence
and projection. In Proceedings AAAI-87, pages 218-223. AAAI 1987

[28] Patrick Hayes. The naive physics manifesto. In Donald Michie, editor,
Expert Systems in the Microelectronic Age, pages 2{2-270. Edinburgh
University Press, 1979.

(29] Patrick J. Hayes. Naive physics i: Ontology for liquids. In Jerry E.
Hobbs and Robert C. Moore, editors, Formal Theories of the Common
Sense World, pages 71-107. Ablez, Norwood, New Jersey, 1985.

[S0] Gary Hendriz. Modeling simultaneous actions and continuous pro-
cesses. Artificial Intelligence, 4:145-180, 1973.

[31] Carl Hewitt. Planner: A language for proving theorems in robots. In
Proceedings IJCAI 1, pages 295-301. IJCAI, 1969.

(32] Albert E. Hurd and Peter A. Loeb. An Introduction to Nonstandard
Real Analysis. Harcourt Brace Jovanovich, New York, 1985.

(33] Henry Kautz. The logic of persistence. -In Proceedings AAAI-86, pages
401-405. AAAI 1986.

[34] Robert Kowalski. A Logic for Problem Solving. North-Holland, New
York, 1979.

(35] Robert Kowalski and M. J. Sergot. A logic-based calculus of events.
New Generation Computing, 4.67-95, 1966.

[36] Viadémir Lifschitz. Pointwise circumscription: preliminary report. In
Proceedings AAAI-86, pages 406-410. AAAI 1986.

[87] Viadimir Lifschitz. Formal theories of action. In Proceedings 1JCAI
10, pages 966-972. IJCAI, 1987.

89

-r

(38] Viadimir Lifschitz and Arkady Rab nov. Miracles tn formal theories of
action. Artificial Intelligence, 78:225-237, 1989.

[39] David Maier and David Warren. Computing with Logic: Logic Pro-
gramming with Prolog. Addison-Wesley, Reading, Massachusetts,
1948.

[40] John McCarthy. Programs with common sense. In Marvin Minsky,
editor, Semantic Information Processing, pages 05-{18. MIT Press,
Cambridge, Massachusetts, 1968.

(41] John McCarthy. Circumscription - a form of nonmonotonic reasoning.
Artificial Intelligence, 13:295-323, 19580.

(48] John MecCarthy and Patrick J. Hayes. Some philosophical problems

from the standpoint of artificial intelligence. Machine Intelhgence,
4:463-502, 1969.

(43] Drew V. McDermott. A temporal logic for reasoning about processes
and plans. Cognitive Science, 6:101-155, 1982.

[44] Drew V. McDermott and Jon Doyle. Non-monotonic logic i. Artificial
Intelligence, 13:41-72, 1980.

(45] L. Morgenstern and Stein L.A. WRy things go wrong: A formal theory
of causal reasoning. In Proceedings AAAI-88, pages 518-523. AAAI
1988.

[46] R. H. Pemungum editor. Introductory Computer Methods and Nu-
merical Analysis.” Macmillan, 1971.

(47] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, pages
46-57, 1877.

(48] V. R. Pratt. Process logic. In Proceedings of the 6th POPL, pages
93-100. ACM, 1969.

[49] A.N. Prior. Past, Present, and Future. Clarendon Press, 1967.

(50] A. Ralston and P. Rabinowntz. A First Course in Numerical Analysis.
McGraw-Hill, New York, 1978.

90

[51] Manny Rayner. Did newton solve the “eztended prediction problem?”.
In Brachman et al. [7], pages 381-385.

{52] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81-132, 1980.

[53] Nicholas Rescher and Alasdasir Urquhart. Temporal Logic. Springer-
Verlag, New York, 1971.

(54] Erik Sandewall. Combining logic and differential equations for describ-
ing real-worid systems. In Brachman et al. [7], pages {12-420.

[55] Erik Sandewall. Filter preferential entailment for the logic of action in
almost continuous worlds. In Proceedings IJCAI 11. IJCAI, 1989.

(56] L. F. Shampine and M. K. Gordon. Computer Solution of Ordinary
Differential Equations. W. H. Freeman and Company, 1975.

[57] Yoav Shoham. Chronological ignorance: Time, nonmonotonicity, né—
cessity, and causal theories. In Proceedings AAAI-86, pages 389-399.
AAAL 1966.

[58] Yoav Shoham. Reasoning About Change: Time and Causation from
the Standpoint of Artificial Intelligence. MIT Press, Cambridge, Mas-
sachusetts, 1988.

[59] J. Van Benthem. The Logic of Time. Kluwer Academic Publishers,
Boston, Massachusetts, 1983.

[60] Steven Vere. Planning in time. Windows and durations for activities

and goals. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 5:246-267, 1983.

(61] David E. Wilkins. Domain independent planning: Representation and
plan generation. Artificial Intelligence, 22:269-308, 19584.

(68] Dewid E. Wilkins. Practical Planning: Extending the Classical Al
Plaaning Paradigm. Morgan-Kaufmann, Los Altos, California, 1988.

[63] Marianne Winslett. Reasoning about action using a possible worlds
approach. In Proceedings AAAI-88, pages §9-93. AAAI 1988.

91

L 4

Chapter 4

Controlling Processes

This book is concerned with the hehavior of processes. The world we live
in can be described in terms of a set of interacting processes. In the previ-
ous chapter. we discussed how to model the behavior of processes. In this
chapter, we begin to consider how to influence that behavior.

Some processes are easier to control than others. For instance, someone
typing at a word processor generally has a fair amount of control over what
characters appear on the screen. Other processes are influenced by a large
number of factors only a few of which we are able to directly observe or
infinence. In sending an electronic mail message, for example, the speed
with which the message arrives at its destination is determined in part by
the path provided and in part hy the traffic on the networks specified in
that path. Electronic mail users can directly control the former hnt have
little control over the latter. If you could somehow predict the traffic on the
network. then you might be better prepared to specify a path that would
speed your message to its destination. Unfortunately, predicting network
traffic flow is itself a complicated and time consuming task.

In studying the control of processes. it is often convenient to describe
the world in terms of two processes: one of which we have absoiute control
over, and a second process that we wish to control. The firat is called the
rontrolling procecss and the second the controlled process. The hehavior of
the controlling process is determined in part by the control-system designer.
Given some desired behavior for the controlled process, the task is to design
a device that realizes the controlling process and forces the desired hehavior
in the controlled process.

°©1990 Thomas Dean. All rights reserved.

88

/
‘9\
<

The interaction between controlling and controlled processes can be quite
complex. Ve geunerally think of the controlling process as calling all the
shots. but the control exerted bv the controlling process over the controlled
process is seldom complete. Factors that influence the controlled process but
are not under the control of the controlling process have to be accounted for.
The controlled process can. and in many cases must. influence the control-
ling process in order to bring about the desired behavior. This influence js
mediated through the use of special devices used by the controlling process
to observe the behavior of the controlled process.

Information about the observed hehavior of the controlled process is
often used by the controlling process in determining what action to take next.
This basic idea that the responses of Lhe controlling process are computed
from the observed behavior of the controlled process is generally referred to
as feedback control. In some cases. the need for observation can be reduced
or even eliminated by usiug models to predict the behavior of the controlled
process. , ,

In this chapter, we consider techniques drawn primarily from control
theory and control systems engineering. We focus pmv on the role of
feedback in the design of control systemns with an emphasis on representa-
tions and techniques that stress computational issues. We introduce criteria
for controllability, observability. stability, and optimality, and consider a va-
riety of problems to illustrate these concepts. We then consider some basic
feedback controllers and how they might be embedded in a computational
framework. In the context of discussing feedback control. we introduce pro-
gramming approaches that are well suited to building control systems that
have to be particularly responsive to change. We end this chapter by consid-
ering a problem in robotics that lies at the boundary between those problems
traditionally considered within the purview of control theory and problems
associated with artificial intelligence. The objective here is not to provide
a comprehensive survey of control techniques, but rather to draw on the
control disciplines for insights and general techniques that apply to the full
range of planning and control problems. Before launching into the more
technical discussions drawing on results from control theory, we consider a
particular problem to illustrate some basic issues.

4.1 Robot Navigation as a Control Problem

29

B I T
1000 I

10C
—

IO 0

TRY
1]

01
1001

00 i

OOl 1101
0 Irmrd I

Figure 4.1: A city street layout

LIl

Consider the following control problem. Suppose that you want to control
a robot to move from one location to another in a city. The robot has to
travel using city streets that are arranged as an irregularly-spaced grid of
two-way streets (see }igure 4.1). You have to devise a control algorithm to
direct the robot to move from its present location to a destination location
defined in terms of global coordinates. Of course. the problem is not yet well
enough specified that you can run off and start writing down an algorithm.
There are a number of other factors that we have to consider.

First. what sort of control can we exert over the robot? Most likelv there
will be some means of controlling the robot’s speed and direction of travel.
but it’s not likely that the robot will move exactly where we tell it nor will
it move at precisely the speed that we specify. If we indicate that the robot
is to move due South at 12 kilometers per hour and there is a brick wall
in the way, then we might expect some difference between the specified and
the actual speed aud lheading. Usually, however, the differences between
actual and specified control variables are more subtle. Errors accumulate
and combine in executiug a sequence of control actions. Sooner or later it
becomes necessary to compare the actual effect against the intended effect.
and this is where sensors enter into the picture.

Sensors are used to monitor the progress of the robot and to determine
the state of the enviromnent. Sensors can determine and correct for move-
ment error. For instance, the robot might be equipped with shaft encoders

W

.
"

for determining how many revolutions the drive wheels have turned or what
direction the wheels are pointing. l'rom this information. we can compute
an estimate of where the robot is relative to where it started out. Sensors
and the estimates derived from sensor data are also subject to errors. Some-
liow or another we have to take such errors into account. For instance. it
may be that the errors are known to satisfv a particular statistical distri-
bution from which we can calculate a measure of how certain we are in the
inferences derived from sensor data. If our confidence in our inferences is
low. then that could mean that we lack sufficient information to formulate
a good answer to the control problemt we are faced with. In some cases.
being left with insufficient information is unavoidable and we must proceed
to schedule critical control actions with whatever information we have at
hand. In other cases. we can use sensors to gather additional information
so as to make inferences that we are mnore confident in.

Sensors tell us about more than just the state of the robot: they tell us
about the state of the larger world in which the robot is embedded. In the
simplest robot navigation tasks. the only thing that changes is the robot
itself and its position in the world. The environment is said to be static.
If we know something about the fixed state of the environment, then we
can take advantage of this in designing a control algorithm. Knowledge of
the environment might take the form of a map labeled with street names.
whether or not traffic moves in one direction or both, and whether there are
stop signs or other impediments to traffic flow.

In more realistic problems. the environment changes; there are other
vehicles on the road, traffic lights change, roads are blocked by construction.
and pedestrians occasionally dart out into traffic. The static map may still
be useful, but often we can supplement our knowledge of. the environment
to account for dynamic phenomena. For instance, we might have access
to a construction schedule indicating where and when certain streets will
be closed to traffic. In some cases, we might be able to model certain
disturbances as predictable processes. A construction crew might be laying
new gas pipe under a particular street at the rate of one block per night so
that at most one block-long section of the street is impassable on any given
night. If you notice the crew laying pipe on any two nights, you can predict
what block will be closed off for any subsequent night.

While some processes are predictable. others are either difficult to predict
(e.g.. jay-walking pedestrians) or not worth the trouble (e.g., traffic lights).
In order to deal with such processes, the control algorithm has to be alert to
changes in the environment that indicate the existence of processes whose

91

-

hehavior might have an impact on the performance of the rohot. The robot
has to be continually alert for evidence ol certain processes (¢.g.. pedestrians
straying into the street in front of the robot). Other processes need only he
imonitored in certain circumstances. For instance. the robot has to check for
the state of the traffic light at the next intersection only as it approaches that
intersection. The design of the control algorithm must take into account the
sensors available and the tasks thev are to he put to. Sensors often constitute
a scarce resource in need of careful management.

There is another aspect of the coutrol of our mobile robot that we have
carefully avoided up until now. and that concerns how the algorithm that we
devise is to be implemented. In order to impiement a control algorithm. we
neer. to specify the algorithm in terms of a language, and we have to provide
a coupiler for that language, and a target machine for the code generated by
the cowmpiler. In fact. it generally is diflicult to specify a control algorithm
without some specific implenientation in mind.

low long a series of prograwu statements takes to execute on a particular
machine may be critical in determining the consequences of a control action.
Ior instance, suppose that vou want to compute how to respond in the case
in which a pedestrian runs out into the street in front of the robot. Certainly
it would be a good idea to apply the brakes as soou as possible if indeed
that is an appropriate thing to do. llow long the algorithm takes to compute
whether or not to apply the hrakes will have a profound impact on the health
of the pedestrian in question. If the robot is to swerve in an attempt to avoid
hitting the pedestrian. then the direction in which the wheels are turned will
depend upon the time that they are turned, and this will depend upon the
time it takes to compate the direction.

In some cases. we can just assume that the time required to con{pute
responses is shorter than the time available for computation. For instance.
suppose that at time t the robot interprets its sensor data as indicating a
pedestrian standing in the street 5 meters directly in front of it. The robot
altempts Lo compute what action Lo take at time { + A. The coutrol algo-
rithm is implemented so that the tune required to compute such a response
in less than A. Having compuied an appropriate answer. the control algo-
rithma might simply wait out the remaining time, or hand the action and the
time it is to be executed .0 a sequencer responsible for executing actions at
specified times. Of course. if the robot is traveling at a meter a second and
A is longer than a couple of seconds. then the response will likely be too
late to be of any use.

Some of the decisions concerning liow long to spend computing an appro-

92

Start

L—

][]
OJC 300 1
A1 1mri 1

Pinish

Figure 4.2: A path generated by dead reckoning

priate response in a given set of circumstances can be carried out at design
time. Other decisions concerning how to long to compute are hetter left
until run time when the allocation of computational resources can he based
on more data about the situation at hand. If the lead time for responciing to
a certaia sort of phenomena varies, then having a rigid scheine for coraput-
ing a response may lead to poor performauce on average. Jamming on the
brakes is only appropriate as a last resort. lu situations where more time is
available to arrive at a decision. a more careful analvsis is often called for.
In this chapter. we ignore many of the issues that relate to the run-time
allocation of processor time to optimize decision naking. Chapter 8 directly
addresses these issues. In this chapter, we take a conservative approach to
ensure that the algorithms that we develop perforin reasonably for even the
worst-case situations anticipated.

So far we have considered several factors that are important in specifying
control problems. Now, we consider some specific control problems. In an
ideal world. when the robot is told to turn left 15° and move forward at 2
weters per second for 5 seconds. the robot ends up exactlv 10 ineters from
its original position facing 15° counter clockwise from its original heading.
Consider the problem involving a static environment in which all of the

93

-»

streets allow two-way traffic and are oistacle free and the rohot is standing
in the center of an intersection and is instrcted to move to the center of a
second intersection specified in &+ and y coordinates in the frame of reference
of the robot’s initial position. In this case. an appropriate controf algorithm
would direct the robot to complete the traversal in two steps following the
paths indicated by the z and y offsets (see Figure 4.2).

In the above ideal world. the rchot is said to direct itself hy “dead reckon-
ing.” Aside from a clock to measure the passage of time. and therebv gauge
the distance traveled. the robot requires no sensors to direct its motion.
Suppose that we relax the requirement that the robot be able to control
its velocitv precisely. In this case. it is possible that the robot’s estimates
of distance traveled are subject to error. llow is the problem changed as a
consequence? If the errors are swall relative to the length of a citv block. a
simple variation on the dead-reckoning approach will work just fine. If the
errors are large, then the problem may he impossible to solve since the robot
will have no way to determine if it reaches its destination. Cven if the robot
has some other means of detecting that it has arrived at its sought-after
destination, siganificant movement errors may force the control algorithm to
randomly choose paths.

Suppose that the robot can determine its position at any time in some
global coordinate system. Now movement errors can be corrected by what
is generally referred to as feedback. The control algorithm attempts to move
5 meters to the left; it checks to see how far it actually moved: it attempts
to correct for the error ohserved. As loug as the errors are some fraction of
the distance attempted, this technique will converge quickly ou the desired
distance. If determining global position is fast enough. then this technique .
reduces to the previous dead-reckoning method. ’

Now suppose that all streets are not passahle; some streets are one way
and others are blocked by construction equipment. The dead-reckoning
approach will obviously not work. but a simple path-following strategy will
suffice to fiud a path if one exists. Figure 4.3 shows the streets traversed hy
the robot »ader the control of a simple path-following algorithm that tries 1o
shorten the Euclidean distance to the destination whenever possible, backing
up only when its way becomes blocked. The problem is that directing the
robot using the simple path-finding strategy causes the rohot to traverse
streets that it might not have if it possessed a more global perspective of
the city.

Suppose that the robot has an arcnrate map of the city indicating one-
wayv streets and construction road blocks. Rather than actually traversing

94

| |

JC
e
3
a

o | e | |
IR 1

Flaish

Figure 4.3: Navigation without the aid of a map

J LIt f_J
OoC

3
]
]
7
a

Figure 4.4: Navigation using path planning aud a global map

95

-

the streets. the coutrol algorithm counld nuse rthe map to simulate traversing
the streets and thereby find a short path. Computing the shortest path
hetween anv two locations can he done in QO(n?log 1) time usin jkstra
algorithm [1]. assnming a square grid of streets with » streetsM
axis of the grid. l'igure 4.4 shows the streets traversed hy the rohot under
the coutrol an algorithm with access to a map. This method of simulating_
the behavior of the robot in order to eliminate unnecessary work or avoid
an undesirable effect represents an instance of feedforward. The control
algorithin generates and analyzes possible actions and their consequences so
that it can choose among the available options.

The use uf feedback aud feedforward are common in the design of con-
trol svstems. Feedback compensates for a system’s inability to accurately
predict the elects of a control action on the behavior of a controlled pro-
cess. l'eedback relies on being able to accurately monitor the behavior of
a process. Feedforward enables a system to anticipate both desirable and
undesirable consequences and take steps to, respectively, take advantage of
or avoid them. Feedforward relies on a system having an accurate model for
the process being controlled.

Feedforward and feedback complement one another. In situations in
which the controlled process cannot be accurately predicted but can be
closely mounitored, tight feedhack loops enable a control algorithm to gen-
erate control actions on the basis of inmediately past performance. Such
a schemwe is likely to work assuming that the facturs influencing the pro-
cess al one puint in time are similar in type and magnitude to the [actors
influencing the process a short time previously. ln situations in which the
controlled process canunot be accurately wonitored but can be accurately
predicted. control actions are gerierated in response to predictions concern-
ing the processes behavior. If the process can’t be monitored at all, then
control proceeds blindly relving on the accuracy of the predictive model.

Traditional methods in planning stress the use of feedforward methods
whereas traditional methods in control stress the use of feedback. The rea-
son for their different emphases is easy to explain. First of all, planning is
by definition concerned with predicting the future in order to guide behav-
ior. Much of the early work in planning was concerned with processes that
interact with one another in a complex maanner, and, hence. influencing the
behavior of these processes required anticipating these interactions. This
early work generally assumed that the countrolled process. while complex.
was understood well enough to be accurately modeled. More recent work
has hegun to relax this assumption by either using feedback to supplement

96

v

bes{ Fimc? sH12t

4047’1 ve”

predi-tions or using stochastic models that take uncertainty into account.

In contrast with the work in planning. much of the early work in control
assunted that the controlled process was subject to a multitude of factors
that either were not well understood or required run-time data that sim-
plv was not available. Precise adjustments to the control parameters were
needed to achieve the desired behavior requiring that the controlling pro-
cess be able to generate the necessary control actions at a high rate. A more
complex algoritlun for determining the next control action lowers the rate
at which control actions can be generated. whereas, the more inaccurate the
models are in predicting the effect of control actions, the more frequently the
controlling process has tc be monitored and the coutrol paraweters adjusted
to compensate for the inaccuracies of the model. lu the past. many industrial
control applications have favored trading model complexity for increased 1e-
liance on feedback and higher paraimeter-adjustment rates. As computers
become faster and our modeling techniques wore reliable. there has been a
tendency to incorporate more and more complex modeling techniques into
industrial controllers. If this trend continues. industrial controllers will begin
to look more like planuers.

As the control commmunity begins to realize the advantages of increased
computational power for supporting complex modeling, so the planning com-
wunity is beginning to realize the problems ix: relying solely on the predic-
tions of a complex model. Correcting these problems is not siiply a matter
of building an interpreter that executes a sequence of actions generated by
a traditional plauner aud occasionally senses the environment to see if the
activus have had their desired eflect. The problem with this approach is
that the controlled and the controlling processes are often out of synch with
vne another.) i .

A control action generated one mowment may be deemed inappropriate
at the next as new information becowmes available. To simply generate a
sequence of actions and expect that the sequence can be carried out without
modification is for many problems absurd. In asking directions in Boston.
a local may tell you to turn left ou Commonwealth Avenue and follow it
for three blocks until you get to Massachusetts,but if you find four fire
trucks tying up traffic on Commonwealth Avenue, then you would be well
advised to disregard their directions and find an alternative route. There
was pothing wrong with the directions provided given what was known at
the time they were solicited. but knowledge changes over time and such
changes should be taken into account when deciding how to act.

Of course, the preceding paragraph shouldn’t be taken as an argument

97

against planning: we've already scen that path planning can lead to im-
proved performance in certain circumstances. \Vhat we have to beware of is
bhlindly executing plans in the face of information that warns against their
use. The traditional notion of a plan as a sequence of actions has to be
rethought. Plaus should be interpreted as suggestions about how to behave.
Some suggestions require a long time to generate. hut the processes that
thev are designed to help control may proceed at a similarly siow pace. In
real-world problems. there are any number of processes that require some
amount of control. Some processes proceed slowlv and require attention only
at widely-spaced intervals (e€.g.. the pipe-laying process discussed earlier).
Other processes are faster paced aund require almost coustant attention (€.g..
pedestrian traffic). The trick is to deal effectively with the fast-paced pro-
resses (£.g.. steer clear of pedestrians and stop at appropriate traffic signals)
while at the same time directing behavior so as to take into account sugges-
tions regarding the siower processes (¢.g.. avoid routes that are believed to
he obstructed by construction) and suggestions generated off-line as it were
regarding faster-paced processes (e.g.. if vou see a ball rolling out into the
street. brake hard as a child may he following closely behind).

In the following, it will be useful to separate out two kinds of control
algorithm. One that generates suggestious concerning certain low-level be-
haviors and that is likely to perform out of synch with the processes whose
hehavior it is meaut to influence. and a second that is closely tied to the
processes that it is meant to influence. The distinction is artificial: it serves
primarily to identify two distinct mind sets that have to be merged in order
to develop a coherent theory of control. To provide a label for the two kinds
of control and identify the source for the corresponding mind sets. we call the
first high-level planning and the second low-level ¢ontrol. An example of a
high-level planning algorithm would be a path planning algorithm designed
to influence the movement of the robot. An example of a low-level control
algorithm would be the algorithin that directs the speed and heading of the
robot as it traverses the city streets avoiding obstacles and maneuvering
around corners.

One possible architecture for a system integrating high-level planning
and low-level coutrol might consist of two components: a reactive compo-
nent that determines what to do at the next instant. and a strategic com-
ponent that attempts to mediate the hehavior of the reactive component by
imposing constraints on the behavior of the iuw-level systems. It is up to the
low-level system to interpret these constraints so as to adjust its hehavior
while at the same time maintaining real-time performance.

98

In this chapter. we are primarily interested in what we have called low-
level control. Tuward the end of this chapter. however. we hegin ta address
high-level control issues as prologue to the next chapter which will deal
almost exclusively with high-level strategic planning. Now. we draw upon
the disciplines of control theorv and control systems engineering to develop
some terminology and explore techiques that will be used in subsequent
chapters.

-

4.2 Controllability

Consider the following time-invariant discrete-time dvnamical svstem.

rk+ 1y = flz(k). ulk))
yk)y = glz(k))

The state transition function. f, completely determines the state of the
systemn at time k + 1 given the state and the input at time A. Initially. we
assume that the state of the system is directly observable. and so the output
fanction, g, is defined

g(z(k)) = z(k).

In solving a particular control problem. we are interested in generating
appropriate inputs so as to constrain the behavior of the dvnamical systemn.
In Chapter 1. we introduced a general formulation of the control problem,
representing the behavior of a dynamical system in terms of the set of pos-
sible state-space trajectories.

Hx& {hy:T = X).

In this formulation of the problem. the desired hehavior of the system is
specified in terms of a goal set.

(v' C H.\‘.

There are several special cases of this formulation that we consider in the
following sections.

In the servo problem, we are given a reference trajectory, and expected
to repeat or fruck that trajectory as closely as possible. In the set-poini
regulation problem, the objective is for the system to achieve aund maintain
a particular state or set of states starting from any initial state. In the

99

terminology of Chapter 2. we wish to liud some input function ¢ € {¢: T —
{"} so that for any initial time 7 € T and initial state xt7) € .\’ rhere exists
t > 7 such that for all # > t we have

fleth. ety e C.

where C' C X is the set of target states.

We can generalize on our formulation of the set-point regulation problem
to restrict not only the final states of the svstemn. but the intermediate
states as well. thereby restricting the motions (state space trajectories) of
the systemn. For instance. we might require that the system avoid a certain
set of states. by stipulating that for all #+ > r we have

flztt)v(t)) € Q.

where Q C .Y is the set of states 1o avoid and CNQ = 0.

Among the qualitative properties ol dynawical svstemus and their con-
trollers, the following notion of controllubility is particularly relevant to the
set-point regulation problem. An event (r,z) in the phase space defined by
T x X is said to be controlluble with respect to a set of target states, C' C X,
il and only if there is some time { and some input v which moves (r.z) into
the set {t:t > r} x C. A dynamical system is completely controllable with
respect to C if and only if every event in T x X is controllable with respect
to ¢'. This notion of complete controllability with respect to a set of target
stales provides necessary and sullicient conditions for there being a solution
to the set-point regulation problewm.

As was wentioned in Chapter 2. one of the best developed areas ol
modern control theory concerns the analysis of dynamical systems that can
be modeled as linear muitivariable systems. In this chapter. we illustrate
the power of linear systems theory by defining three important qualitative
properties of dvnamical svstems. and statiug simple mathewmatical criteria
for these properties to be satisfied.

We begin with the uotion of controllability. Criteria for controllability
are generally specific to a particular wethod of modeling dynaiical systems.
In general. we are interested in whether or not it is possible to transfer any
state z(fp) € X to any other state in X in a finite amount of time 1, = 1o
where (o < 1) by appropriately chousing u(() for lg < 1 < 4. Il such arbitrary
translers are possible, we say that the systewn is completely controllable (no
restriction to a particular set of target states).

100

y,

Consider the following lincar time-invariant svstem represented by

x(1)
y(t)

Ax(t) + Bul(t)
Cx(t)

where x is the n-dimensional state vector. u is the p-dimensional input vec-
tor. y is the g-dimensional output vector. and 4. B. and C are. respectively.
n x n.nx p,and q x n real coustant matrices. There are a number of ref
atively simple mathematical conditions for such a system being completely
controllable. One of the simplest is provided by the following theorem which
is stated here without prool (see C'hen [9] or Gopal [14] for proofs and related
theorems).

Theorem 1 The system is complctcly controllable if and only if the rank?
of the n x np controllability matrix. [B[AB|---|A"!B]. is n.

As a simple example, the dynamical system for the single-degree-of-
freedom robot introduced in Chapter 2 with state equation,

. 01 . 0
x(t) = { 0 0]x(t)+ [1/M] u(t).

is completely controllable since the rank of its controllahility matrix,

(BIAB) = [1/‘; , “6“] ,

is 2. However, the svstem described hy

x(1) = [c(?, %‘]xm+ [}]um,

has a controllability matrix.

{BYAB) = [i g;] .

'The rank of an n x m rectanguiar matrix. A. is defined as the maximum number of
linearly independent column vectors. or. eynivalently, the arder of the largent square areay
whose determinant is non-zero, where the square array is obtained by removing rows and
columns from A.

101

indicating that the svstem is conrrollable only if ('; # (3.

There are other similarlv concise and equivalent conditions srated in
the literature. Both Chen [9] and Gopal [14] provide similar resuits for
linear time-varving svstems. as weil as constructive proofs that identifv the
appropriate input functions. It is restimouy to the power of linear svstems
theory that such precise conditions can be stated for such a general class of
dvnamical svstems.?

It should be noted that the above stated notion of controilability places
no constraint on the input (controller) or on the trajectory followed hy
the system. A system may he determined as uncontrollable hy the above
criterion, while being controllahie in most practical respects. For instance.
the svstem may move to any given state from all initial states that will arise
in practice. As another example. we may not care about certain components
ol the state vector: it may he that we are only concerned with controlling
the onutput of the systewm.

To investigate further the nution of controllability, we consider some
examples of dynamical svstems that can be represented in terms of finite
state autowmata. These dvnamical systems are referred to as discrete event
systems in the literature [25]. We represent a discrete event system as an
automaton. G = (U. X. f, rg), where. in keeping with our previous notation.
U is the set of inputs (think of " as a set of primitive events), X' is the set of
states. f: / x X' — X is the state transition function. and ry is the initial
state.

We partition U/ into two sets: .. the set of controllable eveuts. and U,
the set of uncontrolluble events. An admnissible control for such a dynamical
svstem cousists of a subset v C U such that I/, C 7. Let I' C 2" represent
the set of all adissible controls. If y' € I' and u € 4, we say that u is
enabled by v. otherwise we say that it is disabled. A controller for a given
dvnamical system is specified as a map

n:X—T.

The idea is that disabled events are prevented from occurring and enabled
events are allowed to occur if permitted by the underlying dynamics. The

?As was noted in Chapter 2. it is standard practice in engineering control svstems to
model real-worid nonlinear systems using linear approximations. Since small perturbations
of the elements of the matrices A and B may signal the difference hetween controllability
and its lack. it should be noted that stateinents of system controllability must be carefully
weighed in the process of desigu.

102

L 4

OmmOmmO=
Figure 4.5: A dvnamical system represented as a finite state automaton

stipulation that U, C ¥ for all ¥ € T captures the intuition that the con-
troller cannot prevent the uncontrolled events from occurring if the dynam-
ics dictates otherwise. An issue arises regarding what happens if all of the
events for a given state are disabled. We resolve the issue by simply requir-
ing that the controller ensure that for any state there is at least one enabled
event for which the transition function is defined: the svstem can remain in
the same state only if that is permitted by the dvnamics.

Consider the dvnamical systein depicted in Figure 4.5 in which U =
{a.b.¢}..XY = {0.1.2}. 20 = 0. and f is defined so that

(0.a)— 1,(0,b)— 2.(1,c)=— 2. and (2.a)— 2.

Let U, = {a,b} aud suppose that we wish to design a controller that achieves
{2} while avoiding {1}. The controller defined by

0+~ {4} and 2 — {a}

will suffice to do exactly what we want. The samne controller will work
if U, = {a}. However. if we have U/, = {b}, then there is no controller
satisfving the requirements given.

There is an alterpative approach to characterizing the behavior of dis-
crete event systems modeled as finite state automata. In formal language
theory. a finite state automaton can be viewed as a generator for a language.
Let [* denote the set of all finite strings of elements of the set {’. A subset
L C U" is called a language over I’. The automaton described above is a
generator for the language

L = ba® + aca®,

indicating the union of the set of strings consisting of b followed by a finite
number of a’s, and the set of strings consisting of a followed by ¢ followed
by a finite number of a’s. Instead of asking if we can design a controller that
achieves {2} while avoiding {1}, we ask if we can design a controller for the
automaton so that it generates the language L' = ba* C L.

103

-

Figure 4.6: One component of a product svstem

Ramadge and Wonham (25] define a supervisor for a discrete event sys-
tem as a map
n:L—T.

where L is the language (or behavior) generated by the discrete event system.
The prefiz closure of L C 7" is that subset L C U’* defined by

L={u:uve L forsome ve U"}.

A language It C L is said to be contrllable with respect to a given discrete
event system if

KU,nLCK,
where AU, represents the set of all strings consisting of a string from the
prefix closure of A" concatenated with an event from U',. In [25], Ramadge
and Wonham prove the foliowing, thus providing necessary and sufficient
conditions for the existence of supervisors for discrete event svstems. i

Theorem 2 For any discrete event system A with closed behavior L and
any subset ' C L. ther_e ezists a supervisor that serves to restrict A to
ezactly K if and only if K = K and K is controllable.

In some cases, it is convenient to represent a dynamical system as a
collection of finite state . .tomata loosely coupled through the state space
resulting from taking the cross product of the state spaces for the individ-
ual automata. As an example, suppose that we wish to model a collection
of n identical chemical processes. Each individual process is modeled by
an automaton G; = ({',..\}, fi, rg,) where the ith automaton is defined by
Ui = {aibivei}, Xi = {04, 1,.2i,3,,4,}, £, = 0. and J; is as indicated in Fig-
ure 4.6. Let U, = {ai,c.}. Suppose that all n vrocesses run independently

104

of one another with one important exception: state 4 iuveives the use of a
piece of equipwent with Limited capacity such that ouly one process can be
in state 4 al a time. We wish to design a controller that will guarautee this.
Note that once a process enters state 1. we can exercise some control over
when it enters State 4. but we can only delav this event. we cannot prevent
it from happening.
To represent the combined behavior of the collection of processes. we
define the product generutor G = {U.X. f.zo} where U/ = UL, U;, X =
MY U= U, U, 20 = (10,. Lny.. ... Z¢,) and for each u € [; we have

flua(z1, 22, - Zive o o)) =2 20, fi(U 2) ZR))s

The ohjective is to build a controller for &' such that at most one of the
chemical processes is in the state requiring the piece of equipmnent at auny
given point in time.

In the worst case. all of the processes will simuitaneousiy arrive at state 1
in their respective state spaces. At this point, exactly one process can tran-
sition to state 4, while the n -~ 1 remaining processes are forced to enter
state 2. The same simple analysis applied to state | can he applied to
<tate 2 with the conclusion that n — 2 processes are forced to enter state 3.
The controller has no control over the processes in state 3, and hence we
conclude that there exists a controller for the product system if and only if
n<3.

Discrete event systems can he used to model manufacturing systems,
communnication networks, vehicular traffic prohlems, and a variety of other
dvnamical systems requiring coordination and control. [n addition to an-
swering mathematical questions concerning the existence of supervisors. the
current theory provides constructive methods for realizing certain classes
of supervisors. In the hest circnmatances, these methods reqnire time and
storage polynotwial in the size of the state space. For practical problems.
one generally has to be clever in searching the space of possible controllers
for one that satisfies the domain constraints.

4.3 Observability

So far, we have had liftle to say about the role of the system output func-
tion. In fact, we initially assumed that y(!) = ¢g(x(t)) = z(1). so that the
state of the system was directly observable as output. In general. the en-
lire system state will not be directly observable. If the controller requires

105

either the entir svstem state vector or specific components of this vector.
then an additional module has to he added to the control svstem in order
to recover the state by observing the svstem output. Such modules are gen-
erally referred as observers. If the function ¢ is kiown and invertible. then
the construction of an observer is trivial. Generally. g is not invertible and
the state has to be recovered by observing the output of the system over
some interval of time. In the following, we cousider a notion of ohservabilitv
which. at least in the case of linear multivariable systems. turns out to he
closely related to controllability.

A system is said to be completely observable if it is possible to identify
any state r(fg) € .X' by observing the output y(¢) for t¢ < t < t; where
to < ty. observation problem. The problem stated is traditionally called the
observaltion problem. but it is actually just one of several so-called state-
determination problems. The ohservation problem involves determining the
state from future outputs. There is a related problem called the reconstruc.
tion problem that involves identifving the state from past outputs: identify
the state z(#;) € X' by observing the ontput y(t) for 19 < ¢ < #, where
fo < t1. As in the case of controllability. there are simple mathematical cri-
teria for observability in linear mnitivariable systems (see ('hen [9] or Gopal
(14] for proofs and equivalent conditions).

Theorem 3 The system is completely observable if and only if the rank of
the nq x n observability matrix.
(l
CA ‘
) isn.
CA™ -1

Given the similarity of the statement of Theorems 1 and 3 one might
suspect that there is a rather deep relationship hetween controllability aud
observability for linear multivariable systems. It would be particularly con-
venient il one could prove that a system is observable if aud only if it is
controllable. This happens to be true in a sommewhat convoluted mathemat-
ical sense as we see in the following theorem.

Theorem 4 (The Principle of Duality) The system represented by

x(t1) = Ax(t)+ Bu(t)
y(t) = Cx(t)
106

is controllable (observable) at time ty if and only if the dual system repr -
sented by

z(t) —-A'z(t) + C'v(t)
w(t) = B'zit)

is observable (contmllable) at ty. where the prime (e.g.. B') indicates matrir
trnsposition, and the second system (ralled the adjoint) is mathematically
closely related to the first.

One practical consequence of Theorem 4 is that once vou have con-
structed a controller (observer). you have done all the necessary work re-
quired to construct the associated ohserver (controller): the algorithms re-
(uired for one task are almost identical to the algorithmms required for the
other task. It is also interesting to note that observability and controllabil-
ity in linear systems can be considered independently. The two problems of
huilding a controller and building an observer can be pursued independently
of one another. The two problens are said to be sepuruble. This separation
property does not hold in general.

Results similar to that of Theorem 4 hold for linear systems corrupted
with Gaussiau unoise. In Clapter 6. we consider the problein of building
a deterministic regulator (controller) and a stochastic estimator (observer)
for dynainical systems modeled as linear systems corrupted with Gaussian
noise. It turns out that these two problems are also separable: by coupling
the optimal deterministic regulator to the optimal stochastic estimator one
has constructed an optimal control system.

It should be emphasized that the notion of observability introduced in
this section is quite strong. Lu general, a controller need not reconstruct the
entire system state in order to provide satisfactory performance for a given
control problem. In many cases. the task of reconstructing the entire system
state would iimpose a significant computational burden. Practically speak-
ing, we are interested in demand-driven observation strategies that allocate
resources to measurement aund interpretation in keeping with the immedi-
ate demands on the system. The task-based planning methods presented in
Chapter 5 employ this sort of demaud-driven observation strategies.

4.4 Stability

When we first introduced the notion of controllability in Section 4.2. we
were iuterested in the ability to first achieve a given state or set of states in

107

-»

a finite amount of thme. and - nen maintain the svstem in that state of set of
states for all time hence. When we subsequently cousidered controllability
criteria for linear svstems. we dropped the latter requirement. In manyv
applications. however. it is not enough for a controller to simply move the
svstem to a particular state. Neither is it reasonable to expect that the
controller maintain a given state in the face of arbitrary disturbances or «
perturbations of the dvnamical svstem. Stability is a propertyv of dynamical
svstems which implies that small changes in input or initial conditions do aot
result in large changes in system behavior. Stability is not a prerequisite for
being able to control a system. but it makes the task of design:ng a cor*rol
svstem sowmewhat easier. The svstem describing the inverted pendulum
presented in Chapter 2 is not stable by the criteri. tha: we will present
shortly. but it is controllable. The concept of stability introduced in the
following is attributed to the Russian mather atician A. M. Lvapunov.

\We will be concerned with the same linear multivariable system intro-
duced earlier.

x(t) Ax(t) + Bu(i) J/
y(t) = Cx(!)

V4

V}
R

Let u(¢t) = u, be any constar. input. If there existsipcint <, € R™ such
that
Ax. + Du, = 0.

then . s said to be an equilibrium point of the system corresponding to
the input u.. We assume that the system has only one equilibrium point,
and. without loss of generality, take the origin of the state space (6 be tha
equilibrium point. Finally. we cotisider only the case in which 0 so that

x(t) = Ax(t). -

This system is stable in thc scnsc of Lyapunov at the origin if. for every
€ > 0. there exists é > 0 such that ||x{1o)|] < & implies [|x(t)]] < € for all
t > to. where ||x|| denotes the Euclidean norm for a vector x of n components
L1.Z20.0 ... Zq defined bhv

lixfl = (xf.23,....23)1/3
The hyper-spherical region defined by the set of all points such that ||x|| < €
serves to ensure a bound on the svstem respouse.

We say that the above svstem is asymptotically stable at the origin if

108

1. it is stable in the sense of Lvapunov. and
2. there exists a real nuwmber r > 0 such that

Ix(ty)]] < r implies x(t) — 0 as t — .

The stability of a linear multivariable system can be determined using a
relatively simple mathematical test provided in the following theorem (see
(14] for proof).

-

Theorem 5 The system described by the state equation,
x = Ax(t) + Bu(t).

is asymptotically stable if and only if all of the eigenvclues of the matriz /A
have negative real parts.

Recall that the eigenvalues of a matrix A correspond to those values of
A such that Det(AJ = 4) = 0. where [is the identity matrix and Det()/)
indicates the determinant of the matrix M. One particularly convenient
advantage of the stability test introduced in Theorem 5 is that it does not
require one to solve the system state equations. In the case of the single-
degree-of-freedom robot. the eigenvalues correspond to solutions of

oe)

The equation A? = 0 is called the characteristic equation, and, in this case.
the characteristic equation has no solutions indicating that the the dvnam-
ical svstem for the single-degree-of-freedom robot is stable. .

In the case of the inverted pendulum example of Chapter 2.

01 0 0 0

. 0 0 -05 0 .

(1) = b 00809 X x(t) + 09:11 u(t).
0 0 44537 0 -0.3947

the characteristic equation is

A1 0 0
0 A -05809 0 || _ 2 ,

Det|| 00 a1 |]=MMAT-das3Tn =0,
0 0 44537 A

109

According to criterion established in Thec em 5. the dynamical syvstem for
the inverted pendulum is not stable since one of the solutious of the char-
acteristic equation is A = +v 4.4337.

Belore we leave the subject of stability. it is worth mentioning one par-
ticularly useful technique referred to as the mot-locus method developed hy
W.R. Evans for investigating the stability of linear svstems. The root-locus ,
mnethod is most closely associated with what is called classical control theory
which. as was mentioned in Chapter 2. is based primarilv upon the use of
the Laplace transform and analvsis in the frequencyv domain.

Many control systems have a siugle input variable and a single outpnt
variable. The input is referred to as a reference signal indicating the desired
value for the output or controlled variable. The transfer function of such
a control svstem is defined to be the ratio of the Laplace transform of the
input variable to the Laplace transform of the output variable. Consider
the spring-mass-dashpo* system described in Chapter 2. and suppose that
we allow an external force to act on the block. The equation of motion of

the block is 2 |
R " I (x .‘ - N
.1!dt2+C—-dt + Kz = u(t) %

where the output of the syvstem is defined to be z and the input is u. The
Laplace transform of Equation 4.1 is

MBX(0)+CsX(8)+ KX(s) = Uls) T}ﬁ

assuming the initial conditions

dz(0
0= Se0
The transfer function for the system corresponding to Equation 4.2 is
T(s) = X(s) 1

T U(e) M3+Cs+ K’

By analyzing the svstem'’s poles (the roots of the denominator or charuc-
teristic equation of the trausfer function) and zeros (the roots of the numer-
ator of the transfer function). oue can tell a great deal about the transient
respouse characteristics of the control system. For instance. it is well known RS;')
(10] that. for a system to be stable. it is necessary and sufficient that all of
the poles of the system trausfer function have negative real parts.?

3The Laplace variable is a complex variable and lience the roots of the characteristic
equation are generally complex as well.

110

1
0 =
-f
4 0 1
1
a
°
o
X
- ° 1
| +
v +
B T
1 0 1
{
(»]
Q
o
")
-1 (] 1
1
) —8—
-1
<] [] 1

Fignre 4.7: The connection hetween
and performance in the time domain

0

-l

] |

-
0 0 »

pole placement in the complex s-plane

11

Figure 4.7 shows the relation hetween tle poles of th: transfer function
for a second order svstem aund the svstem's corresponding behavior in the
time domain. In Figure 4.7. each plot on the left hand side indicates one par-
ticular placement of the poles in the coplex s-plane. and the corresponding
plot on the right indicates the resulting perforinauce in the time domain.
T'his method of analyzing control svstems by deterwining the placement of
poles is known as the root locus method.

Not surprisingly. there is close conuection between the frequency- and
time-domain methods for determining stabilitv. In the case of multiple-
input. wmultiple-output systems. we have Lo generalize on the unotion of a
trausfer function. which is defined only for single-input. single-output sys-
tems. The transfer matriz of a linear multivariable dynamical system as
introduced in the beginning of this section is uniquely defined by

T(s)=C(sf - A)~! B.

where [is the identity matrix [29]. It should be noted that there is infor-
mation lost in this conversion. In particular. the state and input equations
specify the internal state as well as the input/output behavior of the dy-
namical system, whereas the transfer inatrix only specifies the latter. It
turns out that the poles of the systewn represented by the transfer matrix
are exactly the eigenvalues of the matrix A [29).

One convenient property of trausfer functions and transfer wmatrices is
fhat. in certain cases, such representatious can he obtained experimentally
by subjecting the dvnamical system to sinusoidal inputs and measuring the
steady-state response. The close connection between frequency- and time-

domain methods allows the engineer to shift back and forth between these-

two perspectives as the probhlem dictates.

Stability can simplify the design of control systems; it is not, however,
a prerequisite for control. The linear system for the inverted pendulum is
not stable. hnt it is controllable. If we are designiug a device. it is generally
worthwhile to design it in such a way that its correspounding dynamical
svstem is stable. In cases in which the plant (environment) is given. we
have little choice and must proceed whether or not the associated syvstem is
stable.

112

¥

4.5 Optimality

In previous sections. we have stressed primarily the qualitative properties of
dvnamical svstems (¢.g.. controllability. observability. and stability). With
the exception of criteria concerning whether or not a given controller can
achieve a particular state from some arbitrary initial state. we have had verv
little to say about the perforinance of a control system. In this section. we
consider control problems in which some quantitative measure (or inder)
of performance is provided. It is natural within this context to consider
problems of optimal control that involve maximizing or minimizing such a
performance index.

In describing optimal control problemis. we generally restrict our atten-
tion to some restricted interval of time. either continuous. {to. ;). or discrete.
(1. n]. The behavior of the dvnawical systewm is described by either a set of
dilferential equations

x(1) = f(x(t). u(t)), restricted tofg <t <
in the continuous case, or a set of difference equations
z(k = 1) = f(x(k), u(k)), restricted to1 <k < n

in the discrete case. In addition to the wodel for the dynamical system.
it is often convenient to place restrictions on both the inputs (e.g.. vou
might want to place a bound on control torques to keep the cost of servo
wmotors within budget coustraints) and the outputs (e.g.. vou may want to
restrict the trajectories of a robot arm to a confined work space). The
input restrictions define a set of admissible controls (see the discussion in
Section 4.2 on admissible controls for discrete events svstems). Finally. it
will be pecessary to furmulate a perforwance index in terws of a scalar value
function, V.

The choice of performance index is largely subjective, hut generally a
particular application will suggest sowething reasounable. In some cases, it
iay make sense simuply to winimize timne:

t2
V= ldt =ty —tp.
ty
In other cases, there may be an obvious cost function. ¢{z.u). such as the
amount of fuel or other resource spent:

tz
V= / c(z(t). u(t))dt.
¢

1

113

Y

For the ser-point regulation and servo probhlems a good measure of y, -rfor-
tmance is the squared error:

2
V= [(x(t) = 2t(1)) dL.

t

where £°(t) is the desired state at time f. The squared error index is an
example of a quadratic performance index.! More generaliv. the performance
index is defined as

!

2
V = h.(r(fl))+/ g(z(t), u(t))dt.

t
where h and g are scalar functions wmcant to capture the value of the terminal
state aud the state/input trajectory respectively. The problem of designing
optimal controls consists of finding an admissible control that minimizes
(maximnizes) the performance index. V.

There are two classes of optimal control problems involving linear mul-
tivariable systels for which general results have been obtained. The first
class involves the use of a quadratic performance index as in the example
of the minimum squared error index. and includes optimal versions of the
linear set-point regulation and servo problems. In the second class of prob-
lems. the objective is to minimize the time required to drive the system to a
desired state. In hoth of these two classes of problems. optimal controllers
can make use of feedback. which. as covered in the next section. provides for
more robust contrel in the presence of external disturbances and errors in
mnodeling. The optimal linear minimnum-time controller is of a particularly
simple form: it can be viewed as a function that simply switches between
the extreme values dictated by the class of admissable controls. A con-
troller that operates at a constant level either in one mode or another (e.g.,
¥t u(t) € {-1.0.1})) is called a bang-bang controller.

Most of the work on optimal control bnilds upon basic tochnique(ﬁ
the calculus of variations [12]. The method of Lagrange wultipliers® for
finding extrema of functions subject to constraints is one techniques from

‘The functiona V = f[(f)dl is & quadratic performance index if f(t) = x(t) Ax(?)
where A is an » x n matrix with a;, € R and x € R".

‘Leomard Euler (1707-1783) developed the basic approach to solving constrained ex-
tremum problems. Joseph Lagrange (1736-1813) studied Euler's approach and worked
out the details for some important special cases. The basic method is generally referred
to as the method of Lagrange multipliers. but in some texts the equations are referred (o
as the Euler-Lagrange equations recognizing Euler’s contributions.

114

the calculus of variations that students tvpically encounter in college calculus
courses.

As a simple exawple illustrating the use of the method of Lagrange
multipliers. let @(z.y) and ¢(r. y) be functions of two variables. Tle object
is to find values of r aud y that maximize (or nuuitnize) the objective function
#(£.y) while at the same time satisfving the constraint equation. (. y) = 0.
We replace (z.y) with an auxiliary function of three variables called the
Hamiltonian function. ®(z.y.A). defined as

B(z.y. M) = (2 y) + As(z.).

The new variable. . is called a Lagringe multiplier. The Euler-Lagrange
multiplier theorem (12] implies that. if we locate all points (z.y,) where
the partial derivatives of ®(z.y.A) are all 0. then among the corresponding
(z.y) we will find all of the points at which the function (z.y) will have a
constrained extremum.

In the method of Lagrange muitipliers. we solve for z. y, and) in the
equations formed by setting the partial derivatives to 0:

e o® 79
ﬁ-o' W—o, and bx:ﬂ.

Since 0#/9A = <(z.y), if we find a solution (z.y,A) to the above three
equations. the constraint equation <(z.y) = 0 will automatically be satisfied.

To illustrate how to apply the method of Lagrange multipliers to prob-
lems in optimal control. consider the discrete-time system

Zisr = f(Zhy U,
and the performance iudex defined by
V=3 glze, ui),
k=l

where we have changed our notation somewhat. z(k) = », and u(k) = us.
to simplify subsequent equations. The only constraint that we impose is
that the optimal solution obey the state difference equations. We enforce
this constraint by augmenting the performance index as follows

V= Z (9(zr ve) + Aegr (f(zio up) - Tipr)].
k=1

115

\We define the Hamiltonian somewhat differentlv from above as

Qi = glrr.te) + Ay [(Lke uk)s

so that we can rewrite the augmented performance index as

V= Z (Pr = Negr12k41]- -
k=1
By the Euler- Lagrange muitiplier theorem. the change in the total derivative.
dV'. defined as
7L 2"

-. d —_——
rk) ..f+ Ou(k)d!-‘-")

13
UAks1

snouid be zero at a constrained minimum. As a consequence. the necessary
conditions for a constrained minimun are defined by
0%

Tipl = EIYeN = f(zrx k), 1L <k<n.

referred to as the state equations. /

- ﬁ’k

Ak ok + 1

1<k<n.

referred to as the costate equation? /

a9
o_mi-b/zsk_gn

referred to as the stationary conditions, and, finally, we require that the r;
he the initial state. The state and costate equations are coupled difference
equations. and together they define a two-point boundary value problem.
In the special case of linear systems with quadratic performance indices.
numerical solutions can be obtained rather easily.®

In gemeral, it can be gnite difficuit to solve the two-point houndary value

problews resulting from Lagrange multiplier formulations. However, in some /J/

*Specifically. it is possible to derive open-loop (the system state is not emploved in
computing the next input) controllers for the case in which the final state is specified
(fixed) in advanace. and closed-loop (the system state is employed in computing the next
input) controllers for the case in which the final state is not specified (free) in advance

(21).

116

.-v.

¥

t‘

cases. finding global maxima or minima can still be achieved by searching
the space defined By the variational variables (¢.g.. + aud y in the case of
minimizing ¢(r. y)} One approach is to use numerical methods to solve the
original equations relating to the performance index and constraints. aund
then search the resulting surface looking for globhal extrema. The grudient.

defined as
dg/0x

Vo= [dv/dy]

in the case of ¢(z.y), is used to guide search in a method that proceeds by
taking many small steps. each one in the direction indicated by the (negated)
gradient. This search method is called gmdient descent. If the surface has
a single (global) minimum. then gradient descent search is guaranteei to
find it. If. however. there are many local minima. as is often the case. then
one has to he a lot more clever in directing the search. It i this aspect of
optimal control involving search in a space of possible controls that primarily
interests us in this section.

In some cases. we can resort to exhanstive search. For instance. if r and
y are hounded, we might try to discretize the domain of , allowing each
of z and y to take on r € Z possible values. In this case. there are only r°
points at which to evaluate >; however. in the case of m variational variables
each having r possible values, there will he r'™ points to evaluate. As we
will see. the dimensionality, m. of a control problem is a critical factor in
the design of optimal control systems.

Bellinan (3] and Pontryagin [24] were largely responsible for formulat-
ing the necessary prohlems and developing many of the hasic approaches to
solving optimal control problems. The requisite mathematics is complicated
enough that the backgronnd required to even state the basic theorems does
not seem warranted for onr treatment here. Suffice it to say that the results
for linear systems are extensive, and that, additionally, there are powerful
numerical methods that have proved successful for a range of nonlinear sys-
tems. For a good overview of the field the reader is encouraged to consult
the text by Athans and Falb [2]. In the remainder of this section, we focus
on a particular class of optimal control problemns called multistage decision
processes, and a particnlar approach to solving such problems optimally
dynamic programming due to Richard Hellman.

C'onsider a deterministic discrete-time n-stage process consisting of an
initial state 7y, a sequence of inpnts ny, u3,..., 1,, and a sequence of resuit.

117

vy

ing states L..03...... tn such that
Tepr = flapur).

Following standard practice. the {ur} and {ri} are treated as variables
ranging over {7 and X respectivelv. We introduce a performance index.

We wish to find input sequences that maximize V.

As we indicated earlier. in general. this problem of maximizing a function
of n variables is computationallv quite hard. In the worst case, it will be
necessary to search through the set of {[7|" possible sequences of length n in
order to choose the sequence with the highest value. In some cases. however.
we can do much better. In the following, we consider sowne easier problems
that result from introducing restrictions on V. In particular. we consider
the case in which at » . - .age in the process. say the kth stage. the effect of
the remaining n — & < ages on the total value depends onlv on the state of
the system followir.x the kth decision and the subsequent n — k decisions [4].
Let R: I/ x X — R represent a reward function, where R(u. z) corresponds
to the (iminediate) benefit derived from performing action u in state z. We
write R(u.z) if both the input and the state matter in determining the
amount of reward and R(z) if only the state matters. As an example of the
sort of performance functions we are interested in, we might have

n
Viuy, .. lniTyy....2p) = ZR(uk.:ck)
. . : . k=l

in which we are interested in the sum of rewards (referred to in the sequel
as sepamble control), or

V(tg,...,Un;T1,....2n) = R{zp)

in which we are interested only in the reward associated with the final state
(referred to an terminal control).
We proceed by generating a sequence of functions, {V,}, so that

Va(71) = max 3 Rl z2).
k=1

118

Expanding. we have

n
max Z Rlue. 2&)

vk k=1

= II}I%X[R“HJ':)+ Rlugz.az)+ -+ Rltns)]

\-n(xl’

= maxmax...max{R(uy.1y) + R(uz.22) + -+ Rlun. 2q)}
uy P} Un

Rearranging, we obtain
Va(zy) = D}‘?X[R(uhxl)‘\"

ma.xma.x...n'l‘ax[R(ug.x;) + R(us.z3) + -+ - + R(un. £q)]].

u3z ua
Note that
Vn-1 = maxmax.. -max{R(uz,2) + R(u3,23) + -+ - + R{tn, 2n)].
Substituting, we have in the case of separable control,

Va(ry) = u:‘?x[R(uy, ry) + Vaor(23)],

or just
Va(z) = max(R(u,7) + Vn_1(f(z,u))]

for n > 2. and
Vi(z) = maxR(u, z).

for n = 1. For the case of terminal control, we have

Valz) = msl.x[V,,-l(f(x, u))], for n=2,3,...

and
Vilz) = R(z).

The time to compnte V,(z) for all z € X' given that invoking V-,
has unit cost is O(].X||U"|). From this observation, it follows that the time
required to compute V,(z) for all z € X given that invoking V, has unit

cost is O(n|.X||U|).

This general method of computing the performance index recursivelv
is called dynamic programming. The basic constrained minimization vari-
ational problem essentially involves choosing a point in an n-dimensional

119

NIXIXIX|IXIXINIXNIXNIXIXIX|IX|IXN]IX|X
X X
X X
X X X
X X X
X G X X
X X X
X X X[XX }|X X
X X X
X X X
X X X
X X|IX}|X]|X X
X X
X X
X X
X X

Figure 4.8: A 16 x 16 grid world

phase space. Dynamic programming involves decomposing the problem into
making n choices each of which involves a one-dimeunsional phase space [4).

To illustrate the basic technique involved in dynamic programming. we
consider a simple robot countrol problem. A grid world is represented as an
n x n grid. One cell of the grid is designated as the goal. Certain other cells
(a total of m) are designated as obstacies. In particular. all of the perimeter
cells are designated as obstacles. Initially, the robot is located in a cell which
is not an obstacle. Figure 4.8 depicts a 1§ x 16 grid world in which the goal
is indicated by@ and the obstacles by g:)

There are n? — m states each one corresponding to the robot being in
a particular cell not designated as an obstacle. There are<slng possible
actions not all of which are necessarily available for a given state: the robot
can remain in its current cell or move to any one of four adjacent cells (|.
—. |. and ~) as long as the destination cell is not designated as an obstacle.
We use the value function for separable control where the reward is defined

as
0 if r is equal to the goal
=1 otherwise

R(u..r):{

120

NI XN INI NN x| x| xf{x]xixixI~xIx~xTx
X 2| -4 s A T] .8 [A faopar a2 aviaafas |t X
X{| 4|3 4 -3 -6 -7] -8 s et)t a2 a3 a4} 5| X
X|-3}|-2]-3]|X Sl 8)9 0|t {12314 -15]-16]| X
X|-2]1t-2| X -89 f-tof-t1j-12]-13|-14)-15{-16]-17]X
X|]-1]G}| -1 X|-91-10f-11)-12}-13]-14|-15]-16]-17]-18]X
X 2 |- 2| X | -8 9 {10 -1t | -12 13| -14f-15]-16]-17| X
X|3}l213|X¢4i-7|]-8]9v}X X| X | X |-18}]ar]| a8 X
X | 4 |-3} -4 5 5 | ¢ | 8| X |-20]-19{-18}-17]-18}-19|X
X 5 | -4 .5 -8 -7 -& -4 N 22019)18) 19) <20 | X
X{-6{-5| -8} -7 -8 -9 | X 22 | -2t 20)-19|-20)-21 1| X
Xx|{-r18)-v]-8]-9]|-10]-11] X X X X|-18|-19)-20]|X
X| 8|7 8|9]]-10]-11)a2}3t-14)-15})-161-17]-18}-19}X
Xi -9]-8]1-9|-10f-11])-12}-13|-14}-15}|-16}-17}-18}-19}|-20]{X
X{-10{-90-t0f-11}-12]-13)-14)-15]|-16]-17]-18|-19}|-20}-21}X
X X X X X X X X X X X X X X X X

Figure 4.9: V({x, ¢}) for the Grid world

We compute V. V,, up to Vi such that V; = V,_,; and set V = V,.
Figure 4.9 shows V((z.y)) for each state (location (z,y)) in the grid world
of Figure 4.8.

