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Preface

This book is devoted to the design of complex systems for applications in
robotics, automated manufacturing, and time-critical decision support sys-
tems. In exploring the issues involved in the design of such systems, we
investigate techniques from artificiaJ intelligence, control theory, operations
research, and the decision sciences. In the process, we attempt to draw cor-
respondences between concepts from the various fields. However, this work
is not intended as a grand unification of these disciplines, even as they per-
tain to the specific issues of interest. Instead, we present tools from these
areas as component technologies, each playing a pivotal role in the design of
complex autonomous systems.

In our attempt to draw a coherent picture of the broad range of problems
and techniques considered here, we rely on the central themes of observation,
prediction, and computation. In an uncertain environment, we must employ
observation to augment our incomplete knowledge with evidence from the
senses. We invoke prediction to extrapolate from our knowledge and obser-
vations the effects of our actions over time. Revising and making effective
use of our knowledge requires computation to translate models and obser-
vations to meaningful action. The design of a system to control complex
processes consists largely of strategies for deciding dynamically what and
how to observe, predict, and compute.

In the 1980s, the traditional view of planning as offline computation r,-
lying on precise models and perfect information was challenged by research
in artificial intelligence on robotic control systems embedded in complex
environments. The challenge was met with proposals for reactive systems.
systems designed to respond directly to perceived conditions in situations
where there is little or no time to deliberate on how best to act. One dis-
concerting aspect of the focus on reactive systems was that it diverted effort
from planning: predicting possible futures and formulating plans of action
that take into account those possibilities. As research progressed, it became

V



vi Preface

apparent that there was significant overlap between the work on reactive
svstems and the work in control theory. This book connects traditional
research in planning with the constraints governing embedded systems, by
reformulating the process of planning in terms of control.

Viewed from a control perspective, reactive systems embody particular
strategies for controlling processes. In order to evaluate reactivesystems,
we have to analyze the connection between such strategies and the physical
systems they seek to control. The tools required to perform such analyses
are readily available from control theory, computer science, and artificial
intelligence. This book focuses on the issues involved in modeling processes
and generating sequences of commands in a timely manner. The practice of
constructing formal models of physical systems and then using those models
to develop programs to control processes is examined in some depth.

This book is intended for graduate and advanced undergraduate students
in computer science and engineering. It is meant for students trying to
orient themselves with respect to the many disciplines that have something
significant to say about planning and control for applications in robotics
and automation. The material in this book is suitable for a one-semester
course offered to graduate and advanced undergraduate students. Given
that the material covers a range of disciplines, we assume a somewhat varied
background.

From computer science, we assume some familiarity with the theory of
computation [121 and basic complexity theory [8]. Pidgin ALGOL [1] and
Edinburgh PROLOG [5] are employed in describing algorithms. Some back-
ground in logic [14] and its application in artificial intelligence are also ex-
pected [4, 151. Elementary probability theory plays a role in the chapters
on uncertainty and stochastic modeling [11, 13]. While no background in
control theory is required, we assume some familiarity with linear algebra
and elementary differential equations [17]. We refer occasionally to standard
techniques in robotics and machine vision, but no detailed knowledge is as-
sumed. References, both general and specific, are provided at the end of
each chapter, so that readers can fill in any missing background knowledge.

The book introduces advanced techniques that derive from work in a
number of disciplines. The exposition of these techniques is largely self-
contained, with pointers to more detailed treatments. In particular, the text
explores the use of default reasoning [9] and temporal logics [18] in modeling
processes, a framework for integrating techniques from control theory [6, 101
into a theory of planning, and several methods for coping with uncertainty
derived from work in artificial intelligence [16], control theory [2], and deci-
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sion analysis [3]. The phrase "Intelligent Control" was coined by Fu [7] to
describe the field corresponding to the intersection of artificial intelligence
and automatic control. Our interests in this book often coincide with those
of the intelligent control community, and, where appropriate, we provide
pointers to this literature.

The original idea for this book came from a course on robot problem-
solving taught by Tom Dean at Brown University. In the Spring of 1989,
Dean began work on a textbook based on his lecture notes for this course.
Mike Welman joined the project in the Fall of 1990. The collaboration
has worked out well, and we expect to continue working together on future
projects.

We consider this book as a tentative first step towards an integrated
view of planning and control. We expect that the ideas presented herein
will undergo major revision as the field proceeds to define itself. There were
times when we began exploring details that threatened to delay the book
by months if not years. Our editors, colleagues, and students persuaded
us, however, that it was more important to publish a first approximation
to the theory we were seeking in order to enlist the combined efforts of the
rest of the research community. In the end, we were content to provide a
rather high-level travel guide to exploring the territory. It is our hope and
expectation that this book will be rewritten every three or four years for the
foreseeable future; not necessarily by us, but by our students and colleagues
in a variety of disciplines.
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Chapter 1

Introduction

It is late and you are returning home after shoppiig at the grocery store.
You thread your car through the narrow streets of your neighborhood. and
maneuver carefully into a parking place barely large enough to accommo-
(late your vehicle. You gather tip the groceries, walk up the steps to your
apartment. an(l grope your way down the hall trying to feel the light switch
so you can find the right key. After setting the groceries on the kitchen
table. you put some leftovers in the oven, and step into the bathroom to
start running a hot bath. Returning to the kitchen, you begin putting the
groceries away. About midway through shelving the groceries. you return to
the bathroom and adjust the faucets to ensure a comfortable temperature
for your bath. When you return to the kitchen. you turn the oven down
before finishing with the groceries.

Parking a car. carrying groceries, heating food, and running a warm
bath are all examples of controlling processes.. Quite often,.we are engagedin
controlling several processes simultaneously, as in the Zase of running a bath
and heating leftovers. There are some processes that we have considerable
control over. such as those having to do with the movement of our arms
and legs. and other processes that we have very little control over, such as
the process governing how many people in an apartment building are using
the hot water at any given moment. There are limits, however, even to our
control over our arms and legs. The arms and legs in conjunction with neural
circuits in the spinal cord respond to stimuli without conscious effort: the
arm jerks the hand back from a hot surface. the legs move involuntarily to
save us from falling if we stutnhble. Many of the processes that we are used to

001990 Thouta Dean. AD rights reserved.
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dealing with on a day-to-day basis (e.g.. the weather) are completely outside
of our control. We learn how to influence those processes'%we can exert some
control over. and adapt our behavior to cope with those ve cannot.

This .meegraph is concerned with the design of programs that control
the behavior of physical processes. Intuitively, a process is just a series of
changes in the state of the world. Controlling a process consists of mak-
ing certain changes in the state of the wor!d in order to determine uhat
additional changes in the state of the world will occur and when. We dis-
tinguish between the controller, a device that includes hardware to run a
control program. and the contvolled process, ofteu another device or group
of devices whose behavior the controller is seeking to influence. In control
theory, the controlled process is refeir-.d to as the plant. In robotics. the con-
trolled process might correspond to certain mechanical componens of the
robot such as a mavipulator or a drive mechaidsin. or it might correz'ond
to the environment in which the robot is meant to function. The controller
exerts control over the controlled process and monitors its progress through
the use of auxiliary interface d&A'ices. Generally, these devices correspond
to sensors and robotic manipulators, but there are other sorts of interfaces.
For instance, the designer of a special-purpose microprocessor may v,.-w the
microprocessor as the controller and its input and output ports as inttrface
devices.

The distinction between controller and controlled process is quite nat-
ural from an engineer's point of view; the controller is a device that the
engineer designs and builds. It is important to keep in mind. however, that
the controller is itself a process. Both the controller and the controlled pro-
cess operate in the same spatial and temporal context: both are embedded
in a larger process. The study oi control is the study of the relationship
between controlling and controlled processes. This relationship is central to
our investigations.

in order to control the behavior of a process, it is often useful to have
some informatiun concerning its current state. Tlis information can be
obtained in two different ways: you can observe the state directly. or you
can predict it from informtiou about earlier states. In order to predict
the current state of a process from its past states, it is necessary to have a
model of that process. A model is a description of a process used to derive
information about present and future states of the process given information
about its current and past states.

If you see a projectile hurtling toward you, then you might predict that
the projectile will hit you if you remain in your current position, and you

2



might use the prediction as a justification for your ducking. If you know
that there is a protective barrier between you and the projectile, or you
know that the projectile is tethered on a short string, then you can save
yourself the trouble of ducking. Determining how to act to satisfy certain
goals hased upon predictions of possible future states is what is generally
referred tc as planning. There are situations, however, in which making
careful predictions is eithei unnecessary, impractical. or impossible.

When you place leftovers in an oven set at a certain temperature. you
employ a very simple model to predict when those leftovers will ie ready to
eat. You could place a temperature sensor in the left. ,'ers. and continually
check the sensor until it reached a preset value. This is what is referred to
as monitoring a process. Given the predictability of most ovens, it is hardly
necessary to monitor the warming of leftovers. There are processes that
are so unpredictable that they warrant constant monitoring (e.g.. air traffic

over a metropolita*i area). The decision of whether to monitor or predict the
behavior of a process is a complex one involving subtle tradeoffs. Deploy-
ing sensors for monitoring can be expensive in that the sensors may not be
available to monitor other processes. There are also often significant com-
p)ttational costs associated with both monitoring and prediction. The study
of control is intimately tied up with utilizing scarce resources corresponding
to sensors, nanipulators, and associated computing machinery. Planning V/

provides a framework for reasoning about tradeoffs and directly addresses
the problem of resource utilization. This wm.egrVh explores control from
the perspective of planning, and planning from the perspective of control.
The idea being that the two are intimately related but emphasize different
aspects of the same problem.

In the rest of this chapter, we explore the notion of control and how it
relates to planning- in som tewiat more detail.' Our discussion will revolve
around the idea of modeling processes and using models to direct control.

1.1 Controlling Processes

So far, we have talked about processes as though they actually exist in the
world, whereas, in point -f fact, they exist in our heads for the 'urpose of

explaining our observations of physical phenomena. A process is an abstract
description of physical phenoiiena. Such a description makes use of some
vocabulary for speaking about the state of the world. For instance, we may
want to speak about the position (x, y, and z coordinates) of a robot with

3
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Figure 1.1: A simple control problem

respect to some frame of reference. or the charge (c measured in ampere
hours) on a battery used to power the robot. Variables such as x. y, Z. and
c are referred to as state tariables. We assume that the state of the world
can be accurately described in terms of someAlumber of state variables. Of
course. the notion of accuracy hr to be defined with respect to a particular
task. Which brings us to an important question. Why do we want to
describe the state of the world at all?

Presumably, we are interested in controlling (i.e.. influencing the value
of) certain state variables. We are interested in other state variables insofar
as they provide us with information that enables us to exercise better control.
An example should make the discussion more concrete.

Figure 1.1 depicts a cylindrical tank containing fluid with one pipe lead-
ing in and one pipe leading out. There is a rotary valve mounted. on each
pipe that restricts the flow of fluid through the pipe. The position, 6, of
the valve leading in determines how much fluid flows into the tank. In this
example, we are interested in maintaining the height, h, of the fluid in the
tank as close as possible to some preset value, say 3 meters, referred to as
the target value. We will assume that the alve mounted on the pipe leading
out is locked in position.

The process that we are interested in controlling can be described by the
two functions of time, 0(t) and h(t), corresponding to the two state variables.
9 anA h. As far as we are concerned, the state of the world at a particular
tine t is determined by 0(t). and h(t). We can predict future states of the
process from past states if we have an appropriate model. For the process

4
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Figure 1.2: Change in fluid height for a constant valve position of 100

described above, a simple first-order differential equation provides a suitable
niodel.

AK7,.UU - AToIth(t) = A dh(f)

where K,,~ is thietflow constanit in cuibic meters per degree jM'ute for the-
valve governing Wow through the input pipe. K,t is the w constant in
square meters per miinute for the output pipe. and A is t~e surface area of
the tank. By solving this equation. we can predict the state of the proc ess
at time t, given information about the state of the process at some earlier
time to. The solution to the above differential equation is

le o f10he = .-2- meter/&detg. 1i

oot

aw he C stain d sm initiall ec odthtifowe areaaeoshagsih
Figure 1.2 hang ue thitinofo mai bo a aour model o a on to n
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model,-
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about changes in the variable hz. Given a sequence of changes in 0. we can
evaluate the effectiveness of that sequence using the predicted changes in h

and some set of criteria for effective control (e.g.. how rapidly ha converges
to the target value).

We still need to specify how the controller senses the world and how it
might act to control the height of the fluid in the tank. Figure 1.3 depicts
the two sensors used by the controller: one that provides information about
It. and a second that provides infornation about 9. in addition. we will
assume that the controller can influence 9 by issuing one of two commands:
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Figure 1.3: Sensors for controlling processes

0-100 10-150 15-200 20-30* 30-60°  60-1800
0.00-1..50m 1 1 1 1 1 0
1.50-2.50m I I I I n -1
2.50-2.80m I I 1 0 -1 -1
2.80-3.00m 1 0 -1 -1 -1 -1
3.00-3.20ni -1 -1 -1 -L -1 -1
3.20-4.00ni -1 -1 -1 -1 -1 -1

Table 1.1: Table used by the function table-ookup ,'

turn-right or turnIeft. The first turns the valve mounted on the pipe
leading into the tank .5* in a clockwise direction. and the second turns the
same valve 50 in a counter-clockwise direction. For the time being, we will
assume that the changes initiated by these two commands happen nearly
instantaneously (i.e.. if a turn-right command is issued at time t. then
O(t + e) = 6(t) + 5, where e is negligible).

Now we can predict future states of the process, but how do we control
the process? Perhaps the simplest way is just to experiment and see what
works. Suppose that we have done just that, and we have compiled a table
that tells us exactly what action to take in every situation. Such a table
is shown in Table 1.1. Recall that the task of the controller is to restore
the height of the fluid in the tank to the target value of 3 meters. Given
information about the current fluid height and valve position, Table 1.1
indicates 1 if the correct action is turn..right, -1 if the correct action is
turnieft. and 0 if the correct action is not to do anything at all. Using
this table, we define a simple control algorithm as follows:

6
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Figure 1.4: The controler's behavior with a I minute sample period

while true
waitior-delay;
h - fluid-height;
9 -- valve-position;
" - tableJ1ookup(h,);
if r = I

then turn.right
else if r'=-I

then turn.l~eft
else do.nothing

where fluid.height and valve-position read the corresponding sensors,
and table.lookup extracts the appropriate value from the table in Ta-
ble 1.1 using indices computed from the sensor readings. The procedure
vait-.or-delay causes the controller to pause for a fixed interval of time
referred to as the sample period. Figure 1.4 describes the changes in h and
0. with 0 controlled by the algorithm described above, the sample period set
to 1 minute. and the other variables as set for Figure 1.2.

As an alternative to experimenting in the real world, we could use the
model described earlier to experiment with various control strategies foi
responding to information returned by the sensors. These model-based ex-
periments could then be used to compile a table very much like the one
shown in Table 1.1. If the model is reasonably accurate. then the resulting
table should look very much like the one developed from experimenting in
the reel world. Of course. not only do we need an accurate model of the
controled process, but we also need an accurate model of the controller in
ordr to compile an accurate table of responses. So far. we have neglected
discusuing the controller at all.

In the preceding discussion. we made a number of assumptions (e.g..
the valve restricting the output pipe is fixed, and changes initiated by con-
troller commands are nearly instantaneous). Now it is time to review some

7 •
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Figure 1.5: The controller's behavior with a I second sample period

of those assumptions, and bring to ight a numbr of additional assump-
tions that were implicit in our discussion of controliers and their response
characteristics.

To begin with, we reconsider the role of the sample period in our simple
control algorithm. In the description of the algorithm's performance in
Figure 1.4, we mentioned that the sample period was set to I minute. What
if instead we set the sample period to I second? Well, for one thing, we
would get markedly improved performance, in the sense that the controller
would appear to ral)idly converge on the target value. Figure 1.5 shows how
the controller would respond given a 1 second sample period, assuming that
the changes initiated by the commands turn..right and turn..loft occur
nearly instantaneously. When we are talking about commands issued every
minute. the consequences of such an assumption may be minor, but, if we are
talking about commands issued every second, we may be making unrealisticFassumptions about thit hardware available for cariying suchi commandi. The
magnitude of the controller's response is governed by the controller's gain (a
measure of how fast a controlled variable can change). Generally speaking,
the higher the gain, the more massive the controller, the more power it is
likely to consume, and the more costly it will be to purchase. Our (implicit)
model of the mechanical system for changing the position of the valve is
inadequate for a careful analysis of the overall control system.

Amotker related aspect of the controller's performance that we failed
to account for concerns the procedures and how quickly they run on some
particular computing hardware. How long does it take to read a sensor?
How long does it take to perform all of the auxiliary computations required
in the control algorithm? Even table lookup takes time (e.g., time to page

I8



the table into memory from disk and compute the indices). Procedures may
inivoke additional processes whose.effects na y iot be ininiediatelv apparent
(e.g., the procedure corresponding to turn-right may take only a few micro
seconds to return. bitt the servo mechanisin responsible for actually turning
the valve may take several seconds. to carry out the command). Suppose
that the controller issues the three comtlands. turn-left. turn-left. and
turn.xight. in quick succession. Does the second turn-left command get

canceled out by the following turn.xight command, or does the controller
swing a full 100 in a clockwise direction before swinging back 5 in a counter-
clockwise direction?

Designing good models to capture real-world phenomena can be quite
complex. A process model is an abstraction: an idealization appropriate
in only a limited context. In the model for a tank filling, we failed to
account for evaporation, condensation. malfunctioning valves, other agents

adding to or removing from the tank in unpredictable ways. and' any of a
iumber of other factors. Correcting for such factors is not simply a matter
of providing a more accurate model or better servo mechanisms: hardware
has its limitations and, generally speaking, better models take longer to

compute and rely upon more detailed information.
Fortunately, lack of precision in the model can be offset somewhat by

relying upon the model only for short-term predictions. Feedback through
frequent sensing can serve to correct for errors in long term predictions

introduced by imperfect or faulty hardware. Sensing and feedback do not.

however. obviate the need to take long-term predictions into account. If
you expect to be traveling to a foreign country in the next two weeks. you
had better check that your passport is in order today; you risk ruining your
travel plans by waiting until the last minute.

Another thing to note is that not all predictions are equally useful. It is

not necessary-and generally not possible-to predict every consequence of
the events that you observe. A little rain may slightly increase the height of

fluid in the tank, but the effect is negligible given the flow through the input /
and output pipes. On the other hand, predicting that someone is about to ,7

close the valve mounted on the output pipe could significantly change the
optimal strategy for controlling the input valve. As we will see in Chapterj

predicting just those consequences that are useful in guiding behavior turns

out to be difficult.

9



Figure 1.6: A more complex control problem

1.2 Planning

The problem dctscribel in Figure 1.1 is rather simple, and it is not difficult to
design effective control systems for solving such a problem. Consider what
happens when the control problem gets more complicated: several variables
to control. other agents to contend with, and sgae-degree of uncertainty
about the future. In the situation depicted in Figure 1.6, there are two
pipes leading into and two pipes leading out of a tank similar to the one
shown in Figure 1.1. Each of the four valves can be manipulated by a
separate dedicated servo motor. In* Chapter 5. we will consider a variant of
this problem in which there is only one servo motor that can be positioned so
as to control any one of the four v"alves. In anticipation of this complication
requiring that the controller be mobile, we will refer to the controller as the
mbot.

Now we have to specify what it is that the robot is supposed to do.
Figure 1.6 shows a tanker truck positioned under each of the two pipes
leading out of the tank. We will assume that at any given time there are
zero or more tanker trucks waiting in a queue to be filled up. In addition
to controlling the valves on the pipes leading into and out of the tank. the
robot can command a truck waiting in the queue to position itself under one
of the two pipes leading out of the tank. The two pipes whose valves are
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labeled 01 atld 02 carry two different chenticals. The control task involves
filling yclr tanker truck with a mixture containing approximately equal
proportions of the two chemicals. We will assume that mixing occurs in
the tank automatically and instantaneously. Any chemical mixture that
flows over the top of the tank is lost and cannot be recovered. The exact
proportion of the two chemicals pminped into a tanker truck is not critical.
blut. if the proportions of the two clipmicals in a given truck differ by more
than 10%. the contents of the truck will have to be dumped. The robot gets
paid for each truck completely filled with an acceptable mixture, and the
robot is charged for any chemicals that flow through the two pipes leading
into the tank. The robot's task is to maximize its net income.

Maintaining an acceptable mixture is simple if the robot has a separate
servo directly controlling 61 and 02, and the valves have identical flow char-
acteristics; the robot just adjusts the two valves in exactly the same way
to guarantee equal proportions of each chemical. The robot can keep the
height of the fluid in the tank at. any level it chooses, but the higher the
level is the faster the mixture wil flow through the pipes leading out of the
tank. and the faster the robot's earnings will accrue. Of course, there is
some risk of spilling fluid if the height is kept too near the top and one of
the output valves is suddenly closed, but we will assume that the robot has
complete control over all four valves and knows the exact capacity of each
truck waiting to be filled.

If we ignore the added task of positioning trucks, the problem of Fig-
ure 1.6 is really no more complicated to solve t han the problem of controlling
a single valve. We could construct a table such as that shown in Table 1.1.
or we could derive a fairly simple algorithm to compute the values stored
in such a table. Implementing the controller using table lookup is probably
not a good idea; given'the size of the necessary table-the table would have
six dimensions (or indices) corresponding to the six state variables: h. 81,
82, 63, 04, and the capacity of the next tanker truck waiting in the queue.

Suppose that the robot knows that a tanker truck is within a cubic meter
of being completely filled. Using this information, the robot can determine
exactly when the valve to the pipe being used to fill the truck should be
compieey dosed. In fact, if there is only one truck to be filled. as soon as
the truck is positioned under one of the two pipes leading out of the tank, the
controller can use its model of the system of pipes and valves to determine
the complete sequence of valve manipidations required to fill the truck as
quickly as possible. This idea of using a model to formulate sequences of
actions is central to planning. In the following, we will examine some of the
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todo(fill(Truck), "'

plan(Emov*(Truck,chute(outl)),
turn(valvo(outi), IM*,0 ,5/2min),
turn (valve ( in 1), 90 ° , 5° / 3 ra i n ) ,

turn (valve (in2),900 , V/3min),
turn (valve (out 1), 0, .5/2min),

turn (valve (inl) , 0*, 5/3min),

turn(valve(in2) ,0*, 50/3min)],

[concurrently( Q2,3,4]),

concurrently(CS,6,7]),

precedes(l ],[2,3,4] ,0),

precedes([2,3,4],[S,6,7] ,capacity(Truck)/5)J]4):-

holds( (position(valve(outl), 00),

position(valve(out2), 00),
position(valve(inl) ,00),

position(valv*(in2) ,00),
in-queuo (Truck), 1 snh-hquous W ) ), Tn*).

Figure 1.7: Plan for filling a single truck

advantages and disadvantages of using such a technique. We begin with the
advantages.

One can easily imagine a situation in which the robot does not have
immediate access to information concerning all of the state variables. For
instance, the robot might actually have to do some work to check on the
height of fluid in the tank or the position of oni of the valves. Rather than
constantly perform the work necessary to consult the sensors, the robot can

rely upon the model to generate an entire sequence of valve manipulations
in advance. We will not discuss how sequences of actions are proposed

until Chapter .5; for now, just assume that there is an oracle that produces
candidat sequences when asked. The model comes into play when the robot
wishe to compare different sequences in choosing the best one. The basic

idea Is quite simple. Given a sequence of actions, the robot uses the model
to simulate the (uture as it would occur if the actions were carried out. The

simulationUi1 lie roborilnlormation about how long a particular tanker
truck will take to fill and whether or not there is any danger of spilling
chemicals using the proposed sequence of actions. This information can
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then be used to suggest nodifications to the proposed sequence of actions.
or to compare the prop-,sed sequence with alternative sequences.

It is also possible to simply store an often used sequence of actions. and
index it in such a way that it can be easily retrieved when applicable. This
is analogous to the method discussed in the previous section for storing
responses in tables. For instance, the robot will frequently find itself in the
situation where all of the valves are closed. the tank is full. and a truck
suddenly appears in the queue. Btather than derive an effective sequence
of actions every time it is needed. the robot might store a description of
such a sequence of actions-referred to as a plan-indexed so that it can be
easily retrieved when needed. Figure 1.7 shows a rule for retrieving such a
plan. The notation is that of PROLOG. but understanding PROLOG is not
necessary for our current discussion.

The rule in Figure 1.7 states that. if all of the valves are closed and there
is exactly one Truck in the queue at Time. then plan(Steps,Constraints)
is a plan for filling the truck starting at Tiae+e, where the Steps con-
sist of seven commands numbered 1-7. and the Constraints determine
the order in which those commands are to be carried out. Issuing a com-
mand of the form turn(Valve,Angle, Rate) tells the hardware to turn the
VaLve to the indicated Angle (in degrees) at the speciiied Rate (in de-
grees per minute). A constraint of the form concurrently(Stops) spec-
ifies that the Steps (indicated by their order in the list of plan steps)
should begin at the same time and run in parallel. A constraint of the
form precedes (FirutStops. NextStepe A) specifies that the FirstSteps
should precede the NxtSteps with a delay of A separating the last step to
finish in FiretStops from the first step to begin in NextSteps.

If the computations required to derive what to do when a truck suddenly
appears in the queue are complex. then having a response stored away for
easy retrieval may reduce the amount of time trucks have to wait in the
queue. Plans such as the one shown Figure 1.7 can be generated off line
and evaluated using a model; complex plans for novel situations can also
be constructed on line from simpler plans and evaluated using a model to
ensure success. This idea of constructing complex plans from simpler ones
is integral to most theories of planning, and we will examine it in greater
detail in Chapter 5.

There are also potential disadvantages in generating sequences of actions.
The most obvious disadvantage is that the model may be inaccurate, and the
sequence of actions will fail to have the desired effect. Unless the controller
is really convinced of the accuracy of its model, it will want check that the
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plan is proceeding according to expectationis. This checking is referred to as
monitoring the execution of a plan. a;4d may involve a considerable amount
of effort. If problenis are detected. it may be necessary to stop the sequence
of actions specified in a plan in order to formulate a new plan or modify
steps in the original one. By relying less upon the model, and more upon
feedback from sensors, the controller will often save itself a lot of work in
generating sequences of steps that are never carried out.

Still, in determining what to do now. it is not as though you can always-
ignore thinking about what you will do next. Once the controller predicts
when a truck will be full. it has to determine what steps are necessary to
ensure that the truck's tank does not overflow. It is not enough to say "start
closing the valve." Determining when to start closing the valve and how
qutickly requires anticipating the entire sequence of steps. Keep in mind
that a controller only has lmit-d control over its environment: if a valve
restricting the flow of fluid into a given truck is wide open. and the truck is
nearly full, then the controller will not be able to avoid spilling some fluid.
The real issue is not whether or not to plan-plauning is an integral part of
control-but in what detail to plan. If planning were inexpensive, we would
not have to worry about this issue: a controller would always formulate
the most detailed pan possible. and there would be no loss if the detailed
sequence of steps was not carried out. Unfortunately, planning can be very
expensive.

While the problem of Figure 1.6 is a relatively easy one. there are simple
modifications that can serve to fundamentally change the problem. Suppose,
for instance, that the robot is charged a tax for the time a truck waits
between entering the queue and being successfully filled (we will allow the
robot to turn away trucks before admitting them to the queue). Now, in
addition to its other concerns, the robot lias to try to minimize tie time
trucks spend waiting.

If the robot maximizes the flow of properly mixed chemicals from the
tank, and makes sure that full trucks are moved out as quickly as possible
and replaced by empty trucks. the only other variable to control is which
truck should be filled next. Assuming that the tax is computed as a linear
functioa of the time a truck spends waiting, capacity is the critical factor
influnindg the choice of next truck. Suppose that the capacity of a truck is
an integer-valued quantity. For a given queue of trucks waiting to be filed,
the robot will want t issign each truck to one of the two pipes leading out
of the tank so as to minimize the anmount. of time that either one of the two
pipes is idle (see Figure 1.8).
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Figure 1.8: Scheduling tanker trucks of varying capacities

Figure 1.9: A robot navigation problem

Even if we allow that the trucks be instautaneously positioned and the
valves instantaneously opened and closed, the problem of assigning the
trucks so as to minimize idle time is computationally complex. The problem
of determining the optimal assignment of trucks is equivalent to dividing a
set of n integers (the capacities of the trucks) into two sets (trucks to be
filled from the first pipe and trucks to be filled from the second pipe).so as
to minimize absolute value of the difference (time either of the two pipes
is idle) of the sum of the integers in the first set (the time the first pipe is
being utilized) and the sum of the integers in the second set (the time the
second pipe is being utilized). This problem is referred to as the parlitiov
problem [3], and is known to be in the class of NP-complete problems (i.e..
the best known algorithms for solving these problems have running times
that ame at least exponential in the size of their input-the number of trucks
in the queue in our case).

For the particular NP-corn pl'fl proilel described above, there are good
approximate solutions that run in polynomial time. If it is small, it might
even be feasible to use an algorithm that computes the exact solution and
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runs in exponential time. There is a tradeoff involving the time F:,ent in
deliberation and the time saved by comptting a better answer. While the
robot is deliberating about how to fill the trucks. the trucks are waiting in
the queue. and the robot is losing money.

It may not seem critical that our robot takes a little extra time in filling
lie tanker trucks. A simple first-in-first-out strategy for choosing the next
truck to fill may prove to be quite effective. There are. however. occasions
in which there is more at risk than just a little higher income. Figure 1.9"
shows a robot with a single sensor trying to navigate a hallway. In order to
avoid hitting the water cooler, the robot has to look to the right; in order
to avoid falling down the stairs, the robot has to look to the left. Whether
or not the robot can successfully deploy its sensor '.. avoid both obstacles
depends a lot on how fast the robot is moving and how fast the robot can
reorient its sensor and interpret the returned data. The designer could take
a conservative approach and limit the maximum speed at which the robot
can travel so as to ensure the robot's safety, but uch a measure is likely
to degrade performance significantly. It would be better if the robot could
somehow analyze each situation in which it finds itself, wigh its options,
and choose the option determined to be best.

The designer of control algorithms has to contend with the inherent
limitations of computing hardware and software. There are times when even
the simplest algorithms turn out to take too long. For instance, suppose
that you wish to track a pr-)jectile. and suppose that you have a sensor
that returns information concerning the current location of the projectile.
By the time you get around to processing the sensor information, it may
be out of date. so you will want to label the sensor information with the
time that the data was gathered. The obvious thing to do is to label the
sensor data using the computer system's on-board clock. The problem is
that reading the clock requires loading a procedure into memory. invoking
the procedure, and waiting for it to return an answer; all of which takes
time. and. more importantly. different amounts of time depending upon
how memory is configured. whether or not the procedure has been invoked
recently. and any number of other factors. This differential in how long the
procedum takes to return an answer can adversely affect the usefulness of
the labeled sensor data. For a legged robot trying to walk [6, 2J. it can mean
the difference between falling or not: for a tennis playing robot [1]. it can
mean the difference between winning a match or not.
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En~viromet

Action Signals

rigure 1.10: A machine coupled to its environment

1.3 Dynamical Systems

Let us return to the question of what it means to control something, and
try to answer this question from the perspective of control theory. We begin
by providing a general description of a controller coupled to an environment
and given some task to achieve.

The controller is represented as a deterministic automaton that takes as
input a signal and outputs some action. The environment can be viewed as
another automaton that takes as input the controller's action and generates
a signal to serve as the controller's next input. The controller is said to
be coupled to its environment: the controller and its environment trading
blows in a continuous cycle of interaction. Figure 1.10 (a
[7]) illustrates this cycle of interaction.

In the following, we describe the interaction between the controller and
its environment in terms of a mathematical model called a dynamical system.
Since we are interested in the behavior of thi system over time, we intioduce
a set of time points or insfrtnt.s, T. At any given instant. the ?nvironment
can be in any one of a large number of possible states. This set of states,
X, is called the state .9ioce of the dynamical system.

The controller generally cannot perceive the state of the environment at
any given instant, and so we introduce a set of outputs. Y. corresponding
to what the controller perceives of the state of the environment. Finally,
we represent the actions of the controller in terms of a set of inputs to the
environment. U. Notice that the the terms "input" and "output" assume
the perspective of the environment and not the controller: this is a stan-
dard convention in control theory, and we idopt it throughout this book.

17



Unless further qualified (e.g.. "I lie onl put of I he controller'), the terms "i-
put- and "output.- refer to. respectively. I lie input to and output from tile
environment.

Next. we introduce temporally indexed variables to represent the state.
.r(t), input, u(t). atnd output.. y(t}. at anty given point in time. 1. We refer to
the different ways in which the state. input, and output can evolve over time
as histories, time lines, or. in the parlance of control theory, trajectories. The

V set. of all possible state histories or state-space tiajectories is defined as a set-
of mappings from time pointsstates.

HX= {h,: T - X}.

Similarly, we can define the set of output historiis.

HY={h-:T-Y).

We generally restrict the set of state hist,. ies Ly requiring that the evo-
lution of the system state obey certain laws. These laws governing the
behavior of the environment are (,ftev ?ferred to as the system state equa-
tion(s). We represent t he6.at -eqiation by a futto ion that maps states and
inputs to states, 4

X(. + 1)- f(X(t),u(t)).

Here we employ a difference equatido., but we might have used a system of
differential equations. a finite-state automaton, a stochastic process. or a set
of axioms 'a a suitable I -gic. The choice of representation will depend on
tle structure of time (e.g., integers or the real numbers), the nature of the
physical processes we are trying to model, and our own preferences.

Since the controller cannot directly perceive the state of the environment,
we also restrict the set of output histories by defining an output function
that maps states to outputs corresponding to the signals received by the
controller's sensors,

y(t) = gW )).

This sipal invariably contains less information than we would like. and. in
most cam, it is noisy and difficult to interpret.1

Iti is the uncertainty resulting from this noisy signal and the fact that information
about the state of the envirotneut is frequently delayed in processing that give rise to the
need for a systematic treatment of control (.51.
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So far. we have said nothing about the role of the controller. As with
states and outputs. we can define a set of input histories des( ibing the

evolution of the actions taken by die controller over time.
A

tI(, = {hl, : T - u}.

We restrict input histories according to the hardware and software available
to build controllers. We describe the set of possible controllers in terms of.-
functions from the set of sequences of outputs. denoted I". to inputs.

P !_ ({j)Y - U).

These functions are called cad control laws or policies. In the simplest
case. the output function. g, is just the identity function. only the last state
is relevant to the decision regarding what action to take. and the set of
policies is defined as

P = {p: X - U}.

Now we need some objective for the controller to pursue. We begin with
a rather ideal objective and define the controller's task. K. as a relation on
the cross-product space of input/output pairs,

K C Y x U.

Actually specifying K can be quite difficult given that K indicates exactly
what the controller is to do in every possible circumstance.

It may seem more natural to think of a task specified in terms of the
best action for a given state,

K C X x U.

Int uitively, we ought to be able to state t he task independent of the partic-
ular signals received by the cont roller. Recall. however, that as far as the
controller is concerned, the set of states collapses into a set of equivalence
classe determined by the controller's ability to perceive its environment.

Ddning a task is a direct method of specifying the desired behavior of
a controller. Less direct methods involve somehow specifying restrictions on
the state histories of the dynamical system. For instance, we might define
a goal as a subset of the set of state histories.

G C H..
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Figure 1.11: A dynamical system

In this case, we wish to find a policy. p E P. sch that a controller following
p restricts the behavior of the dynamical system to G. Such a policy is said
to achieve G, and the solution is referred to as a satisficing solution.

Alternatively, we might define a value function,

V':Hx-R, .

that allows us to compare different state histories. In this case. we wish to
find a policy, p E P. such that a controller following p forces the the state
of the dynamical system to evolve according to a history that is maximal
with respect to V. Such a policy is said to mazimize V. and the solution is
referred to as an optimizing solution. We *i refer to the problem of finding
a policy to achieve a goal or maximize a value function as the control problem.

By providing the controller with a computational model of how certain
properties of the environment change over time. we can program the con-
troller to extrapolate from a set of signals to predict what will happen with
regard to those properties. A controller equipped with such a model can rea-
son about the consequences of its own actions and those of other processes.
It is this aspect of reasoning about change over time that is mostly closely
associated with the work in planning. The results of the reasoning are used
to woatruct a plan or special-purpose policy to direct the controller's be-
havior. It is not required. however, that the reasoning be performed by the
controller at the time the actions are being executed. The reasoning might
be performed at some earlier time and the decisions as to what actions to
take compiled into a compact program realizing a particular policy.
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As with most complex problems. it is useful to decompose the control
problem into component problems. For instance. the control problem is often
decomposed into the state-estination or observation problem and the input-
regulation problem. The observation problem is concerned with recoverin.g
the system state from the system output. in the simplest case. designing a
-state estimator or observer consists of choosing a function from the set.

S{c :V - X}.

The output of the observer at time. 1. is denoted, i. indicating that it is an
estimate. Similarly, designing a iyyulator consists of choosing a(i ctiou ..-

from the set.

R= {: x- U}.

Figure 1.11 shows a block diagram illustrating the various components of a
dynamical system and controller.

A good deal of the work in planiiing implicitly assumes that the observa-
tion problem can be solved, and focuses on the input-regulation part of the
control problem. But planning need not. indeed should not, be conceived
of so narrowly. As we will see. in many problems. the state-estimation and
input-regulation problems interact in a complex manner.

There are cases in which we can tackle the control problem by considering
the state-estimation and input-regulation problems independently. In the
case of linear dynamical systems corrupted by Gaussian noise and subject
to quadratic performance criteria, the two problems are said to be separable.
and the dynamical systems are said to satisfy the separation property.

What this means in practice is that one engineer can go off and design
an observer that is optimal by some established criterion (e.g.. produces an
estimate minimizing the expectation of error). Then another engineer can
independently design a regulator that is optimal with regard to a second
criterion (e.g.. optimizes a particular value function over state histories).
Separability guarantees that, when the observer and regulator are coupled
together. the resulting controller will be optimal with regard to the stated
criteria. This means that the actions taken by the regulator have no adverse
affect on the ability of the observer to recover the system state. Conversely,
the particular measurements taken by the observer have no adverse affect
on the ability of the regulator to control the system state.

Note that separability does not hold in general. Consider. for example,
what separability would mean for a medical diagnosis and treatment prob-
lem. If the problem were separable. then we would not consider the cost of
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Figure 1.12: Interactions between observation and regulation

performing tests when generating &"agnosis. In particular. there would be\ .2no reason to avoid eviscerating tie patient in order to determine cause of
the symptoms.

As another example. consider the task of a robot navigating in an office\ environment. Suppose that the robot is required to cross the room shown
in Figure 1.121i The robot is to enter by the door shown at the bottom of
the figure and leave by the door on the M&gh at the top of the figure. Unfor-
tunately, the robot's sensors do not provide accurate inormation regarding
the robot's position and orientation. If the robot remains close to walls and
it knows its initial position. it can generally do a good job of keeping track
of its position with respect to the room. If, however, the robot roams off
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into the middle of the room. then it is likely to lose track of its position. In
particular. if the robot tries to take the direct path rather than the wail-
hugging path as showt in Figure 1.12.ii. then it may very well exit by the
wrong door. It is clear in this case that observation and regulation interact
strongly.

Planning can play an important role ini problems for which the separa-
tion property does not hoid. By ising appropriate models. the controller
can reason about the consequences of performing procedures given certaim
iuformational states, and. if necessary, design policies that result in the con-
troller obtaining additional information. I Figure 1.12.iii, the controller,
possessing a model of the robot's possible movement errors, designs the fol-
lowing plan. While positioned near the door. the controller aims the robot
so that by attempting to drive straight it will either go through the door or
arrive at a wal at which point it can move to the right hugging the wall to
exit by the correct door. This plan is guaranteed to succeed assuming that
the controller has an accurate model for movement errors, and will always
be better than hugging the wall from very start.

In Figure 1.12.iv, the controller uses a somewhat different strategy. In
this case. the controller directs the robot to head straight for the door on
tie left. The robot exits by the first door it finds, but we assume that the
robot can somehow distinguish between the offices that the two doors lead
to. If the robot perceives that it is in the wrong office, then it exits the
office, using the wal-hugging strategy to find the office next door. -+-iC- r-,,-

The main point of this discussion is that as far as we are concerned the '" '
planning problem and the control problem are the same problem. In the rest
of the book, we continue to talk about planning and control separately as a
means of emphasizing particular issues or techniques closely associated with
one or the other of the corresponding academic and engineering disciplines.