If vou look carefully at the numbers shown in Figure 4.9. vou will notice
that by always moving to the neighboring location with the highest value
vou will eventually end up at the goal location no matter what location you
start out in. This property can illustrated graphically by considering the
elevation map shown in Figure 4.10 defined using V((z.y)) as the elevation
at coordinates (z.y) in the grid with interior obstacles represented as small
negative values. Notice that the goal location is a global maximum in the
elevation map. This will always be the case no matter what the arrangement
of obstacles. It turns out that the strategy of always moving to the location
with the highest value is optimal in the following sense.

We define a control law or policy as a mapping from states to accions:

n:X —U.

We are interested in pdlicies that are optimal according to the following
principle of Bellman. rinciple of optimality. An optimal policv has the

. 121

Y

Figure 4.10: Representation-of V({z,y)) as an elevation map

property that whatever the initial state and the initial decision are, the ?/

remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.” ([4] ps. 57) Given Bellman’s principle
of optimality, the following policy

q(z)=arg£ql§xv(f(z.u))

is optimal.

Figure 4.11 shows the optimal policy for the grid world shown in Fig-
ure 4.8, where —. —, {, and | indicate the direction of movement for the
indicated state as specified by the optimal policy.

Because thie trausitions in state space are so localized in the grid world.
we caa use a much wore efficient dynawmic programming algorithm for com-
puting the optimal policy than the one described above. In particular, we
compute V3 only for grid cells corresponding to one of the four neighbors of
the goal adjaceut along the grid axes, and. in sv dving, treat Vy as undefined
for all cells other thau the goal. In general, we compute V; only for pre-
viously unconsidered grid cells corresponding to one of the four neighbors
of cells considered in i — 1th iteration, and treat V;_; as undefined for all

122

%]

-

X|x|X NN NN XXX | XX XXX
X|1]l]=]=]=-1=-|=-{=-l=|=f{=|=-1=}=4X
X1 |t]=f=]|=f=-}|=]=]={=|~|=1=-1-=}|X
X|l1[t]j=|x{t1|=fj=[=}|=]|=|=-{=t1~-]—=-1X
x|t]={xj1{=l=]=fj=]~=l={=t=]=1X
X| =G| =jX |1 |=f=]—=|=]=|=j=j—=]~=1X
X1 [t]=]X] 1]=fj=}=]=]=fj=]=]=]=1X
X111 l={X]1|{=]={X|X|X|[X|1]|]=f|=1IX
X1 {1]|]={ej=|=]={X]=}=]|]=}t]=|=}X
X{tlrt}je=]=}==l={X]0r}rirjrj—=]-=4x
X{t]t1t]|=]=]=j=]=]X]tvfjr{t]lrt]=-]-}X
X|i1jtj=y=j={=|=|=]=]=|=]|=j=]=1I|X
X{I1 |1]|=]w=fl=]=]=|=]—=fj={={=]=]=|X
X|1j1j=|=-]=-|=-]=]=]=]=]=|=-]|~]-=|X
x|Ix[x|xIx|x|xIx|X[XxX]|x|xX|X|x|XxX}|Xx

Figure 4.11: An optimal policy

cells not considered in the i - 1 or earlicr iterations. If k is the last iteration
in which there are unconsidered cells. then V, is defined for all cells in the
grid. and we set V = V. This specialized dvnamic programming algorithm
runs in O(|X|).

The example application of dvnamic programming given above involves
a discrete deterministic dynamical system. Dynamic programming can be
applied to continuous dynamical systems to achieve solations of arbitrary
accuracy using a variety of namerical techniques. Dynamic programming
can be seen as a method of efficiently solving variational problems involving
multiple local minima by cleverly guiding the search. Dynamic programming
can also be applied to stochastic processes. and we will return to this subject
in Chapter 6.

Here as elsewhere the dimensionality of the problem severely restricts
the application of this and most other methods to generating solutions effi-
ciently. Dynamic programming is often rcferred to as an “approach™ rather
than a “method.” where the distinction generally made is that an approach
provides a way of looking at problems that still requires considerable cre-
ativity to actually apply, whereas a method is moie a matter of turning a

123

crank. Dynamic programming suggests that we try to view optimization
probleins as multistage decision problems in which the performance index is
some siwnple (e.g.. additive) function of the state and input at each stage. If
it is possible to view a problem thus. we can effectively reduce the dimension-
ality of the problem thereby. availing ourselves of substantial computational
savings. Unfortunately, there are many aspects of a problemn that serve to
determine its dimensionality. For example, at best. the solution methods
that we considered above involved computations linear in the size of the
state space. and the dimeunsionalitv of the state space is determined by the
number of state variables that comprise the state vector. In practical prob-
lems. methods that require quantifving over the entire state space can be
computationally prohibitive. In subsequent chapters. we consider methods
that wil allow us to decompose certain problems into independent subprob-
lems each of which requires quantifving over only a small portion of the state
space.

4.6 Feedback Control Systems

In Section 4.2 on controllability, we considered a controller as a function from
states to inputs (control actions). While there are many different types of
controllers mentioned in the literatnre, this particular formulation is perhaps
the most common. It is so common. in fact, that traditionally a control law
is defined to he a function n: T x X — U,

u(t) = n{z(t),t).

However. in the preblems we will be considering, n will not depend on the'
current time.

This basic idea that the inputs to a dynamical system should be com-
puted from the state is quite important. Kalman describes it as “the fun-
damental idea of control theory,” and “a scientific explanation of the great
inventiom kmown as ‘feedback,’ which is the foundation of control engineer-
ing” ([16) pg. 46).

It is worth asking why, if we have an accurate model of the process that
we are trying to control. must we resort to sampling the state of this process
on a continual basis. The answer is that uncertainty can and. generally.
does arise from several sources besides the dynamical model. For instance.
we have to sample the state of the system at some point in order to supply
the initial conditions to the model. If there is any error in our measurement

124

.-(]l/d/,/)a-

o)

)
Figure 4.12: Controlling the level of fluid in a tank

of the state variables, then that error will likely be exacerbated with the
i-assage of time and as a consequence of inappropriate inputs generated on
the hasis of incorrect state information. Even if we are able to observe the
state precisely, there will inevitably he some delay hetween our ohservation
of the state and our initiation of a control action. This delay may be due
to time spent in computing inputs. the response time of the actuators used
to realize an input. or lags introduced by the sensors. We return to these
issues in ('hapter 6 when we consider the problems that arise in dealing with
uncertainty in control.

In the following, we consider'the application of feedback control to some
of the problems introduced in Chapter (I’ We begin by considering the
problem of regulating the level of fluid in a tank using a closed-loop feedback
controller. Figure 1.12 depicts the tank and its associated input and output
pipes.

We model the controlled process as a first-order differential equation:

1) = Kouth(t) = 155
where K is the flow conatant in cubic meters per degree minute for the
valve governing flow through the inpnt pipe. I, is the flow constant in
square meters per minute for the output pipe. A is the surface area of the

125

) 1) (t) hte)

Figure 4.13: Block diagram for a closed-loop process controller

Computer Process Servo Process Fow Precass

) ot) wt) * Nty

Contniling Precess Contrulind Precsss
Figure 4.14: Decomposing the coutrolling process into subprocesses

tank. 6(¢) is the position of the valve governing flow through the input pipe
at time ¢, and h(t) is the height of the fluid in the tank at time t.

Now we have to specify a controlling process that changes @ in order to
cause changes in h. ln the simplest model, the controlling process directly
determines @ by looking at the difference hetween the reference (or target)
level and last measured value of A; this difference-is referred to-as the er-
ror. The block diagram shown in Figure 4.13 depicts this model with r(t)
indicating the reference and e(?) indicating the error.

In Chapter 1, we defined a control algorithm that could cause instan-
taneous changes in #. Needless to say, the typica! interface between the
controlling and controlled processes is more complex. In a somewhat more
realistic model, the control computer might determine a voltage that is in-
put to a servo system consisting of an amplifier and a D(' motor attached
to the input valve. The servo system is just another process. and we might
model it using the equation:

dé(t)

i = Ry u(t)

126

3 L} 20
o Hegs
o Veluge .
2
4
} $ o}
b 2 > <
1
L
° v < v °
L] 10 EJ L] 10 2
Tum T o

Figure 4.15: The behavior of the discrete proportional controller

where v(t) is the input voltage and A, is a constant that depends on the
characteristics of the servo. Figure 4.14 provides a block diagram of this
wore cowmplex model.

To define a process that determines the voltage input to the servo. we
employ a standard technique from control theory. In manyv control schemes.
the output of the controller is a simple function of the error. For controlling
certain processes. an effective controller can be designed in which the output
of the controller, v(t) in this case. is directly proportional to the error:

v(t) = Kpe(t)

where &', represents the controller proportionality constant. Not surpris-
inglv. this sort of control is called proportional control.
For a control algorithin running on a digital computer. we have to specify
a discrete controller that sampies the output of the controlled process and
outputs a control action at discrete intervals. . The discrete proportional .
controller is just a computer program running on a specific machine that
samples the output of the controlled process every so many clock cvcles and
outputs a value proportional to the computed error.
To maintain the level of fluid in the tank depicted in Figure 4.12 at two
meters. we might use the following loop:
while true
vait for_delay;
height — read.fluid.height;
error — 2.0 — height;
servo.voltage — A, *= error;
where read_fluid._height reads the height sensor. vait for delay causes
the controller to pause for the specified sample period, and servo_voltage

127

is a machine register that directiv determines the voltage fed to the servo.
Figure 4.15 shows two graphs descrihing the behavior of the ahove control
algorithm with a sample period of | minnte and a proportionality constant
of 3.0. One graph compares changes in h with changes in ». and a second
compares changes in i with changes in #. The particular proportionality
constant 3.0 was chosen after a small amount of experimentation.

Proportional controllers are suitable for controlling only a limited class
of processes. Two other popular forms of control are integral control and
derivative control. The output u(t) of an integral controller is proportional
to the accumulated error:

t
uit) =]\','/ c(t)dt
0

whereas the output of a derivative controller is proportional to the change

in the error:
de(t)

dt
The proportional-plus-integral-plus-derivative (or PID) controller general-
izes the above three types of controllers:

u(t) = hy

de(t)
dt

t
u(t) = hNpe(t) + I\'.-/ e(t)dt + Ky
(i}

For the simple tank-filling process. proportional control is quite ade-
quate. Other, less stable processes. such as the inverted pendulum intro-
duced in Chapter 1. may require an integrator and a differentiator to damp
oscillations and coinpensate for abrupt disturbances.)

It should be noted that the constants used in a discrete P[P controller are
dependent upon the sample period. Of course, once you have he coefficients
for the continuous P1D controller vou can derive the coefficientX for a discrete
controller of any sample period.

The mathematical discipline of control theory is largelv concerned with
the formal analysis of coutrol systems. As was wentioned in Section 4.5, in
sowe cases, optimal control processes can Le derived aunalytically providing
that accurate models of the controlled processes are available. Since the
characteristics of the controlled processes rarely are known precisely. control
theorists are interested in systems that are inseusitive to minor deviations in
the models used in the design process. In cases where significant deviations
are likely, or the models are known to he incomplete. adaptive systems are

128

¥
designed to compensate by adjusting the n}.;del as information hecones
available.

Adaptive control techniques attempt to cope with uncertainty about the
process being controlled by automating certain aspects of controller design.
The basic idea is quite simple. The desiguer generally has some sort of model
of the process or plant that he is trying to hnild a controller for. This model.
while it is known to provide only a rough idea of the hehavior of the plant,
is sufficient to determine the form ol the hasic controller (¢.g.. a parauie
terized PID controller). The designer then huilds a program that refines
the basic controller as it observes this controller attempting to control the
plant. In the case of a PID controller. refinement consists of adjusting the
control coefficients. Adaptive control is one approach to making controllers
niore responsive to a complex and often unpredictable environment. Adap-
tive control also provides a means for coping with compiexity in the design
process by allowing a control svstem to monitor its own behavior and adjust
accordingly. Chapter 9 deals with sowme aspects of adaptive control in the
coutext of a discussion of learning techniques. Now we turn our attention

~———————.. 0 some more practical issues in building cuntrol systems.

Control systems are complex devices that involve the interaction of me-
chanical and computational processes. Iu considering the computational
aspects of control, it is important to keep iu mind that someone has to write
the programs or design the circuits that perform the necessary computations.
For problems like controlling a power plant or an automated assembly line.
these programs and circuits can become quite complex. Despite our best
elforts. large programs develop organically as a process only partly under
the control of any one individual. Continual redesign is impractical. and
sooner or later the designer has to-commit to a specific implementation of
a module, interface, or subroutine. Once in a while, a designer has the
luxury of rewriting an interface. optimizing an algorithm, or cousolidating
several functions in a single module, but often enough he or she has to make
do with whatever is available. It would he convenient if control knowledge
could be encapsulated in small general-purpose functional units that could
be applied in a wide variety of circumstances. This has long been a dream of
researchers in artificial intelligence. and. in the following, we consider some
possible approaches to realizing that dream. Two critical issues that have
to be addressed in the context of coutrolling processes are:

AL

/
Mt Secrime .

&

1. Can general-pnrpose control knowledge he used to support real-time
control of interesting processes?

129

2. Can dispaiate behaviors he made 10 cooperate so as to achieve coor-
dinated behavior across a range of situations?’

In attempting to address these issnes. we consider a class of programming
techniques called rractive systems that were specifically designed to address
shortcomings in classical approaches to pianning relving primarily on off-
line computation and perfect information. Reactive svstemns are meant to
be responsive to the processes heing controlled. They tend not to employ
any complicated predictive mechanisms in order to avoid the compntational
overhead generally associated with such mechanisms. A reactive system has
to he prepared to respond quickly to changes perceived in the controlled
process. If the system is engaged in a complex and time-consuming compu-
ration. it will likely miss opportunities to generate appropriate responses.
In the applications for which reactive svstems are hest suited. it shounld he
possible to achieve the desired hehavior using simple modeis that can he
quickly computed.

Much of the work on reactive systems done in artificial intelligence
has heen concerned with building systems that are capable of representing
and manipulating precompiled procedural knowledge about how to control
things. Different behaviors can be separately realized in terms of distinct
procedures each making nse of the available sensors and effectors as needed.
The differences hetween such systems usually revolve aronnd the complex-
ity of the primitive operations allowed hy a given procedure and the means
whereby procedures are selected. coordinated, and allowed to communicate
with one another. In the following, we consider two approaches to huilding
reactive systems. For the most part. the two approaches look like program-

ming languages. and our analysis concerns what features of the different

languages make them more or less suitable for writing and thinking about
control svstems.

Every programming langnage is designed to support a particular level of
ahstraction. High-level languages can introduce barriers to abstraction by
forcing the programmer to adopt a particular way of thinking. For instance,
a langeage that provides only sequential control constructs can make it dif-
ficnlt to deal with parallel or asynchironous processes. Low-level languages
can also introdunce barriers to ahstraction simply by failing to provide the
programmer with adequate means to deal with the complexity of program-
ming farge systems. Of course. one can simulate any computational process
given any Turing-equivalent machine/language combination. In looking at
approaches designed to facilitate controlling processes. we should be alert to

130

$

notice features that allow us to naturallv map our nnderstanding of con .ol
problems onto computational processes.

Almost everv programmiing language provides support for procedures of
one sort or another. Procedures encapsulate procedural knowledge: how
to go about achieving certain tasks. In speaking about tle control of pro-
cesses. procedures are usually associated with specific behaviors. The first
approach to implementing reactive systems that we look at is called a pro-
cedural reasoning system ([13]. .\ procedural reasoning system consists of
a set of procedures and a schcdulcr for selecting what procedures to run
and when. Each procedure has associated with it a specific task-achieving
hehavior that it implements, and an invocation conditior or goal specifving
what the procedure is meant to achieve.

Procedures are represented as labeled tmnsition gmphas. A laheled transi-
tion graph is a directed graph whose arcs are labeled with statements in some
logic or programming language. In the following. we use Prolog statements
to label ares. The statements are examined by the scheduler to determine
transitions fromn one node in the graph to sonie adjacent node in the graph.
Each node in a labeled transition graph has one or more arcs leading out
of it. Some statements correspond to predicates or queries and others have
an imperative content. The statements labeling arcs are generally seen as
giving rise to the goals of the system.

The scheduler is charged with keeping track of what goals the system has
and invoking whatever procedures are appropriate to achieving those goals.
At any given moment, the scheduler has some number of active procedures
that it is employing to pursue its present goals. For each of those procedures,
the scheduler maintains a pointer to some node in the associated labeled
transition graph. The scheduler chooses a particular procedure to work on-
and attempts to transit to a new node by examining the statements on the
arcs lcading out of the node currently associated with the chosen procedure.
An example shouid help clarify.

Figure 4.16 shows a labeled transition graph implementing the discrete
proportional controller discussed earlier. The procedure shown also imple-
ments aa overflow test to issue an alarm if the fluid runs over the top of the
tank. Statements labeling arcs such as fluid_height(Tank,Height). and
V is K ¢ (Taxget - Height) correspond to queries: “what is the current
height of the fluid in the tank?” and “what voltage is K times the dif-
ference between the current height and reference value?’” Statements such
as set_servo_voltage(Tank,V) and set_alarm(Tank,1) correspond to im-
peratives to adjust parameters used by the procedures associated with the

131

@ Ool: conwrel_Ouid_brval(Tonk)

(mak_hoight(Tonk biax) aompls_paried(Task I\ properucaci_geia(T ek K))

" S
3

i il

w_swve_velmga(Teak.0) refavngn(Tonk.Tager) wt_ewrve_veluga(Task K)
.l. -E .[, \é‘chﬂ
T

oot_slepm(Tonk.1) Ouid_hoightTenk Haighty VisK * (Target - Haeight)
| 1
- N
Teight e Mas Haighs < Mu

Figure 4.16: Labeled transition graph for a proportional controller

132

servo attached to the iuput valve and the alarm device.

Both queries and imperatives can be seen as giving rise to additional
goals. For some of these goals. the scheduler invokes additional procedures.
l'or other goals. special-purpose svstems may kick in to trv to satisfv the
goal. lor a given goal there mav be many different procedures running. A
procedure can be revoked if its associated goal hecomes satisfied or if some
competing goal becomes satisfied. Most labeled transition graphs have ter-
minal nodes indicating exit conditions f{or the associated procedure. The
scheduler is responsible for starting new procedures and terminating old
ones. Procedures comumnunicate with vne another by posting goals to a global
database in a mauuner similar to that used in blackboard systemsqf15]. A pos-
sible scheduling algorithm for a procedural reasoning system is a» described
as follows. The scheduler maintains two queues ACTIVE and PENDING o
keep track of procedures that are in various stages of processing.

1. Choose a procedure p from ACTIVE.

2. Post goals corresponding to each statement labeling an arc emanating
from the current node of the procedure p.

3. Move p from ACTIVE to PENDING.

. Add to ACTIVE each procedure whose invocation condition matches a
goal posted in Step 2.

3. For each procedure ¢ in PENDING such that any of the posted goals cor-
responding to the statements labeling arcs emanating from the current
node of q are satisfied:

(a) Choose one satisfied goal g.

(b) Retract the other posted goals and remove any associated proce-
dures from ACTIVE and PENDING.

(c) Set the current node of ¢ to be the node terminating the arc
labeled with the statement correspounding to g.

(d) Remove ¢ from PENDING.
(e) If the current node of g is not a terminal node. move q to ACTIVE.

6. Go to Step 1.

It is important to note that the schedule: never waits around to compute
anvthing: the scheduler simply posts new goals. invokes procedures where
required. and notices when posted goals are satisfied. Suppose that the
procedure shown in Figure 4.16 is the only active procedure and its current
node is N2. The scheduler posts the goal fluid_height(Tank,Height) with
Tank bound and Height unbound. and the procedure is moved to the list
of pending procedures. The subsystem responsible for monitoring the level
of fluid in the tank notices the posted goal. reads the sensor for fluid level.
and marks the goal fluid_height(Tank,Height) as satisfied with Height
hound to whatever the sensor read. The next time the scheduler looks at
the pending procedures it notices the satisfied goal. updates the procedure’s
current node to N3. and places the procedure back on the list of active
procedures.

The procedural reasoning system supports subroutine calls in that a tran-
sition in one procedure may require invoking a second procedure. Several
procedures can run in parallel and communicate asynchronously by posting
goals to the global database. As an example of how two procedures might
work together in parallel. we consider a tvpe of feedforward control that can
be impletnented easily in a pr.cedural reasoning system.

The reference or target value specified in a control problem can bhe
thought of as a command for the controller to achieve a particular condition
(€.9.. a fluid level of the specified height). In many prohlems. the reference
changes—sometimes continuouslv—over an interval. The controller has to
track these changes so as to minimize errors. If the reference changes can
be predicted or are simply provided in advance. the controller can take ad-
vantage of this to help eliminate(certain errors by using feedforward centrol.
For example. if the controller for a robot arm khows the exact trajectory
it is to move the end effector along, it can often precompnte a sequence of
control actions. and then execute an error-free path without any feedback
control whatsoever. In most cases. however, feedforward and feedback are
used in conjunction, with feedforward taking advantage of known change« in
the target value, and feedback compensating for the inevitable errors that
‘roprep in dealing with real-world processes.

In the case of our tank-filling process. a feedforward controller could he
added to the feedback controller of Figure 4.14. The feedforward controller
anticipates the next reference value and mediates the output of the feed-
hack controller if a change is detected. This sort of controller is referred
to as a rommand feedforward controller and its block diagram is shown in
Figure 4.17.

134

Fesdback Cosvwoller Servo & Row Prosw

e ofe)) 1)

Figure 4.17: Block diagram for a coutroller with command feedforward

@ Goal: anticigpate_refaremce_change(Tank)
teadforwurd_gain(Tenk.K)
I\ } sdd_to_surve_volnga(Tmk, V)
N1 . . ’ N4

T f

vafwenne(Tank. Targes) Vis K?* (Taget - Nexs)
3 N3
ssot_referanse(Tank Next)

Figure 4.18: Labeled transition graph for a command feedforward controller

135

Figure 4.19: A hierarchical control system

To implement command feedforward control in a procedural reasoning
svstewm. we define a uew procedure to monitor changes in the reference value.
This procedure specifies a value proportional Lo the change in reference to
be added to that specified by the feedback controller. The labeled transition
graph for the commaud feedforward procedure is shown in Figure 4.18. The
two procedures shown in Figure 4.16 and Figure 4.18 run at the same ‘ime.
The servo process operates on a voltage which is the sum of that specified
by each of the two procedures. This control scheme works particularly well
for tracking a continuously changing reference: for instance. if vou wanted
the level in the tank to decrease to 0 at a fixed rate.

In describing the command feedforward control system above. we started
with an existiug feedback control svstein and then added a feedforward
controller without changing the basic architecture of the feedback control
svstem.) ffiemmhical control systemggenera.lize\ on this basic idea. A
lhierarchical coutrul system is constructed of several layers so that each laver
serves as a controller for the layer immediately below and is controlled by the
layer immediately above. There are different types of hierarchical control
systems. They differ in how the various layers are controlled by and impose
control on the lavers immediately above and below. As our second approach
to building reactive systems. we consider a hierarchical control system in
which one layer is allowed to impose control on a lower layer by modifving
control signals used for communicating between components of the lower
layer (7}

Figure 4.19 depicts the general forin of the sort of hierarchical control
system we are considering. Each level is composed of a set of components
each of which is responsible for a simple primitive behavior. The components
commupicate with one another by passing signals. For the most part. the
signals consist of bit or bvte streams. The components can be implemented

136

V"

ogetiovel | ‘=veving sarve

wad_uak_jevel

full_wak clasm

conk_jighs

Figure 4.20: A siugle-level coutrol system

any way that you want. but it is a good discipline to think of them as
very simple computing devices. For instance, the components might be
implemented as regular finite state muachines augmented with a small amo.:n-.
of local state. a combinatorial circuit. and a local clock. The combinatoris’
circuit and local state are used to keep track of signals originating from other
components. The clock is used to provide simple timing capabilities. There
is no global state and the different components communicat¢ asynchronously
by writing values into the local memory of other composents.

Figure 4.20 shows a single-level control system for aintaining the
fluid level in a holding tank. The component labeled read_tank level con-
tinuously samples the sensor indicating the level of fluid in the holding tank
and outputs the value read on the wire labeled tank level which subse-
quently appears in registers in the components labeled servo_voltage and
full_tank. The servo_voltage component implements the same procedure
as the labeled transition graph of Figure 4.16. The full_tank component
detects when the level in the tank is equal to the height of the tank and
passes this information on to the the servo_voltage component and to the
alarm component which is responsible for sounding an alarm.

To illustrate how one level in a hierarchical control system might infiu-
ence a lower level in the samne systein, we consider a second form of feedfor-
ward control referred to as disturbance feedforward control. A disturbance
is a process that affects the controlled process but is not taken into account
by the coatroiled process model. In the fluid-level process we have been
considesing, we might model a process restricting the flow through the pipe
leading out of the tank shown in Figure 4.12 as a disturbance. Suppose that
the output pipe is being used to fill containers that are moved into position
under the pipe using a convevor system. When a container is filled, the flow
through the output pipe is temporarily restricted so that a new container
can he positioned under the pipe. Figure 4.21 shows how a simnple propor-

137

3 - 12 3 []
- 10]
2 9 d 2 4
3} §
} ! 24
1 4 - 1 °
< Meig 2 ‘ © Wugm |2 5
- Fow = Veliagp
[} v v 0 ° & Y E— —
] 10 20 » 9 10 20 %
Tiaw Tiaw

Figure 4.21: Overflow due tn a disturbance restricting ontflow

Fosdiorowd Coansvalier
&«
Disawbanse Proses
| wdly \
Fosdbask Conueilor JL Serve & Plow Presass
L L] wa v L L]
, | 0 O

Figure 4.22: Block diagram for a controller with disturbance feedforward

tional controller reacts to a brief restriction in the output flow: the reduced
flow effectively reduces the gain of the proportional controller and fluid spills
over the top of the tank before the coutroller can react and appropriately
compensate.

Let us suppose that it is possible to anticipate a restriction in the output
flow as would be the case for the container-filling example described above.
Figure 4.22 shows a block diagram for a disturbaunce feedforward controller
for the fluid-level problem. We assume that it is possible to sense restrictions
in the output flow aud use this information to increase the voltage fed to
the servo wnotor thereby temporarily increasing the gain of the feedback
coutroller.

Given the single-level proportional controller shown in Figure 4.20. we

138

roud_flow_no d d_llow
B t ")\ Lowi t
. [»
V'(Lewi @
(1> | |
~ 1w _jurval rve_veimge | >-——1 rve
valmge
soud_snik_jwvel
aak_brvel
full_tamk dam
ovaliow
nak_buiglt :

Ty e

6 & &

v
"°

< Thigh
- Velug
-

10

s
Veltoge

Figure 4.24: Disturbance feedforward controller preventing overflow

can add a second coutrol level in order to reduce or eliminate the amount
of spillage resulting from womentary restrictions. Tle resuiting two-level

svstem: is shown in Figure 4.23.

The performance of the two-level system is somewhat less than optimal:
as indicated in Figure 4.24, the two-level system dues avoid spilling any fluid.
but the fluid height is somewhat erratic around the time of the restriction.
We wight be able Lo further tune the feedforward compouent to eliminate or
reduce this erratic behavior. However, it is often the case that. in building

| [on top of an existing control systemn, we simply liave to accept the limitatiouns

/of what we started out with, or do it over. The hierarchical system described

above makes it rather easy to build on an existing control system. Given the
discipline described earlier for building wodular stand-alone computational
compouents. adding new functionality or enhancing old often cousists of

139

simply adding sowme new components and wiring them together with the old
ones. To the extent that this can be realized in practice. it makes building
and experimenting with control svstems remarkably easy.

The procedural reasoning svstem and the hierarchical control system de-
scribed above are similar in many resperts. Both support multiple processes
running in parallel. Both support procedural abstraction aud asynchronous
control. There are some differences. however. The procedural reasoning
svstemn encourages the explicit representation of intentions. behaviors. and
goals. The hierarchical control system encourages one to think in terms of
evolving control systews and distributed computation. We say “encourage”
as both systems are no more than general-purpose programming languages.
Unless vou specifv a compiler and a target machine. the two svstems are
essentially equivalent.

There are other approaches 1o huilding reactive systems some of which
will be discussed in subsequent chapters. lu some cases. the reactive svstem
looks more like the sort of planning systems that we will investigate in Chap-
ter 5 in that it manipulates a representation of its pending tasks imposing
ordering constraints and dealing with certain classes of interactions hetween
tasks [L1]. In others cases, the system is realized as a hoolean circuit [S. 26)
or as a network of processes that communicate using a specialized message
passing protocol {23]. The process of compiling reactive systems from a be-
havioral specifications is of particular interest. and we will return to this
issue in Chapter 5. g

/\.__\

4.7 Navigation and Control

o7

Traditionally, the problem of navigation. involving spatial and geometrical
modeling, and the problem of control. involving kinematics and dvnamical
modeling have heen considered separatelv. The former is believed to be in
the realm of planning; the latter in the realm of control. In the first problem.
we are given a geometrical model describing a robot, the objects surrounding
it. thelr current relative positions and orientations. and some goal state
describing » final position of the robot. and we are asked to generate a
trajectory or path through the associatcd space of possible configurations of
the robot and the surrounding objects. In the secoud problem. we are given
a dvnamical model of the robot. and asked to generate a feedback control
law that issues torques to manipulator joints and drive wheels in order to
track a supplied reference trajectorv. In this section. we consider a unified

140

AL

approach that addresses both of these problems.

To represent the state of the robot with respect to its environment. we
introduce the idea of configuration space taken froin Mechanics and adapted
for use in robotics [22]. Following Latombe {20], we represent the robot.
A, and the objects—we will refer.\lwm as obstacles—in ils environment.
By,B;,....Bn, as closed subsets of the work space. }V = R", where n = 2
or 3. BDoth the robot and the obstacles in the workspace are assumed to he
rigid. Let ¥4 and Fyy be Cartesian frames of reference embedded in .4 and
W respectively. F4 is a moving frame while Fyy is fixed.

A configuration. g. of au object is a specification of the position and
orientation of F4 with respect to Fyw. The configuration space. C, is the
set of all configurations of A. We employ the Euclidean metric and the
following distance function to induce a topology on C. The distauce between
two coufigurations. ¢, ¢’ € C. is defiucd as

distance(q.q') = max fla(q) - a(q')ll.

where ||z — #’|]| denotes the Euclidean distance hetween any two points,
z.2' € R™, and a(q) is the point in W occupied by a € A when A is in
configuration q. We define the free space, Cpree, to be

Crree = {glg€ C A Alg) N (| Bi) = 0).

where A(q) is that subset of ¥ occupied by A in configuration q. A free
path (or just a path) of A [rom sowe initial configuration, ¢, to the goal
counfiguration, ¢°, is a continuous map

7 :{0,1] = Crreer

suhjoct to the constraints that x(0) = q and x(1) = ¢°.

The literature is fnil of approaches to solving the problem of finding
obou@e paths in configuration space. In the following, we consider the
artificial potential field approach first introduced to the robotics community
by Khatid [17] which unifies navigation (or path planning) and control. Onr
treatment here borrows the notation of Latombe [20], as well as some of the
insights of Koditschek [19] on the connections between planning and control.
To simplifv the subsequent discussion. we assume that the robot is a point
object and the workspace is R2. In this case. it is meaningless to talk about

141

the robot’s orientation. and. hence. the confignuration space is identical to
the work space.

\We wish to design an artificial potential field so that the robot will he
attracted toward the goal configuration in C and repulsed by obstacles. This
field of forces is modeled as a function. . defined by

Flg) = -Yl(q),

where {7 : Crree — R is a differentiable potential function. and the gradient.
% is defined in the case of ¢ = R? as

T = [/0] .

Uy

\Ve represent. the potential function as a sum of attractive and repuisive
component potential functions:

U(q’ = l’-u(’l) + Urep(Q)-

Generally. the attractive force is represented either as a conic potential well
using the Euclidean distance. as in

Uaeelq) = €llg = 271l

where £ is a positive scaling factor, or as a parabolic potential well using the
Euclidean distance squared. as in

1 -
Usly) = ifllq - ¢ I1%,

where the constant 1/2 is just to make ¥ come out a little neater. In the

former case. we have

(1—-1")

VUaulg) = § e,
T =

and in the latter

VUlanlq) = E(q-q°).

There are advantages and disadvantages to both approaches to repre-
senting the attractive potential. In some cases. it is useful to define a hybrid
potential using a parabolic potential within some fixed radius of the goal (fa-
cilitating gradient descent search in the proximity of the goal) and a conic

142

potential outside that radius (keeping the potential value smaller at points
far from the goal) [20).

We decompose the repulsive component of the potential function into m
additive comnpounents. one for each obstacle. In designing a repulsive field
for a particular obstacle. we waut to make it impossible for the robot to
come in contact with the surface ol the obstacle while allowing movement to
proceed unimpeded when the robot is sufficientlv distant from the obstacle.
For a convex object, B;, the following potential function performs well

2 .
Us(q) = %”(Z:‘«J‘%) iftpilg) <¢
v il pitq) > ¢

where ¢ is a positive scalar called the distance of influence. and o, is defined
as

pilg) = niig llg =9l

where we do not bother to distinguish hetween the configuration space and
the work space, since in the cases connidered here they are the same.
The gradient of Ug, is defined by

vvs.(q)={ (g -8 A vete) egs¢
0 if pilq) > ¢

where Vpi(q) is defined as follows. Let g. be the unique configuration in B;
such that ||lg = qclf = pi(q). Vpilg) is the unit vector pointing away from B;
in the direction determined by the line passing through ¢ and g..

We combine the repulsive fields for the set of obstacles, {B;.B;,....Bm},
by taking a simple swun,

m
Ureplq) =) _ Us,(q).

sz

The gradient of the sum is simply the sum of the gradients.

Vlp =~ ¥Us,(q).

Combining the attractive and repulsive force fields, we have

F(q) = VUg + CUpey.

143

<

iv.

vi.

Fignre 4.25: A 2-D configuration space (i) containing two obstacles. The
attractive potential field (ii) along with the repulsive potential fields (iii)
and (iv) for each of the two obstacles, the sum (v) of the attractive and
repulsive potential fields. and a 2-D plot (vi) showing several equipotential
contours.

144

Fig-ie 4.25 shows a 2-D configuration space. the resulting potential
fields. and several equipotential contours indicating that the potential field
lias a single minimum. The attractive potential is modeled as a parabolic
potential well.

The potential field approach was originallv conceived of as a method
for real-time obstacle avoidance. The basic idea was to regard the robot
in configuration space as a particle moving under the influence of the field.
F = -VU. The acceleration is deterwiuned by F(q) for every ¢ € C. Given
the dyvnamics of A and assuming perfect seusing and motors that deliver
exact and unlimited torque. we can compute the torques that should be
issued to each of the actuators so that the robot behaves exactly as the
varticle metaphor predicts. e

Consider a very simple robot with mmgle degree of freedom (¢.g.. a
prismatic (sliding) joint). We assume that its position (configuration). ¢ €

= R. and velocity. ¢. can be neasured precisely by a perfect sensor and
controlled by a servo that delivers exact and unlimited force, . We model
the dvnamical system using Newton's second law of motion,

Mg =r~r,

where M is the mass of the robot. The object is to move the robot from its
present configuration to some final configuration ¢°.

In the potential field approach described above. we address the geomet-
rical side of the problem in terms of optimizing a cost function disguised
as a potential function. This approach is quite similar to the dvnamic pro-
gramming example that we investigated in Section 4.5. The cost function
that we are trving to minimize in this case is just the attmtxve potenual
function introduced earlier

1. .
¢=§Aﬂh-qﬂﬁ

where A'p is any poeitive scalar. To simplify the present discussion. we
ignore the problem of avoiding obstacles. From this equatio... . e obtain

§=-Vyo=-Kplg-q°),

and note that, sincc in this case ¢° is the only minimum of . this lincar
differential equation generates a solution to the geometric problem of finding
a path from any initial starting configuration to ¢°. Now we set out to derive
a control law that will serve to track the path (or reference trajectory) so
defined.

145

Having interpreted - in terms of poteutial energy. we define the kinetic
enErgy, K. as

= %.-uq?.

and obtain the total energy. \. as the difference of the Kinetic and potential

energies
A=K =

A dynamical model can be obtained using the Lagrangian formuiation of
Newton's equations defined by

d (UA) N_,
dt \ dq dg O™

where £ .. represents ail of the external (non-conservative) forces acting on
the robot. The resulting Newtonian law of motion is

.\I('[' - 1\.p(([- q') = Fext.

Let us assume that 7., represents a dissipative force (we can add this if
necessarv) proportional to the velocity.

Fext = -I‘.D‘L

where A'p is a positive scalar. The resulting system is asymptotically stable,
and converges to the goal ¢* from all initial configuratious ¢ € C.
Finally, we have

Mi+ Kpg— Rp(g—q°) =0.
Returning to our original dynamical model
Mg=r,
we can obtain the followiug control law
F=-Kpg+ Kp(q-4q"),

an instance of proportional derivative feedback control. The proportional
component captures the essence of a simple one-dimensional planning system
that deterinines an appropriate reference trajectory in configuration space.
The derivative component enables the controller to respond appropriatcly

146

sv bHTHos

P

-

to the behavior of tle two-dimensional (one spatial and one temporal di-
iension) physical svstem.

Khatib’s motivation for emploving artificial potential fields was to pro-
vide real-time obstacle avoidance capability for multi-link manipulators {17].
In lhis original formulation. it was assumed that there would exist a higher
level of control that would compute a global strategy in terms of intermne-
diate goals. The low-level system would produce the necessary forces to
achieve these goals, accounting for the detailed geowmetry. kinematics, and
dynamics in real time. In the following. we say a bit wore about the high-
level problem of computing a global strategy corresponding lo a path from
the curreut coufiguration to the goal configuration.

The approach to building poteutial fields described earlier has a number
of problems: some of wkich can be easily remedied and others of which
are more difficult to overcome. We address some of these problems now.
beginning with the easiest ones. working our way up to the more difficuit.

The repulsive field for obstacles in the workspace was defined only for
convex objects. We can extend the method to haudle more general objects
by decomposiug each vbstacle into some nuber of (possibly overlapping)
convex vbjects. associating a repulsive potential with each component. aud
summing the result. There are some sybtlies with this approach (see [20}).
but this basic method of decomposition s well in practice.

The next problem concerns the assumptions regarding the dimensions
of the workspace and the degrees of freedom of the robot. For the idealized
poiut robot operating in two dimensions. the two-dimeusional configuration
space was equivalent to the Euclidean plane. In genmeral. the numnber of
parameters required to describe the counfiguration of the robot will determine
the dimeusion of the configuration space. For a rigid robot operating in
three dimensious. it takes six parameters to describe the configuration of the
robot. For manipulators consisting of rigid links serially connected by single-
degree-of-freedoin joints (e.g.. revolute (rotating) and prismatic (sliding)
joints). the number of parameters required is equal to the nunber of joints.
For existing mobile robots and manipulators, it is possible to construct the
requisite configuration spaces and extend the techniques described above to
Laudle the resulting motion planning problems. However. assuwming P #
NP. the comiplexity of planning free paths is exponential in the dimension
of the configuration space.

In general. computing free paths for multi-link manipulators and mo-
bile robots in cluttered enviromments can be quite expensive [27). From the
perspective of computational complexity. this high-level geometric planning

L7

i.

iv.
Figure 4.26: Two potential fields with multiple extrema: one (i) resuiting
from two closely situated convex obatacles. and & second (iii) resuiting from .

a single concave obstacle. A set of corresponding equipotential contours is
shown (ii) and (iv) for each of the two potential fields.

problem is tvpical of the sort of problems that we will encounter in the next
chapter. Solations to problewus involving a significaut number of constraiuts
(e.g.. an environment cluttered with obstacles) and many aiternative control
actions (e.g.. robots with several degrees of freedom) tend to be computa-
tionally prohibitive. For real-time applications involving such problems. it
is generally necessary to make simplifving assumptions thereby decreasing
the complexity of the resulting decision problem while at the same tiwme
sacrificing generality and possibly risking soundness or completeness.
Another problems with the artificial putential function appruach vutlined

148

earlier concerns with the problem ¢’ muitiple extrema in potential fields. In
general. a potential field for a cluitered work space may include several ex-
trema. Under such conditions. using the gradient to guide search may result
in paths that terminate at extrema other than the one corresponding to the
goal configuration. Concave objects are one potential source of misleading
local extrema (see l'igure 4.26.iii). but such extrema can also result in the
case of closely situated convex nbstacles if the distance of influence. ¢, is
greater than twice the distance hetween the obstacles (see Figure 4.26.i).

In order to avoid falling into local winima. it is necessary to employ
more sophisticated search methods than simple gradient descent. In the
following, we consider one such method for finding collision-free paths in a
two-dimensional configuration space.”

We hegin by tessellating the configuration space to form a grid of equally
sized cells. In the case of a point robot on a planar surface. the discretized
configuration space. Cz, is a subset of the integer plane. Z x Z:

Cz={GJo<ij<r},

where r is a integer parameter used to hound the size of the configuration
space. The potential at the coordinates, (7, j), in the integer plane is U(il, jI)
where [is the length of the side of a cell. We assume that hoth the initial
and the goal configurations are configurations in Cz, and that, if two con-
figurations are neighbors in Cz and both of them belong to Cpree, then the
straight line segment connecting them also lies in Cre,-

In the following, T is a tree whose nodes are configurations in Cz. We
define a best-first path planning algorithm as follows.

1. Initialize T to be the tree consisting of the singie (root) node corre-
sponding to the current configuration.

2. Choose a leaf node. q. of T with unexplored neighbors in Cz whose
potential value is equal to or less thau the potential value of all the
other leaves in T with unexplored neighbors.

3. Add to T as children of q all configurations not already in T' whose
potential value is less than some (large) threshold. (This threshold is
set to avoid paths that get too close to ohstacles. Recall that at the
surfaces of obstacles the potential is infinite.)

"The method for searching two-dimensional configuration space described here can be
extended to higher-dimensional configuration spaces with little modification, but is only
practical for dimncnsion < 4 {20].

149

4. If ¢° is a leaf node in T. then go to Step 6.

. If there are no leaf nodes in I with unexplored neighbors. then return
failure. clse go to Step 2.

i)

6. Return the path from the root of T to ¢~.

The algorithin described above is gnaranteed to find a free path if one
exists or report failure otherwise. The algorithm deals with multiple extrema
by following a discrete approximation to gradient descent until reaching a
local mminimumn. Once in a local minimuwm. it proceeds to “fill in~ the well
of this minimum by exploring the surrounding cells until a saddle point is
reached aud the local winimum is avoided. By adding simple optimizations
to facilitate finding the next node to explore, it is possible to achieve a
running time of O(mr™logr) fur a conliguration space of dimension m.
The jalgorithm works for configuration spaces of arbitrary dimension, but
fo%l.{imension much greater thau four the running time is prohibitive.

t should be noted that the best-first plauning algorithm will find a path
il one exists, but not necessarily the shortest path or the optimal path by
auy given metric. The discretized configuration space can be used as part of
a dynawmic programming approach to finding optimal paths. Indeed, using
a dynamic programming approach, we can design an algorithm that will
construct a polential field with a single minima at ¢* in O(mr™). Using this
potential field, one can generate the shortest path from aay initial location
to ¢" using a discrete approximation to gradient descent in time linear in
the length of the path.

Koditschek {18] provides a inethod of generating potential functions
which he calls navigation functions that have'a single global niinimum. The
advantage is that simple local methods (e.g.. gradient descent) suffice for
navigation and control. However. as with other approaches to motion plan-
ning, the cost of generating navigation functions can be quite high in the
case of cluttered envirouwents and robots with mauy degrees of [reedom.

This section was meaut as a bridge Letween the ceutral issues of this
chapter and those of the next. In this chapter, we considered basic properties
of dynamical systews such as controllability, observability, aud stability that
are critical in the design of control systems. We investigated the fundamental
idea of feedback control and considered the use of performance measures in
optimal coutrol. Finally. in this section. we cousidered the idea of providing
Ligher-level direction for control in the coutext of navigation problems. In
particular. we considered methods for encoding navigation tasks in terms

150

of potential functions that provide a convenient hasis for the control of
manipulators and mobile robots. The next chapter considers the issues
involved in encoding high-level tasks in much more detail. Like the problems
involved in motion plauning. the problems we wifi/b2 lookime at in the next
chapter are computationallv complex.

4.8 Further Reading

The literature on control systems theory and practice is vast. In the follow-
ing, we point out some books and articles that have been particularly useful
in understanding the basic control issues and their attendant mathematical
formulations. For a good overview of classical and modern approaches to
control. the introductorv text by Dorf [10] is excellent. Most control texts
assume a relatively high level of mathematical sophistication. In particular.
some familiarity with linear systems analysis is generally assumed. The text
by Chen [9) provides a good introduction to linear systems theory. Gopal's
hook [14] on the control of linear multivariable systems is an excellent intro-
duction to that subject. For more of an engineering perspective on control.
the interested reader is advised to consult Bollinger (5] or Borrie [6].

The survey article by Ramadge and Wonham [25] provides a good in-
troduction to work in the area of discrete events systems. Optimal control
texts generallv rely on a good background in the differential and integral
calculus. and, in particular, the calculus of variations [12]. Athans and Falb
(2] provide an introduction to optimal control. There have been many books
written on dynamic programming. The original text by Bellman {3] is still
generally availabie and provides a good mttocluctlon to the snbject with
plenty of illustrative examples.

For a careful treatment of the counfiguration space representation and
a variety of approaches to finding free paths in coufiguration space. the
reader is enconraged to read Latomhe’s book on robot motion planning [20].
Koditschek [19] provides a technical and historical survey of navigation tech-
niques using potential functions including a discussion of stability issues. For
a survey of complexity results pertaining to motion planning, see Schwartz.
Sharir, and Hopcroft [28).

151

Bibliography

{1} Aho, Alfred V.. Hopcroft. John E.. and Ullman. Jeffrev D.. Data Struc-
tures and Algorithms. (Addison- Weslev, Reading, Massachusetts. 1983).

[2] Athans, Michael and Falb. Peter L.. Optimal Contml: An Introduction
to the Theory and Its Applications. (McGraw-Ilill, New York, 1966).

(3] Bellman. Richard. Dynamic Programming. (Princeton University Press.
1957).

[4) Bellman, Richard, Adaptive Control Processes, (Princeton University
Press, Princeton, New Jersev, 1961).

(5] Bollinger, John G. and Duffie, Neil A., Computer Control of Machines
and Processes, (Addison-Wesley, Reading, Massachusetts, 1988).

(6] Borrie, John A.. Modern Control Systems: A Manual of Design Meth-
ods. (Prentice-Hall. Englewood Cliffs, New Jersey, 1986).

(7] Brooks, Rodney A.. A Robust Layered Control System for a Mobile
Robot, IEEE Journal of Robotics and Aulomation, 2 (1986) 14-23.

[R] Chapman, David and Agre. Philip E., Pengi: An Implementation of a
Theory of Activity, Prorecdings A AAI-87. Scattle, Washington, AAAl,
1987, 268-272.

(9] Chem, C. T., Introduction to Linear System Theory, (Holt, Rinehart.
and Winston, New York. 1970).

(10} Dorf. Richard C.. Modern C'ontrol Systems. (Addison-Weslev. Reading,
Massachusetts, 1989).

[11] Fir"v. R. James. An Investigation in Reactive Plauning in (‘omplex Do-
mains. Procecdings ANALS7. Scattle, Washington. AAAL 1987, 196-
201.

[12] Gelfand. I. M. and Fomin. 5. V.. Calrulus of Variations. (Prentice-Hall.
Lugiewood Cliffs. New Jersev. 1963).

(13]) Georgeff. Michael P. aud Lansky. Amy L.. Reactive Reasoning and
Planning. Proceedings A AN[-§7. Sealtle. Washington. AAAL 1987,
677682,

[14] Gopal, M.. Modern Control System Theory, (Halsted Press. New York.
1985).

(15] Hayes-Roth. Barbara. A Blackhoard Architecture for Control. Artificial
Intelligence. 26 (1985) 251-321.

(16] Kalman. R. E.. Falb. P. L.. and Arbib. M. A.. Topics in AMathematical
System Theory. (McGraw-Hill. New York. 1969).

[17] Khatib, Ou.sama, Real-time obstacle avoidance for manipulators and
mobile robuts. International Journal of Robotics Research. 5 (198G)
90-99.

(18] Koditschek. D., Exact Rohot Navigation by Means of Potential Func-
tions: Some Topological Considerations. IFEF International Confer-
rnce on Robotics and Automation. Ralcigh, NC., 1987. 1 6.

(19] Koditschek. D.. Robot Planning and Control Via Potential Functions.
Khatib. Oussamna. Craig. John H., and Lozano-Pérez. Tomds. (Eds.).
Robotics Review {. (MIT Press. Cambridge, Massachusetts. 1989). 349-
367.

[20] Latombe. Jean-Claude. Robot Motion Planning, (Kluwer Academic
Publishers. Boston, Massachusetts, 1990).

(21) Lewis. Frank I.. Optimal Control. (John Wiley and Sons. New York.
L9R8).

{22) Lozano-Pérez. Tomas. Spatial Planning: A Configuration Space .\p-
proach. IEEE Transactions on Computers. 32 (1983) 108-120.

(23] Nilsson. Nils J.. Action Networks. Tenenberg. Josh. Weber. Jav. and
Allen. James. (Eds.). Proceedings from the Rochester Planming 1Work-
shop: From Formal Systems to Practical Systems. 1989. 36-6%.

[24) Pontrvagin. L. S.. Boltvauskii. V. G.. Gamkrelidze. R. V.. and
Msichenko. E. F.. The Mathematical Theory of Optimal Processes.
(John Wilev and Sons. New York. 19G2).

[25] Ramadge. Peter and Wonham. Mnrray. The Control of Discrete Event
Svstems. Proceedings of the ICEE. T7(1) (1989) 81-98.

[26] Rosenschein. Stan and Kaelbling. Leslie Pack. The Svnthesis of Digi-
tal Machines with Provable Epistemic Properties. Halpern. Joseph Y..
(Ed.). Theoretical Aspects of Recasoning About Knowiedge. Proceedings
of the 1986 Conference. Los \ltos. California. Morgan-Kaufmann. 1987,
R3-98.

[27] Schwartz. J. T. and Sharir. M.. On the Pianos Movers’ Problem: I.
Communications on Pure and Applied Mathematics. 36 (1983) 345-
398.

(28] Schwartz. J. T.. Sharir. M.. and Hopcrott. J.. Planning. Geometry. and
Complezity of Robot Motion. (Ablex. Norwood. New Jersey. 1987).

[29] Wolovich. William \.. Linear Multivariable Systems. (Springer-Verlag.
New York. 1974).

154

+

Chapter 5

Knowledge-Based Planning

Control theory provides a framework for constructing strategies to control
processes modeled as dynamic systems. Sometimes, however, it is more con-
venient to represent the controlled process in terms of causal event models
of the sort investigated in Chapter 3.! The problem of constructing courses
of action based on properties of causal event models is called planning, and
the specification for intended actions of the robot over time is called a plan.
By planning, the robot in effect programs itself to act in a particular way in
the future. Al researchers have developed a variety of planning techniques,
applicable for a wide assortment of plan and event representations.

In the general planning setup, the robot is given a causal event model,
with a distinguished subset of events, called actions, deemed under the
robot’s control. In other words, the robot can directly establish the truth of
actions, but can influence other events only indirectly through their causal
relations to actions. The robot also has some objectives describing desirable
propertiés of the controlled process in terms of patterns of events: Plan- -
ning is the process of assembling basic actions into a composite plan object
designed to further these objectives.

A large fraction of planning effort is typically devoted to reasoning about
the effects, or potential consequences, of actions. One important reasoning
task is to determine whether a particular property should be expected to
hold #& some point after or during the plan’s execution. Planners perform
this task by applying their truth criterion to the causal event model. The

! It would be nice to provide some suggestions about what features of the process indicate
the best choics of representation. Potential advantages of svent-dased (linguistic) ontology
include facilities for representing incompleta information and the intuitive appesl of cavsel
events. Perhaps a comparative discussion belongs at the start or end of Chapter 3.

*Draft® of December 10, 1990 2

computational expense of determir'ng which propositions hold at various
points in time depends strongly o.. the representation for the effects of ac-
tions and the accuracy of the algorithm implementing the truth criterion.
For the planning techniques described below, we use deducibility with re-
spect to TEMPLOG causal models as the truth criterion.

Usually it is not possible to predict perfectly the effects of actions on
the controlled process. These limitations are manifest by indeterminacy or
even incorrectness of the truth criterion. To plan effectively under these
circumstances, the robot may need to gather information directly from the
controlled process, augmenting the predictions drawn from its causal model.
This approach is directly analogous to the use of feedback in control systems.
In robot planning, the process of sensing the state to influence subsequent
action is callud ezecution monitoring.

Planning is deliberative, in that it generally calls for a broad consideration
of the available courses of action and their potential consequences. However,
in most situations the robot does not have the luxury of unbounded delibera-
tion, because the process of interest progresses in time as the robot computes
its plan. To produce effective action under the stress of real time, the plan-
ner must have some capability to react to its perceived situation without
necessarily invoxing its full deliberative powers. For any planning problem
there is a spectrum of computational strategies, expected to produce better
ple.ns as more time is devoted to deliberation. Managing this tradeoff is a
significant issue in the design of comprehensive planning architectures.

The final issue we consider in this chapter concerns the specification
and interpretations of the robot’s fundamental objectives in control. In the
corimon approaches to planning (including the one we present here), ob-
jectives are represented as a set of predicates, called goals, on states of the
cortrolled process. The planning task then amounts to finding a course
of action guaranteed to achieve these goals. As we have seen in several
ex.mples, however, absolute goal conditions cannot express gradations of
preference needed to capture the realistic objectives of a control problem.
The basic difficulty is that predicates coarsely partition the outcomes into
twe sots, failing to distinguish among states where the goals are achieved,
and providing no guidance whatever for problems where it is impossible to
guarantee goal achievement. When objectives can be achieved to varying
degrees or with some probability, the more general preference representation
is required to properly account for the tradeoffs inherent in choosing alter-
native courses of action. On the other hand, the goal representation meshes
well with the event ontology for causal modeling, and with plan evaluation

Draft of December 10, 1990 3

procedures based on the truth criterion. Moreover, goals have significant
heuristic value in focusing the search for good plans, and therefore consti-
tute a useful approximation for more expressive preference structures. At
the end of this chapter, we analyze the preferential interpretation of goals
as a first step toward a reconciliation of common planning practice with the
general theories of decision and control.

5.1 A Task Reduction Approach

The approach to planning we describe here is organized around the concept
of a task, which is an abstract operation that the robot is committed to
performing. Tasks are abstract in the sense that they dictate the general
nature of what the operation is to accomplish without necessarily specifying
its precise implementation. Before an abstract task can be carried out, the
planner must supply sufficient detail so that it can be executed directly by
the robot hardware.

One way of increasing detail is to replace an abstract task with a more
specific task or collection of more specific tasks. This process of refining the
level of abstraction is called task reduction. Upon reducing an abstract task,
the robot commits to carrying out the more specific tasks. The reduction
process continues until all the tasks are specified in sufficient detail or all
avenues of reduction are exhausted.

A task detailed enough to be executed by robot hardware is called prim-
stive. Of course, primitiveness is a relative property, defined with respect
to the capabilities of a particular execution module. For complex planning
problems, it is often useful to construct a hierarchy of abstraction levels,
each corresponding to a virtual robot with its own set of actions that are
considered prim.i'tiv'e. In this scheme, the planner at each level generates
tasks at the next lowest level of detail, but is viewed as an execution module
by the level immediately above.

One important type of nonprimitive task? comprises those committing
the robot to make a given proposition hold. These achievement tasks are
denoted achieve(P), where P is the particular proposition to be achieved.
Such tasks may be reduced by finding a primitive task that necessarily
achieves P, or by finding some other tasks achieving propositions that col-
lectively entail P.

2Other types include maintenance and prevention. Mention these, but do not introduce
them into the logic. Perhaps qive interpretation for them in terms of achieve.

Draft of December 10, 1990 4

Reduction is complicated by the fact that a* any instant the robot is
likely to have many tasks, and several methods fo. reducing any given one. In
other words, finding a method to achieve a proposition is a search problem.
It is quite possible that a choice for reducing one task may preclude potential
reductions for some of the other tasks, requiring backtracking. Sometimes
these conflicts can be detected and avoided, by coordinating the reduction of
separate tasks via constraints. In the remainder of this section, we present a
scheme for task reduction, developing a set of data structures and associated
techniques for organizing and managing the search process.

As far as our temporal model is concerned, a task is just a special sort
of time token. An instance of a task is created by asserting an expression of
the form

token(task(type) , symbol) .

The assertion declares that the robot has a task of type type throughout the
interval from begin(symbol) to end(symbol). For instance, the following
expressions assert that the robot has two particular tasks, one primitive and
the other an achievement.

task(push button(buttond2)).

task(achieve(location(robot,valvel))).

Primitive tasks are specified by their type. If the query primitive(Q)
succeeds, then Q is the type of a task that can be directly executed on robot
hardware. In the warehouse domain, we assume that push button(B) is
primitive,® where B is the label of a known push-button control switch. Be-
ing primitive does not imply that executing an action will necessarily achieve
the proposition of the achievement task it was reduced from. The intended
results are typically guaranteed only under certain conditions, which may
or may not be entirely under the robot’s control.

Tasks come and go as the robot discovers information about its envi-
ronment. If the robot enters the loading area and notices a truck that was
not there the last time it visited, then it will formulate a new task to load
that truck. Conversely, if the robot currently has the task to load truck4s,
and it notices that truck45 is no longer waiting, the robot will give up on
this task. To institute the general policy of servicing trucks waiting in the
loading area, we assert a task covering that policy, and add a projection rule
to the database relating this task to its more specific instances.

3 Comment from Jean-Claude Latombe that this can actually be a comples operation
from the robot control perspective.

*Draft® of December 10, 1990 5

project(task(service.trucks),
becomes(location(Truck,loading dock)),
task(load(Truck))).
along with a corresponding policy to give up on load tasks when they are
no longer feasible.*
project(task(load(Truck)),
becomes(-~location(Truck,loading dock)),
~task(load(Truck))).

Of course, for the above polices to work as intended, the robot has to be
continually aware of new arrivals and unexpected departures, and, hence, it
might be reasonable to have policies that call for the robot to occasionally
scan the loading area looking for changes. This points out a problem with
our representation of time and action; we do not distinguish between what
is true of the world and what the robot knows to be true of the world. We
return to this issue in Section 5.2.

Some policies should be ignored in certain situations. For instance, when-
ever the robot is in an area where an assembly operation is in progress, it
should check to see if the assembler's malfunction light is on, and, if so0,
generate a task to push the reset button. However, if the robot is in a hurry
or has only recently checked the malfunction light, it might not generate the
task to check. The decision whether or not to check will depend upon what
other tasks the robot currently has pending.

Some types of policies are more difficult to administer than others. For
instance, a policy to clean up concrete spills might generate a specific task in
response to each detected spill, but what about a policy to prevent or min-
imize concrete spills? In the latter case, the robot’s response to a predicted
spill might simply be to change its current plan by, say, opening an input
valve a little less or an output valve a little more, but the robot might instead -
decide that the valve settings are perfect and choose to prevent spillage by
raising the walls of the mixing tank. Whether this latter approach is ac-
ceptable will depend upon the cost of raising the walls. In Section 5.4, we
consider how more precise specifications of objectives, in the form of value
functions, may provide the information necessary for such decisions.

In the task reduction approach, planning knowledge is encoded in ex-
pressions of the form

todo(what, when, how) .

! What if the load task is already reduced? Presents complicated problem of how to
maintain status of tasks in reduction search.

*Draft® of December 10, 1990 6

where what is a task type, when is an interval, and Aow is either .nother task
type or a compound task description specifying how to reduce the what task
type. If how is a simple task, the result of interpreting the todo expression
is to introduce a new task

token(task(how) , when).

and mark the original what task as “reduced,” to note that we need not
search for another method.

One common how task type is the no_op, or do-nothing action. In gen-
eral, when you have a task to accomplish something that is already true,
the obvious action to perform is none at all. We can represent this simple
strategy as:

todo(achieve(P) ,K,no_op) — holds(end(K),P).

where, in order to absolve the robot of its commitment to achieve P, all that
is important is that P is true at the end of the interval K.

Note that providing methods for achievement tasks in todo expressions
significantly simplifies the search process. Without these methods, the plan-
ner would have to examine the causal model directly to find controllable
events that would result in the proposition to be achieved. By relying on
them, however, the robot will not in general consider every possible way
of accomplishing its task. The task reduction approach implicitly assumes
that the computational benefits of using todo directives exceeds the cost
of supplying them and the loss of opportunities potentially derived from a
direct analysis of the causal model.

It is often useful to group together a collection of tasks coordinated for a
common purpose. We call the description of such composite action a plan.
Actually, these plan objects only partially specify the full course of action,
and we sometimes emphasize this by calling them abstract or partial plans.
In contrast, a complete plan is comprised entirely of primitive actions with
a precise specification of the time that each is to be executed.

In our task reduction scheme, a plan consists of a set of steps with
associated constraints that determine their order and duration. For instance,
a plaa to fill a tank might include the following tasks as steps:

Stepi: achieve(location(truck42,loading dock))
Step2: achieve(location(robot,valvel))

Step3: achieve(position(valvel) =35°)

Step4: achieve(floor(robot,floori))

Step5: achieve(location(robot,valve2))

Draft of December 10, 1990 7

along with constraints on those steps as follows:

end(Stepl) <begin(Step2)

distance(begin(Step2),end(Step2)) € [00:00,00:01]

The steps in a plan are transformed into a set of tokens in the course of

formulating a specific instance of that plan. For example, the above steps
might be instantiated as

token(task(achieve(location(truck42,loading.dock))),stepidl). -
token(task(achieve(location(robot,valvel))),stepi42).
token(task(achieve(position(valvel) =35°)),step143).
token(task(achieve(floor(robot,floori))),stepid4).
token(task(achieve(location(robot,valve2))),stepi45).

and then constrained temporally by instantiating the specified constraints:
end(step141) <begin(stepi42).
distance(begin(step142)),end(stepi42)) € [0,00:01].

where stepi41 through stepi45 are newly minted symbols identifying the

intervals associated with the task instances.
Plans are represented in our scheme by expressions of the form

plan(steps, time-constraints, protections)

where the steps indicate the new tasks involved in the reduction, the time-
constraints restrict the order of those tasks, and the protections specify spe-
cial properties that must be maintained during the plan’s execution. The
new tasks are referred to as subtasks of the task they were reduced from,
inversely designated the supertask of the new tasks. All subtasks are implic-
itly constrained to occur during the interval of the supertask, as specified in
the todo expression. Protections are important in detecting problems that
arise when one task interferes with another.® Consider the following general
method for making two propositions true at the same time:

todo(achieve((P,Q)).K,
plan([achieve(P),achieve(Q)],
(end(1) < end(KX) ,end(2) < end(X)],
(protect(end(1),end(X),P),
protect(end(2),end(X),Q)])).

' Latombe: what about simplifications possible by merging identical subtasks for different
supertasks?

Draft of December 10, 1990 8

The steps are numbered by their position in the list of steps.® The con
straints refer to these numbers and are used to constrain the corresponding
tokens created in the process of instantiating a particular plan. The two pro-
tections stipulate that to achieve the conjunction of P and Q, achieve each of
P and Q individually, and ensure that once each proposition is made true it
remains so at least until the end of time interval K. A protection is said to
be violated when the robot becomes committed to an action with an effect

whose type contradicts the type of the protection.” Certain combinations of =

tasks can make it impossible to avoid violating protections.® In some cases,
conflicts among propositions to achieve are easy to detect, for instance:®

achisve((status(assembler,on),status(assembler,off)))

In general, however, the interactions between tasks can be arbitrarily com-
plex, requiring considerable effort to detect and resolve.

Most of the plans for a given application encode domain-specific strate-
gies for reducing abstract tasks to more concrete ones. The set of all such
strategies constitutes a plan library. In the following, we provide examples
of plans that might appear in the plan library for a robot operating in the
warehouse domain. We take the liberty of simplifying the plans somewhat
(e.g., by leaving out certain steps and constraints) in order to make the text
more readable. Here is a plan for installing an option in an appliance:

todo(achieve(installed(Option,Appliance)),K,
plan((achieve(location(Appliance,in conveyor)),
achieve(location(Option,in conveyor)),
achieve(status(assembler,cn))],
[end(1)<begin(3),end(2) < begin(3)],
(protect(end(1),begin(3),
location(Appliance, in conveyor)),
protect(end(2),begin(3),
location(Option,in conveyor)),
protect(end(3),end(K),status(assembler,on))])) ~
holds(begin(K), (status(assembler,of?f),
status(malfunction light,off))).

¢ Baplain how this might be implemented in prolog using a pre-processor, and how the
syntes might be further sugared to use step identifiers.

T Latombe: What about temporary violations? Is there any way te allow them? Answer:
never really wseful; cornsider modal truth criterion.

Se.g., the Sussman anomaly.

? Make clear that conflicts are not errors but can represent legitimate competition among
goals and subgoals.

Draft of December 10, 1990 9

Take note of the role protections play in this plan. The first two protec-
tions ensure that, once placed on the agsembler’s input conveyor, the appli-
ance and the option to be installed will remain there until the robot starts
the assembly. The third protection prevents the robot from inadvertently
scheduling some other activity that would result in turning the assembler
off during its execution of the installation task.

The robot will also need plans for changing the location of objects. The
following general rule specifies how to change the location of something other «
than the robot:
todo(achieve(location(Object,Loct)) K,

plan([achieve(location(robot,Loc2)),pickup(Object),
achieve(location(robot,Locl)),set down(0Object)],
(end(1) < begin(2),
end(2) < begin(3),
end(3) <begin(4)],
[protect(end(1),begin(2),location(robot,Loc2)),
protect(end(2),begin(3) ,holding(robot,O0bject)),
protect(end(3),begin(4),location(robot,Loci))])) ~
holds(begin(X),(location(Object,Loc2),
Object # robot,Loct #Loc2)).

The above plan assumes a somewhat implausible model of robotic move-
ment. In order to move an appliance onto the input conveyor, the robot
would have to move itself onto the conveyor while holding the appliance,
then set the appliance down so that it rests on the conveyor. Although we
continue to make use of such simplifications as required to keep the dis-
cussion focused, we return to consider continuously changing parameters in
general and spatial inference in particular later in this chapter.!® To plan
for moving the robot about, we use the following rule, and assume tha.t the
task type move(source, destination) is primitive:
todo(achieve(location(robot,Locl)) ,K,move(Loc2,Locl)) «~

holds(begin(K),location(robot,Loc2)).

Finally, the robot needs a plan for turning the assembler on or off:

todo(achieve(status(assembler,Statl)),K,
plan([achieve(location(robot,assembly.area)),
push button(Stat1)],
(end(1) < begin(2)],
[protect(end(1),begin(2),
location(robot,assembly.area))])) «
holds(end(K), (status(assembler,Stat2),Stati # Stat2)).

1 Will we? I don't think so.

Draft of December 10, 1990 10

Now we are ready to consider how to go about reducing a set of abstract
tasks to primitive tasks. In general, the reduction process can be quite com-

plex.

We start by sketching an algorithm for performing the reduction, give

an example illustrating the algorithm in operation, and then comment on
complications not explicitly handled by the algorithm. The task reduction
procedure is specified as follows:

1.

9.

Find some task, token(task(what) , when), which is neither primitive
nor marked as already reduced. If no such task exists, wait until a
new task is added to the database.

Using the query, todo(what, when, how), try to find some method how
for carrying out the task found in Step 1.

If the query #>- . -1 in Step 2 fai's, try adding constraints to restrict
the ordering of the existing tasks. This may trigger rules permitting
the todo query to succeed on the next attempt.

. If the query specified in Step 2 fails even after trying various additional

constraints, try removing one or more of the existing tasks along with
all associated protections and other constrainia. Be careful to reinstate
the original supertask.

If Step 2 through Step 4 fail to produce an applicable method, return
to Step 1 and try another task.

. If the query succeeded, mark the orizi. . task as reduced and add

the new how task or plan to the database, along with any specified
constraints and protections. -

Upon effecting the reduction, TEMPLOG will have updated the database
using the projection and persistence clipping algorithm, and the pro-
jection rules that describe the effects of the actions. Check to see if
any protections are violated by the addition of the new tasks.

. If any protections are violated, resolve the violation by either reorder-

ing or removing one or more of the existing tasks.

Go to Step 1.

A concrete example should help illustrate the basic operation of the re-
duction algorithm. Figure 5.1 shows a TEMPLOG database containing one

Draft of December 10, 1990 11

%oeu’enl location(forkhft staging _area)

T -

ion2 location(refrigerator37 large_sppliance_storage_area)
} -

location3 Jocation(icemaker!4 parts_storage_ares)
lr s

ln-nn <cstus({assem bisr.off)
!

'lncdll ﬂhﬂmu.rleﬁwwdﬂ)
! IR

Figure 5.1: Database before reduction

.nﬂnl status(asssmbist.off)
v

-

'r—ll mmu:l*ipmuﬂ))
1 R

wopt19 achisve(location(iccmaker|4.in_canveyor))

sepl20 achisve(location(vefrigerstor3? Jn_conveyor))
stepi2] schisve(status(assensbier cn))

anpi22 pwsh_buttan(on)

statmel stame(asesmsbler.on)
I —

Fiéure 5.2: Database after reduction

nonprimitive unreduced task to install an ice maker in a refrigerator. Fig-
ure 5.2 shows the TEMPLOG database resulting from applying the reduction
algorithm, using the planning knowledge specified in this section and the
knowledge of cause-and-effect relationships described in Chapter 2. (Only
selected steps are depicted in Figure 5.2 to keep the display readable.) The
reduction illustrated in Figure 5.2 is a particularly simple one; we consider
next some problems that may arise in more complicated situations.
Returning to the previous listing of the reduction algorithm, note that
there are a number of steps where choices are made. In Step 1, the robot

Draft of December 10, 1990 12

will generally have to choose from a number of unreduced nonprimitive
tasks. In Step 2, there are likely to be severa; methods for reducing the
chosen task. If the todo query does not immediately succeed, the robot may
have to consider several alternative orderings in Step 3, or several reduced
sets of tasks in Step 4, before it is able to find a reduction strategy that
works. In fact, the iteration of Steps 1 through 5 can cause the algorithm
to loop indefinitely, continually removing tasks and adding new ones. In
general, the algorithm is not guaranteed to eventually terminate with a
complete reduction. The problem of resolving protection violations in Step 9
can be particularly troublesome; sometimes involving numerous attempts at
reordering or modifying the set of tasks. If the robot makes the wrong choice
early in the planning process, it may expend a great deal of effort before it
“backs up” znd tries an alternative option. All of these problems and more
have to be routinely solved by a robot control system that generates plans
by task reduction. Researchers have developed an array of techniques for
dealing with these problems, although none offer a complete solution.

For an example of how the procedure detects and resolves negative in-
teractions among tasks, suppose that the TEMPLOG database depicted in
Figure 5.1 also contains a task committing the robot to perform routine
service on the cssembler. Suppose further that this routine service task is
currently scheduled to overlap with the task to install the ice maker in the
refrigerator. The plan for 1 >utine-service tasks is specified below:
todo(routine_service(assembler) ,K,

plan([achieve(status(assembler,off)),
lubricate(assembler),
replenish coolant(assembler),
push button(reset)],
(end(1) <begin(2),end(1) < begin(3),
end(2) < begin(4) ,end(3) < begin(4)],
(protect(end(1),begin(4),
status(assembler,off))]).
Note that the routine service plan requires that the assembler be turned off
before the lubrication and coolant-replacement tasks are initiated. The task
to turn the assembler off conflicts with the installation plan, which requires
that the “ssembler be on.

Figure 5.3 depicts the database resulting from reducing both the instal-
lation and routine service tasks. Note that the database predicts that the
assembler will not remain on throughout the required portion of the installa-
tion interval. In the course of reducing the two tasks, the robot should have
generated two protections, the first associated with the installation task:

Draft of December 10, 1990

L‘l statwe(aassmbler.off)
{

]
1

lhnl-hl m—n.lrumm)
|

oepl2l achieve(smsus(assembler,on))
awpi22 push_beston(on)
smtms2 slnsun(ssssmbler.on)

ssrvice! routing_service(sesombler)
L. i

wep127 achisve(smtue(ssssmbler.off))
ﬁrl” poch_bution(ofl)

‘-—J vimtns(assembler.off)
¥

Figure 5.3: Database with a protection violation

13

Draft of December 10, 1990 14

protect(end(step121),end(installationl),status(assembler,on))
and the second associated with the routine service task:
protect(end(step127) ,end(servicel),status(assembler,off))

These two protections conflict with one another (i.e., they require the per-
sistence of tokens of contradictory types over a common subinterval). The
easiest way to resolve this particular conflict between the installation task
and the routine-service task is to reorder the two tasks: either constrain
the interval servicel to end before the beginning of step127, or constrain
service{ to begin after installationi. For other conflicts, reordering may
not suffice, necessitating more drastic measures.

There are other problems that can arise besides protection violations.
Many of the rules specifying reduction methods have conditions tkat must
hold if the reduction method is to apply. We refer to these conditions as
reduction assumptions. For instance, consider the general rule for avoiding
unnecessary work:

todo(achieve(P) ,K,no_op) ~ holds(end(K),P).

If the robot has a task of type achieve(status(assembler,off)) dur-
ing token interval8i, when the assemblier is already expected to pe off,
then it will reduce the task to a no_op. The reduction assumption is that
status(assembler,off) holds at end(interval8i). The robot will check
at reduction time that the reduction assumption holds, but the assumption
may become false during subsequent planning as additional tasks are added
to the database. Reduction assumptions have to be carefully monitored in
much the same way that protections are, and steps taken when the assump-
tions are found to be violated.!! _ o ' 7
The general problem of reducing a set of tasks to primitive tasks so as
to avoid violating any protections or falsifying any reduction assumptions
is believed to be computationally intractable (i.e., it has been shown to be
in the class of NP-Aard problems). Deadlines and reasoning about resources
are obvious sources of complexity, but, even if we were to ignore deadlines
and resources, most interesting planning problems remain in the company
of those difficult problems. For certain versions of the problem, there is no

1115 the reduction irigger needs to hold at task time, why aren’t these always protected?
Or alternately, why not allow protections with simple task reductions? Clanfy the utility of
defining the concepl of reduction assumptions distinct from protections. Confusing factor:
protections seem to guard against inter-task conflicts as & nide effect of preventing intre-
task conflicts, performing some of the function of reduction assumphions.

*Draft® of December 10, 1990 15

effective method for generating plans (i.e., the problem is undecidable). For
the problems that are decidable, it is fairly simple to write an algorithm
that finds a solution if one exists, and signals that no solution exists other-
wise. Unfortunately, such an algorithm may take an unacceptably long time
to return its answer. While these observations are somewhat discouraging,
we at least know that good approximate solutions are possible (e.g., hu-
mans perform reasonably well driving forklifts in warehouses). In artificial
intelligence, planning problems are typically recast as search problems, and
standard methods have been applied to develop heuristic algorithms that
perform well in practice. In this chapter, we have not explored the vari-
ous search techniques, concentrating instead on the basic problem of how a
robot might use symbolic representations to guide its behavior.

In each iteration of the reduction algorithm, a partially completed plan
is analyzed and modified. For some planning problems, such incremental
analysis is problematic. The projection rule describing the process of moving
from one location to another (specified in Chapter 2) indicates that the
distance in time between when the move is initiated and when the robot is
in the final location is a function of the distance in space between the robot’s
initial and final position. This rule brings up an important issue that we
have avoided so far. The order in which tasks are executed determines to
a large extent how long they take to execute. If the robot is trying to
minimize the time spent in execution or avoid violating deadlines, then it
has to consider not only the order in which to perform each task, but the
location that it has to be in to perform each task and how to travel between
those locations. Task scheduling with deadlines and travel time inevitably
involves nasty combinatorics and NP-hard problems.

There are all sorts of deadlines that a robot might have to contend with
in practice. In -addition to absolute deadlines (e.g:, finish before noon),
there are graded deadlines (e.g., the longer you take, the more it will cost
you), and relative deadlines (e.g., finish before the tub overflows). The
last are particularly interesting from the perspective of control. How do you
coordinate the behavior of a robot with that of other processes over which the
robot has only partial or intermittent control? We have already mentioned
how ome might accomplish such coordination for the tank-filling problem
using feecback. In the following, we consider how we might accomplish
the necessary coordination using planning, for a somewhat more complex
problem.

Recall the problem presented in Chapter 1 involving a robot in a concrete
plant scurrying about from one valve to another trying to fill trucks with

Draft of December 10, 1990

Figure 5.4: The concrete factory domain

16

*Draft® of December 10, 1990

todo(achieve(full(Truck)), K,

plan([achieve(location(Truck,loading.dock)),

achieve(position(valve(ini)) =35°),
achieve(position(valve(in2)) =35°),
achieve(position(valve(outi)) =35°),
achieve(position(valve(outl)) =0°),
achieve(position(valve(in2)) =0°),
achieve(position(valve(ini)) =0°)],

[end(1) < begin(2)),

distance(begin(2),end(2)) € [00:
distance(end(2),begin(3)) € [00:
distance(begin(3),end(3)) € [00:
distance(end(3),begin(4)) € [00:
distance(begin(4),end(4)) € [00:
distance(end(4),begin(5)) € [00:
distance(begin(5),end(5)) € [00:
distance(end(5),begin(6)) € [00:
distance(begin(6),end(6)) € [00:
distance(end(6),begin(7)) € [00:
distance(begin(7),end(7)) € [00:

01,00:
01,00:
01,00:
01,00:
01,00:
14,00:
01,00:
01,00:
01,00:
01,00:
01,00:

02],
02],
02],
02],
02],
16],
02],
02],
02],
02],
02]]) «~

holds(begin(K), (0° < position(valve(ini)) <5°,
0° < position(valve(in2)) <5°,
1.5m < fluid height(tanki4) < 2.0m,
25m° < tank_size(Truck) < 36m°)).

Figure 5.5: A plan for filling a single truck

17

properly mixed concrete. Figure 5.4 depicts the basic layout of the concrete

factory.

The simplest approach is to provide a small number of canned solutions,
each covering a subset of the situations that the robot might find itself in.
For instance, Figure 5.5 shows a plan for filling & single truck. If the tasks are
carried out within the specified time constraints, then this plan guarantees
that no concrete is spilled, the two ingredients, cement and aggregate, are
mixed in the proper proportions (i.e., 50/50 give or take 5%), and that
the tank is filled to at least 90% of its capacity. To achieve the required
degree of coordination, the tasks are tightly constrained with respect to one

"

Draft of December 10, 1990 18

another. Figuring out how the individual tasks are achieved will require
further reduction. If the robot is to carry out all of the tasks itself, it will
have to move between the various valve locations (or stations) and perform
the indicated valve adjustments in the times allotted. The plan for changing
the position of a valve is simply:
todo(achieve(position(Valve) = Theta) ,k,
plan([achieve(location(robot,station(Valve))),
turn(Valve,Theta)],
[end(1) X begin(2)],
[protect(end(1),end(2),
location(robot,station(Valvse)))])).
The process of turning a valve is modeled by the following projection rule,
which bounds the time it takes for the turning to complete.

project(position(Valve) = Thetat,
turn(Valve,Theta2),
{(|Thetai-Theta2| + max_turning speed),
(IThetai-Theta2| + min_turning speed)],
position(Valve) =Theta2).

Moving from one location to another is complicated by the fact that
the stations for the input and output valves are located on different ficors.
We assume that there are two ways of going from one floor to another: by
elevator or stairs. When it is in service, using the elevator is always preferred
to taking the stairs.
todo(achieve(floor(robot,Floori)),K,

use_elevator(Floori,Floor2)) «
holds(begin(K), (status(elevator,in service),
floor(robot,Floor2) ,Floor2 # Floorl)).
todo(achieve(floor(robot,Floor:)),K,
use_stairs(Floori,Floor2)) ~
holds(begin(K), (not(status(elevator,in service)),
status(stairs,in service),
floor(robot,Floor2) ,Floor2 # Floori1)).

The plans for using the elevator and stairs are straightforward.

*Draft® of December 10, 1990 19

todo(use_elevator(Floori,Floor2) ,K,
plan([achieve(location(robot,elevator_landing(Floori))),
achieve(floor(elevator_cab,Floori)),
achieve(location(robot,elevator_cab))],
(end(1) < begin(3),end(2) < begin(3)])).
todo(use.stairs(Floori,Floor2),K,
plan([achieve(location(robot,stair landing(Floori))),
negotiate_stairs(Floori,Floor2)],
(end(1) < begin(2)])).

where we assume that negotiating the stairs is primitive:

project(location(robot,Floori),
negotiate_stairs(Floori,Floor2),(00:03,00:05],
location(robot,Floor2)).

and the elevator begins to operate as soon as the robot enters the cab:

project(floor(elevator_cab,Floor),
becomes(location(robot,elevator.cab)), [00:01,00:02],
location(robot,other(Floor))).
Now, suppose that the robot is given the task to fill a particular truck,
truck42. The robot’s task is indicated by the following token.

token(task(achieve(full(truck42))),fil145).

State the initial conditions, valve flow factors, tank area and height, truck
capacity, and status of stairs and elevator. To avoid introducing plans for
summoning the elevator, assume that the elevator, if it is in service, is
always on the same floor as the robot. Get material from Dean and Siegle,
AAAL90.

We can reduce £i1146 using the plan shown in Figure 5.5 and either
the elevator plan or the stairs plan. The reduction using the elevator plan
is preferable because it manages to fill the truck three minutes earlier than
the reduction using the stairs plan. Although we have provided no mecha-
nism to express this general preference, the relative time requirements are
taken into account in reasoning about interactions between competing tasks.
For example, suppose that the robot has another task constrained to occur
during £41146, which involves running a system * diagnostic program requir-
ing te remain idle for ten minutes. In this case, there is only one solution
consistent with the constraints: the reduction using the elevator plan.

There are a aumber of potential problems with the type of plan shown in
Figure 5.5. One arises in trying to apply such plans to coordinate two simul-
taneous fillings or to orchestrate a series of fillings. It would be necessary

Draft of December 10, 1990 20

in general to provide special plans for each particular filling combination.
Another difficulty is that if the low rate for one of the valves or the volume
of the mixing tank changes, then the plan no longer guarantees avoidance
of spillage and suitable mixture proportions. For instance, if the flow rate
of valve(in1) is increased by a factor of 10%, then the reduction using the
elevator plan will result in a task duration of 24 minutes, but there will be
2m3 of concrete spilled on the floor and an unacceptable 2:3 ratio of cement
to aggregate in truck42.

As an alternative to excessively specific plans, we could provide general
plans that do not specify exact valve positions and task durations, and hence
give up the guarantees regarding results like spillage and mixture. A search
algorithm would then heuristically choose positions and durations to use in
generating candidate plans, and the candidate satisfying the mixture con-
straints that provides the least spillage would be chosen for execution. The
advantage of such a scheme is its improved prospect for finding a solution
over a broad range of task situations. The disadvantage is that the set of
all combinations of valve positions and task durations is quite large, only a
small subset of which are likely to yield good solutions.!?

A compromise is to have a small number of highly specific plans that
are likely to produce solutions close to satisfying the achievement tasks and
then heuristically adjust the plan parameters to improve performance. For
example, heuristics might include “if the truck is not filled to 90% of its
capacity, then start closing the output valve later” or “if the mixing tank
spills over, then open the output valve more and close it earlier.” Research
in planning tends to focus on general-purpose domain-independent methods.
It is important to remember, however, that the performance of a particular
planning system can be dramatically enhanced by bodies of special-purpose
knowledge encoded in the form of domain-dependent rules.

One important issue that we avoided in the previous examples involves
the representation of plans in which an action is repeated some number of
times. For instance, how do you represent a plan to unload a truck contain-
ing seven appliances? Using the list manipulation routines in PROLOG, this
turns out to be relatively easy. A more difficult problem involves planning
to unload 8 truck with some urknown number of appliances. We would like
to be able to predict the type of the subtasks involved and how long the
unloading is likely to take. We might specify a recursive plan such as:

12 What about parameterized plans, where the precise settings are specified as a function
of the other variables?! This is a form of conditional plan, to be discussed in nest section.

Draft of December 10, 1990 21

todo(achieve(empty(Truck)),K
plan({unload_item(Truck),achieve(empty(Truck))],
(end(1) <X begin(2)])) «~

holds(end(K) ,~empty(Truck)).
This gives us zn idea of the types of subtasks involved, but we cannot deter-
mine their number because it does not make sense to reduce the recursive
(second) step until after some item is unloaded. Thus, we are still left with
the problem of estimating how long the unloading task will take. We could
estimate how many items are likely to be on a given truck, and expand a
plan with this number of subtasks. This remains short of a complete reduc-
tion, as we cannot determine where the robot will have to travel until we
know the exact contents of the truck.

A more general problem with the sort of approach specified above is that
it relies on ezecution-time replanning. Because the effects of the plan are not
completely predictable, the subsequent course of action cannot be specified
until after the results are known, at which time the task reduction process
is resumed. The drawback of this strategy is that task reduction involves
deliberate search, and thus may entail a considerable pause in the robot’s
constructive activity. This pattern of alternation between planning and
execution can waste through idleness a considerable fraction of the robot’s
resources. Worse, the continuing evolution of the controlled process during
deliberation may erode or eliminate the robot’s opportunity to effectively
promote its objectives.

One way to address this problem is to provide, at plan time, for alternate
courses of action depending on conditions holding at execution time. In the
following, we consider methods for constructing and reasoning about plans
that explicitly refer to such contingencies. These plans include knowledge
acquisition steps to collect information, associated with alternative subplans
to be performed or not, conditional on the information gained during plan
execution.

5.2 Conditional Plans

Faced with the task to unload a particular truck with unknown cargo, there
are (at least) two approaches. The robot might construct a plan to find
out what appliances are on the truck, and postpone planning their removal
until the contents are known. Alternatively, it might create a plan that
includes a step to determine the appliances in need of unloading, plus some
additional steps conditional upon the outcome of the initial information-

Draft of December 10, 1990 22

gathering operation. This second approach produces a conditional plan, and
has a number of advantages over postponing planning entirely. For instance,
while the robot may not know exactly what appliances are on the truck, it
does know that in order to move them it will need a screwdriver to remove
the restraining straps that protect them from damage in transit. The plan
to unload the truck will require a step to remove the restraining straps no
matter what appliances are on the truck. If the robot is currently near a
tool box, it can save itself a trip by appending a task to fetch a screwdriver
to the beginning of the plan to unload the truck.

More importantly, the conditional plan provides the robot with the
means to commit to an answer conditional upon information gathered at
execution time. Given a conditional plan, the robot can avoid reinvoking
the planner upon determining the contents, and can proceed immediately
with the unloading plan specified for the situation actually encountered.
However, this readiness is achieved only at the price of computing contin-
gency plans for unloading all potential types of cargo. As all but one of
these plans goes unused, there is a considerable computational overhead in
generating the contingency plans. This is the fundamental tradeoff in gen-
erating conditional plans, an issue we discuss further in Section 5.3. In this
section, we present some simple mechanisms for expressing and reasoning
about conditional action.

To specify conditional actions in plans, we introduce a new task type:

cp(condition, conditional_action, alternate.action)

If the condition holds at task execution time (i.e., the interval specified in its
task token), then the robot is to perform the conditional action; otherwise
it is to perform the alternate action. To illustrate the use of cp, consider
the following method for moving to a particular floor. The plan is to use
the elevator if it is in service, otherwise to take the stairs.
todo(achieve(floor(robot,Floori)),K,
cp(status(elevator,in service),
use_slevator(Floori,Floor2),
use.stairs(Floori,Floor2))) ~
holds(begin(K), (location(robot,Floor2) ,Flowvr1 # Floor2)).

Note that although it includes no temporal argument, the conditional ex-
pression implicitly refers to the status of the elevator during K, the interval
in which the tasks are operative. Recall that in reducing tasks using todo,
the new task (in this case, conditional) inherits the interval of the original
task.

Draft of December 10, 1990 23

The appropriate spplication of a cp method relies on two assumptions.
First, it makes sen-e to introduce a conditional task only if the valde of the
cndition s not already known at the time of introduction. In the example
above, this means that the robot cannot determine at planning time whether
the elevator will be in service during K. We can verify this assumption by
augmenting the rule’s antecedent:

holds(begin(K), (location(robot,Floor2),Floorl # Floor2,
not(status(elevator,in service)))).
We rely here on negation as failure to satisfy the query in cases where the
elevator status at begin(K) cannot be determined. Having modified the
rule, we should also add to the plan library an unconditional todo method
for the case where the elevator is known to be in service during K.

The second assumption underlying conditionalization is that the value of
the condition will be known at the time of task execution. This prerequisite is
much more difficult to ensure. Suppose we implement the conditionalization
using a pair of projection rules:
project(task(cp(Cond,Act,)) ,becomes(Cond) ,task(Act)).
project(task(cp(Cond,.,Act)),becomes(~Cond), task(Act)).

The problem with this approach is that we have no assurance that either
Cond or ~Cond will become true during the interval of interest. Moreover,
it confuses what is true in the model with what the robot knows to be true.
We can alter the syntax all too easily.

project(task(cp(Cond,Act,.)) ,becomes(knows(Cond)) ,task(Act)).
project(task(cp(Cond,_,Act)),becomes(knows(—Cond)),task(Act)).

Unfortunately, it is not at all straightforward to define expressions of the
form knows(y) in a manner consistent with both our intuitions about the
meaning of knowledge and the behavior of our temporal logic. Instead, we
present a simpler approach based on explicit declarations of the observability
of events. Although this scheme does not provide for complicated inferences
about the knowledge state of the robot, it covers many useful situations
with minimal additional machinery. In Section 5.5, we evaluate the limita-
tions of our observability approach with respect to more general theories of
knowledge.

Our first step toward managing the generation of conditional plans is
to restrict the class of propositions that are eligible for conditioning. The
basic constraint is that the robot can execute a conditional action only if
the condition is part of its available information. To impose this constraint,

*Draft?® of December 10, 1990 24

we define a special cla-; of propositions, called observables, that comprise
the exclusive domain of conditional expressions.

A proposition ¢ is declared observable during the interval (¢;,¢3) by an
assertion of the form observable(t;,t3,¢).!® Given this declaration, the
planner is permitted to specify cp tasks for proposition ¢ during subintervals
of (tl y t:).

It is important to distinguish the temporal extent of the observable
proposition from the time the robot observes it. For example, the robot
might find out at t; (when it reads the maintenance schedule) whether the
elevator will be in service at some subsequent time ¢;. We would express
such a situation by asserting:

holds(t;,observable(t;,status(elevator,))).

Observability at a given time has implications for observability at other
times. For instance, it is reasonable to postulate that observability is per-
sistent; that is, the robot does not forget:

holds(T1i,observable(t,y)) — holds(T2,observable(t,¢)),T2<T1.

But of course we cannot assume that, just because the robot can observe
whether ¢ holds at ¢, it can also observe whether ¢ holds at t + ¢. Ir other
words, a similar persistence relation does not apply for the temporal extent
of the observable proposition.

In the common conditional planning situation, the time of observation
and the temporal extent of the observable proposition coincide. Given a con-
ditional task of the form cp(yp,.,.) during interval K, we are most concerned
with whether:

holds(begin(K),end(K),observable(begin(K),end(K),p)).

It is precisely this fact that determines whether the cp task is executable
by the robot. If the robot is committed to a conditional plan, therefore, it
follows that it should be committed to making the condition observable. We
might encode this automatic commitment as a projection rule.

project(true,becomes(task(cp(P,_,.))),
task(achieve(observadle(P)))).

13T%¢ nse of s proposition as an argument to observableis a syntactic variant, similar to
constructs ke clips, holds, and others introduced in Chapter 3. As for those predicates,
we adopt the usual syatactic conventions in specifying its temporal szguments as cither
points or intervals. Morew -er, we sometimes omit the temporal argument when its value
is implicit in the context (e.g., within s task assertion).

Draft of December 10, 1990 25

The problem of ensuring the ¢xecutability of conditional plans thus re-
duces to achieving the necessary observability prerequisites. While this is a
difficult problem in general, there are typically a wide range of propositions
that are rendered directly observable by primitive actions. Let us call such
propositions testable, and assume that the query testable(P) succeeds if
and only if there exists a primitive action, indexed by test(P), that tests
for the proposition P. We therefore have:

todo(achieve(observable(P)) ,K,test(P))«— testable(P).

We could enforce observability syntactically by requiring that all propo-
sitions appearing in conditional expressions be potentially testable. This
approach is not as restrictive as it might sound, since we can always push
off the complexity to reasoning about the relation of directly testable propo-
sitions to properties more central to the robot’s planning decisions. Never-
theless, such indirection may be unnatural, and it is often possible—albeit
more complicated—to achieve observability of useful conditions by means
of explicit planning. In allowing more complex information-gathering be-
havior, we gain flexibility at the expense of sacrificing the guarantee that
all conditional tasks will be executable. For completeness, we note that the
meaning of a task that conditions on an unobservable proposition is simply
that of the no_op action.

To illustrate some of the potential difficulties involved in reasoning about
information-gathering, consider the following plan to determine the level of
fluid in a truck sitting in the loading dock at a particular point in time.
todo(achieve(observable(end(K) ,fluid level(Truck))), K,

plan([achieve(location(robot,station(meteri7))),
read(meteri?)],
(end(1) < begin(2),end(2) = end(X)],
[protect(end(1),end(2), =~ C
location(robot,station(meteri?)))]))
holds(begin(K),end(K),location(Truck,loading dock)).
holds(T1,observable(T1,fluid level(Truck))) —
occurs(T1,read(meteri?7)),
holds(T1,location(Truck,loading dock)).
If the robot has the task to observe the level of the fluid in the truck cur-
rently located in the loading dock, then it can do so by positioning itself in
the appropriate place to read the fluid-level meter, and invoking the sub-
routines necessary to read the meter and process the resulting data. Other
knowledge acquisition tasks may require significantly more complicated syn-
chronization.

Draft of December 10, 1990 26

Im

i

Maximun Flow

Figure 5.6: Planning with an approximate model

Suppose that the robot waats to close a valve when the fluid level of
the truck being filled reaches a particular height. In order to do so, the
robot will need to know when the level achieves this height. If the robot
lacks a predictive model of the tank-filling process, then it must stand in the
appropriate location and monitor the fluid-level meter continuously. If the
robot knows the initial conditions and has a precise model of the tank-filling
process, then, it can predict exactly when the fluid will reach the target level
without consulting the meter at all. If the robot does not know the initial
conditions but has a precise model, then it is sufficient that the robot observe
the values of the parameters at some point in time in order to predict the
height of the tank for all subsequent times. The most likely situation is that
the robot will have some estimates for the parameters (perhaps based on
measurements at different points in time) and an approximate model whose

predictions decrease in accuracy as they extrapolate into.the future. Using .

this information, the robot can generate expectations or worst-case scenarios
about when the tank will reach the target level.!* For instance, suppose that
the robot knows the initial conditions for its model at time 0, but its tank-
filling model is subject to bounded errors (see Figure 5.6). In planning when
to read the meter, the robot must take into account the earliest that the fluid
level might reach the target level, as well as the amount of time required to
move from the meter to the valve and close it. One possible approach would
be for the robot to find its way to the meter at or before the time marked
tm in Figure 5.6, and then replan on the basis of the observed height of the
fluid. It could avoid execution-time replanning by indentifying, in advance,

!¢ This is a case of reasoning about the need for feedback, a difficult general problem.

"

Draft of December 10, 1990 27

a threshold on the fluid level upon which it would proceed to the valve. To
exhibit maximal robustness, however, the rob vt must be flexible enough to
apply more complex dynamic replanning strategies. For example, if it seems
on monitoring for some time that the level is not rising fast enough, the robot
might consider opening the valve a bit and rescheduling its subsequent meter
readings based on the revised predictions of its flow model.

It should be clear that we could make the dynamic decision problem
facing the robot arbitrarily complex. Use this ezample to motivate fuller
ezploration of reactivity in nezt section. Also point ahead to Chapters 6
and 7, which focus on sensing and reasoning under uncertainty.

5.3 Planning and Reaction
Discuss in this section, among other things:®

o Conditions as the first step toward reactivity. Continuum between
unconditional plan languages and universal plans. Conditional plan
language defines middle ground.

¢ Relation of observability approach to control framework.

e Making plans more robust by considering perturbations. Provides for
the role of monitoring in plan er-cution.

Talk about ezpectations and ezpectation monitoring during plan ezecu-
tion. What happens when your ezpectations fail? For ezample, you try to
turn a valve and it doesn’t appear to turn or the water level goes up when
you close the valve. Talk about replanning and recovering from ezecution er
rors. What does it mean to lose, regain, or maintain control? What do you
do when things go wrong and you're in the middle of doing something? For
instance, the tub is running over and you’re on the phone or irying to rescue
your dinner from the oven. Develop the analogy between difference-reducing
planners and error-driven control strategies.

The ides of reactivity and its contrast to deliberate planning. Architec-
tures for integrating planning methods of the sort discussed in Section 5.1
with reactive systems. Task interpretation systems (see old material). Firby’s
RAPs. Ties to sections on reactive conirol in Chapter 4. The “obvious” so-
lution: different levels of competence with varying degrees of reactivity, asyn-
chronous control, run-time arbitration, and off-line compilation for real-time

18 Fig transition from preceding section.

Draft of December 10, 1990 28

responsiveness. Prelude to architecture for decist- n-theoretic control of in-
ference, presented in later chapter.

5.4 Goals and Utilities

Limitations of task reduction approach (and classical planning framework)
in treatment of goals as predicates. Present more general view of preferences,
utility functions, tie to goals, point to decision-theoretic analysis of Chap-
ter 7. How will this be coordinated with the introduction of value functions
in Chapter 4?

Paragraph moved from task reduction section. It should also be noted
that the reduction planning method described above is not able to handle
planning problems in which the criteria for a good plan involve minimizing
execution time or maximizing income. While finding a solution that min-
imizes or maximizes some quan:ity is generally computationally complex,
it is still useful to be able to compare candidate solutions. The standard
technique for comparing candidate solutions is to use a value function to
define a metric on the outcomes associated with candidate solutions. The
basic idea behind using a value function is simple. Given two candidate so-
lutions (plans), determine the changes over time (referred to as time lines)
that are predicted to occur as a consequence of executing each plan. The
value function is then applied to the resulting time lines and the plan with
the lowest cost (highest value) is determined to be the better of the two.
Given a set of candidate solutions, one can then select the best. Planning
consists of (heuristically) generating a set of caadidate solutions, evaluating
each candidate, and selecting the best. We discuss this sort of planning in
the context of reasoning about deadlines and control.:

Generally, choosing an appropriate action requires considering uvera.l
possible actions and anticipating the consequences of each action. In the
case of PID control, the designer does all the necessary considering and
anticipating at design time and simply encodes his findings in the coefficients
of the PID controller. This sort of design-time compilation is difficuit tc do
in general. For instance, finding the shortest tour visiting a set of locations
in & factory is a type of problem that might occur frequently for a mobile
robot. Computing the solution to even one instance of this type is known
to be a hard problem. It would be quite difficult to enumerate and then
compute, in advance, the solution to all possible instances uf this problem,
and, even if you could, it would be difficult if not impossible to store the

Draft of December 10, 1990 29

results of such a prodigious effort on any practical machine.

For any interesting problem, it is impossible or impractical to write down
®. In the decision sciences, they never even attempt to; rather, they specify
belief functions, preferences, and a utility (or value) function. The notion of
task is implicit in whatever maximizes expected utility.!® The introduction
of beliefs and expectations is crucial here; what constitutes a task depends
critically on a given agent’s knowledge, which in turn depends upon what
the agent has observed, not just at the last clock tick, but over time, and the
agent’s ability to reason about those observations. The notion of task in Al
is similar despite the fact that the use of value functions is not universally
accepted.

Normative vs computational theories of decision-making. The decision
sciences provide a “normative” theory of decision making, in that any ra-
tional decision maker possessed with the same information and unlimited
time to reflect on it would come to the same conclusion. Al, starting with
Herb Simon’s Nobel-prise-winning model of administrative man, has taken
the idea of a resource-bounded sgent as a starting point (17].

Motivate need for utility in terms of complications involving . Start
with preference order on 1, then introduce order-preserving, real-valued util-
ity function. Perhaps notation Util is best, by parallel to Val and given that
u and U are already taken in the presentation of control. State the obvious
problem with reasoning about elements of and introduce machinery to get
around the problem. Introduce a set of time points T, and define time lines
in terms of functions from T to). Redefine accordingly. Introduce the
notion of error-driven control laws in terms of a variant on means/ends
analysis. If we allow the reference signal to correspond to an arbditrary world
state and the controlled variables to include any condition, then the solution
to almost any control problem can be characterized in terms of a suilable
error-driven control law.

Ezplain how goals fit in with this ezpressive framework. A goal predicate
specifies that a state achieving the goal is preferred to one that does not, all
else equal. Combining all the ezpressed goals yields a partial order on states,
with preference between competing goals or alternate ways of achieving the
same gesl not defined. TAis suggests that goals do not provide sufficient
guidance for rational choice of action. Must augment with more precise
specification, either by prowiding strength of preference or finer-grained de-
scriptions of goal predicates and combinations.

1% Just as in classical planning it is implicit in what achieves the top-level goal.

*Draft® of December 10, 1990 30

5.5 Further Reading

The material presented on planning is a distillation of a great deal of re-
search. The need for protections was first identified by Sussman [18], and
indeed the simplest example of a problem requiring nonlinear plan con-
struction is known as the “Sussman anomaly.” The basic idea of reduction
interleaved with resolving interactions originated with Sacerdoti’s influen-
tial NOAH system [14). Our development of the task reduction approach
follows Charniak and McDermott (3], who provide a more comprehensive
treatment of protections and search algorithms. The reduction algorithm
itself is based loosely on Tate’s NONLIN [19] (see Vere {20] for extensions to
handle metric time constraints). The notion of policy projection is borrowed
from McDermott {10].

Pointers to other work on planning, not necessarily taking task reduction
approach. Truth criterion: smplicit in much work, made ezplicit by Chap-
man. Problems for temporal reasoning about nonlinear plans ezplored by
Dean and Boddy. For a discussion of issues in representing and reasoning
about resources, see (22, 5. General discussions of partial plans (Wellman,
Hsuf).

Reasoning about knowledge, action, and perception [{, 9, 11, 12] (espe-
cially Morgenstern, Moore). Discussion of observable events and test actions
follows Wellman. Evaluate with respect to the more general theories (essen-
tially, the latter allow reasoning about how observability of some facts implies
observability of others). General capability for reasoning about knowledge
in planning an area of active investigation, with many open questions (see
Halpern overview in TARK-86, or survey in Annual Review).

The idea of debugging almoet right plans is characteristic of many sp-
proaches to planning in artificial intelligence [8, 16, 18). ’

Reactive planning: Al interest spurred by work of Agre and Chapman
[2], Brooks {1], Rosenschein [13], Schoppers {15]. Early example: triangle
tables in STRIPS.

Goals and utilities: see our discussion (6], also Haddawy and Hanks (7],

Loui, new paper.

Bibliography

{1] Rodney A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2:14-23, 1986.

(2] David Chapman and Philip E. Agre. Pengi: An implementation of
a theory of activity. In Proceedings AAAI-87, pages 268-272. AAAI,
1987.

(3] Eugene Charniak and Drew V. McDermott. Introduction to Artificial
Intelligence. Addison-Wesley, Reading, Massachusetts, 1985.

(4] Ernest Davis. Inferring ignorance from the locality of visual perception.
In Proceedings AAAI-88, pages 786~-790. AAAI, 1988.

(5] Thomas Dean and Keiji Kanazawa. A model for reasoning about per-
sistence and causation. Computational Intelligence, 5(3):142-150, 1989.

(6] Thomas Dean and Michael Wellman. On the value of goals. In Josh
Tenenberg, Jay Weber, and James Allen, editors, Proceedings from the
Rochester Planning Workshop: From and Syctema to Pmctwd Sys-
tems, pages 129-140, 1989.

(7} Peter Haddawy and Steve Hanks. Issues in decision-theoretic planning:
Symbolic goals and numeric utilities. In Proceedings of the DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and Con-
trol DARPA, 1990.

(8] Kris Hammond. Chef: A model of case-based planning. In Proceedings
AAAL 86, pages 267-271. AAAI, 1986.

(9] Kurt Konolige. A Deduction Model of Belief. Pitman Publishing, Lon-
don, 1986.

31

Draft of December 10, 1990 32

(10] Drew V. McDermott. Flexibility and efficiency in a computer program
for designing circuits. Technical Report 402, MIT Al Laboratory, 1977.

[11] Robert C. Moore. Reasoning about knowledge and action. Technical
Report Technical Note 191, SRI International, 1980.

(12] Leora Morgenstern. A first order theory of planning, knowledge, and
action. In Joseph Y. Halpern, editor, Theoretical Aspects of Reasoning
About Knowledge, Proceedings of the 1986 Conference, pages 83-98, Los
Altos, California, 1987. Morgan-Kaufmann.

[13] Stan Rosenschein. Synthesizing information-tracking automata from
environment descriptions. In Ronald J. Brachman, Hector J. Levesque,
and Raymond Reiter, editors, Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning,
pages 386-393. Morgan-Kaufmann, Los Altos, California, 1989.

[14) Earl Sacerdoti. A Structure for Plans and Behavior. American Elsevier,
New York, 1977.

(15] Marcel J. Schoppers. Universal plans for reactive robots in unpre-
dictable environments. In Proceedings IJCAI 10, pages 1039-1046. 1J-
CAlJ, 1987.

[16) Reid Simmons and Randall Davis. Generate, test and debug: Com-
bining associational rules and causal models. In Proceedings IJCAI 10,
pages 1071-1078. IJCAI, 1987.

(17] Herbert A. Simon. The Sciences of the Artificial MIT Press, Cam-
bridge, Massachusetts, 1981. - ')

[18] Gerald J. Sussman. A Computer Model of Skill Acquisition. American
Elsevier, New York, 1975.

(19]) Austin Tate. Generating project networks. In Proceedings I[JCAI 5,
pages 888-893. IJCAI, 1977.

[20] Steven Vere. Planning tu time: Windows and durations for activities
and goals. [EEE Transactions on Pattern Analysis and Machine Intel-
ligence, 5:246-267, 1983.

[21] Michael P. Wellman. Formulation of Tradeoffs in Planning Under Un-
certainty. Pitman and Morgan Kaufmaan, 1990.

*Draft® of December 10, 1990 Kk

(22] David E. Wilkins. Domain independent planning: Representation and
plan generation. Artificial Intelligence, 22:269-302, 1984.

Chapter 6

Uncertainty in Control

In predicting and controlling the behavior of processes, it is nearly impos-
sible to avoid some degree of uncertainty. Even in cases where an engineer
carefully designs a piece of equipment* to behave in a particular manner,
sourcs: of uncertainty are introduced in manufacturing, in the wear on parts
during subsequent use, and through unanticipated interaction with the en-
vironment. In this chapter and the next, we ~onsider various acproaches to
dealing with uncertainty in planning and control. This chapter focuses on
uncertainty issues in the context of control systems engineering.

Here, as elsewhere in this book, we make no attempt to provide a com-
prehensive survey of techniques. Qur objective in this chapter is to make
several observations about the nature of control as a problem involving un-
certainty, and to introduce two techniques that illustrate key issues.

The first technique involves an approach to recovering the state of a dy-
namical system from.observations of its autput. The general problem was
introduced in Chapter 3 in the discussion of system observability. The solu-
tion that we consider here, the Kalman filter, is somewhat specialized, but of
broad practical import. In the introduction to a collection of papers on the
theory and applications cf the Kalman filter, Sorenson [16] writes that, “It
is probably not an overstatement *o assert that the Kalman filter represents
the most widely applied and demonstrably useful result to emerge from the
stala variable approach of ‘modern control theory.” ” Our introduction to
Kalman filtering emphasizes a basic cycle of activity that is central in the
application of the Kalman filtering equations, and is applicable to a wide
variety of state estimation problems that do not satisfy the assumptions

9©1990 Thomas Dean. All rights reserved.

179

X!

required for the Kalman filter.

The second technique involves an extension of the dynamic programming
approach considered in Chapter 8. The extension is concerned with multi-
stage decision problems in which the dynamical system can be modeled as
a stochastic process. We introduce the basic theory in this chapter as it is
generally considered »s a part of the repertoire of techniques of co.trol. In
Chapters 5 and ‘Q(V\we return to consider the connection between stochas-
tic dynamic programming and various techniques in planning
dwdNlearning {Chapter ?‘) We begin this chapter by considering just .ow
deeply the issues involving uncertainty enter into the proble: - of controlling
dynamical systems. Our treatment here follows that of Koditschek [12).

6.1 Uncertainty and Delay in Dynamical Systems

In both Chapters 2 and {: we considered a single-degree-of-freedom robot
as an example of a simple dynamical system. We continue to resort to such
simplified models in this chapter to illustrate our basic points. Let M be the
mass of the robot, z its position in some arbitrary frame of reference, and »
the force acting upon the robot. As in Chapter ﬁ/we assume that the plane
of motion is horizontal and that there are no frictional forces acting on the
robot. The relationship between position, z, and the force, 7, is completely
determined by Newton’s second law of motion.

Mz=r

The state vector for the dynamical system is defined to be

- 1]

and system state equation is

x(t) = [g :] x(t) + { 1/0M] u(t).

In the set-point regulation problem, the task is to transfer the robot _rom
its initial location, z(%), to some final (goal) location, 2°*, and then keep it
there. We begin by giving the controller every advantage in an attempt
to avoid the problems introduced by uncertainty. In particular, we assume
that the control actuator can exert an arbitrary amount of force, #(t), at an

180

instant in time, t. We model this using the Dirac delta (impulse) function
defined by

/“amm:L

where
6, ()=0 Vt#,

so that our actuator is able to deliver a pulse of infinite magnitude over an
infinitesimally short interval of time possessed of unit area and involving a
finite amount of energy.

The controller begins by getting the robot headed in the right direction,
namely towards the goal, z°. We measure the current position and velocity,

= | #(t)
X(to) = [Z(tz)] ’

and at the same instant apply an impulse defined by
u.gm(t) = M(l - z'(to))5¢°(t).

The impulse has the effect resetting the initial conditions so that

x(t) = [L+ ;(tO)] for t > 1o,

and the goal position is achieved at time t* = 2z* — 2(tp). At t*, we apply
a force to exactly cancel the velocity achieved by the first impulse. The
second impulse is defined by

Ustop(t) = = M (2).
The control strategy defined by
u(t) = tistans(t) + tatop(t)

provides a solution to our idealized set-point regulation problem. In addition
to the assumptions made regarding the Dirac impulse function, this solution
relies on the following assumptions.

o We krow the exact mass, M, of the robot.
¢ We can instantaneously and exactly measure the robot’s position, z,

and velocity, 2.

181

o We can instantaneously perform all calculations required for control.

o We can exactly measure the elapsed time in order to sequence the
velocity canceling impulse.

If any one of the above assumptions fails to hold, then some error will be
introduced and this error will become magnified with the passage of time.
For instance, suppose that there is some error in the estimate, M, used for
the mass, M. If we apply the same control strategy as before, we obtain

z(to) + [7’5 + (1 - %) %(to)] t*+ (1 - %) 2(to)t

x(t) = (1 - %) H(t0)

vt > t%,

where we have substituted M for M in the specification of ugary and ugop.
From this description of the system state, it should be apparent that small
inaccuracies in estimating M will result in finite and increasing error in
the position of z relative to the goal 2*. Similar errors would occur due to
imprecision in measuring the position or velocity at to.

This simple example is meant to illustrate how deeply the issue of un-
certainty is rooted in the problems of control. Koditschek [12] writes in the
same article from which we adapted the above analysis, “The origins of con-
trol theory, then, rest in the following observations. Dynamic systems give
rise to delay that must be taken into account by any control strategy regard-
less of available actuator power or sensor accuracy. Moreover, information
regarding the real world is inevitably uncertain and may have an adverse
effect on performance no matter how sma.ll the uncerta.mty or powerful and
accurate the apparatus.” N

As was pointed out in Chapter §, feedback control strategies achieve
their robust performance because they continuously account for the error
between the measured state of the system and the goal state. Such feedback
control systems tend to compensate for measurement and modeling errors. If
the measurement and modeling errors systematically mislead the controller,
then performance will most certainly be poor; however, feedback controllers
often perform well in the presence of certain benign forms of random errors.
In the following section, we consider a class of problems for which it is
possible to design a module to estimate the system state. This module can
be coupled to a deterministic feedback regulator to obtain a controller that
is optimal by most accepted criteria.

182

Y}

-

6.2 State Estimation

Suppose that you are designing a system to control the movements of a mo-
bile robot that has to navigate in an office or industrial environment. If you
could obtain the exact geometric description for the surfaces of the objects
in the surrounding environment, then you could use the planning and con-
trol algorithms described in the last section of Chapter \f‘\or any of a host
of other deterministic control strategies to guide the robot on its appointed
rounds. Using path planning methods and an exact geometric model for
navigation requires that the robot not err in its movement or that the robot
correct for errors in movement by reestablishing its position and orientation
with respect to the geometric model. This process of reestablishing position
and orientation with respect to a geometric model is called registration or
localization in the literature. To help generate a geometric model or main-
tain registration with an existing model, suppose that the robot has been
equipped with a variety of sensors: ultrasonics, infrared, inertial guidance,
compass, odometry, laser ranging, tactile sensing. Unfortunately, all of these

a.lgorithm9 that combine (fuse'q) the data from all of the sensors, account-
ing for their tendency to errqwe~ae~to provide as accurate a picture of the
geometry of the robot’s environment as is possible from the data supplied.

Consider the following problem in fusing data from different sensors.
Suppose we are interested in the distance from the robot to the nearest
obstacle surface in the direction the robot is traveling. Sensor 1 reports that
the distance is 2 meters, but Sensor 2 reports 5 meters, and Sensor 3 pretty
much agrees with Sensor 2, reporting 5.15 meters. The close agreement of
two of the sensors would suggest relying on a value close to 5§ meters, hut
it may be that Sensors 2 and 3 are wrong quite often, even systematically

R “wzong, while Sensor 1 is hardly ever wrong. Without additional information
about the sensors, it is difficult to know what to do with conflicting evidence.
However, if we have prior knowledge about the errors that can be expected
from the different sensors, then we may be able to combine the data in a
disciplfined, perhaps even optimal maaner.

I the following, we adopt a Bayesian perspective, and represent our
knowledge about sensor errors in terms of conditional probabilities. In par-
ticular, if x € R™ represents the system state vector, and 2 € R™ represents
the measurement vector providing information about x, then we represent
our knowledge about the performance of the sensors that produced z as
a conditional probability density function, p(x|z), indicating the probabil-

183

sensors are prone to errors. In this section, we consider how to design™am.}

p(xi2)

x

Figure 6.1: The conditional probability density for z given 2

ity that x is the true state of nature given that we have observed z. For
a scalar z, the density function might take the form shown in Figure 6.1.
More generally, given a discrete dynamical system

x(k +1) f(x(k), u(k))
2(k) = h(x(k)),

where h is a measurement function, we will want to calculate a density
function of the form

p(x(k)|2(1),2(2),. .., z(k)),

where z(t) indicates the measurements made at time t.

Given a conditional probability density function, we wish to determine
an estimate of the system state, denoted X, to be used for control purposes.
Possible candidates for such an estimate are the average or mean of the
probability distribution corresponding to the density, the peak or mode of
the distribution, and the median of the distribution.}

In the following, we assume a linear dynamical system corrupted by
“white Gaussian” noise. The assumption that the noise be white requires
that the noise value not be correlated in time (i.e., knowledge of the value of
the moies at one point in time tells you nothing about the value of the noise
at later times).? The assumption that the noise be Gaussian requires that

'For a scalar quantity, the median is that value of z such that half of the probability
mase lies to the left of it and half to the right.

?Whiteness also requires that the noise have equal power at all frequencies; a require-
ment that is impossible to achieve in practice given that all real physical systems respond

184

the probability density for the amplitude of the noise at any particular point
in time take on the familiar bell-shaped curve of a Gaussian distribution.3

The assumption of Gaussian noise is often justified by observing that, if -
the noise is generated by a large number of separate processes, then the sum
of their effect can be approximated by a Gaussian distribution. However,
the most compelling reason for accepting the assumption of white Gaussian
noise is the same as that for accepting the assumption of linearity, namely,
it makes the mathematics tractable. As an example of how the Gaussian
assumption simplifies things, a Gaussian distribution is completely deter-
mined by its first- and second-order statistics, its mean and variance. The
Gaussian assumption will also simplify our choice for an estimate of the
state given the density; under the assumption of Gaussian noise, the mean,
mode, and median all coincide. What is surprising is that, despite the fact
that the assumptions seldom if ever are met in dealing with real physical
systems, the basic methods that we describe in the sequel have met with
extraordinary success in practice [16).