1.4 Embedded Systems

The primary computational task of a robot controller is to make decisions
concerning what to do next. What to do next is generally thought of in
terms of what actuator command to issue next, but there are often other
decisions to be made concerning what computations are to be performed and
when. Robot decisions are made with regard to certain desirable behaviors
(-.g., avoid running into obstacles, or avoid spilling expensive chemicals).
These behaviors and the environment in which they are to be achieved de-
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Figure 1.13: Two dimensions of control

termine how the corresponding decision processes are to be implemented.
As mentioned in the beginning of this chapter, it is often convenient to dis-
tinguish between the controlle7 and the controlled process. We can think
about what we would like a c--ntroller to do. hit. when it comes down to
building a controller, we have to comnit to specific hardware and software. V
and this commitment will determine what decisions the controller is capabtl-,
of making. The controller is said to be cmbeddcd in its environment. To
analyze a controller, we have to be able to relate the state of the controller
and the state of the processes the controller is seeking to control. How well a
controller can cope with a giver environment will depend upon the amount
of time between sensing a situation and being required to respond to that
situation. and the availability and volatility of the information potentially
,sefnl in deciding how to respond. These factors suggest two dimensions
useful in categorizing control problems and their solutions (see Figure 1.13).
The less information available and the less time the robot has to process
that information, the less likely that the robot's response will account for
the possible consequences of its actions. The more information available
and the more time. that the robot has. to reflect ot it. the more, likely thrat
the robot :ill be able to generate a response that avoids unpleasant conse-
(jitences and takes advantage of pleasant ones. These dimensions are quite
different from those used to categorize problems and solutions in most areas
of computer science.

Computer science concerns itself primarily with off-line computing tasks
(i.e.. data processing tasks). There are two distinct criteria for such tasks:
correctness and speed. Most computing tasks in robotics are concerned with
eontrofling prmeases, and, in particular, controlling processes indirectly and
in real time. The notion of correctness in the traditional framework assumes
some absolute standard that abstracts away from time. What a control
algorithm should compuite depends iipon the sorts of processes it attempts
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lo control and the infornation aboul those processes it call extract front the
environment.

Suppose that a controller genierates a sequence of actuator commands
that u,ould have enabled the robot to perforl a complex maneuver had
they been generated a few seconds earlier. As it is, however, the robot fails
to perform the maneuver and tumbles down live flights of stairs. At first
blush. it would appear that the coutroller has failed in its assigned task.
but we may be taking too narrow a view. Perhaps the robot was usin4
most of its available computational resources to figure out how to disarm
its malfunctioning nuclear self-destruct unit: a tark that it did manage to
carry out successfully.

The problem faced by a robot controller is essentially that of optimizing
a large number of factors (e.g.. time, money, mechanical wear) simultane-
ously. In order to iuake such optimizations. a controller has to 1'uild up
a representation of a complex situation (e.g., one spread out in time and
space) and then decide what to do by taking into account how the various
pieces of the picture are predicted to interact with one another. For the
uptiuizations to be effective. however, the robot must respond in a timely
manner. It would be nice to prove that a given controller satisfied some
specified criterion for correct behavior. Unfortunately, for most interesting
applications in robotics, such a proof would be prohibitively complex.

Most existing planning systems tend to be far too committed to the plans
they formulate and tend to rely heavily on models of the environment and
not enough on the enviromuent itself 141. Such systems do not tailor their
decision making to the situation at hand. Given the same abstract task
to achieve, these systems will perform the same computations no matter
how much time and information is available. They cannot determine when
further planning is futile, and they do not have the eapability to consider
alternative strategies when pressed for timte.

Most existing control systems tend to take a rather narrow view of the
world and the processes that they seek to control. As long as the world sub-
scribes to the controller's model, these systems behave effectively. Sooner
or lata. however, unanticipated influences intrude to render the model's
predictions inaccurate, resulting in undesirable, and sometimes disastrous,
consequences. Buildinig a more complicated model is not always the solution.
A complicated model may require more time to compute, thereby reducing
the system's response time. Aim alternative to building a inure complicated
model is to employ several simple models, each one tuned to a different
range of situations. The controller then tries to determine wlich simple
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model applies. and changes the model wben circuustauces dictate. In some
sense, this multi-niodel controller i.5 employi'ng a more complicated model.
but it is a model that-at least iuplicitly-takes into account the comuputa-
tional capabilities of the uinderlying hardware and the anticipated behavior
of the processes being controlled. (hapter 8 develops a framework for takilg
such considerations into account explicitly. in order to dynamically allocate
computational resources to suit a given situation.

In subsequent chapters. we will explore a number of methods for con-.
structing and evaluating models of complex systems. We will consider how
models are used to control processes. and what sort of tradeoffs have to
be made in building effective control systems. The discussion covers both
theoretical and practical considerations. The former due to our need to jus-
tify design decisions in terms of acceptable mathematical foundations. The
latter due to our primary motivation in terms of programming robots to
perform useful work. We begin by discussing the theoretical foundations for
modeling processes.
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Chapter 2

Dynamical Systems

For our purposes. a prxess model is a device that. given certain information
about the state of a physical system. enables us to determine certain other
information about that system. The device usually includes some mathe-
matical characterization of the system's properties and how they relate to
one another. It also includes some sort of a calculus whereby an engineer
or a machine rnn compute the predictions of the model given some initial
conditions.

Process models are used by engineers to deRign control systems. ln
some cases. the process model is used only to evaluate a given controller.
In other cases. the process model becomes an integral part of the control
system. In this chapter. we consider a few of the large number of process
Modeling techniques available to the engineer, and develop some notation
for describing process models that will be used in subsequent chapters.

2.1 Constructing Physical Models

To construct a model for a proces, we have to idntify those properties
of the world that determine the behavior of the process. First. there are
those properties that prompted our iut -ext in the process to begin with. In
the cue of the tank-filling process described in Chapter 1. we are primarily
interested in the height of the fluid in the tank. Second, there are those
)roperties that atfect the properties that we are interested in. In order to

account for the level of fluid ii the tank. we have to know the dimensions
nf Ihe tank, the flow characteristics of the input and output pipes, and the

001990 Thomas Deam. All rights reserved.
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p, sition of the valves. It is easy io miderestimate the difficulty of this part

of I lie modeling task.
Textbooks typically just give tie student the set of physical properties

that he or she needs to be concerned with. There is an implicit assumption
that these are all and oidy the properties that need to be considered. How
do we know that the temperature of the fluid does not alfect the height of the

fluid in the tank? Well. of course. we don't know this. The temperature may
affect the fluid height by changing the rate at which the fluid evaporates:

however, given that t lie temperature does not vary substantially, the effect
of temperature on fluid height is negligible.

Almost any property of the world can have an impact on the level of
the fluid in the tank: agricultural trends affect global weather patterns that

affect local temperature and humidity that ultimately affect fluid height.
The predictions w~ade by a particular model are likely to be accurate only if
certain assumptions hold. Whether or not to account for a given property
of the world in a particular model depends on a number of factors: the
magnitude of the effect (i.e.. does it result in substantial changes in the
properties of interest), the probability of the effect (i.e.. do the changes
occur with high frequency), and the complexity of the model (i.e.. what
additional computations a:e required to account for the property in the
model).

This last is particularly important. and. yet. it is often overlooked in
evaluating a model. There is often some utility in getting an answer to a
question quickly. If this were not the case. you would always want the model
that makes the most accurate predictions possible. Given that time has to
be taken into account. there is a tradeoff to be made regarding the accuracy
of the model and the time that it takes to compute its predictions.

The following sections describe some basic methods for modeling physical
processes in control theory. Section 2.2 considers the use of the differential
and integral calculus for modeling processes and analyzing the behavior of
control systems. focussing on ideas from classical control theory. Section 2.3
considers the general problem of modeling dynamical systems and introduces
ideas from linear system theory, drawing upon results from modern control
theory.
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2.2 Mathematical Modeling in Control Theory

Miuch of control theory dopends on Il ise oif mathenatical models based
on the techiques of the integral and differential calculus. These techniques
enable the control theorist to model a wide variety of mechanical. electri-
cal. fluid. and thermodynamic s'ystenis. By modeling both the controlling
process and the process being controlled as a set of differential equatione
the control theorist is able to analyze behavior of the combined system, and
predict the performance characteristics of the controlling process (e.g.. how
fast the system responds to a disturbance or change in input). In this sec-
tion, we summarize some of the issues involved in modeling physical systems
using the techniques of control theory.

Anyone who has taken a course in differential equations or advanced
calculus has seen numerous examples of mathematical models of physical
systems. Most introductory texts on the differential calculus inciude ideal-
ized models of population growth. the decay of radioactive materials, and
the fluctuation in prices as a function of supply and demand. If you took
a physics course, you were early on exposed to Newton's laws of motion.
Newton's second law of motion states that the product of a body's mass
and the acceleration of its center of mass is proportional to the force acting
on the body. Let z be a function that depends on t and denotes the position
of the center of mass of the object as measured from some fixed point along
a vertical line. Let if he the mass of the object. and " be the force acting
on the object in the direction of travel. The following differential equation

d2 x2  (2.1).

is called the equation of motion of the body.' If we know something about
I he forces acting on I lie body. then we can use this equation to make pre-
dictions about the motion of the body.

If x is the directed distance upward of the object as measured from the
surface of the earth. and v0 is the object's initial velocity, then. assuming
that the only force acting oi the object is gravity, Equation 2.1 becomes

12x:
31- = -Mg (2.2)

dt2

"ro simp ify the discupiomn,. we implicitly adopt the qtandard system of units for mea-
nuriing maw. distance, and lime so that lie constant of proportionality is one.
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where is Y is tb, acceleratiiozi d(e to gravity hear lie surface of the earth. We
can solve this simple second-order differential equation. by integraling twice
and using the initial conditions to determine the constants of integration.

The following formula
= 2

-11(t) = -2vt + (lot (2.3)

dlescribes the position of the object at t > 0 giver, the initial conditions

.r(O) = O. d = u,
(it

and assuming that the object is propelled upward at time t = 0. From
Equation 2.3, we can predict the maximum height (t',!2g) reached by the
object and the time it takes the object to fal back to the surface of tue
earth (2v./g). Equation 2.3 together with to, s of the differential calculus
provide us with a simple model of an object falling through a gravitational
field.

We know that Equation 2.3 is only approximate in that it -giects several
important influences on objects failing through a relatively dense atmosphere
under the influence of gravity. For instance, Equation 2.3 treats gravity as
a cnstant acceleration whereas we know that Newton's inverse square law
provides a more accurate estimate of the force due to gravity acting on an

object. If the earth is assumed to be a sphere of radius R. and r denotes the
(listance trom the center of mass of the object to the center of the sphere.

then
d2 z MgR 2

l- T2

can provide a more accurate estimate of the position of the. object than that
provided by Equation 2.1. especially in the case of art object that travels a
significant fractibn of the distance R.

We can also account for the darmping force exerted on the object by the
atmosphere as the object moves along its trajectory-. If the damping force is
pruporti,'nal to the object's velocity, and C is the damping constant. then

d2z MgR2  dx
d- 2  r 2  dt

will, at least potentially. provide a better estimate titan ehiuations that ne-
glect friction. Potentially. because. having identified that saute property of
the environment influences a particular process, you still have to determine
the form and the magnitude of that influence. There are situations in which
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Figure 2.1: A sprilli-iuass-da-shpot system

the damping force is more iiearl *y proportional to the square or the cube of
thle velocity. III addition, the (lanipiiig "constaitt" mnay not he constant at
all. dependent as it is on the shape of the object and the density of the air
through which the object is moving. If you are not careful, you can actually
reduce the predictive accuracy of a model by trying to account for additional
properties.

As another example of physical modeling, Figure 2.1 shows a block of
mtass Ml suspenided fronm the ceiling by a sprig anid connected by a rigid
rod at its base to a damping device called a dashpo.t. The spring counteracts
the force of gravity and the dash-'ot tends to inhibit vertical motion in
eithier direction. Suppose t fat the force exerted by the spring is equal to the
product of the distance that the'spring is siretched or compressed and K.
the spring constant. Let d be the distance past the spring's resting length
such that the force of the spring completely offsets the force of gravity, and
the block will remain at rest (i.e.. Mg = Ed). The equation of motion for
the block, neglecting the daslpot. is

,i d Mg if [ix +d) =Kr 25

To account for the dashpot. we asrcune that the dlamping action of the
dashpot is proportional to the velocity of the block and introduce another
termn into Equation 2.9. The result is

. d-+ C-r+ Kx=O0 (2.6)dt2 dt
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Figure 2.2: Response of thle spring-uxass-dasbpot system in the (i) under-
damped and (ii) overdamped cases.

where C is the damping constalt.
There are three different solutions to Equation 2.6 depending on whether

the quantity C2 is less than. greater than. or equal to the quantity 4MK.
These solutions correspond to the underdamped. overdamped. or critically
damped cases. If C 2 < 4KM. then the specific solution to Equation 2.6
that satisfies the initial conditions.

-(O) = =o, d = 0,dt

is given by

x(t)=xoe*t (coswt + Zsinwt).

where
(" 2* -~.(4MK -C 2 )Y 2.

In this (the underdamped) case. the mass oscillates about the equilibrium
point, its amplitude decreaing exponentially with time as shown in Fig-
tire 2.2.i. If C2 > 4KM, then the specific solution to Equation 2.6 satisfying
the same initial conditions is given by

X(t) = ,3 _0 o, -t- C

where

= [-C + (C.'2 - 4.1)1/21 - - (C2
-
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Figure 2.3: An external force acting on a spring-mass system

Figure 2.2.ii illustrates the behavior of the resulting overdamped system.
The important thing to note here is that. assuming M is fixed. we can vary
IT and C' to achieve different behaviors.

Control theorists are often interested in how a physical system responds
to a particular input signal. The step input, corresponding to a fixed-size in-
stautaueous change in the reference or a distirbance, provides a convenient
basis for comparing performance. In the case of the spring-niass-dashpot,
a step input might correspond to the block being displaced from its equi-
librium point or given some initial velocity. Equation 2.6 might serve as
a simple model for an automobile shock absorber. The input signal would
correspond to a force acting on the mass (e.g.. the automobile hitting a
bump in the road). The engineer designing such a system is interested in
i lie characteristics of I lie oul pt signal corresponding to the changes. in the
position of the mass. tit particular. the engineer wants to know whether or
not the control system lie or she designs is .table. A system is said to be
stable if its response to a hounded input is itself bounded. In the case of our
spring-mass-dashpot system. if we displace the mass a small amount from
its equilibrium point, it will eventually return to that point. Similarly, if we
give the mass some small initial velocity, it will also eventually return to its
equlibrium point.

Unstable systems can manifest undesirable and sometimes violent be-
havior (e.g., thermal runaway in a nuclear power pllt). Suppose that we
Plituinate the dashpot from our spring-mnass-dashpot system and introduce
an additional, external force acting on the mass as pictured in Figure 2.3.
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Figure 2.4: Transient response to a step input indicating Td (delay time)
the time required for the controlled variable to reach 50% of the target, T,
(settling time) the time required for the controlled variable to achieve and
maintain a value ±5% of the target. Tp (peak time) the time at which the
controlled variable achieves the largest value above the target, and M (peak
overshc.t) the largest value of the controlled variable above the target.

Suppose that the external force is periodic of the form

r(t) = Rsinwt

where R is a positive constant. The equation of motion is

d~z
Ml- + Kz = Rsinwt.

dt2

If w = (KIM )I/2, then the amplitude of the oscillations will increase due to
the phenomenon of resona.nce [10]. The model predicts that the oscillations
will increase indefinitely, but, of course, there will come a point past which
the mathematical model is no longer appropriate and other physical prop-
erties will come into play (e.g.. the spring breaks or the device generating
r(t) reaches saturation).

Stability is just one aspect of a system's transient response to a step
input (i.e.. the behavior of the system in transition from one stable state to
another as a result of a step input). An engineer usually is also interested
in the system's setllig time (i.e.. the amount of time it takes the system to
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achieve a state in which .ie valie of the controlled variable is within some
IliaUl percentage of the target value), the systen's strady-state crror( .c..
the percent error of the system lit the limit), and the system's ovi rshoot
(i.€.. the maximum past the tareet that the system achieves in responding
to step input). Figure 2.4 illustrates some of the important characteristics
of a system's transient respose io step input [6. 12].

Peak overshoot is a particulary imiportant transient response character-
istic in a number of applications. In some cases, the sort of underdamped
behavior shown in Figure 2.2.i is inacceptable. In attempting to restore

equilibrium, the system overshoots the target or equilibrium point. In the
case of a robot arm positioning a part. overshoot might correspond to the
part striking a surface. In the ease of the liquid-level system of Chapter 1.
overshoot might mean that the level of fluid in the tank goes above the top

of the tank, spilling fluid on the floor.
A good deal of control theory is coneprnd with analyzing the perfor-

inance of control systems with retard to criteria srech as stability, settling

time. steady-state error, and overshoot. One way to analyze a control system
is to build a mathematical model as a system of differential eqnations. solve
the equations, and then examine the behavior of the system in the time

domain. This is essentially what was done in our analysis of the spring-
mass-dashpot system above. This method of analysis can be complicated
by the fact that the equations for any reasonably complex control system
are likely to be difficult to solve. and. in order to find parameters for the
control system that provide good perforntance, it may he necessary to to
look at a large number of special cases. While there exist effective methods
for analyzing control systems in the tine domain, one of the great successes
of what is called clasical control theory has been the fevelopment of math-

ematical techniques that enable an engineer to recast a control problem as
a problem in the frequency domain. Most of these techniques rely of the use

of the Laplace transform.

The Laplace transform enables the control theorist to avoid working with
differential eqnations by replacing these generally difficult-to-solve equations
with simpler algebraic equatios. Since the Laplace transform exists for
many linear differential equal iOns etcountered in control systems design,

methods based upon the use of the Laplace transform are widely employed
in the analysis of control systems. The Laplace transform of a function of
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time. f(t). is defined as

F(s) = j ft)-' tdt = L(f(t)). (2.7)

The Laplace transform of the derivative of a function can he obtained
from Equation 2.7 using integration by parts

C (dt) = SL(f(t)) - f(O).

However. it is usually not necessary to derive the Laplace transform of a

function every time that the engineer is faced with a new problem. Ta-
bles of functions and their Laplace transforms have been compiled for most
functions commonly encountered in engineering applications.

The Laplace transform of a sum of two functions is just the sum of
the Laplace transform of the first function with that of the second. Using
this fact and the tables of Laplace transforms, the control engineer can
rather easily obtain the Laplace transform for many differential equations
used in modeling physical systems. The advantage is that the resulting
algebraic equation usually can be emily solved for the variables of interest.
The transfer function of a control system is defined to be the ratio of the
Laplace transfonn of the intput variable to the Laplace transform of the
output variable. By analyzing a control system in terms of the relation of
hie Laplace transform of the inputs to the Laplace transform of the outputs.

it is possible to gain a good understanding of the system's performance
properties.

2

To make the analysis of control systems even easier, there are tables that
provide the transfer functions for many of the differential equation relations
encounted in control systems. An engineer can design a control system using
various control components connected to one another by the way in which
they pass signals. From these separate components, the engineer can derive

the transfer fnction for the complete control system algebraically. The fa-
miliar block diagrams displayed in the control theory literature provide a
convenent graphical representation of the underlying process model. The

2 1Frqueicy-domain methods involving transfer functions are no named because they

allow the engiieer to analyse the behavior of a Pystem in terms of its reuponse to inpui of
varying frequencies and amplitudes. By evaluating the transfer function. T(s). at s = jW
for any w E R+ . we obtain a complex number. r(iwI = o(w) + j O(w). whose magnitude.

V'/( i3(0w), represents time response of tte system in steady state to a sinusoidal
input of frequency, w. in terms of the ratio of the output to the input amplitude.
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Figure 2.5: Block diagram of a control system utilizing feedback
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boxes in such diagrams are usually labeled wit h the transfer function -r the
corresponding system coniponent and the arcs indicate the signals passing
between components. Figure 2..i depicts the block diagram for a control
system in which the output of the plant is fed back through some sort of a
filter or amplifier and combined with the input to provide an error signal
used by a compensator in controlling the plant. The control system pictured

in Figure 2.5.i illustrates a simple instance of error-driven feedback. in which
the system reference signal is continuously compared with the system's out-
put in order to adjust various system parameters. 3

Block diagrams can be simplified by algebraically combining the transfer
functions of connected components according to a few simple rules (6]. For
instance, the two blocks labeled GI(s) and G2(s) in Figure 2..5.i can be
combined to form.

Gs) =Gl()G2(g).
E(a)

noting that C(s) = E(sq)G 1 (s); 2(,q). The simplified block diagram is shown
in Figure 2.5.ii. The simplest block diagram is just a single box labeled with
the transfer function for the complete control system. For instance, we can
reduce the block diagram for the system shown in Figure 2.5.11 to a single
component with input R(s), output C(O), and transfer function.

C(.,) _ G(.,)
T(s) = C0- GO=

R(s) I + G()H(,)"

noting that E(sq) = R() - I()C(,) and C() = E(s)G(O). This simplest
block diagram is shown in Figure 2.5.ii. The function. T(s), known as the
rdosed-loop tmnsfer ftnction. is the basis of many existing control systems.

Much of the control theory found in textbooks deals with what are called
lisear systet.r. A system is said to be linear iu terms of inputs and outputs if
and only if it satisfies t ie properties of superposition and hontorfneity (6J. A
system satisfies the property of homogeneity i" for any constant K and input
z for which the output of tihe system is y, if the system is input Ex. the
system outputs Ky. A system satisfies the superposition property if for any
two inputs z and Z2 with corresponding outputs y, and y2, if the system

is input ZI + Z2, the system outputs gi + y2. At first blush. the restriction
to linear systems would seem to relegate much of control theory to a purely
academic pursuit given that most natural systems are nonlinear at least

'in some texts, error-driven feedback its myonymon1 with unstpfeed6nek. cortniponding
to the can in which H(sj. in Figure 2.s.i. is the identity function.
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in some range of their variables. Fortunaiely. we c.,u develop reasonably
accurate linear approximations hv identifying almost-linear regions in the
operating range of nonlinear sYstems. If i tie natural operating conditions of
a system vary over a wide range. iiia be ntecessary to develop several linear
approximations and switch between them when necessary. This method of
switching between controllers is the basis for a technique used in adaptive
control called gain scheduling. -

Other approximations are often made to simplify analysis and imple-
inentation. For instance, it is often possible to eliminate some of the higher-
order terms in a model involving differemt ial equations. By eliminating the
higher-order terms. the subsequent anialysis may ignore effects due to high-
frequency inputs. Hopefully. these effects will not pose a problem in prac-
tice. but no model should be relied upon without careful experimentation
comparing the performance of the modeled system with that of the real one.

While we have emphasized modeling continuous processes. control theory
provides tools for modeling discrete processes as well. The discrete analog of
a differential equation is called a diffcrence equation and is used extensively
not only to model discrete systems. but also to approximate continuous sys-
tems using digital hardware. Analog computeri stM play an important role
in engineering, but, with the introduction of inexpensive digital comput-
ing hardware. a great deal of attention has been given to discrete modeling
techniques.

Digital computers are limited in that they can only sample system vari-
ables at discrete points in time. Usually. the delay between samples is fixed
of duration r. By introducing a new complex variable

we can define a discrete version of the Laplace transform called the Z- I
transform for a discrete function f(k) as

F(f (k)) = F¢:z) fk )k.

kino I

There exist techniques, analugoits to those based on the Laplace trans-
form, for using the z-transforni to analyze the response characteristics of
control systems [3]. Analysis using the z-trausform is complicated some-
what by the fact that information is irretrievably lost in a sampled system.
It is generally necessary to identify the various frequency components of the
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input signal ii, the Fourier (loiaili. and adjust the sampling rate accord-
ingly to avoid effects due to signai aiasing ( i.c.. mistakenly associating high
frequency componentsof t -5h1 lower frequency components). Ac-
cording to a theorem of -au e o alising can be avoided entirely by
,nsuring that the sampling frequencv J I/r samples per unit time) is at least
twice the frequency of the highest frequency component of the input signal
[4]. Of course. it may not he possible for the digital hardware to sample
that quickly or perform the necessary computations required to generate an
appropriate response. The problem of implementing complex control strate-
gies that keep pace with a rapidly changing environment will be addressed
frequently in this monograph.

There exist processes for which we know the form of an appropriate
model (e.g.. we know that the process can be modeled using a kth-order
linear differential equation with constant coefficients), but we do not know
the parameters of the model. For instance, the system we are trying to
model might be a black box that we know to be a single-input single-output
linear system. but the model parameters do not correspond to any known
physical parameters such as the spring constant or the damping constant
in the model for the spring-mass-dashpot system. Tn this case, it may he
possible to find values for the parameters of the model by sampling the
input and output of the system. and "fitting" the parameters of the model
to the data. This is a special case of what is called system identification,
and constitutes an important part of the lranch of control theory known ms
adaptive control [1, Ill. System identification can be done off line during
the design of the control system as prologue to the sort of analysis described
above. In adaptive control. system identification is done on line by the
control system. and the results of system identification are used to adjust
the parameters of a controller. This approach to control is particularly useful
if the physical system that you are attempting to model changes over time
(e.g.. a plant with mechanical parts that are subject to wear).

One particularly convenient feature of the mathematical models used in
control theory is that, at least as far as the analysis is concerned, what one
learns about design in one area is immediately applicable in another area for
which there exists appropriate analogical apparatus mapping the variables
between the two systems [6]. For instance, the engineer familiar with the
analysis and design of electrical control systems can often apply what he or
she knows to the analysis and design of mechanical or fluid control systems.
The basic models and their corresponding equations appear again and again.
and hence much of what is learned can be compiled into tables, tools. and
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conkbook-style methods for dealing with conimonly occtirring Spec Ac cases
[4].

In this section. we considered some of lhe basic techniques involved in
modeling physical systems. We briefly Iouched upon some of the methods
and terminology of control theory. specifically what is referred to as classical
control theory. As was mentioned. classical control is most closely associated
with analysis in the frequency domain. In the next section. we introduce a'

particular class of physical systems important from the standpoint of control.
and consider modeling techniques drawn from modern control theory.

2.3 Modeling Dynamical Systems

The techniques described in the previous section are primarily useful for
physical systems that can be modeled with a single input and a single out-
put variable. In this section. we consider systems modeled with any finite
number of input and output variables. We restrict our attention to a limited
class of physical systems called dynamical systems. A dynamical system is
defined by the following mathematical objects and axioms governing them.4

" A set of time points T C R

" A set of states X

* A set of inputs U1

" A set of outputs Y T'S
" A set of input functions 3 Ch,4ts

* A state transition function

f :T x T x X x It -X

whose value is the state xat) = f(t;r,xo) E X resulting at time
t E T starting from an initial state z(r) at time r E r influenced by
the action of the input a.

'The definitions provided here roughly folow those of Kalman (9] though we have
sacrificed rigour in some places to avoid lengthy technical commentary. Our objective
here is to set the stage for a discustsion of practical methods, and not. as in the case of
Kalann's work, the precise description of mathematical abstractions.
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We impose some additional rest ricliois. In particular. fur ally t, < t2 < t3
and a E E we have

f(t 3;tl.x.o ) = M3:t2, M2;t1..r). )-

and for any two input functions er and e' that agree on the interval (f. r) we
have

f(t;Tr. a)= f(1: r. X ').

The first of these restrictions provides a reasonable property that allows us to
compose inputs. The sec ond is often referred to as the principle of causaity
[21.5 Given an input function a E S and an interval of time (tl. t2 ], an input
segment a(t,t) is just a restricted to (tit 2]. We require that. if 0,o E 1
and ti < t2 < t3. then there exists 01" E S such that (Y" = 0 t(1 ,t2 j and
r 72 ,t3 I - t2 ,431. This last property is called concatenation of inputs [9]. andprovides us with a useful closure property for tie set of input functions.

We also assume that the response of a dynamical system is independent
of the particular time at v'hich it is exercised. We say that a dynamical
system is time invariant if the following properties hold.

" T is closed under addition.

" S is closed under the shift operator.: o' ,- aa', defined by

4(t) = c(t + s)

for all q.tE T.

" For any s. t. r E T. we have

f (t; r. x, a) = f (t + 4; r + 4.,x. Z'a)

" The output function g(t..) is independent of t.
sTbuw is a tendency ini mathematical control theory to refer to certain asumptions

or restrictions as principles. This is particularly the came where the mathematics would
be difficult or impossible without imposing some restrictions. In some cas, such as the
principle of causaity described here. the restrictions seem innocuous enough. but in others
they appear to motivated by nothing more the nmathematical convenience or nece WtY.
\Vitnes the fact that soperpopition. which underlies linearity, is often introduced as the
.principle of superposition- [9).
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We will be concerned with continuous time dynamical systems (i.e.. T is
the real numbers) and discrete time dynamical systems (i.e.. T is the inte-
gers). For mathematical purposes. we may introduce additional restrictions
such as smoothness and linearity. but it should be pointed out that many
physical systems cannot be modeled exactly under such restrictions.

We represent a continuous time-invariant dynamical system as

-i(t) = f(X(t).u(t))
y(t) = N-W),u(t))

where the first equation is called the state equation and the second the output
equation. The state and output equations typically consist of differential
equations such that for any initial state z(to) and input u both equations
have unique solutions. The discrete counterpart of the continuous system is
represented as

x(k+l) = f(x(k),u(k))

y(k) = g(z(k),u(k))

where the state equation in this case is a difference equation.
So far. we have treated states, inputs, and outputs as simple unstructured

sets. Generally, the states, inputs, and outputs have considerable structure:
it is often reasonable to -epresent each in terms of a multidimensional vector
space (e.g., R"). Each dimension of the space corresponds to a component
variable of the corresponding vector space. For instance, in designing a ! 1

dynamical system to model the fluid flow in and out of a holding tank. we
might employ three state variables, the height of the fluid in the tank. the
angle of the input valve, and the angle of the output valve. The resulting
state space would be a subset of R3. In lesigning a system to model a
robot. we might use the position in z, y, and z, and orientation in ,,,,,
and 0,., for a six-dimensional state space, R". In general, the state, input.
or output variables may be boolean. real, integer, or discrete valued, and
can correspond to any representable quantity or its derivatives, as long as
the resulting space satisfies the requirements for being a flnite-diu-sional
vector space (5). By characterizing the states, inputs, and outputs in terms
f Unear vector spaces, we can bring to bear the considerable power of linear

algebra and linear systems theory.
Much of linear control is concerned with linear time-invariant systems of

the form

*(t) = Ax(t)+Bu(t) tJ

43

. . . . . " • • • l I I I I I • I I II ml I



y(t) = C'xft)

where x is the n-dimensional state vector. u is the p-dimensional input vec-

tor. y is the q-dimensional out put vector. and A. L. and C are. respectively.
Sx 1?. n x p, and q x ii real consi ant niatrices.

As a simple example illstrating how to construct a linear dynamical
system, consider a single-degre,-of-freedom robot of mass. M. acted upon
by a force. .r. Let z be the position of the robot iu some arbitrary frame

of reference. We assume that the plate of motion is horizontal and that

there are no frictional forces acting on the robot. The relationship between

position. r. and the force. '. is completely determined by Newton's second
law of motion.

The dynamic behavior of the robot can be described in terms of the position

and velocity of the robot. and. hence. we deline the state vector to be.

x(t)= [ (t].
XM (t)"

Equating the system ontpii t and the system state. we can write do -n the

state and output equations as followr.

xtO 0 1 XM

ylt) = xft)

Generally. the system output contains incomplete information from which

it is necessary to reconstruct the system state. In subsequent chapters. we

consider some of the issues involved in attempting to infer the system state

from incomplete information.
The restriction of linearity is a critical one that causes some researchers

to dismiss much of mathematical control theory as a purely academic pursuit
with no practical consequences. Most physical systems are nonlinear, and.

hence. we can only approximate these systems using linear models. In many
cases. such approximations are valid over only a limited range of the systems

operating conditions. While these problems make it difficult to apply results

from linear systems theory. the methods of linear systems theory are so

powerful that the effort is often well spent. It seems unlikely that a general

method for analyzing nonlinear systems will emerge (71. and that instead
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Figure 2.6: Inverted pendulum mounted on a cart

researchers will divide the class of nonlinear systems into a set of more
manageable subclasses for which there exist special methods of analysis,
much of which will be based on ideas drawn from linear systems theory.

To illustrate how to approximate a nonlinear system by a linear one. we
consider a classic example in control that involves modeling an inverted pen-
dulum mounted on a cart that can move back and forth along a horizontal
track. This problem is often cited as an analogue of the problem of control-
ling a missile balanced atop its booster rockets [6,*8]. The presentation here
follows that of Gopal [8]. We assume that the controller can exert a force
on the cart to propel it to the right or left along the horizontal track. Let
z be the horizontal position of the cart's center of gravity, and z + L sin 0
time horizontal position of the center of gravity of the pendulum. where L is
the distance from the pivot to the center of gravity of the pendulum. Simi-
larly, L coo0 is the vertical position of the center of gravity of the pendulum.
Figure 2.6.i shows the basic configuration of cart and pendulum.

The state of the system is completely described by the position and
velocity of the cart and the angular position and angular velocity of the
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pendultUii. Thus w have lie state Vector:

[ :(t)l
of t)

In order to set tip t lie dynamical equations. we have to establish somrn.
additional parameters. Let in he the mass of the pendulum. M the mass of
the carriage, and J the moment of inertia of the pendulum with respect to
its center of gravity.

The forces acting on I he lpendului are tihe force of gravity, ig, acting on
its center of gravity, a horizontal reaction force. H. and a vertical reaction
force. 1'. Figure 2.6.ii depicts the forces acting on the pendulum and the
cart. Taking moments about tihe center of gravity of the pendulum, we have

JAt) = I'Lsin0(t) - HLcos0(t).

Summing all of the forces acting on the pendulum in the horizontal and
vertical directions. we have

d
2

V-rng = M-3(Lcos6(tl)

S d2

II= m-d2(zlt) + L sin 8(t)).

Summing all of the forces acting on the cart, we have

u(t) - I = M(t),.

where edt) is the (control) input.
Since the task is to keep the pendulum upright, we will assume that 0

and 9 will remain close to 0. On the basis of this assumption. we make the
standard approximations. sit 0 0 and kos 0 1. obtaining

(J- mL 2 )O(t)+ mL-F(t)- mgLl(t) = 0

We introduce values for the remaining parameters.

Al kg, in = 0.15 kg, L = 1 in
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Using any mechanics or physics textbook. we get C7

g 9.81 m/sec 
2

j = 4,L2 =0.2kgm 2

Using these equations and parameter values. obtain

0.15O(t)+ 151(t) = u(t)

0.35i(t)+O.15.-(t)-O.15x9.810(t) = 0 (7 V Q"

to arrive at the following state and output equations for the dynamical

model:
f~.0 1 0 0

.0 0 -0.5809 0.9211
. x(t) = 10 0 0.921+u(t)

0 0 .., - 0 -0.3947

= Ax(t)+Bu(t)

y(t) = [0 0 1 olx(t)
= Cx(t.

where we assume realistically that the only component of the output that
is directly observable is the angle, 0, corresponding to the tilt of the missile
in the case of the booster rocket.

In Chapter 4, we highlight results from linear systems theory that allow
us to establish important properties (e.g., stability and controllability) of

dynamical systems, using simple tests on the matrices that define the state
and output equations. The inverted pendulum is particularly interesting as
it represents a dynamical system that is not stable, but is controllable.

Before leaving this chapter, we introduce some additional concepts and I

terms. We will develop similar concepts in the next chapter, in some cases

using the same terms and in other cases introducing new terminology. Where
the terminology differs, we will point out the conceptual similarities. An
event is simply a pair consisting of a time point and a state (e.g., (t, x)

where t E T and z E X). The event (or phase) space is the space of all
possible events, T x X.6 A state.space trajectory is simply a mapping from

eVe follow Kalman [9] in our tne of the term phase npace. You may also see the term
used to refer to the space of possible positioma and velocities. A state variable obtained
from a system variable and its derivative is referred to as a phase variable (8).
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I lie real interval to I lie state space. h : [0. 1] - X. defined bY a particular
r1a-insitioul function. r. in put. .. Anid initial Wilditiolls. .1-10) =Z~ xni lithe

following chapter. we turn our attentiont to the use of logic ini modeling
p)hysical systems.

2.4 Further Reading

For a general introdincrtion to mocdeling from the pe-rspective of control. se
t le texts by Dorf [6] or Bolliniger [3)]. For ani emiphasis on modern control.
time-domain analysis. and. in particular. linear system theory.%"e ("'hen [.51
or Gopal (8]. Our treatinent of dynamical systemns follows that of Kalman;
Kalmnan's chapter in (9] provides a. very general formulation of dynamicalI
systems and an ;mitroducrioni to the necessary mathematical abstractionsp.
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Chapter 3

Temporal Reasoning

Section 3.1 considers the use of temporal logic in reasoning about processes
with an emphasis on the issues that arise in dealing with incomplete infor-
mation. The temporal logic makes use of the differential calculus to reason
about continuously changing parameters while at the same time providing
precise semantics for reasoning about discontinuous change and incomplete
information. In Section 3.2, we develop a computational language imple-
menting many features of the temporal logic, and investigate some issues
that arise in building practical systems for modeling processes.

3.1 Modeling Change in Temporal Logic

In this section, we consider methods for modeling physical systems based
upon the first-order predicate calculus. We begin by identifying the sorts of
entities that we need to reason about. Whereas the methods of the previous
chapter focus on the behamor of renv.alued vrables over time, in this sec-
tion the representations are designed primarily to facilitate reasoning about
the truth value of propositions at various points in time. The propositions
that we consider may correspond to statements about the value of real-
valued variables, but we are not restricted to statements of that form.

Thee is a long history of calculi for reasoning about time in philoso-
phy, computer science, and artificial intelligence. Rather than debate the
advantages and disadvantages of the many existing techniques, we take the
expedient of adopting a particular temporal logic that suits our basic needs
for modeling physical systems. We then augment that logic to handle the

0(0190 Thorns. Dean ad Michael Wellma. AH rights ruervd.
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s-ecific requirements of the applications considered in this monograph. In
Section 3.3, we briefly consider some competing approaches to reasoning
about time and provide references to papers dealing with complications not
adequately addressed by our treatment.

To model physical processes, we need to reason about the truth of propo-
sitions over intervals of time. The propositions correspond to properties of
the world that are subject to change over time. For instance, we might want,.
to say something about whether or not a particular furnace is turned on
at a particular time; to do so, we introduce a relation, on, and a constant,
fuznace17, denoting the furnace that we have in mind. Since the furnace is
on at some times and off at others, the proposition, on(hzn-acel7), must
be interpreted differently with respect to different times. The temporal
logic that we employ here is essentially a calculus for reasoning about the
associat on between time intervals and propositions.

In the following, we choose to treat time points as primitive and reason
about intervals in terms of points. Time points are denoted t or ti, i E Z
(e.g., %I, t2). Variables ranging over time points are denoted t or 4., i E Z
(e.g., tI, t2). Later when we incorporate our temporal notation into Paoioo,
we wit adopt standard PioLoG syntax and notate time variables ua T or
Ti, i E £ (e.g., T1, T2). We introduce a binary relation, , on time points
indicating temporal precedence. If ti and t2 are time points, then (tl,t2)
is an interval. The formula ((tI,t2),p), where p is a propositional symbol,
allows us to refer to the association between (:T,:2) and p. Following
common practice in artificial intelligence, we substitute holds(t I ,t2,p) for
((:1 ,t2),p). The full specification of the syntax for the logic is described
below.

1

" TC: a set of time point symbols

" C: a set of constant symbols disjoint from TC

" TV: a set of temporal variables

" V: a set of variables disjoint from TV

" TIP a set of fixed-arity temporal function symbols

" F: a set of ftxed-arity function symbols disjoint from TF
1The sytaz for the Azt-order con and the emaatics for the propomtional case are

bonowed directly from Shoh-m (Se.
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e R: a set of fixed-anity relation symbols

9 -<: a binary relation symbol

The set of temporal terms (TT) is defined inductively as follows:

1. (TC U TV) C TT

2. If trmi E TT,..-, trm,, E TT, and :f C- TF is an n-mary function
symbol, then f (trii, ... , trm.1 ) E TT.

The set of nontemporal terms (NT) is defined similarly with TC replaced by
C, TV replaced by V, and TF replaced by F.
The set of well-formed formulae (wffs) is defined inductively as follows:

1. If trins E TT and trin0 E TT, then trm. = trm4 and trm-< trmb are
Wifs.

2. If trm. E TT and trrn.E TT, trmi ENT,...trm, E NT, and rE R
is an n-ary relation symbol, then
holds (trm, trmb, r(trml, . -., trm.) ) is a wff.