To make our assumptions explicit in the model, we represent the state
of the system at time k + 1 by

x(k +1) = f(x(k), u(k)) + v(k),

where f models the response of the dynamical system to a given input, and
v(k) is a vector of zero-mean, white, Gaussian noise processes, modeling
the input disturbance or process noise. Let z(k) represent the (observable)
output of the system at time k, so that

2(k) = h(x(k)) + w(k),

where A models the physics of the measurement piocess and w(k) is a vector
of zero-mean, white, Gaussian noise processes, modeling the measurement

only within a narrow range of frequencies called the system bandpass. For practical pur-
poses, however, the noise will often behave as if white within the bandpass of the system.
In certaim cases in which the noise is not constant over the system bandpass or is corre-
lated im time, a special “shaping filter” can be added to the system to achieve a model of
a dynsmical system driven by white noise [14).

3Ths Gaussiaa or normal distribution, N(p,o?), for a (scalar) random variable, z,
with mesa x and variance ? (o denotes the standard deviation) is characterised by the
normal probability density:

) = [%L]

185

1 p(x)

vy L g

$ p(xizy)

Figure 6.2: The densities for (i) the zero-faean Gaussian distribution
N(0,03,) modeling the measurement noise for the first sensor, and (i) the
Gaussian distribution N(2(1),02,) modeling the measurement itself.

errors. Before we write down the equations for the Kalman filter, we consider
some simple examples adapted from Maybeck [14] to illustrate the basic
issues.

We return to our single-degree-of-freedom robot, moving back and forth
on a horizontal track. Here we use the scalar z to represent the state of the
system corresponding to the position of the robot on the track. Suppose
that there are two sensors that allow the robot to obtain measurements [
its position. Each of the two sensors returns an estimate of the robot’s

186

o

location corrupted by Gaussian noise: N (0,03,,) in the case of the first
sensor and N(0, 03,,) in the case of the second. At time 1, the first sensor is
deployed to obtain a measurement z(1) of the robot’s position. We model
the measurement as a sum of the robot’s actual position and the zero-mean
Gaussian noise process shown in Figure 6.2.i. The conditional probability
density for the actual position, z, given the measurement, z(1), is shown in
Figure 6.2.ii. The mean of the distribution is just z(1) in this case, and the
variance, a?,,l , is rather large, indicating a sensor with significant potential
for error.

Based on the density shown in Figure 6.2.ii, the best estimate of the
robot’s position is

(1) = 2(1),

and the variance of the error in the estimate is
2(1) — 2
ox(1) = Oy,

At time 2, following the first measurement and assuming that the robot
has not moved, you obtain a second measurement, z(2), from the second,
and generally more reliable of the two sensors. The fact that this second
sensor is generally more reliable is indicated by the density for the second
measurement being more peaked (having a smaller variance) than the den-
sity for the first measurement as shown in Figure 6.3.i. In this case, the
mean of the distribution is z(2), and the variance is cr?,,.

We can combine the two measurements to obtain a conditional density
for the position of the robot given both measurements. The result is a
Gaussian density, N(y,0?), with mean, u, given by

a3] - g .
= | Jwp —u
b= z(1) + z(2)
[a,’,,1 + 02, ol +03,
and variance, o2, given by
2 _ a? o2
ol +0i’

Figure 8.3.ii depicts the resulting density superimposed over the densities for
each of the individual measurements. Notice that N(u,o?) is more peaked
than either of the densities for the measurements taken separately. Given
N(p,0?), the best estimate for the robot’s position at time 2 is

#(2) = p,

187

\ p(xizy)

o
.
oo’
o

{ p(xi2,23)

Figure 6.3: The densities for (i) the second measurement superimposed over
the first, and (ii) the combined measurements superimposed over the first
and second.

188

with -.a associated error variance

ol =02
We will not provide a proof that this is the best estimate. We will, however,
provide some intuitions as to why it is a plausible estimate.

The variances provide information to assist in establishing the relative
weight to attach to the evidence from the previous measurement(s) and that »
from the latest measurement. If the two variances are equal, then the two
measurements are equally reliable and we simply take their average. If, on
the other hand, the variance for the previous measurement(s) is large and
the variance for the latest measurement small, then we give more weight to
the latest measurement. The variance will always decrease in the case of
two or more measurements taken at the same time, reflecting the fact that
additional (consistent) information should serve to sharpen the estimate.
Casting the problem of state estimation in terms of optimizacion, the recur-
sive update algorithm described in this section is optimal in the sense that
it minimizes the variance.

To adopt the form generally used in describing the Kalman filter, we
rewrite the equation for z(2),

1(2)

a3 o3

2] 7]
2

2(1) + [ﬁ@] (2(2) - 2(1))

and, substituting £(1) for 2(1), we obtain

£(2) = 2(1) + K(2)(2(2) - £(1)),

‘The variance is just the expectation of error. In the case of no prior expectations, we
want to find the estimate, £, minimizing the mean of the squared error,

%i(é - zi)zl

where the 3; are the measurements. We obtain this estimate by setting the derivative to) f

2ero, n 2 n
%Le.‘l‘i_é:‘ﬂ=22(é—zi)=0,

[T}
and solving for #. The estimate provided by the method described here is just the mean
of the measurements, 1 3" z, which is a solution to the above equation.

189

pizinge,)

) x3) x4) =
Figure 6.4: Evolving state estimates without additional measurements

where K(2) is defined as

ol

KO)= s

Our objective is to provide an algorithm that computes an estimate of
the evolving state of a dynamical system. We have not as yet made any real
use of the equations describing the dynamical system. The method of com-
bining measurements in the static case is generally referred to as minimum
mean-square estimation, and is attributed to Carl Friedrich Gauss (1777-
1855). The primary contribution of Kalman and the other researchers who
developed and refined the Kalman filter is the recursive solution of minimum
mean-square state estimation problems involving dynamical systems. '

Given an estimate of the system state at time t, we wish to compute
an estimate of system state at time ¢t 4+ 1, which accounts for the most
recent measurements and also for the system dynamics. Continuing with
our example, we assume the following simple dynamics

2(k + 1) = 2(k) + u(k) + v(k),

where w(t) is the distance moved, and v(t) is a zero-mean, white, Gaussian
noise process with variance, o3.

We denote the estimate of the system state at time 3 given only the
measurements taken at time 2 or earlier as (3|2) defined by

£(312) = 2(2) + u(2),

190

with corresponding variance
o2(312) = 02(2) + o2.

If we made no additional measurements, the estimate of the system state
would degrade over time, as shown in Figure 6.4. In general, however, we
will make at least one measurement at every time step. To incorporate
measurements taken at time 3, we employ the same basic equations used for
combining z(1) and z(2).

Generalizing the previous examples, we present the Kalman filtering
equations for the following one-dimensional dynamical system,

z(k+1) f(z(k), u(k)) + v(k)
z(k) h(z(k)) + w(k),
where z, u and z are scalar quantities, f and A are linear functions, and

v and w are zero-mean, Gaussian noise processes with associated variance,
o2 and o2 respectively. Since f and g are linear we can rewrite the above

equations as @
z(k+1) = Ciz(k)+ Cyu(k) + v(k)
(k) = ‘Csz(k)+ w(k),

where C,, C3, and C3 are constants. We assume exactly one measurement
taken at each time step.

Recall that the objective is to maintain an estimate of the state of the
system at all times. The estimate of the system state at time k given all of
the measurements up until time j is denoted #(k|j). Similarly, we denote
the variance in the estimate at time & given all of the measurements up until
time j as o3(k|j). We write 2(k|k) and o2(k|k) simply as #(k) and o3(k). At
each time k, all of the past measurements are summarized by the estimate,
#(k), and its associated variance, o3(k).

There are three basic steps performed in updating the estimate of the
system state to reflect the measurement made at k + 1. These steps are
referred to as the prediction, observation, and estimation steps. We consider
each of thed'irl thfn.

In the prediction step, we compute what we expect to observe at k + 1.
This involves first computing an estimate of the state at k + 1 given all the
measurements at time k or easiier, défimed by, -

£(k + 1/k) = Cra(k) + Cau(k).

191

The variance associate. with this estiz{é is

o2(k + 1|k) = CRo2(k) + o2.

Notice that the control is not considered in computing the variance. The
predicted measurement is then a:/

2k + 1|k) =Gai(k + 1]k),
and the variance associated with the gredicted measurement is

i
o (k + 1]k) = @:(k +1|k) + 02,

In the observation step, we make the observation and then compare the
resulting measurement with what we expected. The difference between the
actual and predicted measurement ,V

vk +1) = z(k + 1) = 2(k + 1|k),

is called the innovation.
In the third and final step, called the estimation step, we compute £(k+1)
as ‘
#k+1)=z(k+1lk)+ K(k+ v(k+ 1),

and the associated variance as J
ol(k+1) = a¥(k+ 1)k) - Xl((k + 1)1}63(1: + 1)k),
where K'(k + 1) is called the filter gain and defined by /

_éaz(k + 1|k)
KEXD= 00710 £ o (e <)

It should be noted that we have to invert the measurement function in order
to compute the filter gain. In general, this inversion can be difficult if not
impossible. However, for linear systems, inversion simply involves taking a
reciprocal in the scalar case or inverting a matrix in the vector case.

A good way of convincing yourself that these equations make sense is to
consider limiting cases. For instance, consider cases in which the there is no
error in movement or measurement (i.e., 02 and o2 are 0) or cases in which
Ci, C3, and C; are 1.

192

In the above, we made use of .nodels for predicting not only the current
and future states of the system, but also the current and future measure-
ments made in observing the system. These models account for uncertainty
in the underlying process by incorporating probabilistic noise models for
disturbances in the dynamical system and errors in measurement. At each
point in time, we compare what we expect to observe with what we actually
observe ia order to determine how much weight to attribute to each, based
on the sort of errors we expect from the corresponding noise models.

Extending the above equations to handle finite vector spaces and mul-
tiple measurements is reasonably straightforward though notationally te-
dious, and we will not attempt it here. Instead of the mean and variance
of the distribution of a single random variable, it is necessary to generalize
to the mean and covariance of a multidimensional distribution of a vector
of random variables.> Once you understand the equations for the single-
dimensional case, it is relatively easy to understand the multidimensional
case. It is quite another matter, however, to apply the equations to real
problems which invariably deviate from the assumptions stated above. In
the following, we consider some of the issues that arise in the application of
the Kalman filter to robotics problems.

In many problems in robotics, linearity is hard to come by and one has
to appeal to an extension of the Kalman filter designed to handle nonlinear
state equations. For instance, in the case of even the simplest holonomic
(turn-in-place) mobile robot, the state vector might consist of the robot’s
position along the z axis, its position along the y axis, and its orientation,
8, all specified with respect to some coordinate frame of reference in the

For a vector, X, of n random variables the n-dimensional normal (Gaussian) densiiy
is defined by - -)) T ’ ’

1 1 ' p-
P(x)= (2') 'PI’ exp [_E(x-“) P l(x-“)] ’

where y and P = E[(x — s)(x — u)'] are the mean and covariance of the vector x, and the
prime (as in (x — u)') indicates vector (or matrix) transposition. The covariance of two
random variables, z and y, indicates the degree to which z is related to y, and is defined

by
El(z - E(z))(y - E(y))] = E[zy) - Elz]Ely}.

The covariance (matrix) of the n dimensional vector, x, is the symmetric matrix whose
ijth entry is the covariance of the ith and jth components of x.

193

workspace:
z(k)
x(k)= | y(k) |,
6(k)

where we notate the state vector, x, using a bold font to distinguish it from
the state variable corresponding to position along the z axis. The input
vector in this case is just
R RION
Ad(k) J

where D(k) is the distance traveled in a single time step, and A§(k) is
the rotation turned through in a single time step. We can write the state
equation as

x(k+1)

f(x(k), u(k)) + v(k)
z(k) + D(k) cos8(k)
y(k) + D(k)sin8(k) | + v(k),
6(k) + A8(k)

which is clearly nonlinear.

The standard approach to dealing with such nonlinearities is to linearize
the state equation by expanding the nonlinear function in Taylor series
around the current estimate, X, with terms up to first or second order to
obtain, respectively, the first- or second-order eztended Kalman filter. In
the case of the first-order extended Kalman filter for the nonlinear state
equation above, we would have

© x(k+1) = f(x(k), u(k)) + fx(k)x(k) - (k)] + v(k),
where fx(k) is the Jacobian matrix® of f defined by

1 0 -D(k)sind(k)
fx(k)={ 0 1 D(k)cosé(k)
00 1

*The Jacobian is to vector-valued functions what the gradient is to scalar-valued func-
tions. If f is a vector-valued function,

fi(z1,23,...,24)

f:(zg, T2y ,t”)
1) = ! ,

fm(z1,22,...,24)

194

Generally, the measurement functions are also ..onlinear and require similar
linearization. Having obtained the necessary linearizations, we then proceed
asin the linear case, and hope that the resulting approximations will provide
acceptable state estimates.

Modeling sensors so as to satisfy the Gaussian noise requirement is an-
other problem frequently encountered in robotics applications. Most sensors
cannot be modeled as simple functions of one or more of the state variables
corrupted with Gaussian noise. Consider, for example, some of the problems
that arise in modeling ultrasonic (sonar) sensors of the sort typically found
on mobile robots.

A sonar sensor consists of an ultrasonic transducer, a receiver, and some
signal-processing hardware. Information about the distance from the senscr
to nearby surfaces is obtained by measuring the round-trip time of flight of
an ultrasonic pulse that is emitted by the transducer, bounces off an object
surface, and returns to the receiver.

If the transducer is pointed along a line perpendicular to a nearby planar
surface, then the sensor can be modeled as t.e actuaol distance .o the sur-
face corrupted by zero-mean Gaussian noise However, if the transducer is
not pointed perpendicular to the nearest object . urface, then there is some
chance that not enough of the energ:- froin the nltrasonic pulse will be re-
turned to the receiver to de...mine the true time of flight to the nearest
surface. Instead, the pulse may be reflected, bouncing off possibly several
objects before a signal with enough energy is aetected by the receiver. In
this case, the information returned by the sensor may deviate significantly
from the distance to the nearest - iject. Figure 6.5 (from [13]) shows the
range data obtained from a single sensor rotated 360°; the range data is
superimposed over a line drawing of the room in which the sensor is located.

If you know t3at your sensor is pointing perpendicular to a planar sur-
face, then you can use the Kalman filtering equations to obtain a good
estimate of the distance separating the robot from the surface. The prob-
lem, of course, is that it is generally very difficult to know that you are

then its Jecodian matrir is defined by

9f1/9zy 3N /323 --- 3f1[/0za
af(x) 8f2/0zy 3f2/3z2 --- 8f1/0za
ax : : :
Ofm/321 Ofm/0z3 - - Ofm/[Oza
195

¥

[

|/

Py
-

‘::’_‘_-.-.

Figure 6.5: A 360° sonar scan of an indoor environment

pointing perpendicular to a planar surface.

If you have some a priori knowledge about the surfaces of the objects
in the form of a map, then you can often make good guesses about what
surfaces are out there and align your sensors so as to obtain reliable range
data. In the following, we outline some basic steps in sonar guided navigation
using an existing map and the Kalman filter.

1. Consult the map and extract some number of beacons corresponding
to geometric features found in the map. This process of extracting
beacons involves using the current estimate of the robot’s state (posi-
tion and orientation with respect to the frame of reference of the map).
Useful geometric features are those whose sonar signature is distinc-
tive. Flat walls (planar surfaces), round columns (cylindrical surfaces),
and corners (intersection of planar surfaces) are examples of geomet-
ric features with distinctive sonar signatures. Having obtained a set of
candidate beacons, we attempt to ascertain if they really stand in the
expected relationship to the robot (and ultimately to one another).

2. For each candidate beacon, construct a model for the measurements
that would be obtained from the sensor if the beacon was in the rel-

196

ative position and orientation predicted by the map. Note that the
model may require that the sensor be aligned with the beacon in some
particular configuration to avoid errors due to multiple reflections. We
assume that there is a library of parameterized models, one for each
type of geometric feature deemed useful. The model for a particular
candidate beacon is obtained by instantiating one of the parameter-
ized models using relative position and orientation information from
the map. There would be a separate model for each beacon of the
form

zi(k) = hi(x(k)) + wi(k),

where h; is the nonlinear measurement function for the ith candidate
beacon, and w; models the measurement noise. Using the estimated
state X(k + 1|k), we obtain a prediction for each observation

si(k + 1[k) = hi(&(k + 1[K)).

. We now make the next observations, using heuristic strategies where
appropriate in an attempt to align the sensors according to the require-
ments of the corresponding model.” Given the actual and predicted
observations, we compute the innovation

vi(k + 1) = zi(k + 1) - 2:(k + 1{k),

and the corresponding prediction variance which is obtained by lin-
earizing the h;. Up until this point, we have eszentially followed the
basic steps of the Kalman filter. However, in the next step, we deviate
somewhat. - : o :

. We have only hypothesized the existence of the candidate beacons,
and we could easily turn out to be mistaken. Because of the possibil-
ity of making mistakes in identifying beacons, we cannot immediately
use the innovations and their associated variances to obtain x(k + 1).
It will not hurt if we are off a bit in our estimation of the geomet-
ric feature’s relative location and orientation; the Kalman filtering

"Ideally the robot would be equipped with several independent rotating sensor arrays.
Each array would consist of a pair of ultrasonic sensors mounted at some small distance
apart on a rigid platform so that the two sensors are always pointing in the same direction.
Each candidate beacon would be assigned an array and the beacon could then be aligned
with the beacon surface(s) using a feedback controller that exploits the difference between
values returned by the two sensors.

197

Figure 6.6: Localization using the extended Kalman filter

equations will weight the new measurements appropriately and, over
time, the estimate should converge to the actual state. However, if the
measurements are due not to the hypothesized beacon but rather to
some other geometric feature, then incorporating those measurements
into the state estimate using the Kalman filtering equations will lead
to significant estimation errors. To avoid such errors, we subject the
observations to the following test. We determine a range of possible
values for each beacon such that, if the beacon is actually present, then
the measurement will fall within that range with some reasonably high
probability. We select only those measurements that fall within the
range determined by the specified threshold probability.

. Finally, we compute the latest estimate as -
m

x(k+1) = x(k + 11k) + >_ Ki(k + L)wi(k + 1),
=1

where K is the filter gain (matrix) for the ith measurement out of the
m measurements obtained in the previous step.

The approach sketched above is conceptually quite simple but somewhat

tricky to implement for a real robot. Determining an appropriate threshold
probability requires a certain amount of experimentation. Achieving proper
alignment is difficult in the case of highly specular (glossy) metal or painted
surfaces. Unexpected objects, either moving or fixed but not accounted for
in the map, can cause problems. If, however, there are plenty of potential

198

beacons and there are enough sensors to track several of them at any o..2
time, then quite robust performance can be achieved.

Figure 6.6 illustrates how the method described above would perform in
a particular environment. The robot’s location in the plane is represented
at 7 discrete points in time. Initially, the robot knows its exact location
with respect to the frame of reference of the global map. In the next two
time steps, its estimated position becomes increasingly uncertain due to
movement errors. This uncertainty is represented in Figure 6.6 in terms
of ellipses corresponding to contours of constant probability of the error
distribution. We assume that at time points 2 and 3 the robot is not tracking
any beacons. At time point 4, the robot acquires a beacon corresponding to
the wall shown at the bottom of Figure 6.6. This beacon allows the robot
to decrease its uncertainty with respect to the y axis. The robot continues
to track the wall beacon thereby obtaining an increasingly more accurate
estimate for its position with respect to the y axis. At time point 6, the robot
acquires the beacon corresponding to the corner at the left of Figure 6.6,
obtaining more accurate estimates for its position with respect to the z axis.

This example illustrates a special case of a more general approach em-
ploying the Kalman filter as a basic subroutine. In the general approach, we
assume that the world is in one of several states; it is our task to determine
which is the actual state. For each of the possible states, we provide a dy-
namical model in terms of a linear system corrupted by Gaussian noise. For
each model, we interpret the data as though produced by the model. We
then choose the model whose predictions conform most closely to the data.

We had several motivations in presenting the material on state estima-
tion and the Kalman filter. Mathematically, the Kalman filter is simple and
elegant. Practically, the Kalman filter provides a powerful tool that can
yield extremely precise and robust control systems. Approaches based on
the Kalman filter are well suited for implementation on digital computers.
They provide a disciplined approach to combining the data from any number
of sources. Finally, the recursive update equations for the Kalman filter il-
lustrate a cycle of activity involving prediction, observation, and estimation,
thas ghould play a part in any approach to dealing with uncertainty.

The state regulation problem for a linear dynamical system, quadratic
performance index, linear control law, and Gaussian disturbance and mea-
surement noise can be cast in terms of two separate problems. The problem
of deterministic optimal control and the problem of stochastic optimal esti-
mation. It has been shown that the two problems can be solved separately
to yield an optimal solution to the combined control problem. While this

199

Figure 6.7: A stochastic process with two states

separation property does not hold for nonlinear systems, in many cases,
engineers proceed as if it did, designing controllers and state estimators sep-
arately and then connecting them to obtain a complete control system. In
estimation as elseyhere in control, the linear case serves as the basis for de-
sign. In Chapter 6 we consider problems in which observation and control
interact strongly, requiring that the robot consider both state regulation and
state reconstruction when choosing control actions.

6.3 Stochastic Dynamic Programming

V
In Chapter 8, we considered the problem of determining an optimal policy for
multistage decision processes. In this section, we reconsider this problem in
the context of stochastic processes. The material in this section is ippportant , /
in its own right, but it will also figure prominently in Chapters 8.ahd 8, '.\

For our purposes, a finite-state, time-invariant, discrete-time stochastic
process is a four tuple (T, X, U, P) consisting of the following.

e A set of time points T = Z
o A finite set of states X = {z,,2,...,zx)}
e A finite set of inputs U = {u;,us,...,uy}

e A set, P = {p;j(u)}, of state-transition conditional probability distri-
butions, one for each state/input pair, (z;,u) where z; € X and u € U,
such that for each z; € X we have the distribution,

pij(u) = Pr(z(t + 1) = z;{z(t) = z;,u(t) = v),

200

independent of ¢, and subject to the standard requirements regarding
probability distributions,

0<pij(u) <1, Vz;,z; € X,uel,

and

E pij(u)=1, vr; e X,ue .
z,€X

We notate the state-transition distributions as p,;(u) so that in the sequel
we can drop the explicit input argument by assuming an implicit control
law or policy of the form,

n: X —-U,
so that

pis = pij(n(zi))-

Figure 6.7 shows a simple stochastic process with two possible states, X =
{1,2}, and two possible inputs, U = {a,b}.

The stochastic processes we are considering here are guaranteed to tran-
sition to every state infinitely often no matter what initial state the process
is started in. Such processes are said to be completely ergodic.

In addition to the requirements stated above, the stochastic processes
that we will be concerned with have the following Markov property,

Pr(z(t + 1)|z(2), u(?)) = Pr(z(t + 1)|z(2), u(t), z(t ~ 1), u(t - 1),...), W
o)

indicating that the transition probabilities depends only on the last state
and not on any prior history of the system.
Finally, we introduce a reward function,

R:UxX =R,

such that R(u, z) corresponds to the (immediate) benefit derived from per-
forming action u in state z. In Chapter 3,"‘we were concerned with n-stage
decision problems and maximizing performance indices such as

V(u(1),...,u(n); 2(1),...,2z(n)) = >_ R(u(i), z(3)).
=1
We were able to solve such problems using the following recurrence,
Va(z) = muax[R(u,z) + Vaoi(f(z,u))], n>2
Vilz) = me.xR(u,::),

201

b

where f is the deterministic state-transition function.

In the case of stochastic processes, there is generally some uncertainty
in the outcome resulting from performing a given action in a particular
state, and so we maximize erpected value to account for this uncertainty.
We can extend the recurrence for the deterministic case to handle stochas-
tic processes by summing over the possible next states weighted by their
probability of occurring. The extended recurrence is defined by

Va(z) = max > p;j(u)[R(u,@-{_- Va-i1(z)], n22
z;€X J

max Y pij(u)[R(y,2;)].
T, €X

Vi(z)

The above recurrence represents the xpplicatio.: of Bellman's principle of
optimality, as discussed in Chapter 3y‘to Markov decision processes. The
method of solving Markov decision processes by solving this recurrence is
referred to as value iteration since the value functions are determined iter-
atively [9].

There are other variations on this basic recurrence relation. For instance,
we could specify boundary conditions (e.g., initial amount of fuel or other
resource) by redefining V, to include some initial value. We could also define
a set of admissible controls thereby restricting which actions are allowed un-
der what circumstances. The primary limitation of value iteration concerns
its ability to handle processes of indefinite duration. Under some circum-
stances the above recurrence can be shown to converge asymptotically, so
that, in the limit as n — oo, an agent using the policy defined by

n(z;) = argmax 3 pu(u)[uu,@y Va-i(z;)],
)

S,EX

will act so as to maximize its average expected return {3]. However, in
certain cases, we can do much better, and, in the following, we consider a
method due to Howard [9] for solving processes of indefinite duration.

If a completely ergodic stochastic process is allowed to transition indef-
initely, the cumulative reward will increase without bound given a strictly
positive reward function. A more appropriate performance index for pro-
cesses of indefinite duration is the average reward per transition. We define
the average reward per transition or system gain with respect to a given
policy. In the following, we always assume a current policy of the form,

n: X-1U,

202

allowing us to make the following abbreviations,
pii = pij(n(zi))
R(z) = R(n(z),2)

Using these abbreviations, we can rewrite the basic recurrence used in
value iteration as follows.

Va(zi) = Epej[R(ti)+Vn-1(3j)]

z,eX
= Y i[RI+ 3 Pii(Va-i(2;)]
z,€X z,€X

We introduce new notation for the expected immediate (quick) returns cor-
responding to the first summation term in the above equation,

Qzi) = Y pij[R(z)],

z,€X

allowing us to simplify the recurrence once more as

Va(z:) = Q(z:) + z Pij[Va-1(z;)}.

:,Ex

Note that the quick returns can b2 computed directly from the reward func-
tion and the state-transition probabilities. To evaluate the quick return for
an input other than that specified by the current policy, we simply add a
control argument,

Q(zi,u) = Y pij(w)[R(y, 2:)).

. ,€X

In considering processes with indefinite duration, we are interested in
how often a given process will end up in a particular state. Let x;(n) indicate
the probability that the system will be in state z; after n transitions given
that the initial stateis known. Let 7, be the limit of x;(n) as n — o0o0. Clearly
Y oax® = 1. For completely ergodic processes, the x; are completely
independent of the starting state and provide us with the frequency that the
system will enter a given state given that it is allowed to run indefinitely.
Using these limiting state transition probabilities, we can define the system
gain (average reward per transition) with respect to a given policy as

G= Z m[R(z.-)].

z.€X

203

"

As n gets large, the quantity, V.(z), increases without bound, but the
difference, V(2)-Va_1(z), is bounded. As a consequence, we can determine
the equation of a line,

y(n) = gn + vo,

bounding the values of V,(z), where gn represents the steady-state compo-
nent of the behavior as n — 0o, and vg represents the transient component,
depending only on the starting state. This bounding line is referred to as
the asymptote of Va(z). The slope, g, of the asymptote is just the system
gain, G, and the y-intercept, vo, we denote V(z) (no subscript) for starting
state, z. For completely ergodic processes, the slope is independent of the
starting state. As n gets large, we have the following approximation,

Va(z) = nG + V(z).
Substituting in our recurrence, we obtain

nG+V(z:) = Q)+ Y pijl(n-1)G+ V(z;)]
zr,€X

nG+V(zi) = Q@)+(n-1)G Y pij+ Y piilV(z;)).

z,€X z,€X

Noting that 3°_ ¢ x pi; = 1, we finally obtain a set of equations of the form,

G+ V(z:) =Qz) + 3 pijlV(z;)l,
z;€X

one for each z; € X. This constitutes a set of |X| linear simultaneous
equations in | X|+ 1 unknowns: the values of G and the | X| V(z;). In order
to solve this system of equations, we can eliminate one unknown by setting
one of the V(z;) equal to zero. The values for the V(z;) obtained from the
solution to the set of simultaneous equation with, say, V(z;X|) = 0 will
differ from those defined in

Va(zi) = nG + V(z;)

by a constant amount, but this difference is not significant for processes
with a large number of transitions, and the values obtained for the V(z,)
will suffice for determining the relative merit of two policies, hence they are
referred to as relative values.

204

We now have a method, referred to as value determination, for estab-
lishing the expected value of a given policy for a stochastic decision pro-
cess of indefinite duration. We now need a method of choosing an optimal
policy. In the following, we consider a method due to Howard (9] called
policy iteration which allows us to generate an optimal policy by successive
approximation. Policy iteration starts with an arbitrary policy, generates
an improved (higher gain) policy on every iteration, and is guaranteed to
terminate in a finite number of iterations with the optimal (highest possi-
ble attainable gain) policy. The policy iteration algorithm cycles between
the value-determination procedure outlined above and a policy-improvement
procedure that involves selecting an improved policy on the basis of the
relative values for the current policy. As Howard [9] puts it, “the value-
determination operation yields values as a function of policy, whereas the
policy-improvement routine yields policy as a function of the values.”

The policy iteration algorithm is defined as follows.

1. Let k ~ 0.

2. Choose an arbitrary® policy, 7o, compute the corresponding values for
the Q(z;), and then use the value determination method described
above to compute the values for the V(z;).

3. For each state, z;, find u; maximizing

Qzi w) + Y pij(w)[V(z;)),

z;eX

using the current value function. For each z;, if u; yields a better
return based on the current value function, that is we have

(Q(Z‘i,“i)*') P:‘j(“i)[v(zj)]) > (Q(-"-‘i)+ > Pij[v(zj)]) ,

z;€X z;€X

then u} ~ u;, otherwise u} — m(z;).

SWhills the chaice of initial policy does not affect whether or not the algorithm converges
on the optimal policy, a good initial choice can often result in faster convergence. If there
is no a priori reason for choosing any particular policy, Howard recommends choosing no
so that

n(zi) = max Q(zi, u).

This is effectively the same as setting V(z:) = 0 for all z; € X, and then running the
policy improvement step in the algorithm.

205

4. Define a new policy such that
Te+1(2:) = g

5. If mk = k41, then exit returning n.

6. Using nx41, compute the values for the Q(z;), and then use these to
. compute V(z,;) using value determination.

7. Let k — k+1.
8. Go to Step 3.

—

Step 6 and Step 2 both of which involve value determination are the
most expensive steps computationally. However, the solution of the set
of simuitaneous equations required for value determination can be easily
handled by means of existing efficient linear programming algorithms. The
limiting factor is the size of the state and input spaces.

To illustrate how policy iteration works, we consider a variation on a
classic problem found in {9, 3]. The classic formulation involves a taxicab
driver searching for fares; we have changed the problem slightly to reflect
our interest in mobile robots. Qur treatment here follows that of [9].

Consider the problem faced by a robot courier assigned the task of de-
livering files, office supplies, and other assorted small items in a three-story
office building. The robot is rewarded for making its deliveries and the re-
wards differ depending on where the robot is and how far it is required to
travel.

9

For the most part, the robot just waits around-for the next delivery -

job, but it has a few options that can influence how quickly the next job
arrives and how much of a reward it is likely to obtain in carrying out this
job. Each floor of the building is dedicated to a different department of
a company, and each floor has its own separate reception area and copy
room. The offices on the first and third floors are equipped with computer
workstations linked by local area networks, and the robot can plug into the
network on a given floor using a receptacle located near the elevator. Using
their personal workstations, office workers can issue requests to the robot
through the network.

Let X = {1,2,3}, corresponding to the first, second, and third floors
of the office building, and U = {c, r,n}, corresponding to the three options
open to the robot, wait in the copyroom, wait in the reception area, and

206

i u pij(u) Ri;(u) Qi(u)
j=12 3 j=1 2 3
1| ¢ | 1/2 1/4 1/4 10 4 8 8.00
r | 1/16 3/4 3/16 8 2 4 2.75
n | 1/4 1/8 5/8 4 4.25
2 | ¢ | 172 o 172 | 14 0 18 | 16.00
r | 116 7/8 1716 | 8 16 8 | 15.00
3| ¢ | 1/4 1/4 172 10 2 8 7.00
r | 1/8 3/4 1/8 6 4 2 4.00
n | 3/4 1/16 3/16 4 0 8 4.50

Table 6.1: Specification for the rob@uier problem

plug into the local area network, where the last option is only available in
States 1 and 3. Since the reward depends not only on the action taken
and the initial state, but also upon the final state, we modify the reward
function to take a third argument, R : U x X x X — R, so that R,;(u)
corresponds to the (immediate) benefit derived from performing action u in
state z; and ending up in state z;. We also modify the definition of the
immediate (quick) reward function to reflect the dependence on the final

state,
Qi(w) = Y pij(u)[Rej(w))
7,€X
The complete specification for the robot courier problem is shown in Ta-
ble 6.1 where the transition probabilities and rewards are shown in matrix
form.

‘We begin by assuming that the expected values for all states are zero,
V(1) = V(2) = V(3) = 0,

so that the initial policy will depend only upon immediate rewards. Looking
at the last column in Table 6.1, it should be clear that the robot should wait
in the copyroom no matter what floor it finds itself on, and so we define the
initial policy, no, as

7o(1) = m(2) = m(3) = c.

207

The state transition probabilities and reward values for this policy are given
by the following matrices,

1/2 1/4 1/4 8
ijl=11/2 0 1/2 [Ri;] = | 16
1/4 1/4 1/2 7

From the general equations used in value determination,

G+V(z)=Qi+ Y pi;[V(zi),
z,eX

we construct the particular equations for the current policy,

GH+V(1) = 8+V(1)+ %\f(z) +3V)

G + V(2)

8 + %V(l) +0V(2) + %V(3)
GHV@) = 8+3V()+ V(D) +3V()

Setting V(3) equal to zero and solving, we obtain

V(1) = 1.33
V(2) = 747
Vi3 = 0

Nj\ G = 9.2

Tablg6.2 shows the results of the calculations made in the process of
improving upcn the initial policy, 7. For each state, z;, we choose the
option, u, that maximizes the quantity,

Qi(w)+ Y pij(w)[V(z;)l

:,‘Gx
and select the improved policy, 7, defined by
m(l)=¢, m(2)=7 m@)=r,

indicating that the robot should wait in the reception area on the second
and third floor, but wait in the copyroom on the first.

208

Qi(u) + ¥z, ex ij(v)[V(z;)]

10.53

8.43

5.52
16.67
21.62

9.20

9.77

5.97

N
S 9 Al old 39 ale

Table 6.2: First round of policy improvement for the robot courier

If we perform another cycle of value determination and policy improve-
ment, we arrive at the policy, 7; defined by
m(1l)=r m@2)=r, Mm@)=r,

indicating the robot should wait &' in the reception area no matter what
floor it is located on. If we perform yet another cycle we obtain, 73, defined
by

m(l)=r, m2)=r, n3)=r
Noticing that n; = 75, we now have an optimal policy,

n(l)=r, n(2)=r, n@3)=r,

for the robot courier problem, reinforcing the belief held by"mé.ny' office’

workers that the reception area is one of the busiest areas in an office and
one to be avoided if you wish to avoid work.

As might be expected, policy iteration is sensitive to a variety of changes
in the initial conditions. For instance, if you reverse the transition proba-
bilities, p2,2(r) and p3 3(r), you obtain a different optimal policy,

nl)=¢, n(2)=c¢c, n@B8)=r.

In addition, the number of iterations (most importantly, the number of times
we have to perform value determination) depends critically on the choice of
an initial policy. If, for example, we start with the initial policy,

(1) = n no(2) = r no(3) = n,

209

policy iteration takes only two iterations instead of the three required for
(1) = n0(2) = 70(3) = ¢. In many cases, the choice of an initial policy
that is close to optimal can improve the performance of policy iteration
dramatically.

In some cases, it is unrealistic to count consequences in the distant future
on an equal basis with more immediate consequences. For instance, we may
mistrust our model for making accurate long term predictions, or future
rewards may actually lose value due to some inflationary process. Most
biological organisms tend to discount longer term rewards and focus on
more immediate rewards. We can model this outlook on rewards »v adding
a discounting factor to our value function.

Va(zi) = Q(z) + A Y £ij[Va-1(z;)],

z,eX

where 0 < A < 1 is the discount rate. In the case of discounting, the notion
of gain (average reward per transition) no longer makes sense, as the optimal
policy is simply the one that maximizes expected value in all possible states.

Value determination is actually simpler for stochastic processes with dis-
counting, as we no longer have to account for the system gain. Eliminating
the system gain and appealing once more to the asymptotic limit of V,,
namely V, we obtain a set of equations of the form,

V(z;) = Q(zi) + A Z pi;[V(z;)]

z,€X

one for each z; € X. This constitutes a set of |X| linear simultaneous
equations in |X| unknowns (the V(z;)) that can. be easily solved for the
unknowns. Policy iteration works in the case of discounting exactly as before
with the substitution of the simplified value determination procedure.

If we add discounting to the robot-curier problem, we get a different
policy depending upon the value of A. For 0 < A < 0.13, we get the policy,

n()=¢ n2)=¢, n3)=¢c,
for 0.13 € A < 0.53, we get

n(1)=¢, n(2)=r, 1(3)=¢,
for 0.53 < A < 0.77, we get

() =¢, n2)=r, 9(3)=r,

210

and, finally, for 0.77 < X < 1.0, we get

'7(1) =r '7(2) =r 77(3) =r

As one might guess, the closer A is to *, the more iterations of value de-
termination and policy improvement will be required to obtain the optimal
policy.

In Chapter 8, we consider a form of learning that is closely related to <

the approach used here to compute an optimal policy for stochastic decision
processes with discounting. We will employ the same basic form of succes-
sive policy improvement. The main departure from the techniques of this
section is that value determination will be done without the aid of

Value determination will occur over time as the agent interacts with its envi-
ronment obtaining rewards and punishments intermittently and occasionally
inappropriately. This sort of reinforcement learning provides a good model
of learning in biological organisms and also appears to be a good model for
many automated planning and control applications.

6.4 Fuzzy Set Theory and Fuzzy Control

Uncertainty arises in many different forms. Probability theory provides a
basis for reasoning about uncertainty due to randomness, but there are
other forms of uncertainty that cannot be easily captured using the tools
of probability theory. In this section, we consider some alternative tools
provided by fuzzy set theory and fuzzy control.

Fuzzy set theory provides a mathematical basis for capturing knowledge

in a form close to that used in everyday communication. Using fuzzy set ..

theory, we can assign meaning to terms associated with sets for which there
are no clearly defined boundaries separating elements from non-elements,
terms like large, small, close, far, hot, cold, short, and tall.

The standard interpretations of probabilities in terms of frequencies or
likeliboods m:zke it difficult to model linguistic phenomena characterized
by words like “heavy” or “tall.” The word “tall” denotes a fuzzy set not
because there is randomness in the process of measurement, but because
there is general dispute and uncertainty about whether a borderline case
belongs to the set or not.

Our interest here stems from the considerable success that fuzzy set the-
ory and its counterpart, fuzzy control, have had in practical applications.
Fuzzy control systems have been used in video cameras, automobiles, and

211

high-speed public transportation systems, just to name a few of the more
successful applications. Fuzzy control and fuzzy decision-support systems
provide a focus on knowledge acquisition and representation similar to that
found in the work on so-called ezpert rule-based systems. We mention fuzzy
methods in this chapter because they have shown themselves to provide
a viable alternative to other more traditional approaches to dealing with
uncertainty in control, and Secause they share with other rule-based ap-
proaches to reasoning an emphasis on symbolic representations.

We begin with a brief introduction to fuzzy set theory [17]. Let X denote
the universe set of elements, and z an instance of this set. A fuzzy set A
in X is characterized by a membership or characteristic function from X to
the real interval [0, 1],

I4:X —[0,1).

The value of T4 at z indicates the “degree” to which z is considered to be a
member of A. In standard set theory, Z4 is either 0 or 1. In the sort of sets
that fuzzy set theory is primarily concerned with, such binary distinctions
are often difficult to make. For instance, let X be the set of all people,
and A be the set of “tall” people. Suppose ycu consider people over seven
feet to be tall, under six feet not to be tall, and between six and seven feet
to be to some degree (between zero and omne) tall. In this case, you might
characterize the set of tall people using the following function,

1 if 72 h(z)
Ta(z)=<{ h(z)-6 f62h(z)<7 ,
0 otherwise

where h(z) denotes the heighf of z.
We now provide fuzzy versions of some common set-theoretic notjons.
The fuzzy complement, A, of the set, A, is defined by the function,
Ti(z) =1 - Ta(z).
The fussy union, A U B, of two fuzzy sets, A and B, is defined
Taus(z) = max(Za(z),Ip(2)),

and the fuzzy intersection, A N B, is defined

IAnB(Z) = min(-TA(I)y IB(‘:))

212

Note that, in the case of boolean-valuec characteristic functions, these def-
initions coincide with the standard set-theoretic definitions of complement,
union, and intersection.

For building rule-based control systems, we are not so much interested in
a generalization of set theory as we are in a generalization of predicate logic.
The standard (Tarskian) semantics for predicate logic is based on standard
set theory; predicates denote sets, the (truth-functional) interpretation of
atomic sentences is defined in terms of membership, and the meaning of the
connectives, =, V and A, defined, respectively, in terms of complementation,
union, and intersection. In a similar manner, one can provide semantics
for fuzzy logic using fuzzy set theory. Since our objectives in this section
are modest, we only introduce those concepts that are necessary for our
discussion, and refer the reader to a more detailed treatment in [10).

The syntax for the propositional case is as follows. Let A be a set of
fuzzy propositional variables. We define the set of well-formed formulae
(wffs) inductively as comsisting of any propositional variable, the negation
of any wif (written ~¢ where ¢ is a wif), the conjunction of any two wils
(written (41 A ¢2) where ¢, and ¢ are wifs), or the disjunction of any two
wifs (written (¢ V ¢2) where ¢, and 3 are wifs).

Next, we provide the semantics for the propositional case. An inter-
pretation, M, is a function from propositional variables to the real interval
[0,1]. An interpretation, M, is said to be an a-model for a wff, ¢, (written
M 4) under the following conditions.

e ME, Aiff M(A)=a,where A€ A
o MEa~piff ME1-a ¢ .
o M a4 @1 A s iff a =min(ay,az), where M |=,, 1, and M |=q, 02,

In analogy to two-valued propositional logic, a wif, ¢, is said to be a-
satisfiable if it has an a-model, and is said to be a-valid (written |=,) if all
modele are a-models. We can also define an analog of semantic entailment.
A wil, ¢, is said to a-entail another wif, 3, (written) =4 1) if for any
model, M, M |=,, ¢ implies that az/a; > a, where M |=,, 3.

For a particular control problem, we would construct a set of fuzzy propo-
sitional variables as follows. Let F be the set of fuzzy sets, and X the uni-
verse set (generally the state space of a dynamical system) for the problem
at hand. For each A € F and z € X, we define a propositional variable of
the form, A(z), as shorthand for z € A.

213

Assigning A(z) a real number is like assigning a proposition a truth
value; such assignments restrict the interpretations we are willing to consider
and therefore restrict what formulae are valid. In a two-valued propositional
logic, if you are told that P must be true in all interpretations, then, subject
to that restriction, Q is true in all models for ~PvQ. Similarly, in fuzzy logic,
if you are told that A(z) must be assigned 0.7 in all interpretations, then
B(z) must be assigned 0.4 in all models for which ~A(z) V B(z) is assigned
0.4. Note that, in the case of boolean-valued characteristic functions, the
above fuzzy semantics reduces to standard truth-functional semantics.

For the cases we consider in the sequel, we are interested in the unique
model, M, such that, for all 4 € F and z € X, M(A(z)) = Z4(z). Dlus-
trating the connection to the fuzzy set-theoretic concepts introduced earlier,
note that M satisfies the following condmons

L M l=1',1(z) "A(z)
% — M #r,n,(z)ﬂ(z)/\ ?3) ,
Mz, :FA(z)V 3(3)

forall A, Be Fand z € X.

The primitive notions presented above provide us with all the logical
machinery we require for building simple fuzzy control systems. We could
use fuzzy logic directly to obtain assignments to fuzzy propositional variables
in an analog of the way in which boolean logic is used in some control
systems. Instead, we consider how fuzzy logic formulae are used to construct
fuzzy algorithms [18]. For our purposes, a fuzzy control system consists of
a set of statements (or rules) of the form,

If AyAAA--- A Aq, then C,.

where the A; are the antecedent conditions and C is the consequent action.
Generally, the antecedents correspond to fuzzy propositions involving the
system state variables, and the consequent corresponds to a fuzzy assignment
statement involving the system input variables.

Foe instance, suppose you are trying to control a robot to move parallel
to the planar surface of a wall in the direction right facing the wall and
maintaining a distance of about one meter from the wall. You would need
fuzzy sets characterizing the distance separating the robot from the wall,
and the angle of the robot with respect to the surface of the wall. The dis-
tance to the wall might be captured using six fuzzy sets, corresponding to
being next to the wall, VERY_NEAR, some distance but close, NEAR, some-
what further but still relatively close, SOMEWHAT_NEAR, even further,

214

LYHMANOS
YV LVHMANOS
Avd AMdA

UVAN",

(i

0.0

Figure 6.8: Fuzzy membership functions for the wall-following problem

SOMEWHAT_FAR, further still, FAR, and very far VERY_FAR. Possible
characteristic functions for these six fuzzy sets are shown in Figure 6.8.

To control the robot, you might specify that, if the robot is within a
meter or so of the wall and moving nearly perpendicular but slightly toward
the wall's surface, then steer a little further to the right. Such a specification
would be represented by the rule,

Rl: If NEAR(z) A SOMEWHAT.TOWARD(z)
then u «— u+ SOMEWHAT_RIGHT,

where NEAR, SOMEWHAT.TOWARD, and SOMEWHAT_RIGHT corre-
spond to fuzzy sets, z is the system state indicating the position and ori-
entation of the robot with respect to. the wall, and u is.the system input
indicating the steering angle.

Fuzzy logic indicates how to interpret the antecedent of R1. For instance,
given that

NEAR(z)
SOMEWHAT.TOWARD(z)

1.0
0.9,

we have

NEAR(z) A SOMEWHAT.TOWARID(z) = 0.9.
However, the statements in a fuzzy algorithm are not formulae in a fuzzy
logic. What we require is a procedural interpretation. In particular, we have
to determine the result of executing R1?

215

If SOMEWHAT_RIGHT were a constant, say 5°, then the result of ex-
ecuting R1, might be that the value of u is increased by 5 over what it was
formerly, where the general rule might be, if the value of the antecedent is
greater than 0.75, then treat the consequent as a statement in a conventional
programming language and execute it accordingly.

In the case of SOMEWHAT_RIGHT being a fuzzy set, we will want to
consider a different evaluation strategy. Suppose that we define the fuzzy e
set, SOMEWHAT_RIGHT, as follows,

(0.2 fz=1°
04 ifz=2°
06 ifz=23°
08 ifz=4°
I _) 10 ifz=5°
SOMEWHATRIGHT(®) = 08 ifz=6°
06 ifz=7°
04 ifz=8°
0.2 ifz=9°
. 0.0 otherwise

Then we might define the result of executing R1 as another fuzzy set,
RESULT_R1, defined by weighting the fuzzy set, SOMEWHAT RIGHT,
using the value assigned to the antecedent condition.

(0.2+09 fz=u+1°
04209 ifz=u+2°
06+09 ifz=u+3°
08209 ifz=u+4°
TRESULT R1(Z) = ¢ 1009 ifz=u+5°

1 08+09 ifz=u+6°
06+09 ifz=u+4+7°
04+09 ifz=u+8°
0.2+09 ifz=u+49°
. 0.0 otherwise

We still need a unique result, and one obvious possibility is to choose the
result with the highest rating, breaking ties randomly if necessary.

The method of using thresholds to determine whether or not to execute
the consequent of fuzzy rules is inadequate in the case in which there are
several rules all attempting to perform conflicting actions, say setting a

216

control variable to different values, and all having antecedent conditions
that pass the threshold. For instance, in addition to R1, we might have the
following rule,

R2: If NEAR(z) A SOMEWHAT_AWAY(z)
then u — u + SOMEWHAT_LEFT.

£

As an alternative to thresholds, we could define a corresponding fuzzy result, & f
RESULT_R2, for R1, and set u according to the following, b

pﬂ 9 F)‘C }ﬁ
u « argmax(ZRgsyLT_R1(%) TRESULT R2A(%))- p P N y
{

We can generalize on the above method for any number of rules. In y‘ﬂ 2
practice, the set of rules is represented using an n-dimensional table, with Aj" 1 (.1
one dimension for each state variable and some number of fuzzy sets to cover Y
the domain of each such variable. At each point in time, all of the rules are)e!
evaluated to determine their corresponding fuzzy results, and the maximal ¢

control action taken.

There are many different schemes for executing fuzzy algorithms. There
are methods that combine the results from several rules, using a variety of
weighting schemes. There are fuzzy algorithmic versions of integer program-
ming, dynamic programming, database query processing, as well as a host of
specialized techniques for financial decision making, natural-language pro-
cessing, circuit layout, and speech recognition, just to name a few. Our
purpose here is not to survey fuzzy methods, but simply to make the reader
aware of a large and active area of control, and provide a somewhat different
perspective on uncertainty thaa that offered by the probabilists.

6.5 Further Reading

For a more thorough treatment of state estimation techniques in general and
the Kalman filter in particular, the reader is encouraged to read Bar-Shalom
and Pertmann [1], Brammer and Siffling (4], Gelb (6], or Maybeck [14]. It is
also wall worth returning to some of the original papers on the theory and
applieation of the Kalman filter. A number of the original papers appear in
a collection by Sorenson [16] which is particularly interesting for the broad
range of applications considered.

For approaches to geometrical reasoning under uncertainty involving
static estimation and using minimum mean-square parameter estimation

217

I —

techniques, see the work of Durrant-Whyte [5] and Smith and Cheeseman
[15]. Hager [7] presents a game-theoretic analysis of the errors that arise
in applying minimum mean-square estimation methods and develops al-
ternative techniques for stochastic geometrical reasoning that allow more
flexibility in modeling uncertainty.

Leonard and Durrant-Whyte [13] describe techniques to obtain estimates
of the distance separating a mobile robot from nearby walls, corners, and
other environmental features that exhibit well-behaved sonar signatures.
These estimates are then used to update the robot’s position with respect
to a global map. The discussion in Section 6.2 is based on their work.

While there are any number of more recent books on dynamic program-
ming and stochastic decisin processes, the texts by Bellman [2] and Bellman
and Dreyfus (3] are well worth reading. The method of policy iteration dis-
cussed in this chapter is due to Howard (9], and his book is an excellent
source of examples as well as proofs of correctness for the basic method and
a number of interesting variations. Among the variations, Howard discusses
nonergodic (multichain) and continuous-time processes. For an introduction
to finite Markov processes. the texts by Kemeny and Snell [11) and Hoel,
Port, and Stone [8] are recommended.

The original paper by Zadeh [17] is still an excellent introduction to
fuzzy set theory. In a later paper, Zadeh [18] considers the use of fuzzy set
theory for reasoning about complex systems and decision processes. In this
same paper, Zadeh elaborates on the notion of a fuzzy algorithm, providing
a number of interesting examples. The text by Kaufman [10] covers some
of the mathematics of fuzzy logic and fuzzy set theory.

218

Bibliography

(1] Bar-Shalom, Yaakov and Fortmann, Thomas E., Tracking and Data
Association, (Academic Press, New York, 1988).

(2] Bellman, Richard, Dynamic Programming, (Princeton University Press,
1957).

(3] Bellman, Richard and Dreyfus, Stuart, Applied Dynamic Programming,
(Princeton University Press, Princeton, New Jersey, 1962).

(4] Brammer, Karl and Sifling, Gerhard, Kalman-Bucy Filters, (Artech
House, Norwood, Massachusetts, 1989).

(5] Durrant-Whyte, Hugh F., Integration, Coordination and Control of
Multi-Sensor Robot Systems, (Kluwer Academic Publishers, Boston,
Massachusetts, 1988).

(6] Gelb, A., (Ed.), Applied Optimal Estimation, (MIT Press, Cambridge,
Massachusetts, 1974).

(7] Hager, Gregory D., Task-Directed Sensor Fusion and Planning: A
Computational Approach, (Kluwer Academic Publishers, Boston, Mas-
sachusetts, 1990).

(8] Hod, Paul G., Port, Sidney C., and Stone, Charles J., Introduction to
Slochastic Processes, (Houghton Mifflin, Boston, Massachusetts, 1971).

(9) Boward, Ronald A., Dynamic Programming and Markov Processes,
(MIT Press, Cambridge, Massachusetts, 1960).

[10] Kaufmann, Arnold, Introduction to the Theory of Fuzzy Subsets, (Aca-
demic Press, New York, 1975).

219

[.1] Kemeny, J. G. and Snell, J. L., Finite Markov Chains, (D. Van Nos-
trand, New York, 1960).

(12] Koditschek, D., Robot Control Systems, Shapiro, Stuart, (Ed.), En-
cyclopedia of Artificial Intelligence, (John Wiley and Sons, New York,
1987), 902-923.

[13] Leonard, John J. and Durrant-Whyte, Hugh F., Active Sensor Control %
for Mobile Robotics, Technical Report OUEL-1756/89, Oxford Univer-
sity Robotics Research Group, 1989.

(14] Maybeck, Peter S., The Kalman Filter—An Introduction to Potential
Users, Technical Report TM-72-3, Air Force Flight Dynamics Labora-
tory, Wright Patterson AFB, Ohio, 1972.

[15]) Smith, Randall and Cheeseman, Peter, On the Representation and Es-
timation of Spatial Uncertainty, The International Journal of Robotics
Research, 5 (1986) 56-68.

[16) Soronson, Harold W., (Ed.), Kalman Filtering: Theory and Applica-
tion, (IEEE Press, New York, 1985).

[17) Zadeh, Lofti A., Fuzzy Sets, Information and Control, 8 (1965) 338~
353.

(18] Zadeh, Lofti A., Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes, IEEE Transactions on Systems, Man
and Cybernetics, 3 (1973) 28—44.

220

Chapter 7

Planning Under Uncertainty

This chapter is still very much in flur. It currently consists of early drafts
of a couplc of introductory scctions along with some czample scctions drawm
verbatim from conferenee and journal papers. No further apologics will be
madc for its state of disarray.

The approaches to planning that we considered in earlier chapters in-
volve generating possible states of affairs from some initial information and
a model. In this and the next two chapters. we focus on problems in which
the present and future states of affairs are not completely determined by the
model and the information at haud. We have already seen some problems
of this sort. In the case in whira a robot is uncertain of the outcome of an
action. but the outcome will he apparent once the action is completed, we
snggested that the robot constract a conditional plan indicating what snb-
sequent course of action to take for each possible outcome. In this chapter.
we consider cases in which the agent has somewhat more information about
the possible outcomes: before the action is- completed, and somewhat less
information about the actual outcome after the action is completed.

7.1 Decision Theory

Let 2 be a set of possible states. Suppose that we have some means of
assigning nuwerical values to possible states:

V:0—~R.
°®©1990 Thomas Dean. Al righis reserved.

214

This [unction is - enerally reflerred 10 as a ralue or utiiiy function. In some
cases. depending on our measure of value. it may be more convenient to
think ol value in terms of its inverse. cost. In the case of value or utilitv.
we generally seek to increase it: in the case of cost. we generally seek to
decrease it.

If vou could choose some w € Q. vo would want to choose w such that
V(w) is maximum:

argg\ea‘:)(wu). b

Unfortunately, we cannot simply select at will from Q. We assuine. however,
that we can select our actions from a set of actions. A. Let [c¢|w] denote the
state resulting from executing action « in state . {f the state is unimportant
or clear from context. we simply write [a].

Suppose that each action a € A has a unique outconie [a] € 2. Then
we could simply choose the action whose outconte is most desirabie:

argmax V{[a]}).

Of course. an action seldom, if ever. completely determines a unique state.
"L'o represent an agent’s uncertainty about the consequences of its actions. we
assune that the state resuiting from a given action is governed by a randomn
process. In this case, we let [tr] denote a random variable with probability
space §), and assume that we have conditiona. probability distributions of

the form:
Pr([a]|€),

for all n € A. where £ represents the agent’s background knowledg.. Now.
V([n]) is a real-valued function of a random variable, and its expectation s
defined to he:
E(V([a]I€) = Y V(w) Pr([a] = w|). (7.1)
wefl
The agent will want to choose the action with the highest expected value:

argmax E(V([a])|€). (7.2)

One assamption underlying the decision strategy captured in Equa-
tions 7.1 and 7.2 is that the agent is often going to find jtself in the situation
of having to choose what action to take. Ifence. the agent wants to choose
actions so that its long-term payoff, as predicted by the value function and

215

Pl @,)= ®) Pia ey PQa, ke Mo, o)

tvee seee

Vi ®) Ve &) V(e) Ve @)

Figure 7.1: Simple decision tree

its expectations concerning outcomes is maximized. A decision that maxi-
mizes expected value is called an optimal decision.

A significant portion of the next two chapters will involve variations on
this basic idea of choosing actions on the basis of expectations about their
outcomes. so it is important that vou understand it. You can picture the
decision process embodied in Equatious 7.1 aud 7.2 as a decision tree. in
which the root node corresponds to a choice by the agent of what action to
take. and the children of the root node correspond to a choice by nature of
what state should result from the agent’s action. Figure 7.1 shows a simple
decision tree in which the agent’s choices are represented bv boxes called
decision nodes. and nature’s choices are represented hy circles called chance
nodes. The terminal nodes in the decision tree are labeled with the values
assigned to the outcomes. The edges leading out of chance-nodes are labeled
with the probabilities of the outcomes. The edges leading out of decision
nodes are labeled with the agent’s choices.

In general, decision trees can be of any depth. not just depth 2 as in
the decision tree shown in Figure 7.1. Often decision trees are arranged
with lovels alternating between decision and chance nodes. but this is not
requid@k There is 10 requirement that decision trees be symmetrical though
they oftem appear 80 in textbooks. Indeed. we will often sacrifice symmetry
to redace the size of the decision tree and the computational effort required
to evaluate the optimal decision.

An example should help to make the approach to decision making de-

216

detowr roweg beckwecking rous
(10) (12)

....__—-—-.,._'. . bridge
Rl

direct rouss
(6)

Figure 7.2: Alternative routes to the beach

scribed here inore concrete. Suppose that you live in the city and are taking
vour summer vacation at a beach sowme distance from the city. Suppose
further that there are two routes to the beach: a direct route that takes
six hours and roundabout route that takes ten hours. We will call these
the direct and detour routes. The direct route requires that you cross a
bridge which. as luck would have it, is undergoiug major repairs this sum-
mer. There is a 50% chauce that the bridge will be closed at the time you
wish to cross it. If you attempt the direct route and find the bridge closed.
vou will have to backtrack to the detour route. and your total transit time
will be twelve hours.