4. If W is awff and z E(TV UV), then Yzjp is awff.

We assume the standard definitions of V, , ,and 3, and we make use
of the following shorthand: 2

holds (tj ,t 2 , -W) * ',holds (t1 ~t2 IW

and so on. Finally, since the structure of time is generally isomorphic to
the integers or the reals, we assume that the addition and subtraction of
temporal terms is well defined. For instance,

is meant to indicate that w holds in any interval longer than five minutes.
By introducing appropriate relation and function symbols, we can de-

velop notations for representing a variety of phenomena using the above
syntax. For instance,

3Note that the left-had sides axe not well formed; hence, we urn,* indicating a rewrite
rule rather that * indicating logical equivalence.
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holds (t I, t2, t .,p (room32) > 72*)

is meant to represent the fact that the temperature in a particular room
is greater than 720 throughout the interval (tl,t2). The following three
formulae illustrate the use of quantification.

V t, t3
holda(h ,i 2 , (-'on(furnace17) V tezp(rooz32) >720))

Vtl ,t2 Dr

holds(t,t 2 , (on(furnace7) A in..roo(rhouse32)) D
holds(t ,t2,tep(r) >720)

Vtl,t 2 ,t 33 t4 3s,re
((l- t -< t-< 4) A ((t3 - t2) > 30ri.) A
holds(tI ,t4 ,eap (outside) <20") A
holds(t 2 ,t3,t=ep(room32)>700)) D

( (t-< ts-< t6 t3)/A holds (ts tG, on(furnacel7)))

The first formula is meant to represent the fact that it is always the case
that either the temperature in a particular room is greater than 72 or the
furnace is not on. The second formula is meant to represent the fact that,
whenever the furnace is on, all of the rooms in the house are above 72. The
third formula is meant to represent the fact that, if the temperature in a
particular room is greater than 70* throughout an interval of greater than
30 minutes in length during which the outside temperature is less than 20*,
then the furnace was on for some subinterval of duration 5 minutes or longer.
There are also things that can not be represented in this logic. For instance,
the logic is not powerful enough to repment the fact that the furnace was
on for at leut 5 minutes during a given 10 minute interval, where that 5
minutes could be spread out over an indeterminate number of subintervals.

We introduce some additional notations and conventions to simplify our
notation. To simplify making statements about an assertion being true at a
time point, we introduce the following abbreviation:

Vt holds(tt,wo) -holds(t,o)

It will fr quently be useful to state that certain properties are timelessly
true; for convenience, we define the "always" operator, 0, as

Vt, t2 holds(tl, t2,W) - 35
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'inally, we dispense with universal quantifiers that range over a textually
isolated formula and assume that all free variables are universally quantified
of scope the entire formula in which they are contained. For instance, in the
following formula

holds (t , t2 , (-on(fu-nace 17) V t emp (room32) > 720 ))

we assume that the two temporal variables are universally quantified.
The two things that logicians are most concerned about in a logic is its

proof theory and its semantics. Since we will not be concerned with proving
theorems in the traditional sense, we will not bother with a proof theory
for our logic. We are, however, concerned that our notations have precise
meaning. Later, when we consider an algorithm for deriving statements
from a set of other statements, we want to be assured that our conclusions
are valid; for this, we require a semantic theory for our temporal logic.

Intuitively, the formula holds(ti t2,,on(turnacel7)) should be true
just in case the furnace is on at every time point between ti and t2. In
a modal logic, we can make that intuition concrete by thinking of time
points as pomble worlds. A possible world roughly corresponds to a model
in traditional Tarskian semantics (i.e., an assignment of true or false to
each proposition). The dfferent possible worlds are related to one another
by the ordering relationship _' . In the first-order temporal logic presented
here, we take a different approach to characterizing the meaning of formulae;
we think of each proposition (e.g., on(fuznacel7)) as denoting a set of time
intervals. In this case, holds(cl,t2,on(furnace17)) should be true just
in case (t1,t2) E on(fu-nacel7). To make this more precise, we provide
the semantics for the propositional form of our temporal logic.3

The propositional cae of our" temporal logic is similar to the first-order
case described above with the exception that there are no nontemporal vari-
ables, constants, or function symbols, and, instead of complex terms and
relations, we have P a set of propositional symbols. In order to communi-
cate the essential semantic properties of the logic, it should suffice to provide
the nmtics for the propositional case.

An istepretation is a triple (TW, _, M) consisting of a nonempty uni-
verse of time points, TW; a binary relation, 5, on TW; and a two-part
meannlufunction, M = (MI,M2), where M : TC -. TW and M 2 : P-
2TW xW.

'The propostional intervl logic allows quantifcation oer time points as in the firt.
order case, but is restricted so that jo in holds(ti .ti.p) is a propostional formula.
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A variable assignment is function VA: TV -- TW. If u E (TCu TV),
we define VAL(u) to be MI(u) if u E TC, and VA(u) if u E TV. An
interpretation S = (TW, <, (MI, M 2)) is said to satisfy a wif w under the
variable assignment VA (written S W[ VA) under the following conditions:

1. S (Ul = U2 )[VA iff VAL(ul) = VAL(U 2)

2. S (ui: u2)(VA] if VAL(u1 ) < VAL(u)

3. S = holds(ul, u2 , o)( VA] if" (VAL(ut), VAL(u 2 ))E M2(W)

4. S (oi A 2)[ VA] ifS 5 1(, VAJ and S 1= (P2[ VA]

5. S ^ VA) ifS S [VVA]

6. S (Vvg)[VA] if S Wo[VA') for all VA' that apes with VA every.

where except possibly on v.

An interpretation S is said to be a model for a wff j (written S o) if
S W[VAJ for all variable assignments VA. A wif is said to be saisfiable if it
has a model, and a wff is said to be valid (written = w) if its negation is not
satisfiable. We will have to augment the above semantics as .e extend the
logic to handle more complicated forms of inference, but the basic semantics
relating temporal intervals and propositions will be retained.

In order to reason about processes, it is often natural to speak in terms
of events that precipitate change in the world. For instance, the toggling
of a switch corresponds to an event that has as a consequence changes in
an electrical circuit. The occurrence of an event corresponds to a particular
type of proposition holding over an interval. Shoham [581 provides a clas-
sification of proposition types that enables us to disdignish between those
corresponding to the occurrence of events and those corresponding to other
sorts of phenomena.

Most of the propositions that we have seen so far (e.g., on(Thrnace),
tinp(zoc32)>70) are said to be lipuid in Shoham's classification. A
proposition type is liquid if, whenever it is is true over an interval, it is
true over every subinterval (except possibly the endpoints), and, addition-
ally, wmever it holds for all proper subintervals of some nonpoint interval
(except possibly the endpoints), it holds over the nonpoint interval. Events
are generally thought of as corresponding to propositions that are not liquid;
they are said to be gestalt in Shoham's classification scheme. A proposition
type is gestalt if, whenever it holds over an interval, it does not hold over
any proper subinterval. To emphasize the role of events in reasoning about
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change, we -je ocCux3(tj ,t 2 , P) instead of holds(t 1 ,t 2 ,p) where (p is a
gestalt proposition type corresponding to the occurrence of an event.

Suppose that the set of time points is isomorphic to the integers. For
any given time point t, there exists a unique next time point t + 1. We can

specify a simple law of change as follows:

RI: (holds(t.-on(furnacei7)) A

occurs (t, toggle (svitch42))) D holde(t + lon(fuznac.17))

Of course, this rule is not quite right; the furnace does not always come
on when you toggle its switch. Use "axiomn" insted of "rule." Indicate
that what we relLy want s a weaker approximation of Ri, but that we can-
not provide such an approximation within the classical logic. The fuse on
the circuit feeding power to the furnace has to be intact, the furnace has
to be mechanically and electrically sound, and any number of additional
conditions must hold in order for the furnace to come on as a consesuence
of toggling its switch. Unfortunately, it generally will not be possible to
enumerate all of the necessary conditions, and, even if you could enumerate
them, the rule would be useless given that you could never know enough
to establish whether or not all of the conditions are met in a given situa-
tion. The conditions specified in the antecedent of a rule such as RI ae
meant to correspond to conditions that are readily known and usually suf-
ficient to warrant the conclusion. The idea is that, if you frequently come
to the right conclusion and only occasionally come to the wrong conclusion,
then the small reduction in reliability will be offset by potentially enormous
computational savings.

However, even if you are willing to accept the reduction in reliability that
results from using Ri, y*ou may not be willing'to accept another, more serious
consequence of using rules of this form. The more serious consequence has
to do with handling situations in which it is known that some necessary, but
unaccounted for condition is not satisfied. For instance, you may know that
the fuse on the circuit providing power to the furnace is open, rendering the
switch anless. Unfortunately, the consequent of RI still follows from the
atecadmt and you are left with a conclusion that you know to be false.
WhM you would like to say is that the furnace will be on if you toggle
its switch wiles you have some information to the contrary. Formalizing
this sort of inference is actually quite complex. The problem of reasoning
about the conditions required for an event to have a given consequence
is referred to as the qualifwction problem and is of considerable interest
to reseaxrchers working ii the area of default reasoning and nonmonotonic
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logic. We introduce some additional synt- x that attempts to address the
qualification problem as follows:

R2: (holds(t,-on(furnacei7)) A
occurs (t,toggle(switch42)) A
-abnoral (R2, t)) D holds(t + 1,on(furnacel7))

where abnorzaI(R2, t) is meant to indicate that R2 is inappropriate to apply
with respect to t; in this cue, R2 is said to be disabled. The status of the
abnormal antecedent in R2 is different from that of the other two antecedents
in the rule. The intent " that the conclusion should follow as long as there
is no evidence that the rule is abnormal. We can now add rules that will
serve to disable 12 in appropriate circumstances. For instance,

QI: (holds(t,open(fus.43)) A occuzs(t ,toggle(switch42)))
abnormal (R2, t)

indicates that the conclusion of R2 is not warranted whenever a certain fuse
is open.

The intent behind R2 is that holds(t+ I ,on(furnace17)) should follow
from the axioms (i.e., be a theorem) just in case holds (t, -on (furnace 17) )
and occuzs(t, toggle(switch42)) follow, and -'abnormal(l2,t) is consis-
tent with the axioms. Unfortunately, if you use such a criterion to construct
the set of theorems, you may get different answers depending upon the or-
der in which you consider candidate formulae for membership in the set of
theorems. In some cases, we can avoid ambiguity regarding the set of theo-
rems by requiring that only a minimal number of abnormalities are allowed
to occur. We can make our intended meaning precise by augmenting our
semantic theory.

First, we introduce the idea of a partial ordering or preferwnce, <, on
models for a given set of axioms. Let r be the set of axioms describing how
events precipitate change in the world. r would include rules such as R2,
qualifications such as Qi, and additional axioms indicating initial conditions,
obsarntions, or proposed actions. We denote the set of all models of r (i.e.,
{m : m = r)) by Mod(r). Assuming that there are no infinite (descending)
sequencbs of models M, M2, M3... such that M3 < M, M3 A M, ,..., the
notion of the set of all minimal (with respect to <) models is well defined;
we denote this set as Min(<, Mod(r)). We define a particular < such that
MI < M2 just in case:

1. M and M agree on the interpretation of all function and relation
symbols other than abnormal.

57



2. For all x and t, if MI abnorma.(z, t), then M 2  abnormal(z, t).

3. There exists some z and t. for which M 2 = abnormal(z, t),
but Mt1 J abnormal(, t).

We say that r preferentially entails W with respect to < (written r <, o)
just in case

V ME Min(<, Mod(r)), m .

To illustrate, consider the following two observations:

01: occurz(I,toggle(switch42))

02: holds(.-on(furnaceTi7))

indicating that the furnace was not on at time point 1, and that the switch
was toggled at that time. Suppose that the set of axioms is

r = {01,02,R2,QI}.

In this case, holds (2,on(furnacel7)) is true in all models minimal with
respect to <, and, hence, we have

r = holds(2, on(fuznace17)).

Unfortunately, there are situations in which our augmented semantics runs
counter to our expectations. For instance, suppose that we complicate our
furnace scenario, and add a new rule indicating that, whenever a power surge
occurs and we have no reason to believe that there are other complications,
the fuse on the circuit providing power to the furnace Qverheats, leaving the
circuit open.

R3: occurs (t, surge) A -abnornal(R3,t) D holdl(t + 1. open(fus.43))

In addition, suppose that we have observed a power surge at time 0.

03: occurs(, surge)

Give the set of axioms

r = {1, 02, 03, R2, 3, Q1},

one might expect to conclude:

Cl: holds(i,open(fuse43)) A -holds(2,on(furnace(17))
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However, while there are models minimal with respect tr < that satisfy Ci,

there are also minimal models satisfying:

C2: -,holds (i, open(fuse43)) Aholds(2,on(furnace(17))

It seems more plausible that evidence for an abnormality come from the past
rather than from the future; hence, we should prefer models that allow us to
conclude C1 over those that allow us to conclude C2. In general, we prefer
models in which the fewest abnormalities occur, and those that occur do so
as late as possible. The minimal models with respect to this preference are
said to be chronologically minimaL. We make this more precise by defining
a new preference, <t, such that M1 t M2 just in case there exists a time
t such that:

1. M1 and M2 agree on the interpretation of all function and relation
symbols other than abnorual.

2. For all z and t'-4 t, if -M2  abnorual(z, t'), MI abnorual(z, t').

3. For all z and t'e- t, if M1  abnorua.(z, t'), M2 J abnorual(z, t).

4. There exists some z, for which M2 J abnoral(z,t),
but MI 0 abnorual(z, t).

Given the set of axioms {01, 02, 03,R2,R3,Q1}, C1 is true in all models min-
imal with respect to <j.

The above discussion outlines some techniques for reasoning about what
things change as a consequence of events occurring, but we haven't said
anything about what things do not change. If you toggle the switch to the
furnace, what happens to the color of the car in the garage? Presumably the
color of the car remains the same as it was before you toggled the switch,
but the axioms do not support this inference. We could provide an axiom
like

R4: (holds(t.color(car46)) A
occurs (toggle (sitch42))) D holds(t + 1,color(car45))

but we would have to write a lot of axioms: one for each event/proposition
pair,4 and more if we are to account for combinations of events happening

'We would also have to add an "abnormal* condition w in R2 to handle that rae, but
pasible ituation in which toggling the switch to your furnace somehow does change the
color of yout car.
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at the same time. R4 is called a frame iom, and the problem of reasoning
about what things do not change as a consequence of an event occurring
is called the frame problem.5 In considering how to deal with the frame
problem, we begin by considering the case in which time is modeled after
the integers.

In the following, we attempt to augment our temporal logic so that
propositions, once they become true, tend to persist in lieu of any informa-
tion to the contrary. This augmentation is often referred to as the default
rule of persistence [43), or the common-sense law of inertia [37). The jus-
tification for adding this default rule is not based on any natural law. In
fact, it does not appear to be appropriate for reasoning about propositions
in general. We claim, however, that it is appropriate for reasoning about
propositions describing many of the processes that we humans cope with on
a day-to-day basis. This claim is based on an assessment of our perceptual
and cognitive capabilities; we simply cannot cope with processes whose im-
portant properties are not discernible by our senses or that change so rapidly
or seemingly randomly that we cannot keep track of them.

We begin by introducing a special case of abnormality. Since propositions
tend to persist, times at which they change should be rare or abnormal. We
refer to the abnormality in which a proposition W changes its truth value at
time t as a clipping, and notate it as clips(t, o). Note that there are prob-
lems with our treatment of clipping. In particular, the predicate clips ranges
over other predicates. We took care to indicate that holds (t , t2 , o) toa just
syntactic sugar for ((tI,tI),(o), but here we will probably j st let it slide rather
than get bogged down in complicated details.

The following axiom schema allows us to infer clippings in appropriate
circumstances:

ASI: (holcls(t, o) holcds(t+ 1,- ))Dc lips(t, p)

The common-sense law of inertia is captured in the following formula, which
is logically equivalent to ASI:

A32: (holds(t,(0)A-clips(t,0)) Dholds(t+ I p)

Since theorems of the form -clip. (t,jo) generally do not follow from
the axioms, for any t and Wp, there will be models in which -clips(t.ip)

"The name derives from the intuition that since very little changes from one frame to
the next in a movie film, if you are told what does change, it should be m"pie to iner
what does not (42].
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is true and those in which it is false. We can use the same basi tech-
nique of minimizing temporally ordered abnormalities (i.e., clippings in this
case) that we used to deal with the qualification problem to ignore models
with unwanted or unmotivated clippings. However, we have to be careful
that clippings and other sorts of abnormalities do not interact in a coun-
terintuitive manner. One way to control unwanted interactions between the
two different sorts of abnormalities is to prioritize them using the following,
modification of <t:

2'. For all z and t'-< t, if M 2  abnormal(z, t'), then
MI abnorza.(z, t'), and, if M 2  = clipa(z, t'), then
M,! = clipu(z,t').

3'. For all z and e__ t, if MI abnorza.(z, t'), 4hen
MA2 = abnorzal(z, t'), and, if MI t= clip(z,t), thenM2 I= lJp,(Z, t').-

4'. Either there exists some x, for which M! I= clips(z,t), but
MI 06 clips(z, t), or for all z, if M2  clipa(z, t), then
M1 I clipe(z, t), and there exists some x, for which
M2 = abnora(z, t), but MI 4 abnoxual(z, ti.

Chronological minimization does not always perform according to our
intuitions. To explain why not, we distinguish between two different sorts of
temporal reasoning, referred to as prjection and epla ation.6 Projection is
the problem of reasoning forward in time from some initial state of affairs to
determine the future course of events. Explanation is the problem of reason-
ing backward in time from some final state of affairs to determine the past
course of events. Chronological -inimization satisfies most of our intuitions
regarding projection; unfortunately, it provides some rather counterintuitive
results regarding explanation. For instance, suppose that the furnace is ob-
served to be on at 9:00 in the evening and off at 8:00 the next morning.
Chronological ignorance would have us conclude that the furnace was on all
night and was turned off at the last possible moment before it was observed
to be of at 8:00 AM. This inference strikes most as completely arbitrary,
and Is therefore an undesirable consequence of chronological riniiation.

There hu been a significant amount of work on designing a temporal
logic that satisfies our intuitions regarding both projection and explanation,

aHee we meme the determustic versons of thes probltema i which a spefled initil
[final) state of alins uniquely determines the succeeding [preceding] course of events. Note
that deterininm in one direction does not necessarily imply the other.
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and we will review this work briefly at the end of ais section. Most of
the deterministic problems that we consider in this book can be posed as
projection problems of one sort or another. There is a real advantage to be
had in casting a problem in terms of just projection or just explanation. In
particular, the decision procedure Used to automatically derive conclusions
from a given axiomatic theory can exploit the (often linear) structure of
time to expedite inference resulting in substantial computational saving.
We return to deal with computational issues in Section 3.2.

Thus far, we have focused on modeling techniques that ame suitable for
reasoning about processes in which both time and change are discrete. While
discrete modeling techniques provide suitable approximations for many con-
tinuous processes, we will find it convenient to extend our temporal logic to
reason about continuous time and change. From now on, we assume that
time is isomorphic to the reals. We have to reformulate the axiom schemata
for dealing with the frame problem to handle continuous time.

AS2': ((t-<t-<t-) Ahods(tI,tjp) A

In addition, our rules of change will look a bit different. For instance,
we might change R.2 to look like:

R.21: ((t, -<t) Aholds (t, ,t, -on(furnac.17))A
occurs (t, toggle (switch42)) A -abnozzai(Rt2 ,i)) D

3t 2 ((t +O)-t 2 ) Abolds(t+ ,t,,ou(uzacel7))

where e corresponds to a small delay betwoku the time that the owi~tch is
togged and the time that the furnace actually is on. This delay is meant to
capture the intuition that causes precede effects. The delay is particularly
appropriate here in that, were we to allow simultaneous cause and effect in
this particular case, we would have an instant of time in which the furnace
was both on and off.' This has to be correcterL We still have the problem
that the furnace is both on and off at some time.

'This need not be true. We have not been careful to state whether or not out intervals
(t1tjs) are closed, half open, or what. From our treatment of degenerate intervals (e.#.,
(t,t)), however, one maight conclude that at least some intervals are dlosed. The additional
notation and machinery necessary to resolve all of the issues concerning the status of
time intervals is not deemed worthwhile fat this discussion. We will Continue to avoid
inch issues wherever possible, admitting that they wouild have to be resolved in a more
complete treatment.

62



Say something more about the preference criterion for continuous time.
We will also find it useful to reason about quantities that change con.

tinuously as functions of time. Rather than invent new machinery within
the interval temporal logic, we will try to import into the logic as much of
the differential calculus as is needed for our anticipated control applications.
Our treatment here roughly follows that of Sandewall [54.

First, we introduce a set, U, of real-valued parameters closed under th$.
differential operator, 8. If u E U, then 8"u E U, where 8% is the nth
derivative of u with respect to time. We can trivially extend the syntax to
represent statements about the values of parameters at various time points.
For instance,

holds(t1,t2,y = 3.1472)

is meant to indicate that the parameter y has the value of 3.1472 through-
out the interval (ti ,2). By restricting y to remain constant throughout
the interval (tl,t2), we also restrict Dy to remain 0 throughout the same
interval.

To guarantee this intended meaning, we have to augment the semantics
somewhat. In addition to a set of parameters U, we assume that each
interpretation includes a function Q : (R x U) -. R, where we employ the
set of real numbers, R, for the set of time points as well as for the set of all
parameter values.

Since we will find it convenient on occasion to model abrupt changes in
the value of parameters as they change over time, we introduce the notion
of a breakpoint We assume that a physical process is modeled using a set
of differential equations that describe continuous changes in the parameters
over intervals of time, and a set of axioms that determine what equations a e
appropriate over what intervals. Breakpoints are times at which the axiom
signal a change in the differential equations used to model a given quantity
or set of quantities. Generally, at a breakpoint, there is a discontinuity in
some time-varying parameter.

N& have to augment the semantics to account for the behavior of param-
eters with respect to breakpoints. Each interpretation must include a set of
breakpoaints S C R, so that for all u E U, Q(t, u) is continuous over every
interval not containing an element of S, and for all t % 5, 1 = Q(t,814).
Strange things can happen at breakpoints, but not so strange that we will
allow a parameter to take on two different values. To avoid such anomalies,
we will have to introduce some additional machinery.
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At time to, we have a set of differential equations and a set if initial

valuess for all of the parameters; thdse equations and initial values are known
to hold until some indeterminate time tI, when a breakpoint occurs and

the axioms determine a new set of differential equations and a new set
of "initial" values. In order to establish breakpoints and the values for
parameters immediately following breakpoints, we need to refer to the values

of parameters "just before" and "just after" breakpoints. To do so, we defite
the left and right limits of a parameter z at time t as: A

Q(t, Z l . im Q(,:)

Q(t,Z') d r )

A dicomnuity occurs at t with regard to a parameter z whenever the left
and right limits are not identical:

Q(t, z) # Q(t,zr)

As long as there are no discontinuities, the differential equations tell us
exactly how the parameters vary with time. The aioms determine when
breakpoints occur and what differential equations and initial conditions
should be used to model processes between breakpoints. Discontinuities
play a role in reasoning about real-valued quantities analogous to the role

played by clippings in reasoning about the persistence of propositions. Just
as the axioms do not rule out spurious models resulting from unexplained
clippings, neither do they rule out models resulting from unexplained dis-
continuities.

Consider the following example. Suppose that we have two'objetts mov-
ing toward one another along a horisontal line. To keep the example simple,

we assume that the surface is frictionless, the objects are represented as iden-
tical point masses, and there are no external forces acting on the objects.
Let a, and z2 represent the parameters corresponding to the position of
the Aut and second objects, respectively, as measured from some reference
on the horisontal line. At time 0, the first object is located at position 0,
and the second object is located 10 meters to the right. A positive velocity
indica*m movement to the right. We make use of the standard notational
conventions for position (z), velocity (Oz = i), and acceleration (82z = i).

Here are the axioms indicating the initial conditions:

sit i aot aecmmyz that the aioms establish the exact valum for all parametes. The

lo*e duacbed here is wel-suited to reasoning about inequalities mad parameter rtam.
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holds(0,zl = 0) holds(0,z2 = 10)

holds(0,zl = 2) holds(0.z2 = -3)

holds(O,il = 0) holds(0,i2 = 0)

where velocity is in units of meters per second. The next axiom determines

the new velocities immediately following a collision breakpoint.

3 = ^2) A ((i - z) > 0)) D ((4 = i) = "ir))

For the most part, the propositions corresponding to equations involving
the parameters in U are constantly changing. In order for us to make useful
predictions, however, certain equations have to persist over intervals of time.
Suppose you are told that at time to, z = 0, * = 2, andf = 0. If : = 0
persists, then there will be discontinuities in i and i. If i = 0 persists, then

= 2 has to persist or be discontinuous in order to avoid a discontinuity
in *, and z is completely determined by * = 2. However, if none of : = 0,
z = 2, or i = 0 persist, there need not be a discontinuity in any one of z, ;i,
or :, but neither is there any way of predicting the changes in a over time.
In this example. we force an interpretation by stating that the accelerations
for the two object a art always 0.

O((i 1 = 0)A(i 2 = 0))

Using a preference analogous to <, that minimizes discontinuities, there
is a single discontinuity in the acceleration of the objects two seconds after
time 0, after which the objects, having exchanged velocities, head in opposite
directions forever. We assume that the values of parameters ar established
in intervals not containing breakpoints by differential equations.

Note that, by our defnition of clipping (ie., axiom schema ASl'), a
discontinuity is a clipping only in the case that the discontinuity immediately
follows a positive length interval in which the parameter is constant. We
distisgish propositions corresponding to real-valued parameters taking on
speifi values (e.g., i = 2) from propositions corresponding to truth-valued
param (e.., on(furnace17)).

In to previous example, D((!, = 0) A (iz = 0)) serves as the model
for xI and za. In other cases, it may be convenient to infer a change in a
model that persists over some indeterminate interval of time, just as we are
able to infer changes in propositions that persist over intervals of time. To
handle this sort of inference, we introduce a particular type of proposition
puod(z, m) where z is a real-valued parameter and m is a model for z. If
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m is an nth-order differential equation, then it is assumed that the nth-
order equation determines all higher-order derivatives, and all lower-order
derivatives are known as part of the initial conditions. By stipulating Q(i =

0), we implicitly indicated holds(O,p-od(z,z = 0)) and that z = 0 and
z = 2 were the initial conditions at 0. Propositions of the form psod(z, m)
persist according to chronological minimization. To illustrate how models
might change over time, consider the following example.

Suppose that we want to reason about the temperature in a room heated
by a furnace, and suppose that the furnace is controlled by a thermostat set
to 700. To make the example more interesting, suppose further that the
thermostat has a 40 differential (i.e., the furnace starts heating %Then the
temperature drops to 68* and stops v'hen the temperature climbs to 720).
To represent parameters "dropping to" or "climbing to" certain values, we
define trans((± I T],u,v) where u E U and v E R as follows:

holds(t, trans(fj I T], u,0))=
(Q(t, u) = v) A (3t'.-< t, vt'-< t"-< t, Q(t", u)[> I <]Q(t, u))

Propositions of the form tramns( Q I T],u,v) are used to represent point
events of the sort that trigger changes.

To model changes in the room's temperature when the furnace is off, we
use Newton's law of cooling

dr
= -. (r- a)

where r is the temperature of the room, a is the temperture outside the
room, and mi depends on the insulation surrounding the room. To model
changes in the room's temperature when the furnace is running, we use

dr = M2(f- ,.) - ,,(.- a)

whee f is the temperature of the furnace when it is running, and x2 depends
on the het low characteristics of the furnace. The following axioms describe
the tumperature in the room over time.

" (trans(4, r, 68) A on(furnace17)) D
paod(r.O"r = -#cj(r - a))

" (trans(T, r, 72*) A on(furnachl7)) J
pzod(rOr' = x2(f - r) - PcI(r - a))
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Figure 3.1: Different behaviors for a thermostatically controlled furnace

Suppose that we are interested in the temperature in the room over the
interval from time 0 to time 10. We are told that the temperature outside
is 32? throughout this interval, and that at time 0 the room is 750 with the
furnace on but currently not heating. We represent these facts as follows:

holds(O,r = 750)

holds(O, 1O,a = 320)

holds(OOr = -0 2 (r - d))

3t (0t) A holds(0,t, on(f-urnace17))

We might expect the above axioms to support the following inferences.
The temperature drops off exponentially' from 75* to 680 at which point
the furnace starts heating and continues until the temperature reaches 720,
after which the furnace oscillates on and off forever with the temperature
always between 680 and 72. This expected behavior is shown on the left
in Figure 3.1. Unfortunately, chronological -inmisation of discontinuities
does not support this inference. There are chronologically minimal models in

which this is the case, but there are also chronologically minimal models in
which on(iu-nacelT) is clipped just at the time the temperature first drops
to 680, and instead of cycling forever between 68* and 72° the temperature in
the room approaches 320 asymptotically as shown on the right in Figure 3.1.

We can eliminate the unintended models by not allowing simultaneous
cause and dect. You can think of trans(l I T), u, v) events as a particular
sort of casa trigger, and the propositions constraining parameters (e.g.,

O'Te beha ior of the system can be described in terms of a piecewise continu-
aus fuaction in which the specific solutions for each piece are give, alternstelyj by
r(t) w33 + (to - 32*)@ ad ,(t) = C + (to - C)s-(ihs06) when C = _ ,0o

is the initial temperature of the room for that particular piece and t is the time elapsed
from the beginiag of that piece.
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8r = ic(r - a)) as a particular sort of effect. The general form of a causal
rule is

holds (t, [antecedent conditions)) A
occurs(t, [trigger event type] ) A

-,abnoral(t, Crule identifier]))

3t' ((t+ A)-t') Aholds(t + A,t , [consequent effects])

If A = 0, then the antecedent conditions, the trigger event, and the conse-
quent effects all compete with one another in the process of chronological
minimization. Models in which the antecedent conditions are mysteriously
clipped are equi-preferable to models in which the consequent effects occur
as expected and result in clippings or discontinuities of their own.

Much of the work in temporal reasoning in artificial intelligence has
focused on making precise the intuitions behind cause-and-effect reasoning.

By requiring that causes precede effects, we not only avoid certain problems
with unintended models, but we also subscribe to some of the basic intuitions

about causal reasoning.
Our physical model for the thermostatically controlled furnace is not by

any means complete. For instance, if we were to add the axiom

3t (8 < t) Aholds(8,t,on(furnace17))

we would arrive at the inappropriate conclusion that, if the furnace was

heating at time 8, then it would continue to do so indefinitely. To avoid
this unwanted inference, we might add rules saying that whenever anything
results in the furnace "becoming off, then the temperature in the room is
governed by some default set of equations. To express this as an event trig-
gered causal rule, we might define an analog of trans ([I I TI, u, ) for truth-
valued parameters. Suppose that becone(ip) corresponds to the event of
(p becoming true. Adding the following axiom

holdu(tbecones (-,on(fuznace17))) D
3 t' (((t + e)-< t') A holds(t + e,t' ,lpod(r,8r' --- -PC2(r - a))))

ensures that we will infer something reasonable in the event that the power
to the furnace is cut off.

Note that we can always substitute a set of models that persist over
different intervals of time for a single model that is true for all time but
with additional parameters that make the model behave differently over

different intervals of time. In the furnace example, we might state that
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C ,(8. = ,.2(f - a) - - a))

and then have rules that govern the value of f over different intervals of time.
Whether we vary the model or employ a single model and vary the param-
eters of the model, we have to provide some means for certain propositions
corresponding to equations involving parameters to persist over time.

There remain many open issues in modeling physical systems using tem-
poral logic that are not considered in this section. We will, however, returw
many times to consider both computational and representational issues in
reasoning about time and change. In particular, the next section is con-
cerned with automating temporal reasoning, Chapter 5 discusses how the
temporal logic of this chapter can be used for planning, and Chapter 7 is
concerned with temporal reasoning about stochastic processes.

Introduce the concepts of histories, time lines, chTOnices and relate them
to the notion of state-apace trajectores introduced in the premo section.

3.2 Temporal Logic Programming

This section is concerned with the design of practical temporal reasoning
systems. We describe a system that combines features from several existing
systems to provide the support that we require for applications in planning
and control. The resulting system is presented as an extension of the logic
programming language P3.oLOG (9, 391 augmtated with features, such as
forward chaining, normally found in deductive retrieval systems [31].

In the last section, we presented a logic without regard to the complexity
of determining whether or not a given formula was valid. Given that boolean
satisfishlity is NP-coipete (21], we cannot expect to implement a decision
procedure that is guaranteed to provide correct and timely answers to all
possible queries. To ensure reasonable response time for out temporal rea-
soning system, we restrict the syntax for both queries and data. In addition,
for some types of query, we provide only partial decision procedures (i.e.,
procedures that occasionally report "don't know" in response to a query).
This section represents a catalog of concessions to complexity. Complete-
ness, expressiveness, and response time have to be carefully considered in
the desig of any program intended to serve as part of a control system.
In Chapter 8, we consider tradeoffs in the design of decision procedures in
some detail; in this section, we are primarily concerned with presenting the
basic functions required for practical temporal reasoning, and pointing out
potential sources of complexity.
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For the most part, we adopt the syntax of PROLOG. Conditional rules
(i.e., PROLOG Horn clauses) are notated A-B where A is an atom (i.e., a
predicate of zero or more arguments) and B is a conjunction of zero or more
atoms. We make use of the negation-as-failure operator, not, to implement
various forms of nonmonotonic inference. (The query not (W) succeeds just
in case v fails.) We assume the standard semantics for logic programs (3]
augmented where needed with informal procedural semintics.

To speak about the structure of time itself, we refer to points (or instants)
of time, and intervals (or periods) of time. We distinguish between a general
type of event or proposition (e.g., "I ate lunch in the cafeteria") and a
specific instance of a general type (e.g., "I ate lunch in the cafeteria this
afternoon"). The latter are referred to as time tokens or simply tokens. A
token associates a general type of event or proposition with a specific interval
of time over which the event is said to occur or the proposition hold.

Our calculus for reasoning about time will be concerned with manipu-
lating time tokens. Given some set of initial tokens corresponding to events
and propositions, we will want to generate additional tokens corresponding
to the consequences of the events. First, we have to be able to enter new
tokens into the PROLOG database. We notate general types of events and
propositions using PROLOG predicates and their negations. For instance,
the proposition "the loading dock is unoccupied" might be represented as
empty(loading.dock), and its negation as -empty(loading-dock). Simi-
larly, the event type "truck #45 arrives at the loading dock" might appear
as arrive(truck45, loading.dock). To enter a new token, we assert an
expression of the form, token(type, synboO, where type corresponds to a
general type of event or proposition, and symbol is a term that will be asso-
ciated with an interval of time. Asse ting

tokn(arrive (truck4S, loadingdock), arrival14).

adds a new token of type arrive(truck45,1oading-dock) and interval
arriva4 to the database.

It is often convenient to refer to the points corresponding to the begin-
ning sad end of intervals. If arrival14 denotes an interval, then begin(a_--ival 14)
denote its begin point and and(arriva.l4) denotes its end point. Initially,
the interval of time associated with a token is completely unconstrained (i.e.,
it could correspond to any interval). Intervals can be constrained using orcd-
nal (e.g., -4 or _-) and metric constraints on their beginning and end points.
If arrival14 and departure23 are both intervals, then asserting

end(arrivall4) - begin(departuz23).
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constrains the first interval to end before the second begins. For any interval,
int, it is necessarily the case that
begin(int) -< end(int) .

Metric constraints allow us to bound the amount of time separrting
points. The notation distance(t1 ,t2) E (low,high] is used to specify that
the distance in time separating tj and t2 is bounded from above by high
and bounded from below by low, where bounds are specified in the form,.
hoursminutea. For instance, if noon is a reference point corresponding to
12:00 PM today, asserting

distance(noon,begin(arriva~lt4)) E (2:55,3:05).

-nptrains the interval associated with the arrival of truck4S to occur at
3:00 FM, give or take 5 minutes. If the upper and lower bounds are the
same, we use = instead of E and one number instead of a pair of numbers.

Given the hours-minutes notation for specifying metric constraints, we
have committed to a set of time points isomorphic to Z. We could have made
it hour.miues.aeconda, but some concession ultimately has to be made to
the finite precision of arithmetic on the target machine.

To indicate that a bound is unconstrained, we introduce the special
symbol o, so that

* oo>n,VnEZ

e 00 + co = oo + n =oo,Vn E Z

* 00-00= 0

Allowing both metric and ordinal constraints introduces some special prob.
!ems in propagating (i.e., combining) constraints to determine the best
bounds on a pair of points (i.e., the greatest lower and least upper bounds
on the time separating the two time points). Propagation is simplified by
adopting a single representation that captures both types of constraint. We
do so by introducing yet another symbol e with the folowing properties:

* n*a<r,VnEZ,VWER +

" e+e = 2e>e
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Using the above, we define the following'0

* tl-< t2 = distance(tI, t2 ) E Ec, ooj.

* tl -< t2  distance(tl, t2 ) E (0, oo.

0 tl = t2 ; distance(tI, t2) E (0, 0].

We treat events and propositions somewhat differently in our calculus.
We assume that the durations of events are specified precisely. For instance,
we might state that the event corresponding to the arrival of truck4S took
one minute.

distance (begin(arrival4) end(arrival4)S)O:01.

For tokens corresponding to propositions, we would like to predict how
long the propositions persist once they become true. For instance, suppose
that were interested in reasoning about a robot forklift truck that moves
appliances around in a warehouse, and suppose we make the following as-
sertions to the database:
token(location(forklif t, loading.ara), locationl).
tokon(locat ion (forklift, staging-area) , location2).

distance(noon,begin(locationi))I :IS.

distance(noon,begin(location2) )=2:30.

Assuming the forklift can only be in one of staging area or loading-area,
we conclude that the interval locationi should not persist past 2:30 FM.
In general, we require that the interval corresponding to a token persist
no further than the first subsequent interval corresponding to a.token of a
contradictory type. For any proposition type V', Wp and -W are said to be
contradictory. Additional contradictory types have to be explicitly asserted.
For instance, the assertion

contradicts(location(X,L1) ,location(IL2)) ,- LI #L2.

indicates that any two tokens of type location(argl,argS) are contradic-
tory if their first arguments are the same, and their second arguments are

'The constramnts on time points are represented internally as pairs of complex numbers

of the form (a,O) for a + Oc, where a,0 E Z. For instance the bounds, Ci,l1 would be
represented as (0, 1), (1, 0)]. The resulting calculu---fArst introduced by Leibaits [32J for
studying the foundations of real analysim--provides a convenient baus for propagating and
manipulating sets of equations including both ordinal aod metric constraints.
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Figure 3.2: Tokens in the TEMPLOG database

different. The process of modifying the bounds on token intervals corre-
sponding to propositions to ensure that tokens of contradictory types do
not overlap is referred to as persistence clipping. One token is clipped by a
second in accord with the following rule.

clipu(K,begin(J)) 4-

token(PK),
tokn(MJ),
contradicts(PAQ),
begin(K)-< begin(J).

The syntax for our temporal logic programming language severely re-
stricts what can serve as a proposition type and what can be said about two
different proposition types being contradictory. The consequences of these
restrictions will become clearer as we explore the details query processing.

In the course of our discussions, we will be adding various capabilities
to PROLOG to support applications in planning and control. We call this
extended logic programming language TM FPLOG in recognition of the central
-rCle ef time. For the time being, we assume that TIM PLOG automatically

-. _.a'ms persistence clipping for all tokens stored in the database. Later we
will have to relax this requirement to deal with the computational complexity
of reasoning about partially ordered events.

It will help in this and subsequent chapters if we can display the contents
of a TZMLOG database graphically. To that end, we introduce the follow-
ing graphical conventions. Time tokens are represented with a vertical bar
indicating when the corresponding interval begins and either a second ver-
tical bar providing some indication of when the interval ends or an arrow
-. , ldiating that the end of the interval is far enough in the future that
it caa't be drawn in the diagram. The delimiters for tokens ae connected
by a horisontal bar (e.g., --). Each token is labeled with a symbol cor-
responding to its associated interval and a formula denoting its type. The
tokens are laid out on the page so as to indicate their relative offset from
some global reference point. Figure 3.2 depicts the information stored in the
TEMPLOG database as a consequence of the four assertions listed in the pre-
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vious paragraph. In Figure 3.2, the token interval locationi is constrained
to end before the beginning of the token interval location.2 by the process
of persistence clipping.