Your decision involves choosing whether to try the direct or detour route
first. Figure 7.2 shows the three possible outcomres of vour decision. If you
choose the detour route, the trip will take ten hours. If you choose the
direct route, the trip will take either six hours or twelve hours depending
on whether or not the bridge is closed. We need to assign a value or cost to
each of the possible outcomes. and. in this case, a natural measure of cost
is time spent in transit.

Figase 7.3 provides a graphical representation of the decision problem
for choosing which route to take. Note that the terminals of the subtree
emanating from the end of the detour branch have the same cost. The
probabilities on the edges of this subtree govern whether or not the bridge is
closed. but this factor has no impact on the outcome if we take the detour.
Such uninteresting subtrees are generally eliminated and replaced with the

217

[] 12 10 10

Figure 7.3: Decision tree for the vacation trip problem

value of the appropriate outcome.

Given a decision tree such as that depicted in Figure 7.3. we can calcu-
late the optimal decision and its expected cost using the following simple
procedure. Initially, all of the nodes in the tree except terminal nodes have
null labels. Terminal nodes are labeled with the cost of outcomes.

1.

For each chance node with a null labei all of whose children have non
null labels. label it with the expected cost for the node calculated as
the sum over all children of the product of the probability of the child
(as indicated on the edge from the chance node to the child) and the
child’s label.

-

For each decision node with a null label all of whose children have non
null labels, label it with the minimum cost of the labels of its children,
and strike from consideration all edges except that one leading to the
child with minimum cost.

H there are any nodes with null labels. go to Step 1, otherwise find a
peth from the root to a terminal node consisting of action edges that
have not been stricken from consideration. The sequence of actions
along this path indicates the optimal decision and its expected cost is
the label of the root.

218

6

Figure 7.4: Evaluated decision tree for the vacation trip problem

If we are concerned with value instead of cost. substitute cost evervwhere for
value, and maximum and maximize everywhere for minimum and minimize.

Figure 7.4 shows the labeled and marked decision tree for the vacation
trip problem obtained using the above procedure. The optimal decision is
to try the direct route first. and the expected transit time in this case is
9 hours.

We can extend the above analysis to handle sequences of actions of length
n. Let @ = ay,a3,...,0n, where @ € A x A x...A. The result of executing
the sequence of actions ay.a3,...,an in w is.

[onll@n—ll- - -[@al] - . 1],

abbreviated [ay, @3, . .., @,)w]. We denote the kth action in the sequence @ =
M, Q2. e v Oky...,tn a8 &k, The correspouding decision tree is shown in
Figure 7.5. There are two things to note about the tree shown in Figure 7.5.
First, the tree is likely to be quite large, O(].4|"|¢}|) nodes. Second. the tree
is not vesy interesting in terms of capturing the structure of the decision
problems. We might as well just use the simnple two-level decision tree shown
in Figure 7.1, and let the choice of what action to take range over the
complex actions in A x A x...A.

There are cases. however. in which actions can alter an agent's deci-
sion waking capability by providing additional information. For instance, if

219

d’-u d =za

Vi(e,) Ve)

Figure 7.5: Sequential Decision Tree

you are interested in buying a used car, hiring a mechanic to check the car's
condition hefore making a purchase will probably reduce the possibility that
vou end up buving a car with lLigh repair costs. By representing the con-
sequences of such information-gathering actions explicitly in our graphical
representations for decision problems, we can gain some additional insight
into the structure of such problems.

In our vacation trip example, suppose there is a state police station
located near the highway prior to the point at which we have to decide
hetween the direct and detour routes. We will assume that the state police
can provide us with information about the current status of the bridge.
Suppose that stopping at the police station requires getting off the highway
and traveliug to a nearby town, and that the total time spent in acquiring
the infosmation about the bridge is estimated to be 30 minutes.

Now we have an additional decision to make hesides simply whether to
take the direct or detour route. You can think of the trip to the police
station as particular type of test with two possible findings: the state police
believe that the Lridge is open or they believe that it is closed. The findings
may not provide conclusive evidence with regard to the primary question

220

we are interested in. namelv whether or not the bridge is closed. but let us
suppose in this case that the heliefs of the state police are veridical.

\We represent possible findings of our test as a chance node in the decision
tree. The probabilities correspond to onr priors regarding the status of the
bridge. since at this tiine we have no better information. Under each of the
two possible findings, we attach the tree shown in Figure 7.3 with one change:
the probabilities for the chance nodes corresponding to whether or not the
bridge is closed are now conditioned on the findings. Given our assuniption
that the police know the true status of the bridge, the probability the bridge
is closed given the police say it is closed is 1, the probability the bridge is
closed given the police say it is open is 0, and so on.

Figure 7.6 shows the decision tree for the vacation trip problem with the
decision node corresponding to driving to the police station or not. The two
options are labeled check and not check. We also label test options with
their associated costs. Information costs. Lverv time that you get opera-
tor assistance in dialing a long-distance number or consult an accountant
about your income tax you are paying for information. In the vacation trip
problem, the cost of the information regarding the status of the hridge is
in terms of increased driving time: 1/2 hour for the check option and no
increase in time for the not check option. In compnting the optimal deci-
sion for a decision problem with decision nodes corresponding to tests. we
calcnlate the maximum values for the labels of such nodes accounting for
these costs.

In the case of decision problems with actions to acquire information. the
optimal decision is a conditional plan specifying what to do at each point
in time given the information available at the time. This conditional plan
is called the optimal policy in the decision sciences: The optimal policy for
the decision tree shown in Figure 7.6 is to check with the state police, and
then take the direct route if the police say the bridge is open and the detour
otherwise. For this policy, the expected transit time is 8 and 1/2 honrs.

It is often useful to be able to assess the value of information so as to
make reasonable decisions regarding whether or not to pay for it. We can
quaatify the value of informatinn in decision-theoretic terms.

In the vacation trip example, we were able to compute the expected
value of making the trip by selecting actions that minimize expected travel
time hased on the information at hand. Let

E(T|€)

he the expected travel time, T. for the optimal course of action hased on

221

o

(K}

10

4 12 ¢ 12

Figure 7.6: Reasoning about information gathering actions

222

the background information. £. In reasoning about whether or not to Aop
at the state police station. we computed the expected travel time given the
additional information obtained from the police:

E(T|Is.E).

where [s represeuts the event of obtaining inforiation from the police re-
garding the status. 5. of the bridge. either open or cluosed. The expected
value of the information obtained from stopping at the police station is

E(V(Is)|€) = E(TIs. &) - E(T|E).
where

E(T|Is, &) =
E(T|S = closed.E)PHS = closed|E) + E(T|S = open. &) Pr(S = open|&).

In the example, E(V(Is)|€) = 1.0, implying that we should be willing to
spend up to one hour to obtain the information regarding the status of the
bridge.

More generally, let E(V([})|&) be the expected value of carrying out your
present policy. Suppose that, prior to carrying out your present policy,
someone offers to sell you information pertaining to some variable, .Y, used
in calculating E(V([JI€). To be more specific, suppose that the informant
is clairvoyant and knows the actual value of X. Let Iy correspond to the
event of obtaining the information regarding ..

The expected value of obtaining this information is given by

E(V(Ix)€) = E(V([DIIx, &) = E(V(DIE). " (7.3)

To compute E(V'al({])|Ix.E), we evaluate the expectation given knowledge
about .\ for each possible value of .X' provided by the informant. summing
over these expectations weighted by our prior on .Y

EVIDIx. &) = & EVIDIX = 2. PHX = #16). (7.4)
r€0x

It is important to note. as did Howard in the 1966 paper [19] in which he
introduced Equations 7.3 and 7.4, that we use the prior distribution Pr{ X'|£)
for X hecanse, until the informant provides the information ahout X, our
knowledge of X is based entirely on our background knowledge &.

223

A good deal of the discussion in this and the next chapter will concern
. -asoning about the value of information and using the results of this rea-
soning to direct action. Defore we can progress much further. we need to
provide some additional machinery for probabilistic reasoning. In the next
section. we consider a particular framework for modeling the world in the
presence of uncertainty. \We show how this framework can be extended to
handle decision making, and then we demonstrate the power of tle extended
framework using applications involving sensing and mobile robotics.

Have to establish a generic name for what have been called Bayes nets,
Bayesion networks, belief networks, probabilistic networks. influence dia-
grams and who knows what else.

7.2 Probabilistic Networks

.\ probabilistic network is a directed acyclic graph ¢ = (1" E), where V' is
a finite set of vertices. and E. the set of edges. is a subset of V' x V", the
set of ordered pairs of distinct vertices. Before we discuss how to use these
probabilistic networks to build decision models, we introduce and define
some standard graph theoretic terms.

If (1.1} € G. then vy is said to he a perent of vy, and v a child of v,.
The set of all parents of v is denoted Pa(v) and the set of all children Ch(v).

A path of length n from vy to v, is a seqnence rg.1y.. ... r, such that
(ricg.ri)€ Efori=1...., n. If there is a path from v, to r;. then r, is
said to he an ancestor of v;. The set of all ancestors of r is denoted An(v).
A subset § C V is said to sepamte V' C V from V" C V" if every path from
a vertex in V" to a vertex in V' intersects S.

We can obtain an undirected graph from ¢ by ignoring the ordering on
the pairs of vertices in E. The graph so obtained is called the undirected
graph corresponding to G. If V' C V', then 1” induces a subgraph Gy+ =
(17, Ev+) where Ey is that subset of E restricted to V' x 17 . A graph (V. E)
is complectc if for all vy.v; € V' either (vy,v;) € Eor(v;.n)€ E. V' CV
induces & complete subgraph, then 1 is said to be complete. A complete
subees that is maximal with respect to set inclusion is called a clique.

Foe the directed acyclic graph (1, E), we define its moral gmph as the
undirected graph with the same vertex set in which ; is adjacent to n; just
in case either (vy,v7) € E. (v3.v,) € E. or there exists r3 € 1" such that
hoth (rj.v3) € E and (vq,v3) € E.

The vertices in V" correspond to random variables and are called chance

224

nodes as in decision trees. The edges in £ deline the causal and informational
dependencies between the random variables. In the models described here,
chance nodes are discrete-valued variables that encode states of knowledge
ahout the world. We use upper-case italic letters (e.g.. .Y') to represent
raudom variables. and lower-case italic letters (e.g.. x) to represent their
possible values. Let §)y denote the set of possible values (slate space) of
the chance node X. In order to quantify a probabilistic network. we have to
specify a probability distribution for each node. If the chance node has no
parents, then this is its uuconditional (marginal) probability distribution,
Pr(.X); otherwise, it is a counditional probability distribution dependent on
the states of the parents. Pr{.Y|Pa(.\)).

IfV = {X).X2....X,}, we can write down the joint distribution using
the chain rule as follows:

Pr(X1..X2, .. .0 Xp)=
Pr(Xn|Ynot.....- Y1) Pr(Xaci)Xnz2, ... Y1) -PrX2lX7) Pl Yy)

There are certain independence assumptions implicit in the structure of
probabilistic networks that enable us to simplify this expression somewhat.
A complete characterization of the conditional independeuncies embodied in
the structure of a given probabilistic network can be given in graph theoretic
terms. For a given ¢ = (V. E') and subsets V. 17", § C V', V" is conditionally
independent of V' given .5 if § separates 1"’ from V' in the moral graph for
¢. From this characterization. it follows that a chance node is conditionally
independent of its ancestors given ils parents:

Pr(X|An(X)) = Pr(X|Pa(X)).

If the indices. 1.....n, of the variables. X..X3,..., Xn. are consistent with
the partial ordering in G (i.e.. (Xi, X;3x) € E DO k > 0), then we can use
this conditional independence property to simplily our expression for the
Jjoint distribution:

Pr(X1, Xz.....0 () = [] PrXi|Pa(X)) (7.5)
=]
The nice thing about Equation 7.5 is that the product terms *he right-
hand side are exactly the marginal and conditional probabilities required to
quantify the network.
In using probabilistic networks for planning and control. we generally
wish to compute the posterior distribution for some random variable given

225

some evidence o some proposed action or contemplated observation. Intn-
itively. we are ‘uterested in updating onr heliefs given the evidence obtained
so far. and reasoning hypothetically about possible future courses of action.
In the vacation trip example. before we start out on the trip. we hypoth-
esize about taking various routes and making information gathering side
trips. After stopping at the state police station. we update our heliefs re-
garding the status of the bridge by incorporating the evidence obhtained from
the police.

To capture this process of updating beliefs and reasoning hypothetically,
we introduce the notion of a belief function defined on each of the random
variables in G as

Bel(.Y') = Pr(X|S),
where & represeuts all of the evidence obtained so far. Whenever we ob-
tain new evidence, we extend & and update Bel(.Y) for all X of interest.
Hypothetical reasoning is handled by including additional conditioning in-
formation. as in
Bel(YY) = Pr(XY, 8).

We can compute Bel(.X') directlv using the joint distribution defined in
Equation 7.5. For instance, suppose that V' = {A.B.C}. and we have
obtained as evidence the actual value of B. To compute the belief function
on « given the evidence regarding B. we need Pr(A|B). By the definition
of conditional probability. we have
Pr(A, D)

Pr(d) °

\We can obtain Pr(A) by summing the joint distribution over all variables
except A as in

PT(AIB) =

Pr(dA)= Z Z P(A.B=b,C =c).
c€flc beflg

This is referred to as marginalizing the joint probability distribution to .i.
We obtain Pr(A, B) in a similar manner as

Pr(A.B)=) Pr(A.B.C=c¢).
c€fle

This particular method of compnting belief functions can involve a num-
ber of arithwmetic operatious linear in the size of the joint probabilitv space:

IT 19x).

Xelv

226

Figure 7.7: Simple tree-structured probabilistic network

In mauy cases, we can do significantly hetter from a computational stand-
point by exploiting the structure of the graph. In particnlar, if § is a tree
(t.e., forall v € V", Pa(v) € 1), then we can compute the helief function for
all variables in V" in time proportional to

)3 I o

XeV \rePax)

For trees. the only information required to compute the belief function at
a given node can be obtained from adjacent nodes in the graph. The com-
plexity arises from the local structure of the graph.

In the following, we describe how to compute the belief function for trees.
While trees occur infrequently in practice, the exercise provides some addi-
tional insight into probabilistic networks. Following the description of the
method for haudling trees, we describe a urethod of trausforming arbitrary
probabilistic networks into hyper graphs with tree-like structure that can be
handled by methods similar to those used for trees.

Consider how we might compute Pr(X|Z.11....,1,) given the tree-
structured probabilistic network shown in Figure 7.7. Applving Bayes rule,
we have

Pr(Z.1)..... Ya)
Marginalizing in the denominator. we have

PHX|Z. i, Vo) = 2230 Tl X) PRY)

Pr(Z.Y1.....Y,) = Z Pr(Z,}1..... Y5 X)) P Y).
T€NX

227

Using conditional independense and applying Baves rule again. we have

Pr(X|Z)Pn Z)Pr(}7]|X) - -Pr(},|Y)

Pr(Z.Y..... 151Y) = PrY)

Substituting, we have

PHX|Z.Yh....Yo) =
Pr(X|Z)Pr(Z)Pr(},|X)---Pr(},L]|X)
Z:E(lx Pr(X = .tIZ)Pr(Z) Pf‘()-ll.‘- =) --Pr()',,].\' =z)

which requires ouly the marginal and counditional probabilities necessary to
quantify the probabilistic network shown in Figure 7.7.

For the problems we will be considering. evidence corresponds to the
instantiation of variables at the boundary of the network (i.e.. variables
with no parents or no children). The impact of evidence on variables not
on the boundary has Lo be assessed by propagating the effects of evidence
through intervening variables. In Figure 7.7, the set {Z.Y)..... 15} cor-
responds to the boundary. Some or all of the variables .. the bound-
ary may be instantiated in response to observations miade by the agent.
After each observation. the belief function will require updating. For in-
stance. having determinad Pr(.X|Z.1}.....}}), we can compute Bel(.Y) for
E=2=:z2Y1=y..... Y, = yn.

Let e represent all of the evidence obtained thus far. Removing X sep-
arates ¢ into n + | subtrees associated with the siugle parent of X and its
n children. We partition e into n + 1 components corresponding to these
n+ 1 subtrees. Let et be the evidence associated with the parent of X. and
e be the evidence associated with the ith child of .X'. Figure 7.8 illustrates
this partition graphically. Suppose that X' can obtain Pr{Z]et) from Z.
and Pr(e]|};) from Y;. Given this information. we can compute Pr(.Xle) in
a manmner similar to that used in computing Pr(.X|Z.17..... Y,) above:

Pr(X|e) = Pr(X|et. e[.....e;) =

Pr(X|e*)Pr(e]|X)---Pr(e;|X)
Treny Pr(X = rlet)Pr(e]|X = x)---Pr(e;|X = x)’

where Pr(.X|et) is obtained from Pr(.X|Z) and Pr(Z|e*) as follows:

Pr(Xlet)= D PrX|Z = z)Pr(Z = z|e*).
€Mz

228

Figure 7.8: Partitioniug the evidence bearing on .X into subtrees

Evidence propagation occurs by local message passing. Each node keceps
track of n 4+ | messages corresponding to the last messages received from
its single parent and cach of its n children. The node corresponing to X
recomputes Pr(\\'|e) only in the event that it receives a message from a
parent or child that differs from the last message received from that same
parent or child. Nodes corresponding to evidence ignore incoming messages.
If Y recomputes Pr(.Y|e), it also recomputes appropriate messages to send
to its parent and children. and then sends these messages. The message .\
sends to its parent Z is computed as

Prex|Z)= Y (Pr(X =2 [] Pr(ej|X)) .
r€NQx i=1

where ey indicates the cvidence in the subtree rooted at X. The message
X sends to its kth child is computed as

Pr(X|e},,) = Pr(XN|et. e, ... e .00, €7)

where e} N indicates all of the evidence in the tree rooted at .\ except that
found in the subtree rooted at };. Note that the right-hand side of this
expression can be computed in a manner similar to that used in computing
I’r(.X'|e) by simply eliminating the Pr(e;|.\') factor.

229

transporiation budget approved (A

highway repaved
Figure 7.9: Propagating evidence in trees

All of these messages require only information available from the either
originating node or from messages sent by parents and children. If we assume
unit cost for updating the local information at stored at a node in response
to a new message. then the cost of updating Bel(.X') for all X € 1" in response
to new evidence originating at a single node is proportional to V" in the worst
case.

Consider the following example illustrating how evidence propagates
through a tree-structured network. The example extends the earlier ex-
ample concerning the status of a critical bridge in planning a vacation trip.
Suppose that we know some additional information regarding the status of
this bridge. In particular, snppose we know that the repairs to the hridge
that would result in its cloring are contingent upon an increase in the state
transportation budget. This budget increase was to be voted on in the state
legislature earlier in the year. Unfortunately, we did not hear the outcome
of the vote. but the same increase was to be used to repave a portion of the
highway that will have to be traversed near the beginning of the trip.

We introduce three boolean-valued random variables: A representing
the proposition that the budget increase was approved. C representing the
proposition that the bridge is rloscd, and R represeuting the proposition
that the highway portion in question was repavcd. Suppose that we have a
prior distribution on the budget approval,

Fr(4)
A = true 0.1
A = false 0.9

a conditional probability distribution for the bridge being closed given that
the budget is approved.

230

Pr(C|4)
A= true | A = false
C = true 0.7 0.2
C = false 0.3 0.8

and a conditional probability distribution for the highwayv being repaved
given that the budget is approved.

Pr(R|A)
A =true | A = false
R = true 0.6 0.1
R = false U4 0.9

The resulting network is shown in Figure 7.9. Now. suppos= that during
the early part of our trip we discover that the portion of the highway iu
gnestion has indeed been repaved. We want to update the network to reflect
the evidence: R = true. For the purposes of the trip example, we are
interested in

Bel(C = true) = Pr(C’ = true|lR = true)

in order to determine whether to take the direct or detour routes. To update
('. we will also update A in the process of propagating the impact of the
evidence.

For the simple network shown in Figure 7.9, we cau easily compute the
helief function using the joiut distribution,

Pr(A,C,R) = Pr(C|A)Pr{R|A) Pr(A),

As described earlier, by definition we have

APr(C-' = true.R; true)
Pt(R = true) ’

Pr(C = true|R = true) =

Marginalizing, we compute the numerator by summing over 4.

Pr(C = true.R = true) =
Pr(C = truelA = true) Pr(R = trueld = true) Pr(A = true) +
Pr(C = trueld = false) Pr(R = true|lA = false) Pr(A = false),

and the denominator by summing over 24 x Q¢.

Pr(R = true) =

231

Pr(C = true|A = true) Pr(R = true|A = true) Pri A = rrue) +
Pr(C' = trueld = false) Pr{R = true| = false) V(A = false) +
Pr(C' = false|.\ = true) Pt(R = true|A = true) Pr(A = true) +
Pr(C = false|]A = false) Pr(R = true|d = false) Pr(A = false).

to obtain the value 0.4 for Pr(C" = true|R = true). Now. consider how we
might obtain the same value by local message passing.

Prior to obtaining any evidence 1. just sends Pr{(A) to C and R. and "
and R send the function that maps all of Q¢ to 1.0. After (' updates itself.
we have Pr(C = true) = 0.25. After obtaining the evidence R = true, R
computes

Pr(R = truefjd) = Pr(R = true|R = true) Pr(R = true|d) +
Pr(K = true|R = false) Pr(R = false|A),

and seuds this message to A.
In respunse to this wessage. 4 updates its beliel using the new message
from R and the old one from C:

Pr{A|R = true) =
Pr(A)Pr(R = true|A)
Pr(A = true) Pr(R = trueld = true) + Pr(A = false) Pr(R = true|A = false)’

The message sent to C from A is just Pr(A|R = true), and (' updates
its belief as

P{C|R = true) = Pr(C|A = true)Pr(A = tru'eIR = true) +
Pr(C[A = false) Pr(A = false|R = true),

from which we compute Pr(C = true|lR = true) = 0.4. the same value
obtained using the joint distribution.

It is fairly straightforward to extend the above method for evaluating
probabillstic models to handle networks in which a given node has more
than ome parent, but there is at most one path between any two nodes
in the corresponding undirected graph. Such networks are called singly-
connected. The extension involves keeping track of the evidence originating
from subgraphs associated with the nodes of parents. Since there is a one-to-
one correspoundence between the parents and children of a given node and
the set of subgraphs resulting from removing that node, keeping track of

232

Figure 7.10: A multiply-connected network

evidence is relatively simnple in singly-connected networks. The same cannot
be said for multiply-connected nelworks. networks in which there are cycles
in the corresponding undirected graph. Figure 7.10 shows a simple multiply-
connected network. Problews arise in trying to distribute the impact of the
evidence on A to B and ('. In the worst case, correctly routing evidence
about in a multiply-connected network requires a global perspective. (‘ouper
has shown that exact evaluation of general probabilistic networks is NP-hard
(9]

While computing the beliel function for variables in probabilistic net-
works is intractable in the general case. we can often exploit the structure
inherent in particular networks to reduce the cost of computation. One ap-
proach involves finding a set of variables, {.Xy,.... X,}, which, if removed
from the network. would render it singly connected (e.g.. the set {B} in
Figure 7.10). The belief function for a given node is taken as the weighted
sumn of the belief functious computed for all possible instantiations of the
variables in {{X'1,....X,}. Calculating the weights is a rather complex. but
the real trick involves linding a small set of variables to render the net-
work singly connected. This is crucial since you lhiave to calculate the belief
function for [T7.; [Qx,| variable instantiations.

A second approach to evaluating general probabilistic networks also in-
volves coaverting multiply-connected networks into singly-connected vnes.
This approach involves constructing a hyper graph whose vertices corre-
spoud to the cliques of the chordal graph formed by triaugulating the moral
graph for the given network. [[Say a little more about triangulation and
chordal graphs.]] From this hyper graph. we extract a wmaximal spanning

233

Figure 7.11: Join tree for a multiply-connected network

tree which is referred to as a join trce. [[Say a little more about maximal
spanning trees.]] Figure 7.11 shows a join tree for the network of Figure 7.10.

Pr{A.B,C', D)= Pr(D|B.C) P B{A) Pr(C|A) Pr(A)

([Say something about the messages passed in evaluating join trees. Pro-
vide some insight into Jensen’s variation on Lauritzen and Spiegelhalter
by updating the graph shown in Figure 7.11 (e.g., the role of the running
intersection property).|]

The cost of evaluating a probabilistic network using the join-tree ap-
proach is largely determined by the sizes of Lhe state spaces formed by taking
the cross product of the state spaces of the nodes in each vertex (clique) of
the join tree. We can obtaiu an accurate estimate of the cost of evaluating
a probabilistic network. ¢ = (V. E) as follows. Let C = {C;} be the set of
cliques in the chordal graph described earlier. where each clique represeuts
a subset of V", We define the function, Card : C — {1..... |C| - 1}, so that
Card(C;) is the rank of the highest ranked node in C';. where rank is deter-
mined by the maximal cardinality orderiug of V. {[Say a little more about
maximum cardinality ordering.]] We define the function. Adj: C — 2€, by:

Adj(Ci) = {C{(C; # COHA(CiNC; #0)).

The join tree for G is construncted as follows. Each clique C; € C is
connected to the clique C; in Adj(C;) that has lower rank by Card(.) and has
the highest number of nodes in common with C; (ties are broken arbitrarily).
Whesitiver we conuect two cliques C; and C;. we create the scpamation set
Si; = CiNCj. The set of separation sets S is all the §;;’s. We define the
function, Sep : C — 25, hy:

Sep(C'i) = {SiklSix € S, (J=i)V(k=i)}.

234

Finally. we define the join-tree cost as

3 (|SeplC)| § IQ,.i).

C.eC n€c’,
where 2, is the state space of node ».

Say something about the multiply-connected case. Given that the sub-
sequent sections will refer to Jensen's variation on Lauritzen and Spiegel-
halter. that algorithm should be described as some level deeper than already
attempted. An extremely detatled description is probably not warranted given
that the material is readily available in a number of recent textbooks (e.g.,
[32. 31]).

Introduce influence diagrams and relate them to the decision lrees de-
seribed earlier in the introduclory sections.

The first two examples of upplying Bayesian networks (o planning and
eontrol problems come from [11]. The first ezample considers the relatively
simple problem of recognizing locally distinctive places. The second example
considers the problem of choosing between paths through known and unknoun
territory. The latier erample can be used to illustrate some of the tradeoff
involved in working with multiply connected networks.

7.3 Robot Navigation

A significant problem in designing mobile robot control svstems involves
coping with the uncertainty that arises in moving about in an unknown or
partiallv unknown environment and relving on noisy or ambiguous seusor
data to acquire knowledge about that environment. In this section. we
consider a control system that chooses what activity to engage in next on
the basis of expectations about how the information returned as a result of
a given activity will improve its knowledge about the spatial lavout of its
environment. Certain of the higher-level components of the control system
are specified in terms of probabilistic decision models whose output is used
to mediate the behavior of lower-level control components responsible for
movement and sensing. The objective it to design control svstems capable
of directing the behavior of a mobile robot in the exploration and mapping of
its environment. while attending to the real-time requirements of navigation
and obstacle avoidance.

We are interested in building systems that construct and maintain repre-
sentations of their environment for tasks involving navigation. Such svstems

235

should expend effort on the construction and maintenance of these repre-
sentations commmensurate with expectations about their value for immediate
and anticipated tasks. Such svstems should emplov expectations about the
information returned from sensors to assist in choosing activities that are
most likely to improve the accuracy of its representations. Finallv. in addi-
tion to reasoning about the future consequences of acting, such systems must
attend to the immediate consequences of acting in a changing environment:
consequences that gencrally cannot be anticipated and hence require some
amount of continuous attention and commitment in terms of computational
resources.

We start with the premise that having a map of vour environment is
generally a good thing if vou need to move between specific places whose
locations are clearly indicated on that map. The more frequent vour need
to move between locations. the more useful you will probably find a good
map. If you are not supplied with a map and vou find yourself spending an
inordinate amount of time blundering about. it might occur to vou to build
one. but the amount of timne you spend in building a map will probably
depend upon how much vou anticipate using it. Once you have decided to
build a map. you will have to decide when and exactly how to go about
building it. Suppose that you are on an errand to deliver a package and
vou know of two possible routes. one of which is guaranteed to take vou to
vour destination and a second which is not. By trying the second route. vou
inay learn something new about vour environment that may turn out to be
useful later. but you may also delay the completion of vour errand.

The mobile robot that we consider in the examples in the rest of this
chapter is a simple holonomic (turn-in-place) robot equipped with a num-
ber of sensors. The most importaunt sensor for our immediate purposes is
the ultrasonic sonar-sensor considered in the previous chapter. The robot’s
ultrasonic sensors provide it with information about the distance to nearby
objects. With a little care, the robot can detect the presence of a variety of
geometric features using these sensors. In gathering information about the
office environment, the robot will drive up to a surface to be investigated.
align ome of the sensors to the right or to the left of its direction of travel
along the surface, and then move parallel to that surface looking for abrupt
changes in the information returned by the aligned sensor that would indi-
cate some geometric feature such as a 90° corner. In doing this. it is possible
to keep track of the accumulated error in its movement and the variation in
its sensor data to assign a probability to whether or not a feature is present.

We assume that the robot has strategies for checking out many simple

236

georretric features found in tyvpical office environments: we refer to these
str..cegies as feature detectors. Each feature detector is realized as a control
process that directs the robot’s movement and sensing. On the hasis of the
data gathered during the execution of a given feature detector. a probability
distribution is determined for the random variable corresponding to the
proposition that the feature is present at a specific location.

The robot that we consider liere is designed to explore its environment
in order to build up a representation of that environruent suitable for route
planning. In the course of exploration. the robot induces a graph that cap-
tures certain qualitative features of its environment. In addition to detecting
geowmetric features like corners and dvor jambs. the robot is able to classify
locations. In particular. it is able to distinguish between corridors and places
where corridors meet or are punctuated by doors leading to ollices, labs, and
storerooms. A corridor is defined as a piece uf rectangular space hounded
on two sides by uninterrupted parallel surfaces 1.5 to 2 elers apart and
bounded on the other two sides by ports indicated by abrupt changes in
one of the two parallel surfaces. The ports signal locally distinctive places
(LDPs) (after [23]) which generally correspond to hallway junctions. Un-
interrupted corridors are represented as arcs in the induced graph while
junctions are represented as vertices. Junction, are further partitioned iuto
classes of junctions (e.g.. L-shaped junctions where two corridors meet at
right angles, or T-shaped junctions where one corridor is interrupted by a
second perpendicular corridor). We will assume that the robet is given a
set of junction classes that it uses to classify and the label the locations
encountered during exploration.

In the following sections. we consider two of the main decision processes
that comprise the robot’s control system. but first we consider briefly the
overall architecture i which {hese decision processes are embedded.

In the following, we assume a multi-level control system composed of a set
of decision processes running concurrently under a multi-tasking prioritized
operating system. There is no shared state informnation; all commuunication
is handled by inter-process message passing. Run-time process arbitration is
handled by dynawmically altering Lthe process priorities. Courdination awong
processes is achieved through a set of message-passing protocols.

The different processes that inake up the controller are partitioned into
levels (see Figure 7.12). For each level, there is a corresponding arbitra-
tor dJesigned to coordinate the different processes located at that level. At
Level 0, we find the processes responsible for coutrol of the different seu-
sor/effector systems on board the mobile base. Each Level 0 process is

237

[Expioration and N-vlgldoaJ ‘

I}
itf

7@
\

h--m Obstacle A voidanss b

Figure 7.12: Mobile robot control architecture

completely independent of the other processes. 50 no arbitration is needed.
At Level 1, we find the processes respousihle for the low-level control of the
robot. Level 1 processes are coordinated using a simple priority scheme:
the obstacle avoidance process always takes priority over the other Level 1
processes. The activities of the feature recognition and corridor following
processes are coordinated by higher-level processes.

In the design shown in Figure 7.12. there is only one Level 2 process,
the LDP classifier, but. in a more complicated architecture. one could easily
imagine several processes on this level. At Level 3, we find the two pro-
cesses responsible for the robot’s higher-level behaviors: the task manager
in charge of running user-specified errands. and the geographer in charge of
exploration and map building. Both the geographer and the task manager
are special-purpose route planners: the geographer tends to construct paths
through unknown territory and the task manager through known territory.
The activities of these two processes are coordinated by a Level 4 decision
process that takes into account the possible costs and benefits to be derived
from different strategies for mixing exploration and errand running. In the
following, we consider the decision processes at Levels 2 and 4.

7.3.1 Classifying Locally Distinctive Places

Upon exiting a corridor through a port. the robot will want to determine
what sort of LDP it has entered. If the robot is in a well-explored portion

238

of its environment. this determination should match its expectations as in-
dicated in its m p. If. on the other hand. the robot is in some unknown
or only partially-explored area. this determination will be used to extend
the map. possibly adding new vertices or identifving the current LDP with
existing vertices. In this section. we describe how the robot might classify
LDPs encountered during exploration.

Let L be the set of all locally distinctive places in the robot’s environ-
ment. (' = {C1.C2,...,Cp} be a set of equivalence classes that partitions L,
and F be a set of primitive geowmetric features (e€.g.. convex and concave cor-
ners. flat walls). Each class in C can be characterized as a set of features in
F that stand in some spatjal relationship 1o one another. As the robot exits
a port. a local coordinate system is set up with its origin on the imaginary
line defined bv the exit port and centered in the corridor. The space about
the origir enclosing the LDP is divided into a set of equi-angular wedges
1. For each feature/wedge pair (f, w) in I’ x IV, we define a specialized
feature detector dy ,, that is used to determine if the current LD’ satisfies
the feature f at location w in the coordinate systemn established upon en-
tering the LDP. Let D be the set of all such feature detectors plus no.op,
a pseudn-detector that results in no new information and takes no time or
effort to . xecute.

The I.DP-classification module maintains a a probabilistic assessment of
the hvpotheses concerning the class of the current LDP given the evidence
acquired thus far. At any given time, the robot will have tried some number
of feature detectors. Let P be the pool of detectors available for use at time
t: Py is just D less the set of detectors executed up until t in classifying the
current LDP. The LDP-classification module is responsible for choosing the
next feature detector to invoke from the set F;. It does so using a decnslon
model cast in terms of an influence diagram.

The LDP-classification module’s influence diagrawm inciudes a set of chance
nodes corresponding to random variables, a decision node corresponding to
actions that the robot might take, and a valve node represeuting the ex-
pected utility of invoking the different feature detectors in various circum-
stances. The chance nodes include a hypothesis variable, IT, that can take
on values from C, and a set of boolean variables of the form. .Xy,,, used to
represent whether or not the feature f is present at location w. Each Xy . is
conditioned on the hypothesis H according to the distribution Pr(.Xy |C',)
determined by whether or not the class requires the feature at the specified
location. The decision node, P;, indicates the feature detectors available for
use at time f, and the value node. V', represents the utility of invoking each

239

v x x x . 4

Figure 7.13: LDP-classification module’s influence diagram

feature detector. 1 is dependent only npon the hypothesis and decision
nodes. The predecessors of P, are just the feature detectors invoked so far,
thereby indicating temporal precedence and informational dependence. A
graphical representation of the influence diagram is shown in Figure 7.13.

The utility of invoking each detector is based on (i) the ability of the
detector to discriminate among the hypotheses, (ii) the cost of deploying
the detector, (iii) the probability that the current hest hypothesis is correct.
and (iv) the cost of misidentifving the LDP. The first two are used to select
from among D — {no.op} and the last two are used to choose hetween the
hest. detector from D — {no.op} and no.op. The LDP-classification modnie
selects from D — {no_op}, using the function, s : P x H — R. defined by
jldg oy,) =

Ky Discrim(dy) — x;Cost(dy ., h),

where x; and Ky are éonstants used for scziling, Cost(ds . h) is a function
of the expected time spent in executing dy ., for an LDP of a given class.

and Discrim(dy,,,) is a variation on a standard discrimination function used
in pattern recognition, and defined by

n
S Pr(Ci) Y |Prdgy = v|Ci) = Pr(dy,, =)|,
iml ve{0.1})

where dy .. = v is meant (o represent the proposition that the detector d; ,,
returns the value v. The terms in the above formula are easily obtained.
Pr(dy, = v|C;) is the distribution associated with the corresponding X7 .

240

node. and Pr(dy , = r) can be calculated using

Pr(dy . =rv)= Z Pr(ds.. = r|Ci) Pr(C))

=1

The LDP-classification module evaluates the influence diagram using
oue of the methods described in Section 7.2 to obtain a decision policy and
an expected value function for choovsing from among D — {no_op}. The
LDP-classification module can also choose to do nothing by selecting no_op,
thereby committing to the class C'; with the highest posterior probability
given the information returned by the feature detectors invoked thus far.
In a more realistic decision model. we might employ an additional set of
chance nodes corresponding to micro leatures and a more extensive the set
of feature than indicated here. We would also waut to allow for a feature
detector to be invoked multiple times.

7.3.2 Expected Value of Exploration

One could imagine several decision models for reasoning about the expected
value of exploration. In the simple model presented in this section, we
assume that the system of junctions and corridors that make up the robhot’s
environment can be registered on a grid so that every corridor is aligned
with a grid line and every junction is coincident with the intersection of two
grid lines. In the following, the set of junction types. .J, corresponds to all
possible conligurations of corridors incident on the intersection of two grid
lines. Intersections with at least one incident corridor correspond to LDPs.
Since we also assume that the robot knows the dimensions of the grid (i.¢.,
the number of z and y grid lines), we can enumerate the set of possible maps
M = {M,M;,..., My}, where a map corresponds to an assignment of a
junction type to each intersection of grid lines. For most purposes, we can
think of a map as a labeled graph.

We can reatrict M by making a number of assumptions ahont office
buildimgs of the sort that the robot will find itself in (e.g.. all LDPs are
connected). To further restrict Af, the rohot engages in an initial phase of
task-driven exploration. Each task specifies a destination location in r,y
grid coordinates. The robot computes the shortest path assuming that all
intersections have as many coincident corridors as is consistent with what
is known about the intersection and its adjacent intersections. The robot
then follows this path. acquiring additional information as it moves through

241

Figure 7.14: The probabilistic model for map building

unknown intersections until it either finds its path blocked, in which case
it recomputes the shortest path to the goal taking into account its new
knowledge, or it reaches the goal.

The robot continues in this task-driven exploration phase until it is
likelv—based on the spatial distribution of known locations—that all lo-
cations have been visited at least once. Frow this point on, given a task to
move to specific location, it is likely that it will be able to comnpute a path
through known territory. The robot now faces the decision whether to take
the known path or to try an alternative path through unknown territory.
In the model considered here, the robot has to choose between taking the
shortest path through known territory, and trying the shortest path consis-
tent with what is known. In the latter case. it will learn something new, but
it may end up taking longer to complete its task.

Let H be a random variable corresponding to the actual configuration of
the environment; H takes on values [rom M. Let J; , be a random variable
corresponding to the junction type of the intersection at the coordinates,
(z,y) im the grid; J. , can take ou values [row the set C' defined previously.
Let Xy, be as previously defined, a boolean variable corresponding the
‘presence of a feature at a particular position. Let S, be a random variable
corresponding to a possible sensing action taken at the coordinates. (z.y),
in the grid. Let £ correspond to the set of sensing actiois taken thus far.
The complete probabilistic model is shown in Figure 7.14.

242

In our simple model. the robot has to decide between the two alter-
natives, Pr- and P, corresponding to paths throngh known and unknown
territory. To compute Pr(If|€). Pr(] }is assuimed to be uniform. Pr(.J, /1)
and Pr(.Xy |Jzy) are determined by the geometry, and Pr(S;,|X;.,.) is de-
termined experimentally. Let T = {T.T2,....T;} denote the set ol all tasks
corresponding to point-to-point traversals. and E(|T;|) denote the expected
nuwber of tasks of tvpe T,. Let Cost(T;. A}, M) be the time required for
the task T; using the map Af;, given that the actual configuration of the
environment is My; il M; is a subgraph of My, then Cost(T;, AL}, My) is just
the length of the shortest path in M;. Let T* denote the robot’s current
task. For evaluation purposes. we assuine that the robot will take al inost
one additional exploratory step.

To (omplete the dedcision model. we need a means of cowputing the
expected value of Pr and Fp-. In general, the value of a given action is the
sum of the immediate costs related to T'* and the costs for expected future
tasks. Let .

Futures(Af;. 1) = Y E(|T)}) Cost(T;. Mj. AL;).
=1
where 1\[; = “Inrgmax, Pr(AL.il)

If classification is perfect. the robot correctly classifies anv location it
passes through, and Af7 is the minimal assignment consistent with what it
has classified so far. In this case. the expected value of Py is

Cost(T". M"._) + Futures(_.E).
If classification is imperfect. the expected value of Py is
S Pr(M;|€)[Cost(T", AI", M;) + Futures(M;, &)].
=1

Handling Py is just a bit more complicated. Suppose that the robot is
coutemplating exactly oune seusing action that will result in one of several
possible observations Oy,....0,, theu the expected value of Py is

m
3 Pr(M;|€) Cost{ T, M. ML) +
=1
_Pr(0:) Y Pe(M,|0;. &)Futures(M}, [0:.&])

i=1 =1

243

where T’ is a modification of T* that accounts for the proposed exploratory
sensing action.

We use Jensen's [21] variation on Lauritzen and Spiegelhalter's [25] algo-
rithm to evaluate the network shown in Figure 7.14. The time required for
evaluation is determined by the size of the sample spaces for the individual
random variables and the connectivity of the network used to specify the
decision model. In the case of a singly-connected network. the cost of com-
putation is polynomial in the number of nodes and the size of the largest
sample space—generally the space of possible maps. The network shown in
Figure 7.14 would be singly-connected if each feature. Xy ,. had at most
one parent corresponding to a junction. Jr ,; a network of this form with
100 possible maps can be evaluated in about 10 seconds. assuming an 8 x 8
grid.

In the case of a multiply-connected network. the cost of computation is a
function of the product of the sizes of the sample spaces for the nodes in the
largest clique of the graph formed by triangulating the DAG corresponding
to the original network. By making use of the information gathered in the
initial exploratory phase. the robot is able to reduce the connectivity of the
network used to encode the decision model. Multiply-connected networks
accounting for approximately 50 possible maps require on the order of a few
minutes to evaluate.

The space of possible maps chosen may not include the map correspond-
ing to the actual configuration of the environment. To handle such possible
omissions. we add a special value, L. to the sample space for H. and make
all of the Pr(.J; ,|L) entries in the conditional probability tables 1/s where
s is the number of junction types. If the robot ever detects that M7 = L,
then it assumes that it has excluded the real map, and dynamically adjusts
its decision model by computing a new sample space-for A guided by the
resuits of the exploratory actions taken thus far.

7.3.3 Designing Robot Control Systems

One approach to desiguing control systems employing a decision-theoretic
perspective is described as follows. We begin by considering the overall
decision problem, determining an optimal decision procedure according to a
precisely stated decision-theoretic criteria. neglecting computational costs.
We use an influence diagram to represent the underlying decision model and
define the optimal procedure in terms of evaluating this model.

In the case described above, the robot's overall decision problem in-

244

A

volves several component problems associated with specific classes of events
occurring in the environment. These component decision problems incinde
what action to take when approached by an unexpected object in a corridor.
what sensor action to take next when classifving a junction. and what path
to take in combining exploration and task execution. Each of these problems
is recurrent.

Problems involving what sensor action to take in classification or what
path to take in navigation are predictably recurrent. For instance. during
classification each sensor action takes about thirty seconds to a minute. so
the robot has that amnount of time to decide what the next action should be
if it wishes to avoid standing idle lost in computation. The frequency with
which choices concerning what path to take occur is dependent on how long
the robhot takes to traverse the corridor on ronte to the next [,NDP. With the
current mobile platform operating in the halls of the computer science de-
partment. moving hetween two consecntive LDPs takes about four minutes.
The problem of deciding what to do when approached by an unexpected
object occurs unpredictably, and the time between when the approaching
ohject is detected and when the robot must react to avoid a collision is on
the order of a few seconds.

By mnaking various (in)dependence assumptions and eliminating non-
critical variables from the overall complex decision problem. we are able to
decompose the globally optimal decisin problem into sets of simpler compo-
nent decision problems. Fach of the sets of component problems are solved
hyv a separate module. The computations carried out hy these modules are
optimized using a variety of technigues to take advantage of the expected
time av . for decision making. The different decision procedures com-
municate by passing probability distributions back and forth. For instance.
the module responsible for making decisions regarding exploration and the
module responsible for classifying LDPs pass back and forth distributions
regarding the junction types of LDPs.

The control system descrihed above combines high-level decision mak-
ing with low-level control and sensor interpretation to provide for naviga-
tion, real-time obatacle avoidance, and exploration in an nnfamiliar environ-
ment. The basic controller handles multiple asynchronous processes com-
municating via simple message-passing protocols. The architecture supports
a variety of arbitration schemes from fixed-priority processor scheduling to
decision-theoretic control. This section has emphasized two decision pro-
cesses: one responsible for reasoning about the uncertainty inherent in deal-
ing with noisy and ambiguous sensor data. and a second responsible for

245

"

assessing the expected value of various explorato.y actions. Our basic ap-
proach to designing robot control svstems invo.ves constructing a decision
model for the overall problem and then decomposing it into component
niodels guided by the time criticality of the associated decision problems.

The third example involves sequentinl decisior. making. and for this we
have to introduce some additional machinery. In particular, the probatilistic
projection approach described in [13. 15] and particularly [14]. Relate this to
Tatman and Schacter’s work on connecting influence diagrams and dynamic
pmgramming methods for sequential decision making involving Markov pro-
cesses.

7.4 Change Over Time

Reasoning about change requires predicting how long a proposition, having
become true. will continue to be so. Lacking perfect knowledge. an agent
may be constrained to believe that a proposition persists indefinitely simnply
because there is no way for the agent to infer a contravening proposition
with certainty. In this section, we describe a model of causal reasoning
that accounts for knowledge concerning cause-and-effect relationships and
knowledge concerning the tendency for propositions to persist or not as a
function of time passing. The mmodel has a natural encoding in the form
of a network representation for probabilistic nodels. We will also consider
how our probabilistic model addresses certain classical problems in temporal
reasoning (e.g., the frame and qualification problems).

The common-sense law ¢, inertia [27) states that a proposition once made
true remains so until something makes it false. Given perfect knowiedge of
initial conditions and a complete predictive model. the law of inertia is
sufficient for accurately inferring the persistence of propositions. In most
circumstances, however, our predictive models and our knowledge of initial
conditions are less than perfect. The]Jaw of inertia requires that. in order
to infer that a proposition ceases to be true, we must predict an event with
a contravening effect. Such predictions are often difficult to make. Consider

the follewing examples:

o & cat is sleeping on the couch in your living room
e you leave your umbrella on the R:15 commuter train

¢ a client on the telephone is asked to hold

246

Figure 7.15: Events precipitate change in the world

In each case. there is some proposition initiallv observed to he true. and the
task is to determine if it will he true at some later time. The cat may sleep
undisturbed for an hour or niore. hut it is extremely unlikely to remain in
the same spot for more than six hours. Your umbrella will probably not be
sitting on the seat when you catch the train the next morning. The client
will probably hold for a few minutes. but on!y the most determined of clients
will he on the line after 15 winutes. Sometimes we can make more accurate
predictions (€.g.. a large barking dog runs into the living room). hut. lacking
specific evidence. we would like past experience to provide an estimate of
how long certain propositions are likely to persist.

Events precipitate change in the world. and it is our knowledge of events
that enables us to make useful predictions about the future. For any propo-
sition # that can hold in a situation. there are some number of general sorts
of events (referred to as event types) that can affect P (i.e.. make F true
or false}). For any particular situation. there are some number of specific
events (referred to as cvent instances) that occur. Let () correspond to the
set of events that occur at time t. A correspond to that subset of O that
affect . (O) that subset of O known to occur at time t, and A'(A) that
subset of A whose type is known to affect P. Figure 7.15 illustrates how
these sets might relate to one.another in a specific situation. In many cases,
K(O)N K(A) will be empty while A is not, and it may still be possible
to provide a reasonable assessment of whether or not P ;is true at t. In
this section, we provide an account of how such assessments can be made
probabilistically.

7.4.1 Prediction and Persistence

In the following, we distinguish between two kinds of propositions: propo-
sitions, traditionally referred to as fluents [28]. which. if thev become trne.
tend to persist without additional effort. and propositions. corresponding to
the occurrence of events. which. if true at a point. tend to precipitate or
trigger change in the world. Let (P.t) indicate that the fluent P is true at

247

>

time t. and (L£.t) indicate that an event ol tvpe E occurs at tir.e t. \We use
the notation Ep to indicate an event corresponding to the flueut P becoming
true.

Given our characterization of fluents as propositions that tend to persist.
whether or not P is true at some time ! may depend upon whether or not
it was true at f — A, where A > 0. We can represent this dependency as
follows:!

Pr((P.t)) = Pr((P.O|(P.t = A))Pr((P.t— A))+ (7.6)
Pr((P.1)|=(P.t = A)) Pr(~(P.t - A))

where =~(P.t) = (-P.t).

The conditional probabilities Pr((P.t)[(P.t — A)) and Pr((P. t)]~(F.t - A))

are related to the survivor function in classical queuing theory [35). Survivor
functions encode the changing expectation of a fluent remaining true over
the course of time. We employ survivor functions to capture the tendency of
propositions to becowmne false as a consequence of events with contravening
effects. With survivor functions. one need not he aware of a specific instance
of an event with a contravening effect in order to predict that P will cease
being true. As an example of a survivor function.

Pr((P.t)) = ¢ 3p((P.t = A))

indicates that the probability that P persists drops off as a function of the
time since P was last observed to be true at an exponential rate determined
by A (Figure 7.16). The exponential decay survivor function is equivalent

to the case where .
Pr((P.t)|(P.t = A)) = e 8

and
Pr((P.t})|~(P.t - A))=0.

Referring back to Figure 7.15, survivor functions account for that subset of
A corresponding to events that make P false, assuming that h'(A) = {}.

'The equality in Formula 7.6 follows from the generalized addition law- if 4,... .. i,
are exclusive and exhaustive and B is any eveut, then

Pr(B) = Z Pr(B|A,) Pr{A.).

248

-

—

Figure 7.16: A survivor function with exponential decay

If we have evidence concerning specific events kunown to affect P (i.e.,
K(A)N K(O) # {}), Formula 7.6 is inadequate. As an interesting special
case of how to deal with eveuts known to affect . suppose that we know
ahout all events that make I true (i.c., we know I’r((Ep,t)) for any value
of t). and none of the events that make P false. In particular, suppose that
P corresponds to John being at the airport. and Ep corresponds to the
arrival of John's flight. We are interested in whether or not John will still
he waiting at the airport when we arrive to pick Limn up. Let o(t) = e~
represent John's tendency to hang around airports, where A is a measure of
Lis impatience. If f(t) = Pr({Ep,t)), then we can compute the probability
of P being true at 1 hy convolving f with the survivor function o as in

t
Pr((P, 1)) =/ Pr((Ep, z))a(t — z)dz (7.7)
-2
A shortcoming of Formula 7.7 is that it fails to account for evidence
concerning specific events known to make P false. Suppose. for instance.
that E.p corresponds to Fred meeting John at the airport and giving him
a ride to his hotel. In certain cases,

t t

Prip = [p(Ep Dot -2) 1= [Pr((Lm))dz] iz (7.8)
. —0- . o Je : .
provides a good approximation. Figure 7.17 illustrates the sort of inference
licensed by Formula 7.8.

There are some potential problems with Formula 7.8. The survivor func-
tion @ was meaut to account for all events that make P false. but Formula 7.8
connts one such event, John leaving the airport with Fred. twice: once in
the susvlvor function and ouce in Pr((E-p,7)). In certain cases, this can
lead to significant errors (e.g., Fred always picks up John at the airport).
To combine the availahle evidence correctly, it will help if we distingnish the
different sorts of knowledge that might he brought to bear on estimating
whether or not P is true. We will also reinterpret the event type Ep to

249

%

piholds(P)}

ploccwrs(Ep 1)) plocaws(E »)

Figure 7.17: Probabilistic predictions

mean an event knoun to make P true. The following formula makes the
necessary distinctions and indicates how the evidence should be combined:?

Pr((P.1)) = (7.9)
Pr((P.O)|(P.t = A) A ~((Ep.t) V(E=p.t))) (N1)
+ Pr((P.t = Q) A=({Ep,t) V(E.p,1)))

+ Pr((P.)|{P,t - A)YA (Ep.1)) (N2)
s Pr((P.t - A) A(Ep,t))
+ Pr({P.t)|(P.t = A) A (ELp.t)) (N3)

e Pr((P.t = A) A (E-p, 1))
+ Pr((P.t)|=~(P.t = A) A ~((Ep,t) V (E-p,t}))) (N4)
¢ Pr(~(P.t = A) A~({Ep,1) V (E-p.1)))

+ Pr(P.OI(P.t= M)A (Ep.1)) (N5)
s Pr(=(P.t = A) A (Ep.1))
+ Pr({P.t)|~(P.t = A) A {E_p.1)) {NG6)

s Pr(=~(P.t = A) A (E=p.1))

Consider the contzibution of the individual terms corresponding to the
conditional probabilities labeled N1 through N6 in Formula 7.9. N1 accounts
for natuml attrition: the tendency fuor propositions to become false given no
direct evidence of events known to affect P. N2 and N5 account for cansal
accretion: accumulating evidence for P due to events known to wmake P
true. N2 aund N5 are generally 1. N3 and NG, ou the other hand, are
generally 0, since evidence of =P becouwing true does little to convince us
that Jls true. Finally, N4 accounts for spontaneous causation: the tendency
for propositions to suddenly become true with no direct evidence of events
known to affect P.

?In order to justify our use of the generalized addition law in Formuila 7.9. we assnme
that Pr{(Ep.t) A(E-p.t)) = 0 for all ¢.

250

By using a discrete approximation of time and fixing \. it is possible
hoth 1o acquire the necessary values for the terms N1 through N6 and to use
them in making useful predictions. If time is represented as the integers. and
A = [. we note that the law of inertia applies in those situations in which the
terms N1. N2. and N5 are always | and the other terms are alwavs 0. In the
rest of this section. we assume that time is discrete and linear and that the
time separating anv two consecutive time points is some constant 8. Only
evidence concerning events Anown to make P true is hrought to bear on
Pr({Ep.t)). If Pr((Ep.t)) were used to summarize all evidence concerning
events that make P true, then N1 would be 1.

7.4.2 Reasoning About Causation

Before we counsider the issues involved in making predictions using knowledge
concerning N1 through N6. we need to add to our theory some means of
predicting additional events. We consider the case of one event causiug
another event. Deterministic theories of causation often use implication
to model cause-and-eflect relationships. For instance. to indicate that the
occurrence of an event of type E, at time t causes the occurrence of an
event of type E; following t by some § > 0 just in case the conjunction
Py A Py...A P, holds at t, we might write

((PyA Py... A Put) A(EL 1)) D (Eat +6).

If the cansed event is of a tvpe Ep. this is often referred to as persistence
rausation [29]. In our model, the conditional probability

Pr((Eq,t + 8)|[(PLAP;...A P, t) A (Eyit)) =7

is used to indicate that. given an event of type £y occurs at time ¢. and [}
through £, are true at t. an event of type J-; will occur following t by some
é > 0 with probability .

In moving to a probabilistic model of cansation, there are some compli-
cations that we have tc deal with. Consider, for example. the two rules:

- ({(P.tyA(E.1)) D (ER,t +8)

and
((PAQ.t)A(E. 1)) D (En.t +6).

These two rules pose no problems for the deterministic theory of causation,
since P and Q are either true or false. and the rules either apply or not.

In fact, the second rule is redundant [lowever, in a probabilistic model.
+ P and @Q usuallv are not unambiguously true or false. Therefore. in the
probabilistic causal theory consisting of

Pr((Ep.t + &)|(P.A) A(E. 1)) = 7,
Pr((Ep.t +8)|(PAQ.t) A(E.t)) =7,

the second rule can no longer be considered redundant. Since the second g
rule is more specific than the first. it provides us with valuable additional
information. In a complete account of the causes for Eg, we would also need

Pr((Er,t + 8){(P A =Q,t) A(E. 1)) = 7,

aud other information as well. Providing a complete account of the iuter-
actions amoug causes and hetween causes and their effects is important in
modeling change in a probabilistic [ramework. In the following two sections,
we will consider this issue in more detail.

7.4.3 An Example

The task in probabilistic projection is to assign each propositional variable of
the furm (¢.t) a certainty measure consistent with the constraints specified
in a problem. In this section. we provide examples drawn from a simple
factory domain that illustrate the sort of inference required in probabilistic
projection. e hegin by introducing some new event types:

Cl
As

“The mechanic on duty cleans up the shop™
“Fred tries to assemble Widget17 in Room101™

and fluents:

Wr = *“The location of Wrenchld is Room101™
Se = “The location of Screwdriver3l is Room}101”
Wi = “Widgetl7 is completelv assembled™

We assume that tools are occasionally displaced in a husy shop. and that
WT aad Sc are both subject to an exponential persistence decav with a half
life of ome day; this determines N1 in Formula 7.9:

|
~

Pr((We)(Wr 1 = A)A ~((Ewp) V (E-up?))) = €O
Pr((Se,#)|(Se.t = Q) A ~({Ese, 1) V (E<se 1)) PR

where €e='2 = 0.5 when 2\ is one day.

The other terms in Forinula 7.9. N2, N3. N4. N5. and N6. we will assume
to be. respectively. 1, 0. 0. 1. and 0. When the mechauic on dutv cleans up
the shop. Le is supposed to put all of the tools in their appropriate places.
In particular. Wrenchl4 and Screwdriver3l are supposed to be returned to
Room101. We assume that the mechanic is very diligent:

1.0
1.0

Pr({Ewpt + €)|{Cl. 1))
Pr((Esc.t + €)|(ClL 1))

red’s competence in assembling widgets depends upon his tools heing
in the right place. In particular. if Screwdriver3l and Wrenchl4 are in
Room101. then it is certain that Fred will successfully assemble Widgetl7.

Pr((Ewit + (Wr.1) A (Sc.t) A (As.1)) = 1.0

Let TO correspond to 12:00 PM 2/29/88. and T1 correspond to 12:00
PM on the following day. Assume that ¢ is negligible given the events we
are concerned with (i.e.. we will add or subtract ¢ in order to simplify the
analvsis).

0.7
1.0

Pr((ClL T0))
Pr({As. T1))

We are interested in assigning the propositions of the form (¢, 1) a cer-
tainty measure consistent with the axioms of probability theory. We will
work through an example showing how one might derive such a measure,
noting some of the assumptions required to make the derivations follow
from the problém spetification and the axioms of probability. In the follow-
ing. we will denote this measure of belief hy Bel. What can we say ahout
Bel((Wi, T1 4+ €))? In this particular example. we begin with

Bel((\WVi, T1 + ¢))

= Pr((Ewi. T1+¢€))

= Pr((Ewi, T1+){(Wr. TI) A (Sc. T1) A (As. T1))
s Pr((Wr.T1) A (Sc. T1) A (As. T1))
Pr((Wr.T1) A (Sc. T1) A (As. T1))
Pr((Wr. T1) A (Sc. T1))

253

The first step follows from our interpretation of "u;. and the fact that
there is no additional evidence for or against Wrat £1+4¢. The second step
employs the addition rule and the assumption that the assembiv will fail to
have the effect of (Ew;, T1) if any one of (Wr, T'1), (Se. T'1). or (As. T1)
is false. The third step relies on the fact that assembly is always success-
ful given that the attemipt is made and \Wrenchl4 and Screwdriver3l are
in Room10l. The last step depends on the zssumption that the evidence
supporting (Wr A Sc. T1) and (As, T1) are independent. The assumption
is warranted in this case given that the particular instance of As occurring
at T1 does not affect Yr A Sc at T1. and the evidence for As at TI is
independent of any events prior to T1. Note that. if the evidence for As
at T1 involved events prior to TI, then the analysis would be more iu-
volved. It is clear that Pr((Wr. T'1)) > 0.35. and that Pr((Sc. T1)) > 0.35;
unfortunately, we cannot simply combine this information to obtain an es-
timate of Pr{{WrA Sc. T1)), since the evidence supporting these two claims
is dependent. We can, however. determine that

Pr((Wr.T1) A (Sc, T1))
Pr({Wr. T1) A (Sc, T1)|{Wr. TO) A (Sc. T0)) Pr((¥r. TO) A (Sc. T0))
= Pr((Wr. T1){(Wr, TO) A (Sc. T0))
s Pr((Sc, TIH{Wr, TO) A (Sc, TO)) Pr({Wr, TO) A (Sc. T0))
= Pr{(Wr.TO) A (Sc.T0)) + 0.5 = 0.5
= Pt((Ewr TO) A (Esc, T0)) * 0.5 « 0.5
= Pr({Ewe TO0 4 €) A (Esc, TO + €)|(CL, T0)) Pr((CL. T0)) » 0.5 & 0.5
= 0.7+« 05 « 05
= 0.175

assuming that there is no evidence concerning events that are known to
allect either Wr or Sc in the interval from T0 to T1, that Wr and Sc are
independent, and that Ew; and Eg. are conditionally independent of one
another given Cl.

Throughout our analysis, we were forced to make assumptions of inde-
pendence. In many cases, such assumptions are unwarranted or introduce
inconsistencies. The inference process is further complicated by the fact that
probabilistic constraints tend to propagate both forward and backward in
tinse. This bi-directional flow of evidence can render the analvsis described
above useless. In the next section. we consider a mode] that simplifies speci-
fving independence assumptions. and that allows us to handle both forward

254

and backward propagation of probabilistic coustraints.

7.4.4 A Model for Reasoning About Change

Tn this section. we take a slight medification of Formula 7.9 as the basis for a
model of persistence. Formula 7.9 predicts (P.1) on the basis of (P.t — A).
(Ep.t). and (E.p.t). where A is allowed to vary. In the model presented in
this section, we only consider pairs of consecntive time points, t and t + 4,
and arrange things so that the value of a flnent at time t is completely
determined by the state of the world at & in the past. In Formula 7.9, we
interpret events of type F'p ocenrring at t as providing evidence for P heing
true at t. In our new model, we interpret events of type Ep occurring at ¢
as providing evidence for P heing true at t + 4. This reinterpretation is not
strictly necessary, bnt we prefer it since the expressiveness of the resulting
models can easilv he characterized in terms of the properties of Markov
processes. In our new odel. we predict A = (/,t + ¢) by conditioning on

¢, = (P
C, = (Ep.t)
C; = (E-.p.t)

and specifv a complete model for the persistence of P as
Pr(A) = Y_PHAICL ACAC3) PHC A C AC)

where the sum is over the eight possible truth assiguments for the variables
('y. Ca. and (3. Note that this model requires that we have probabilities of
the form Pr(A|Cy AC2 AC3) and Pr(C'y AC2 A (') for all possible valuations
of the (. I B ' . .
In the lollowing, we will make use of a network model that will serve
to clearly iudicate Lhe necessary indepedence assutuptions. We will use the
generic term belief network to refer (o a network that satisfies the following
hasic properties cominon to all three of the above representations. A belief
network represents the variables or propositions of a probabilistic theory as
nodes im a graph. The variables in our networks correspond to propositional
variables of the form (¢.t). Dependence between two variables is indicated
by a directed arc between the two nodes associated with the variables.
Because dependence is always indicated by an arc. belief networks make
it easy to identify the conditional independence inherent in a model sim-
ply by iuspecting the graph. Two nodes which are linked via a common

255

W

T T+8
Ep
1 4
&

Figure 7.18: The evidence for P at time T + 6

T T+8
E
'3
Ep
K,
2

Figure 7.19: The evidence for Lp at time T 4 6

neighbor, but for which there are no other connecting paths are condition-
ally independent given the common node. For instance, in the inodels de-
scribed in this section, (P,t - é) is independent of (P.t + §) given-(P.t).
Belief networks make it easy to construct and verify the correctness and
reasonableness of a model directly in terms of the corresponding graphical
representation. Our model for persistence can be represented bv the net-
work shown in Figure 7.18. As soon as we provide a model for causation.
we will show how this simple mnodel for persistence can be embedded in a
more complex model for reasoning about change over time.

Genenally, we expect that the cause-and-effect relations involving Ep
will be specified in terms of constraints of the form:

Pl‘((Ep.f"‘é)l(El,f)/\(Ql.f)) = m
Pr((Ep.,t + 8)|(E2,) A (Q2,1)) = =

256

Pr(Ep.t+ O Ent) A (Quit)) =

However, to specifv a complete modect. we will need some more informa-
tion. To predict A = (Ep.t + é). we condition on

Cy = (En.t)A(Q).0)
Ca = (Eat)A(Qat)

Co = (Ent) A {Qn.t)
and specifv a complete model as:
Pr(A) = PrAICIACIA...ACY) PHCLACIA...ACy)

Note that we need on the order vi 2" probabilities corresponding to the 2"
possible valuations of the propositional variables ('; through C, to specifv
this model. The associated belief network is shown in Figure 7.19. Similar
networks would be constructed for event types other than those involviag
propositions becoming true or false.

Now we can construct a complete model fc. reasoning about change over
time. kigure 7.20 illustrates the temporal beliel network for such a complete
model. For each propositional variable of the form (g, (). there is a node
in the belief network. ""he arcs are sp.2cified according to the isolated mod-
els for persistence and causation illustrated in Figure 7.18 and Figure 7.1¢.
Following Pearl (1988), we can write down the uuique distributicn corre-
sponding to the model shown iu igure 7.20 as

fr(xl. T2y . uTn) = H I’r(r,"I.S'.-.) Pr(S;)

1=

where the z; denote the propositivual variables in the model. and §; is the
conjunction of the propositionz2j variables associated with those nodes for
whick there exist arcs to x; in the network.

As @& specific insiance of a temporal belief network. we reconsider the
factosy example of Section 7.4.3. We will need models for the persistence
of wrenches and screwdrivers remaining in place, and models for reasoning
about the cousegnences of cleaning and assembling actions. Figure 7.21.i
shows a portion of a belief network dedicated to wodeling the persistence
of Wr(ie.. the proposition corresponding to Wrenchl4 being in Room101).

257

’ I

™ To+8 Tl T1+8

Figure 7.20: A temporal belief network

T ° T+8 T T+ '
EWr c
wr Ee.
B Ey,
L [%

Figure 7.21: Models for the factory example

T1 T1+8

Figure 7.20: A temporal belief network

T T+8
& 0
; T " T+8 T T+8
EWr L a
wr As Be.
-'v" E (Ew
L v i
Figure 7.21: Models for the factory example

258

In order to completely specifv the model for Wr persisting. we need the

following information:

[Pr((\"r.t_)l...)

(We.t = 2) | (Ewrt = 3) | (E-wint =) |

PESV:Y True False False
e"Aa True True False
0.0 True l'alse True
0.0 l'alse False False
e~Aa False True False
0.0 False False True
— True True True
— Talse True True

The first six entries entries in the table correspond to terms N1-6 in For-
mula 7.9. Note that the entries corresponding to N2 and N5—assumed to
be 1 in Section 7.4.3—are now the same as N1 to account for our revised
interpretation of events of type Ep.

Figure 7.21.ii shows a portion of a belief net for modeling the effects of
the assembly action. The complete model is specified as follows:

Pr({(Ewi. t)|...)

0.0 Calse False "alse
0.0 True False False
0.0 False True False
0.0 True True False
0.0 False False True
0.0 True False True
0.0 False True True
1.0 True True True

Finally, Figure 7.21.iii shows a portion of a belief net for modeling the
effects of the cleaning action. The complete model for the effect of cleaning

ou the location of Wrenchld4 are shown below:

and similarly for the effect of cleaning on the location of Screwdriver31:

Pr({Ewrt)]...)

(Cl.t-¢)

0.0 False

1.0

True

259

TO T0+3 Tl TI+3

Figure 7.22: A belief network for the factory example

Pr((Ese.t)|...) || (Cl.t =€)

0.0 False
1.0 f True

In the discussion of the general model, the amount of time separating
time points was assumed to be the same for all pairs of consecutive time
points. In reasoning about the factory example, it will be useful to have the
time separating pairs of consecutive time points differ. and to have different
models for handling different separations. We will need time points close to-
gether for propagating the (almost immediate) consequences of actions. and
time points separated by several hours so as not to incur the computational
expense of reasoning about intervals of time during which little of interest

260

bappens. To reduce the complexity of the network for the factory exam-
ple. we assume that evidence concerning the occurrence of actions such as
cleaning and assembling is alwavs with regard to the end points of 24 hour
intervals. Figure 7.22 shows the complete network for the factory example.
Note that. since the evidence for actions appears only at 2 hour intervals.
we encode the models for action only at the time points 10 and TI: sim-
ilarly, since additional evidence for events of type Ep is only available at
T0 + ¢ and T1 + ¢, we use a simpler model for persistence at T0 and T! in
which. for example. (WWr. T0 + ¢) is conmpletely determined by (VVr. T0). If
we assume a prior probability of 0 for all nodes without predecessors in Fig-
ure 7.22 excepting (Cl. T0) and {As. T'l) which are, respectively, 0.7 and 1.0,
then Pr((Ewi, T1 + €)) is 0.175 in the unique posterior distribution deter-
mined by the network. This is the same as that established by the analysis
of Section 7.4.3. but. in this case. we have made all of our assumptions of
independence explicit in the structure of the temporal helief network.

It is straightforward to extend the model described above to account for
new observations and updating beliefs. Suppose we have the observations
01.02,...,0n, Where each observation is of the form (O, 1) and O is an event
tvpe corresponding to a particular type of observation. We assume some
prior distribution specified in terms of constraints of the form:

Pr({0.1)) = 0.001

There are also constraints indicating prior helief regarding the occurrence
of events other than observations. For instance, we might have

Pr({E,t)) = 0.001.
Observatjons are related to eyents by constraints such as

Pr({E.1)|{0.1)) = 0.70

and

Pr((E.t)|-(0.t)) = 0.025.
To update an ageut’s beliefs you can either change the priors:

Pr((0.t)) = 1.0
or you can compute the posterior distribution:

Bel(A) = Pr(Aoy, 02.....0p).

261

Most of the standard techniques for representing and reasoning about evi-
dence in belief networks apply directly to our model.

Need materiul on the erpressive limitations of this model. Relation to
Markov processes and Markov chains.

Suppose that the instanianeous state of the world can be completely
specified in terms of a vector of values assigued to a finite set of boulean
variables P = {P,, P;,.... P,}, and suppose further that the environment
can be accurately modeled as a Markov process in which time is discrete
and the state space {) corresponds to all possible valuatious of the variables
in P. Given such a model including a transition matrix defined on §). we
can generate a lemporal beliel network to compute the probability of any
proposition in P bLeing true at any time { based upon evideunce councerning
the values of variables in P at various tiines, and do so in accord with the
transition probabilities specified in the Markov model. Conversely. given a
temporal belief network such that. for all t aud P € P. all of the predeces-
sors of (P.t) are in the set {(P,.t — é)}, the network is said to satisfy the
Markov property for temporal belief networks. and, from this network. one
can coustruct an equivalent Markov chain.

The reason that one might use a lluent-and-event-based tempora! he-
liel network model rather than an equivalent state-based Markov model is
because the belief network representation [acilitates reasoning of the sort
required for applicatious in planning and decision support (e.g., computing
answers to questions of the form. “What is the probability of P at { given
evervthing else we know about the situation?”). These same answers can
be computed using the Markov wodel. but the process is cousiderablv less
direct.

Satisfying the Markov property for temporal belief networks allows us
to establish the connection between temporal belief networks and Markov
chains. but it sometiwmes results in unintuitive network structures. Iutroduc-
ing a delay between an action and its cousequences may appear reasonable
give the intuition that causes precede effects. However, introducing a delay
between Ep and P simply to ensure the Markov property may seem a little
extremse. We can eliminate the delay between Ep and P by returning to the
model for persistence in Formula 7.9. The resulting networks do not satisfy
the Markov property described in this section, but they are perfectly legiti-
mate temporal belief nets and provide a somewhat more intuitive mode! for
representing change than networks that do satisfy the Markov property.

262

7.4.5 Fundamental Problems in Temporal Reasoning

Given that our model addresses many of the same problems that concern
logicians working on temporal logic. we will briefly mention how our model
deals with certain classic problems in temporal reasoning: the frame. rami-
fication. and qualification problems. We will begin by considering the frame
problem stated in probabilistic terms: “Does our model accurately capture
our expectations regarding fluents that are considered not likely to change
as a consequence of a particular event occurring?” The answer is ves insofar
as frame axioms can be said to solve the frame problem in temporal logic:
persistence coustraints are the probabilistic equivalent of frame axioms.

In considering the ramification problem. we will consider two possible
interpretations. First. “Does our model enable us to compute appropriate
expectations regarding the value of a particular fluent at a particular point
in time without bothering with a myriad of seemingly unimportant conse-
quences?” The answer to this is a resounding no: our model commits us to
predicting every possible consequence of every possible action no inatter how
implausible. A second interpretation (or perhaps facet is a better word) of
the ramification problem is “Does our model enable ns to handle additional
consequences that follow from a set of cansal predictions?” For instance, if
A is in box B and I move B to a new location, ! should be able to predict
that A will be in the new location along with B. Our model provides no
provision at all for this sort of reasoning. The hasic idea of Bavesian in-
ference can be extended to handle this sort of reasoning, but we have not
investigated this to date.

The last problem we consider concerns reasoning about exceptions in-
volving the rules governing cause-and-effect relationships. Does our model
solve the qualification problem? That is to say, “Does our model accurately
capture our expectations regarding the possible exceptions to knowledge
about cause-and-effect relationships?” The answer is yes: conditional prob-
abilities would seem to be exactly suited for this sort of reasoning. It should
be noted. however, that our model imposes a considerable burden on the
person setting up the model. The model described in this section requires
specifying all possible causes for each possible effect and the probability of
each effect for every possible combination of possible causes. It is not clear.
however, that one can get away with less. Given the problems inherent in
eliciting such information from experts. it would appear that we will have
to antomate the process of setting up our probabilistic models.

The third ezample is drawn from [12] and concerns the sequential de-

263

cision problem for the mobile target localization (ATL) problem. Be sure
to address the issue concerning the dumtion of the time interval separating
points in the temporal Bayes network. Therc are two possible approaches for
the MTL problem. Either the intervals are of a fired duration independent
of the action performed. or they are dcpendent on the action performed in
which case additional arcs have to be added between the action nodes for the
rbot at one point in time and all of the other nodes at the next point in
time. In the first approach. the model is simple and control is tricky; in the
second approach, the model is compler and control is simple.

7.5 Sequential Decision Making

In this section. we cousider an approach to building planning and control
systems that integrates sensor fusion. prediction. and seyuential decision
making. The approach is based on Bayesian decision theory, and involves
encoding the underlying planning aund control problem in terms of proba-
bilistic wodels We illustrate the approach using a robotics problew that re-
(uires spatial aud temporal reasoning under uucertainty and time pressure.
We use the estimated computational cost of evaluation to justify represen-
tational tradeoffs required for practical application.

In this secton, we view planning in terms of enumerating a set of possible
courses of action, evaluating the consequences of those courses of action.
and selecting a course of action whose consequences maximize a particular
performsance (or value) function. We adopt Bayesian decision theory as the
theoretical fratework for our discussion, since it provides a convenient basis
for dealing with decision making under uncertainty.

One interesting thing about most planning problems is that the results
of actions can increase our knowledge, potentially improving our ability to
make decisions. From a decision theoretic perspective. there is no differ-
ence between actions that involve sensing or movement to facilitate sensing
aud any other actions: a decision maker simply tries to choose actions that
maximize expected value. In the approach described in this section. an
agent esgaged in a particular perceptual task selects a set of sensor views
by physically moving about.

Having conumitted to a decision theoretic approach. there are specific
problems that we have to deal with. The most difficult concern representing
the problem and obtaining the necessary statistics to quantify the underlying
decision model. In the robotics problems we are working on. the latter is

264

3

i

relatively straightforwasd, and so we will concern ourselves primarily with
the former.

In building a decision model for control purposes. it is not enough to
write down all of vour preferences and expectatious; this information might
provide the basis for constructing some decision model. but it will likely be
impractical from a computational standpoint. It is frustrating when you
know what vou want to compute but cannot afford the time to do so. Some
researchers respond by saving that eventually computing machinery will be
up to the task and ignore the computational difficulties. It is our contention,
however. that the combinatorics inherent in sequential decision making will
continue o outstrip computing technologies.

In the following, we describe a concrete problem to ground our discussicn,
present the general sequential decision making model and its application
to the concrete problem. show how to estiinate the cowmputational costs
associated with using the model. and. finally, describe how to reduce those
costs to manageable levels by making various representational tradeoffs.

7.5.1 Mobile Target Localization

The application that we have chosen to illustrate our approach involves a
mobile robot navigating and tracking moving targets in a cluttered envi-
ronment. The robot is provided with sonar and rudimentary vision. The
moving target conld he a person or another mobile robot. The mobile hase
consists of a holonomic (turn-in-place) synchro-drive robot equipped with a
CCD camera mounted on a pan-and-tilt head, and 8 fixed Polaroid sonar
sensors arranged in pairs directed forward, backward, right. and left.

The robot’s task is to detect and track moving objects. reporting their
location in the coordinate system of a global map. The.environment consists
of one floor of au office building. The robot is supplied with a floor plan
of the office showing the position of permanent walls and major pieces of
furniture such as desks and tables. Smaller pieces of furniture, potted plauts
and other assorted clutter constitute obstacles that the robot has to detect

and swgid.
ygggure tha. there is error in the robot’s movement requiring it to
contivhally estimate its position with respect to the floor plan so as not to
become lost. Position estimation (/ocalization) is performed by having the
robot track beacons corresponding to walls and corners and then use these
heacons to reduce error in its position estimate.
Localization and tracking are frequently at odds with one another. A

265

particular localization strategy may reduce position errors while making
tracking diflicult. or improve tracking while losing registration with the
global map. The trick is to balance the demands of localization against
the demands of tracking. The mobile target localization (MTL) problem
is particularly appropriate for planning research as it requires considerable
complexity in terms of temporal and spatial representation. and involves
time pressure and uncertainty in sensing and action.

7.5.2 Model for Time and Action

In this section. we provide a decision model for the MTL problem. To
specify the model, we quantize the space in which the robot and its target
are embedded. A natural quantization can be derived {from the robot's
sensotv capabilities.

The robot’s sonar sensors enable it to recognize particular patterns of free
space corresponding to various configurations of walls and other permanent
objects in its environment (e.g.. corridors. L junctions and T junctions). We
tessellate the area of the global map into regious such that the same pattern
is detectable anywhere within a given region. This tessellation provides a
set of incations £ corresponding to the regions that are used to encode the
location of both the robot and its target.

Our decision model includes two variables 57 and Sgr, where ST repre-
sents the location of the target and ranges over £, and Sp represents the
location and orientation of the robot and ranges over an extension of L in-
cluding orientation information specific to each type of location. For any
particular instance of the MTL problem, we assumue that a geometric de-
scription of the environment is provided in the form of a CAD model. Given

this geometric desctiption and a model for the robot’s sensors, we generate

L. Sp. and ST.

The model described here is based on the approach of Section 7.4. Given
a set of discrete variables, .\, and a finite ordered set of time points, 7, we
construct a set of chance nodes. C = .U' x 7, where each element of C
corresponds to the value of some particular x € .\’ at some t € 7. Let ('
correspoad to the subset of C restricted to t. The temporal bLelief networks
discussed in this section are distinguished by the following Markov property:

Pr(ColCemt. Croan ..) = Pr(C4]Ceny).

Let Sr and St be variables ranging over the possible locations of the
robot and the target respectively. Let Ag be a variable ranging over the ac-

266

Figure 7.23: Probabilistic model for the MTL problem

tions available to the robot. At any given point in time. the robot can make
observations regarding its position with respect to nearby walls and corners
and the target’s position with respect to the rohot. Let Og and Ot be vari-
ahles ranging these ohservations with respect to the robot’s surroundings
and the target’s relative location.

Figure 7.23 shows a temporal helief network for .\’ = {Sg, 57, Ar.Or, Ot}
and T = {T1,T2,T3,74}. To quantify the model shown in Figure 7.23. we
have to provide distributions for each of the variables in .U x T. We assume
that the model does not depend on timne, and, hence,.we need only provide
one probability distribution for each r € .". Tor instance. the conditional
probability distribution for ST,

Pr((ST.){S1.+-1). (OT1.1). (SR, 1)),

is the same for any t € 7. The numbers for the probability distributions
can be obtained by experimentatiou without regard to any particular global
map.

In a practical model consisting of more than just the four time points
shown in Figure 7.23. some points will refer to the past and some to the
future. One particular point is designated the current time or Now. Repre-
senting the past and present will allow us to incorporate evidence into the

267

Figure 7.24: Evidence and action sequences

model. By convention, the nodes corresponding to observations are meant
to indicate observations completed at the associated time point, and nodes
corresponding to actions are meant to indicate actions initiufed at the as-
sociated time point. The actions of the robot at past time points and the
ohservations of the robot at past and present {ime poiuts serve as evidence
to provide counditioning events for computing a posterior distribution. For
instance. having ohserved o at T', denoted (Op=0,T), and initiated a at T-1,
denoted (A=, T-1), we will want to compute the posterior distribution for
Sr at T given the evidence:

Pr((Sew.T).w € Qs |[(OF0.T). (A=, T-1)).

To update the model as tiine passes. all of the evidence nodes are shifted
into the past. discarding the oldest evidence in the process. Figure 7.21
shows a network with nine time points. The lighter shaded nodes correspond
to evidence. As new actions are initiated and observations are msde, the
appropriate nodes are instantiated as conditioning nodes. and all of the
evidence is shifted to the left by one time point. ')

The darker shaded nodes shown in Figure 7.2 indicate nodes that are
instantiated in the process of evaluating possible sequences of actions. For
evaluation purposes, we employ a simple time-separable value function. By
time separable, we mean that the total value is a (perhaps weighted) sum
of the value at the dillerent time points. If 17 is the value function at time
t, them the total value, 1", is defined as

V=3 a0h

teT

where v : T — {z|0 < = < 1} is a decreasiug function of timne used to
discount the impact of future consequences. Since our model assumes a

268

B]

finite 7. we already discount some future consea-iences by ignoring them
altogether; 9 just gives us a little more control over the imniediate future.
For 1;. we use the following function

Te = D _Pr{(St=wi. 1) Pr((St=e;. 1)) Distlwi.w;).

UnWJGQST

where Dist : Qs x s, — R determines the relative Euclidean distance
between pairs of locations. The v} function reflects liow much uncertainty
there is in the expected location for- the target. For instance, if the distri-
hution for (§7,t) is strongly weighted toward one possible location in Qs,.,
then V¢ will be close to zero. The more places the target could be and the
further their relative distance, the more negative ;.

The actions in 4, consist of tracking and localization routines (e.g.,
move along the wall on your left until you reach a corner). Each action
has its own termination criteria (e.g.. reaching a corner). We assumne that
the robot has a set of strategies, S, cousisting of sequences of such actions,
where the length of seqnences in S is limited by the number of present and
future time poiuts. For the network shown in Figure 7.24, we have

S C QAR X QAR X QAR X QAR-

The size of S is rather important. since we propose to evaluate the net-
work |S| tinies at every decision point. The strategy with the highest ex-
pected value is that strategy, ¢ = ao.a1,a2,a3. for which 1" is a maxi-
wun. conditioning on (A=ng, Now). (A=a;, Nowtl). (A,=03, Nowt2). and
(A=x3, Nowt3). The best strategy to pursue is reevaluated every time that
an action terminates. ‘

We use Jensen's [21] variation on Lauritzen and Spiegelhalter’s [25] al-
gorithm to evaluate the decision network. Jensen's algorithm involves con-
structing a hyper graph (called a cliqguc tree) whose vertices correspond to
the (maximal) clignes of the chordal graph formed by triangulating the undi-
rected graph obtained by first connecting the parents of each node in the
netwoek and then eliminating the directions on all of the edges. The cost of
evalugging a Bayesian network using this algorithm is largely determined by
the sifies of the state spaces formed by taking the cross product of the state
spaces of the nodes in each vertex (clique) of the clique tree.

Following Kanazawa [22], we can obtain an accurate estimate of the cost
of evaluating a Bayesian network, G = (1", E'), using Jensen's algorithm. Let
C = {C;} be the set of (maximal) cliques in the chordal graph described

269

in the previous paragraph. where each cligne represents a subset of 1°. We
define the function. card : ¢ — {1..... |C| = 1}. so that card(C,) is the rank
of the highest ranked node in (',. where rank is determined by the maximal
cardinality ordering of 1" (see {32]). We define the function. adj: ' — 2.
byv:

adjlCy) = {CNC; # CONCNC, #B)).

The clique tree for G is constructed as follows. Each clique C; € C' is
connected to the clique C; in adj(C,) that has lower rank by card(.) and has
the highest number of nodes in common with C; (ties are broken arbitrarily).
Whenever we counect two cliques C'; and C;. we create the separation set
Si; = Cin (. The set of separation sets S is all the Si;'s. We define the
function, sep : C — 25 hyv:

sep(Ci) = {SjxlSjx € S (G =) V(k=1i)}

Finally, we define the weight of C;, w; = nnec'. i), where 9, is
the state space of node n. The cost of computation is proportional to
Y c.ec ilsep(C;)|. We refer to this cost estimate as the clique-tree cost.

‘The approach descrihed in this section allows us to iutegrate prediction.
observation. and control in a single model. It also allows us to handle unces-
tainty in sensing, movement. and modeling. Behavioral properties emerge as
a consequence of the probabilistic model and the value function provided,
not as a cousequence of explicitly programmming specific behaviors. The
main drawback of the approach is that. while the model is quite compact.
the computational costs involved in evaluating the model can easily get out
of hand. For instance. in our model for the MTL problem. the clique-tree
cost is bounded from below by the product of |T|, [2s,/?, and |25,/ In
the next section, we provide several methods that, taken together. allow us
to recuce cowputational costs to practical levels.

7.5.3 Coping with Complexity

To reduce the cost of evaluating the MTL decision model. we use the fol-
lowing three methods: (i) carefully tailor the spatial representation to the
robot's sensory capabilities, reducing the size of the state space for the spa-
tial variables in the decision model. (ii) enable the robot to dynamically
narrow the range of the spatial variables using leuristics to further reduce
the size of the state space for the spatial variables, and (iii) consider only
a few candidate action sequences from a fixed library of tracking strategies

270

Figure 7.25: Sonar data entering a T junction

by taking into account the reduced state space of the spaiia: variables. In
the rest of this section. we consider each of these three methods.

The use of a high-resolution representation of space has disadvantages
in the model proposed here: increasing the resolution of the representation
of space results in an increase in the sizes of s, and Qg,.. and thus raises
the cost of evaluating the network. Keeping the sizes of 5, and Qs, swmall
wakes the task of evaluating the model we propose feasible.

A further consideration arises from the real-world sensory and data pro-
cessing systewns available to our robot. Finer-resolution representations of
space place larger demands on the robot’s on-board syvstem in terms of
both run-time processing time and sensor accuracy. To allow our robot to
achieve (near) real-time performance. it seems appropriate to liwit the rep-
reseutation to that level of detail that can be obtained economically from
the hardware available.

In our current implementation. we have '8 sonar transducers positioned
on a square platform, two to a side. spaced about 25 cm. apart. We take
distance readings from each transducer. and threshold the values at about
1 weter. Auything above the threshold is “long,” anything below is “short.”
The readings along each side are then combined by voting. with ties going to
“long.” In this way, the data from the sonar is reduced to 4 bits. Figure 7.25
shows the result of this scheme on eutering a T junction. In addition. we use
the shaft encoders on our platform to provide very rough metric information
for the decision model. Currently. 2 additional bits are used for this purpose.
but only when the robot is positioned in a hallway, which corresponds to
oulv one sonar configuration. So the total number of possible states for Op

271

Figure 7.2G: Tessellation of office layout

is 19. 15 for various kinds of hallwav junctions and 4 more for corridors.

This technique results in a tessellation of space like that shown in Fig-
ure 7.26. Our experimentz have shown that this tessellation is quite robust
in the sense that the readings are consistent anywhere in a given tile. The
exception to this occurs when the robot is not well-aligned with the sur-
rounding walls. In these cases, reflections frequently make the data unreli-
able. One of the tasks of the controllers that underlie the actious described
in the previous sections is to maintain good alignment, or achieve it if it is
lost.

In addition to reducing the size of the overall spatial representation, we
can restrict the range of particular spatial variables on the basis of evidence
not explicitly accounted for in the decision model (e.g., odometry and com-
pass information). For instance. if we know that the robot is in one of two
locations at time 1 and the robot can move at most a single location dur-
ing a given time step, then (Sg,1) ranges over the two locations, and, for
i > 1. (SR.i) need only range over the locations in or adjacent to those
in (Sg.i~1). Similar restrictions can be obtained for ST. For models with
limited lookahead (i.e., small |T}), these restrictions can result in significant
computational savings.

Consider a temporal Bayesian network of the forin shown in Figure 7.23
with n steps of lookahead. Let (X./) represent an element of {Sg. St. Ag.Og.O7} x
{1.....n}. The largest cliques in one possible® clique tree for this network
consist of sets of variables of the form:

{(SRy i), (SR, #H), (ST, 8}, (ST 1)}

*The triangulation algorithm attempts to minimize the size of the largest clique in the
resulting chordal graph. There may be more than one way to triangulate a graph so as to
minimize the clique size.

272

Number of time points

State space size 3 5 R
Constant (6) 40914 18066 133794
(0.58) (1.11) (1.90)
Constant (16) 624944 1232176 2143024
(R.87) (17.49) (30.42)
Constant (30) 3846330 7669530 13404330
(54.60) (108.86) (190.26)
Linear (2t 4+ 1) 5844 55088 433759

(0.08) (0.78) (6.16)
Quadratic ({¢ + 1) 3691 160701 3756559
(0.05) (2.28) (53.32)
Exponeuntial (2') 2875 107515 4131611
(0.05) (1.53) (58.64)

Table 7.1: Clique-tree costs for sample networks

fori=1ton =1, and the size of the corresponding cross product space is
the product of [Qs, ols [sg.iryls [sp.ils and [Rsy syl For fixed state
spaces. this product is just |Qg,[?|s,|*. However, if we restrict the state
spaces for the spatial variables on the basis of some initial location estimate
and some hounds on how quickly the robot and the target can move about,
we can do considerably better.

Table 7.1 shows the clique-tree costs for three MTL decision model net-
works of size n = 3, 5, and 8 time points. For each size of model, we consider
cases in which (s, o and Qs ;) are constant for all 1 2 ¢ > n, and cases
in which |Qs, 1yl = [Qsy1yl = 1 and the sizes of the state spaces for sub-
sequent spatial variables, (s, ;) and Qs; i, for 1 > ¢ > n grow by linear,
quadratic, and exponential factors bounded by |Qs,| = |Sg| = 30. For
these evaluations, |24, = 6. [Q0,| = 32, and |Qo,| = 19 in keeping with
the septory and movement routines of our current robot. The number in
brachef¥ underneath the clique tree cost is the time in cpu seconds required
for evaluation.

Our current idea for restricting the present location of the rohot and the
target involves using a fixed threshold and the most up-to-date estimates for
these locations to eliminate unlikely possibilities. Occasionally, the actual

273

locations will be mistaken'y eliminated. and the robot will fail to track the
target. There will have to be a recovery strategy and a criterion for invoking
it to deal with such failures.

There are certain costs involved with evaluating Bavesian networks that
we have ignored so far. These costs involve triangulating the graph. con-
structing the clique tree. and perforing the storage allocation for building
the necessary data structures. Tor our approach of dvnamically restrict-
ing the range of spatial variables. the state spaces for the random variables
change. but the sizes of these state spaces and the topology of the Bayvesian
network remain constant. As a consequence. these ignored costs are incurred
once. and the associated computational tasks can be carried out at design
time. Dvnamically adjusting the state spaces for the spatial variables is
straightforward and computationally inexpensive.

The third method for reducing the cost ~f decision making involves re-
ducing the size of S. the set of sequences of actions corresponding to tracking
and localization strategies. For an n step lookahead. the set of useful strate-
gies of length n or less is a very small subset of 4,". Still. given that we
have to evaluate the network |S| times. even a relatively small S can cause
problems. To reduce S to an acceptable size. we only evaluate the network
for strategies that are possible given the current restrictions on the spatial
variables. For instance. if the robot knows that it is moving down a corridor
toward a left-pointing L junction. it can eliminate from consideration any
strategy that involves it moving to the end of the corridor and turning right.
With appropriate preprocessing, it is computationally simple to dynamically
reduce S to just a few possible strategies in most cases.

7.6 Further Reading

Bayesian decision theory {5. R. 33]. Value of information [19]. It should he
noted that Howard’s is not the only theory proposed for assessing the value
of information sources. In particular, information value theory is closely
related to the theory of experimental design (16, 30]. Experimental design
is coucerned with the problem of maximizing the information gained from
performing experiments under cost constraints. Information value theory
represents one approach to experimental design hased on Bavesian decision
theory.

Influence diagrams [20]. Dynamic programming [7]. Conditioning [18].
Keiji's join-tree cost [22]. Jensen's [21] variation on Lauritzen and Spiegel-

274

halter’s clustering algorithm [25]. Causal poly trees [32]. Evaluating influ-
ence diagrams [34]. Influence diagrams for control applications [1].

The notion of locally distinctive place as it is used in Section 7.3 is due
to Kuipers [23]. The design of the geographer module was based on the
work of Kuipers [24] and Levitt [26] on learning maps of large-scale space.
and the extensions of Basye et al 6] to handle uncertainty.

See Dean and Kanazawa [13] and ilanks [17] for competing approaches.
See Cooper et al (10] for a discussion of a related approach to probabilistic
reasoning about change using a discrete model of time.

References to work on active perception (2, 3, 4].

275

Bibliography

[1] Agogino. A. M. and Ramamurthi. K.. Real-Time Influence Diagrams
Jor Monitoring and Controlling Mcchanical Systems. Techuical report.
Department of Mechanical Engineering. University of California, Berke-
ley. 1988,

{2] Aloimonos, J.. Bandyopadhyay. A., and Weiss, 1., Active Vision, Pro-
ceedings of the First Inlernational Conference on Computer Vision.
1987. 35-55.

(3] Tajesy. R., Active Perception. Proceedings of the IEEE. T6(R) (1988)
996-1005.

(4) Ballard. Dana H., Reference Frames for Animate Vision. Proceedings
IJCAI 11. Detroit. Michigan. 1JCAL 1989, 1635-1641.

(5] Barnett. V., Comparative Statistical Inference, (John Wiley and Sons.
New York, 1982).

(6] Basve. Kenneth, Dean, Thomas. and Vitter, Jeffrey Scott. Coping With
Uncertainty in Map Learning, Proceedings LJCAI 11, Detroit. Michigan,
IJCAL 1989, 663-668.

[7] Bellman. Richard. Dynamic Programming, (Princeton University Press.
1957).

(8] Chermoff, Herman and Moses, Lincolu E., Elementary Decision Theory,
(Johms Wiley and Sons, New York. 1959).

[9] Cooper. Gregory F., Pmbabilistic Inference Using Belief Networks is
NP-Hard, Technical Report KSL-87-27, Stanford Knowledge Systems
Laboratory, 1987.

276

()]

[10] Cooper. Gregory F., Horvitz. Eric J.. and Heckerman. David E.. 4
Method for Temporal Probabilistic Reasoning. Technical Report KSL-
{R-30. Stanford Knowledge Svstems Laboratory, 1988.

[11] Dean, Thomas, Basye, Kenneth. (‘hekaluk, Robert, Hyun, Seungseok,
Lejter. Moises, and Randazza. Margaret. Coping with Uncertainty in a
Control System for Navigation and Exploration, Proceedings A A A I-90,
Boston. Massachusetts, AAAL 1990, 10L0-1015.

[12] Dean. Thomas, Basye, Kenneth, and Lejter. Moises, Planning and Ac-
tive Perception. Proceedings of the DARPA Workshop on Innovative
Approaches to Planning, Scheduling, and Control, DARPA, 1990.

(13] Dean. Thomas and Kanazawa. Keiji, Probabilistic Temporal Reasoning,
Proceedings AAAI-88. St. Paul. Minnesota. AAAIL 1988, 524-528.

(14) Dean. Thomas and Kanazawa. Keiji, A Model for Reasoning About Per-
sistence and Causation, Computational Intelligence, 5(3) (1989) 142-
150.

[15] Dean, Thomas and Kanazawa, Keiji, Persistence and Probabilistic In-
ference, IEEE Transactions on Systems, Man, and Cybernetics, 19(3})
(1989) 574-585,

(16} Fedorov, V., Theory of Optimal Ezperimental Design, (Academic Press,
New York, 1972).

(17) Hanks, Steve, Representing and Computing Temporally Scoped Beliefs,
Proceedings AAAI-88, St. Paul, Minnesota, AAAlL, 1988, 501-505.

[18] Horvitz, Eric J..- Suermondt, H. Jacques, and Cooper, Cregory F., -

Bounded Conditioning: Flezible Inference for Decisions [Inder Scarce
Rcsourres, Technical Report KSL-89-42, Stanford Knowledge Systems
Laboratory, 1989,

(19] Howard, Ronald A., Information Value Theory. [EEE Transactions on
Syetems Science and Cybernetics. 2(1) (1966) 22-26.

(20] Howard, Ronald A. and Matheson, James E., Influence Diagrams,
Howard. Ronald A. and Matheson, James E., (Eds.). The Princi-
ples and Applications of Decision Analysis, (Strategic Decisions Group,
Meulo Park, CA 94025, 1984).

277

[21] Jensen. Iinn V., Lauritzen. Steffen L.. and Olesen. Kristian G..
Bayesian "pdating in Recursive (rraphical Models by Local Computa-
tions. Technical Report R 89-15. Institute for Electronic Svstems. De-
partinent of Mathematics and Contputer Science. University of Aalborg,
1989,

[22] Kanazawa. Keiji. Probability. Time. and Action. PhD thesis. Brown
University, Providence. R1. Forthcowming.

[23] Kuipers. Benjamin. Modeling Spatial Knowledge. Cognitive Science. 2
(1978) 129-153.

[24] Kuipers. Benjamin J. and Byun. Yung-Tai. A Robust. Qualitative
Method for Robot Spatial Reasoning. Proccedings AAAI-38. St. Paul,
Minnesota. AAAL 1988, 774-779.

[25] Lauritzen. Stephen L. and Spiegelhalter. David J.. Local computations
with probabilities on graphical structures and their application to ex-
pert svstems. Journal of the Royal Statistical Society,. 50(2) (1988) 157-
194.

[26) Levitt, Tod S.. Lawton, Daryl T., Chelberg, David M.. and Nelson.
Philip (.. Qualitative Landmark-hased Path Planning and Following,
Proceedings AAAI-87. Seattle, Washington, AAAL 1987, 689-G94.

[27] McCarthy. John. Applications of Circumscription to Formalizing Com-
monsense Knowledge. Artificial Intelligence, 28 (1986) 89-116.

(28] McCarthy. John and Hayes. Patrick J.. Some Philosophical Problems
from the Staudpoint of Artificial Intelligence.. Machine Intelligence. 4
(1969) 463-502. ’ ' ' N

[29] McDermott. Drew V.. A temporal logic for reasoning about processes
and plans. Cognitive Scicnce. 8 (1982) 101-155.

[30] Mendenhall, W., Introduction to Lincar Modcls and the Design and
Analysis of Experiments, (Wadsworth, Belmont, California, 196R).

[31] Neapolitan, Richard E., Pmbabilistic Reasoning in Erpert Systems:
Theory and Algorithms, (John Wiley and Sons, New York, 1990).

(32] Pearl, Judea, Probabilistic Reasoning in Intelligent Systems: Nel-
works of Plausible Inference. (Morgan-Kaufinann. Los Altos. (alifor-
nia, 1988).

[33] Raiffa. lloward and Schiaifer. R.. Applied Statistical Decision Theory.
(Hlarvard University Press. 1961).

(34) Shachter. Ross D.. Evaluating Influence Diagrams. Operations Re-
search. 34(6) (19%6) 871-]82.

(35) Svski. Rvszard. Random Processcs. (Marcel Dekker. New York. 1979).

279

Chapter 8

Controlling Inference

This chapter describes approaches for designing systems that are capable of
taking their own computational resources into consideration during planning
and problem solving. In particular. we are interested in systems that manage
their computational resources by using expectations about the performance
of decision making procedures and preferences over outcomes resulting from
applying such procedures. Careful management of compntational resonrces
is important for complex problemn solving tasks in which the time spent in
decision making affects the quality of the responses generated by a system.

Much of the work described in this chapter can be seen as a response to
a movement, started in the early 1980’s, away from systems that inake use
of complex representations and engage in lengthy deliberations, and towards
svstems capable of making many very simple decisions quickly. This move-
ment brought about the advent of the so-called “reactive systems” described

in Chapter{4.\Most reactive systems ate essentiallv programming languages

for huilding systems that must be responsive to their environment. Such
languages generally allow for muitiple asynchronous decision processes. fa-
cilitate communication among processes. and provide support for interrupts
and process arbitration.

Many of the researchers bnilding reactive systems were interested in
rohoties aad decision-support applications requiring real-time response. The
respouniveness of reactive systems was in stark contrast with the perfor-
mance of most planning and problem solving systems in use at that time.
Most existing planning systems were essentially off-line data processing pro-
cedures that accepted as input some initial (and generally complete) descrip-

2©1990 Thomas Dean. All rights reserved.

279

|

tion of the current state of the environment. and. after some indeterminate
{and generally lengthy) delay. returned a rigid sequence of actions which. if
the environment was particularly cooperative. might result in the success(ul
achievement of some goal.

Reactive systems wight be seen as an extreme response to the shortcom-
ings of the existing planning systems. Reactive systems provided responsive-
ness at the cost of shallow and often short-sighted decision making. Since
there were no proposals for how to coutrol decision making in time-critical
situations. researchers turned away from the traditional approaches to plan-
ning and attempted to incorporate more sophisticated decision making into
reactive systems. Unwilling to sacrifice response time. the researchers that
were trving to improve the decision-making capabilities of reactive systems
were forced to trade space for time. often without a great deal of attention
to the consequences,

Some of the dissatisfaction with complex representations and compli-
cated deliberation strategies was due to misinterpreting asvmptotic com-
plexity results as evidence of the existence of impassable computational bar-
riers. Proofs of NP-hardness certainly indicate that we must be prepared to
make concessions to complexity in the form of tradeoffs. The lesson to be
learned, however, is that we have to control inference. and not that we have
to abandon it altogether.

In the 1970’s. a great deal of effort was spent studying systems capable
of explicitly reasoning about their own decision-making capabilities. This
sort of reasoning about reasoning is generally referred to as meta-reasoning.
As the research in this area matured, some researchers were concerned with
how to learn to control decision making, while others were interested in the
basic mechanisms required to guide decision making under time pressure.
Many of the mechanisms studied had in common the use of expectations
regarding the performance of decision procedures to help in selecting from
among a set of such decision procedures.

As researchers began looking in the literature. it becaine clear that many
of the tools required for reasoning about the costs and benefits of applying
decision-making routines were aiready available. Indeed. researchers in the
decision sciences had already considered some of the problems involved in
reasoning about the costs and benefits of inference. However. with rare
exception.! the decision analysts assumed that the agent was possessed of

!1. J. Good was one of thoee cxccptions. and. in an amazingly forward looking paper
{22). Good talked about what he called type /I mtionality which involves an agent reasoning

280

unlimited computational capabilities for reasoning about its current knowl-
edge: the issue most often addressed concerned whether or not an agent
should cousider adding to its current knowledge. We are interested in the
case of an agent currently biased to act in a certain way and considering if
it should expeund further computational resources and risk the consequences
of delav in order to deliberate further about its options. It is tiiis basic idea
of an agent with limited computational capabilities. embedded in a com-
plex environment with other agents and processes not under its control. and
reasoning about the costs and benefits of continued deliberation tliat is the
subject of this chapter.

8.1 Decision Theory and the Control of Inference

We begin with the idea of a decision procedure: a procedure used by an agent
to select an action which. il executed. changes the world. Some actions are
purely computational. For our purposes, such computational actions corre-
spond to an agent running a decision procedure. and we refer to such actions
as inferential. The results of inferential actions have no immediate effect on
the world external to the agent, but thev do have an eflect on the internal
state of the agent. In particular. inferential actions consume computational
resources that might he spent otherwise, and generally result in the agent
revising its estimations regarding how to act in various circumstances. In
addition to the purrly computational actions, there are physical actions that
change the state of the world external to the agent. but that may also require
some allocation of computational resources.

Real agents have severely limited computational capabilities. and. since
inferential actions take time. an inferential action may end up selecting a
physical action that might have been appropriate at some earlier time. but
that is no longer so. Inferential actions are useful only insofar as thev enable
an agent to select physical actions that lead to desirable outcomes.? Decision
theory provides us with the language required to talk preciselv about what

it would mean for an action to lead to a desirable outcome. Belorewo——mo_

can proceed further. we will need some precise language for talking about
possible outcomes aund stating preferences among them. The language that

about its own abilities to reason.

?{nferential actions are also useful for learning purposes. as in learning search strategies.
hut even here the actions are nitimately in service to selecting physical actions that lead
(v desirable outcomes.

281

A

) 1]

\ {
§ X
oW

~ate school). In general. we caunot

we adopt is borrowed directly from statistical decision theory.

Th
cision theory mm Chap
along.

lu Llie simplest case. we wmight consider an agent faced with choosing
from among.a set of completely defined and immediately’attainable alterna-
tives (e.g.. a student might be faced with choosing pétween seeing a movie
or studving for an™eyam). The agent might ignore/some of the implications
of its actions and focunon immediate rewards (£.g.. a relaxing respite from
work or an increase in knowledge about a gjfen subject). but. more often
than not, the agent will be cerned wih the long-term implications or
consequences of its actions (e.g.\{he pgssibility of achieving a high score
on an examn which in turn might rals¢ the chances of getting inio gradu-
tee thiese consequeuces: they are
seldom ituinediately attainable add they ard\usually ouly partiall defined.
If we ignore the long-term impfications of our agtions. the alternatives can
be viewed as rewards, and 3/tational agent wo._id's{ nply choose the reward
that it considers best. In the case in which the agent’is concerned about the
consequences of its ac4ions and those co’ seqrences are not =~ ° 2ly under its
coutrol. the pictureAs more complicateu. In Liis case, 'Lengeut might have
a probability distributio v.er the set of .ossible consequences and some
way of assignilig values to tk: individual consequences so as to form expec-
tatious regarding the value of the p« ssible outcomes or prvspec?s\resulting
from perforwing alternative actious.

Let {2 corrzspond to 2 set of possible states of the world. We assume
that the agent has a fun- ion,

wing paragraphs should be ed by the discussion of de-

remain until that chapter is further

U: Q- R,

that assigns a real number to each state of the world. This is referred to as
the agent's utility function.® These numbers enable the agent to compare
various states of the world that might result as a consequence of its actions.
It is assumed that a rational agent will act so as to maximize its utiity.
The quaatity, U(w) where w € 1. is generally meant to account for hoth the
immediate costs and benefits of being in the state w and the delaved costs
and benefits derived from future possible states. We assume that there is
some process deterministic or stochastic governing the transition hetween

"See Chernoff and Moser [9]. Barnett [2). or Pearl [37) for discussions regarding the
axioms of utility theory.

282

M

states. and that this process is partially determined or biased by the agent’s
choice of action. In the case of a stochastic process. the agent cannot know
what state will result from a given action and hence the agent must make
use of expectations regarding the consequences of its ac*ions. In order to
account for these longer-terin consequences. it is often useful to think of the
agent as having a particular long-term plan or policy. In such cases. the
agent will generally assign an expected utilitv to a given state based upon
the immediate rewards available in that state and expectations ahout the
subsequent states. given that the agent continues to select actions based
upon its current policy. -~

In addition to expectations about the possible future consequences of
its physical actions. an agent capable of reasoning about its computational
capabilities must also have expectations regarding the potential value of its |
computations. and estimates of how long those computations are likely to
take. In most of the work discussed in this paper. an agent is assumed to
engage in some sort of meta-reasoning. For our purposes, meta-reasoning
consists of running a decision procedure whose purpose it is to determine
what other decision procedures should run and when. We prefer the term
deliberation scheduling [13] to the inore general meta-reasoning and will use
the two interchangeably in this If the meta-level decision procedure
takes a significant amouunt of time to run, it must be argued that this time is
well spent. In some cases. the time spent in meta-reasoning is small enough
that it can be safelv ignored; in other cases, it may be useful to invoke a
meta-meta-level decision procedure to reason about the costs and benefits
of nieta-reasoning.

Refer back to the material in Chapter 7 on the value of infdrmation. __

Note that so far we have not accounted for the computational cost of de-
liberating about the value of a particular information source. In information
processing svstems. information costs in terms of the time and resources
expended in computing an answer to a querv. Ncither have we closely con-
sidered how an agent might compute an expectation such as E{r|€]. We mav
know how to compute such an expectation. but it may be that an agent can
not afed to compute it. In the following sections, we build on the basic idea
behind information value theoryv to account for systems that have limited
computational capabilities.

The rest of this chapter is organized as follows. In Section 8.2. we con-
sider a general approach to studying the contiol of reasoning that casts the
general problem in terms of search. In this same section. we also investi-
gate some of the practical issues that constrain how an agent might reason

et

283

ahout its computational capabilities: these constraints and the measures
taken to deal with them apply to all of the work discussed in this chap-
ter. Section .3 considers an approach to reasoning about computational
capabilities that relies on a particular class of algorithms for implement-
ing decision procedures. Section 8.5 briefly considers somme related issues in
design-time meta-reasoning for compiling run-time systems for time-critical
applications.

8.2 Control of Problem Solving

In this section. we consider a general approach to reasoniug about decision-
theoretic control of inference due to Russell and Wefald [40. 41]. As in
most decision problems. the basic goal is for the agent to maximize its
utility function U(w) on states of the world « € 2. We assume that the
agent has some set of base-level actious A that it can execute to affect
its environment. Borrowing Russell and Wefald's notation. we denote the
outcome of an action A performed in state w as [A.w] or just [A] if the action
is perforwed in the current state.

At aayv given time the agent has a default action a € A which is the
action that currently appears to be best. In addition. the agent has a set of
computational actions {$;} which might cause the agent to revise its default
action. The agent is faced with the decision to choose from among the
available options: a, S, 52,....8. Computational actions only affect the
agent’s internal state. However. time passes while the agent is deliberating
and opportunities are lost, so the net value of computation is defined to be
the difference between the utility of the state resulting from the computation
minus the utility of the state resulting from executing a¥.

V(S;) = U([S,)) - U((a]).

Il the computation S; results in a revised assessment of the best action. s,
and a commitwment to perfor this action, then

U([S;]) = U(las,, [S5]).

where [as,.[S;]] indicates the outcome of the action as, in the state follow-
ing the computation §;. Alternatively. if S is a partial computation (i.c..
a computation that doesn’t immediately result in a revised assessment of
a best action. hut that provides intermediate results leading to a revised

284

447

assessment). then

vs,h =5 PrT)V([ar.[$,.T})).
T

where T ranges over all possible complete computations following 5,, 5,.T
denotes the computation corresponding to 5 imumediately followed by 1.
aud Pr(T') is the probability that the agent will perform the computation
T.

Generally. the agent doesn’t know the exact utilities or probabilities.
and so it nmust compute an estimate using some amount of its computa-
tional resources. Let QS denote the estimate of the quantity Q following a
computation S. In this case, we have

>3 (s;) = ZP 300> (far. (5,

where S is the total computation prior to conﬂdermg S;. and
[ar (S;.T)h= maxU [-l [S;-T1).

where the .; range over all possible base-level actions in 4. By super-
scripting quantities to indicate the computations required to generate the
corresponding estimates. Russell and Wefald are attempting to capture the
behavior of real agents with realistically limited computational capabilities.
At each point in time. the agent decides how to act based upon whatever
estimates it currently has. using a meta-reasoning decision procedure whose
time cost is assumed to be negligible. The meta-reasoning decision proce-
dure is responsible for deciding whether further deliberation is warranted.
and it does so on the basis of the estimated net value of computatlon’

V(55 = TS, - V().

As Russell aud Wefald point. out. before the colputation S; is performed
V(S;) is just a random variable, and so the agent, not knowing the exact
value. computes an expectation,

.S.S, S.s,

~S.
BV (8,)] = E[U7([$,]) = 0 ([a])]. (8.1)
It is worth noting the difference hetween Equation 8.1 and the following
equation introduced in Chapter 7 in presenting Howard's value of informa-

tion theorv,
E(VIx)IE) = E(V([DIx. &) = E(V(DIE).

285

The important difference is that hoth terms in the right-hand-side expec-
tation in Equation 8.1 change as a consequence of further inference. If an
agent had unliinited computrational capabilities. it would not be comput-
ing estimates. and only the first of the two terms would require expending
computational resources since it would be the case that

> ((a])] = T((a])]

However, we are concerned with agents with limited computational capabil-
ities. and further computation will likely result in a better estiinate of the
utilities for [a] as well as for [a’.[$,]] for any action a' € A.

In order to simplify reasoning about the utility of combined compu.
tational and base-level actions, Russell and Wefald separate the intrinsic
utility. that is the utility of an action independent of time, from the time
cost of computational actions. defining the utility of a state as the difference
between these two:

U([4i [S5]) = T[Ai]) = TC(S)).

It should be noted, however, that determining an appropriate time cost
fonction can become quite complicated in applying Russell and Wefald's ap-
proach. In particular, costs concerning hard and soft deadlines will have to
he accounted for by this function. In the game-playing application explored
in [40], there are no hard deadlines on a per-move basis, instead there is
a per-game time limit that is factored into the time cost. In many time-
critical problem solving applications, calculating the time cost can he ¢nite
complicated (e.g., consider the sort of medical care applications investigated
in (28] and [25]). Russell and Wefald assume that the time cost is indepen-
dent of both the computation itself and its recommendations. The former is
certainly reasonable, and, since the recommendation is not known at meta-
reasoning time, the latter is also reasonable. However, one could easily
imagine employing an expected time cost based on some a priori knowl-
edge concerning possible recommendations. It should be noted that all of
the approaches described in this chapter make assumptions about time cost
similar to those of Russell and Wefald.

Perhaps the nicest part of the Russell and Wefald work is their careful
treatment of the criterion for deciding whether or not to expend further
resources on deliberation. If the agent is considering at most one additional
computational step, then it is only interested in computations that serve
to update the expected value of a given base-level action so as to supplant

286

the current default ac.1jon. The expected gain from a given computation is
measured in terms of the difference hetween the current expectation regard-
ing one action and the anticipated revised expectations regarding a second
action where one of tlie two actions is the default action. lutuitively, further
deliberation is called for whenever the difference hetween the expected gain
in utility from a computation and the associated cost of delay is greater
than zero. Rlussell and Wefaid identify two cases to cousider in deciding to
perform a computation aimed at providing a revised assessment of the hest
action to perform. In the first case. we suppose that there exists a computa-
tion .5; which alfects the agent’s estimmation of the utility of the alternative
action /3 so that

~

. - S
E[\(.Sj)] = /l.r,([c])]),;_j(:t)(.t - U,([a]))dz - TC(S]). (8.2)

where pj3 j is the probability densiiy function for U ([3]). In the second

case, there exists a computation i which affects the agent’s estimation of
the utility of the default action « so that
o Usian .S

EV(SIl= [pasle X TR ~ 2z = TCUSH). (33)

-0

where p, & is the probability density function for U ([a]) If there are n
computational actions and m hase-level actions, then each meta-level rea-
soning step will require computing each of Equations 8.2 and 8.3 nm times.
If the distributions governing utility estimates are simple in form (e.g., nor-
mal distributions). computing the mtegrals in Equatlons 8 2and 8. 3 can be
done quite efficiently: :

There are a number of assumptions that Russell and Wefald make in
their analysis. First. it is assumed that the agent considers only single
colputation steps, estimates their ultimate effect, and then chooses the
step appearing to have highest benelit. This is referred to as the meta-
greedy assumption. Second, it is assimed that the agent will act as though
it will smbe at most one more search step. This is referred to as the single-
step agomption. Finally. it is assumed that a cowmputational action will
change the expected utilitv estimate for exactly one base-level action. In
Russell and Wefald’s state-space search paradigm. this is referred to as the
subtree-independence assumption.

The assumptions stated in the previous paragraph may seem overly re-
strictive, but it is quite difficult to avoid these or similar assumptions in

287

5

y""sq/

/“@/, /i

¢
13 l-'.v/.,\r

bty

general. Pearl (37] identifies two assumptions that most practical meta-
reasoning svstems ascribe to: no competition. each information source is
evaluated in isolation from all the others, and one-step horizon. we consuit
at most one additional information source before comuitting to a base-level
action. Assessments of inforination sources based on the no-competition and
one-step-horizon assumptions are referred to as myopic. and most practical
svstewmns employ myopic decision policies.