Given a database of time tokens, one is generally interested in answering
queries concerning what propositions are true over what intervals of time.
We begin by defining two primitive queries involving tokens and the bounds
on the distance separating pairs of points. All of our other temporal queries
can be defined in terms of these primitives.

* token(type, int) succeeds once for each token in the database unifying
with type and int.

* distance(t,-t2 ) E (1, h] succeeds just in case GLB < 1 < h < LUB,
where GLB and LUB correspond to the least upper and greatest lower
bounds on the distance in time separating t, and t2 given the closure
of the set of constraints. If either t, or t2 are not bound, the query will
fail. If one or both of I and h axe not bound, then, assuming that the
query would succeed otherwise, it does so with the variables bound to
their respective least restrictive bounds.

A temporal query of the form holds(t 1 ,t 2 ,P), where (P is an atom,
should succeed just in case there is a token in the database of type io con-
strained to begin after or coincident with t, and not constrained to end
before t2 . We can st .te this in terms of token and distance as follows.

holds(TiT2,P)
token(P,K),
distance(begin(N) ,Ti) E [0,oo].
not Cdistance(.nd(K) ,T2) E c, 0o].

and add an additional PBowLoo rule to handle degenerate intervals

holds(TP) -- holde(T,T,P).

Complex temporal queries involving conjunctions and disjunctions can
be defied in terms of atomic queries using the standard Pl LooG notational
convemtions (i.e., (P,Q) and (P;Q) are, respectively, the conjunction and
disjunction of P and 0). Conjunctive temporal queries are defined by

holds(T,T2,(P,Q)) .- holds(TI.T2,P),holds(TI,T2,Q).

One way of defining disjunctive queries is

holdsM(T,T2,(P;.)) -- holdu(TI,T2,P).
holds(TIT2,(-;Q)) -- holds(Ti,T2,Q).
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While this definition is simple to implement, it fails in some cases where we
might expect it to succeed. For example, according to the definition above, if
all we know is holds (t 1, t2,p) and holds(t2, t3,q), holds(t 1,t3, (p;q))
fails. As an alternative definition, we might have holds (t1 , t2 , (Wi; V2) ) just
in case for all it-< t 2t2 either holds(t, W1) or holds(t, V 2 ). The alterna-
tive definition does not, however, conform to the semantics of our logic of
time intervals as given in the previous section; hence, we adopt the original
definition from here on.

Using negation as failure, we can achieve some, but not all, of the func-
tionality of true negation. For instance, we might define

holds(TT2,notM(P) - not (holds (T1,T2P)).

where not(holds (t1 ,t2 ,V) ) succeeds just in case holds(01 ; t2 ,o) fails."
(Queries involving the negation-as-failure operator can be confusing to

the uninitiated. As an example, the behavior of temporal queries in TIM-
PLOG involving unbound variables and the negation-as-failure operator is
dependent upon the order of conjuncts just at it is for atemporal queries in
PROLOG. For instance, assuming that holds (e1,t2.p(a)) and holds (Wt2, q(b)),
holds (tit2, (p (1) not (q(I)))) will succeed whereas holds (t, t2. (not (q(X)), p()))
will fail.)

While there is no direct mapping from negation in our logic to negation
as failure in PROLOG, there are certain properties of the negation-as-failure
operator that we might want to preserve in our temporal extensions of PRo-
LOG queries. For instance, in PItOLOG, not(not (W)) succeeds if and only if
V succeeds. Note that holds (t1, t2, not (not (w)) ) is (procedurally) equiv-
alent to holda (t , t2 , t) using the first definition but not using the second.
We adopt the first definition in the following.

We assume that TIMP LOG processes both atomic and complex temporal
queries efficiently. To illustrate TIMPLOG query processing, suppose that the
following five queries are initiated in the database depicted in Figure 3.3.

holds(begin(servicul), nd(servicel).
location(truck45, loading4dock)).

"Th'em twsnf ial holdn(h, 22.not (tp)) and holds(tt ta. -- p) should not be confused.
It i boo te hink of - usa particular string defined to stand in some relationship to the
straig p, where that relationship is deined by the operation of clipping. Alternatively, we
might defin holds( . s.not ()) to succeed just in case there is some point t, such that
t t_( and holds(t.to) fails.
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Figure 3.3: TEMPLOG database for illustrating query proceuing

holds (begin(servicel),end(servicel),
(location(forklift,staging-area);
location(truck45 .loading.dock))).

holds (begin(service2),end(service2),
(location(forklift .staging.area))),
location(truck4S,loading-dock))).

holds (begin(service2),.end(service2).
(location (Object, staging-area),
location(Obj ect,loading.dock)).

holds(begin(uervice2),end(iservice2),
(location(Object ,staging aea),
location(Obj ect2, loadingdock)).

The first three queries succeed; the fourth fails, and the fifth succeeds with
Object bound to forklif t and Object 2 bound to truck4S.

Ther ae also abductive versions of holds that are useful for building
plaaalg systems. The query holds(ta ,t 2 ,wo) fails if either of tL or t2 are
unbound. However, the abductive version of this query, Oholds(t,t,),
succeeds under a superset of the conditions that holds(t, ,t 2 ,p) does. In
particular, if either t, or t2 are not bound, then new (i.e., totally uncon-
strained) points are created and bound to the variables. Once bound, the
query succeeds if the set of constraints can be augmented so that the non-
abductive query succeeds. The set of constraints necessary for the abductive
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query to succeed are referred to as abductiwe constraints. Abductive con-
stra~ats are accumulated during backward chaining and withdrawn during
backtracxking similar to the way in which variable bindings are handled in
PROLOG. Consider the database resulting from the following assertions.
token(p,j). distance(bogin(j),end(j))=5.

token(q,k). distance(begin(j) ,begin(k))-3.
distance (t l. t2) n3. distance (bogin(k), t 1) E [-5,5J.

Of the following six queries, those on the left fail while those on the right
succeed.
holds (tI,t2,p). Oholds(ti,t2,p).

holds(ti,t2,q). Oholds(ti,t2,q).
0holds(ti,t2,(p,q)). 0holds (t 1,T2, (p, q)).

We will say more about abductive query processing in Chapter 5.
Persistence clipping is one type of routine inference important in rea-

soning about time and change. There is a second type of routine inference,
called proection, that we would like TUMPLOG to perform for us. Projection
is concerned with inferring the consequences of events based on a model spec-
ified in terms of the cause-and-effect relationships that exist between various
event types. To notate such relationships, we use the following form

proj ect (antecedenLconditions, trigger-event, delay, co nequenteffects)

to indicate that, if an event of type trigger event occurs, and the antecedent
conditions hold at the outset of the interval associated with trigger event,
then the consequent effects are true mter an interval of time determined by
delay. The trigger event is specified as a type, the antecedent conditions
and consequent effects are specified as types. or conjunctions, of types, and
the delay is specified as a pair consisting of a lower and an upper bound on
the time between the end of the trigger event and the manifestation of the
effects. If the upper and lower bounds are the same, a single bound can be
substituted for the pair. We assume a convenient notational filter so that
the delay argument can be left out of assertions and queries; in the former
case, a deault delay of [e,e] is provided. The rule R2 from the previous
sectkm can be encoded as follows.

project(-,on(furnaceI7), toggle (sitch42), on(fuzace lT))

To specify that, whenever the forklift moves from one location to an-
other, it will appear in the new location after a delay determined by the
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(spatial) distance to be traveled and the minimum and maximum rate of

travel allowed by the forklift, we would assert the following

proj ct(location(forkliftLoci),
move(Loci ,Loc2),
[(distance(Locl.Loc2) max-speed),
(distance(Loc1,Loc2) min.spned)],

location(forklift ,Loc2)).

As another example, suppose that the robot forklift is also responsible
for installing options in appliances (e.g., installing an ice maker in a stock
refrigerator). The following projection stipulates that whenever the robot
turns on a particular assembly unit when an appliance and an appropriate
option are on the input conveyor, then 30 minutes later, give or take five
minutes, the appliance will appear in the output conveyor with the option
properly installed.

project( (ustatus(aeembl.er,of),
location(Appliance, in.conveyor).
instance-of (Appliance ,homeappliance).
location(Option, in-conveyor)
inustance-of (Option.optionfor(Appliance)) ),

push.button(on),
[00:25,00:35],
(inutalled(Appliance,Option),
location (Applianc. out -conveyor),
part.of (Option,Appliance))).

In order to determine whether or not an event has an effect at a particular
time, we define the following

cauaes(S,R,T) - project(PE,R),occurs(E;T),holds(T,P).

The projection rules presented above allow for a very restricted form
of causal reasoning. In particular, they do not provide for any means of
dealing with the qualification problem described in the previous section. By
mo&dWg our causes rule slightly, we can reason about qualifications in a
mamis similar to that described in the previous section.

caum (,RT) 4-

project(PE,R),
occura(E,T) ,holds(T,P),
not(abnornal(KAT)).

The rule Qi from the previous section can be encoded as follows.

abnorual(toggl.(switch42) ,on(furnacei7),T)
holds(T, open(fuse43))
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We include the tyv- . of the trigger event and the type of the consequent effect
because the quahication is likely to depend on them. Note that neither is
sufcient alone, since the event of toggling the switch may have other effects
(e.g., the switch may make a noise whether or not it makes or breaks a
connection), and other events may have the effect of turning the furnace
on (e.g., attaching it directly to a backup diesel generator that bypasses
the fused circuit). For more complicated applications, it may be useful to
allow disabling rules that serve to disable other disabling rules. We drp
not do so here, but it would be straightforward to extend the above to
handle a hierarchy of disabling rules (i.e., a set of disabling rules arranged
hierarchically with a projection rule at the root so that each disabling rule
in the tree is allowed to disable its immediate ancestor in the tree).

Qualiications in projection rules allow us to introduce a very restricted
form of quantification. Az an example, consider the following rule.
proj act ( (clear(X), clear (M), on(I, .) ) , puton(I, Y) , on(X ,Y)) .

For an event of type puton(block Iblock2) to have the consequent ef-
fect on(blockiblock2), there have to be tokens in the database of type
clear(blocki) and clear(block2). Alternatively, we can use the following
projection rule

project(on (X), puton(X,Y) ,on(X.Y)).

coupled with the following qualification
abnorza.1(pu~ton(I,Y) ,on(I,Y) ,T) ,-- holds (T, (on(_,I) ; on(_,Y))).

to ensure that puton(blockl,block2) has the effect on(blockl,block2)
just in case there are no tokens in .the database with appropriately con-.
strained intervals corrsponding to something being on either blockl or
block2.

Projection is the process of generating new tokens from some set of ini-
tial tokens-roughly corresponding to the boundary conditions in a physics
problem-using a set of projection rales. The basic algorithm for handling
both projection and persistence clipping is rather simple to implement. To
simp* its description, we assume that all trigger events are point events.
Whem tokens or constraints are added to or deleted from the database,
the sys tm carries out the following steps.

1. Delete all tokens and constraints added the last time the algorithm
was run.
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2. Place all tokens in the database whose types correspond to events on

the open list.

3. Let token be the earliest occurring token in the open list.

4. Find all rules whose trigger event type unifies with the type of token.

5. For each rule found in Step 4 whose antecedent conditions are satisfied,..
add to the database tokens corresponding to the types specified in the
consequent effects, and constrain them according to the specified delay.

6. For each new token added in Step 5 whose type corresponds to an
event, place it on the open fist.

7. For each new token added in Step 5 whose type does not correspond to
a fluent, find all tokens of a contradictory type that begin before the

newly added token and constrain them to end before the beginning of

the new token.

8. Remove token from the open list.

9. If there are no tokens remaining on the open list, then quit, else go to

Step 3.

We will assume that TEMPLOG uses an algorithm similar to the above to
ensure that the database contains all nd only those tokens warranted by the

set of initial tokens, and the projection rules stored in the database. Updates
can be performed in time polynomial in the size of the initial conditions and

the set of projection rules. Query processing is performed by searching
through the set of. tokens generated by the projection algorithm, using the

types of the tokens and the constraints on token intervals to guide the search.
The above projection algorithm supports basic reasoning about the truth or
falsity of propositional formulae; in the following, we consider extensions to
handle real.valued parameters.

Lo U be a set of real-valued parameters, and P be a set of boolean-

valued popositional variables."2 In addition, we introduce two mappings

Q : R x U-. 2R and V : R x P -. 2{0 ' '"" t ) . The task of projection is to
determine and V for some closed interval of R. We begin by considering
the completely determined case in which both Q and V map to singleton
sets (i.e., Q : R x U -. R and V : R x P -- ftrue, falie)).

"Due to the presence of vsriablee ad complex terms, tempo. rules ae schemmt for
propoitional aioms. The underlying logic remains purely propomtiouai.
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At the initial time point, w.-. assume that the values of all parameters
and propositional variables are known. In addition, we are given a set of
events specified to occur at various times over the time interval of interest.
We assume a set of projection rules as before. In addition, we assume a set
of modeling rules for parameters in U. A modeling rule is just a special sort
of projection rule; the basic form is the same as that introduced earlier in
this section, the only difference being that the delay is always assumed to be
e, and the consequent effects consist of parameter assignments in the fort"
of ordinary differential equations1 3 with constant coefficients (e.g., au = 2
or 8a2u = 3u + 5u + 4).

The projection rule from the last section for reasoning about the tem-
perature of the room in the case that the furnace is off is encoded as follows.

project(on(furnace*7) ,tran(T,r , 680) .paod(r, 8!- = -c, (r - a))).

To make sure that persistence clipping is handled correctly, we state that a
given parameter can have only one model at a time.

contradicts (paod(X,Ml) ,paod(X2)) - t I M2.

Now we can state the basic algorithm for performing projection given
some set of initial conditions and a projection interval It, tJ. To sim-
plify the description of the algorithm, we assume that all events are point
events (i.e., if e is a type corresponding to the occurrence of an event,
token(e, k) D (begin(k) = end(k))), and all events described in the initial
conditions begin after t.. Let A be the set of all currently active process
models (i.e., all m such that holds(tc,pmod(z, )) for some z). Let C be
the set of pending events (i.e., the set of all events, token(e, k), generated
so far such that t,-< bagin(k)). Iet C be the set of current conditions (i.e.,
all ur = v such that there exists m E A such that holda(tc,pmoadz,m )),
U = 8"z for some n, and holds (4,ur = v).

In the cases that we are interested in, we can recast a set of ordinary
differential equations and their initial conditions as a system of first-order
differential equations. We can then solve these equations using numeri-
cal mthods based on the Taylor expansion (e.g., the B.unge-Kutta meth-
ode (50J) and various forms of linear and nonlinear extrapolation (e.g., the
Adams-Bashforth and Adams-Moulton methods [56, 46)). The particular

"'To etpedite the necesary computations, we assume that all equation. ae Sth order
or less, and that they can be rewritten so that highest-order term in slgebraicaly isolated
on the left-hand side of the equation.
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numerical method chosen is not important for our discussion. In the follow-
ing, we simply assume the ability to generate solutions to ordinary differ-
ential equations efficiently, and refer to the procedure for generating such
solutions as the eztrapolation procedure. Given a set of initial conditions
and a projection interval (t,, tf 1, projection is carried out by the following
algorithm.

1. Set t, to be t,.

2. Set . to be the set of events specified in the initial conditions.

3. Using A, C, and the extrapolation procedure, find t, corresponding to
the earliest point in time following t, such that the trigger for some
projection rule is satisfied or tf whichever comes first. If 4. 0 tf,
then t, could be the time of occurrence of ihe earliest event in C, or
it could be earlier, corresponding to the solution of a set of equations
(e.g., ((Zi = 2) A ((i - i 2 ) > o))).

4. If 4 = t1 , then quit, else set t. to be t,.

5. Find all projection rules with the trigger found in Step 3.

6. For each rule found in Step 5 whose antecedent conditions are satisfied,
add to the database tokens corresponding to the types of the conse-
quent effects except in the case of consequent effects corresponding
to parameter assignments (e.g., z' = z'). Constrain the new tokens
according the delay specified in the corresponding rule.

7. For each token added in Step 6 whoe type corresponds to an event,
add it to C.

8. For each token added in Step 6 whose type does not correspond to
an event, find all tokens of a contradictory type that begin before the
newly added token and constrain them to end before the beginning of
the new token.

9. If the trigger found in Step 3 corresponds to the type of an event token
in C whose time of occurrence is t., remove it from E.

10. Use the consequent effects corresponding to parameter assignments
found in Step 6 and the results of extrapolation to determine C. The
parameter assignments corresponding to the consequent effects of pro-
jection rules take precedence over the extrapolation results.
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11. Go to Step 3.

There are lots of other rules that we would have to specify in order to
model the operation of the assembler in enough detail to support useful
prediction. We would have to state that pushing the on button when the
assembler is off causes it to become on,
project(status(aseuebler,off),

push-button(on),
atatue(asseabler.on)).

and that a machine can not be on and off at the same time,

contradicts(status(X,Sl) ,status(X,S2)) 4- S1$2.

In fact, there are potentially an infinite number of rules that would be
required to correctly model the behavior of the assembler under every set of
circumstances. Note that the assembler requires power, and the appliance
and the options to be installed must be in some reasonable state of repair,
and there can't be anything blocking the output conveyor; all of these con-
ditions and more would have to be made explicit in the rules if we required
a model guaranteed to produce correct predictions in every conceivable sit-
uation. This proliferation of antecedent conditions was addressed in the
context of the qualification problem discussed in Section J.1. There is also
a problem with consequent effects; If the robot places a part in a box, then
the part is in the box. If the robot then places the box in a truck, then the
part is still in the box, but it is also in the truck. If the robot then drives the
truck to a new location, then, by virtue of being in the box which is in +he
truck, the part is in the new location also. Keeping track of ill of the con-
sequence. of an action has been termed the ramsfication problem [181, and
constitute. a signifcant problem in building practical temporal reasoning
systems.

The TZUMP LOG rules that comprise a physical model are intended as an
approximation. Greater accuracy can often be obtained by adding more
rules, but there is a price to be paid in terms of computational overhead,
and the increased accuracy may not result in a significant increase in perfor-
maws. The idea behind causal modeling is that an appropriate model will
effidcatly generate those common-sense predictions that are likely to have
the greatest impact on the performance of the robot. It ls up, to the program-
mer to determine what rules are necessary to generate these common-sense
predictions.

This is where the material on reasoning about partial orders and uncer-
tainty should go (separate section?). What if the initial conditions are not
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.-zact, but, rather, are specified in terms of intervals or distributions. Talk
about the use (and abuse) of Monte-Carlo methods for reasoning about un-
derspecified initial conditions. Introduce the notion of possible time lines,
and connect this with model theory developed in Section 3.1. Finally, moti-
vate the uncertainty issues developed in Chapter 7.

3.3 Further Reading

Perhaps the best known approach to reasoning about change in artificial in-
telfigence is the uituation calculus. [40, 42, 34). McCarthy is generally given
credit for the basic idea, but many researchers have contributed to the de-
velopment of what today is referred to as the situation calculus. A situation
corresponds to the state of the world at a particular instant in time. Change
results as a consequence of actions occurring in situations, where an action
can be thought of as a function from situations to situations that maps the
situation in which the action occurs into the ner situation. While some
attempts have been made to incorporate reasoning about continuous pro-
cesses within the situation calculus (301, many researchers have considered
other approaches for reasoning about real-world processes.

In the late 1970's, Hayes issued a challenge to the research community to
formalize a large corpus of knowledge about physical processes [281. Hayes
got things started by proposing an axiomatic theory of how liquids behave
[291. Hayes's theory describes change over time using four-dimensional pieces
of space-time called histories. Other researchers, interested in reasoning
about physical phenomena whose spatial properties an less central, adopt
a variety of temporal logics in which chaap is modeled in terms of some
form of causal relation [2, 431. The frame problem appemed in all of these
logics in one form or another and some researchers believed that the frame
problem could be solved by employing some form of nonmonotonic reasoning
[41, 52, 441.

This belief that nonmonotonic reasoning would solve the frame problem
was dealt a blow by the work of Ranks and McDermott, which showed that
a straigtforward application of existing nonmonotonic logics was not suf-
ficient to solve the problen. (24, 251. The ree. rch community immediately
countered with several proposals for solving the particular temporal reason-
ing problem posed by Hanks and McDermott [36, 33, 571, all based on some
variation on the idea of chronological minimization. Subsequent work has
focused on formalizing causation to solve the frame problem [37, 271, and
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coping with problems that involve reasoning both forward kprojection) and
backward (explanation) in time i45, 38, 4, 551. Say something about the
possible worlds approach to recsoning about actionc [22, 63].

The idea of preferring certain models over others in order to define a
notion of semantic entailment for nonmonotonic logics is due to Bossu and
Siegel [6] and (independently) Shoham [58]. Shoham's formulation is the
more general of the two. The idea of selecting models that are minimal with
respect to some property and some ordering relation is developed in Lifschitf
[36], Kautz [33], and Shoham [57]. The term "chronolgicai minimization' i
due to Shoham [57]. See also Doyle Gnd Wellman [16] nn some fundamental
limitations of nonmonotonic logics based on preference orders.

Much of the work in the philosophical literature has focused on the
use of moda logics to model time [49, 53, 59J. This has also been the
case for theoretical computer science in designing logics to reason about
computational processes (26 48, 19, 471. In the case of computer science,
one important reason for the emphasis on modal logic is that such logics are
somewhat easier to analyze in terms of the complexity of their respective
decision problems. As far as expreui- power is concerned, given that it is
possible to translate any modal logic with standard Kripke semantics into
classical logic, it would seem that the interval logic presented here is at least
as expressive as any modal logic of time (58, 591.

The syntax and semantics for the propositional case of the temporal
logic that we adicvt were introduced to the artificial intelligence community
by McDermott (43]. Shoham (58] provided the semantics for the firt-order
cue, and it is a syntactic variant of his formulation that we use here.

There has been a sigfniicaUt amount of work in sat alW intelligence
on modeling phys!L.a processes without employing the sort of quantitative
analysis prevalent in engineering. This work, involving qualitative reasoning
about physical 'ystem- E;aeraly makes use of discrete value spaces and a
special type of differential equation to draw conclusions about the behavior
of continuous processes [51. i.,iven that the applications that we consider in
this monograph typically require some sort of quantitative analysis, it seems
reasonasle to incorporate into our logic those parts of the differential calculus
that seem made fnr the job [51]. The semantic treatment presented here is
based on the work of Sandewall [54j, but the basic approach to reasoning
about processes was influenced significantly by the work of Forbus [201 and
de Kleer [11].

The practi,:al problems in building useful temporal reasoning systems
are manifold, and have given rise to a rich technical literature. Much c, the
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early work mrakes use of the situation calculus. Green describes a method
for applying automated theorem proving to reasoning about time in the sit-
uation calculus [23]. Later work sought to avoid the need for frame axioms
by introducing some form of nonmonotonic inference into the operation of
the temporal reasoning algorithm. Fikes et aL.} implicitly make use of the
common-senre law of inertia in their implementation of STRIPS [17. The
temporal reasoning system described in this section is based on the workr
of Dean [15, 12], but was influenced signifcantly by other event-based ap-
proaches to reasoning about time and causality (e.g., [1, 35, 60, 61]).

Davis discusses the computational issues involved in propagating met-
ric constraints for reasoning about time [101, and Dean considers the issue
involved in organizing lage amounts of temporal information so as to ex-
pedite the sort of causal reasoning described in this section (131. Wilkin
provides a wealth of practical advice for systems designers building the tem-
poral reasoning component of a planning system; in particular, his discusion
regarding the limited use of quantifiers in causal rules is worth reading [62].
It should be mentioned that the simple projection algorithm described above

is not guaranteed to work properly if the tokens corresponding to the initial
conditions are partially ordered. The general problem of predicting the con-
sequences of a set of partially ordered events is potentially intractable [8]. To
deal with this potential source of complexity, partial decision procedures have
been developed to avoid ezpending too much effort in performing projection

[14].
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Chapter 4

Controlling Processes

This book is concerned with the behavior of processes. The world we live
in can be described in terms of a set of interacting processes. In the previ-
ous chapter. we discussed how to model the behavior of processes. In this
chapter, we begin to consider how to influence that behavior.

Some processes are easier to control than others. For instance, someone
typing at a word processor generally has a fair amount of control over what
characters appear on the screen. Other processes are influenced by a large
number of factors only a few of which we are able to directly observe or
influence. In sending an elctronic mail message, for example, the speed
with which the niessage arrives at its destination is determined in part by
the path provided and in part by the traffic on the networks specified in
that path. Electronic mail users can directly control the former bnt have
little control over the latter. If you could somehow predict the traffic on the
network, then you'nlight be better prepared to specifyi a path that would
speed your message to its destination. Unfortunately, predicting network
traffic flow is itself a complicated and time consuming task.

In studying the control of processes. it is often convenient to describe
the world in terms of two processes: one of which we have absolute control
over, anmd a second process that we wish to control. The first is called the
ronru ilvag prorfss and the second the rontrollcd pro ess. The behavior of
the controlling process is determined in part by the control-system designer.
Given some desired behavior for the controlled process, the task is to design
a device that realizes the controlling process and forces the desired behavior
in the controlled process.

0@1990 Thomas Dean. AU rights reserved.



The interaction between controlling and controlled processes call be quite
complex. We generally think of the controlling process as calling all the
shots. but the control exerted by the controlling process over the controlled
process is seldom complete. Factors that influence the controlled process but
are not under the control of the controlling process have to be accounted for.
The controlled process can. and in mitany cases must. influence the control-
ling process in order to bring about the desired behavior. This influence is
mediated through the use of special devices used by the controlling process
to observe the behavior of the controlled process.

Information about the observed behavior of the controlled process is
often used by the controlling process in determining what action to take next.
This basic idea that the responses of the controlling process are computed
from the observed behavior of the controlled process is generally referred to
as feedback control. In some cases. the need for observation can be reduced
or even eliminated by using models to predict the behavior of the controlled
process.

In this chapter, we consider techniques drawn priMily from control
theory and control systems engineering. We focus Wp .i on the role of
feedback in the design of control systems with an emphasis on representa-
tions and techniques that stress computational issues. We introduce criteria
for controllability, obser-mbility stability, and optimality, and consider a va-
riety of problems to illustrate these concepts. We then consider some basic
feedback controllers and how they might be embedded in a computational
framework. In the context of discussing feedback control. we introduce pro-
gramming approaches that are well suited to building control systems that
have to be particularly responsive to change. We end this chapter by consid-
ering a problem in robotics that.lies at the bounday between those problems
traditionally considered within the purview of control theory and problems
associated with artificial intelligence. The objective here is not to provide
a comprehensive survey of control techniques, but rather to draw on the
control disciplines for insights and general techniques that apply to the full
range of planning and control problems. Before launching into the more
technia discussions drawing on results from control theory, we consider a
particla problem to illustrate some basic issues.

4.1 Robot Navigation as a Control Problem
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Figure 4.1: A city street layout

Consider the following control problem. Suppose that you want to control
a robot to move from one location to another in a city. The robot has to
travel using city streets that are arranged as an irregularly-spaced grid of
two-way streets (see Figure 4.1). You have to devise a control algorithm to
direct the robot to move from its present location to a destination location
defined in terms of global coordinates. Of course. the problem is not yet well
enough specified that you can run off and start writing down an algorithm.
There are a number of other factors that we have to consider.

First. what sort of control can we exert over the robot? Most likely there
will be some means of controlling the robots speed and direction of travel*
but it's not likely that the robot will move exactly where we tell it nor will
it move at precisely the speed that we specify. If we indicate that the robot
is to move due South at 12 kilometers per hour and there is a brick wall
in the way, then we might expect some difference between the specified and
the actual speed and heading. Usually, however, the differences between
actual and specified control variables are more subtle. Errors accumulate
and combine in executing a sequence of control actions. Sooner or later it
becomes necessary to compare the actual effect against the intended effect.
and this is where sensors enter into the picture.

Sensors are used to monitor the progress of the robot and to determine
the state of the environment. Sensors can determine and correct for move-
ment error. For instance, the robot might be equipped with shaft encoders
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for determining how many revolutions tile drive wheels have turned or what
direction the wheels are pointing. From this information. we can compute
an estimate of where the robot is relative to where it started out. Sensors
and the estimates derived from sensor data are also subject to errors. Some-
[tow or another we have to take such errors into account. For instance, it
may be that the errors are known to satisfy a particular statistical distri-
bution from which we can calculate a measure of how certain we are in the
inferences derived from sensor data. If our confidence in our inferences is
low. then that could mean that we lack sufficient information to formulate
a good answer to the control problem we are faced with. In some cases.
being left with insufficient information is unavoidable and we must proceed
to schedule critical control actions with whatever information we have at
hand. In other cases. we can use sensors to gather additional information
so as to make inferences that we are more confident in.

Sensors tell us about more than just the state of the robot: they tell us
about the state of the larger world in which the robot is embedded. In tie
simplest robot navigation tasks. the only thing that changes is the robot
itself and its position in the world. The environment is said to be static.
If we know something about the fixed state of the environment, then we
can take advantage of this in designing a control algorithm. Knowledge of
the environment might take the form of a map labeled with street names.
whether or not traffic moves in one direction or both, and whether there are
stop signs or other impediments to traffic flow.

In more realistic problems. the environment changes; there are other
vehicles on the road, traffic lights change, roads are blocked by construction.
and pedestrians occasionally dart out into traffic. The static map may still
he useful, but often wt can supplement our knowledge of. the environment
to account for dynamic phenomena. For instance, we might have access
to a construction schedule indicating where and when certain streets will
be closed to traffic. In some cases, we might be able to model certain
disturbances as predictable processes. A construction crew might be laying
new gas pipe under a particular street at the rate of one block per night so
that at most one block-long section of the street is impassable on any given
night. If you notice the crew laying pipe on any two nights, you can predict
what block will be closed off for any subsequent night.

While some processes are predictable. others are either difficult to predict
(e.g.. jay-walking pedestrians) or not worth the trouble (e.g., traffic lights).

In order to deal with such processes, the control algorithm has to be alert to
changes in the environment that indicate the existence of processes whose
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behavior might have an impact on the performance of the robot. The robot
has io be continually alert for Pvidence of certain processes (F... pedestrianis
-traying into the street, in front of the robot). Otlher processes need only he
monitored in certain circumstances. For instance. the robot has to check for
the state of the traffic light at the next hitersection only as it approaches that
intersection. The design of t he control algorithm miust take into account the
sensors available and the tasks they are to he put to. Sensors often constitute
a scarce resource in need of careful management.

There is another aspect of the control of our mobile robot that we have
carefully avoided up until now. and that concerns how the algorithm that we
devise is to be implemented. li order to implement a control algorithm, we
nee,: to specify the algoritlini in (erins of a language, and we have to provide
a. cotipiler for that lantguage, and a I.arget machine for the code generated by
I lie compiler. hit fact. it geinerally is difficult. to specify a control algorithm
without somie specific implementation in mind.

How long a series of program statements takes to execute on a particular
machine may be critical in determining the consequences of a control action.
For instance, suppose that you want to compute how to respond in the case
in which a pedestrian runs out into the street in front of the robot. Certainly
it would be a good idea t.o apply the brakes as soou as possible if indeed
that is an appropriate t hing to do. low long the algorithm takes to compute
whether or not to apply the brakes will have a profound impact on the health
of the pedestrian in question. If the robot is to swerve in an attempt to avoid
hitting the pedestrian. then the direction in which the wheels are turned will
depend upon the time that they are turned, and this will depend upon the
lime it takes to conuput? the direction.

In some cases, we can just assume that the time required to compute
responses is shorter than the time available for computation. For instance.
suppose that at tine f t lie robot interprets its sensor data as indicating a
pedestrian standing in the street 5 ueters directly in front of it. The robot
attempts to compute what action to take at time I + A. The control algo-
rithm is inplemented so that the time required to compute such a response
is less than A. Having computed an appropriate answer, the control algo-
rithm might simply wait out the remaining tinte, or hand the action and the
time it is to be executed .o a sequencer responsible for executing actions at
specified times. Of course, if the robot is traveling at a meter a second and
A is longer than a couple of seconds, then the response will likely be too
late to be of any use.

Some of the decisions concerning how long to spend computing an appro-
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Figure 4.2: A path generated by dead reckoning

priate response in a given set of circumstances can be carried out at design
time. Other decisions concerning how to long to compute are better left
until run time when the allocation of computational resources can be based
on more data about the situation at hand. If the lead time for respon,ing to
a certain sort of phenomena varies. then having a rigid scheme for corplt-
ing a response may lead to poor performance on average. Jamming on the
brakes is only appropriate as a last resort. In situations where more time is
available to arrive at a decision. aniore careful analysis is often called for.
In this chapter. we ignore many of the issues that relate to the run-time
allocation of processor tihue to optimize decision making. Chapter 8 directly
addresses these issues. In this chapter, we take a conservative approach to
ensure that the algorithms that we develop perform reasonably for even the
worst-case situations anticipated.

So far we have considered several factors that are important in specifying
control problems. Now, we consider some specific control problems. In an
ideal world, when the robot is told to turn left 15. and move forward at 2
meters per second for 5 seconds, the robot ends up exactly 10 meters from
its original position facing 1V5 counter clockwise from its original heading.
Consider the problem involving a static environment in which all of the
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treets allow two-way traffic and are ob.tacle free and the robot is standing
inl the ceitler of an intersection amid is iust rcted to tiove to the center of a
qecond intersection specified ill .r and Y coordinates in the frame of reference
of lhe robot's initial position. In t tis case. an appropriate control algorithm
would direct the robot to complete the traversal in two steps following the
paths indicated by the x and y offset.- (see Figure 4.2).

In the above ideal world, the rGhot is said to direct itself by "dead reckon-
ing." Aside from a clock to measure the passage of time. and thereby gauge
the distance traveled. the robot requires no sensors to direct its motion.
Suppose that we relax the requirement that the robot l)e able to control
its velocity precisely. In this case. it is possible that the robot's estimates
of" distance traveled are subject to error. [low is the problem changed as a
consequence? If the errors are small relative to the length of a city block, a
simple variation on the dead-reckoning approach will work just fine. If the
errors are large, then the problem may be impossible to solve since the robot
will have no way to determine if it reaches its destination. Even if the robot

has some other means of detecting that it has arrived at its sought-after
destination, significant movement errors may force the control algorithm to
randomly choose paths.

Suppose that the robot can determine its position at any time in some
global coordinate system. Now movement errors can be corrected by what
is generally referred to as feedback. The control algorithm attempts to move

5 meters to the left: it checks to see how far it actually moved: it attempts
to correct for the error observed. As long as the errors are some fraction of
the distance attempted, this technique will converge quickly on the desired
distance. If determining global position is fast enough. then this technique

reduces to the previous dead-reckoning method.
Now suppose that all streets are not passable; some streets are one wky

and others are blocked by construction equipment. The dead-reckoning
approach will obviously not work, but a simple path-following strategy will
suffice to find a path if one exists. Figure 4.3 shows the streets traversed by
lhe robot inder the control of a simple path-following algorithm that tries to

shortem the Euclidean distance to the destination whenever possible, backing
up only when its way becomes blocked. The problem is that directing the
robot using the simple path-finding strategy causes the robot to traverse
streets that it might not have if it possessed a more global perspective of
tile city.

Suppose that the rol)ot has an accirate inap of the city indicating one-
way streets and construction road blocks. Rather than actually traversing
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Figure 4.4: Navigatiou usiug path planning and a global map
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the streets, the control algorithm could use the map to .imlat, traversing /
the streets and thereby find a short path. (ioiputing the shortest path
between ally two locations call he done in O( ,,2 logn ) time usin1 jt. - ' '

algorithm (1]. assuming a s(puare grid of streets with n streets alon ach

axis of the grid. Figure .4.4 shows the streets traversed 1) the robot under
the control an algorithm with access to a map. This method of simulating
the behavior of the robot. in order to eliminate unnecessary work or avoid

ait undesirable effect represents all instance of fedforward. The control
algorithm generates aid analyzes possible actions and their consequences so
that it can choose among the availal)le options.

Tie use of feedback aud feedforward are coonlttou in the design of con-
trol systems. Feedback coiensates for a system's inability to accurately
predict the effects of a control action oIL the behavior of a controlled pro-
cess. Feedback relies on being able to accurately monitor the behavior of
a process. Feedforward enables a system to anticipate both desirable and
undesirable consequences and take steps to, respectively, take advantage of
or avoid them. Feedforward relies on a system having an accurate model for
the process being controlled.

Feedforward and feedback complement one another. In situations in
which the controlled process cannot be accurately predicted but can be
closely monitored, tight feedback loops enable a control algorithm to gen-
erate control actions on the basis of immediately past performance. Such
a scheme is likely to work assuming that the factors influencing the pro-
cess at one point in time are similar in type and magnitude to the factors
influencing the process a short time previously. In situations in which the
controlled process cannot be accurately monitored but can be accurately
predicted. control actions are generated in response to predictions concern-
ing the processes behavior. If the process can.t be monitored at all, then
control proceeds blindly relying on the accuracy of (he predictive model.

Traditional methods ill planning stress the use of feedforward methods
whereas traditional inelthuds in control stress the use of feedback. The rea-
son for their different emphases is easy to explain. First of all, planning is
by definition concerned with predicting the future in order to guide behav-
ior. Much of the early work in planning was concerned with processes that
interact with one another in a complex manner, and, hence. inLluencing the
behavior of these processes required anticipating these interactions. This
early work generally assumed that the controlled process. while complex.
was understood well enough to be accurately modeled. More recent work
has begun to relax this assumption by either using feedback to supplement
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predi-tions or using stochastic models I hat take uncertainty into account.
hli contrast with the work in plannihg. much of the early work in control

assumed that the controlled process was subject to a multitude of factors
Ihat either were not well understood or required run-time data that sim-
ply was not available. Precise adjustments to the control parameters were
needed to achieve the desired behavior req, iring that the controlling pro-
cess be able to generate the necessary control actions at a high rate. A more
complex algorithm for determining the niext control action lowers the rate"
at which control actions can be generated. whereas, the more inaccurate the
models are in predicting the effect of control actions, the more frequently the
controlling process has to be monitored and the control parameters adjusted
to compensate for the inaccuracies of t lie model. in the past. many industrial
control applications have favored trading model complexity for increased ie-
liUance on feedback and higher parameter-adjustment rates. As computers
become faster and our modeling techniques more reliable. there has been a
tendency to incorporate more and more complex modeling techniques into
industrial controllers. 1f this trend continues, industrial controllers will begin
to look more like planners.

As the control community begins to realize the advantages of increased
computational power for supporting complex modeling, so the planning com-
munity is beginning to realize the problems in relying solely on the predic-
tions of a complex model. Correcting these problems is not simply a matter
of building an interpreter that executes a sequence of actions generated by
a traditional planner and occasionally senses the environment to see if the
actions have had their desired effect. The problem with this approach is
I hat the controlled and the controlling processes are often out of synch with
one another.

A control action generated one moment may be deemed inappropriate
at the next as new information becomes available. To simply generate a
sequence of actions and expect that the sequence can be carried out without

%d. modification is for many problems absurd. In asking directions in Boston.
a local may tell you to turn left on Commonwealth Avenue and follow it

-~ for thre blocks until you get to Massachusetts, ut if you find four fire
trucks tying up traffic on Commonwealth Avenue2 hen you would be well
advised to disregard their directions and find an alternative route. There
was nothing wrong with the directions provided given what was known at
the time they were solicited. but knowledge changes over time and such
changes should be taken into account when deciding how to act.

Of course, the preceding paragraph shouldn't be taken as an argument
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against planning: we've already seen tha.t patii planning can lead to i-
proved performance in certain circumlstances. \Vhat we have to beware of is
I)'ndly executing plans in the face of ittformation that warns against their
use. The traditional notion of a plan as a sequence of actions has to be
rethought. Plans should be iwterpreted as suggestions about how to behave.
Sonie suggestions require a long tite to generate. but the processes that

they are designed to help control may proceed at a similarly slow pace. In

real-world problems. there are any number of processes that require some
amount of control. Some processes proceed slowly and require attention only
at widely-spaced intervals (c.g.. the pipe-laying process discussed earlier).

Other processes are fster paced and require almost constant attention (c.g..
l)edestrian traffic). The trick is to deal effectively with the fast-paced pro-
r. ses It.g.. steer clear of pedest.riams and stoI) at. appropriate traffic signals)
while at the same time directing behavior so as to take into account sugges-

tions regarding the slower processes (F.g.. avoid routes that are believed to
be obstructed by construction) and suggestions generated off-line as it were

regarding faster-paced processes (e.g.. if you see a ball roiling out into the

street. brake hard as a child may be following closely behind).

In the following, it will be useful to separate out two kinds of control

algorithm. One that generates suggestions concerning certain low-level be-

haviors and that is likely to perform out of synch with the processes whose
behavior it is meant to influence. and a second that is closely tied to tile

processes that it is meant to influence. The distinction is artificial: it serves

l)rimarily to identify two distinct mind sets that have to be merged in order
to develop a coherent theory of control. To provide a label for the two kinds

of control and identify the source for the corresponding mind sets, we call the
first high-level p/annin#*and the second low-level eontrol. An example'of a

high-level planning algorithm would be a path planning algorithm designed

to influence the movement of the robot. An example of a low-level control

algorithm would be the algorithm that directs the speed and heading of the

robot as it traverses the city streets avoiding obstacles and maneuvering

around corners.
One possible architecture for a system integrating high-level planning

and low-level control might consist of two components: a reactive compo-

ient that determines what to do at the next instant, and a strategic com-
ponent that attempts to mediate the behavior of the reactive component by
imposing constraints on the behavior of the ivw-level systems. It is up to the

low-level system to interpret these constraints so as to adjust its behavior

while at the same time maintaining real-time performance.
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In this Chapter. we are pritnarilv iteresied in what we have cauled low-
1evel control. Toward t lie end of I is chanpt-er. however, we begin to addres
high-level control issites as, prologue to the niext chapter whichl will (leaf
almost exclusively with htigh-level strategic planning. -Now. we draw upon
the disciplines of control theory and control systems engineering to develop
some terminology and explore tecltiques that will be used in subsequent
chapters.

4.2 Controllability

Consider the following time-invariant discrete-timue dynamical system.

.r(k+1) = f(z(k).u(k))

y(k) = g(z(k))

The state transition function. f. completely determines the state of the
system at time k + I given the state and the input at time k. Initially, we
ausume that the state of the system is directly observable, and so the output
function, g, is defined

g(z(k)) = z(k).
In solving a particular control problem. we are interested in generating

appropriate inputs so as to constrain the behavior of the dynamical systemn.
In Chapter 1. we introduced a general formulation of the control problem,
representing the behavior of a dynamical system in terms of the set of pos-
sible state-space trajectories.

17irh{h :Tr'X).

In this formulation of the problem. the desired behavior of the system is
specified in terms of a goal set.

;c' Cf M.

Th.m ame several special cases of this formulation that we consider in the
following sections.

In the servo probIl in. we are given a referenice tvmzectory, and expected
to repeat or htick that trajectory as closely as possible. In the set-poini
ryguialion problem, the objective is for the system to achieve aud maintain
a particul1ar state or set of states starting from any initial state. In the



terminology of Chapter 2. we wish to liid soime input function c : 4 : T -
U} so that for auy initial time r r_ T and initial state xi r) E X there exists
t > r such that for all t' > t we have

f(r(t'). t0 /')) E C.

where C C X is the set of target states.
We can generalize on our formulation of the set-point regulation problem

to restrict not only the final states of the system. but the intermediate
states as well. thereby restricting the motions (state space trajectories) of
the system. For instance, we nmight require that the system avoid a certain
set of states. by stipulating that for all t > r we have

fBXM-) ".(0) 0 Q.

where Q C X is the set of states io avoid and C n Q = 0.
Among the qualltalive properties of dyn tnical systems and their con-

trollers, the following notion of contiollubility is particularly relevant to the
set-point regulation problem. An event (r, x) in the phase space defined by
T x X is said to be controllable uith respect to a set of target states, C C X,
if and only if there is some time I and some input v which moves (r. x) into
the set {t : t > r) x C. A dynamical system is rompletely controllable with
ves.pect to C if and only if every event in T x X is controllable with respect
to (C'. This notion of complete controllability with respect to a set of target /
states provides necessary and sufficient conditions for there being a solution
lo the set-point regulation problem.

As was mentioned in Chapter 2. one of the best developed areas of
modern control theory concerns the analysis of dynamical systems that can
be modeled as linear multivariable systems. In this chapter. we illustrate
the power of linear systems theory by defining three important qualitative
properties of dynanical systems. and stating simple mathematical criteria
for them properties to be satisfied.

We be&ia with the notion of controllability. Criteria for controllability
are generally specific to a particular method of modeling dynamical systems.
In general, we are interested in whether or not it is possible to transfer any
state x(to) E X to any other state in X in a finite amount of time t1 - to
where io < 11 by appropriately choosing u(t) for t0 < 1 < 1 . If such arbitrary
transfers are possible, we say that the system is completely consvollable (no
restriction to a particular set of target states).
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Consider the following linea- t ime-invariant system represented by

ic(t) = Ax(t)+Bu(t)

y(t) = Cxt)

where x is the n-dimensional state vector. u is the p-dimensional input vec-

tor. y is the q-dimensional output vector, and A. B. and C are. respectively.

it x n. i x p, and q x n real constant matrices. There are a number of re-

atively simple mathematical condition. for such a syxtem being completely
controilable. One of the simplest is provided by t lie following theorem whirlh

is stated here without proof (see Chen [9) or Gopal (14] for proofs and related

theorems).

Theorem 1 The system is complctcly controllable if and only if the mnkl
of the n x np controllability matrix. (BIABI ... JA"'B]. is n.

As a simple example. the dyniamical system for the siugle-degree-of-

freedom robot introduced in Chapter 2 with state equation,0 [o 1X0 0 UM
1~)= 0 01 1/31 1l

is completely controllable since the rank of its controllability matrix.

[BIABI=[ 0 1 ]

is 2. However, the system described by

*(t) = ? ']x(I) + jj~Ju(t),kl) ( 0 1

has a controllability matrix.

JBAB]= I t

1 1 C "

"The rank of an i x in rectangular matrix. A. is defined as the maximum number of
linearly independent column vectors, or. eqjuivaiently, the order o( the larget square artay
whose determinant is non-zero, where the square array is obtained by removing rowt and
columns from A.
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indicating that. tihe system is controllable oly if C'1 # (2.

There are other similarly concise and equivalent conditions state(l in
re literature. loth ('lien [9 and (opal [14] provide similar results for
linear time-varying systems. as w,-ll as constructive proofs that identify the
appropriate input functions. It is testimony to the power of linear systems
iheory that such precise conditions can be stated for such a general class of
dynanical systems. 2

It should be noted that the above stated notion of controllability places
no constraint on the input (controller) or on the trajectory followed by
the system. A system may be determined as uncontrollable by the above
criterion, while being controllable in most practical respects. For instance.
the system may move to any given state from all initial states that will arise
in practice. As another example. we may not care about certain components
of tile state vector: it may be that we are only concerned with controlling
the output of tile system.

To investigate further file itution of controlability, we consider some
examples of dynamical systems that can be represented in terms of finite
state automata. These dynamical systems are referred to as discrete er'eut
systenms in the literature [25]. We represent a discrete event system as an
automaton. G = (1U. X. f, xo), where, in keeping with our previous notation.
V is the set of inputs (think of U as a set of primitive events), .X is the set of
states. f : U x X - X is the state transition function. and ro is the initial
state.

We partition 11 into two sets: ,e. the set of covlrllable events, and V,,
rlie set of tiricontrollble events. Ai admissible coutmi for such a dynamical
system consists of a sitbset -y _ U such that U C -. Let r g 2 r represent
the set of all admissible controls. if -t'E r anad u E -y, ve say that 'a is
enabled by -y. otherwise we say that it is disabled. A controller for a given
dynamical system is specified as a map

II: x - r.

The idea is that disabled events are prevented from occurring and enabled
events are allowed to occur if permitted by the underlying dynamics. The

2 As was noted in Chapter 2. it is standard practice in engineering control systems to

model real-world nonlinear systems using linear approximations. Since small perturbation
of Ihe elements of the inatriceq A and B may .ignal the difference between controllabiliv
and its lack, it should be noted that statements of system controllability must be carefuly
weighed in the process of design.
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Figure 4.5: A dynamical system represented as a finite state automaton

stipulation that U, _ - for all 1- E r captures the intuition that the con-
troller cannot prevent the uncontrolled events from occurring if the dynam-
ics dictates otherwise. An issue arises regarding what happens if all of the
events for a given state are disabled. We resolve the issue by simply requir-
ing that the controller ensure that for any state there is at least one enabled
event for which the transition function is defined: the system can remain in
the same state ondy if that is permitted hy the dynamics.

Consider the dynamical system depicted in Figure 4.5 in which U =

a. b. c). X = {0. I. 2). zo = 0. and f is defined so that

(0.a) - 1,(0,b) - 2.(1,c),- 2. and (2.a) .- 2.

Let U = {a, b) and suppose that we wish to design a controller that achieves
f2) while avoiding {}. The controller defined by

0 " {b and 2 - {a}

will suffice to do exactly what we want. The same controller will work
if Ir = {aj. However. if we have UI = {bl, then there is no controller
satisfying the requirements given.

There is an alterpative approach to characterizing the behavior .of dis-
crete event systems modeled as finite state automata. In formal language
theory. a finite state automaton can be viewed as a generator for a language.
Let F* denote the set of all finite strings of elements of the set U. A subset
L ! U is called a lanquage over U. The automaton described above is a
generator for the language

L = ba + aca*,

indicating the union of the set of strings consisting of b followed by a finite
number of a's, and the set of strings consisting of a followed by c followed
by a finite number of a's. histead of asking if we can design a controller that
achieves f2) while avoiding f 1), we ask if we can design a controller for the
automaton so that it generates the language L' = ba" C L.
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Figure 4.6: One contponent of a product system

Ramadge and Wonham (251 define a upctrvi.Ror for a discrete event sys-
tent as a niap

q : L - r.
where L is the language (or behavior) generated by the discrete event system.
The prcfiz closure of L C U* is that subset L C U° defined by

L ={u:uvEL for some v EU'}.

A language K C L is said to be controllable with respect to a given discrete
event system if

KUfnL C K,

where KU,, re)resents the set of all strings conisisting of a string front the
I)refix closure of K concatenated with ait event from U.. In [25], Rainadge
and Woaham prove the following, thus providing necessary and sufficient
conditions for the existence of supervisors for discrete event systems.

Theorem 2 For any discrete event system A with closed behavior L and
any subset K C L. there exists a supervisor that serves to restrict A to
exactly K if and only if K: = K and K is controllable.

In some cases, it is convenient to represen|t a dynamical system as a
colltiom of finite state .- totuata loosely coupled through the state space
resulting from taking the cross product of the state spaces for the individ-
ual automata. As an example, suppose that we wish to model a collection
of it identical chemical processes. Each individual process is modeled by
an autotnatou ('i - (G . . fi, -r0 ) where the iilt autotnaton is defined by
U, = {ai,bi,ci}, X. = {Oj, 1,. 2j,ui,4j), ,, , = 0. and fi is as indicated in Fig-
ure 4.6. Let U, = (ai,c.}. Suppose that all it irocesses run independently
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of one another with one important exception: state 4 inve'ves the use of a

piece of equipuient witli Liiited Capacily such that only one process (an be
in state 4 at a time. We wish to desiK1n a controller that will guarantee this.

Note that once a process enters state 1. we call exercise some control over
when it enters State 4. but we can oldy delay this event, we cannot prevent
it from happening.

To represent the combined behavior of the collection of processes. we
define the product generator G = {U.X.f. xo) where U = u! U(Ti, . -a
II!'=1.;. U = ul. 1U ,,z o = (x o.xn2 . xo,) and for each u E Uj we have

f(u.(xt,x 2 . . . . . . . . . .. ) = . ... . f,(u.x ).. .).

The objective is to build a controller for G suich that at most one of the
chemical processes is in the state requiring the piece of equipment at any
given point in time.

In the worst case. all of the processes will simultaneously arrive at state 1
in their respective state spaces. At this point, exactly one process can tran-
sition to state 4, while the n - I remaining processes are forced to enter

state 2. The same simple analysis applied to state I can be applied to
ctate 2 with the conclusion that n - 2 processes are forced to enter state 3.
The controller has no control over the processes in state 3, and hence we
conclude that there exists a controller for the product system if and only if
1< 3.

Discrete event systems can he used to model manufacturing systems,
communication networks, vehicular traffic problems, and a variety of other
dynamical systems requiring coordination and control. In addition to an-
swering mathematical questions concerning the existence of supervisors, the
ciirrent theory p'rovides constnctive, methods for realizing certain classes
of supervisors. In the best circumstances, these methods require time and
storage polynomial in the size of the state space. For practical problems.
one generally has to he clever in searching the space of possible controllers
for one that satisfies the domain constraints.

4.3 Observability

So far, we have had lit tle to say about the role of the system output func-
tion. In fact, we initiallY assumed that y(t) = g(r(t)) = x(t), so that the
state of the system was directly observable as output. In general. the en-
tire system state will not be directly observable. If the controller requires
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either the entir' system state vector or specific components of this vector.
then an additional module has to he added to the control ystern in order
to recover the state by observing the system output. Such modules are gen-
orally referred as obscrt'crs. If the function g is known and invertible, then
the construction of an observer is trivial. Generally. g is not invertible and
the state has to be recovered by observing the output of the system over
sorne interval of time. In the following, we consider a notion of observability
which, at least in the case of linear inultivariable systems. turns out to he
closely related to controllability.

A system is said to be complet y obse.rvable if it is possible to identify
any state x(to) E X by observing the output y(t) for to _S t < t, where
to < t1. observation problem. The problem stated is traditionally called the
obseraTion pro le. but it is actually just one of several so-called state-
deterrnination problems. The observation problem involves determining the
state from future outputs. There is a related problem called the reronstris.
tion problfin that involve-, identifying the state from past outputs: identify
the state x(ti) E X by observing the output y(t) for to _5 1 < t, where
to < t i. As in the cast of controllability. there are simple mathematical cri-
teria for observ ability in linear niultivariable systems (see ('hen (9) or Gopal
[14] for proofs and equivalent conditions).

Theorem 3 The systemn i.s completely observable if and only if the rnk of
the nq x n observability matrix.

CA

is n.

CA" I

Given the similarity of the statement of Theorems 1 and 3 one might
.suspect that there is a rather (leel) relationship between controllability and
observability for linear mnultivariable systems. It would be particularly con-
venient ir one could prove I hat a system is observable if and only if it is
controilable. This happens to be, true in a somewhat convoluted mnathemat-
ical sense as we see in the following theorem.

Theorem 4 (The Principle of Duality) The system represented by

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
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is rontrollable (obsQervable) (it time it if and only if the dtal sQystem repr -

s pied by

Z(t) = -4'z(t)+C'v(t)

w(t = B'zit)

ix obserrable (controllable) at to. i'herr the prinme (e.g.. B') indicates matrir
trnsposition. and the second sy.tem (cailed the adjoint) is mathematically,_
closely rlated to the first.

One practical consequence of Theorem 4 is that once you have con-
structed a controller (observer). you have done all the necessary work re-
quired to construct the associated observer (controller): the algorithms re-
quired for one task are almost identical to the algorithms required for the
other task. It is also interesting to note that observability and controllabil-
ity in linear systems can he considered independently. The two problems of
building a controller and building an observer can be pursued independently
of one another. The two problems are said to be sewnmble. This separation
propnerty does not. hold in general.

Results similar to that of Theorem 4 hold for linear systems corrupted
with Gaussian noise. In CLapter 6. we consider the problem of building
a deterministic regulator (controller) and a stochastic estimator (observer)
for dynamical systems modeled as linear systems corrupted with Gaussian
noise. It turns out that these two problems are also separable: by coupling
the optimal deterministic regulator to the optimal stochastic estimator one
has constructed an optimal control system.

It should be emphasized that the notion of observability introduced in
tlis section is quite strong. In general, a controller need not recoustrict the
entire system state in order to provide satisfactory performance'for a given
control problem. In many cases. the task of reconstructing the entire system
state would impose a significant computational burden. Practically speak-
ing, we are interested in demand-driven observation strategies that allocate
resources to measurement and interpretation in keeping with the immedi-
at* demands on the system. The task-based planning methods presented in
Chapter 5 employ this sort of demand-driven observation strategies.

4.4 Stability

When we first introduced the notion of controllability in Section 4.2. we
were interested in the ability to first achieve a given state or set of states in
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a fi nite a noiout of (iine. anid -iten maini aiii t lhe s ysleni in that state of set of
qit es for aUl time hence. W~hen, we stibse(pientily considered controllabilit '
criteria for linear s '%stenls. we dropped tlite latter requirement. In mian '
applications. however. it is 1n0t eitoug1i for a controller to simply move the
s vstemi to a particular state. Neither is it reasonable to expect that the
controller maintain a giveni state in Lte face of arbitrary disturbances or
p~erturbationls of the dynamical systemi. Stability is a property of dynamical
systems which implies tha~t siiiall changes in input or initial conditions do riot
result in large changes in s 'ystemn behavior. Stabilit ' is not a prerequisite for
being ab~le to control a system. but it miakes lte task of desiging a coiro1
sYstem somewhat easier. The sy' stem describing the inverted pendulum
presented in Chapter 2 is not stable 1) the criterl. thz.. we will present
shortly. but it is controllable. The concept of stability introduced in the
following is attributed to the Russian tuathe-" -tician A. MN. Lyapunov.

We will be concerned with the same linear multivariable system intro-
duced earlier.

*(t) = Ax(t) + 1?(i)

y(t) = C'x(!)

Let u(t) = u, be any constai-. input. If there existiop.-int A, E R' such
that

Ax, + llu, = 0.

then % ~ aid to Ibe an Fqtuilibriuml point of the system corresponding to
the input u,. We assume that the systeut has only one equilibrium point,/
and. without loss of generality, take the origin of the state sp~ce 0b be thatj-
Pqmiru point. Finaly, we cotisider only the case in hc\ Osott

x*)= Ax(t).

This system is .,tablc in thc qcn.qc of Lyapunovy at thc origin if. for eve'ry
c> 0. there exists b > 0 such that Ilx~lo)JI :5 6 implies Ilx(tlJI <5 e for all

t >- to. where lixil denotes thle Euclidean norm for a vector x of n components
X I - 2. --Z, defined by

1ix1l = (XI X2 .xn

The hyper-spherical region deflined by the set of all points such that ljxii :
serves to ensure a bound on the s ' stein response.

We say that the above systeni is asymnploiically stable at the origin if
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1. it is stable in the sense of Lyapunov. and

2. there exists a real ntumber r > 0 Ruch that

1x(to)jj _< r implies x(t) - 0 as t - oo.

The stability of a linear multivariable system can be determined using a

relatively simple mathematical test provided in the following theorem (see.
[14] for proof).

Theorem 5 The systemn described by the state equation,

x = Ax(t) + Bu(t).

is asymptotically stable if and only if all of the eigenvw-tues of the matrix A
have negative real parts.

Recall that the eigenvalues of a matrix A correspond to those values of
A such that Det(AI - A) = 0. where I is the identity matrix and Det(AI)
indicates the determinanit of the matrix A. One particularly convenient
advantage of the stability test introduced in Theorem .5 is that it does not

require one to solve the system state equations. In the case of the single-
degree-of-freedom robot. the e ues correspond to solutions of

Det (\ 2 = 0.

The equation A2 = 0 is called the c armcteristic equation, and, in this case.
the characteristic equation has no solutions indicating that the the dynam-
ical system for the single-degree-of-freedom robot is stable.

In the case of the inverted pendulum example of Chapter 2.

0 1 0 0 0 1
0 0 -0.5809 0 x(t)+ 0.9211 UM'
0 0 0 1 0
0 0 4.4537 0 -0.3947

the duh teristic equation is

Det 0 A -0.51509 0 (('-4457)0
0A(A(A 2 - 4.4537))

0 0 4.4.537
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7: T
According to criterion eqtablished i Tlhec ,m 5. the dynamical system for
Ilhe inverted pendultii Is iiot qiaflIp rince one of the solutiolts of the char-
acteristic equation is A = +v 4.4.5:17.

Before we leave tile subject of stability, it is worth mentioning one par-
ticularly useful tochitnitie referred to as the mot-locus method developed )y
W.R. Evans for investigating Hie stability of linear systems. The root-locus
method is most closely associated with what is called classical control theory
which. as was mentionted in Chapter 2. is based primarily upon the use of
the Laplace transform and analysis in tihe frequency domain.

Many control systems have a single input variable and a single output
variable. The input is referred to as a r yfonce signal indicating the desired
value for the output or controlled variable. The transfer function of such
a control system is defined to be the ratio of the Laplace transform of the
input variable to the Laplace transform of the output variable. Consider
the spring-mass-dashpo, system described in Chapter 2. and suppose that
we allow an external force to act oil the block. The equation of motion of
the block is

.1- + + Kz = u )
dlt dt

where the output of the system is defined to be x and the input is u. The
Laplace transform of Equation 4.1 is

Ms 2 X(.s) + C.sX(s) + KX(s,) = U(s)

assuming the initial conditions

dajO).00O) = .to, 0 .
.. dt.

The transfer function for the system corresponding to Equation 4.2 is

Xi") 1 ______

T(s) LL + I
(.. s) Ms$ + Cs, + K'

By analyzing the systens poles (the roots of the denominator or chamc-
terietic equation of the transfer function) and zeros (the roots of the numer- AA ()
ator of the transfer function). one can tell a great deal about the transient
response characteristics of the control system. For instance, it is well known

[10] that, for a system to be stable. it is necessarv and sufficient that all of
the poles of the system transfer function have negative real parts. 3

3The Laplace variable is a complex variable and hence the roots of the characteristic
equation are generally complex as well.
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Figure 4.7: The connectioi h+,twtln pole placement in the complex s-plane
and performance in the time domain.
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rigure 4.7 shows the relation betWeeti tile poles of the transfer function
for a second order system and the s steu's corresponding behavior in the
time domain. li Figure 4.7. each plot on the left hand side indicates one par-
ticular placement of the poles in the complex q-plaue. and the corresponding
plot on the right indicates the resulting performance in the time domain.
this method of analyzing control systems by determining the placement of
poles is known as the root locus method.

Not surprisingly. there is close connection between the frequency- and
time-domain methods for determining stability. In the case of multiple-
input. multiple-output systems. we have to generalize on the notion of a
transfer function. which is defined only for single-input, single-output sys-
tems. The irarsfer matriz of a linear multivariable dynamical system as
introduced in the beginning of this section is uniquely defined by

TO) = C(.91 - A) - ' B.

where I is the identity matrix [29). It should be noted that there is infor-
mation lost in this conversion. In particular. the state and input equations
specify the internal state as well as the input/output behavior of the dy-
iiamical system, whereas the transfer matrix oly specifies the latter. It
turns out that the poles of the system represented by the transfer matrix
are exactly the eigenvalues of the matrix A [29].

One convenient property of transfer functions and transfer matrices is
Ihat. in certain cases, such representations can be obtained experimentally
by subjecting the dynamical system to sinusoidal inputs and measuring the
steady-state response. The close connection between frequency- and time-
domain methods allows the engineer to shift back and forth between these. /
two perspectives as the problem dictates. V

Stability can simplify the design of control systems; it is not, however.
a prerequisite for control. The linear system for the inverted pendulum is
not stable. but it is controllable. If we are designing a device, it is generally
worthwhile to design it in such a way that its corresponding dynamical
system is stable. In cases in which the plant (environment) is given, we
have little choice and must proceed whether or not the associated system is
stable.
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4.5 Optimality

In previous sections. we have otrpq.ed primarily t Hip qualitative properties of
dynamical systems (e.g.. controllability. observability. and stability). With
tile exception of criteria concerning whether or not a given controller call
achieve a particular state from some arbitrary initial state. we have had very
little to say about the perfortnatice of a control .ystein. In this spction. we
consider control problems in which sonie quantitative measure (or iredfe)
of performance is provided. It is natural within this context to consider
problems of optimal control that involve maximizing or minimizing such a
performance index.

In describing optimal control problems. we generally restrict our atten-
tion to some restricted interval of time. either continuous. (to , t1J. or discrete.
[1. it]. The behavior of the dyniamical system is described by either a set of
dilferential equations

x(t) = f(x(t). u(t)), restricted to to :_ t < 11

in the continuous case, or a set of difference equations

x(k - 1 ) = f(x(k), u(k)), restricted to 1 < k < n

in the discrete case. In addition to the model for the dynamical systeim.
it is often convenient to place restrictions on both the inputs (e.g.. you
might want to place a bound on control torques to keep the cost of servo
motors within budget constraints) and the outputs (e.g.. you may want to
restrict the trajectories of a robot arm to a confined work space). The
input restrictions define a set of admissible controls (see the discussion in
Section 4.2 on admissible controls for discrete events systems). Finally. it
will be necessary to formulate a performance index in terms of a calar value
function, V.

The choice of performance index is largely subjective, but generally a
particular application will suggest something reasonable. In some cases, it
may make sense simply to miimize time:

9"
V I dt = t, - to.

In other cams, there may be an obvious cost function. cf r. u). such as the
amount of fuel or other resource spent:

V = c(l(t) ut))dt.
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For the set-point regulation and servo problmns a good measure of l,.'rfor-
tnance is the squiared error:

= I (.rt)- .r'(t))2 dt.

where x'(t) is the desired state at time t. The squared error iudex is an
example of a quadratic performance index.4 More generally. the performance
index is defined as

V = h(z(t))+ g(x(t),u(t))dt.

where h and g are scalar functions meant to capture the value of the terminal
state and the state/input trajectory respectively. The problem of designing
optimal controls consists of finding an admissible control that minimizes
(maximizes) the performance index. V.

There are two classes of optimal control problems involving linear mul-
tivariable systems for which general results have been obtained. The first
class involves the use of a quadratic performance index as in the example
of the minimum squared error index, and includes optimal versions of the
linear set-point regulation and servo problems. In the second class of prob-
lems. the objective is to minimize the time required to drive the system to a
desired state. In both of these two classes of problems. optimal controllers
can make use of feedback. which. as covered in the next section. provides for
more robust contre! in the presence of external disturbances and errors in
modeling. The optimal linear minimum-time controller is of a particularly
simple form: it can be viewed as a function that simply switches between
the extreme values dictated by the class of admissable controls. A con-
troller that operates at a constant level either in one mode or another (e.g.,
Vt. u(t) E {-l.0. 1)) is called a bang-bang controller.

Most of the work on optimal control builds upon basic tPchnique/in -

the calculus of variations [12). The method of Lagrange multipliers s for
finding extrema of functions subject to constraints is one techniques from

'The fiactia V = f fli)dt is a quadratic performance index if fit) = xlt)'Axit)
where A in as * x a matrix with a., E R ad x E R".

1Leouard Euler (ITUT-IT$3) developed the basic approach to solving constrained ex-
tremum problems. Joseph Lagrange (1736-1813 studied Euler's approach and worked
out the details for some important special cases. The basic method is generally referred
to as the method of Lagrange multipliers. but in some texts the equations are referred to
as the Euler-Lagrange equations recognizing Euler's contributions.
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the calculus of variations that students typicallY encounter in college calculus
courses.

As a simple example illustraiing the use of the inethod of Lagrange
multipliers, let ((x. y) an(l '. .y be fmictions of two variables. The object
is to find values of x and y thiat maximize (or iuihuiiize) the obiectire function
,;( x. v) while at the same time satisfying the constraint equation. s(x. y = O.
We replace ((x. y) with an auxiliary function of three variables called the
Hamiltonian function. I(z, y. A). defined as

,(z. y, A) = ,:(x..y) + A,-(z. y).

The new variable. A. is called a Lagmnge multiplier. The Euler-Lagranqe
multiplier theorem [12] implies that. if we locate all points (x.y,A) where
t he partial derivatives of I(z. y. A) are all 0. then among the corresponding
(x. y) we will find all of the points at which the function v(x. y) will have a
constrained extremum.

In the method of Lagrange multipliers,. we solve for z. y, and A in the
equations formed by setting the partial derivatives to 0:

-0, - =0, and =0.

Since 0*/OA = c(z.y), if we find a solution (z.yA) to the above three
equations. the constraint equation ((x. y) = 0 will automatically be satisfied.

To illustrate how to apply the method of Lagrange multipliers to prob-
lems in optimal control, consider the discrete-time system

Xkl = f(zk, uk),

and the performance index defined by

1

V = , gtrk, Uk),
kmI

whefe we have changed our notation somewhat. z(k) = rk and u(k) = ul.
to simpify subsequent equations. The only constraint that we impose is
that the optimal solution obey the state difference equations. We enforce
this constraint by augmenting the performance index as follows

n
V'= [ g(zk, uk) + Ak+(f(xk. Uk) -Xk+lj.

k=l
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We define the Haniltonian somewhat differcitly from above as

Ik = gtx .. uk.) + A4.+If(.rk. Uk).

so that we can rewrite the aigmented performance index as

N,= ['Pk - ,\k+t 'x.t]
k=l

By the Enler-Lagrange mitiripler theorem. lhe change in the total derivative.
dV'. defined as

tV n) d~k + k) dAk! + L du,] .
k-i - Ak.! - u(k) -

saould be zero at a constrained minimum. As a consequence. the necessary
conditions for a constrained mininium are defined by

X+s - =f(xk,u) 1I<k<,.

referred to as the state equatiois. /

Ak = 1 _ k < n.

referred to as the costate equation /
0= n

referred to as the stationary conditions, and, finally, we require that the r"
he the initial state. The state and costate equations are coupled difference
equations. and together they define a two-point boundary value problem.
In the special case of linear systems with quadratic performance indices.
numercal solutions can be obtained rather easily.6

In geul, it can be qnite difficult to solve the two-point boundary v-alue
problems resulting from Lagrange multiplier formulations. However, in some[

'Speciically. it i possible to derive open-loop (the system state is not employed in
caniputing the next input) controllers for the came in which the final state is specified
ifixed) in advance, and closed-loop (the system state is employed in computing the next
input) controilers for the came in which the final state is not specified freel in advance
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(ae.finding glob~ maxinia or minima can still be achieved by ' searching
,- Lthe space defined l te variational variables xFq. and y in the case of

tninnizing ,;( .ry)j Onne alpproah is to use inierical inelet 10(1 to solve tine
otriginal equiations relating tu 1hIn perfori ice inidex andl cotisnra-ints. aind
then search the resultintg surface lookinigi for glohal extrenia. The grradient.
defined as

[ 19;/(Oy

in the case of V(z. y), is used to guide search in a method that proceeds by
taking many small steps. each one in the direction indicated by the (negated)
gradient. This search miethod is called grndient deacent. If the surface has
a single (global) mninimum, then gradient descent search is guarantee-i to
find it. If. however, there are many local mi-inima, a3 is often the case. the-n
one has to be a lot more clever in directing the search. It is this aspect of
optimal control involving search in a space of possible controls that primarily
interests us in this section.

In some cases. we cazi resort to exhaustive search. For instance. if xr and
y are bounded. we midght try to discretize the domain of V~. ailowing each
of z and y to take on r E Z possible %-allues. In thin case. there are only r-
points at which to evaluate (;; however. in the case of ni variational variables
each having r possible %-aluies, there will be tr" points to evaluate. As we
will see. the dimensionality. rn. of a control problem is a critical factor in
the design of optimal control systems.

Befllman (3] and Pontryagin (241 were largely responsible for formulat-
ing the necessar problems and developing many of the basic approaches to
solving optimal control problems. Tine requisite mathematics is complicated
enough that the background required to even'state the basic theorems does
niot seem warranted for ontr treatment here. Sutffice it to say that the resul~ts
for linear systems are extensive, and that, additionally. th~ere are powerful
numerical methods that have proved siiccessfull for a range of nonlinear .sys-
tems. For a good ovtrview of the field the reader is encouraged to consult
the text by Athans and Falb [2). In the remainder of this section. we focus
on aparticular class of optimal control problems called utltisitage decision

' pro~ma. and a particuilar approach to solving such problems optimally
Sdgnamir po~umming due to Richard Hellman.

(Consider a deterministic discreate-time it-stage process consisting of all
tnitial state tl, a sequtence of inputs fi 1 , - - -it, and a seqnuence of reqult.
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iitg states X2..-3 ...... Cn such that

X4-+1= f(x ..u).

Following standard practice. the {uk) and {.rkl are treated as variables
ranging over U and X respectively. We introduce a performance index.

V(.t...... U; .X..... . ).

We wish to find input sequences that maximize V.
As we indicated earlier, in general. this problem of maximizing a function

of i variables is computationallv quite hard. In the worst case, it will be
necessary to search through the set of 1(71" possible sequences of length n in
order to choose the sequence with the highest value. In some cases. however.
we can do iuch better. In the following, we consider some easier problems
that result from introducing restrictions on V. In particular. we consider
the case in which at, . - age in the process. say the kth stage. the effect of
the remaining n - k- c %ages on the total value depends only on the state of
the system followin, the kth decision and the subsequent n - k decisions (4].
Let R : U x N - R represent a reuard function, where R( u. x) corresponds
to the (iminediate) benefit derived from performing action u in state z. We
write R(. x) if both the input and the state matter in determining the
amount of reward and R(z) if only the state matters. As an example of the
sort of performance functions we are interested in, we might have

'(Ul' .. . U',;= .... R(uk .xt)
k=1

in which we are interested in the sum of rewards (referred to in the sequel
a.s sepamble control), or

V(Ut..... ... u; ...... x) = R(z,)

in whkh w are interested only in the reward associated with the final state
(referred to M terminal rontrol).

We proceed by generating a sequence or functions, {V,,}, so that

n
Vn(Z) = Wax E R(uk,.r).

u11 k=



Expanding. we have

\,(xl) = nax- R(u.x'i
Uk k=1

= i,ax[x ... iiaxR(u2..x2)+R(u 2 ,X2 )+-+R(u, .x
III It 2  

1
n~

Rearranging, we obtain

V,(z1 ) = max(R(u1,x)+
U1

max max... max[R(u2. z 2 ) + R(u3. z3) + + R(u.. x,)]].
U2 U3 Un

Note that

V,,, = maxnmax... nax[R(u2,x2) + R(u 3,z 3 ) +.--+ R.(u,X)].
u2 U'A Isn

Substituting, we have in the case of separable control,

V,(zl) = max(R(ul,.r,) + V,.- 1(x2 )],
U1

or just
Vn(X) = max[R(u, z) + Vn_ I.OX, U))]

U

for n > 2. and
V,(z} = ma.xR(u.z).

for n = 1. For the case of terminal control, we have

V,(X= aaxVI(f(X, u))], for it = 2,3,...

and
Va) = R(z).

The time to compnte Vj(z) for all x E XT given that invoking V,.-l
has unit cost is O( IXIII). From this observation, it follows that the time
required to compute V.(x) for all z E AT given that invoking V, has unit
cost is O(nJXJJ[J).

This general method of computing the performance index recursively
is called dynamic progrmming. The basic constrained minimization vari-
ational problem essentially involves choosing a point in an n-dimensional

119



x xx x
x [ x

X X I X

X G X X

x x x

x x x
x x x
x x xx x x X
x x
x x
x x

x~ x - I ~ -X X X XX XX X X XX X XX

Figure 4.8: A 16 x 16 grid world

phase space. Dynamic programming involves decomposing the problem into
making n choices each of which involves a one-dimensional phase space [4].

To illustrate the basic technique involved in dynamic programming. we
consider a simple robot control problem. A grid world is represented as an
n x n grid. One cell of the grid is designated as the goal. Certain other cells
(a total of m) are designated as obstacles. In particular. all of the perimeter
cells are desigated as obstacles. Initially, the robot is located in a cell which
is not an obstacle. Figure 4.8 depicts a 1 x 16 grid world in which the goal , ks
is indicated by@l and the obstacles by ".

There are n2 - m states each one corresponding to the robot being in VII,
a particular cell not designated as an obstacle. There are lat possible
actions not all of which are necessarily available for a given state: the robot
can remain in its current cell or move to any one of four adjacent cells (I.
-. 1, and 4.-) as long as the destination cell is not designated as an obstacle.
We use the value function for separable control where the reward is defined
as

R(ux) 0 if x is equal to the goal( -1 otherwise
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Figure 4.9: V((x,e,)) for the Grid world

We compute V1. V2, up to Vk such that Vi = Vi- and set V = Vi.
Figure 4.9 shows V((x. y)) for each state (location (z, y)) in the grid world
of Figure 4.8.

If you look carefully at the numbers shown in Figure 4.9. y'u will notice
that by always moving to the neighboring location with the highest value
you wili eventually end up at the goal location no matter what location you
start out in. This property can illustrated- graphically by considering the
elevation map shown in Figure 4.10 defined using V( (z, y)) as the elevation
at coordinates (z. y) in the grid with interior obstacles represented as small
negative values. Notice that the goal location is a global maxlium in the
elevation map. This will always be the case no matter what the arrangement
of obstades. It turns out that the strategy of always moving to the location
with the highest value is optimal in the following sense.

We dene a control law or policy as a mapping from states to actions:

We Are interested in p licies that are optimal according to the following
principle of Bellman. " rinciple of optimality. An optimal policy has the
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Figure 4.10: Representation-of V((x,.y)) as an elevation map

property th,.t whatever the initial state and the initial decision are, the
remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision." ([4] pls. 57) Given Bellman's principle
of optimality, the following policy

( = argmax V(f(z, u))

is optimal.
Figure 4.11 shows the optimal policy for the grid world shown in Fig-

ure 4.8. where -. -, 1, and . indicate the direction of movement for the
indicated state as specified by the optimal policy.

Beca the transitions in state space are so localized in the grid world.
we ca um a much more efficient dynamic programming algorithm for com-
puting the optimal policy than the one described above. In particular, we
compute V2 only for grid cells corresponding to one of the four neighbors of
the goal adjacent along the grid axes, and. in so doing, treat V, as undefined
for all cells other than the goal. In general, we compute Vi only for pre-
viously unconsidered grid cells corresponding to one of the four neighbors
of cells considered in i - Ith iteration, and treat Vi-. as undefined for all
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Figure 4.11: An optimal policy

cells not considered in the i - I or earlier iterations. If k is the last iteration
in which there are unconsidered cells, then Vk is defined for all cells in the
grid. and we set V = Vk. This specialized dynamic programming algorithm
runs in O(IXI).

The example application of dynamic programming given above involves
a discrete deterministic dynamical system. Dynamic programming can be
applied to continuous dynanical systems to achieve solutions of arbitrary
accuracy using a variety of numerical techniques. Dynamic programming
can be seen as a method of efficiently solving variational problems involving
multiple local minima by cleverly guiding the search. Dynamic programming
can also be applied to stochastic processes. and we will return to this subject
in C.apter 6.

Has as elsewhere the dimensionality of the problem severely restricts
the app cation of this and most other methods to generating solutions effi-
ciently. Dynamic programming in often referred to as an "approach- rather
than a "method." where the distinction generally made is that an approach
provides a way of looking at problems that still requires considerable cre-
ativity to actually apply, whereas a method is moie a matter of turning a
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crank. Dynamic programming suggests that we try to view optimization
problems as multistage decision problems in which the performance index is
some simple (e.g.. additive) function of the state and input at each stage. If
it is possible to view a problem thus. we can effectively reduce the dimension-
ality of the problem thereby. availing ourselves of substantial computational
savings. Unfortunately, there are manY aspects of a problem that serve to
determine its dimensionality. For example, at best, the solution methods
that we considered above involved computations linear in the size of the
state space. and the dimensionality of the state space is determined by the
number of state variables that comprise the state vector. In practical prob-
lems. methods that require quantifying over the entire state space can be
computationally prohibitive. In subsequent chapters. we consider methods
that wi allow us to decompose certain problems into independent subprob-
lems each of which requires quantifying over only a small portion of the state
space.

4.6 Feedback Control Systems

In Section 4.2 on controllability, we considered a controller as a function from
states to inputs (control actions). While there are many different types of
controllers mentioned in the literatnre, this particular formulation is perhaps
the most common. It is so common, in fact, that traditionally a control law
is defined to be a function q: T x A7 - U,

u(t) = 1(z(t), t).

However, in the preblems we will be considering, q will not depend on the-
current time.

This basic idea that the inputs to a dynamical system should be com-
puted from the state is quite important. Kalman describes it as "the fun-
damental idea of control theory,- and "a scientific explanation of the great
inventla known as 'feedback,' which is the foundation of control engineer-
ing- ([141 p 46).