The next piece of research that we consider in this section is due to
Etzioni {18], and it borrows from the Russell and Wefald work, and builds
on the early work of Simon and Kadane [13] on satisficing search. [t is
particularly interesting for the fact that it attempts to combine the sort
of goal-driven behavior prevalent in artificial intelligence with the decision
theoretic view of inaximizing expected titdity. In Etzioni's model. the agent
is given a set of goals {Gy.G,.....G,}. a set of methods A/. and a deadline
B. The agent attempts to determine a sequence of methods

O SN 1eM2geee e aMpy 10T 2. M2 2000 e Mky 2400 My ny M2 pee. . s Miyn

where m; ; is the ith method to be applied to solving the jth goal. The idea
is that the agent will apply cach method in turn until it either runs out of
methods or achieves the goal, at which point it will turn its attention to the
next goal. The expected utitity of o is

ky—-1
Elio)] = E[Q{mi]+ - +E[U(mi, 1)) [T (1- Primia)) +

=)
ka—=1

E{{m12)] + -+ + E[00n4, 2)] [T (1= Primia)) +

=1

kn~1
E((min)] + - + E[0(me,)] [T (1 = Pr(min)).
1=t
Im this siruple model, no provision is made for switching hack and forth
Letween goals, and. except for ignoring the remaining methods for a given
goal once that goal has been achieved, no provision is made for modifying the
search as new information becomes available. Etzioni defines the expected
opportunity cost (7g) of a wethod nt for a deadline B as

E[vs(m)] = E(VGB)] - E[Q‘W'B-Tcm))]-

288

3

where g is the optimal method sequence for a deadline B. and TC'(m) is
the expected time to carry out method m. In addition. the expected gain
(G'g) of a method m for a deadline B is defined to bhe

E[Gg(m)] = E[f(m)] + E[15(m)].

Ile then shows that by repeatedly choosing the niethod whose expected gain
is maximal an agent will construct an optimal method sequence.

From one point of view, Etzioni's work is not about meta-reasoniug at all;
his work is concerned with ordinary sequential decision problems. For these
problems. Etzioni points out that. in certain cases, the cost of determining
an optimal method sequence can be guite high. In other words. we can't
ignore the cost of meta-level reasoning in the decision-making model. llis
analvsis showing that sorting methods on their marginal utilitv can often
result in optimal or near-optimal method sequences is exactly the sort of
analysis required to justify a particular meta-level reasoning.

In the case in which the agent has a single goal and multiple methods
for achieving it. the requisite meta-reasoning is easy. In particular., suppose
that there is a constant opportunity cost 4 per unit of time spent on the
goal. and for each method m € Af the agent has an expected time cost
E[TC(m)]. an expected utility estinate E[U(m)], and a probability Pr{m)
of achieving the goal using that method. The expected gain of a method m
is just i

E[G(m)] = E[U(m)] - vE[TC(m)],
and the task is to find o so as to maximize
.. T el
EU())= Y E[Gm)] (1 - Pr(ms)).
s E[G(m.)}>0 k0

Etzioui claims, and it is easy to verily, that. by sorting the methods in

increasing order using -E,;%‘"%u as a key, an agent can construct an optimal
el kod ordering.

Ix the above case, it is plausible to assume that the cost of meta-
reasoming (i.c.. the time spent calculating E G"'," for each method m and
sorting using the results) is negligible in comparison with the cost of ap-
plving a method. In the case of an agent faced with multiple goals even
where there is only one method for each goal. it is more difficult to make
such an assumption. By reducing the knapsack problem (20] to the problem

289

of compnting the expected opportunity cost. Etzioni shows that computing
the expected opportunity cost of a method is NP-comnplete.

It is not too surprising that there are some hard problens lurking among
the deliberation scheduling problems that underlie decision-theoretic cou-
trol of inference. It should be pointed out. however. that all we should
really be concerned with is the expected cost of meta-reasoning. and that.
in many practical applications. approximations are much preferred to even
polvnomial-time methods for computing exact solutions.

Etzioni suggests nsing Garev and Johnson's factor-of-two approxima-
tion {20]. but it should be noted that the knapsack problem is a number
problem for which there exist pseudo-polvnomial time algorithms and good
branch-and-bound approximations. These branch-and-bound algorithms
have exponential-time worst-case behavior. but their expected performance
is such that many practitioners consider knapsack tractable. In the next sec-
tion. we see how approximation algorithms for computationally expensive
problems can provide us with even greater flexibility in allocating processor
time to decision procedures.

While Etzioni's invocation of asymptotic complexity as a measure of
difficulty may not be particularly appropriate in this case, it does force
the reader to reconsider the assumptions regarding the time cost of meta-
reasoning. For instance, if n is sinall and the average time cost of the
methods in A is high, then it may even be reasonable to perform a meta-
computation whose worst-case behavior is exponential in n. It may even
be useful to add another level of ineta-reasoning to reason about various
alternative scheduling algorithms.

Just what is the structure of the decision making process that we are
seeking to control? In the Russell and Wefald model. object-level decision
making involves fixed-duration computations that attempt to provide a bet-
ter assessment of a single hase-level action. In the next section. we consider
problems in which the meta-level reasoner sacrifices some of its control over
object-level decision making in order to simplify meta-level decision mak-
ing. In particular. we consider decision procedures that return estimates
that improve with additional allocations of processor time. The abilityv to
preempt decision procedures at any time during their computation simplifies
deliberation scheduling in many cases.

290

Precision Relased
Value

Thas Precision
[il

Figure R.1: Plots relating (i) time spent in computation to the precision
of a probabilistic calenlation, and (ii) precision to the value associated with
getting the diagnosis correct and treating the patient accordingly (after [27]).

8.3 Flexible Computations and Anytime Algo-
rithms

In this section. we consider two independently developed but closely related
approaches (v decision-theoretic control of problem solving. The two ap-
proaches are due to Dean aud Boddy [13] and Horvitz [27]. Horvitz refers to
his decision procedures as flezible computations and Dean aud Boddy refer
to theirs as anytime algorithms, but the basic idea behind the two proposals
is the same, and we will use the two terws interchangeably.

In the ideal flexible computation, the object-related value of the result
returned by a decision procedure is a continuous function of the time spent

in computation. The notion of “object-related value™ of a result is to be

contrasted with the “comprehensive vaiue™ of a system's response to a given
stale; the latter refers Lo the overall utility of the response and the former is
sotne measure of the value of the result apart from its use in a particular set of
circuwustances. Object-related value is exactly Russell and Weflald's intrinsic
utility.. In some cases. the task of relating a result to the comprehensive
valve of the overall respouse cau be quite complex. This is especially so
in capgp im which there are several results from several different decision
procedures. In these cases, it is often convenient to make the assumption
that the value function is sepurable so that the comprehensive value of the
system’s respouse can be computed as the sum of the value of a sequeunce of
outcoies.

We assuine that a flexible computation can be interrupted at any point

291

\"\o
G
¥ 9
N\
@, @9
AN S}
\b\ u."\t .5‘2
\0*' O 2
CA
A o
A

—

Valwe

0 Time Time
L [N

Figure 8.2: Plots indicating (i) a discounting factor for delaved treatment,
and (ii) the comprehensive value of computation as a function of time (after

[27]).

during computation—hencefthe name “anytime™—to return an answer whose
object-related value increases as it is allocated additional time. Horvitz
provides a good ex>-1: e of a flexible computation and an analysis of its
object-related value ~rawn from the health care domain. Suppose that we
have an anytinie _gorithm that computes a posterior distribution for a set of
possible dia<noses given certain information regarding a particular patient.
Figure 8.1.i from{27}) shows a graph that relates the precision of the result
returned by this algorithmn to the time spent in computation. The object-
relzted value can be determined as a function of precision by considering the
expected utility of administering a treatment based on a diagnosis of a given
precision ignoring when the treatment is administered (see Figure 8.L.ii).

The comprehensive value of computation is weant to account for the
costs and benefits related to the time at which the results of decision pro-
cedures are made use of to initiate physical actions. Figure 8.2.i (from
[27]) indicates how a physician might discount the object-related value of a
computation as a function of delay in administering treatment. The com-
prehensive value of computation is shown in Figure 8.2.ii and is obtained
by combining the information in Figures 8.1.ii and 8.2.i. This method of
combiming information assumes both timne-cost separability and one-step
horizos.

Both Horvitz and Dean and Boddy note that the most useful sort of flex-
ible computations are those whose object-related value increases monotoni-
cally over some range of computation times. Dean and Boddy {13] employ
decision procedures that are monotonic throughout the range of computa-

292

tion times. and exploit this fact to expedite deliberation scheduling for a R :
special class of planuning problems referred to as time-dependent planning @)
problems. A planning problem is said to he time-dependent if the time b’g\&’
availahle for responding to a given event varies {rom situation to situation.
[n their model. a predictive component. whose time cost is not cousidered,
predicts events and their time of occurrence on the basis of observations.
and the planning system is given the task of formulating a response to each »
event and executing it in the time available hefore the event occurs.

The model of Dean and Boddy generalizes on the muitiple-goals/single-
method-for-each model of Etzioni described in the previous section. by al-
lowing each goal to have a separale deadline. 1[the respouses to the different
events are independent, the task of deliberation scheduling can be stated in
terms of maximizing the sum W

. J?
Z V(Response(¢)), . (_US'
€E 244

where L is the set of all events predicted thus far. It is assumed that there

is exactly one decision procedure for each type of event likely to be encoun- \

tered, and that there are statistics on the performance of these decision -

procedures. The statistics are summnarized in what are called performance \

profiles which are essentially the same as the graphs used by Horvitz in his ‘

analvsis (e.g.. see Figure 8.1.ii). 37 L\
In Section 8.4, we define the class of time-dependent planning problems Lo

precisely, and provide polynowial-time algorithms for deliberation schedul-) i J}

ing for particular subclasses. These algorithms use a simple greedy strat- Y / '

egy working backward from the last predicted event, choosing the decision ' ,L

procedure whose expected gain computed from the perforinance profiles is P v,

greatest. QoL
It is worth considering why the NP-completeness result reported hy Et- A o

zioni does not apply in this more general case. In job-shop scheduling, if it is o ‘N

possible to suspend, and later resume, a job, then many otherwise difficult

problusss becowe trivial (23. 5. Such (preemptive) scheduling problems

are somewhat rare in real job shops given that there is often siguificant

overbead involved is suspending and resuming jobs (e.g., traveling between

workstations or changing tools). but they are considerably more common

with regard to purely cowmputational tasks (e.g.. suspending and resuming

Unix processes). In many scheduling problems. each job has a fixed cost

and requires a fixed amount of time to perform: spending any less than the

full amount vields no advantage. This is the case in the decision procedures

293

cousidered by Etzioni. If. however. the decision procedures for computing
appropriate actious are preemptible and provide better answers depend-
ing upon the time available (or deliberation. then the task of deliberation
scheduling is considerably simplified. Anytime decision procedures thus pro-
vide more flexibility in respouding to time-critical situations. and simplifv
the task of allocating processor time in cases where there is contention among
several decision tasks.

For the multiple-goals/single-method-for-each problem described in the
previous section. Etzioni suggests usiug a factor-of-two approximation to
avoid poteutial combinatorics in deliberation scheduling. Rather than al-
wavs simply applyving the factor-of-two approximation. we can design an
anvtime approximation algorithm and allocate it some amount of processor
time based on expectations regarding its performance. The fullv-polvnomial
approxiration scheme! of Ibarra and Kim (30} for solviug the optirization
version of the knapsack problem serves nicely as the basis for an anytime
approximation algorithm for choosing method sequences. The simplest ap-
proach would be to classify the base-level problems in terws of. say, the num-
Ler of goals aud the length of time until the deadline. and gather statistics
on the utility derived from invoking the approximation scheme with differ-
ent precision requirements. Whether or not this more complicated approach
to deliberation scheduling performs better than the factor-of-two approxi-
mation will depend upon the specifics of the application and how efficiently
the algorithius are realized. It is easy to imagine applications. however. for
which the expected performance of the system will be improved by using
such a scheme.

The use of flexible computatious can also simplifly problems in which
one decision procedure pruduces an intermediate result that is used as input
to a second decision procedure: Boddy and Dean [4] investigate one such
problem iuvolving a robot courier assigned the task of delivering packages
to a set of locations. The robot has to determine both the order in which
to visit the locations. referred to as a tour. and. given a tour. plan paths to
traverse in moving between consecutive locations in the tour. To simplifv
the analysis. it is assumed that the robot’s only concern is time: it seeks to

‘See Giarey and lohnson [20] for a discussion of fully-polynomial approximation schemes
for NP-complete problems. For ocur purposes. an approximation scheme 5 for a problcm
11 takes an instance /n and a precision requirement ¢ > 0 and returns a candidate solution
that is within ¢ of the optimal solntion. Such a scheme is said to be fully polviomial just
in case the time complexity of S is bounded by a polynomiai fnnction of ¢ and the size of
In.

294

Travel Tour
Time Length
Reduction Reduction

Time Tims
i i

Figure R.3: Performaunce profiles relating (i) the expected savings in travel
time to time spent in path planning. and (ii) the expected reduction in the
length of a returned tour as a function of time spent in tour improvement.

minimize the total amount of time consumed both in sitting idly deliberating
about what to do next. and in actually moving about the environment on its
errands. Furthermore, it is assumed that there is no advantage to the robot
in starting off in some direction until it knows the first location to be visited
on its tour. Finallv. while the robot can deliherate about any subsequent
paths while traversing a path between consecutive locations in the tour. it
must complete the planning for a given path before starting to traverse that
path.

The two primary components of the decision making process involve
generating the tour and planning the paths between consecutive locations
in the tour. The first is referred to as tour improvement and the second as
path planning. Boddy and Dean employ iterative refinement approximation
routines for solving each of these problems. and gather statistics on their
performance to be used at run-time in guiding deliberation scheduling. The
statistics are summarized in what are called performance profiles. Figure 8.3
(from [4]) shows the profiles for path planning and tour improvement. Fig-
ure 8.3.i shows how the expected savings in travel time increase as a function
of time spent in path planning. Figure 8.3.ii shows how the expected length
of the tour decreases as a fraction of the shortest tour for a given amount
of time spent in tour improvement. In the analysis described in [4). this
performance estimate is independent of the initially selected tour. \\}’s}s-
sime that the robot starts out with an initial randomly selected tour.”Given
the length of some initial tour. the expected reduction in length as a func-
tion of time spent in tour improvenient. and some assumptions about the

295

!

e N
d . '/«','
\Q FK/ / *

<
7/ which anytime decision procedures exist. or for which a pipelined sequence

{
H

!

i

performance of path planping. the robot can figure out exactly how much
time 1o devote to tour imyprovement in order to minimize the time spent in
stationary deliberation and combined deliberation and traversal.
There currently is no general theory about how to combine anvtime
algorithms. and neither is there likely to be in the near future. For cases in
~which the decision problems are not independent. there is not a great deal
that we can say. However. for the case of independent decision problems for

ol anyvtime decision procedures exist. as in the robot courier problem. there
is a great deal of interesting research to he done: research that can draw
heavily on the scheduling and combinatorial optimnization literature.

It is worth pointing out some connections between the Russell and We-
fald work and that of Dean and Boddy and Horvitz. The Russell and Wefald
work can be seen as trying tc construct an optimal anytime algorithm: a
single algorithm that operates by calculating a situation-specific estimate of
utility using only local information. just as subscribed by inforimation value
theory. It should be possible to apply the Russell and Wefald approach to
scheduling anytime algorithms. For some purposes (e.g., the ganie-playing
and search applications described iu {41]). the monolithic approach of Russell
and Wefald seems perfectly suited. For other applications (e.g.. the robotic
applications described in [1] or the intensive-care applications described in
[28]). it is quite convenient to think in terms of scheduling existing approx-
imation algorithins.

Since this hook is concerned with planning and control problems. we now
turn our attention to the general class of time-dependent planning problems
mentioned earlier. and investigate the deliberation scheduling issues that
arise with regard to various subclasses of this general class.

8.4 Time-Dependent Planning

i

We define a class of time-dependent problems in terzg

1. A set of event (or condition) tyvpes. C

3. A set of time points. T

4. A set of decision procedures. D

296

of '

Loir [b itk
2. A set of action (or response) types, A / N/ﬂé /26//4': f’/r—c‘ (")
sy el A—J//'/é//’“&/

5. A value function, V

Ve assuine that at each point in time the agent knows about some set of
pending events that it has to formulate a response to. We are not concerned
with how the agent came to know this information: suffice it to say that
the agent has some advance rotice of their type and time of occurrence. To
represent its knowledge regarding [uture events. we say that the agent knows
about a set of tokens drawn from the set C x 7. When we talk about events
or conditions. we will be referring to tokens and not types. Each condition.
c. has a tvpe. tvpe(c) € C. and a time of occurrence, time(c) € 7. In the
following. all conditions are assumed to be instantaneous (i.e.. corresponding
to point events).

We evaluate the agent’s peeformance entirelv on the basis of its re-
sponses. Let Response(c) € A he the agent’s response to the condition
c. Let V(aje) be the value of responding to the condition ¢ with the action
a € A. To simplify the analvsis. we make the strong assumption that the
value of the agent’s response to one condition is completely independent of
the value of the agent’s response to any other condition. Given this indepen-
dence assumption, we can determine the total value of the agent’s response
to a set of conditions C as the sum,

z V{(Response(c)|c).
ceC

Since we are primarily interested in investigating issues concerning the
costs and benefits of computation. we abstract the problem somewhat more
in order to simplify the analysis. We require the agent to formulate a re-
sponse to every condition it is confronted with. We further require that the
agent perform all of its deliberations regarding a given event prior to the
time of occurrence of that event. There is no benefit to be had in coming
up with a response early.

For each condition type. ¢ € C. there is a decision procedure in dp(c) € D.
The agent knows how to select an appropriate decision procedure given
the type of an event. The decision procedures in D have the properties
of flexible computations that we discussed earlier. In addition. the agent
has expectations about the performance of these decision procedures in the
form of performance profiles. For each condition type. ¢ € C. there is a
corresponding function g, : R — R that takes an amount of time. 6. and
returns the expected value of the response to ¢ generated by dp(c) having

heen run for the specified amount of time.
tte(8) = E(V(Response(c)|c.alloc(. dp(c)))).

In the following, we consider various restricted classes of decision proce-
dures. \We begin by considering, decision procedures whose performance pro-
files cau he represented or suitably approximated by piecewise linear mono-
tonic increasing functions. We add the further restriction that the slopes of
consecutive line segments be decreasing. If the functions representing the
performance profiles were everywhere differentiable, this restriction would
correspond to the first derivative function being monotonic decreasing.®

Let C' = {¢;.....cn} be the set of conditions that the svstem has to
formulate responses for. and ¢ he the present time. Let si; he the function
descrihing the performance profile for the decision procedure used to com-
pute responses for the ith condition. We present an algorithm that works
backward from the time of occurrence of the last event in C". On every it-
eration through the main loop, the program allocates some interval of time
to deliberating about its response to one of the conditions, ¢, whose time of
occurrence, time(c). lies forward of some particular time ¢t. The set of all
conditions whose time of occurrence lies forward of some particular time ¢
is denoted as

A(t) = {c|(c € C) A (time(c) 2 1)}.

The criterion for choosing which decision procedure to allocate processor
time to is based on the expected gain in value for those decision procedures
associated with the conditions in A(t). The criterion also has to account for
the time already allocated to decision procedures. Let ¥;(z) be the slope of
the linear segment of u; at z unless u; is discontinuous at z in which case
7i(z) is the slope of the linear segment on the positive-side of z. We refer to
4.:(x) as the gain of the ¢th decision procedure having already been allocated
r amount of processor time.

Having allocated all of the time forward of f in previous iterations. fig-
uring out how much time to allocate on the next iteration is a bit tricky. It
is certainly bounded by 7 — #; we cannot make use of time that is already

*In (33} we susgested a similar restriction referred to as diminishing returns. and

&‘ defined . follows: Yc € C.3f.u.(t) = f(4) such that f is monotonic increasing. con-

tinnomn, amd piecewine differentiable. Yr.y € R*. such that f'(r) and f'(y) exist.

(r < 9)D(f'(y) < f'(r)). For this class of problems. we provided an approximation

algorithm that uses timne-slicing to come within ¢ of optimal. The algorithm presented
liere is exact given the restrictions on the form of performance profiles.

298

—

Figure 8.4: Determining min_alloc({éy, é,, é3})

299

Procedure DS
;» Initialize the §;’s to 0.
for+ = 1 to n,
b — 0
;; Set 1 to be the time of the last event in (.
t — last(+~)
N Allocato.tino working backward from the last event.

CL‘U until ¢ = {,
ﬂu’) (4/ ;; Compute the amount of time to allocate next.
/

S Le /I/u A — min{t - 7.t = last(?). min.alloc({&;})}
o ;; Find the procedure index with the maximum gain.
/1/7- ﬂfA . i — arg; max{y;(&)lc; € A(0)}
wrt et ;i Allocate the time to the appropriate procedures.
PR 6 — &+ A
o Lo A [;; Decrement time by the amount of allocated time.
< ‘ v t —t - A
e /-C il ;; Set f to be the current time.
t — t

;+ Schedule working forwards in continuous segments.
/,‘J//{]jﬂ for i = 1 to n,
‘ /4 ;; Assume that time(r;) < time(c,) for all i< j.
run the ith decision procedure from t til t + §,
;3 Increment time by the amount of allocated time.
t — t + 4

—/"/aé /".:7 /;‘/"-'4/‘/- 7{‘,‘.‘% ’

Figure 8.5: Deliberation scheduling procedure

past. In addition, given that we are using the gain of the decision procedures
for conditions in A(t) as part of our allocation criterion, the criterion only
applies over intervals in which A(t) is unchanged. Let last(t) be the first
time prior to t that a condition in C' occurs that is not already accounted
for in A(t):

last(t) = max{time(c)jc € C - A(1)}

Finally, given that the gains determine the slope of particular line segments
characterizing the performance of the decision procedures. we have to he
carefal not to apply our criterion to an interval longer than that over which
the carrent gains are constant. Let min_alloc({é;}) be the minimum of
the lengths of the intervals of time for the next linear segments for the
performance profiles given the time allocated thus far. Figure 8.4 illustrates
min.alloc({é}) for a particular case.

300

u_(%

n_ &

]
i

Figure 8.6: A simple example of deliberation scheduling

Figure 8.5 lists the procedure for deliberation scheduling for the class of
problems under consideration. The procedure, DS, consists of three iterative
loops. The first initializes the allocation variables, the second determines
how much time to allocate to each of the decision procedures. and the third
determines when the decision procedures will be run. For convenience. we
assume that the events in C are sorted so that time(c;) < time(c;) for all
i < j. This assumption is only made use of in determining when decision
procedures will be run.

Consider the following simple example to illustrate how DS works. Sup-
pose that we have two events to contend with. c; and c;. Figure 8.6.i shows
the performance profiles for the decision procedures for ¢; and ¢;. DS starts
by allocating all of the time between ¢; and ¢; to the decision procedure for
¢,. The next interval of time to be allocated (A) is determined by the first
linear segment of yy. and this interval is allocated to ¢;.

At this point, the slope of the second lincar segment of u, is less than
the slope of the first segment of s;. so the next interval (determined by
what ie left of the first linear segment of u3) is allocated to ¢;. The next
interval corresponds to the second linear segment of u;. and this entire
interval is allocated to ¢;. Finally. the remainder of u, has slope 0. so
the remaining time is allocated to ¢;. Figure 8.6.ii shows the complete
history of allocations. and Figure 8.6.iii shows how the decision procedures
are scheduled to run. Now we prove that DS is optimal.

301

®,)]

» t]

8
i

Figure 8.7: Performance profiles that foil DS

Theorem 1 The procedure DS is optimal in the sense that it generates a
set of allocations {6;} mazimizing 37 ui(4;).

Proof: We proceed by induction on n, the number of conditions in C. For
the basis step, n = 1. the algorithin allocates all of the time available to
the only event in C, and hence is clearly optimal. For the induction step,
we assumwe that DS is optimal for up to and including n - 1 events. Our
strategy is to prove each of the following:

1. Let # be the time of the earliest event in C'. Using ¢’ as the starting
time, DS optimally allocates processor {ime to the n — 1 (or fewer
assuming simuitaneously occurring events) events in C occurring after
f.

2. DS optimally allocates processor time to all n events in (' over the
period from 7 nntil the time of ncenrrence of the first event in (. ac-
counting for the processor time already committed to in the allocations
described in Step 1.

3. Given Steps 1 and 2. the combined allocations result in optimal allo-
catious for C starting at 1.

Step 1 follows immediately fromn the induction premise. To prove Step 2.
we have to demonstrate that DS solves the simpler problem of maximizing

302

ST dé,) subject 1o the constraint that 3" é = /. where / is the length
of time separating t and the first event in (. Lor this demoustration, it is
enough to note that. as long as the set of events heing considered (.\(!))
remains unchanged. during each iteration of the main loop. DS chooses an
interval with maximal gain. and. by making this choice. DS in no way re-
stricts its future choices given that all subsequent intervals are bound to
lrave the same or smaller gains. This last poiut is due to the restriction that
the slopes of consecutive line segments for all performance profiles are de-
creasing. Note that, il we were to relax this restriction. the greedy strategy
used by DS would not produce optimal allocations. Iigure 8.7.i provides
a pair of performance profiles such that DS will produce suboptimal allo-
cations. Figure 8.7.ii shows the allocations made by DS. and Figure 8.7.iii
shows the optimal allocations.

Step 3 follows from the observation that the allocation of the time from
the occurrence of the first event to the occurrence of the last is independent
of any consideration of the first event or any time available for deliberation
prior to the occurrence of the first event. O

Theorem 1 proves that the allocations made by DS are optimal in a well-
defined sense. We still have to show that the method for scheduling wheu
to run decision procedures is correct. ln particular, we have to show that
DS generates a legal schedule, where a legal schedule is one such that for all
¢ € C the time allocated to the decision procedure for ¢ is scheduled prior
to the time at which ¢ occurs. To see that DS does generate legal schedules.
note that DS eunsures that the sum of the time allocated to all conditions
that occur prior to { for any ¢t > {. is less than ¢t — {. DS is guaranteed to
generate a legal schedule siuce it schedules all of the time for any condition
¢ before any condition occurring later.

In the time-dependent planning problems described above, the exact
time of vccurrence of conditions is known Ly the deliberation scheduler.
One cau easily immagine variauts in which the scheduler ouly has probabilistic
information about the time of occurrence of events.

Foe instance, for each condition. ¢;, the scheduler might possess a prob-
ability density function.

pi(t) = Pr(occurs(t.c;)).

indicating the probability that a particular condition will occur at time. ?.
For practical reasons. we will assume that for each condition. ¢;. there is a

T

Figure 8.8: Uncertainty about the occurrence of conditions

latest time. sup{c;), and an earliest time. inf(c;), such that
pisup(e;)) = piinf(c;)) = 0.

Wihile the schednler does not know exactly when conditions will ocenr.,
we assnme that the executor will know when to carry out a given action. For
instance. conditions might have precursor cvents signaling their immediate
occurrence. The executor wonld simply take the best response available at
the tune the precnrsor event for a given condition is ohserved.

Our performance criterion for deliberation scheduling is no longer,

Z V(Response(c)|c)).
cel’

but rather,

Z/ ploccurs(t,c))V(Response(c, t)|c) dt.
€C: vt .)

where Response(c, () indicates the response generated with respect to cou-
dition. ¢, given that ¢ occurs at ¢.

In deciding how to allocate an interval of processor time given uncer-
tainty about the occurrence of conditions. we have to account for the pos.
sibility that the event may have already occurred. Figure 8.8 depicts the
probabifity density functions for the time of occurrence of two couditions.
The areas of the shaded regions indicate the probability that the conditions
ocenr jn the future of the time marked /.

We extend the #, notation to represeut processor schedules. Let each &,

he a function,
6.‘ : R. — {U, 1},

304

Procedure DS’(1))
;; Initialize the 4,’s to O.
for i = 1 to n,
& — 0
;; Set t to the latest possible time of occurrence.
t — max{inf(c;)lc; € C'}
until t < f
i+ Find the index with maximum expected gain.
i — arg, max{E(V(Al&)e; € O}
;3 Allocate the time to the appropriate procedure.
& — 6 + (min{d.t-t}.t)
; ; Decrement time by the amount of allocated time.
t — t — min{d.t-t}

Figure 8.9: Deliberation schednling with uncertain condition times

where é;({) = 1 if the decision procedure for ¢; is allocated the processor at
{, and §;(t) = 0 otherwise. The expected value of a given schedule, §;, begin-
ning at ¢, and allocating processor time to deliberating about a condition,
¢;. is just the sum over all times, ', in the future of ¢, of the probability that
c; occurs at ¢ multiplied by the expected value of the respouse generated by
the decision procedure for ¢; given the processor time scheduled between t
and t'. We notate this expected value,

E(V(6q)) = [pi(T il bilt, 7)) dr.

where é:{t,1') is the ‘total antount of time allocated to ¢; by the schedule §;
hetween t and t'. The expected value of augmenting a given schedule, é;,
starting at ?, by allocating the time from t — A to t to deliberating about c;
is defined by

0 0
E(V(A|6,-|,).)=/' Ap,-(r)u,»(é;(t.r.A))dr—/' pil Ti(8i(t. 7)) dr.

where §;(1, 7, A) is the total amount of time between { and t' allocated to c;
by the A-augmented schedule.

Figure 8.9 lists a procedure for deliberation scheduling for the class of
problews involving uncertainty in condition times. The procedure listed in
Figure 8.9 takes a positive real nuwber. A € R*. 10 be used as the length
of the interval of time allocated in each iteration of the main loop of the

305

procedure. The assignment. 8; — 0. results in &(1) = 0 for all t € R. The
assignment. &, — &, + (t.t'). results in &;(r) = 1| for all 7 in the interval
(t.t'). and for all 7 outside the interval (t.¢') is the same as it was prior to
the assignment. In the following. we inake several comments regarding DS'.

The first comment concerns what exactly it is that DS’ computes. DS’
provides an approxiiuation to the optimal deliberation schedule. It is an
approximatijon because we allocate each interval of length &m the basis of
expectations computed for a single point at the boundary of that interval: in
general. this method will result in a suboptimal dcliberation schedule. On
the positive side. the smaller the allocated intervals are. the better the ap-
proximation: the schedules generated hy DS® converge to the optimal sched-
ules as & — 0. Ou the negative side. the smaller A is. the longer it takes to
compute the entire deliberation schedule.

In this chapter. we generally ignore the cost of deliberation scheduling.
assuming that. if the running time of the scheduling algorithm is linear in
the size of the input. then the cost of scheduling is negligible. In this case.
however. the cost of deliberation scheduling can be made arbitrarily large
hy emploving a small enough value for . In practice, it will be necessary
to account for the cost of deliberation scheduling. In some cases. it will
reasonable to clicose a value for A at compile time by experimenting with
various values and expected inputs. In other cases, it mighkt be useful to
select a value at rum time, using some simple criteria for selection: this
constitutes a simple example of meta-meta-reasoning.

The second comnment regarding DS" concerns the form of the final sched-
ule. Unlike the case in which we know exactly when each condition will
occur. we cannot coalesce all of the time allocated to a given condition into
a continuous interval. As a consequence. we have to assume the capability
of switching the processor rapidly between different decision procedures. In
most muiti-tasking operating systems, assumning this sort of rapid process
switching is reasonable.

The final comment regarding DS’ concerns the notion of optimality which
we employ in rating perforinance. Claims of optimality are made assuming
that there will be no further opportunities to modify the schednle. In prac-
tice. however, each time that a condition occurs. it will be useful to compute
a new deliberation schedule.

In the remainder of this section. we consider one more variant of time-
dependent planning. In this variant. we assume that there are no external
conditions requiring responses of the controller: instead. the controller has
some number of tasks it is assighed to carry out. The tasks do not have

306

to be completed hy any particular titme. hut the sooner thev are completed
the better. As in the previons problems. we assume that there is a decision
procedure for each task. Generaily. the more time the controller deliberates
about a given task. the less time it takes to carry out that task. We assume
that the outcome of deliberation concerning one task is independent of the
outconte of deliberation concerning any other.

The performance profiles relate the time spent in deliberation to the
time saved in execution. For instance, suppose that the task is to navigate
from one location to another. and the decision procedure is to plan » path
to follow between the two locations; up to a certain limit. the more time
spent in path planning. the less time spent in navigation.

In the following. we consider a few special instances of this class of prob-
lems. In the first instance, all of the deliberations are performed in advance
of carryving ont any task. This model might he appropriate in the case in
which a set of instructions are compiled in advauce, and then loaded into
a robot that carries ont the instructions. Deliberation scheduling is simple.
For each task, the scheduler allocates time to deliberation as long as the
time spent in deliberation results in a greater reduction in the time spent
in execution. All of the deliberation is then performed in advance of any
execution.

In the second instance. the order in which the tasks are to be carried
out is fixed in advance, and all deliberation concerning a given task is per-
formed in advance of carrying out that task, but deliberation concerning
one task can he performed while carrying out another. In this instance,
deliberation scheduling is somewhat more complicated. We consider delib-
eration scheduling in terms of three steps, minimal allocation, dead-time
reduction, and free-time optimization. In the minimal allocation step, we
proceed as in the previous instance, by determining a minimal allocation
for each task. ignoring the possibility of performing additional deliberation
during execution.

This minimal allocation for a given task corresponds to that allocation
of delideration time minimizing the sum of deliberation and expected exe-
cution time. Figure 8.10.i shows four tasks and the time they are expected
to take, assumning no time spent in deliberation. Figure 8.10.ii shows the
performance profiles for each of the four tasks. The dotted line in each
performance profile indicates the minimum slope such that allocating de-
liberation time will result in a net decrease in the smn ol deliberation and
expected execution time for the minimal allocation. Figure 8.10.iii shows
the minimal allocations for each of the four tasks. where the é; indicates the

307

¢

4

\

r
Thid 2 o

7

-~

P

B O
”\

g T

/

L Tl //J sl

3

?

|
-
bs
-1+
»~
~
—
-
-3
-
-
—_
-3
-
-~
e

Figure 8.10: Minimal allocations of processor time

tie allocated to deliberation for ¢;.

Using the allocations computed in the wminimal allocation step. we con-
struct 3 schedule in which tasks begin as early as possible subject to the
constraint that all of the deliberation for a given task occurs in a continuous
block inumediately preceding the task and following any deliberation for the
previous task. Figure 8.11.i shows the resulting schedule for the example of
Figure 8.10. Note that there are two additional types of intervals labeled in
Figure 8.11.i. This first type, notated f;, indicates the free time associated
with ¢;, corresponding to time when the system is performinug a task but not
deliberating. The second type. notated d;, indicates the dead time associ-
ated with {;, corresponding to time when the system is deliberating but not
performing any task.

In the dead-time reduction step, we attempt to reduce the amount of
dead time in the minimal-allucations schedule by making use of earlier free
time. Where possible, we allocate earlier free time to performing the deliber-

ationg peeviously performed during the dead time. starting with latest dead
tinse iy and working backward from the end of the schedule and using
the lailsd possible intervals of free time. Figure 8.11.ii shows the schedule
of 8.11.i modified to eliminate one of the dead time intervals. It is

not always possible (0 eliminate all dead time intervals. In particular. anv
deliberation time allocaled for the first task will always correspond to dead
tilze.

308

309

Th T

/-ﬂ-'l [4

Following this)rocess of dead-time reduction. if there is anv free time
left. we attempt 1o allocate it for deliberating about other tasks. This is
just a bit tricky. since by performing additional deliberation we eliminate
previously available free time. Not only do we eliminate the free time we are
filling in by scheduling deliberation. but the deliberation reduces execution
time thereby eliminating additional free time. Tlere is one special case for
which optimally allocating the additional free time is easy. This is the case
in which all of the performaunce profiles are piecewise linear composed of two
linear segments such that slope of the first segment is the same for all profiles
and the slope of the second is 0. This corresponds to the specification of the
robot courrier problem described in the previous section, regarding the task
of optimallv allocating processor time for planning several paths between
locations in a tour of such locations to be visited.

The reason that optimally allocating the additional free time in this case
is easy is explained as follows. If the slope of the first linear segment for all of
the performance profiles is greater than 1, then all of the time corresponding
nonzero slope will he allocated in making the minimal allocations, and any
additional allocations will yield no decrease in execution time. If the slope
of the first linear segment for all of the performance profiles is less than .
then all of the minimal allocations will be 0, and there will be no free time
to allocate.

There are many variations on the prohlems described above. This sec-
tion is meant as a sampler of problems and associated deliberation scheduling
techniques. Deliberation scheduling should be seen as a means of program-
ming in knowledge about how to improve run-time performance. There are
occasions. however, in which the time required to apply that knowledge is
not available at run time, and it beconies reasonable to make certain choices
concerning the allocation of computational resources at design time. In the
next section. we consider design-time tradeoffs for improving svstem perfor-
mance.

8.5 Compiling Problem Solving Systems

In the previous sections, we were concerned with the design of systems that.
given expectations ahout the performance of decision-making routines, were
able to make appropriate tradeoffs at run-time so as to maximize expected
utilityv. Another approach to building svstems capable of good performance

. in time-critical situations involves mnaking certain inferences at design time

310

Figure 8.12: Decision model for the diagnosis problem (after [26])

and caching those inferences for use at run time in order to improve the sys-
tem’s response time. Other researchers have suggested compiling domain
models to guarantee bounded response time {31, 39]. Generally, the result
of compilation is a table or circuit whose space requirements are an impor-
tant factor in assessing the value of a given compilation method. Usually,
the object is Lo improve response time withont sacrificing decision guality;
when this cannot be done (e.g., the storage requirements for caching are
substantial) it becoies necessary to consider tradeoffs. The approaches de-
scribed in this section are noteworthy for their use of a decision theoretic
criterion for trading space for response time.

Heckerman, Breese, and Horvitz {26] investigate a simple form of tradeoff
that involves improving response timne by compiling” decision models. In
their model, the utility of a state depends on whether or not a particular
hypothesis H is true and whether or not an action D is taken. We will
asswme that, if H is true, the action D should be taken, and otherwise the
activn ~D is appropriate. We can define a threshold probability of H, call
it p*, ootk that the agent is indifferent about acting one way or the other:

p'utl.D) +(1=pY(=~H.D)=p"U(H,~D)+ (1 =p")U(-~H.-D).

Tle agent is not able to observe H directly, and, hence, must infer whether
or not. H is true on the basis of the ohserved avidence. Ey. F,,..., E,. Thns
the agent should perform the action D if and only if

Pr(H|E\.Ey,....En) > p°.

311

The resulting decision mode' (depicted graphically in Figure 8.12) is rep-
resented as an influencc dingra.n that captures the causal and informational
dlependencies between chance variables (indicated as circles) and hetween
chance variahles and decision variables (indicated as hoxes). and the value
of states of the world corresponding to particular instantiations of the chance
and decision variables (indicated as diamonds).

Heckerman. Breese. and Horvitz reformulate the decision problem in
terms of log-likelilicod ratios, and. by making certain independence assump-
tions. they reduce the decision problem to computing

n
IV = Z w;
=1

where the w; are the weights accorded to the E,. The agent should perform
the action D if and ouly if W > W= where I * is the log-likelihood equivalent
of p*. We will refer to the strategy of computing the weights at run time as
the compute strategy.

As an alternative to computing the sum of the weights of evidence at
run time, the agent might consider all possible combinations of evidence and
compile a table indicating whether or not to act for each possible combina-
tion. If memory is inexpensive and response time critical. then this might
be an attractive alternative. In general. however. it will be prohibitively
expensive to compile a tahle for all possible cotubinations of the evidence.
aud. hence, if the agent wants to speed its respouse time by compiling a
table. it will have to limit its atteution to a subset of the evidence. Suppose
that the agent chooses m pieces of evidence,

{E«:pE ~---9Ecm} Q {Elﬂ'EQQ"‘!-EH}Q

to use in compiling a table of responses. For each of the 2™ possible combi-
nations of the m variables. we compute the sum.

m

Wy, = Z we,,
=1

al compile time, and store 1) in the table il 1V, > 1" aud -~/ otherwise.
At run time, the agent simply uses the evidence as an index to lookup the
appropriate entry in the table. We will refer to a strategy of compiling a
table for m pieces of evidence as a compile strategy.

Note that the advantage of the compute strategy is that it takes all of
the evidence into account: the disadvantage is that there mayv he some delay

312

)

we

Figure R.13: The probability that the total evidential weight will exceed
the threshold is determined by snmining the area under the curve for the
distribution of 1" given H and above the threshold weight 117, (after [26]).

hetween the time that the evidence is ohserved and the time that the agent
responds to the evidence. The compile strategy mayv enable the agent to
respond more quickly, but at the cost of ignoring some of the evidence and
providing storage for a decision table whose size is exponential in the numnber
of pieces of evidence accounted for in the reduced model.

In the following, let EV mpuie indicate the expected value of the agent
using the compute strategy for a singlc instance of the decision problem,
PCH ... and P(':,fpm indicate the cost dne to computing delays in the case
in which H is true and the case in which H is not, and M C,pp... indicate the
one time cost of memory for the compute strategy. Assume similar quantities
for the compile strategy. In order to compare the compute strategy against
different compile strategies (i.c.. compilat »n involving different subsets of
{Ey.E;,.... E,}), Heckerman. et al. introduce formulae for determining the
nct inferential valuc of a given strategy. ' '

N I "I-umpln =

p[EVconpnu - PI'(H)PC”

compute

- Pr(*H)P('q”] - n‘!Ceeu’-u

‘compute.

VIV =
MEV.capsim = PHHIPCH o = Pr(~H)PCTH] = MCompiem

where the VIV, ..~ depends upon the particular choice of evidence. and
p is a factor “that converts the expected value of each policy on a single
iustance to a summary (present) value for a series of problem instances over
the life of the system.™ Given the above, the agent designer should choose

tt"\' ’ 313

the comipute strategy over the compile strate gy if and only if
zNn ;ompnu >N n ;ompilom .

In the analysis presented in [26). PCH . PCfmp,m. and M Ceompme are
linear functions of n. the total number of evidence variables in the comnplete
model. PC';’:,“,". and PC c’fmpu,m are linear functions of m. the total number
of evidence variables in the restricted compilation model. and M mpiem is
a linear function of 2™. The formulae for the expected value of using the
compute and compile strategies for a single instance of the decision problem

are given as follows:

EVcampuu =
Pr(W > WY, D)+ Pe(W < W*|IT)U(H,-D)) Pe(Il) +
(Po(W > W |=IHU(=. D)+ Pe(\W < W |-H)U(-H.~D)) PH-IT)

E";ompile"' =
[Pr(W,, > W*|H)U(H,D)+ Pr(W,,, < W*|H)U(H.-D)|Pr(H)+

(PH(IW,n > W*|~H)U(~H.D) + Pr(W,, < W*|~H)U(=H.-~D)|Pr(~H)

The only trick to using the above to decide whether to use the compnte
or compile strategy is determining the probabilities involving the weights
(e.g., Pr(W > W*|H)). Assuming that n is large (as it should be for us to
take seriously the cost of computing W), then we can compute the first two
moments for the each of the weights given II and combine them to approx-
imate the distribution of W given J{ using the central limit theorem. Using
the resulting approximations for Pr(Wn|H), Pr(Wn,|-~H), Pe(WHH), and
Pe(W|-H), we can determine the values for the terms needed to compute
EV ompate 300d BV, oppue (see Vigure 8.13).

Heckerman, €t al. go on to consider relaxing certain assumptions (specif-
ically, allowing multiple-valued hypothesis. evidence, and decision variables
and introducing alternatives to caching complete tables, in the form of
caching situation/action rules in asymmetrical trees), and methods for con-
sidering what subsets of the set of all evidence variables to consider for
compilation. What they don't consider. and what might be worth pursuing,
are mixed strategies involving some amount of design-time compilation and
some amount of run-time inference.

If the basic methods described by lleckerman. et al. for evaluating the
expected performance of decision models used for time-critical applications

314

3 Toul Vam

8 [8

Figure 8.14: Two influence diagrams indicating (i) a complete decision model
for reasoning about plans. and (ii) a reduced version of the decision model
obtained by absorbing chance nodes in the complete model.

turn out to he practical for realistic decision problems, then we will want
to try out more sophisticated models for reasoning ahout plans and change
over time. J{anazawa and Dean [32] describe a model for reasoning abont
time, causation, and action that can he cast aa an influence diagram. Given
a set P of propositions and a set 7 of time points, we can define a set of
chance variables from P X 7 representing the truth of various propositions
at different points in time. By quantifying the dependencies between these
chance variables, we can specify a model of change over time referred to as
a lemporl Bayes net [14).

The model described in [32] generalizes on this basic model of crhange
over time to include actions so as to provide a decision model for selecting
plams. Figure 8.14.i shows an example of such a model depicted as an influ-
ence diagram. Each row. except those corresponding to decision variables or
value fanctions, indicates a proposition or quantity that changes over time,
and each column indicates a different point in time. Kanazawa and Dean
consider possible tradeoffs involved in improving the performaunce of reason-
ing systems using such a model for decision making. In particular, they
consider trading accuracy for time by employving approximation schemes for

315

evaluating probabilistic models [R. 2%]. They also consider ¢ ading ~ce for
time by eliminating chance variables in the decision modes using a ~ hod
of conditioning called node absorption [42). By eliminating chance variables
at design time. it is possible to dramaticallv improve the tinie required to
evaluate the model. Such improvements occur for both exact and approx-
ilate evaluation techunignes. Figure 8.14.ii shows a version of the model
shown in Figure 8.14.i obtained by repeated use of node absorption.

In general. node absorption can result in an increase in the space re-
quired to store the model: there will be fewer nodes in the resulting graph.
but the space required to store the conditional probabilities quantifving the
dependencies may increase significautly. llowever. given the structure of
temporal Baves nets, the net increase in space is generallv acceptable and
more than offset by the resulting reduction in evaluation time. It would
be interesting to extend the techniques of Heckerman. ¢t al. 1o evaluate at
design time various alternative approximation schemnes and methods of sim-
plifving the decision model. The biggest bharriers to making such extensions
practical will likely be due to the combinatorics of action selection and the
difficulties involved in obtaining an accurate model of the environment in
the first place.

8.6 Directions for Future Research

This chapter provides only a sketch of current work on prohlem solving
methods for time-critical applications. There is a great deal of excellent re-
search that we did not cover. simply because it did not fit into the structure
of the presentation. In particnlar. we did not say anything significant ahout
architectures for real-time control [1, 7], or relate how the search community
is beginning to address real-time issues {24, 33, 44]. Regarding search, Hans-
son and Mayer's work [24] predicts that we will find many of the standard
techniques in heuristic search as emergent properties of mechanisms that
employ Bayesian inference and decision-theoretic control of inference. All of
this work is serving to shape a new field of research.

The next few years will see a marked increase in the effort directed at
time-critical problem solving and resource-limited reasoning. \We need to
extend the current approaches to handle computational models that reflect
the complexity of existing problem-solving systems. For instance. how might
an agent deal with multiple tasks. perhaps deciding to act with regard to
one task while continuing to deliherate ahout others. \We need experience

316

e

with real applications so that the research will be driven by real issues
and not artifacts of our mathematical inodels. We need to reconcile the
goal-oriented. resource-bounded perspective of artificial intelligence with the
idealized. optimizing perspective taken in the decision sciences.

This chapter makes use of Howard's information value theory as a ba-
sis from which to start in analyzing systems with litnited computational
resources. All of the approaches descrihed in this chapter can be seen as ex-
tensions of the basic idea of assessing the value of information sources. The
approaches surveyed here depart fromn information value theory when thev
attempt to account for the cost of inference. including the computational
cost of assessing the value of information sources. It would seem that the
theory of experimental design [19. 35] which is concerned with the problem
of maximizing the information gained [rom performing experiments under
cost constraints might provide a source of additional techniques that could
be applied in controlling inference for time-critical applications.

All of the approaches described in chapter make rather restrictive as-
sumptions in order to avoid the combinatorics involved in dealing with
unlimited decision-making horizons and complicated interactions between
information sources. For practical problems, it is unlikely that we will be
able to entirely relax the one-step horizon and no-competition assumptions
that characterize myopic decision policies. An interesting area for future re-
search involves identifying and dealing with restricted types of interactions
and providing a disciplined approach to extending derision-making horizons.
It would also be usefnl to explore methods of extending the anytime algo-
rithm approaches to handle more situation-specific information.

The research on compiling decision models is just beginning, and one area
that appears particularly intéeresting to investigate involves mixed strategies
for combining design-time compilation and run-time inference. Another area
that was not covered in this survey, but is of considerable interest involves
learning control knowledge in the form of statistics to support decision-
theoretic control of inference. Two of the papers covered in this chapter
(41, 19§ describe interesting techniques that address learning issues.

Afore about learning in general and speedup learning in particular.

The work in time-critical problem solving will have far reaching impli-
cations for the whole research community. Time is, after all. an issue in any
problem solving task. Theoretical resnits concerning agents with limited
computational resources should shed light on a number of basic representa-
tion issues. For instance, the notion of a “plan” as a persistent belief does
not make sense until you take computational considerations into account.

37

’lans enable a system to amortize the cost of deliberation over an iute-.al
of tinte. I time were not an issue. there wonld be no justification in com-
mitting to a plan. What are the tradeofls involved in generating a partial
plan? What are the costs and henefits of compiling a detailed plan to use in
a situation in which there will be very little time for computing appropriate
responses. These are just a few of the questions that can be addressed once
we hegin to account for the time spent in problem solving.

8.7 Further Reading

Meta-reasoning [10. 11. 15. 16. 21. 45].

Speedup learning {34. 36).

Early work in the decision sciences on the costs and benefits of inference
(17. 29. 38].

Examples of myopic decision makiug [3. 12].

318

Bibliography

(1] Agogino. A. M.. Srinivas, S.. and Schneider. K.. Multiple Sensor Expert
System for Diagnostic Reasoning, Monitoring, and Control of Mechan-
ical Systems, Merhanical Systems and Signal Processing, (1988).

[2] Barnett. V.. Comparative Statistical Inference. (John Wiley and Sons.
New York. 1982).

[3] Ben-Basat, M.. Myopic Policies in Sequential Classification. IEEE
Transactions on Computers, 27 (1978) 170-174.

(4 Boddy, Mark and Dean, Thomas, Solving Time-Dependent Planning
Problews, Proceedings IJCAL 11, Detroit. Michigan, 1JCAL 1989, 979
984,

[5] Bodin. L. and Golden, B., Classification in Vehicle Routing and
Scheduling, Networks. 11 (1981) 97-108.

[6] Brachman, Ronald J.. Levesque, Illector J., and Reiter, Raymond,
(Eds.), Proceedings of the" First International Conference on Princi-
ples of Knowledge Representation and Reasoning, (Morgan-Kaufmann,
Los Altos, C'alifornia. 1989).

(7] Breese, John S. and Fehling, Michael R., Decision-Theoretic Control of
Problem Solving: Principles and Architecture, Proceedings of the 1988
Werkshop on Uncertainty in Artificial Intellige~ce. Minneapolis. MN,
1988, 30~37. .

(8] Chavez. R. Martin. Fully Polynomial Randomized .Approrimation
Schemes for thc Bayesian Infererencing Problem. Report KSL-88-72,
Section on Medical Informatics. Stanford University School of Medicine.
1088,

319

(9] Cheruoff. llerman and Moses. Lincoln E.. Elcmentary Decision Theory,
{John Wiley and Sons. New York. 1959).

[t0] Davis. Randall. Teiresias: Applications of Meta-Level Knowledge,
Davis. Randall and Leuat. Douglas 3.. (Eds.). Knowledge-Based Sys-
tems in Artificial Intelligence. (McGraw-Hill International Book Com-
pany. 1982). 227-490.

[L1] de Kleer, Johan, Doyle, Jon, Steele Jr., Guy L., and Sussman. Ger-
ald Jay. AMORD: Explicit Control of Reasoning. Brachinan. Ronald J.
aud Levesque. llector J.. (Eds.), Readings in Rnowledge Representa-
tion. (Morgan-Kaufmann. Los Altos. CA. 1985). chapter 19, 346-355.
Originally published in 1977.

[12] de Kleer. Johan and Williams. Brian (.. Diagnosing Multiple Faults.
Artificial Intelligence. 32(1) (1987) 97-130.

(13] Dean. Thomas and Boddy. Mark. An Analysis of Time-Dependent
Planning. Procecedings AAAI-88. St. Paul. Minnesota. AAAIL 1988, 49-
54.

{14] Dean. Thomas and Kanazawa. Keiji, A Model for Reasoning About Per-
sistence and Causation, Computational Intelligence. 5(3) (1989) 142-
150.

[15] Doyle, Jon. A Model for Deliberation. Action, and Introspection, Tech-
nical Report AI-TR-581, MIT Al Laboratory, 1980.

(16] Doyle. Jon. Reasoning, Representation, and Rational Sell-Government.
Ras. Zbigniew W.. (Ed.). Methodologies for Intelligent Systems. §, New
York. North-Holland, 1989; 367-380. ° '

(17] Edwards. Ward. Dynamic Decision Theory and Probabilistic Informa-
tion Processing, Human Factors. 4 (1962) 59-73.

(18] Etzioni. Oren. Tractable Decision- Analytic Control. In Brachman et al.
(0}, 114-125.

(19] Fedorov. V.. Theary of Optimal Erperimental Design. (Academic Press.
New York. 1972).

[20) Garey. Michael R. and Johnson. David S.. Computing and Intractibil-
ity: A Guide to the Theory of NP-Completeness, (W. H. Freeman and
Company, New York, 1979).

320

(21] Geneseretii. Michael R.. An Overview of Metalevel Architecture. Pro-
ceedings AAAL-85. Washington. D.C.. AAAL 1983, 119-123.

(22] Good. I. J.. A Five Year Plan for Automatic Chess. Machine Intelli-
gence. 4 (1962) 59-73.

(23] Graham. R. L.. Lawler. E. L.. Lenstra. J. K.. and Rinnooy Kan. A.
II. G.. Optimization and Approximation in Deteriministic Sequencing
and Scheduling: A Survey, Proceedings Discrete Optimization. Vancou-
ver. 1977.

[24] Hansson. Othar and Mayer. Andrew. The Optimality of Satisficing So-
lutions. Proceedings of the 1938 Woarkshop on Uncertainty in Artificial
Intelligence. Minneapolis. \N. 1988 148-157.

(25] Haves-Roth. Barbara. Washington. Richard. Hewett. Rattikorn.
Hewett. Michael. and Seiver. Adam. Intelligent Monitoring and Cou-
trol. Proceedings IJC'Al 1. Detruit. Michigan. 1JCAIL 1989, 243-249.

(26] Heckerman, David E., Breese. John S.. and Horvitz, Eric J., The (‘om-
pilation of Decision Models. /W89, Windsor, Ontario. 1989, 162-173.

{27] Horvitz. Eric J., Reasoning About Beliefs and Actions Under Compu-
tational Resource Constraints. Proceedings of the 1987 Workshop on
Uncertainty in Artificial Intelligence. Seattle. Washington. 1987,

(28] Horvitz. Eric J., Suermondt. H. Jacques, and Cooper. Gregory F.,
Bounded Conditioning: Flezible Inference for Decisions Under Scarce
Resaurces, Technical Report KSL-89-42, Stanford Knowledge Systems
Laboratory, 1989.

(29] Howard. Ronald A.. Information Value Theory, IEEE Transactions on
Systems Science and Cybernetics. 2(1) (1966) 22-26.

(30} Hpaera. O. l. and Kim. C.. E.. Fast Approximation Algorithws for the
Kaapeack and Sum of the Subset Problems, Journal of the 4C)\, 22
(1973) 463—4G8.

(3t] Kaelbling. Leslie Pack. Goals as Parallel Program Specifications. Pro-
ceedings AAAL-88. St. Paul. Minnesota, AAAL 1988, 60-65.

(32] Kanazawa. Keiji and Dean. Thowmas. A Model fur Projection and Ac-
tion. Proceedings LJCAI 11. Detroit. Michigan. IJCAIL 1989. 985-990.

321

[33] Korf. Richard. Real-Time Heuristic Search: New Results. Proccedings
AAAL88. St. Paul. Minnesota. AAAL 198R. 139-144.

(34] Laird. J.L.. Newell. A.. and Rosenbloom. P. S., SOAR: An Architecture
for General Intelligence. Artificial Intelligence. 33 (1987) 1-64.

(35] Mendenhall. \V.. Introduction to Linear Models and the Design and
Analysis of Experiments. (Wadsworth. Belmont, ('alifornia. 1968).

[36] Minton. S.. Carbonell. J. G.. Knoblock. C. A.. Kuokka. D. R.. Etzioni.
0.. and Gil. Y.. Explanation-Based Learning: A Problem Solving Per-
spective. .1rtificial Intelligenec. 40 (19%9) 63-118.

(37] Pearl. Judea. Probubilistic Reuscning in Intelligent Systems: Net-
works of Plausible Inference. (Morgxu-Kaufmann. Los Altos, Califor-
nia. 1988).

[3%) Raiffa. lloward and Schlaifer. R.. Applied Statistical Decision Theory,
(llarvard University I’ress. 1961).

[39] Rosenschein. Stan. Synthesizing Infrrmation-Tracking Antomata from
Environment Descriptions. In Brachman ct al. [6], 386-393.

{40] Russell, Stuart J. and Wefald, Eric H., Oun Optimal Game-Tree Search
using Rational Meta-Reasoning, Proceedings IJCAI 11. Detroit, Michi-
gan. [JCAIL 1989, 334-340.

(41] Russell, Stuart J. and Wefald. Eric !l., Principles of Metareasoning, In
Brachman et al. [6].

[42] Shachter. Ross b.. Evaluating Influence Diagrams. Operations Re-
scarch. 34(6) (19%86) 871-%82.

(3] Simon, Herbert A. and Kadane. Joseph B., Optimal Problem-Solving
Search: All-or-None Solutious. Artificial Intelligence. 6 (1975) 235-247.

[44) Smith. David E.. A Derision-Theoretic Approach to the Control of Plan-
ning Search. Report No. LOGIC-87-11. Stanford Logic Group. 1988.

(45] Wevhrauch. R. W.. Prolegomena to a Theory of Mechanized Formal
Reasoning. .1rtificial Intclligenec. 13 (1980) 133-170.

322

Chapter 9

Learning in Planning and
Control

In the problems considered in previous chapters. we are given a model of the
physical process we are trving to control and a specific té/goal to achieve or
performance index to maximize. The model provided may not be the most
accurate model possible, but once given there is no attempt made to improve
upon it. In order to choose appropriate actions to take, the controller has
to predict the consequences of its actions as those cousequences relate to
the goal or performance index provided in the problem specification. In this
chapter, we consider problems in which the system can use its experience.
the perceived record of its interaction with the environment. to improve
upon its performance by improving its ability to predict the consequences
of its actions. _ : . : ~

The concept of learning, as it is used in everyday speech. is difficult
define precisely. Intuitively, learning has something to do with changing
hehavior in response to experience. However, if we were to equate learning
with changing behavior in response Lo experience, we would be obliged (o
say that using sensor data to determine what action to take next was a form
of leagpfiig, Rather than debate what is and what is not learning. we simply
coopt the word for our own purposes and equate it with certain forms of
functieh epprozimation.

In the simplest form of function approximation for control. we assume
that some aspect of the environment can be modeled by a particular func-
tion. We generally assume that this function does not change over timne. or.

°©1990 Thomnas Dean. All rights reserved.