It is worth asking why, if we have an accurate model of the process that
we are trying to control, must we resort to sampling the state of this process
on a continual basis. The answer is that uncertainty can and. generaly.
does arise from several sources besides the dynamical model. For instance.
we have to sample the state of the system at some point in order to supply
the initial conditions to the model. If there is any error in our measurement
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Figure 4.12: Controlling the level of fluid in a tank

of the state variables, then that error will likely be exacerbated with the
i:assage of time and as a consequence of inappropriate inputs generated on
the basis of incorrect state information. Even if we are able to observe the
state precisely, there will inevitably be some delay between our observation
of the state and our initiation of a control action. This delay may be due
Io I inte spent in comiputing inptlt.s. I he response time of the actuators used
to realize an input, or lags introduced by the sensors. We return to these
issues in Chapter 6 when we consider the problems that arise in dealing with
uncertainty in control.

In the following, we considerthe appi tion of feedback control to some
C.,of the problems introduced in Chapter We begin by considering the

problem of regulating the level of fluid in a tank using a closed-loop feedback
controller. Figure 4.12 depicts the tank and its associated input and output
pipes.

We model the controlled proces as a first-order differential equation:

KO(t) - Kauh(t) = A1d h ( t )

dt

where Ki, is the flow constant in cubic meters per degree minute for the
valve governing flow through the input pipe, AoKt is the flow constant in
square meters per minute for the output pipe. A is the surface area of the
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F~igure 4.13: Block diagram for a closed-loo) prTocess colitroller

Figure 4.14: Decomposing the controlling process into subprocesses

tank. 8(t) is the position of the valve governing flow through the input pipe
at time t. and h~(t) is the height of the fluid in the tank at time t.

Now we have to specify a controlling process that changes 9 in order to
cause changes in h&. In the simplest model, the controlling process directly
determines 9 by looking at the difference between the reference (or target)
level and last measured value of h; this difference is referred to-as the er*-
Mr. The block diagram shown in Figure 4.13 depicts this model with r( I)
indicating the reference and e( t) indicating the error.

In Chapter 1, we defined a control algorithm that could cause instan-
taneous changes in 0. Needless to say, the typica! interface between the
contraliag and controlled processes is more complex. In a somewhat more
realitic model, the control computer mnight determine a voltage that is in-
put to a servo system consisting of anm amplifier and a DC' motor attached
to the input valve. The servo systemu is just another process. and we mnighmt
model it using the equation:

= N~ujt

126



S I 320
o @ q I

.4. VOe S AR, D

22

I 01

04 0 0

Figure 4.15: The behavior of the discrete proportional controller

where r(t) is the input voltage and K, is a constant that depends on the
characteristics of the servo. figure 4.14 provides a block diagram of this
more complex model.

To define a process that determines the voltage input to the servo, we
employ a standard technique from control theory. In many control schemes.
the output of the controller is a simple function of the error. For controlling
certain processes. an effective controller can be designed in which the output
of the controller, v(t) in this case. is directly proportional to the error:

r(t) = KCM(t)

where Kp represents the controller proportionality constant. Not surpris-
ingly. this sort of control is called proportional control

For a control algorithm running on a digital computer. we have to specify
a dicrete controller that samples the output of the controlled process and
outputs a control atjon at discrete intervals. .The discrete proportional
controller is just a computer program running on a specific machine that
samples the output of the controlled process every so many clock cycles and
outputs a value proportional to the computed error.

To maintain the level of fluid in the tank depicted in Figure 4.12 at two
meters. we might use the following loop:

while true
wait-ior.delay;
height - read.fluidheight;
error - 2.0 - height;
servo-voltage - K * error;

where readf luid..height remls the height Fensor. waitfor-delay canuse
the controller to pause for the specified sample period, and servo-voltage
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is a machine register that direciv determines the voltage fed to the servo.
Figure 4.1.5 shows two graphis dleprihiIg the behavior oft he a hove control
algorithm with a sample period of I uinte and a. proportionalitv constant
of 3.0. One graph compares clianies in h with changes in i. and a second
compares changes in h with chaaues in 9. The particular proportionality
constant 3.0 was chosen after a small amount of experimentation.

Proportional controllers are suitable for controlling only a limited class
of processes. Two other popular forms of control are integral control and
derivative control. The output ult) of an integral controller is proportional
to the accumulated error:

11t) = Kilo r(t)dt

whereas the output of a derivative controller is proportional to the change
in the error:

d(t

The proportional-pls-integral-plus-derivative (or PID) controller general-
izes the above three types of controllers:

u(t) = Kpe(t) + KF I(t)dt + Id d-e(t)

+ ' dt

For the simple tank-filling process. proportional control is quite ade-
quate. Other, less stable processes. such as the inverted pendulum intro-

duced in Chapter 1. way require an integrator and a differeutiator to damp
oscillations and compensate for abrupt disturbances.

It should be noted that the constants used in a discrete P controller arej
dependent upon the sample period. Of course, once you hav e coefficients
for the continuous PID controller you can derive the coeicient for a discrete
controller of any sample period. I

The mathematical discipline of control theory is largely concerned with
the formal analysis of control systems. As was mentioned in Section 4.5, in
some cam, optimal control processes can be derived analytically providing
that accuraft models of the controlled processes are available. Since the
characteristics of the controlled processes rarely are known precisely. control
theorists are interested in systems that are insensitive to minor deviations in
the models used in the design process. In cases where significant deviations
are likely, or the models are known to be incomplete. adaptite .ystems are
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designed to conpensate by adjiistiig tile ii odel as ilfori-m ion becomes
available.

Adaptive control techniques attpmpt to cope with uncertainty about the
process being controlled by automating certain aspects of controller design.
The basic idea is quite simple. The designer generally has some sort of model
of the process or plant that he is trying to bhild a controller for. This model.
while it is known to provide only a rough idea of the behavior of the plant,
is suffilcieut to determine the formi of the basic coitroller (e.g.. a paraite-
terized PID controller). Tle designer I het builds a program that refines
the basic controller as it observes this controller attempting to control the
plant. In the case of a PID controller, refinement consists of adjusting the
control coefficients. Adaptive control is one approach to making controllers
more responsive to a complex and often unpredictable environment. Adap-
tive control also provides a means for coping with complexity in the design
process by allowing a control system to monitor its own behavior and adjust
accordingly. Chapter 9 deals with some aspects of adaptive control in the
context of a discussion of learning techniques. Now we turn our attention

-to some more practical issues in budding control systems.
Control systems are complex devices that involve the interaction of me-

chanical and computational processes. In considering the computational
aspects of control, it is important to keep in mind that someone has to write
the programs or design the circuits that perform the necessary computations.
For problems like controlling a power plant or an automated assembly line.
I hese programs and circuits can become quite complex. Despite our best
efforts. large programs develop organically as a process only partly under
the control of any one individual. Continual redesign is impractical. and
sooner or later the designer has to commit to a specific implementation of
a mnodule, interface, or subroutine. Once in a while, a designer has the
luxury of rewriting an interface, optimizing an algorithm, or consolidating
several functions in a single module, but often enough he or she has to make
do with whatever is available. It would be convenient if control knowledge
could be encapsulated in small general-purpose functional units that could
be applid In a wide variety of circumstances. This has long been a dream of
reseMsnu in artificial intelligence. and. in the following, we consider some
possbi, approaches to realizing that dream. Two critical issues that have
to be addressed in the context of controlling processes are:

I. Can general-purpose control knowledge be used to support real-time
control of interesting processes?
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2. (an dispaiate behaviors be made to cooperate so as to achieve coor-
dinated behavior across a rantge of situations?

fi attempting to address these issues. we consider a class of programming
t~chniques called rractivm systemn that were specifically designed to address
shortcomings in classical approaches to planning relying primarily on off-
line computation and perfect information. Reactive systems are meant to
be responsive to the processes being controlled. They tend not to employ
a ny complicated predictive miehanisms in order to avoid the compitational
overhead generally associated with such mechanisms. A reactive system has
to be prepared to respond quickly to changes perceived in the controlled
process. If the system is engaged in a complex and time-consuming compu-
tation, it will likely miss opportunities to generate appropriate responses.
!i the applications for which reactive systems are best suited. it should be
possible to achieve the desired beohavior using simple models that can he
quIickly computed.

Much of the work on reactive systpms done in artificial intelligence
has been concerned with building systems that are capable of representing
and manipulating precompiled procedural knowledge about how to control
things. Different behaviors can be separately realized in terms of distinct
procedures each making tse of the available sensors and effectors as needed.
The differences between such systems ,sually revolve around the complex-
ity of the primitive operations allowed by a given procedure and the means
whereby procedures are selected, coordinated, and allowed to communicate
with one another. In the following, we consider two approaches to building
reactive systems. For the most part. the two approaches look like program-
iiing languages. and -our analysis concerns what features of the different

languages make them more or less suitable for writing and thinking about
control systems.

Every programming language is designed to support a particular level of
abstraction. High-level languages can introduce barriers to abstraction by
forcing the programmer to adopt a particular way of thinking. For instance,
a languag that provides only sequential control constructs can make it dif-
ficult to deal with parallel or asynchronous processes. Low-level language%
can also introduce barriers to abstraction simply by failing to provide the
programmer with adequate means to deal with the complexity of program-
mning large systems. Of course. one can simulate any computational process
given any Turing-equivalent machine/language combination. In looking at
approaches designed to facilitate controlling processes. we should be alert to
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notice features that allow us to naturally map our uiderstanding of coll :ol
problems onto computational processes.

Almost every programming language provides support for procedures of
one sort or another. Procedures encapsulate procedural knowledge: how
to go about achieving certain tasks. In speaking about the control of pro-
cesses. procedures are usually associated with specific behaviors. The first
approach to implementing reactive systems that we look at is called a pro-
cedural rrasoning system (13). A procedural reasoning system consists of
a set of procedures and a schedtdcr for selecting what procedures to run
and when. Each procedure has associated with it a specific task-achieving
behavior that it implements, and an invocation condition or goal specifying
what the procedure is meant to achieve.

Procedures are represented as 14bel.d tmn.itinn grnpha. A labed transi-
tion graph is a directed graph whose arcs are labeled with statements in some
logic or programming language. In the following, we use Prolog statements
to label arcs. The statements are examined by the scheduler to determine
transitions from one node in the graph to some adjacent node in the graph.
Each node in a labeled transition graph has one or more arcs leading out
of it. Some statements correspond to predicates or queries and others have
an imperative content. The statements labeling arcs are generally seen as
giving rise to the goals of the system.

The scheduer is charged with keeping track of what goals the system has
and invoking whatever procedures are appropriate to achieving those goals.
At any given moment, the scheduler has some number of active procedures
that it is employing to pursue its present goals. For each of those procedures,
the scheduler maintains a pointer to some node in the associated labeled
transition graph. The scheduler chooses a particular procedure to work on
and attempts to transit to a new node by examining the statements on the
arcs leading out of the node currently associated with the chosen procedure.
An example should help clarify.

Figure 4.16 shows a labeled transition graph implementing the discrete
proportional controUer discussed earlier. The procedure shown also impe-
meats m overflow test to issue an alarm if the fluid runs over the top of the
tank. Statements labeling arcs such as fluidheight(Tank,aHeight). and
V is 9 * (Target - lleight) correspond to queries: "what is the current
height of the fluid in the tank?" and "what voltage is iK times the dif-
ference between the current height and reference value?- Statements such
as set -sorvo.voltage(Tank,V) and set.alarm(Tak, 1) correspond to im-
peratives to adjust parameters used by the procedures associated with the
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Figure 4.16: Labeled transition graph for a proportional controller
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servo attached to the i1ip1)t valve and t fe alarm device.
Both queries and iimperatives. cai be seen as giviiIz rise to additional

goals. For some of these goals. the scheduler itnvokes additional procedures.
For other goals. special-purpose systems may kick in to try to satisfy the
goal. For a given goal there may he uiany different procedures running. A
procedure can be revoked if its associated goal becomes satisfied or if some
competing goal becomes satisfied. Most labeled transition graphs have ter-
idnual nodes indicating exit conditions fur the associated procedure. The s
scheduler is responsible for starting new procedures and terminating old
ones. Procedures communicate with one another by posting goals to a global
database in a ma.ner similar to that used in blackboard systemsfl.5]. A pos-
sible scheduling algorithm for a procedural reasoning system is described
as follows. The scheduler maintains two queues ACTIVE and PENDING to
keep track of procedures that are in various stages of processing.

1. Choose a procedure p from ACTIVE.

2. Post goals corresponding to each statement labeling an arc emanating
from the current node of the procedure p.

3. Move p from ACTIVE to PENDING.

4. Add to ACTIVE each procedure whose invocation condition matches a
goal posted in Step 2.

*. For each procedure q in PENDING such that any of the posted goals cor-
responding to the statements labeling arcs emanating from the current
node of q are satisfied:

(a) Choose one satisfied goal g.
(b) Retract the other posted goals and remove any associated proce-

daures from ACTIVE and PENDING.

(c) Set the current node of q to be the node terminating the arc
labeled with the statement corresponding to g.

(d) Remove q from PENDING.

(e) U the current node of q is not a terminal node. move q to ACTIVE.

6. Go to Step 1.
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It is important to note that the schedulk: never waits around to compute
aitiyhin: the scheduler simply posts niew goals. invokes procedures where
required. and notices when posted goals are satisfied. Suppose that the
procedure shown in Figure 4.16 is the oidiv active procedure and its current
niode is N2. The scheduler posts the goal fluidheight (Tank,Height) with
Tank bound and Height unbound. and the procedure is moved to the list
of pending procedures. The subsystem responsible for monitoring the level
of fluid in the tank notices the posted goal. reads the sensor for fluid level.
and marks the goal fluid.height (Tank, Height) as satisfied with Height
bound to whatever the sensor read. The next time the scheduler looks at
tie pending procedures it notices t he satisfied goal. updates the procedure's
current node to N3. and places the procedure back on the list of active
procedures.

The procedural reasoning system supports subroutine calls in that a tran-
sition in one procedure may require invoking a second procedure. Several
procedures can run in parallel and communicate asynchronously by posting
goals to the global database. As an example of how two procedures might
work together in parallel. we consider a type of feedforward control that can

be implentented easily in a pru.cedural reasoning system.
The reference or target value specified in a control problem can be

thought of as a command for the controller to achieve a particular condition
(r.g.. a fluid level of the specified height). In many problems. the reference
changes-sometimes continuously--over an interval. The controller has to
track these changes so as to minimize errors. If the reference changes can
be predicted or are simply provided in advance, the controller can take ad-
vantage of this to help eliminat certain errors by using feedforward centrol.
For example. if the controller for a robot arm knows the exact trajectory
it is to move the end effector along, it can often precompute a sequence of
control actions. and then execute an error-free path without any feedback
control whatsoever. In most cases. however, feedforward and feedback are
used in conjunction, with feedforward taking advantage of known change in 6
the tarpt value, and feedback compensating for the inevitable errors that

Vw~mp in dealing with real-world processes.
In the caw of our tank-filling process. a feedforward controller could be

added to the feedback controller of Figure 4.14. The feedforward controller
anticipates the next reference value and mediates the output of the feed-
back controller if a change is detected. This sort of controller is referred
to as a rommmnd ftedforward controller and its block diagram is shown in
Figure 4.17.
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Figure 4.17: Block diagram for a controller with command feedforward

Figure 4.18: Labeled transition graph for a commaaud feedforward controller
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Figure 4.19: A hierarchical control system

To implement command feedforward control in a procedural reasoning
system, we define a new procedure to monitor changes in the reference value.
This procedure specifies a value proportional to the chance in reference to
be added to that specified by the feedback controller. The labeled transition
graph for the command feedforward procedure is shown in Figure 4.18. The
two procedures shown in Figure 4.16 and Figure 4.18 run at the same "ime.
The servo process operates on a voltage which is the sum of that specified
by each of the two procedures. This control scheme works particularly well
for tracking a continuously changing reference: for instance, if you wanted
the level in the tank to decrease to 0 at a fixed rate.

In describing the command feedforward control system above, we started
with an existing feedback control system and then added a feedforward
controller without changing the basic architecture of the feedback control
system. 'merrchical control systeringeneralize on this basic idea. A
hierarchical control system is constructed of several layers so that each layer
serves as a controller for the layer immediately below and is controlled by the
layer immediately above. There are different types of hierarchical control
systems. They differ in how the various layers are controlled by and impose
control on the layers immediately above and below. As our second approach
to bulding reactive systems. we consider a hierarchical control system in
which one layer is allowed to impose control on a lower layer by modifying
contro signals used for communicating between components of the lower
layer 17.

Figum 4.19 depicts the general form of the sort of hierarchical control
system we are considering. Each level is composed of a set of components
each of which is responsible for a simple primitive behavior. The components
communicate with one another by passing signals. For the most part. the
signals consist of bit or byte streams. The components can be implemented
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Figure 4.20: A single-level coutrol system

any way that you want. but it is a good discipline to think of them as
very simple computing devices. For instance, the components might be
implemented as regular finite state tuachines augmented with a small amo,,n'
of local state. a combinatorial circuit. and a local clock. The combinatoria'
circuit and local state are used to keep track of signals originating from other
components. The clock is used to provide simple timing capabilities. There
is no global state and the different components communicat asynchronously
by writing values into the local memory of other compo ets.

Figure 4.20 shows a single-level control system for aintaining the
fluid level in a holding tank. The component labeled read..tank.level con-
tinuously samples the sensor indicating the level of fluid in the holding tank
and outputs the value read on the wire labeled tankllevel which subse-
quently appears in registers in the components labeled servo-vol-tago and
fulltank. The servovoltage component implements the same procedure
as the labeled transition graph of Figure 4.16. The ful-tank component
detects when the level in the tank is equal to the height of the tank and
passes this information on to the the servo-voltage component and to the
alarm component which is responsible for sounding an alarm.

To illustrate how one level in a hierarchical control system might influ-
ence a lower level in the same system, we consider a second form of feedfor-
ward control referred to as disturbance feedfortmrd control. A disturbance
is a prcm that affects the controlled process but is not taken into account
by te cotroiled process model. In the fluid-level process we have been
consi.ing, we might model a process restricting the flow through the pipe
leading oa of the tank shown in Figure 4.12 as a disturbance. Suppose that
the output pipe is being used to fill containers that are moved into position
under the pipe using a conveyor system. When a container is filled, the flow
through the output pipe is temporarily restricted so that a new container
can be positioned under the pipe. Figure 4.21 shows how a simple propor-
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Figure 4.21: Overflow due to a distsirhance restricting outflow

I~lC~m5w / m & IM.. P~

Figure 4.22: Block diagram for a controller with disturbance feedforward

tioual controller reacts to a brief restriction in the output flow: the reduced
ifow effectively reduces the gain of the proportional controller and fluid spills
over the top of the tank before the controller can react and appropriately
compensate.

Let us suppose that it is possible to anticipate a restriction in the output
flow as would be the case for the coutainer-filling example described above.
Figure 4.22 shows a block diagrau, for a disturbance feedlforward controller
for the fluid-level problem. We assume that it is possible to sense restrictions
in the output flow and use this information to increase the voltage fed to
the servo motor thereby temporarily increasing the gain of the feedback
controller.

Given the single-level proportional controller shown in Figure 4.20. we
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Figure 4.23: A iwo-level system with disturbance feedforward control
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Figure 4.24: Disturbance feedforward controller preventing overflow

canl add a second control level in order to reduce or eliminate the amount
of spillage resulting from momentary restrictions. The resulting two-level
system is shown in Figure 4.23.

The performance of the two-level system is somewhat less than optimal:
as indicated in Figure 4.24. the two-level system does avoid spilling any fluid.
but the fluid height is somewhat erratic around the time of the restriction.
We Fir be able to further tune the feedforward component to eliminate or

! reducetis erratic behavior. However, it is often the case that, in builditng/ on top ad existing control system, we simply have to accept the limitationt
of what we started out with, or do it over. The hierarchical system described

/above makes it rather easy to build on an existing control system. Given the
discipline described earlier for building modular stand-alone computational
components. adding new functionality or enhancing old often consists of
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,iniply adding some new conipoilel s and wiring them together with the old
oies. To the extent iha.t this can be realized iii practice, it makes building
and experimenting with control svstenis remarkably easy.

The procedural reasoning system and the hierarchical control system de-
scribed above are similar in many respects. Both support multiple processes
running in parallel. Both support procedural abstraction and asynchronous
control. There are some differences, however. The procedural reasoning
system encourages the explicit representation of intentions, behaviors. and
goals. The hierarchical control sys . n encourages one to think in terms of
evolving control systems and distributed omputation. We say "encourage
as both systems are no more than general-purpose programming languages.
Unless you specify a compiler and a target machine, the two systems are
essentially equivalent.

There are other approaches TO building reactive systems some of which
will be discussed in subsequent chapters. In some cases. the reactive system
looks more like the sort of planning systems that we will investigate in Chap-
ter 5 in that it manipulates a representation of its pending tasks imposing
ordering constraints and dealing with certain classes of interactions between
tasks [Il]. In others cases, the system is realized as a boolean circuit [S. 26]
or as a network of processes that communicate using a specialized message
passing protocol [23]. The process of compiling reactive systems from a be-
havioral specifications is of particular interest, and we will return to-this
issue in Chapter 5. '

4.7 Navigation and Control

Traditionally, the problem of navigation, involving spatial and geometrical
modeling, and the problem of control, involving kinematics and dynamical
modeling have been considered separately. The former is believed to be in
the realm of planning; the latter in the realm of control. In the first problem.
we are given a geometrical model describing a robot, the objects surrounding
it. the, cumt relative positions and orientations, and some goal state
dewrlbi a fAnal position of the robot. and we are asked to generate a
trajectory or path through the associated space of possible configurations of
the robot and the surrounding objects. In the second problem. we are given
a dynamical model of the robot. and asked to generate a feedback control
law that issues torques to manipulator joints and drive wheels in order to
track a supplied reference trajectory. In this section. we consider a unified
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approach that addresses both of these problems.
To represent the state of the robot with respect to its environment, we

introduce the idea of configuration .sxice taken from Mechanics and adapted-2 for use in robotics [22]. Following Latonibe [201, we represent the robot.
.4. and the objects-we will refertkhem as obstacles-iu its euvironment.

...... . .....B,,,, as closed subsets of the work space. IV = R n , where n = 2
or 3. Both the robot and the obstacles in the workspace are assumed to be
rigid. Let )"A and Fw be Cartesian frames of reference embedded in A and
W respectively. FA is a moving frame while Fw is fixed.

A configuration. q. of an object is a specification of the position and
orientation of F 4 with respect to Yw. The configuration space. C. is the
set of all configurations of A. We employ the Euclidean metric and the
following distance function to induce a topology on C. The distance between
two configurations. q, q' E C. is defiucd as

distanc.(q.q') = max la(q) - a(q')Il.
afA

where 11t - x'1I denotes the Euclidean distance between any two points,
Z.X' E R". and a(q) is the point i, W occupied by a E A when A is in
configuration q. We define the free space, Cf,,,, to be

=r, {qlq E CA A(q) n (U Bi) = O}.
i= I

where A(q) is that subset of W, occupied by A in configuration q. A free
path (or just a path) of A from some initial configuration. q, to the goal
configuration, q*, is a continuous map

/ :[0, 1] -Cft,.,

subject to the constraints that it(O) = q and r( I) - q°.
The literature is full of approaches to solving the problem of finding

obstal paths in configuration space. In the following, we consider the
artflcdu,, potential firld approach first introduced to the robotics community
by KhMab [171 which unifies navigation (or path planning) and control. Our
treatet here borrows the notation of Latombe [20], as wel as some of the
insights of Koditschek [19] on the connections between planning and control.
To simplify the subsequent discussion, we assume that the robot is a point
object and the workspace is R 2 . In this case. it is meaningless to talk about
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thie roIbots orieittation. and. lience. the coiifigtiration space is identical to
t lie work -;pace.

We wish to dlesign all artificial potential ivid -s0 that the robot will b)e
attracted toward the goal configuration iin C and repulsed by obstacles. This
field of forces is modeled as a function. F. defined by

12(q) = -'~)

where U(T Cf,.~ - R is a differentiable potential function. and tile gradient.
7'. is definled ilL thle case of C =-R as

= O/OYJ

WVe represent the potential function as a smm of attractive and repulsive
C*ol iponlent potential fuit ions:

Ur(q) = U1attdq) + Ureg~q).

Generally, v the attractive force is represented either as a conic potential well

using the Eucidean distance. as in

Ua.tc(q) = JIq - q'1I,

where is a positive scaling factor, or as a parabolic potential well using tile

Luclidean distance squared. as in

U(Ilq -= 'Il. -

where the constant 1/2 is just to make r, come out a little neater. In the
former case. we have

(q -1)

I~q - q'

and in the latter
(, &t q (q - q*).

There are advantages and disadvantages to both approaches to repre-
senting the attractive potential. In some cases. it is useful to define a hybrid
p~otential using a parabolic potential within some fixed radius of the goal (fa-
cilitating gradient descent search in the proximity of the goal) and a conic
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potential outside that radius (keeping the potential value smaller at points
far fron the goal) [20J.

We decompose the repulsive comtiponent of t lie potential function into m

additive components. one for each obstacle. In designing a repulsive field
fbr a particular obstacle, we want to make it impossible for the robot to
come in contact with the surface of tie obstacle while allowing movement to
proceed unimpeded when lie robot is s nfficiently distant from the obstacle.

For a convex object, Hi, the following potential function performs well

II ' -,){i pq)

0 if p,q) >

where C is a positive scalar called the distance of influence, and p, is defined
as

pi(q) = nin J[q - q'n,

where we do not bother to distinguish betwen the configuration space and
the work space, since in the caes considered here they are the same.

The gradient of Uly, is defined by

V U ,(q) { (7 q) pi(q) ifp q) < C

0 ifpi(q) > (

where Vpi(q) is defined as follows. Let q, be the unique configuration in 8,
such that IIq - =qll = pj(q). Vpidq) is the unit vector pointing away from Hi
in the direction determined by the line passing through q and q.

We combine the repulsive fields for the set of.obetacles, {8 .. .
by taking a simple sum.

Ur,,.,(q) = r,()

The gmdient of the sum is simply the sum of the gradients.

m

Combining the attractive and repulsive force fields, we have

F(q) = rf.t + "UreI.
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Figure 4.25: A 2-D configuration space (i) containing two obstacles. The
attractive potential field (ii) along with the repulsive potential fields (iii)
andl (iv) for each of the two obstacles. the sumi (v) of the attractive aud
repulsive potential fields. and a 2-D plot (vi) showing several equipotential
con~tours.
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Fig",e 4.25 shows a 2-D configuration space. the resulting potential

fields. and several equipotential contours indicating that the potential field
has a single minimum. The attractive potential is modeled as a parabolic
potential well.

The potential field approach was originally conceived of as a method
for real-time obstacle avoidance. The basic idea was to regard the robot
in configuration space as a particle moving under the influence of the field.
F = -r'Ir. The acceleration is determined by F(q) for every q E C. Given
the dynamics of .4 and assuming perfect sensing and motors that deliver
exact and unlimited torque. we can compute the torques that should be
issued to each of the actuators so that the robot behaves exactly as the
particle metaphor predicts.

Consider a very simple robot with z-siugle degree of freedom (e.g.. a
pismatic (sliding) joint). We assume that its position (configuration). q E
C = IL and velocity. 4. can be measured precisely by a perfect sensor and
controlled by a servo that delivers exact and unlimited force, .. We model
the dynamical system using Newton's second law of motion,

M4= y,

where M1 is the mass of the robot. The object is to move the robot from its
present configuration to some final configuration q*.

In the potential field approach described above, we address the geomet-
rical side of the problem in terms of optimizing a cost function disguised
as a potential function. This approach is quite similar to the dynamic pro-
gramming example that we investigated in Section 4.5. The cost function
that we are trying to minimize in this case is just the attractive potential
function introduced earlier

I
.2KplJq - q*11".

where Kp is any positive scalar. To simplify the present discussion, we
ignore the problem of avoiding obstacles. From this equatioi.. e obtain

4 = -VP = -Kp(q - q'),

and note that, since in this case q" is the only minimum of S. this linear
differential equation generates a solution to the geometric problem of finding
a path from any initial starting configuration to q*. Now we set out to derive
a control law that will serve to track the path (or reference trajectory) so
defined.
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Having interpreted .; in terms of potential energy. we define Iie kinetic

Piiergy, K. as
- = lIf 2 .

and obtain the total energy. A. as the difference of the kinetic and potential
energies

A = -

A dynamical model can be obtained using the Lagrangian formulation of

Newton's equations defined by

d -LA - = Y~t

where y. represents all of the external (non-conservative) forces acting on

the robot. The resulting Newtoiau law of motion is

31 - Kp( q - q*) = Ye.t.

Let us assume that . represents a dissipative force (we can add this if
necessary) proportional to the velocity.

'-ext = -KD 4,

where KD is a positive scalar. The resulting system is asymptotically stable,
and converges to the goal q" from all initial configurations q E C.

Finally, we have

'31 + K6 - Kp(q - q') = 0.

Returning to our original dynamical model

.'l = F.

we can obtain the following control law

. = -KD4 + Kp(q - q'),

an instance of proportional derivative feedback control. The proportional
component captures the essence of a simple one-dimensional planning system
that determines an appropriate reference trajectory in configuration space.

The derivative component enables the controller to respond appropriately
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to th. behavior of t- two-dimensional (one spatial and one temporal di-
tueusionii physical s steU.

Khatib's motivation for emploving arlificial potential fields was to pro-
vide real-time obstacle avoidance capability for multi-link manipulators [17].
hI hIs original formulatiou. it was assumed that there would exist a higher
level of control that would compute a global strategy in terms of interme-
diate goals. The low-level system would produce the necessary forces to
achieve these goals, accounting for the detailed geotuetry. kinematics, and r
dynamics in real time. In the following, we say a bit more about the high-
level problem of computing a global strategy corresponding to a path from
the current configuration to the goal configuration.

The approach to building potential fields described earlier has a number
of problems: some of wLich can be easily remedied and others of which
are more difficult to overcome. We address some of these problems now.
beginning with the easiest ones. working our way up to the more difficult.

The repulsive field for obstacles in the workspace was defined only for
convex objects. We can extend I lie method to handle more general objects
by decomposing each obstacle into some number of (possibly overlapping)
convex objects. associating a repulsive potential with each component. and
summing the result. There are some ,bt- )with this approach (see [20]).
but this basic method of decomposition Zorfs well in practice.

The next problem concerns the assumptions regarding the dimensions
of the workspace and the degrees of freedom of the robot. For the idealized
point robot operating in two dimensions. the two-dimensional configuration
space was equivalent to the Euclidean plane. In general. the number of
parameters required to describe the configuration of the robot will determine
the dimension of the configuration space. For a rigid robot. operating in
three dimensions, it takes six parameters to describe the configuration of the
robot. For manipulators consisting of rigid links serially connected by single-
degree-of-freedom joints (e.g.. revolute (rotating) and prismatic (sliding)
joints), the number of parameters required is equal to the number of joints.
For existing mobile robots and manipulators, it is possible to construct the
requMle configuration spaces and extend the techniques described above to
haudlb tiw resulting motion planning problems. However. assuming P #
NP. the complexity of planning free paths is exponential in the dimension
of the configuration space.

In general. computing free paths for multi-link manipulators and mo-
bile robots in cluttered environments can be quite expensive [271. From the
perspective of computational complexity. this high-level geometric planning
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Figure 4.26: Two potential fields with multiple extrema: one i) resulting
front two closely situxted convex ohitacles. and i second (iii) resulting from
a single concave obstacle. A set of corresponding equipotential contours is

shown (ii) and (iv) for each of the two potential fields.

problem is typical of the sort of problems that we will encounter in the next
chaptu. Solutions to problems involving a significant number of constraints
(e.g.. a& mvironment cluttered with obstacles) and many alternative control
actiom (e.g.. robots with several degrees of freedom) tend to be computa-

tionally prhibitive. For real-time applications involving such problems. it

is generally necessary to make simplifying assumptions thereby decreasing
the complexity of the resultinly decision problem while at the same time
sacrificing generality and possibly risking soundness or completeness.

Another problem with the artificial potential function appruach outliued
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earlier concerns with the problem r' multiple extremna in potential fields. In
general. a. lpotential field for a. cluttered work space niay include several ex-
t reina. Under such conditions. using the gradient to guide search miay result
in paths that terminate at extrema other than the one corresponding to the
goal configuration. Concave objects are one potential source of misleading
local extrema (see Figure 4.26.iii). but such extrema, can also result in the
case of closely situated convex obstacles if Itle distance of influence. , is
greater thtan twice the distance between the obstacles (see Figure 4.26Ji).

In order to avoid.JjLnAg into local miiinia, it is necessary to employ
nicore sophisticated search inethods than simple gradient descent. In the
following, we consider one such miethod for finding collision-free paths in a
two-dimensional configuration space.,

We begin by tessellating the coitfiguratiou space to form a grid of equally
sized ceils. In the case of a point robot on a planar surface. the discretized
configuration space. CZ, is a subset of the integer plane. Z x Z:

CZ= {(i,j)10O5 i.j :5r),

where r is a integer parameter used to hound the size of the configuration
space. 'The potential at the coordinates, (i,j), in the integer plane is U1(iI,jl)
where I is the length of the side of a cell. We assume that both the initial
and the goal configurations are configurations in CZ, and that, if two con-
figurations are neighbors in CZ aiud both of thiemi belong to Cf,,., then the
straight line segment connecting them also lies in Cfe,,.

In the following, r is a tree whose nodes are configurations in CZ. We
(lefrne a best-fl rut path planning algorithns as follows.

1. Initialize T to be the tree consisting of the single (root) node corre-
sponding to the current configuration.

2. Choose a leaf node. q. of T with unexplored neighbors in CZ whose
potential value is equal to or less than the potential value of all the
other leaves in T with unexplored neighbors.

:3. Add to T as children of q all configurations not already in T whose
potential value is less than some (large) threshold. (This threshold is
ad to avoid paths that get too close to obstacles. Recall that at the
surfaces of obstacles the potential is infinite.)

'The mnethod for searching two-dimensional configuration space described hene can be
extended to higher-dimensional configuration @pace@ with little modification, but is only
practical for dimi-xuion :5 4 (20).
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4. If q- is a leaf node in T. then go to Step 6.

.5. If there are no leaf nodes in r with unexplored neighbors. then return
failure. else go to Step 2.

6. Return the path from the root of T to q'.

The algorithin describd above is guarateed to find a rree path if one
exists or report failure otherwise. The algorithm deals with multiple extrema
by following a discrete approximation to gradient descent until reaching a
local minimum. Once in a local ininiuni. it proceeds to -fill in- the well
of this iniimum by exploring the surrounding cells until a saddle point is
reached and the local minimum is avoided. By adding simple optimizations
to facilitate finding the next node to explore, it is possible to achieve a
running time of O(arm log r) fur a conliguration space of dimension it.
The/algorithm works for configuration spaces of arbitrary dimension, but
fo imension much greater than four the running time is prohibitive.

t should be noted that the best-first planning algorithm will find a path
if one exists, but not necessarily the shortest path or the optimal path by
any given metric. The discretized configuration space can be used as part of
a dynamic programming approach to finding optimal paths. Indeed, using
". dynamic programming approach, we can design an algorithm that will
construct a potential field with a single miwdma at q" in O(tirm). Using this
potential field, one can generate the shortest path from any initial location
to q' using a discrete approximation to gradient descent in time linear in
the length of the path.

Koditschek 118] provides a method of generating potential functions-,he calls nvigaion functions that have'a single global winimum " The

advantage is that simple local methods (e.g.. gradient descent) suffice for
navigation and control. However. as with other approaches to motion plan-
iing, the cost of generating navigation functions can be quite high in the

case of clattered environments and robots with many degrees of freedom.
Tis section was meant as a bridge between the central issues of this

cbapter sad those of the next. n this chapter, we considered basic properties
of dynamical systems such as controllability, observability, and stability that
are critical in the design of control systems. We investigated the fundamental
idea of feedback control and considered the use of performance measures in
optimal control. Finally. in this section. we considered the idea of providing
higher-level direction for control in the context of navigation problems. In
particular. we considered methods for encoding navigation tasks in terms
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of potential functions that provide a convenient basis for the control of
nalnipnlators and mobile robots. The ,ext chapter considers lhe issues

involved itt encoding high-level tasks illituch more detail. Like the problems
involved in motion plauning. the problems we % lookiftrat in the next
chapter are computationally complex.

4.8 Further Reading

The literature on control systems theory and practice is v-ast. In the follow-
ing, we point out some books and articles that have been particularly useful
in understanding the basic control issues and their attendant mathematical
formulations. For a good overview of classical and modern approaches to
control. the introductory text by Dorf [10] is excellent. Most control texts
assume a relatively high level of mathematical sophistication. In particular.
some familiarity with linear systems analysis is generally assumed. The text
by Chen (9] provides a good introduction to linear systems theory. Gopaf's
book [14] on the control of linear multivariable systems is an excellent intro-
duction to that subject. For more of an engineering perspective on control.
lie interested reader is advised to consult Bollinger [5] or Borrie [6].

The survey article by Ramadge and Wonham (25] provides a good in-
troduction to work in the area of discrete events systems. Optimal control
texts generally rely on a good background in the differential and integral
calculus. and, in particular, the calculus of variations (12). Athans and Falb
[2] provide an introduction to optimal control. There have been many books
written on dynamic programming. The original text by Bellman [3] is still
generally available and provides a good introduction to the subject with
plenty of illustrative examples.

For a careful treatment of the configuration space representation and
a variety of approaches to finding free paths in couliguration space. the
reader in enconraged to read Latombe's book on robot motion planning [201.
Koditschek [19] provides a technical and historical survey of navigation tech-
niques ring potential functions including a discussion of stability issues. For
a survmy of complexity results pertaining to motion planning, see Schwartz.
Sharir, and lopcroft [28).
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Chapter 5

Knowledge-Based Planning

Control theory provides a framework for constructing strategies to control
processes modeled as dynamic systems. Sometimes, however, it is more con-
venient to represent the controlled process in terms of causal event models
of the sort investigated in Chapter 3.1 The problem of constructing courses
of action based on properties of causal event models is called planning, and
the specification for intended actions of the robot over time is called a plan.
By planning, the robot in effect programs itself to act in a particular way in
the future. Al researchers have developed a variety of planning techniques,
applicable for a wide assortment of plan and event representations.

In the general planning setup, the robot is given a causal event model,
with a distinguished subset of events, called actions, deemed under the
robot's control. In other words, the robot can directly establish the truth of
actions, but can infuience other events only indirectly through their causal
relations to actions. The robot also has some objectives describing desirable
properties of the controlled process in terms of patterns of events. Plan.
ning is the process of assembling basic actions into a composite plan object
designed to further these objectives.

A large fraction of planning effort is typically devoted to reasoning about
the effects, or potential consequences, of actions. One important reasoning
task b to determine whether a particular property should be expected to
haiM @=e point after or during the plan's execution. Planners perform
this tuA by applying their truth criterion to the causal event model. The

I t vW5d be nice to provide some ue~stions about what fetures of the proces indicate

the best choice of ep nentation. Potential advantages of event.ased (Iingusti) ontolM
include facitieas for representing incomete information and the intuitive upper of causal
events. Perhaps a comparative discuson belongs at the start or end of Chapter S.
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computational expense of determir'ng which propositions hold at various
points in time depends strongly o,, the representation for the effects of ac-
tions and the accuracy of the algorithm implementing the truth criterion.
For the planning techniques described below, we use deducibility with re-
spect to TEMPLOG causal models as the truth criterion.

Usually it is not possible to predict perfectly the effects of actions on
the controlled process. These limitations are manifest by indeterminacy or
even incorrectness of the truth criterion. To plan effectively under these
circumstances, the robot may need to gather information directly from the
controlled process, augmenting the predictions drawn from its causal model.
This approach is directly analogous to the use of feedback in control systems.
In robot planning, the process of sensing the state to influence subsequent
action is calt.d ezecution monitoring.

Planning is deliberative, in that it generally calls for a broad consideration
of th. available courses of action and their potential consequences. However,
ih. most situations the robot does not have the luxury of unbounded delibera-
tion, because the process of interest progresses in time as the robot computes
its plan. To produce effective action under the stress of real time, the plan-
ner must have some capability to react to its perceived situation without
necessarily invoking its full deliberative powers. For any planning problem
there is a spectrum of computational strategies, expected to produce better
pl.ns as more time is devoted to deliberation. Managing this tradeoff is a
significant issue in the design of comprehensive planning architectures.

The final issue we consider in this chapter concerns the specification
and interpretations of the robot's fundamental objectives in control. In the
co,,mon approaches to planning (including the one we present here), ob-
jecives are represented as a set of predicates, called goals, on states of the
coLtroled process. "The planning task then amounts to finding a course
of action guaranteed to achieve these goals. As we have seen in several
ex-mples, however, absolute goal conditions cannot express gradations of
preference needed to capture the realistic objectives of a control problem.
The basic difficulty is that predicates coarsely partition the outcomes into
tw~r setS, failing to distinguish among states where the goals are achieved,
and ipoviding no guidance whatever for problems where it is impossible to
guarmtt goal achievement. When objectives can be achieved to varying
degrees or with some probability, the more general preference representation
is required to properly account for the tradeoffs inherent in choosing alter-
native courses of action. On the other hand, the goal representation meshes
well with the event ontology for causal modeling, and with plan evaluation



*Draft* of December 10, 1990

procedures based on the truth criterion. Moreover, goals have significant
heuristic value in focusing the search forgood plans, and therefore consti-
tute a useful approximation for more expressive preference structures. At
the end of this chapter, we analyze the preferential interpretation of goals
as a first step toward a reconciliation of common planning practice with the
general theories of decision and control.

5.1 A Task Reduction Approach

The approach to planning we describe here is organized around the concept
of a task, which is an abstract operation that the robot is committed to
performing. Tasks are abstract in the sense that they dictate the general
nature of what the operation is to accomplish without necessarily specifying
its precise implementation. Before an abstract task can be carried out, the
planner must supply sufficient detail so that it can be executed directly by
the robot hardware.

One way of increasing detail is to replace an abstract task with a more
specific task or collection of more specific tasks. This process of refining the
level of abstraction is called task reduction. Upon reducing an abstract task,
the robot commits to carrying out the more specific tasks. The reduction
process continues until all the tasks are specified in sufficient detail or all
avenues of reduction are exhausted.

A task detailed enough to be executed by robot hardware is called prim-
itive. Of course, primitiveness is a relative property, defined with respect
to the capabilities of a particular execution module. For complex planning
problems, it is often useful to construct a hierarchy of abstraction levels,
each corresponding to a virtual robot with its own set of actions that are
considered primitive. In this scheme, the planner at each level generates
tasks at the next lowest level of detail, but is viewed as an execution module
by the level immediately above.

One important type of nonprimitive task2 comprises those committing
the robot to make a given proposition hold. These achievement tasks are
denoted achieve(P), where P is the particular proposition to be achieved.
Such tals may be reduced by finding a primitive task that necessarily
achieves P, or by finding some other tasks achieving propositions that col-
lectively entail P.

SOther types include mantenance and prevention. Mention these, but do not introduce
them into the logic. Perhaps gue interpret.tion for them in terms of achieve.



*Draft* of December 10, 1990 4

Reduction is complicated by the fact that a* any instant the robot is
likely to have many tasks, and several methods fo. reducing any given one. In
other words, finding a method to achieve a proposition is a search problem.
It is quite possible that a choice for reducing one task may preclude potential
reductions for some of the other tasks, requiring backtracking. Sometimes
these conflicts can be detected and avoided, by coordinating the reduction of
separate tasks via constraints. In the remainder of this section, we present a
scheme for task reduction, developing a set of data structures and associated ,
techniques for organizing and managing the search process.

As far as our temporal model is concerned, a task is just a special sort
of time token. An instance of a task is created by asserting an expression of
the form

tokon(task(type), symboO .

The assertion declares that the robot has a task of type type throughout the
interval from begi:n(ymbol) to end(symbol). For instance, the following
expressions assert that the robot has two particular tasks, one primitive and
the other an achievement.
task (push-button (button42)).

task(achiev.(location(robot ,valvol))).

Primitive tasks are specified by their type. If the query priaitive(Q)
succeeds, then Q is the type of a task that can be directly executed on robot
hardware. In the warehouse domain, we assume that push.button(B) is
primitive,3 where B is the label of a known push-button control switch. Be-
ing primitive does not imply that executing an action will necessarily achieve
the proposition of the achievement task it was reduced frum. The intended
results are typically guaranteed only under certain qonditions, which may
or may not be entirely under the robot's control.

Tasks come and go as the robot discovers information about its envi-
ronment. If the robot enters the loading area and notices a truck that was
not there the last time it visited, then it will formulate a new task to load
that truck. Conversely, if the robot currently has the task to load truck4S,
and It notices that truck46 is no longer waiting, the robot will give up on
this task. To institute the general policy of servicing trucks waiting in the
loading area, we assert a task covering that policy, and add a projection rule
to the database relating this task to its more specific instances.

s Comment from Jean- Claude Lo.tmbe that thi can actualy be a complar operation
from th robot control perlchve.



*Draft* of December 10, 1990 5

proj act (task (service-trucks),
becomes (locat ion(Truck, loading-dock) ),
task(load(Truck))).

along with a corresponding policy to give up on load tasks when they are
no longer feasible."

project(task(load(Truck)),
becomes (-'locat ion(Truck, loading-dock)),
-'task (load(Truck))).

Of course, for the above polices to work as intended, the robot has to be
continually aware of new arrivals and unexpected departures, and, hence, it
might be reasonable to have policies that call for the robot to occasionally
scan the loading area looking for changes. This points out a problem with
our representation of time and action; we do not distinguish between what
is true of the world and what the robot knows to be true of the world. We
return to this issue in Section 5.2.

Some policies should be ignored in certain situations. For instance, when.
ever the robot is in an area where an assembly operation is in progress, it
should check to see if the assembler's malfunction light is on, and, if so,
generate a task to push the reset button. However, if the robot is in a hurry
or has only recently checked the malfunction light, it might not generate the
task to check. The decision whether or not to check will depend upon what
other tasks the robot currently has pending.

Some types of policies are more diffcult to administer than others. For
instance, a policy to clean up concrete spills might generate a specific task in
response to each detected spill, but what about a policy to prevent or min-
imize concrete spills? In the latter case, the robot's response to a predicted
spill might simply be to change its current plan by, say, opening an input
valve a little less or. an output valve alittle more, but the robot might instead
decide that the valve settings are perfect and choose to prevent spillage by
raising the walls of the mixing tank. Whether this latter approach is ac-
ceptable will depend upon the cost of raising the walls. In Section 5.4, we
consider how more precise specifications of objectives, in the form of value
functioms, may provide the information necessary for such decisions.

I& the task reduction approach, planning knowledge is encoded in ex-
presumio of the form

todo (what, ohen, how).

' Whad if th, load tk i arbead reduced! Pre.ents complcated problem of how to
maintain statul of teak in reduchion asr-ch.
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where what is a task type, when is an interval, and how is either knother task
type or a compound task description specifying how to reduce the what task
type. If how is a simple task, the result of interpreting the todo expression
is to introduce a new task

token(task(how), when).

and mark the original what task as "reduced," to note that we need not
search for another method.

One common how task type is the no-op, or do-nothing action. In gen-
eral, when you have a task to accomplish something that is already true,
the obvious action to perform is none at all. We can represent this simple
strategy as:

todo (achieve(P) ,K,no-op) -- holds (end(K) P).

where, in order to absolve the robot of its commitment to achieve P, all that
is important is that P is true at the end of the interval K.

Note that providing methods for achievement tasks in todo expressions
significantly simplifies the search process. Without these methods, the plan-
ner would have to examine the causal model directly to find controllable
events that would result in the proposition to be achieved. By relying on
them, however, the robot will not in general consider every possible way
of accomplishing its task. The task reduction approach implicitly assumes
that the computational benefits of using todo directives exceeds the cost
of supplying them and the loss of opportunities potentially derived from a
direct analysis of the causal model.

It is often useful to group together a collection of tasks coordinated for a
common purpose. We call the description of such composite action a plan.
Actually, these plan objects only partially Specify the full course of sction,
and we sometimes emphasize this by calling them abstract or partial plans.
In contrast, a complete plan is comprised entirely of primitive actions with
a precise specification of the time that each is to be executed.

In our task reduction scheme, a plan consists of a set of steps with
associated constraints that determine their order and duration. For instance,
a plaa to fill a tank might include the following tasks as steps:
Seepi: achieve(locat ion(trck42, loading-dock))

Stop2: achieve(location(roboatvavel))

Step3: achieve(position(valvel) = 350)
Step4: achieve(floor(robot,floorl))

Step5: achieve(location(robot,valv*2))
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along with constraints on those steps as follows:

end(Stepl) - begin(Step2)

distanco(begin(Staep2),end(Step2)) E [00:00,00:01)

The steps in a plan are transformed into a set of tokens in the course of
formulating a specific instance of that plan. For example, the above steps
might be instantiated as
token(task (achieve (locatlion(truck42, loading-dock))) ,stepl41). .

token(task(achieve(location(robot,valvel)) ),stepl42).
token(tauk(achieve(position(valvel) = 35)) ,step143).
token(task(achi.eve(floor(robot, floor))),stepl44).

token(task(achieve(location(robot,valve2)) ),step145).

and then constrained temporally by instantiating the specified constraints:

end(step141) _ begin(stepI42).
distance(begin(stepl42)),end(step142)) E [0,00:01].

where step141 through step145 are newly minted symbols identifying the
intervals associated with the task instances.

Plans are represented in our scheme by expressions of the form

plan ( stepa , time-conatrainta , protections)

where the steps indicate the new tasks involved in the reduction, the time-
constraints restrict the order of those tasks, and the protections specify spe-
cial properties that must be maintained during the plan's execution. The
new tasks are referred to as subtaras of the task they were reduced from,
inversely designated the supertask of the new tasks. All subtasks are implic-
itly constrained to occur during the interval of the supertask, as specified in
the todo expression. Protections are important in detecting problems that
arise when one task interferes with another.' Consider the following general
method for making two propositions true at the same time:

todo(achieve((PQ)) ,
Plaa( [achieve(P), achievo(Q)) ,

(end(l) -5 end(K), end(2).- end(K),
[proct(and(l) ,nd(K) ,P),
protec%(end(2),end(K) ,Q)])).

sLatevmh: what about simpLification possible by merging identical ubt.so for different
Supertasaks



*Draft* of December 10, 1990 8

The steps are numbered by their position in the list of steps.6 The con-
straints refer to these numbers and are used to constrain the corresponding
tokens created in the process of instantiating a particular plan. The two pro-
tections stipulate that to achieve the conjunction of P and Q, achieve each of
P and Q individually, and ensure that once each proposition is made true it
remains so at lest until the end of time interval K. A protection is said to
be violated when the robot becomes committed to an action with an effect
whose type contradicts the type of the protection.' Certain combinations of -

tasks can make it impossible to avoid violating protections.8 In some cases,
conflicts among propositions to achieve are easy to detect, for instance:9

achieve( (status (assembler, on), status (assembler, off)))

In general, however, the interactions between tasks can be arbitrarily com-
plex, requiring considerable effort to detect and resolve.

Most of the plans for a given application encode domain-specific strate-
gies for reducing abstract tasks to more concrete ones. The set of all such
strategies constitutes a plan library. In the following, we provide examples
of plans that might appear in the plan library for a robot operating in the
warehouse domain. We take the liberty of simplifying the plans somewhat
(e.g., by leaving out certain steps and constraints) in order to make the text
more readable. Here is a plan for installing an option in an appliance:
todo(achieve(installed(OptionAppliance)) ,K,

plan( (achieve (location (Appliance, in-conveyor)),
achieve (location (Option, in.conveyor)),
achieve(status(asseabler,on) )],

Cend(l) -_ begin(3) , ond(2) begin(3)],

[protect(end(l) ,begin(3),
location (Appliance, in-conveyor) ),

proate (end(2) ,begin(3),
location(Opt ion, in.conveyor)),

protect(.nd(3) ,end(K),statuu(asmebler,on))]))
holdcs(begin(K),(status(ausembler,off),

status (malfunction.light, off))).

e him how this might be implemented in proloS using a pre-procesor, and how the
santu no& be further sugared to use step identifiers.

?Leiteng: What about temporary violatons? I. them any way to allow them? Answer:

never we@4 useful; consider modal truth criterion.
$e.g., the Sussman anomaly.
*Make clear that conflicts are not errors but can represent legitimate competition among

goal and subloals.
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Take note of the role protections play in this plan. The first two protec-
tions ensure that, once placed on the assembler's input conveyor, the appli-
ance and the option to be installed will remain there until the robot starts
the assembly. The third protection prevents the robot from inadvertently
scheduling some other activity that would result in turning the assembler
off during its execution of the installation task.

The robot will also need plans for changing the location of objects. The
following general rule specifies how to change the location of something other ,.
than the robot:
todo(achieve(location(Obj ect .Loci)) ,K,

plan( [achieve (location (robot Loc2)) , pick-up (Object).
achieve (location (robot ,Loci) ,setdovn(Obj ect) ,
Cend(l) - begin(2),
end(2) - begin(3),
end(3)-_begin(4)J,
Cprotect(end(l),begin(2),location(robot,Loc2)),
protect(mnd(2) ,begin(3) ,holding(robot,Object)),
protect(end(3) ,begin(4),location(robotLoci)))) 4-

holds (begin~(K), (location(Object,Loc2),
Object 0 robot,Locl 16 Loc2)).

The above plan assumes a somewhat implausible model of robotic move-
ment. In order to move an appliance onto the input conveyor, the robot
would have to move itself onto the conveyor while holding the appliance,
then set the appliance down so that it rests on the conveyor. Although we
continue to make use of such simplifications as required to keep the dis-
cussion focused, we return to consider continuously changing parameters in
general and spatial inference in particular later in this chapter.10 To plan
for moving the robot about, we use the following rule, and assume that the
task type move(saoue, deatinatior) is primitive:

todo(achieve(location(robot.Locl)) ,K,move(Loc2,Loci))
holds(begin(X) .location(robot,Loc2)).

Finally, the robot needs a plan for turning the assembler on or off:

todo(achiev.(statu(aeeubler.Statl)) ,K,
plan( [achieve (location (robot, assembly-area)),

push.button(Stat 1)],Cend(l)_ begin(2)],
Cprotect(end(1) ,begin(2),

location(robot , ase.ebly.area))))
holds(end(K), (statu(asuembl.r,Stat2) ,Stat 10 Stat2)).

10 Will we? I don't think ao.
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Now we are ready to consider how to go about reducing a set of abstract
tasks to primitive tasks. In general, the reduction process can be quite com-
plex. We start by sketching an algorithm for performing the reduction, give
an example illustrating the algorithm in operation, and then comment on
complications not explicitly handled by the algorithm. The task reduction
procedure is specified as follows:

1. Find some task, token(task(what) ,when), which is neither primitive -
nor marked as already reduced. If no such task exists, wait until a
new task is added to the database.

2. Using the query, todo (what, when, how), try to find some method how
for carrying out the task found in Step 1.

3. If the query s- - -i in Step 2 fails, try addiug constraints to restrict
the ordering of the existing tasks. This may trigger rules permitting
the todo query to succeed on the next attempt.

4. If the query specified in Step 2 fails even after trying various additional
constraints, try removing one or more of the existing tasks along with
all associated protections and other constraints. Be careful to reinstate
the original supertask.

5. If Step 2 through Step 4 fail to produce an applicable method, return
to Step 1 and try another task.

6. If the query succeeded, mark the orig-. ' tank as reduced and add
the new how task or plan to the database, along with any specified
constraints and protections.

7. Upon effecting the reduction, TEMPLOG will have updated the database
using the projection and persistence clipping algorithm, and the pro-
jection rules that describe the effects of the actions. Check to see if
any protections are violated by the addition of the new tasks.

8. If any protections are violated, resolve the violation by either reorder-
ing or removing one or more of the existing tasks.

9. Go to Step 1.

A concrete example should help illustrate the basic operation of the re-
duction algorithm. Figure 5.1 shows a TEZPLOG database containing one
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nonprimitive unreduced task to install an ice maker in a refrigerator. Fig-

ure 5.2 shows the TUMPLOG database resulting from applying the reduction
algorithm, using the planning knowledge specified in this section and the

knowledge of cause-and-effect relationships described in Chapter 2. (Only
selected step. are depicted in Figure 5.2 to keep the display readable.) The

reduction illustrated in Figure 5.2 is a particularly simple one; we consider
next some problems that may arise in more complicated situations.

Returning to the previous listing of the reduction algorithm, note that

there are a number of steps where choices are made. In Step 1, the robot

S
I
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will generally have to choose from a number of unreduced nonprimitive
tasks. In Step 2, there are likely to be severa4 methods for reducing the
chosen task. If the todo query does not immediately succeed, the robot may
have to consider several alternative orderings in Step 3, or several reduced
sets of tasks in Step 4, before it is able to find a reduction strategy that
works. In fact, the iteration of Steps 1 through 5 can cause the algorithm
to loop indefinitely, continually removing tasks and adding new ones. In
general, the algorithm is not guaranteed to eventually terminate with a
complete reduction. The problem of resolving protection violations in Step 9
can be particularly troublesome; sometimes involving numerous attempts at
reordering or modifying the set of tasks. If the robot makes the wrong choice
early in the planning process, it may expend a great deal of effort before it
"backs up" znd tries an alternative option. All of these problems and more
have to be routinely solved by a robot control system that generates plans
by task reduction. Researchers have developed an array of techniques for
dealing with these problems, although none offer a complete solution.

For an example of how the procedure detects and resolves negative in-
teractions among tasks, suppose that the TIMPLOG database depicted in
Figure 5.1 also contains a task committing the robot to perform routine
service on the zssembler. Suppose further that this routine service task is
currently scheduled to overlap with the task to install the ice maker in the
refrigerator. The plan for i utine-service tasks is specified below:
todo (rout ins.service (assembler), K,

plan( [achieve(statuu(asumbler,off)),
lubricat (aeeoabler),
repleniah-coolant (asumbler),
push-buttaon (reet) ],

Cend(t) _ .bsgin(2), end(t) _ begin(3),
end(2) -_ begin(4), end(3). _ bogin(4)],

[protect(end(l) ,begin(4),
status(asembler,off ))).

Note that the routine service plan requires that the assembler be turned off
before the lubrication and coolant-replacement tasks are initiated. The task
to turn the assembler off conflicts with the installation plan, which requires
that the _suembler be on.

Figure 5.3 depicts the database resulting from reducing both the instal-
lation and routine service tasks. Note that the database predicts that the
assembler will not remain on throughout the required portion of the installa-
tion interval. In the course of reducing the two tasks, the robot should have
generated two protections, the first associated with the installation task:
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protect(end(stepl2l),end(installationl) ,statue(assembler,on))

and the second associated with the routine service task:

protect(end(stop 127),end(service),status(assembleroff))

These two protections conflict with one another (i.e., they require the per-
sistence of tokens of contradictory types over a common subinterval). The
easiest way to resolve this particular conflict between the installation task
and the routine-service task is to reorder the two tasks: either constrain
the interval servicer to end before the beginning of step127, or constrain
servicer to begin after installationi. For other conflicts, reordering may
not suffice, necessitating more drastic measures.

There are other problems that can arise besides protection violations.
Many of the rules specifying reduction methods have conditions that must
hold if the reduction method is to apply. We refer to these conditions as
reduction assumptions. For instance, consider the general rule for avoiding
unnecessary work:

todo(achieve(P) ,K.no-op) - holds (end(K) ,P).

If the robot has a task of type achieve(status(assembler,off)) dur-
ing token intervalS1, when the assembler is already expected to be off,
then it will reduce the task to a no-op. The reduction assumption is that
status(assembler,off) holds at end(interval8l). The robot will check
at reduction time that the reduction assumption holds, but the assumption
may become false during subsequent planning as additional tasks are added
to the database. Reduction assumptions have to be carefully monitored in
much the same way that protections are, and steps taken when the assump-
tions ar found to be violated.11

The general problem of reducing a set of tasks to primitive tasks so as
to avoid violating any protections or falsifying any reduction assumptions
is believed to be computationally intractable (i.e., it has been shown to be
in the dass of NP-hard problems). Deadlines and reasoning about resources
are obvious sources of complexity, but, even if we were to ignore deadlines
and resou s, most interesting planning problems remain in the company
of thuw dificult problems. For certain versions of the problem, there is no

"i, fe Idcon trigger need. to hold at task time, why are't these alwaya protected?

Or ulteenwte, why not allow protections with simple task reductions! Clarify the utility of
defining th concept of reduction assumptions dutnct from protections. Confusing factor:
protections seem to guard against inter-task conflicts s a side effect of preventing intre-
task conflicts, performing ome of tAe function of reduction assmptions.
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effective method for generating plans (i.e., the problem is undecidable). For
the problems that are decidable, it is fairly simple to write an algorithm
that finds a solution if one exists, and signals that no solution exists other-
wise. Unfortunately, such an algorithm may take an unacceptably long time
to return its answer. While these observations are somewhat discouraging,
we at least know that good approximate solutions are possible (e.g., hu-
mans perform reasonably well driving forklifts in warehouses). In artificial
intelligence, planning problems are typically recast as search problems, and
standard methods have been applied to develop heuristic algorithms that
perform well in practice. In this chapter, we have not explored the vari-
ous search techniques, concentrating instead on the basic problem of how a
robot might use symbolic representations to guide its behavior.

In each iteration of the reduction algorithm, a partially completed plan
is analyzed and modified. For some planning problems, such incremental
analysis is problematic. The projection rule describing the process of moving
from one location to another (specified in Chapter 2) indicates that the
distance in time between when the move is initiated and when the robot is
in the final location is a function of the distance in space between the robot's
initial and final position. This rule brings up an important issue that we
have avoided so far. The order in which tasks are executed determines to
a large extent how long they take to execute. If the robot is trying to
minimize the time spent in execution or avoid violating deadlines, then it
has to consider not only the order in which to perform each task, but the
location that it has to be in to perform each task and how to travel between
those locations. Task scheduling with deadlines and travel time inevitably
involves nasty combinatorics and NP-hard problems.

There are all sorts of deadlines that a robot might have to contend with
in practice. In .addition to absolute deadlines (e.g., finish before noon),
there are graded deadlines (e.g., the longer you take, the more it will cost
you), and relative deadlines (e.g., finish before the tub overflows). The
last are particularly interesting from the perspective of control. How do you
coordin& the behavior of a robot with that of other processes over which the
robot ba only partial or intermittent control? We have already mentioned
how am might accomplish such coordination for the tank-filling problem
using Awceback. In the following, we consider how we might accomplish
the necemary coordination using planning, for a somewhat more complex
problem.

Recall the problem presented in Chapter I involving a robot in a concrete
plant scurrying about from one valve to another trying to fill trucks with

UI
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Figure 5.4: The concrete factory domain
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todo(achieve(full(Truck)),K,

plan( [achieve(location(Truck,loading-dock)),

achieve(position(valve(ini)) = 35),
achieve(position(valve(in2)) = 350),
achieve(position(valve(out1) ) = 350),
achieve(position(valve(outl)) =0*),

achieve(position(valve (in2) ) =00),
achieve(position(valve(inl)) = 00)],

[end(1).< begin(2)),

dietance(begin(2) ,end(2)) E [00:01,00:02],
distance(end(2) ,begin(3) ) E [00:01,00:02),
distance(begin(3), nd(3) ) E [00:01,00:02J,
distance (end(3) ,begin(4)) E [00:01,00:02],
distance(begin(4), end(4) ) E [00:01.00:02J.
distance(end(4) ,begin(S)) E [00: 14,00:16],

distance (begin(6) ,end(5)) E [00:01,00:02),
distance(end(S) ,begin(6)) E [00:01,00:02],
diutance(begin(6),end(6)) E [00:01,00:02J,

distance(end(6) ,begin(7)) E (00:01,00:02],
distance(begin(7) ,end(7)) E [00:01,00:02JJ)

holds (begin(K) , (0 < position(valve (inl)) < 50,
00 position(valve(in2)) < 50,
1. Sin < f luid-height (tank14) _5 2. Ome,

25u 3 < tank-Aize (Truck) < 3W.3)).

Figure 5.5: A plan for filling a single truck

properly mixed concrete. Figure 5.4 depicts the basic layout of the concrete
factory.

The simplest approach is to provide a small number of canned solutions,
each covering a subset of the situations that the robot might find itself in.
For imleace, Figure 5.5 shows a plan for filling a single trck. If the tasks are
carI i out within the specified time constraints, then this plan guarantees
that no concrete is spilled, the two ingredients, cement and aggregate, are
mixed in the proper proportions (i.e., 50/50 give or take 5%), and that
the tank is filled to at least 90% of its capacity. To achieve the required
degree of coordination, the tasks are tightly constrained with respect to one

I.
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another. Figuring out how the individual tasks are achieved will require
further reduction. If the robot is to carry out all of the tasks itself, it will
have to move between the various valve locations (or stations) and perform
the indicated valve adjustments in the times allotted. The plan for changing
the position of a valve is simply:

todo~achisve(position( Valve) = Theta) ,K,
plan( [achiove~location(robot , station( Valve))) ,

turn(Valvo,Thtta)),
[end(l)-( begin(2)J ,
Eprotect(end(i) ,end(2),

location(robot, stat ion( Valvs)))])).
The process of turning a valve is modeled by the following projection rule,
which bounds the time it takes for the turning to complete.

project (position( Valve) = Thetal.
tuz-n( Valvejhsta.2),
E( Thetal-Theta.2I max-turning.upeied),
(IThetai-Thet&21 ~ min.turningspeed)J,

position( Valve) = Thsta2).

Moving from one location to another is complicated by the fact that
the stations for the input and output valves are located on different floor$.
We assume that there are two ways of going from one floor to another: by
elevator or stairs. When it is in service, using the elevator is always preferred
to taking the stairs.

todo(achieve(floor(robot ,Floorl)) ,
use-olevator(Floorl ,Floor2))

holds Cbegin(X) , (status (elevator, ixeervice) ,
floor(robot ,Floor2) ,Floor2 O Floori)).

todo(achieve(floor(robot ,floorl)) ,K,
us *-at airsu(Floorl , Floor2) ) 4--

holds (begin(KW .(not (statusu(elevator, inervice))

status (stairs, inser-vice) ,
I loor(robot ,Floor2) ,Flooz2 # Floori)).

The plazs for using the elevator and stairs are straightforward.
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todo (use.elevator (Floor I, Floor2), K,
plan( Eachieve(location(robot, elevator-landing (Floor ))),

achieve (floor(elevator-cab, Floor) ),
achieve(location(robot, elevator-cab) )],
[end(1)- _begin(3), end(2) begin(3))).

todo (use.stairs (Floor 1, Floor2) ,K,
plan( [achieve (location(robot, stair-landing (Floor 1))),

negotiate-stairs(Floorl ,Floor2)],
Eend(l)-< begin(2)])).

where we assume that negotiating the stairs is primitive:

project(location(robot ,Floori),
negotiate-stairs(Floorl ,Floor2), [00:03,00:05],
location(robot,Floor2)).

and the elevator begins to operate as soon as the robot enters the cab:

projsect (floor(olovator-cab, Floor),
becomes (location (robot, elevator.cab)) , [00 :01,00:02),
location(robot,other(Floor))).

Now, suppose that the robot is given the task to fill a particular truck,
truck42. The robot's task is indicated by the following token.

token(task(achieve(full(truck42))) ,fi1145).

State the initial conditions, valve flow factors, tank area and height, truck
capacity, and status of stairs and elevator. To avoid introducing plans for
summoning the elevator, assume that the elevator, if it is in service, is
always on the same floor as the robot. Get material from Dean and Siegle,
AAAI-9O.

We can reduce f11145 using the plan shown in Figure 5.5 and either
the elevator plan or the stairs plan. The reduction using the elevator plan
is preferable because it manages to fill the truck three minutes earlier than
the reduction using the stairs plan. Although we have provided no mecha-
nism to express this general preference, the relative time requirements are
taken into account in reasoning about interactions between competing tasks.
For enmple, suppose that the robot has another task constrained to occur
duzlq f£11146, which involves running a system, diagnostic program requir.
ing t remain idle for ten minutes. In this case, there is only one solution
consistent with the constraints: the reduction using the elevator plan.

There are a number of potential problems with the type of plan shown in
Figure 5.5. One arises in trying to apply such plans to coordinate two simul-
taneous fillings or to orchestrate a series of fillings. It would be necessary
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in general to provide special plans for each particular filling combination.
Another difficulty is that if the flow rate for one of the valves or the volume
of the mixing tank changes, then the plan no longer guarantees avoidance
of spillage and suitable mixture proportions. For instance, if the flow rate
of valve(inl) is increased by a factor of 10%, then the reduction using the
elevator plan will result in a task duration of 24 minutes, but there will be
2m' of concrete spilled on the floor and an unacceptable 2:3 ratio of cement
to aggregate in truck42.

As an alternative to excessively specific plans, we could provide general
plans that do not specify exact valve positions and task durations, and hence
give up the guarantees regarding results like spillage and mixture. A search
algorithm would then heuristically choose positions and durations to use in
generating candidate plans, and the candidate satisfying the mixture con-
straints that provides the least spillage would be chosen for execution. The
advantage of such a scheme is its improved prospect for finding a solution
over a broad range of task situations. The disadvantage is that the set of
all combinations of valve positions and task durations is quite large, only a
small subset of which are likely to yield good solutions."

A compromise is to have a small number of highly specific plans that
are likely to produce solutions close to satisfying the achievement tasks and
then heuristically adjust the plan parameters to improve performance. For
example, heuristics might include "if the truck is not filled to 90% of its
capacity, then start closing the output valve later" or "if the mixing tank
spills over, then open the output valve more and close it earlier." Research
in planning tends to focus on general-purpose domain-independent methods.
It is important to remember, however, that the performance of a particular
planning system can be dramatically enhanced by bodies of. special-purpose
knowledge encoded in the form of domain-dependent rules.

One important issue that we avoided in the previous examples involves
the representation of plans in which an action is repeated some number of
times. For instance, how do you represent a plan to unload a truck contain-
ing seve appliances? Using the list manipulation routines in PROLOG, this
turns out to be relatively easy. A more difficult problem involves planning
to unload a truck with some unknown number of appliances. We would like
to be able to predict the type of the subtasks involved and how long the
unloading is likely to take. We might specify a recursive plan such as:

'3 MW asou paeameteried plans, where the precs.e setting. am specified as a function

of the other vaables ! Thu iso fiorm of conditional plan, to be dscussed in nest section.
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todo(2chieve(empty(Truck)),K
plan( [unload-item(Truck), achieve(empty (Truck)) ],

lend(1)-<begin(2)])) 4-

holds(end(K),-iempty(Truck)).

This gives us mn idea of the types of subtasks involved, but we cannot deter-
mine their number because it does not make sense to reduce the recursive
(second) step until after some item is unloaded. Thus, we are still left with
the problem of estimating how long the unloading task will take. We could .

estimate how many items are likely to be on a given truck, and expand a
plan with this number of subtasks. This remains short of a complete reduc-
tion, as we cannot determine where the robot will have to travel until we
know the exact contents of the truck.

A more general problem with the sort of approach specified above is that
it relies on ezecution-time replanning. Because the effects of the plan are not
completely predictable, the subsequent course of action cannot be specified
until after the results are known, at which time the task reduction process
is resumed. The drawback of this strategy is that task reduction involves
deliberate search, and thus may entail a considerable pause in the robot's
constructive activity. This pattern of alternation between planning and
execution can waste through idleness a considerable fraction of the robot's
resources. Worse, the continuing evolution of the controlled process during
deliberation may erode or eliminate the robot's opportunity to effectively
promote its objectives.

One way to address this problem is to provide, at plan time, for alternate
courses of action depending on conditions holding at execution time. In the
following, we consider methods for constructing and reasoning about plans
that expi'citly refer to such contingencies. These plas include knowledge
acquisition steps to collect information, associated with alternative subplani
to be performed or not, conditional on the information gained during plan
execution.

5.2 Conditional Plans

Faced with the task to unload a particular truck with unknown cargo, there
are (a least) two approaches. The robot might construct a plan to find
out what appliances are on the truck, and postpone planning their removal
until the contents are known. Alternatively, it might create a plan that
includes a step to determine the appliances in need of unloading, plus some
additional steps conditional upon the outcome of the initial information-
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gathering operation. This second approach produces a conditional plan, and
has a number of advantages over postponing planning entirely. For instance,
while the robot may not know exactly what appliances are on the truck, it
does know that in order to move them it will need a screwdriver to remove
the restraining straps that protect them from damage in transit. The plan
to unload the truck will require a step to remove the restraining straps no
matter what appliances are on the truck. If the robot is currently near a
tool box, it can save itself a trip by appending a task to fetch a screwdriver .
to the beginning of the plan to unload the truck.

More importantly, the conditional plan provides the robot with the
means to commit to an answer conditional upon information gathered at
execution time. Given a conditional plan, the robot can avoid reinvoking
the planner upon determining the contents, and can proceed immediately
with the unloading plan specified for the situation actually encountered.
However, this readiness is achieved only at the price of computing contin-
gency plans for unloading all potential types of cargo. As all but one of
these plans goes unused, there is a considerable computational overhead in
generating the contingency plans. This is the fundamental tradeoff in gen-
erating conditional plans, an issue we discuss further in Section 5.3. In this
section, we present some simple mechanisms for expressing and reasoning
about conditional action.

To specify conditional actions in plans, we introduce a new task type:

cp (condition, conditiona action alternate-_action)

If the condition holds at task execution time (i.e., the interval specified in its
task token), then the robot is to perform the conditional action; otherwise
it is to perform the alternate action. To illustrate the use of cp, consider
the following method for moving to a particular floor. The'plan is to use
the elevator if it is in service, otherwise to take the stain.

todo(achieve(floor(robot,Floorl)) ,I,
cp (status (elevator, in.service).

use.eluvator(Floor ,Floor2),
use-stail (Floorl ,Floor2) )) -

holds (begin(K) , (location(robot ,Floor2), FloT 1 7 Floor2)).

Note that although it includes no temporal argument, the conditional ex-
pression implicitly refers to the status of the elevator during K, the interval
in which the tasks are operative. Recall that in reducing tasks using todo,
the new task (in this case, conditional) inherits the interval of the original
task.
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The appropriate ,pplication of a cp method relies on two assumptions.
First, it makes sen-e to introduce a conditional task only if the vahie of the
r )ndition is not already known at the time of introduction. In the example

above, this means that the robot cannot determine at planning time whether
the elevator will be in service during K. We can verify this assumption by
augmenting the rule's antecedent:

holds(begin(K) , (location(robot, Floor2), Floorl 4 Floor2,
not (status (elevator, in-service)))). S

We rely here on negation as failure to satisfy the query in cases where the
elevator status at begin(K) cannot be determined. Having modified the
rule, we should also add to the plan library an unconditional todo method
for the case where the elevator is known to be in ser-,ice during K.

The second assumption underlying conditionalization is that the value of
the condition will be known at the time of task execution. This prerequisite is
much more difficult to ensure. Suppose we implement the conditionalization
using a pair of projection rules:

proj ect (task(cp (Cond,Act.,)) ,becomens(Cond), task(Act)).

proj ect (task(cp(Cond,., Act)) becomes (-Cond), task(Act)).

The problem with this approach is that we have no assurance that either
Cond or -'Cond will become true during the interval of interest. Moreover,
it confuses what is true in the model with what the robot knows to be true.
We can alter the syntax all too easily.

project (task (cp (Cond. Act,.)) ,becomes (knos (Cond)) ,t ask(Act)).
project (task (cp (Cond, -,Act)), becomes (knows (-Cond)), task(Act)).

Unfortunately, it is not at all straightforward to define expressions of the
form knows (W) in a manner consistent with both our intuitions about the
meaning of knowledge and the behavior of our temporal logic. Instead, we
present a simpler approach based on explicit declarations of the observability
of events. Although this scheme does not provide for complicated inferences
about the knowledge state of the robot, it covers many useful situations
with minimal additional machinery. In Section 5.5, we evaluate the limita-
tions d our observability approach with respect to more general theories of
knowledge.

Our rst step toward managing the generation of conditional plans is
to restrict the class of propositions that are eligible for conditioning. The
basic constraint is that the robot can execute a conditional action only if
the condition is part of its available information. To impose this constraint,
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we define a special clar- of propositions, called observables, that comprise

the exclusive domain uf conditional expressions.
A proposition W is declared observable during the interval (t4, t2 ) by an

assertion of the form observable(tl,t2 , W) . Given this declaration, the

planner is permitted to specify cp tasks for proposition W during subintervals
of (t1,t 2).

It is important to distinguish the temporal extent of the observable
proposition from the time the robot observes it. For example, the robot $
might find out at t, (when it reads the maintenance schedule) whether the
elevator will be in service at some subsequent time t2. We would express
such a situation by asserting:

holds(t, observable (4, status (el vator,.)).

Observability at a given time has implications for observability at other
times. For instance, it is reasonable to postulate that observability is per-
sistent; that is, the robot does not forget:

holds(T1,observable(t, ')) 4- holds (T2,observable(t, ) ), T2-< T1.

But of course we cannot assume that, just because the robot can observe
whether ip holds at t, it can also observe whether W holds at t + e. Ir other
words, a similar persistence relation does not apply for the temporal extent

of the observable proposition.
In the common conditional planning situation, the time of observation

and the temporal extent of the observable proposition coincide. Given a con-
ditional task of the form cp(o,_,_ during interval K, we are most concerned
with whether:

holds(bogiu(K),end(K),observable(begin(K),end(K), )).

It is precisely this fact that determines whether the cp task is executable
by the robot. If the robot is committed to a conditional plan, therefore, it
follows that it should be committed to making the condition observable. We
might encode this automatic commitment as a projection rule.

projoct(true,becoaes(task(cp(P....))),
task(achieve(observable(P)))).

I'hss ot * proposition as an argument to observablo is &syntactic variant, similar to

constructs Mbw clips, holds, and others introduced in Chapter 3. As for those predicates,
we adopt the usual syntactic conventions in specifying its temporal arguments as either
points or intervals. Moretr, we sometimes omit the temporal argument when its value
is implicit in the context (e.g., within a task assertion).
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The problem of ensuring the t.ecutability of conditional plans thus re-
duces to achieving the necessary observability prerequisites. While this is a
difficult problem in general, there are typically a wide range of propositions
that are rendered directly observable by primitive actions. Let us call such
propositions testable, and assume that the query testable(P) succeeds if
and only if there exists a primitive action, indexed by test (P), that tests
for the proposition P. We therefore have:

todo(achieve(observable(P)),K,test(P))4-- testable(P).

We could enforce observability syntactically by requiring that all propo-
sitions appearing in conditional expressions be potentially testable. This
approach is not as restrictive as it might sound, since we can always push
off the complexity to reasoning about the relation of directly testable propo-
sitions to properties more central to the robot's planning decisions. Never-
theless, such indirection may be unnatural, and it is often possible--albeit
more complicated-to achieve observability of useful conditions by means
of explicit planning. In allowing more complex information-gathering be-
havior, we gain flexibility at the expense of sacrificing the guarantee that
all conditional tasks will be executable. For completeness, we note that the
meaning of a task that conditions on an unobservable proposition is simply
that of the no.op action.

To illustrate some of the potential difficulties involved in reasoning about
information-gathering, consider the following plan to determine the level of
fluid in a truck sitting in the loading dock at a particular point in time.
todo(achiovo(observable(end(K),fluid_.level(Truck))) ,K,

plan( [achiovo(location(robot ,station(aotor7))),
read(oteer17)],

[end( 1) -5 begin(2). and(2) = end(I)],
Eprotec '(end(I),snd(2),

location(robot,utation(aeter17) ) )])) --
holds (begin(K) and(K), locat ion(Trck, loadng.dock)).

hold (T, observable (T,fluid..level(Truck)))
occure(T1,read(notor17)),
holds(Tllocation(Truckloading.dock)).