322

il it does chaunge, it changes very slowlv. The control svsten is given exam-
ples in the {orm of inputs to the function and their corresponding outputs.
From these exaiwples. tle systew is supposed to find an approximation to
the function of interest that agrees on the examples seen so far and gener-
alizes to those that it has not seen as vet. This tvpe of learning is called
supervised learning since the control system is told exactly what is expected
for each input provided during learning.

We talk about approximations instead of exact functious for a number
of reasons. By specilving in advance a parameterized [amilv of [unctions to
represent the function of interest. we can often simplify the search involved
in finding a candidate function. The parameterized family of functions also
allows us to limit the amount of storage used to represent the function of
interest. One drawback to the use of a restricted familv oi functions is that
the function of interest mayv not belong to the specified family and so we
must clioose the function that best approximates the function of interest.
A second reascn for using approximations is that the control svstem has to
continually respond to its environment. and. at any given point in tie. it
will want to use whatever information it has so far to guide its choice of
action.

What constitutes a good approximation will depend on any number
of factors relating to the performance of the controller. For instance. the
amount of storage required to represent the function, the amount of time
required to evaluate the function for a given input. and how the results of
evaluating the function impact on the ability of the controller to achieve its
goal or maximize its performance index are all [actors that have to be taken
into account in evaluating a given approximation.

In previous chapters. we represented control problems and their solu-
tions using a vafiety of functious. For instance, the ‘evolution of the state
of a dvnamical system was represented as a function from states and inputs
to states. and a performance index was represented as a function (rom se-
quences of states and inputs to the real numbers. A typical control scheme
might involve enumerating a set of possible courses of action. predicting
their consequences in terms of the state trajectories corresponding to the
predicted evolution of the system state. and then comparing the various
courses of action by applying a value function to the corresponding state
trajectories. This is roughly the approach taken in Chapter 6 with respect
to stochastic dynamic programming and in Chapter 7 on using Bavesian
decision theory for planning.

In this chapter. we cousider problews similar to thuse investigated in

323

Clapters 6 and 7. In particnlar. we model the dyvnamical system as a
stochastic process. and we assune a separable value function in which the
total value of a state trajectory is the (temporally discounted) sum of the
value (reward) at each state. The big difference between the problems of
this chapter and those of the earlier chapters is that the controller will not
be given the state-transition probabilities for the dynamical system nor will
it be given the immediate reward function.

There are two basic approaches to building a controller for problems
in which the dynamics and rewards are not initially specified. In the first
approach. the controller attempts to learn the dynamics and rewards. and
then constructs an optimal policy for the resulting model as in Chapters 6
and 7. We call this approach the czplicii-morlcl approach. In the sccond
approach. the controller attcmipts to lcarn an optimal policy by constructing
an evaluation function to usc in sclecting the best action to take when in
a given state. The controller constructs this evaluation function withont
recourse to an explicit modcl of the system dynamics. and so. while the
system cannot predict what the state resulting from a given action will be,
it can determine whether that resulting state is better or worse than the
state resulting from any other action. We call the second approach the
direct approach.

In the explicit-model approach. the control system has to learn two func-
tions. First, it has to learn the dynamics. a function from states and actions
to distributions over states. Second. the system has to learn a function from
states and actions to the real nuinhers. From these two functions. the system
constructs a third function, a policy or control law. from states to actions.

Of course, it is not as simple as. learn the dynamics and rewards. and
then construct a policy and follow it ‘ever after. The control system has
to continue to operate while it is learning the dynamics and rewards. and
this introduces some complications reminiscent of the interaction between
observation and control in systems for which the separation property does
not hold. The problem is that the controller has to visit all of the states
and try out all of its options in every state sufficiently often to construct an
accurate statistical model. This means that the controller has to svstemati-
cally explore its environment and experiment with various policies in order
to ensure that it will construct an optimal policy.

In the direct approach. the svstem also learns two functions. First. it
learns a function from states to the real numbers. This function is essentially
the value function for a fixed policy introduced in Chapter 6. but here we
attempt to learn this function without the use of an explicit dvnamical

324

model. Second, the svstem learns a function from states and actions to the
real numbers that is used for selecting what action to take next. Here again
the problem of exploration and experimentation comes np. The calculation
of the value function assumes a fixed policy, but the controller has to deviate
from the fixed policy in order to explore its environment in sufficient detail
to find the optimal policy.

In both the explicit model and direct approaches, the ultimate objective
is to learn an optimal policy, a function {row states to actions that waximizes
expected cumulative discounted reward. The system does not, however,
learn by being given examples of states and the optimal actions to take
in those states. Rather, the system performs actions in states and is given
feedback in the form of rewards. This (vpe of learning is called reinforcement
learning.

Reinforcement learning is complicated by the fact that the reinforcement
in the form of rewards is often intermittent and delayed. The controller
may perform a long sequence of actions before receiving any reward. This
makes it difficult to attribute credit or blame to actions when a reward
finally is received. In chess or checkers, reinforceinent occurs in the form
of lost pieces or lost games, and the reason for losing a piece or a game is
seldom completely due to the last action taken hefore the loss. The problem
of attributing credit or blame in such circumstances is called the credit-
assignment problem, and any solution to the problems addressed in this
chapter will require a solution to the credit-assignment problen:.

The rest of this chapter is organized as follows. First. we consider some
basic techniques for learning functions. We then return to the problem of
learning an optimal policy, concentrating on the direct approach described
above. In looking at the problem of learning an optimal policy, a number
ol computational issues hecome critical in cousulenng problemas with large
input spaces. We consider approaches that address the problem of coping
with large input spaces. We then take another look at learning optimal
policies in terws of learning rules. Finally. we consider soie issues concerned
with the ability of a learning system to perceive the true state of the world.

9.1 Function Approximation

We characterize a function-learning problem in terms of

e a domain set .Y,

e arange set 1. and
e a set of candidate functions F = {f: X — V'}.

In the cases we are interested in. the domain is olten the state or output
space of a dvnamic syvstem. and the rauge is often the input space of a
dvnamic svstem or the real numbers in the case of learning a value function.

In most cases. the set of candidate functions can characterized by a finite =
set of parameters.

For instance. in the case in which X =} = R. the set.

{a+cﬂ+cﬂhnaﬁmhcpaxheny

represents the set of all polynomiials of degree 3 or less. and is characterized
by four real-valued parameters.

The size of the parameter set is often a good indication of the storage
required for a given function learning problem. In some cases. the storage
required for a problem is equal to the size of the domain set. [or instance,
suppose that the domain set is a finite subset of the integers, X C Z, and
the range is the real numbers. Consider the set of candidate functions,

{ZGHUMGR}

i€X

where Z; is the characteristic or indicator function for the singleton set
consisting of just i and defined by

1 ifz=i
””={0iu¢i‘

In this case. we have one real-valued parameter for each element of .X'.

It may be difficult. impossible or even unnecessary to characterize the set
of candidate functions using a finite set of parameters. It mnav be difficult or
impessible if the function varies erratically or randomly over some portion
of itd'@emain. It muay unnecessary if all we require is an approximation of
the fmetion. For the problems we are interested in. a good approximation
will suffice for acceptable control. For instance. in learning a value function
for control. all the controller cares about js whether performing one action
is better than performing another: being able to compute an exact value or
even a value to 10 significant digits is not likelv to improve the performance
of the controller.

326

Let X be any set. {\,|] < i < n} partition! X.and Y = R. Consider
the set of candidate functions.

{ CL(x)|C; € R.} .

=1

where. in this case. Z; is the indicator fuunction for the set X,

1 ifrexX
I'“”{ 0 ifré X

In this case. we have partitioned the domain into a finite set of regions and
assigned a single real-valued parameter to each region. This allows us to
represent exactly a class of piecewise-constant functions with n pieces where
the pieces correspond to the regions of the partition. We can approximately
represent a much larger class of functions.

You can probably think of several, more general methods of character-
izing classes of candidate functions. For instance. the set of regions need
not define a partition; the regions might intersect or the set might not cover
the entire domain. In addition. the set of regions need not remain static
thoughout the learning process; their boundaries might be characterized by
additional parameters.

The regions referred to above are often called receptive fields in the lit-
erature on artificial neural networks. In some cases. each receptive field is
characterized by two parameters. a point in the domain set, R*. and a diam-
cter, together describing an n-dimensional spherical region of the domain.
Each receptive field has associated with it a small amnount of storage used to
represent some aspect of the behavior of the function in the. region covered
by the field. These fields can be moved about to obtain a better approxi-
mation of the function. Large fields can be used to represent the behavior
of the function in regions where not much is going on. Several small fields
can be used to represent the behavior of the function in regions where a lot
is going on.

In addition to allowing the regions to vary, the hehavior of the function in
a given region can he characterised by any finitely paraimeterizable function.
The variety of learning problems is considerable. and it is not our purpose
here to survey those problems in any detail. In the following. we consider

et {X.} = {X).X5...... \n}. We say that {.\',) partitions .\ just in case. X\, C X
for 1 <i<m |Jo, X=X, and X, "X, =@ for all i and j such that s # ;.

327

a verv restricted sort of function learning in order illustrate some hasic
principles and provide some machinery that will be of use in subsequent
sections.

In the following. we assume that the range set is the real nubers. and
consider only very simple sets of candidate functions of the form.

F= {Z wioi(r)|wi.oi(7) € R} ’

where 0, : X — R is an arbitrary function. and we use the notation. w;, for
the parameters to indicate that they are variable weights.

The set of functions, {¢;}. are often called features in the literature.
Such features might model measurements taken by differeut sensors that
detect whether or not a specific property holds of the input. r. In general,
each function. @,, processes the input in some manner and issues a real
number which is weighted by the parameter. w;, and combined with the
other features. The functions so represented are linear combinations of the
features though the features themselves need not be linear functions.

We can rewrite

{E ll’j¢i(r)|"'i1 d’i(‘r) € R})
=1

in vector notation as

{wo(r)lw.d(z) € R},

where the first terin, called the parqmeter vector. is defined by
. w.= (w1, wa,.... wy), '
the second term. called the feature vector, is defined by
d(z) = (d1lx). 0g(x),. ... da(T)),

and the implied operator separating the two vectors is the inner product.

To indicate a member of F. it is enough to specifv a vector w € R".
Learning generally proceeds by incrementally adjusting the weights to spec-
ifv an updated parameter vector. .\t any given point. the learning svstemn
will have seeu a set of input/output pairs.

{(ricgri)|l € i < k).

328

where y(x) denotes the output of the function we are trving to learn for the
input. r. One standard criterion for selecting weights is to determine the
parameter vector that minimizes the mean of the squared error. That is. we
wish to find w € R™ minimizing the smmn.

L.
)
T Z ERL
=1
where the ermor term. €(z). is defined as

ery=ylr) - wo(r).

If we are willing to keep around the entire sequence of input/ouput pairs.
we could compute the parameter vector minimizing the mean of the squared
error directly. The mean of the squared error is a convex function of the
weights and hence it has a unique minimum. As a consequence. we can
cowpute the paramcter vector minimizing the sum of the squared error hy
simply setting the gradient,

k 5 k

v %Ze(m’] = ~5 Y dzieixi).
i=1 i=1

to zero and solving the resulting svstem of equations for the weights. Al-

te.natively. we can use gradient-descent search methods to find the weights.

Recall that gradient-descent search proceeds by making small changes to the

parameter vector in the direction indicated by the negative gradient.

It is generally assumed. however. that either the system cannot afford
the storage to keep around all of the training data. or that it would be useless
to keep around all of the training data given that the function we are trving
to learn changes gradually over time. In keeping with this assumption. we
are interested in methods that proceed by inaking small changes to the
p«-ameter vector on the basis of the last examnple.

Let w, and z, denote. respectively. 1ie parameter vector and the example
at *ime t. In a nanner similar to that cmploved in gradient descent. we make
ad .ustments to the parameter vector on the basis of the last example. using
th~ following update rule.

Wep1 = Wy + Je (1)),
where the error term in this case is defined as

€lr) = ylr) - wed(z).

329

and the scalar, 1. is the learning rate or gain of the update rule. I'his update
rule is called the least mean square (LAIS) rule and is due 1o Widrow and
Hoff [21]. This rule is also closely related to the perceptron learning rule of
Rosenblatt developed for pattern classification {15].

If there is storage available. we can improve the estimate of the gradient
by taking into acconnt more than just the last example. Generalizing on the
LMS rule. we have the rule.

4

1
w,+,=w,+13-l;: Z ez (i),

ISkl

accounting for the last k examples.

In order for the above learning method to converge to a fixed parameter
vector closely approximating the function of interest. the sequence of train-
ing examples has to represent a sufficiently varied subset of the set of all
such examples. Exactly what constitntes a sufficiently varied set of exam-
ples will depend upon the class of functions being learned. but. intuitively,
vou want examples drawn from across the domain with more examples in
regions where the behavior of the function is more complex.

Experiment 1 To illustrate the performance of the functign-learning ap-
proach described above, suppose that the target function is the cubic poly-
nomial,

y(z)=1.20 - 0.2x + 3.1z% — 0.923.

and the examples are drawn (pseudo) randomly from the set.
{(z.y(z)] -1<2<1).

Figure 9.1.i shows the performance of the LMS update rule with k = s (i.e..
use all of the examnples encountered so far) and 3 = 0.1.2 The approximation
after 400 exawmples is

wo(z) = 1.311442 - 0.290810z + 2.900718z? — 0.763296z°.

Figure 9.1.ii £ = 1 shows the performance of the LMS update rule with
k = 1 (i.e.. use only the last example encountered) and .3 = 0.1. The
approximation after 400 examples is

wo(z) = 1.202668 — 0.238687r + 2.966245.r% — 0.81539x>.

?Hideki Isozaki supplied the data for the graphs shown in Figure 9.1.

330

.
0.19 ..
.
L
(RT3 14
L]
<
reed
0.049
s.00d
100 13 00
i.
.28 *
'Y L]
L
.2 . *
. L]
LR :" ‘ . .
‘. . . ¢
\“. e .
X ‘:“
‘o .: . :
L X * s
.09 ‘:"‘ S . R |
Qe
Vil L
o

Figure 9.1: Performance of the generalized LMS rule

331

Now we have techniques that will allow us to select a good approximation
from a set of candidate functions given a set of training examples. We can
wtilize any a priori knowledge we have of the function of interest to bias
the learning process by selecting appropriate features to constrain the set of
candidate functions. In selecting a set of features Lo represent the problem.
one can make the learning problem trivial (€.g.. you select the function of
interest as one of the features) or impossible (€.g., the function of interest
cannot be closely approximated by a linear combination of the features).

The performance of a function approximation technique is measured in
terms of the amount of storage required. the time.required for each update.
and the expected accurracy of the approximation (e.g., the mean squared
error) as a function of the number of training examples seen so far. There
are a host of other function approximation techniques. but their perfor-
mance invariably depends nupon starting with a good representation. The
linear method utilizing the LMS rule descrihed above is probably the best
understood method, and, despite its limitations (¢.¢., it can only be used
to represent functions that can he described as a linear combination of the
features), it is often the method of choice in building practical learning sys-
tems.

The learning methods discussed in this section can also he viewed as
special-purpose memories. In the case of there being one parameter per
member of the domain set, learning corresponds to just filling in the entries
in a large table. In sone cases. the set of features allow the learning system
to generalize from the set of examples seen so far to those that it has vet
to see. It ia this notion of generalization. that people often closely associate
with learning. Once again, the ability of a system to generahze depemls
critically 'upon' the representation chosen. :

9.2 Policy and Value Learning

As indicated in the introduction to this chapter. we intend to narrow the
scopgaf our discussiou to focus on learniug an optimal policy for a stochastic
seq decision wnaking task. We are interested in any route to the goal
of learning an optiwmal policy, but the discussion of Chapter 6 suggests one
relatively straightforward approach. The approach is (o learn the transi-
tion probabilities and the reward function and then employ Howard’s policy
iteration technique to compute the optimal policy.

Let X' be the state space of the dynamical system. and [" be the input

332

space. Assuming *uat it is possible to directly observe the state of the
dyvnamical svstem, the controller would start by executing a random walk
(1.e.. it would select its actions according to a uniform distribution). Let
6: X x U x X — Z be the trunsition-statistics function. and g : X x U x
X — R x Z be the reward-statistics function. lnitially, let &(e, «.2’) = 0.
and p(r.u.2’) = (0.0) for all r.+' € X and v € /. Every time that the
controller perforts an action. u. in state. r. resulting in next state. a’. the
controller would update the traunsition-statistics function by incrementing
é(x.u,2') by one. Similarly, every time the controller receives a reward,
r, in state. r’, having started in state. r, and performed action. u, the
controller would update the reward-statistics [unction so that p(x,u.x’) =
(24 r.n + 1), where prior to the update p(r,u,x’) = (s,n). Alter a period
of time determined by how accurate a model is required. we would compute
estiates of the transition probabilities.

fz.u.z')
Zx"ex 6(‘tw u, I”) ’

Pr(z(t+ 1) =2'|z(t) = . u(t) = u) =

and rewards,
s
R(z.u.2') = - where y(z,1.2’) = (s.n),

and use policy iteration to compute the optimal policy given the estimates
for the rewards and transition probabilities.

In theory, the approach outlined above is perfectly reasonable. There
are, however, disadvautages. First, it may not be desirable for a robot to
perform a raudom walk during the training period; the robot might become
a nuisance or damage itself. Second. the transition probabilities may change

gradually over time: a robot with a fixed training period may construct an

initially optimal policy, but that policy mnight become significantly subopti-
wal as the transition probabilities change over time. Third, policy iteration
is computationally rather expensive. We cousider each of these three disad-
vantages in turn.

With regard to performing a random walk during training, the robot
has to explore the space of possible state transitions thoroughly enough to
obtaim reliable statistics. This does uot wean. however. that the robut has
to perform actions that are obviously dangerous or socially incorrect. since
those actions will, presumably. never be a part of an optimal policy anyway.
One obvious method for avoiding dangerous or antisocial hehavior is to
build the learning system on top of a base controller that only exhibits safe.

3133

]

socially correct hehavior. In this case. the outputs of the learning syvstem
are the inputs to the base controller. This basic idea of bunilding a learning
system on top of an existing controller applies to any approach to learuing.

With regard to the transition probabilities changing over time. there
is no need to have a fixed training period in the scheme outlined above.
The countroller could continually gather statistics on the rewards and tran-
sition probabilities and periodically update its policy. The only problem is
that the controller may not obtain adequate statistics if it alwavs follows
what it believes to he the optimal policy. Hence. in addition to periodi-
callv updating its policy, the controller will have to periodically engage in
some exploratory behavior in order to assure that its estimated rewards and
transition probabilities are accurate.

The problem in dealing with computational costs is a bit more trou-
bling. Policy iteration is polynomial in the sizes of the state and input
spaces. Value determination. which is perforined once in each iteration of
the policy iteration procedure. requires solving a svstem of |.Y'| simultaneous
linear equations. 1f most of the :ransition probabilities are not zero. simply
representing this system of equations takes O(|.X'|?) space. but keep in mind
that. in the case of mostly nonzero trausition probabilities. it will require
O(lX x U x X|) space just to store the transition probabilities.

This problem arising from the sizes of the state and input spaces is often
called the curse of dimensionality. Generally, the state and input spaces can
be viewed as a cross product of subspaces. For example, we might represent
the state space. .X. as an n-dimensional product space.

where {X;..\'2,.....X,} are the component subspaces. Each subspace. X},
might represent a different property of the environment (e.g.. the robot’s
current position. orientation, or amount of remaining fuel). Some of the
component subspaces might represent a finite discretization of an infinite
space.

Individually. the sizes of the subspaces might he modest. but the prospect
of quantifying over a product space of size.

n
Y] = H LY.
=1
can be dauvuting from a computational perspective. This can be especially
frustrating if large portions of that product space are unreachable (¢.g.. if the

334

robot’s battery is completely dis harged it cannot have a positive velocity).
or uninteresting (¢.g.. the robot might he able to detect light. but. for most
tasks. the intensity of light las no influence on the robot’s choice of action
as it navigates using sonar).

The curse of dimensionality raises a deep issue that will not go away: it
is not problem that can be solved. In the following section. we return to this
issue. but for the time being we ignore it and consider some approaches that
circumvent some of the problems that arise regarding computing optimal
policies.

Suppose. for the sake of argument. that the controller has a time- and
storage-efficient procedure that, given a state and an action, returns a
{next) state according to the distributions specified by the dynamical sys-
tem. Given this prccedure. which we refer to as the transition oracle, and
a reward function. we can now compute an optimal policy hy using the
following simple stochastic approximation (Monte Carlo) routine for value
determination in the standard policy iteration algorithm.

Here is the stochastic value determination routine. For each z € X,
compute V(z) as follows. Use the transition oracle to determine m state
transition histories of length k&,

Th s Uy - T 2. U1 20000 U ket Tk
T2 U21+T22,U2,20 -3 WD k- T2k

TmsUm 1+ Tm,2: Um 2+« - s Um k=1+Ton k

where r;; = z for 1 < j < m, the actions are determined by the current
policy. 4 .
MTja i) = Tjip1,
and the state transitione are obtained from the transition oracle. We obtain
the approximate value of the state. z. given the policy. 7. as
1 &1 &
V(iz)= P Z T Z A'R(xj;, UjiZjisr)

TS Gy

This approximation converges to the true value in the limit as m and & tend
to infinity. If in addition to the transition oracle. we are given a time- and
storage-efficient means of computing rewards. a reward oracle. then we can
compute the optimal policy in a very space efficient manner by some careful
programming.

335

Of course. the point of this oracle business is thalt we do indeed have
such oracles. at least in a wanner of speaking. The world is our oracle: the
rewards and state transitions that it visits upon us are exactly the state
transitions and rewards of the physical process that we attempt to capture
in our dvnamical models.

In the remainder of this section. we cousider methods for learning opti-
mal policies that rely upon performing experiments in the real world rather
than upon explicitly modeling the dvnamics and rewards. These methods
emphasize storage efliciency. and. in soine cases. were originally conceived
of as wodels of learning in biological organisms. In light of the issues that
arise with regard to high-dimensional state and input spaces. this focus
on storage-efficient methods is likelv to have important engineering couse-
quences as well.

In the following approach. we assume that the controller has adequate
storage for a value function. V' : X' — R. In addition. we assume that the
controller has storage for a function to be used in computing the policy.
This might just be a policy [unction, y: X — U, or it might be something a
bit more complicated, for instance. a function from states and actions to the
real numbers providing some expectation of cumulative reward. We assume
very little in the way of computation at each state transition. We begin by
considering how to learn the value function for a fixed policy. starting with
a very simple case.

Consider a finite-state. deterministic dynamical system with a fixed pol-
icv. We assume that every state is reachable from every other state. and
proceed as we did in the prcvious section on function approximation. Let
X = {1.2....,n}. and v € R". Since v changes over time. we provide a
temporal index. v, to distinguish between thé values at differént points in’
time. Similarly, let x; and r, denotie. respectively. the state and the reward
at time {. Let V(i) = v{[i], where v,[/] indicates the ith component of the
vector v¢;. We define the vector of features.

O(z) = (01(7).02(7)..... dn(2)).
where

0 ifr#i

Consider the following simple update rule.

é;(r):{l fr=i

Veel = Vet [regr = Velre)]@(xe).

336

In this case. if the svstem is allowed to vun ind finitely. the parameter vector
will converge to a fixed value given by V(x¢) = R(zs41).

To handle sequential decision problems of indefinite duration with dis-
counting rate. A. for rewards, we emplov the following variation on the ahove
rule.

Vesr = Vo4 [P + AV zegq) = Vil 2e)]d(2,).

Here also the parameter vector converges to a fixed value. but. in this case.
the value is identical with that obtained using the value determination rou-
tine of C'hapter 6.

The above equations should look vaguely familiar. They have the same
hasic form as the LMS learning rule introduced in the previous section. In
the discounting case, the error term is just the difference between the current
estimate of the state value. V(z,). and the revised estimnate of this value.
reet + AVi(Ze41). The abore + 'a simplifies to just

Vigr(z) = rgpr + AV 2e41)-

The stochastic case is somewhat more complicated. We assuine a com-
pletelv ergodic Markov process so that every state is visited infinitely often.
In this case, the revised estimate of the value of the state, z, = 7, should be

resr + A D piVeli), fad
=1

where p,, is the transition probability defined for the current policy. Of
course, we do not have the transition prcha.. lities so instead we simply
make use of what we do have. The update rule for the stochastic case is
exactly the same as the rule for the deterministic case with one variation,

Vegr = Ve + A[rep1 + AV(1o41) = V(7)) (7).

we introduce a learning rate. 0 < .J < 1. as in the LMS learning rule. In the
stochastic case, the values do not converge to the values indicated by value
determination. Instead, they fluctnate about the expected values according
to the most recent state transitions. The variance in these fluctnating values
is hounded. and can be made arbitrarily small by an appropriate choire of
3. or reduced asymptoticallv to zero hy choosing an appropriate schedule
for J(e.g.. 3 = 4}).

Note the revised value estimates in the above equations are just a special
case of estimating long-term returns on the basis of some number of observed

337

.

rewards. In general. we can make nse of any number of ohserved rewards
using estimates of the form.

Vi(ey) = reg) + /\I'H.z R o ’\"-er-n—l + /\n\'r+n(-l‘r+nJ-

Estimates with more observations are generally better in that thev provide
more accurate estin:ates and speed learning. but thev also require more
memory and computation.

Experiment 2 Provide an example illustrating the steadv-state perfor-
mance of an estimation routine using the above update rule. Use the mean
of the squared error as an evaluation metric and the robot-courier problem
as a test case.

Now that we have a method for compnting the value function for a given
policy. the next step is to develop a method for improving the current policy.
To that end. we introduce the idea of learning the expected value of actions.
For each state. x. and action. u. we allocate memory, W(zx. u). for storing
an estimate, called an action value, of the expected value of perforining that
action in that state. Initially all the action values are zero. The update rule
uses the value function introduced in the previous paragraphs.

Werr(Ze ug) = Weler,) + afreger + AVe(2e41) = Vil(ze))-

where uy is the action taken at time 7, and all other actions values. Wy (x, uv)
<vrh that either & # x; or u # ue, remain the sawe. The intuition behind
tu. . is as follows.

Recall that V is the estimated value function with respect to a particular
policv. If u, is the action indicated by the current policy in state z,, then the
error. [regy + AVe(Le41) = Vel ¢)], should be zero on average. On the other
hand. if u, is some action other than that recommended by the current
policy, then the error will he greater than, less than, or equal to zero on
average. depending on whetlier or not taking that action and then following
the current policy therealter results in a higher. lower. or identical expected
value compared to that for the recommended action.

Note that. assuming the controller sticks to a fixed policv, the values
specified by W with the exception of those corresponding to the recow-
mendations of the fixed policy will not converge: rather. thev are likely to
increase or decrease without bound.

These values do. however. provide us with useful information in deciding
low to improve the current policy: the relative values tell us what actions to

338

L]

1

chaunge in the current policv in order to define an improved 1 slicy. Consider
the following approach.

1. I'ollowing the current policy and updating onlv the value function,
perform a number of steps so that the values for the current policy are
good approximations of the actual value function.

2. Set Wy(r.u)=0forall x € X and «u € [where t is the current time.

3. Following a random policv. and. updating only the action values. per-
form a number of steps so that the relative action values are in keeping
with the actual expected action values with high probability.

4. Using the relative action values. choose a new policy.
nz)= arg max W(z.u).

and set it to be the current policy.
5. Go to Step 1.

The above method directly mimics the policy iteration routine intro-
duced in Chapter 6 using stochastic methods instead of exact methods for
the value determination and policy improvement steps. One drawback is
that it is likelv to take a very long time to converge to an optimal pol-
icv. As an alternative to this method, researchers have tried approaches
that involve running stochastic value determination and policy improve-
ment continuously. Instead of switching back and forth between a current
estimated best policy and a random policy, these approaches generally em-
plov a stochastic policy that, on average, chooses actions from the current
estimated best policv. but. according to a fixed distribution. occasionally
deviates and experiments with actions other than those recominended by
the current policy. It generally helps if the value function is only updated
if the action selected is the same as the action rccommended by the current
policy.

No one has as yvet proved that these alternative approaches converge to
the onilual policy. though they do appear to converge in practice. However.
there is one learning method that has been shown to converge in the limit.
This method is also interesting because it is a stochastic variant of the
value iteration approach described in C'hapter 6 rather than policy iteration
approach.

339

Recall that value iteration is a technique that uses successive approxi-
mation to compute a value function that converges in the limit 1o the value
function for the optimal policv. The policy at each point in time is deter-
mined by the actions that maximize the current estimate for the optimal
value function. Instead of learning hoth a value function and a set of action
values. the controller learns just the action values. but, in this approach. the
action value' are updated by the following learning rule.

Woplarnu) = Wz u) + adzou)rign + A llljlx“',(.t,“ cu) = Wz

where. in order to guarantee convergence. we have to vary the learning rate.
s, over time according to a schedule satisfving certain requirements.

Note that in order to guarantee that the procedure will find the optimal
policy in the limit. it is enough to to guarantee that W converges to the
optimal value function in the limit. To guarantee that W converges to
the optimal value function in the limit. it is sufficient that. for each pair
consisting of a state. r. and an action. u. the following statements hold.

1. The controller attempts action. u. in state. x, an unbounded number
of times as t — ~c.

2. The learning rate a(r, 1) tends to zero as ¢ — oo.

3. The sum @,(r.) increases without bound @-‘ 0.

Actually. these are very modest requirements. The first statement just re-
quires that the controller not permanently ignore portions of the space of
states and actions. The second and third restrictions are satisfied bv a
learning schedule of the form a,(z.u) = 1. :

Experiment 3 Provide an example illustrating the performance of the two
learning approaches described above. Omnce again. use the mean of the
squared error with respect to the optimal value function as the performance
wetric and the robot-courier problem as the test example.

At this point, we can learn an optimal policy. We have a method that is
gnaranteed to converge in the limit and that appears to work well in practice
for simple problems. The learning methods considered in this section are
generally time- and space-efficient with the exception of the memory reqnired
for storing the requisite functions. Since these functions generallv require
O(|X']) space. it it is worthwhile considering methods to reduce this storage
overhead. The next section is concerned with exactly this issue.

340

9.3 Coping With Large Input Spaces

Let X be the domain of the function we are interested in learning. Suppose
that |.X'| is large; so large that it is impractical to allocate storage for each
r € X in the case of a finite X' or for each region of a reasonable finite
discretization in the case of an infinite .X'. If the function we are trving
learn has complex behavior throughout its domain and that hehavior does
not generalize, then we are in trouble. However, if we are only interested
in the behavior of the function in certain regions of X' (we assume that we
do not know these regions in advance or otherwise we would simply restrict
the domain). or the behavior of the function is only occasionally of sufficient
complexity to warrant significant amounts of storage for its approximation.
then we can. at least in certain circumstances. learn a good approximation
using an amount of storage significantly less than that required by X.

The basic idea is quite simple: we employ hashing techniques to map a
large space into a significantly smaller one. The smaller space is represented
by a finite number of storage elements containing the parameters for the
family of candidate functions. Learning proceeds by adjusting these param-
eters using your favorite learning rule, LMS in the cases that we consider.

The method was originally conceived of as a computational model of
motor learning in the cerebellar cortex. It was discovered by James Albus
(1] and David Marr [8] independently. but it is generally referred to as the
CMAC approach. after the name given to it by Albas, the Cerebellar Model
Articulation Controller [2].

As was mentioned. the basic idea is to map a large space onto a smaller
one using hashing. As with all hashing techniques, there is always some
danger of rollisions, the resuits of mapping different elements of the larger
space oiito the same element of the smaller space. In some cases. this is
a good thing (e.g.. when the value of the function is the same for each
element of the larger space). but. in others. it degrades performance. To
avoid the bad consequences of hashing. CMAC emplovs several mapping
functions each of which maps each point in the domain into a different
storage element as shown in Figure 9.2. The output of CMAC for a given
elemeat of the domain is the average of the values in the storage elements
determined by all of the mapping functions. In the following. we introduce
notation to describe CMAC more precisely.

LM

Input

Figure 9.2: Mapping a large domain onto a smaller one

342

'bl

L)

We begin by defining m partitions of the set .X.

.\-1.1. ."1‘2. .\'1.3. .
X21. Y22, X5,

-\.m.l- -\-m.z- -\-m.3~ e

A simple and effective method of generating the m partitions for \' = R”
is to create an initial partition. and then modifv it to create the m — 1
remaining partitions. Each of remaining partitions is generated by uniformly
displacing the regions of the initial partition by a fixed offset. so that no two
partitionus have the same region boundaries.

We need to define a function mapping X' to the smaller set {1.2.....n}.
To provide the redundancy required to avoid the problemns caused by hashing
collisions. we define m functions, Map; : X — {1,2..... n},1<i<m,one
for each of the m partitions. The ith mapping function is definved,

Map;(z) = ITash(Region,(z)).

where Hash : Z — {1,2....,n} is the hashing function. and Regjon; : X —
Z is defined as
Region,(z) = j such that z € X ;.

In the case of X = RY, if the regions of the partitions are isothetic
rectangles (d-dimensional rectangular regions aligned with the coordinate
axes), then computing the region containing r is simple.

In the simnplest case of learning a scalar-valued function. we introduce a
paramneter vector,

w = (w1, Wy ..., W),

and a feature vector.

&(z) = (A(zx). da(7). ... dn(1)).

where

U if3jit<j<mA Map(r)=i
oilz) = { 0 otherwise ’

The output of CMAC is defined as the average of the contents of the storage
elements determined by the m mapping functions. which is just the quantity.
1 m

m & ' k = Map,(z)

=1

343

or |
—wo(.r).
m

in the case that all m2 mapping functions determine different storage elements
for the input z.
The learning rule for CMAC is just

Wep1 = Wy + J(20)@(T4)

where the error at time t. (). is just the difference hetween the output of
the function we are trying to learn given the training example presented at
time . and the output of CMAC given the same training exanple,

1
€(zs) = yluay) - n—lWr¢(&'¢)-

assuming here that all m mapping functions determine different storage
elements for the input x,.

The intuition behind this rule is fairly straightforward. Each element.
z, of the domain determines m overlapping regions: one from each of the m
partitions. Suppose for the sake of argument that these regions map onto m
distinct storage elements.® These m storage elements will be used to encode
the approximate value of y(z). as well as the approximate values of y for the
nearby neighbors of . Elements of the domain that are very near r will likely
determine the same m regions, and. hence, the same m storage elements.
Elements that are further from z will determine few regions in common with
those of z. and hence will have few storage elements in common.

When updating the approximate value of y for z. we will also disturb the
approximate values of y for the neighbors of z, but, at least statistically. this
disturbance will be in proportion to how near the neighbors are. Very near
neighbors will feel the iipact of the updates most strongly: more distant
neighbors, because they will tend to have fewer storage elements in common
with z, will feel it less strongly. luplicit in this method is the assumption
that the function we are trving to learn is relativelv smooth: if the function
varies too much in a given region. then CMAC may not be able to find a
good approximation. because CMAC has only a limited amount of storage
available to represent the function over the whole domain.

‘If the hashing function is doing its job correctly, the total number of distinct storage
clements determined by the mapping functions for a given input should be a significant
{raction of m.

344

Experiment 4 Applv CMAC to a simple function approximation problem.

The basic idea behind C'MAC can be used in a successive refinement
strategy to achieve a nice tradeofl between the speed and the accuracy of
learning. The strategy is described as follows. Suppose that vou want to
learn a function. call it y;. To do so yvou construct a CMAC system in
which the partitions consist of regions which are rather large. This CMAC
system will find an approximation to y;. call it fy, verv quickly. but the
approximation is likely to he a poor one. given the coarseness of the mapping.
To correct for the inaccuracies of f;. we build another C'MAC system to
learn the function, y; = y; — fi. but this systemn makes use of partitions
consisting of somewhat smaller regious. This second CMAC svstem will
find an approxima‘ion to yz, call it f3, wmore slowly than the first CMAC,
but it will still represent y2 more accurately than f; represented y;, and the
sum of the two functions. f) + f;, will be a better approximation of y; than
fi alone. We can continue in this manner to define a sequence of CMAC
systems each using finer partitions than the one before it in the sequence,
and each providing a correction for the function corresponding to the sum of
functions provided bv the CMAC systems occurring earlier in the sequence.

One way to implement the above strategy is for the learning systewm
to apply each CMAC system in stages, starting with the system using the
coarsest partitious and proceeding to those using finer partitions. Lach
CMAC is run for a fixed number of steps using a learning schedule that
tends to zero. This sequential implementation has the disadvantage that
it cannot adapt if the function of interest chaunges slowly over time. An
alternative implementation is to run all of the CMAC systems in parallel.
using a different fixed learning rate for each CMAC such that the finer
the partition the slower the learning (smaller the fixed rate). This parallel
approach tends to learn somewhat slower than the sequential approach. but
the parallel approach is still quite fast and its ability to adapt to handle
time-varying functions makes it useful in a nuiber of applicatious for which
the staged approach would not he effective.

We refer to the geueral approach of building learning svstems using
several CMACs ewmploying successively finer partitions as multi-resolution
CMAL. It turns out that implementing multi-resolution CMAC is actually
no wore difficult than implementing the version of CMAC described ear-
lier; in some respects it is easier. We describe the basic construction in the
following paragraphs.

Suppose that we wish to build a wulti-resolution CMAC consisting of

345

m CMACs with successively finer partitions. DBecause there are several
CAMACs. we need anlv one partition per CAMAC to achieve the redundancy
necessarv to offset the consequences of hashing collisions. As in the earlier
version of CMAC, we assume m partitions and m mapping functions. In the
case of multi-resolution CMAC'. we require that the partitions are arranged
in a sequence so that the ith partition represents a finer partition than the
i = 1 partition.
For the 1th CMAC. we define the parameter vector.

Wi = (1. W20 ..o Win),
and the feature vector.
@i(z) = (0ia(x). 0ig(z)... .. Oin(x)).
where

otz ={ g air) =)
Each of the m CMACs determines a function,
fi=zwi@,. for1<i<m,
intended as an approximation to some other function,

fizy, for1 <i<m,

where y; is just the function we have set out to learn, y, and the other m -1
functions are defined as follows.

'yi+l=yn'"fi~ for1<i<m-1.
The output of wmulti-resolution CMAC is the approximation.
y=fi+ it + [m
Learning proceeds simultaneonsly, nsing tne rules,
Wits1 = Wig + 0icig(20)@, (7). for 1 <1< m.

where 3; is the learning rate for the /th CM.AC. and the error for the ith
CMAC is defined by.

€)= yilxg) = wi @ (xe) for 1 <i<m.

346

Experiment 5§ Apply multi-resolution CAMAC to a simple function approx-
imation problem and compare it with the version of CMAC described earlier.

CMAC is a simple. fast, and effective technique for approximating func-
tions. There are more powerful techniques that can solve miore difficult
problems. but CMAC is a practical method that should be a part of any
engineers repertoire of techniques. We rank it alongside the Ikalman filter.
proportional derivative control. stochastic dynamic programiuning. and plan-
ning by task reduction as useful component techniques for huilding useful
planning and control systems.

The CMAC methods describec in this section by no means nullify what
was referred to as the curse of dimensionality in Section 9.2. If we have a
three-dimensional domain. but the output of the function of interest is in-
dependent of. say, the third dimension. then ('MAC! still has to allocate the
storage necessary to represent all three dimensions. In addition. in order to
construct a good approximation. (MAC has to sample the three-dimensional
space instead of the smaller and completely adequate two-dimensional sub-
space. An example mentioned earlier illustrates the sort of frustration that
can result from this behavior.

Suppose we want a robot to learn a navigation function. The robot has
four sensors, a compass or bearing sensor. a position sensor for longitude,
a position sensor for latitude, and a light-level sensor. We want the robot
to learn a function from the resulting four-dimensional input space to some
space of actions. Ilaving taken great pains to teach the robot how to uavigate
when the light is at one level, we find out that the robot is not able to
navigate when the light is at any other level. What we would like is simply
to tell the robot to ignore the light level thereby reducing the dimensionality
of the learning problem. ') '

What seemns easy enough to accomplish in the above example is quite
difficult to achieve in general. It is hardly ever the case that one sensor
is entirely irrelevant. In most cases. there will be subspaces of the inpnt
space that can replaced with spaces of reduced dimensionality. Determining
these subspace reductions in dimensionality can he complex. however. lu
huilding useful learning systems. the curse of dimensionality will probably
always plague us. In lieu of general-purpose solutions. it is hoped that
special-parpose techniques will suffice to achieve satisfactory performance
for practical problems.

347

9.4 Rule-Based Learning

In the beginuing of this chapter. we introduced learning in terms of approx-
imating functions. The chapter as a whole focusses primarily on learning
value functions. In this section. we generalize on this idea of learning value
functions to cousider a variety of rule-hased learning problems.

Value functions are used to derive policies. What we are really interested
in learning is optinal policies. All of the techniques that we considered in
Section 9.2 can be thought of as attempting to select an optimal policy from
a parameterized class of policies. In each case. the parameterized class is
represented as a set of rules of the form. if the cnrrent state is r. then perform
action u. where each rule has an associated parameter or rule strength. In
Section 9.2. the rule strengths were just the action values.

This parameterized class of policies is quite simple. Each rule represents
a condition/action pair, in which the condition corresponds to the current
state of the world and the action corresponds to some control action.

In the following, we generalize to allow rules of the form.

A AA A AA,, then CiyAC A AC,.

where the antecedents, {4,}, and the conzequents, {C;}, are ground atomic
formulae in some appropriate representation language. We associate with
each such rule a corresponding weight. We could introduce variables to
represent rules with quantifiers. but we will not do so here ir order to keep
the discussion as simple as possible. Neither will we consider the details
of any particular representation language though there are some iuteresting
issues with regard to the choice of representation language. Instead. we
ewplov a simple database model for our discussion.

We assumne a database consisting of ground atomic formulae. The con-
tents of this database change over time. as determined by the sequence of
rules applied and the information provided by the svstem's sensors. Let
Coutentsit) denote the contents of the database at time ¢.

Foe each rule. r. let Antecedents(r) he the set of antecedents of r.
Consequents(r) its cousequents. and W(r.) its weight or strength at time ¢.
We assume an arbitrary threshold. r € R. used to determine which rules are
applied. A rule, r. is applied at time. f. just in case the following criterion
is satisfied.

Antecedents(r) C Contents(t — 1) A W(r.#)> r.

4R

We will consider some alternative criteria for rule application in just a bit.
A rule is said to be artive at time. t. denoted Active(r.?). just in case it is
applied at t. The set of conclusions available at time 7 is just the union of
the consequents of all the rules active at {.

Conclusions(t} = U C'onsecuents(r).
Active(r.t)

Control actions are initiated using procedural attachment. Procedural at-
tachment refers to the practice of associating procedures with the presence or
absence of tuples in a relational database or formulae in a predicate-calculus
database. lu most procedural attachment schemes, there is a program de-
signed to monitor the contents of the database. When a formula is added
to or deleted from the database. the mouitor program cliecks to see if there
is a procedure associated with the addition or deletion of the formula. and.
if so. runs the appropriate procedure.

Finally. we define the contents of the database at ¢t as the union of the
sensory information and couclusious available at ¢,

Coutents(t) = Sensors(?) U Conclusions(?).

where Sensors(t) is a set of ground atomic formulae summarizing the data
available from the sensors at ¢.

At each point in time, the rule strengths are updated. For each rule. r,
applied at time ¢, the system performs the following steps. comprising what
is generally called the bucket-brigade algorithm [6].

1. For each rule, r', active at time ¢ — 1 such that
Antecedents(r) n (_?ouseqiletit.s(r’v) #0
update the strength of r' using the following rule.
W(r'.t+ 1) = aW(r.).

where a € R is a number between zero and one. similar in its use here
to the learning rate described in earlier sections.

2. Update the strength of r using the rule.
W(r.t4+ 1) =W(r.t) - aW(r.t)+ R(1).

where R(1) is the reward at time /.

349

¢ ! 1 2 3 1 5 I T 8 9
W(RL.0) 100 | 80 | 100 100 30 | 100 100 8 | 101.6 | 1016
W(R1.() 100 | 100 | s0 100 100 | 80 108 108 | &8 120.8

W(RL.t) 100 | 1wu | o 110 110 | 110 172 172 | 172 197.6

Sensorsit) | {4) | {} {1} {4} {J {} {4} {} {} {4}

Contents(t) | {.1} {(BY | {(CY | (.D} | (B} | {C}) {A,D}]| {B} {C} {1.D)
R(?) 0 0 0 a0 1) 0 60) 0 60

Table 9.1: Changes in rule strengths over time

For all the rules not applied at ?. there is no change,
Wir.t+ 1) = W(r.t).

To illnstrate the datahase model and the bucket-brigade algorithm, consider
the following simple example.
Let the set of rules he as follows,

Ri: If A, then B, 100
R2: I B, then ', 100
R2: If ¢, then D, 100,

where the number on the far right indicates the rule strength at ¢+ = 0 in
some arbitrary units. Let a = 0.2. Suppose that whenever D is added to
the database, the system performs an action that is immediately rewarded
at a level of 60. employing the same units used for rule strengths. Table 9.1
shows the evolution of the rule strengths for 10 time steps. If the same
cycle of sensor input and rewards found in Table 9.1 is allowed to continue
indefinitely, the strengths of all three rules will converge to € = 300. If
the rewards are stochastic but average G0. then the rule strengths will never
converge hut will average 300.

Experiment 6 Provide an example showing how the bucket-brigade algo-
rithm might be applied to the problem of learning to fill tanker trucks. given
the low model described in Chapter 5.

The bucket-brigade algorithm is often used for classification and pre-
diction problems. In classification problems. the system is given a set of
features describing its input and asked to assign the input to one of a finite

number of categories. For instance. an assembly-line visual inspection sys-
tem tight classify items on a convevor bell as ready to ship. defective but
repairable. or defective aud not worth repairing. For the iuspection system,
the features might correspond to superficial visual attributes. such as the
alignment of external parts, or the unmber and distribution of flaws on a
painted surface. In general. not all of the features given to the svstem will
be relevant to making the classification.

In prediction problems. the system is given a set of features describing
the state of tlie system al the current time and asked to predict the state of
the svstem or some particular aspect of the state of the svstetn at some future
time. For instance. a system designed to regulate the flow of gas through a
cowmmercial pipeline might need to predict transient leaks that prevent the
cvstem from delivering gas at the appropriate pressures. In this case. the
features might correspond to the current demand for gas. outside tempera-
ture. time of day. and pipeline inlet and outlet pressures. The predictions
made by the system are used to prevent or reduce the effects of transient
leaks by anticipating demaud and regulating pipeline inlet pressure.

The simple thresholding wethod for applying rules descrbed above is
not appropriate for most applications. In the case of classification problems
where many of the rules correspoud to conflicting hypotheses regarding the
class of a particular instance. there may be several rules whose strengths
are greater than the threshold. but it would not make sense to apply more
thau one of them to a given input. A siwmilar case arises in control problems
in which there are two or more rules vying to set the same parameter to
different values. Nor is it generally appropriate only to apply the rule with
the greatest strength: parallel rule invocation is often useful in building
effective rule-based control systems.

In most practical applications, the decision as to what ‘rule or rules to
apply involves criteria in addition to rule strength. In classification prob-
lems. the specificity of the rules’ antecedents is often taken into account.
For iustance. using a specificity criterion. given the database. {.4. B}. and

the two rules.
R1: If AADB. then C. 100

R2: U B. theu D. 100,

only the first rule would bhe applied. since. though hoth rules have their
antecedent conditions satisfied. the first has a more specific antecedent con-
dition than the second.

Most rule application strategies also involve a component of stochastic

351

S

selection. As we saw in regard to learning optimal policies in stochastic
sequential decision problems. the system lias to experiment with a variety
of rules in order to be assured of finding the optimal one. Similarly, for
learning classification and prediction rules, it is necessary to occasionally
try rules that are not doing particular well just in case those rules have not
as vet had sufficient opportunities to demonstrate their utility.

The bucket-brigade algorithm is often used to select a set of promis-
ing rules from a larger set. In rule selection. a set of candidate rules are
applied in a set of experiments. their strengths adjusted using the bucket-
brigade algorithm. aud the subset of rules with rule strengths above a certain
threshold are selected as promising. Rule selection addresses just one issue
in designing effective learning syvstems. There is another issue that we have
overlooked up until now. This issue concerns where the rules come from.

In sequential decision problems. we are given a set of rules of the form,
if the current state is r. then perform u. which can be used to specifv
all possible policies. Even in this cagse, the number of such rules is often
dauntingly large. In some problems, the number of possible rules is infinite
or so large that it is unthinkable to generate and store all of thein at once.

There are many techniques for generating new rnles given an existing
set of rules. Some of them involve methods for generalizing and specializing
antecedents and consequents to form new rules. Other techniques use genetic
operators to construct rules by combining parts of two or more existing rules.
A detailed discussion of such techniques is beyond the scope of this chapter.
Suffice it to say that cffective generation of new rules is an active arca of
learning research with many open problems. In the last section of this
chapter. we provide some references for further reading. _

Generally, a complete learning system observes a two-phase cycle of ac-
tivity. In the first phase. a set of candidate rules is generated using as a
basis whatever rules survived the last selection phase. In the second phase.
the set of candidate rules is subjected to a series of experiments designed
to identify the moet useful rules and eliminate the less effective ones. In
this chapter, we have focussed primarily on the problem of rule selection.
because the corresponding area of research is the hest developed and most
directly relevant to the problems considered in this book.

352

9.5 Learning and Observability

[n this chapter. we focus on the problem of learning an optimal policy for
a stochastic dynamical system with rewards. [n some cases. it may be pos-
sible to divide the problem into component problems. For instance. if the
dvnamical svstem satisfies a separation property. it may make sense to con-
sider two separate learning problems: one concerned with ohservation. learn
liow to determine what state vou are in. and one concerned with control,
learn what action to take given that you know what state vou are in. You
can divide control still further into svstem identification, learn a model of
the svstem dynawmics and rewards. and regulation, learn an optimal control
law given the dvnamics and rewards.

In practice. however. breaking the problem into pieces may not be the
most effective way to proceed. \With regard to observation. vou probably
do not have to know exactly what state vou are in as knowing the proper
equivalence class will suffice for some appropriate equivalence relation. With
regard to control, for the sort of robotics and automation problems that we
are most interested in, observation and countrol are not separable, in which
case the optimal policy for an ideal observer will not be of much use. With
regard Lo identification, as pointed out in earlier sections. it may not be
necessary to predict the evolution of the state in order to determine how to
act: if we know the value function for a given policy, it is possible to improve
that policy without the use of a mode!

In Section 9.2, we considered coudition/action rules of the form. if the
current state is z. then perform action u. However, for the techniques in-
volving learning action values that we discussed. we might just as well have
considered rules of the form. if our perceptions of the current state are y,
then perforin actiont u. This assuwes. of course, that the set of possible
actions includes perceptual actions, otherwise there would he no way for a
robot (o influence its perception of the current state.

As we mentioned earlier, if the dynamical system is separable, we might
try to learn an optiwmal observer and an optimal policy separately. Alterna-
tively, we might proceed as though there was a one-to-one mapping between
the robot’s perceptual states and the states of the world. If this actually was
the case, then we effectively have aun ideal observer since there is no need to
know or make use of the mapping from perceptual states to world states.

If such a one-to-one mapping does not obtain. then there will be states
of the world that the robot cannot distinguish between using its perceptual
apparatus. Perceptual states that map Lo two or more world states are said

to be ambiguons. This ambiguity may not be a problem: there is no need to
distinguish between two states if thev require the same response. llowever.
if the two states require very different responses, then performance could
be adversely affected. There are two problems associated with ambiguity
leading to adverse performance. First. how do you detect it, and. second.
having detected it what can you do about it.

If you know that the dynamical svstem is deterministic. then detecting &
ambiguous perceptual states is rather easy. For a deterministic system.
if the perceptual state is unambiguous. the action values, assuniing a fixed
policy, should converge to fixed values (at least in the limit). However, if the
perceptual state is ambiguous. then the action values will vary between those
for each of the corresponding world states. Detecting ambiguous perceptual
states in a deterministic system can be handled by carefully monitoring the
variance in the action values. Detecting ambiguous perceptual states in a
stochastic system can be managed with more sophisticated statistical tests.

Once you know that a given perceptual state is ambiguous and that the
variance is sufficient to warrant doing somcthing about it, you still have to
decide how to deal with the ambiguity. You may be able to simply perform
appropriate perceptual actions in order to move to an unambiguous percep-
tual state. In general, however. t"is may not be a good idea. For example,
it may be that achieving a goal or maximizing a performance index requires
that the system pass through perceptually ambiguous states. In general,
we recommend simply treating perceptual states as world states, includ-
ing perceptual actions as possible actions, and using one of the stochastic
methods described in Section 9.2. If the dynamical system is deterministic,
then it will behave like a stochastic system if there is perceptual ambiguity,
but this stochastic behavior will not prevent the system from learning an
optimal policy.

Experiment 7 Apply Watkin's stochastic dynamic programming method
to learning a navigation function given uncertainty about the robot's posi-
tion. Assume a Kalman filtering state estimation front end that provides an
estimate of the robot’s location to serve as input to the control svstew.

9.6 Further Reading

For more on the update rule of Widrow and Hoff. the perceptron learning
rulc of Rosenblatt. and discussion of other learning issues consult the text by
Nilsson on learning machines [13] or the first part of the text by Duda and

354

N

Hart or. pattern classification and scene analysis {4]. TFor an introduction
to so: e of the issues in function approximation. the paper by Poggio and
Girosi provides a comparison of a variety of techniques [14].

Our treatment of learning in terms of stochastic decision problems fol-
lows that of Barto, Sutton. and Watkins 3]. For more on solving credit-
assignment problems in sequential decision tasks. consider the paper by
Sutton [17]. The specific method of learning action values considered in
this chapter is due to Watkins [19]. The theory of learning automata is
also relevant to the issues addressed here and the text hy Narendra and
Thathachar is an excellent introduction to this area of research [12]. Sutton
considers some of the issues involved in combining exploration and predic-
tion to speed learning [18]. Whitehead and Ballard {20] discuss some issues
regarding observakility in learning to solve sequential decision tasks.

Albus” CMAC method is described in [2]. A mnlti-resofution CMAC
method is analyzed in [L1], and the variation on this method suitable for
learning time-varving functions is described in [16].

Holland et al describe the hucket-hrigrade algorithm for credit assign-
ment in rule-based systems [6]. For more on the application of rule-based
techniques to problems in planning and control, see Laird et al for a general
architecture for probi>m solving [7]. Minton et al for a perspective that con-
siders certain forms of learning as akin to theorem proving [9], and Mitchell
al for an approach to learning plans by generalizing past experience [10)].
Also see Ilammond for a different perspective on learning plans that de-
viates from the more conventional rule-hased approaches [5]. Much of the
work on learning plans is related to the work on speedup learning discussed
in Chapter 8. Many of the techniques for speedup learning can be char-
acterized in terms of learning to solve problems efficiently by caching the
(generalized) solutions to selectéd problem instances.

Bibliography

(1] Albus. J. S.. A Theory of Cerebellar Functions. Mathematical Biology,
10 (1971) 25-61.

(2] Albus. J. S.. A New Approach to Manipulator Control: The Cerebellar
Model Articulation Countroller (CMAC). Journal of Dynamic Systems.
Measurement. and Control. 97 (1975) 270-277.

(3] Barto, Andrew G., Sutton. R. S., and Watkins, C. J. C. I, Learning
and Sequential Decision Making, Technical Report 89-95. University of
Massachusetts at Ambherst Department of Computer and Information
Science, 1989.

[4] Duda. R. O. and Hart. P. E.. Pattern Classification and Scene Analysis,
(John Wiley and Sons. New York. 1973).

(5] Hammond. Kris. CHIEF: A Model of Case-based Planning. Proceedings
AAAIL-86, Philadelphia. Pennsylvania, AAAIL 1986, 267-271.

[6] Holland. John H_, Holyoak. Keith J.. Nisbett, Richard E.. and Thagard.
Paul R., Induction: Processes of Inference. Learning, and Discovery,
(MIT Press, Cambridge, Massachusetts, 1987).

[7] Laird.J. E., Newell, A.. and Rosenbloom. P. S.. SOAR: An Architecture
for General Intelligence. Artificial Intelligence. 33 (1987) 1-G4.

(8] Masr, David. A Theory of Cerebellar Cortex. Journal of Physiology.
203 (1969) 437-470.

(9] Minton. S.. Carbonell. 1. G.. Knoblock. (". A.. Kuokka. D. R.. Etzioni.
0.. and Gil. Y., Explanation-Based lLearning: A Problem Solving Per-
spective, Artificial Intelligence. 40 (1989) 63-118.

356

[10] Mitchell. T. M . Utgoff. P.. and Banerji. R.. Learning by Experimen-
tation: Formulating and Generalizing Plans from Past Experience,
Michalski. R. S.. Carbonell. J. G.. and Mitchell. T. A.. (Eds.). Ma-
chine Learning: an Artificial Intelligence Approach. | Tioga. 1983).

(11} Moody. John E.. Fast Learning in Multi-Resolution Hierarchies.
Touretsky. David. (Fd.). .\dvances in Neural Information Processing,
(Morgan-Kaulmann, Lus Altos. California. 1989).

[12] Narendra, Kumpati S. and Thathachar. Mandavam A. L.. Learning Au-
tomata: An Introduction. (Prentice-Hall. Englewood Cliffs. New Jersey,
1989).

[13] Nilsson. Nils, Learning Machines, (McGraw-Hill. New York. 1965).

(14] Poggio. Tomaso and Girosi. Federico. 4 Theory of Networks for Ap-
prozimation and Learning. Techuical Report Al Memo No. 1140. MIT
Al Laboratory. 1989.

[15] Rosenblatt, F., Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms, (Spartan Books, Washington, D.C., 1961).

(16] Shewchuk. John and Dean. Thomas, Towards Learning Time-Varying
Functions With High Input Dimensionality, Proccedings of the Fifth
IEEE International Symposium on Intelligent Control. Philadelphia.
Pennasylvania, IEEE, 1990, 383- 3838,

[17] Sutton, Richard S., Learning to Predict by the Methods of Temporal
Differences, Machine Learning. 3 (1988) 9—4d.

(18] Sutton, Richard S., Integrated Architectures for Learuning, Planning,
and Reacting Based ou Approximating Dynamic Programming, Pro-
reedings 7th International Conference on Aachine Learning. Austin.
Tezus, 1990.

[19] Watkins, C. J. C. H. Lcarning from Dclaycd Rewards. PhD thesis. Cam-
bridge University, 1989.

[20)] Whitehead. Steven D. aud Ballard. Dana H.. Active Perception and
Reinforcement Learning. Proceedings 7th International Conference on
Machine Learning. Austin, Tezas. 1990.

357

(21] Widrow. 13. and loff. M. E.. Adaptive Switching Circuits. 1960
WESCON Convention Record Part IV, (Reprinted in J. A. Anderson
and E. Rosenfeld. Neurocomputing: Foundations of Research. The MIT
Press. Cambridge. MA. 1988). 1960. 96-104.