If the robot has the task to observe the level of the fluid in the truck cur-
rently located in the loading dock, then it can do so by positioning itself in
the appropriate place to read the fluid-level meter, and invoking the sub-
routines necessary to read the meter and process the resulting data. Other
knowledge acquisition tasks may require significantly more complicated syn-
chronization.
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Figure 5.6: Planning with an approximate model

Suppose that the robot w.its to close a valve when the fluid level of
the truck being filled reaches a particular height. In order to do so, the
robot will need to know when the level achieves this height. If the robot
lack a predictive model of the tank-filling process, then it must stand in the
appropriate location and monitor the fluid-level meter continuously. If the
robot knows the initial conditions and has a precise model of the tank-filling
process, then, it can predict exactly when the fluid will reach the target level
without consulting the meter at all. If the robot does not know the initial
conditions but has a precise model, then it is sufficient that the robot observe
the values of the parameters at some point in time in order to predict the
height of the tank for all subsequent times. The most likely situation is that
the robot will have some estimates for the parameters (perhaps based on
measurements at different points in time) and an approximate model whose
predictions decrease in accuracy as they extrapolate into. the future. Using
this information, the robot can generate expectations or worst-case scenarios
about when the tank will reach the target level.14 For instance, suppose that
the robot knows the initial conditions for its model at time 0, but its tank-
filling model is subject to bounded errors (see Figure 5.6). In planning when
to read the meter, the robot must take into account the earliest that the fluid
level minh reach the target level, as well as the amount of time required to
move bm the meter to the valve and close it. One possible approach would
be for the robot to find its way to the meter at or before the time marked
t, in Figure 5.6, and then replan on the basis of the observed height of the
fluid. It could avoid execution-time replanning by indentifying, in advance,

"This a ewe of ronig aboWt Ma need for feedback, a difficWt genera prmm.
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a threshold on the fluid level upon which it wo'±d proceed to the valve. To
exhibit maximal robustness, however, the roLot must be flexible enough to
apply more complex dynamic replanning strategies. For example, if it seems
on monitoring for some time that the level is not rising fast enough, the robot
might consider opening the valve a bit and rescheduling its subsequent meter
readings based on the revised predictions of its flow model.

It should be clear that we could make the dynamic decision problem
facing the robot arbitrarily complex. Use this example to motivate fidler -.
exploration of reactivity in next section. Also point ahead to Chapters 6
and 7, which focus on sensing and reasoning under uncertainty.

5.3 Planning and Reaction

Discuss in this section, among other things:a s

" Conditions as the first step toward reactivity. Continuum between
unconditional plan languages and universal plans. Conditional plan
language defnes middle ground.

" Relation of observability approach to control framework.

• Making plans more robust by considering perturbations. Provides for
the role of monitoring in plan er-tution.

Talk about expectations and expectation monitoring during plan ezecu-
tion. What happens when your expectations fail? For ezample, you try to
turn a valve and it doesn't appear to turn or the water level goes up when
you close the valve. Talk about replanning and recovering from execution er-
rors. What does .it mean to lose, regain, or maintain ,control? What do you
do when things go wrong and you're in the middle of doing something? For
instance, the tub is running over and you're on the phone or trying to rescue
your dinner from the oven. Develop the analogy between difference-reducing
planner and error-driven control strategies.

Ie idm of reactivity and its contrast to deliberate planning. Architec-
tuws fo inegrating planning methods of the sort discussed in Section 5.1
with i eaiss system. Task interpretation system (see old material). Firby's
RAP. Ties to sections on reactive control in Chapter 4. The "obviow" so-
lution: different levels of competence with varying degrees of reactivity, asyn-
chronous control, run-time arbitration, and off-line compilation for real-time

'Fix transihir from precedin sectn.

U
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responsiveness. Prelude to architecture for decisi, a-theoretic control of in-
ference, presented in later chapter.

5.4 Goals and Utilities

Limitations of task reduction approach (and classical planning framework)
in treatment of goals as predicates. Present more generul view of preferences,
utility functions, tie to goals, point to decision-theoretic analysis of Chap-
ter 7. How will this be coordinated with the introduction of value functions
in Chapter 4?

Paragraph moved from task reduction section. It should also be noted
that the reduction planning method described above is not able to handle
planning problems in which the criteria for a good plan involve miniizing
execution time or maximizing income. While finding a solution that min-
imizes or maximizes some quan-ity is generally computationally complex,
it is still useful to be able to compare candidate solutions. The standard
technique for comparing candidate solutions is to use a value function to
define a metric on the outcomes associated with candidate solutions. The
basic idea behind using a value function is simple. Given two candidate so-
lutions (plans), determine the changes over time (referred to as time lines)
that are predicted to occur as a consequence of executing each plan. The
value function is then applied to the resulting time lines and the plan with
the lowest cost (highest value) is determined to be the better of the two.
Given a set of candidate solutions, one can then select the best. Planning
consists of (heuristically) generating a set of candidate solutions, evaluating
each candidate, and selecting the best. We discuss this sort of planning in
the context of reasoning about deadlines and control.-

Generally, choosing an appropriate action requires considering several
possible actions and anticipating the consequences of each action. In the
case of PM control, the designer does all the necessary considering and
anticipating at design time and simply encodes his findings in the coefficients
of the PIP controller. This sort of design-time compilation is difficult tc do
in gmuL For instance, finding the shortest tour visiting a set of locstions
in a factory is a type of problem that might occur frequently for a mobile
robot. Computing the solution to even one instance of this type is known
to be a hard problem. It would be quite difficult to enumerate and then
compute, in advance, the solution to all possible instances zf this problem,
and, even if you could, it would be difficult if not impossible to store the
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results of such a prodigious effort on any practical machine.
For any interesting problem, it is impossible or impracti &d to write down

$. In the decision sciences, they never even attempt to; rather, they specify
belief functions, preferences, and a utility (or value) function. The notion of
task is implicit in whatever maximizes expected utility."' The introduction
of beliefs and expectations is crucial here; what constitutes a task depends
critically on a given agent's knowledge, which in turn depends upon what
the agent has observed, not just at the last dock tick, but over time, and the s
agent's ability to reason about those observations. The notion of task in AI
is similar despite the fact that the use of value functions is not universally
accepted.

Normative vs computational theories of decision-making. The decision
sciences provide a "normative" theory of decision making, in that any ra-
tional decision maker possessed with the same information and nimnited
time to reflect on it would come to the same conclusion. Al, starting with
Herb Simon's Nobel-prise-winning model of administrative man, has taken
the idea of a resource-bounded agent as a starting point (17J.

Motivate need for utility in terms of complications involving I. Start
with preference order on fl, then introduce order-preserving, real-valued util.
ity function. Perhaps notation Util is best, by parallel to Va and given that

u and U are already taken in the presentation of control. State the obvious
problem with reasoning about elements of 0 and introduce machinery to get
around the problem. Introduce a set of time points T, and define time lines
in terms of functions from T to n. Redefine # accordingly. Introduce the
notion of error-driven control laws in terms of a variant on means/ends
analysis. If we allow the reference signal to correspond to an arbitrary world
state and the controlled variables to include any condition, then the solution
to almost any contoi problem can be charac ried i terms of a suitable
error-driven control law.

Ezplain how goals fi in with this expressive framework. A goal predicate
specifies that a state achieving the goal is preferred to one that does not, all
else equL Combining all the expressed goals yields a partial order on states,
witt prefernnce between competing goals or alternate ways of achieving the
same gea not defined. This suggests that goals do not provide sufficient
guidwue for rational choice of action. Must augment with more precise
speciicaon, ether by providing strength of preference or finer-grined de-
scriptions of goal predicates and combinations.

Juit as in clauscal planning it u ifsplicit in what Achime the top-lvel godl.
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5.5 Further Reading

The material presented on planning is a distillation of a great deal of re-
search. The need for protections was first identified by Sussman [181, and
indeed the simplest example of a problem requiring nonlinear plan con-
struction is known as the "Sussman anomaly." The basic idea of reduction
interleaved with resolving interactions originated with Sacerdoti's influen-
tial NOAH system (14]. Our development of the task reduction approach ,1
follows Charniak and McDermott [3], who provide a more comprehensive
treatment of protections and search algorithms. The reduction algorithm
itself is based loosely on Tate's NONLIN [19] (see Vere (20] for extensions to
handle metric time constraints). The notion of policy projection is borrowed
from McDermott (10].

Pointers to other work on planning, not necessarily taking task reduction
approach. Truth criterion: implicit in much work, made ezplicit by Chap-
man. Problems for temporal reasoning about nonlinear plan. explored by
Dean and Boddy. For a discussion of issues in representing and reasoning
about resouMres, see [22, 5]. General discussions of partial plans (Wellman,
Hsu F).

Reasoning about knowledge, action, and perception [4, 9, 11, 12] (espe-
cially Morgenstern, Moore). Discussion of observable events and test actions
follows Wellman. Evaluate with respect to the more general theories (essen-
tially, the latter allow reasoning about how observability of some facts implies
observability of others). General capability for reasoning about knowledge
in planning an area of active investigation, with many open questions (see
Halpern overview in TARK-86, or survey in Annual Review).

The idea of debugging almost right plans is characteristic of many ap-
proaches to planniig in artificial intelligence [8, 16, 18].

Reactive planning: Al interest spurred by work of Agre and Chapman
[2], Brooks (1], Rosenschein [13], Schoppers (15]. Early example: triangle
tables in STRIPS.

GoWs and utilities: see our discussion [6], also Haddawy and Hanks [7],
Los, mw paper.
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Chapter 6

Uncertainty in Control

In predicting and controlling the behavior of processes, it is nearly impos-
sible to avoid some degree of uncertainty. Even in cases where an engineer
carefully designs a piece of equipment to behave in a particular manner,
sourco, of uncertainty are introduced in manufacturing, in the wear on parts
during subsequent use, and through unanticipated interaction with the en-
vironment. In this chapter and the next, w- !onsider various approaches to
dealing with uncertainty in planning and control. This chapter focuses on
uncertainty issues in the context of control systems engineering.

Here, as elsewhere in this book, we make no attempt to provide a com-
prehensive survey of techniques. Our objective in this chapter is to make
several observations about the nature of control as a problem involving un-
certainty, and to introduce two techniques that illustrate key issues.

The first technique involves an approach to recovering the state of a dy-
namical system from observations of its output. The general problem was
introduced in Chapter 3 in the discussion of system observability. The solu-
tion that we consider here, the Kalman filter, is somewhat specialized, but of
broad practical import. In the introduction to a collection of papers on the
theory and applications of the Kalman filter, Sorenson [16] writes that, "It
is probably not an overstatement ,a assert that the Kalman filter represents
the amo widely applied and demonstrably useful result to emerge from the
sta& variable approach of 'modem control theory.' " Our introduction to
Kalman filtering emphasizes a basic cycle of activity that is central in the
application of the Kalman filtering equations, and is applicable to a wide
variety of state estimation problems that do not satisfy the assumptions

001990 Thomas Dean. All rights reserved.
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V/ required for the Kalman filter.
The second technique involves an extension of the dynamic programming

approach considered in Chapter 1. The extension is concerned with multi-
stage decision problems in which the dynamical system can be modeled as
a stochastic process. We introduce the basic theory in this chapter as it is
generally cgnsidered 's a part of the repertoire of techniques of co.trol. In
Chapters*N.nd 'SVwe return to consider the connection between stochas-
tic dynamic programming and various techniques in planning (C46ape

d etr . We begin this chapter by considering just .,ow
deeply the issues involving uncertainty enter into the proble' of controlling
dynamical systems. Our treatment here follows that of Koditschek [121.

6.1 Uncertainty and Delay in Dynamical Systems

In both Chapters 2 and we considered a single-degree-of-freedom robot
as an example of a simple dynamical system. We continue to resort to such
simplified models in this chapter to illustrate our basic points. Let M be the
mass of the robot, z its position in some arbitrary frame of reference, and "
the force acting upon the robot. As in Chapter "i we assume that the plane
of motion is horizontal and that there are no frictional forces acting on the
robot. The relationship between position, z, and the force, .r, is completely
determined by Newton's second law of motion.

Mz=.

The state vector for the dynamical system is defined to be

x=[ z(t)1
Li(t) J

and system state equation is

0 0 o 1 /

In the set-point regulation problem, the task is to transfer the robot .iom
its initial location, z(to), to some final (goal) location, z ° , and then keep it
there. We begin by giving the controller every advantage in an attempt
to avoid the problems introduced by uncertainty. In particular, we assume
that the control actuator can exert an arbitrary amount of force, '(t), at an
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instant in time, t. We model this using the Dirac delta (impulse) function
defined by

J 6,(t) dt= 1,

where
6,(t) = 0 Vt # r,

so that our actuator is able to deliver a pulse of infinite magnitude over an
infinitesimally short interval of time possessed of unit area and involving a
finite amount of energy.

The controller begins by getting the robot headed in the right direction,
namely towards the goal, z*. We measure the current position and velocity,

x(to) [z(to)]
[ (to) '

and at the same instant apply an impulse defined by

ustwt(t) = M(1 - ito))6to(t).

The impulse has the effect resetting the initial conditions so that

x(t)= [ t + z(to) ] fort>to,

and the goal position is achieved at time t' = z* - z(to). At t*, we apply
a force to exactly cancel the velocity achieved by the first impulse. The
second impulse is defined by

"" t, (t) =-Mt.(t)-

The control strategy defined by

U(t) = uw(t) + U,-tp(t)

provlm a solution to our idealized set-point regulation problem. In addition
to tUmmmptions made regarding the Dirac impulse function, this solution
relies on the following assumptions.

" We know the exact mass, M, of the robot.

" We can instantaneously and exactly measure the robot's position, z,
and velocity, i.

181



* We can instantaneously perform all calculations required for control.

* We can exactly measure the elapsed time in order to sequence the
velocity canceling impulse.

If any one of the above assumptions fails to hold, then some error will be
introduced and this error will become magnified with the passage of time.
For instance, suppose that there is some error in the estimate, M, used for
the mass, M. If we apply the same control strategy as before, we obtain

x(t) =[z(to) + + i(t.)> ,

where we have substituted M for M in the specification of ut. and uW,.
From this description of the system state, it should be apparent that small
inaccuracies in estimating M will result in finite and increasing error in
the position of z relative to the goal z*. Similar errors would occur due to
imprecision in measuring the position or velocity at to.

This simple example is meant to illustrate how deeply the issue of un-
certainty is rooted in the problems of control. Koditschek [12] writes in the
same article from which we adapted the above analysis, "The origins of con-
trol theory, then, rest in the following observations. Dynamic systems give
rise to delay that must be taken into account by any control strategy regard-
less of available actuator power or sensor accuracy. Moreover, information
regarding the real world is inevitably uncertain and may have an adverse
effect on performance no matter how small the uncertainty or powerful and
accurate the apparatus."

As was pointed out in Chapter ', feedback control strategies achieve
their robust performance because they continuously account for the error
between the measured state of the system and the goal state. Such feedback
control systems tend to compensate for measurement and modeling errors. If
the measurement and modeling errors systematically mislead the controller,
then puformace will most certainly be poor; however, feedback controllers
ofte puform well in the presence of certain benign forms of random errors.
In the following section, we consider a class of problems for which it is
possible to design a module to estimate the system state. This module can
be coupled to a deterministic feedback regulator to obtain a controller that
is optimal by most accepted criteria.

182



6.2 State Estimation

Suppose that you are designing a system to control the movements of a mo-
bile robot that has to navigate in an office or industrial environment. If you
could obtain the exact geometric description for the surfaces of the objects
in the surrounding environment, then you could use the planning and con-
trol algorithms described in the last section of Chapter ,or any of a host _

of other deterministic control strategies to guide the robot on its appointed
rounds. Using path planning methods and an exact geometric model for
navigation requires that the robot not err in its movement or that the robot
correct for errors in movement by reestablishing its position and orientation
with respect to the geometric model. This process of reestablishing position
and orientation with respect to a geometric model is called registration or
localization in the literature. To help generate a geometric model or main-
tain registration with an existing model, suppose that the robot has been
equipped with a variety of sensors: ultrasonics, infrared, inertial guidance, ks
compass, odometry, laser ranging, tactile sensing. Unfortunately, all of these A
sensors are prone to errors. In this section, we consider how to designm./ C
algorithmi that combine (fuse ) the data from all of the sensors, account- .'
ing for their tendency to err9 so-as-to provide as accurate a picture of the
geometry of the robot's environment as is possible from the data supplied.

Consider the following problem in fusing data from different sensors.
Suppose we are interested in the distance from the robot to the nearest
obstacle surface in the direction the robot is traveling. Sensor 1 reports that
the distance is 2 meters, but Sensor 2 reports 5 meters, and Sensor 3 pretty
much agrees with Sensor 2, reporting 5.15 meters. The close agreement of
two of the sensors would suggest relying on a value close to 5 meters, but
it may be that Sensors 2 and 3 are wrong quite often, even systematically
-? "wz.ng, while Sensor 1 is hardly ever wrong. Without additional information
about the sensors, it is difficult to know what to do with conflicting evidence.
Howeve, if we have prior knowledge about the errors that can be expected
froft.1[u different sensors, then we may be able to combine the data in a
di , perhaps even optimal manner.

i ft following, we adopt a Bayesian perspective, and represent our
knowledge about sensor errors in terms of conditional probabilities. In par-
ticular, if x E R" represents the system state vector, and z E B."' represents
the measurement vector providing information about x, then we represent
our knowledge about the performance of the sensors that produced z as
a conditional probability density function, p(xlz), indicating the probabil-
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p (z I Z)

z

Figure 6.1: The conditional probability density for z given z

ity that x is the true state of nature given that we have observed z. For
a scalar x, the density function might take the form shown in Figure 6.1.
More generally, given a discrete dynamical system

x(k+ 1) = f(x(k),u(k))
z(k) = hx(k)),

where h is a measurement function, we will want to calculate a density
function of the form

p(x(k)jz(1), z(2),..., z(k)),

where z(t) indicates the measurements made at time t.
Given a conditional probability density function, we wish to determine

an estimate of the system state, denoted k, to be used for control purposes.
Possible candidates for such an estimate are the average or mean of the
probability distribution corresponding to the density, the peak or mode of
the distribution, and the median of the distribution. 1

In the following, we assume a linear dynamical system corrupted by
"white Gausian" noise. The assumption that the noise be white requires
that the noise value not be correlated in time (i.e., knowledge of the value of
the sa&* at one point in time tells you nothing about the value of the noise
at later times).2 The assumption that the noise be Gaussian requires that

'For a waar quantity, the median is that value of z such that half of the probability
mare lies to the left of it and half to the right.

2 Witenes also requires that the noise have equal power at all frequencies; a require-

ment that is impossible to achieve in practice given that all real physical systems respond
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the probability density for the amplitude of the noise at any particular point
in time take on the familiar bell-shaped curve of a Gaussian distribution. 3

The assumption of Gaussian noise is often justified by observing that, if
the noise is generated by a large number of separate processes, then the sum
of their effect can be approximated by a Gaussian distribution. However,
the most compelling reason for accepting the assumption of white Gaussian
noise is the same as that for accepting the assumption of linearity, namely, ,

it makes the mathematics tractable. As an example of how the Gaussian
assumption simplifies things, a Gaussian distribution is completely deter-
mined by its first- and second-order statistics, its mean and variance. The
Gaussian assumption will also simplify our choice for an estimate of the
state given the density; under the assumption of Gaussian noise, the mean,
mode, and median all coincide. What is surprising is that, despite the fact
that the assumptions seldom if ever are met in dealing with real physical
systems, the basic methods that we describe in the sequel have met with
extraordinary success in practice [16].

To make our assumptions explicit in the model, we represent the state
of the system at time k + 1 by

x(k + 1) = f(x(k), u(k)) + v(k),

where f models the response of the dynamical system to a given input, and
v(k) is a vector of zero-mean, white, Gaussian noise processes, modeling
the input disturbance or process noise. Let z(k) represent the (observable)
output of the system at time k, so that

z(k) = h(x(k)) + w(k),

where h models the physics of the measurement process aid w(k) is a vector
of zero-mean, white, Gaussian noise processes, modeling the measurement

only within a narrow range of frequencies called the system bandpuaa. For practical put-
pose, however, the noise will often behave u if white within the bandpaas of the system.
In crntmb cue in which the noise is not constant over the system bandpass or is corre-
lated I is, a specal ushaping filter can be added to the system to achieve a model of
a dynam system driven by white noise (14].

S'l Gasmian or normal distribution, N(p,o,2 ), for a (scala) random variable, z,
with ms p and variance 6 ' (a denotes the standard deviation) is characterized by the
normal ptobablty density:
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Figure 6.2: The densities for (i) the zero-mean Gaussian distribution
N(O, o2) modeling the measurement noise for the first sensor, and (ii) the
Gaussian distribution N(z(1), a,,) modeling the measurement itself.

errors. Before we write down the equations for the Kalman filter, we consider
some simpl, examples adapted from Maybeck [14] to illustrate the basic
issues.

We return to our single-degree-of-freedom robot, moving back and forth
on a. horizontal track. Here we use the scalar z to represent the state of the
system corresponding to the position of the robot on the track. Suppose
that there are two sensors that allow the robot to obtain measurements
its position. Each of the two sensors returns an estimate of the robot's
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location corrupted by Gaussian noise: N(O, a2) in the case of the first
sensor and N(O,a2) in the case of the second. At time 1, the first sensor is
deployed to obtain a measurement z(1) of the robot's position. We model
the measurement as a sum of the robot's actual position and the zero-mean
Gaussian noise process shown in Figure 6.2.i. The conditional probability
density for the actual position, x, given the measurement, z(1), is shown in
Figure 6.2.. The mean of the distribution is just z(1) in this case, and the
variance, a2 , is rather large, indicating a sensor with significant potential
for error.

Based on the density shown in Figure 6.2.ii, the best estimate of the
robot's position is

i(1) = z(1),

and the variance of the error in the estimate is

.1(1) = ai

At time 2, following the first measurement and assuming that the robot
has not moved, you obtain a second measurement, z(2), from the second,
and generally more reliable of the two sensors. The fact that this second
sensor is generally more reliable is indicated by the density for the second
measurement being more peaked (having a smaller variance) than the den-
sity for the first measurement as shown in Figure 6.3.i. In this case, the
mean of the distribution is z(2), and the variance is a.

We can combine the two measurements to obtain a conditional density
for the position of the robot given both measurements. The result is a
Gaussian density, N(IA, a2), with mean, u, given by

A s0. + a) 2 + a2 z(2)

and variance, or2, given by

2 0.2 -2

a a + a~2

FIgus 6L311 depicts the resulting density superimposed over the densities for
each of the individual measurements. Notice that N(pA, a'2) is more peaked
than either of the densities for the measurements taken separately. Given
N(;, a2), the best estimate for the robot's position at time 2 is

.(2) =
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Figure 6.3: The densities for (i) the second measurement superimposed over
the first, and (ii) the combined measurements superimposed over the first
and second.
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with -a associated error variance
2 = 2

We will not provide a proof that this is the best estimate. We will, however,
provide some intuitions as to why it is a plausible estimate.

The variances provide information to assist in establishing the relative
weight to attach to the evidence from the previous measurement(s) and that S
from the latest measurement. If the two variances are equal, then the two
measurements are equally reliable and we simply take their average. If, on
the other hand, the variance for the previous measurement(s) is large and
the variance for the latest measurement small, then we give more weight to
the latest measurement. The variance will always decrease in the case of
two or more measurements taken at the same time, reflecting the fact that
additional (consistent) information should serve to sharpen the estimate.
Casting the problem of state estimation in terms of optimization, the recur-
sive update algorithm described in this section is optimal in the sense that
it minimizes the variance. 4

To adopt the form generally used in describing the Kalman filter, we
rewrite the equation for i(2),

S(2) X( 1 ,)- z()

0 + 1 +

and, substituting i(1) for z(1), we.obtain

1(2) - I(I) + K(2)(z(2) - i(l)),

"The variance is just the expectation of error. In the case of no prior expectations, we
want to find the estimate, i, winimi ing the mean of the squared error,

Z,)2
Ir

Sol

whme the si ae the measurements. We obtain this estimate by setting the derivative to

si

and solving for g. The estimate provided by the method described here is just the mean
of the measurements, i Ell z,, which is a solution to the above equation.
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Figure 6.4: Evolving state estimates without additional measurements

where K(2) is defined as

K(2) = +&2 + a2

Our objective is to provide an algorithm that computes an estimate of
the evolving state of a dynamical system. We have not as yet made any real
use of the equations describing the dynamical system. The method of com-
bining measurements in the static case is generally referred to as minimum
mean-square estimation, and is attributed to Carl Friedrich Gauss (1777-
1855). The primary contribution of Kalman and the other researchers who
developed and refined the Kalman fiter is the recursive solution of minimum
mean-square state estimation problems involving dynamical systems.

Given an estimate of the system state at time t, we wish to compute
an estimate of system state at time t + 1, which accounts for the most
recent measurements and also for the system dynamics. Continuing with
our example, we assume the following simple dynamics

z(k + 1) = z(k) + u(k) + v(k),

where u(S) is the distance moved, and v(t) is a zero-mean, white, Gaussian
noise process with variance, 0,.

We denote the estimate of the system state at time 3 given only the
measurements taken at time 2 or earlier as i(3j2) defined by

i(312) = 1(2) + u(2),
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with corresponding ,ariance

az(312) a '(2) + o.2

If we made no additional measurements, the estimate of the system state
would degrade over time, as shown in Figure 6.4. In general, however, we
will make at least one measurement at every time step. To incorporate
measurements taken at time 3, we employ the same basic equations used for •
combining z(1) and z(2).

Generalizing the previous examples, we present the Kalnan filtering
equations for the following one-dimensional dynamical system,

x(k+1) = f(x(k),u(k))+v(k)
z(k) = h(z(k))+w(k),

where z, u and z are scalar quantities, f and h are linear functions, and
v and w are zero-mean, Gaussian noise processes with associated variance,
a2 and a2, respectively. Since f and g are linear we can rewrite the above
equations as

z(k + 1) = Clx(k) + C 2u(k) + v(k)
z(k) = '3z(k) + w(k),

where C1 , C2 , and C 3 are constants. We assume exactly one measurement
taken at each time step.

Recall that the objective is to maintain an estimate of the state of the
system at all times. The estimate of the system state at time k given all of
the measurements up until time j is denoted I(klj). Similarly, we denote
the variance in the estimate at time k given'all of the measurements up until
time j as a,2(klj). We write i(klk) and a2(klk) simply as i(k) and a2(k). At
each time k, all of the past measurements are summarized by the estimate,
i(k), and its associated variance, a.,(k).

There are three basic steps performed in updating the estimate of the
system state to reflect the measurement made at k + 1. These steps are
refenred to as the prediction, observation, and estimation steps. We consider
each ofthe& htki

In the prediction step, we compute what we expect to observe at k + 1.
This involves first computing an estimate of the state at k + 1 given all the
measurements at time k or ear~ier, dfned by V

i(k + Ilk) = Cl&(k) + C2u(k).
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The variance associatet with this esti t, is

az(k + Ilk) .c-, .(k) + .,.2

Notice that the control is not considered in computing the variance. The
predicted measurement is then

1(k + ilk) = G4(k + ilk),

and the variance associated with the predicted measurement is
a.2(k + Ilk) = ,(k + Ilk) + a..

In the observation step, we make the observation and then compare the
resulting measurement with what we expected. The difference between the
actual and predicted measurement)V

v(k + 1) = z(k + 1) -i(k +ilk),

is called the innovation.
In the third and final step, called the estimation step, we compute i(k+l)

as
&-(k + 1) = :i(k + lk) + K(k + i)v(k + 1),

and the associated variance as

a2k+1)- = a(k + ilk)- K(k + 1)6 0'2(k + ilk),

where K(k + 1) is called the filter gain and defined by

K(k + 1)=" o (k + ilk)
2(k+ ilk) -.t I s)

It should be noted that we have to invert the measurement function in order
to compute the filter gain. In general, this inversion can be difficult if not
imposubLs. However, for linear systems, inversion simply involves taking a
recipiocal in the scalar case or inverting a matrix in the vector case.

A good way of convincing yourself that these equations make sense is to
consider limiting cases. For instance, consider cases in which the there is no
error in movement or measurement (i.e., o and a. are 0) or cases in which
C 1 , C 2, and C3 are 1.
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In the above, we made use of .nodels for predicting not only the current
and future states of the system, but also the current and future measure-
ments made in observing the system. These models account for uncertainty
in the underlying process by incorporating probabilistic noise models for
disturbances in the dynamical system and errors in measurement. At each
point in time, we compare what we expect to observe with what we actually
observe ia order to determine how much weight to attribute to each, based
on the sort of errors we expect from the corresponding noise models.

Extending the above equations to handle finite vector spaces and mul-
tiple measurements is reasonably straightforward though notationally te-
dious, and we will not attempt it here. Instead of the mean and variance
of the distribution of a single random variable, it is necessary to generalize
to the mean and covariance of a multidimensional distribution of a vector
of random variables. 5 Once you understand the equations for the single-
dimensional case, it is relatively easy to understand the multidimensional
case. It is quite another matter, however, to apply the equations to real
problems which invariably deviate from the assumptions stated above. In
the following, we consider some of the issues that arise in the application of
the Kalman filter to robotics problems.

In many problems in robotics, linearity is hard to come by and one has
to appeal to an extension of the Kalman filter designed to handle nonlinear
state equations. For instance, in the case of even the simplest holonomic
(turn-in-place) mobile robot, the state vector might consist of the robot's
position along the z axis, its position along the y axis, and its orientation,
9, all specified with respect to some coordinate frame of reference in the

'For a vector, x, of n random variables the n-dimensional normal (Gausuian) densitj
is defined by

(2r)tIP' exp [-2(x- )'P'(x-

where p and P = E[(x - p)(x - &)j are the mean and covariance of the vector x, and the
prime (a in (x - p)') indicates vector (or matrix) transposition. The covariance of two
randm vuiables, z and 1, indicates the degree to which s is related to 1 , and is defined
by

Ej(z - E(z))(p - E(y))] = - Ex]Ef,1.
The counasce (matrix) of the n dimensional vector, x, is the symmetric matrix whose
ijth eatry is the covauiance of the ith and ith components of x.
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workspace: [ (k)1
x(k)= y(k) ,

[(k)
where we notate the state vector, x, using a bold font to distinguish it from
the state -axiable corresponding to position along the z axis. The input
vector in this case is just S.

U D(k) 1
u [oA(k) j

where D(k) is the distance traveled in a single time step, and AO(k) is
the rotation turned through in a single time step. We can write the state
equation &-

x(k + 1) = f(x(k),u(k))+ v(k)
x(k) + D(k) cos 0(k)

= y(k) + D(k) sin 8(k) + v(k),
e(k) + AO(k)

which is clearly nonlinear.
The standard approach to dealing with such nonlinearities is to linearize

the state equation by expanding the nonlinear function in Taylor series
around the current estimate, i, with terms up to first or second order to
obtain, respectively, the first- or second-order extended Kalman filter. In
the case of the first-order extended Kalman filter for the nonlinear state
equation above, we would have

x(k + 1) ' f (C(k),U(k)) + fx(k)[x(k) - *(k)] + v(k),

where fx(k) is the Jacobian matrix6 of f defined by

[1 0 -D(k)sin9(k) 1
x(k)= 0 1 D(k)cose(k) .

0 0 1

eIrW Jacobia is to vector-valued functions what the gradient is to scalar-valued func-

tion. If f is a vector-valued function,

A(X) = 2ZX : Z.

r.(Z1,,. .., z.)
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Generally, the measurement functions are also i,onlinear and require similar
linearization. Having obtained the necessary linearizations, we then proceed
as in the linear case, and hope that the resulting approximations will provide
acceptable state estimates.

Modeling sensors so as to satisfy the Gaussian noise requirement is an-
other problem frequently encountered in robotics applications. Most sensors
cannot be modeled as simple functions of one or more of the state variables ,
corrupted with Gaussian noise. Consider, for example, some of the problems
that arise in modeling ultrasonic (sonar) sensors of the sort typically found
on mobile robots.

A sonar sensor consists of an ultrasonic transducer, a receiver, and some
signal-processing hardware. Information about the distance from the sensor
to nearby surfaces is obtained by measuring the round-trip time of flig-t of
an ultrasonic pulse that is emitted by the transducer, bounces off an object
surface, and returns to the receiver.

If the transducer is pointed along a line perpendicular to a nearby planar
surface, then the sensor can be modeled as tL-e actua distance *o the sur-
face corrupted by zero-mean Gaussian noise However, if the transducer is
not pointed perpendicular to the nearest object arface, then there is some
chance that not enough of the energ:7 from the ,nltrasonic pulse will be re-
turned to the receiver to de-. mine t'le true time of flight to the nearest
surface. Instead, the pulse may be reflected, bouncing off possibly several
objects before a signal with enough energy is uetected by the receiver. In
this case, the information returned by the sensor may deviate significantly
from the distance to the nearest -, ject. Figure 6.5 (from (13]) shows the
range data abtained from a single sensor rotated 3600; the range data is
superimposed over a line drawing of the room in which the sensor is located.

If you know that your sensor is pointing perpendicular to a planar sur-
face, then you can use the Kalman filtering equations to obtain a good
estimate of the distance separating the robot from the surface. The prob-
lem, of course, is that it is generally very difficult to know that you are

thes its $wbian matriz is defined by

afl/az, af,/a2 ... fl/a,,
af(X)= a~l/, a2/82 ... a /a,

a1m/8:i afml/Z2  ... af,,,la, .
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Figure 6.5: A 3600 sonar scan of an indoor environment

pointing perpendicular to a planar surface.
If you have some a priori knowledge about the surfaces of the objects

in the form of a map, then you can often make good guesses about what
surfaces are out there and align your sensors so as to obtain reliable range
data. In the following, we outline some basic steps in sonar guided navigation
using an existing map and the Kalman filter.

1. Consult the map and extract some number of beacons corresponding
to geometric features found in the map. This process of extracting
beacons involves using the current estimate of the robot's state (posi-
tion and orientation with respect to the frame of reference of the map).
Usful geometric features are those whose sonar signature is distinc-
the. Flat walls (planar surfaces), round columns (cylindrical surfaces),
and corners (intersection of planar surfaces) are examples of geomet-
ric features with distinctive sonar signatures. Having obtained a set of
candidate beacons, we attempt to ascertain if they really stand in the
expected relationship to the robot (and ultimately to one another).

2. For each candidate beacon, construct a model for the measurements
that would be obtained from the sensor if the beacon was in the rel-
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ative position and orientation predicted by the map. Note that the
model may require that the sensor be aligned with the beacon in some
particular configuration to avoid errors due to multiple reflections. We
assume that there is a library of parameterized models, one for each
type of geometric feature deemed useful. The model for a particular
candidate beacon is obtained by instantiating one of the parameter-
ized models using relative position and orientation information from
the map. There would be a separate model for each beacon of the
form

z1(k) = h,(x(k)) + w,(k),

where hi is the nonlinear measurement function for the ith candidate
beacon, and wi models the measurement noise. Using the estimated
state *(k + 11k), we obtain a prediction for each observation

i,(k + 11k) = hi(*(k + l1k)).

3. We now make the next observations, using heuristic strategies where
appropriate in an attempt to align the sensors according to the require-
ments of the corresponding model.7 Given the actual and predicted
observations, we compute the innovation

v,(k + 1) = z1(k + 1) - i(k + 11k),

and the corresponding prediction variance which is obtained by lin-
earizing the hi. Up until this point, we have essentially followed the
basic steps of the Kalman filter. However, in the next step, we deviate
somewhat.

4. We have only hypothesized the existence of the candidate beacons,
and we could easily turn out to be mistaken. Because of the possibil-
ity of making mistakes in identifying beacons, we cannot immediately
use the innovations and their associated variances to obtain i(k + 1).
It will not hurt if we are off a bit in our estimation of the geomet-
ric future's relative location and orientation; the Kalman filtering

Idkfly the robot would be equipped with several independent rotating sensor arrays.
Each arry would consist of a pair of ultrasonic sensors mounted at some small distance
apart on a rigid platform so that the two sensors are always pointing in the same direction.
Each candidate beacon would be amigned an array and the beacon could then be aligned
with the beacon surface(s) using a feedback controller that exploits the difference between
values returned by the two sensors.
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Figure 6.6: Localization using the extended Kalman filter

equations will weight the new measurements appropriately and, over
time, the estimate should converge to the actual state. However, if the
measurements are due not to the hypothesized beacon but rather to
some other geometric feature, then incorporating those measurements
into the state estimate using the Kalman filtering equations will lead
to significant estimation errors. To avoid such errors, we subject the
observations to the following test. We determine a range of possible
values for each beacon such that, if the beacon is actually present, then
the measurement will fall within that range with some reasonably high
probability. We select only those measurements that fall within the
range determined by the specified threshold probability.

5. Finally, we compute the latest estimate as

i(k + 1) = *(k + ilk) + K(k+ 1)v(k + 1),

where K, is the filter gain (matrix) for the ith measurement out of the
m measurements obtained in the previous step.

Tk approach sketched above is conceptually quite simple but somewhat
tricky to implement for a real robot. Determining an appropriate threshold
probability requires a certain amount of experimentation. Achieving proper
alignment is difficult in the case of highly specular (glossy) metal or painted
surfaces. Unexpected objects, either moving or fixed but not accounted for
in the map, can cause problems. If, however, there are plenty of potential
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beacons and there are enough sensors to track several of them at any o..e
time, then quite robust performance can be achieved.

Figure 6.6 illustrates how the method described above would perform in
a particular environment. The robot's location in the plane is represented
at 7 discrete points in time. Initially, the robot knows its exact location
with respect to the frame of reference of the global map. In the next two
time steps, its estimated position becomes increasingly uncertain due to t
movement errors. This uncertainty is represented in Figure 6.6 in terms
of ellipses corresponding to contours of constant probability of the error
distribution. We assume that at time points 2 and 3 the robot is not tracking
any beacons. At time point 4, the robot acquires a beacon corresponding to
the wall shown at the bottom of Figure 6.6. This beacon allows the robot
to decrease its uncertainty with respect to the y axis. The robot continues
to track the wall beacon thereby obtaining an increasingly more accurate
estimate for its position with respect to the y axis. At time point 6, the robot
acquires the beacon corresponding to the corner at the left of Figure 6.6,
obtaining more accurate estimates for its position with respect to the z axis.

This example illustrates a special case of a more general approach em-
ploying the Kalman filter as a basic subroutine. In the general approach, we
assume that the world is in one of several states; it is our task to determine
which is the actual state. For each of the possible states, we provide a dy-
namical model in terms of a linear system corrupted by Gaussian noise. For
each model, we interpret the data as though produced by the model. We
then choose the model whose predictions conform most closely to the data.

We had several motivations in presenting the material on state estima-
tion and the Kalman filter. Mathematically, the Kalman filter is simple and
elegant. Practically, the Kalman filter provides a powerful tool that can
yield extremely precise and robust control systems. Approaches based on
the Kalman filter are well suited for implementation on digital computers.
They provide a disciplined approach to combining the data from any number
of sources. Finally, the recursive update equations for the Kalman filter il-
lustate a cycle of activity involving prediction, observation, and estimation,
that 4old play a part in any approach to dealing with uncertainty.

TU state regulation problem for a linear dynamical system, quadratic
performance index, linear control law, and Gaussian disturbance and mea-
surement noise can be cast in terms of two separate problems. The problem
of deterministic optimal control and the problem of stochastic optimal esti-
mation. It has been shown that the two problems can be solved separately
to yield an optimal solution to the combined control problem. While this
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Figure 6.7: A stochastic process with two states

separation property does not hold for nonlinear systems, in many cases,
engineers proceed as if it did, designing controllers and state estimators sep-
arately and then connecting them to obtain a complete control system. In4estimation as else here in control, the linear case serves as the basis for de-
sign. In Chapter'l we consider problems in which observation and control
interact strongly, requiring that the robot consider both state regulation and
state reconstruction when choosing control actions.

6.3 Stochastic Dynamic Programming

In ChapterS, we considered the problem of determining an optimal policy for
multistage decision processes. In this section, we reconsider this problem in
the context of stochastic processes. The material in this section is iportant
in its own right, but it wil also figure prominently in Chapters "d )k t\ /

For our purposes, a finite-state, time-invariant, discrete-time stochastic
process is a four tuple (T, X, U, P) consisting of the following.

" A set of time points T Z

" A finite set of states X ={zi,z 2,...,ziXI}

" A fnite set of inputs U ={u,u 2,...,uu1 }

" A get, P = {pj(u)}, of state-transition conditional probability distri-
butions, one for each state/input pair, (zi, u) where zi E X and u E U,
such that for each zj E X we have the distribution,

p,,(U) = Pr(z(t + 1) = ZIz(t) = zu(t)= ),
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independent of t, and subject to the standard requirements regarding
probability distributions,

0<p,(u)< 1, VZ,xiEX, uEU,

and
1: pii(u) =1, Vx E X, u EU.

zEX 4

We notate the state-transition distributions as pj(u) so that in the sequel
we can drop the explicit input argument by assuming an implicit control
law or policy of the form,

17: X -U,

so that
=

Figure 6.7 shows a simple stochastic process with two possible states, X =

{1,2}, and two possible inputs, U = {a,b}.
The stochastic processes we are considering here are guaranteed to tran-

sition to every state infinitely often no matter what initial state the process
is started in. Such processes are said to be completely ergodic.

In addition to the requirements stated above, the stochastic processes
that we will be concerned with have the following Markov property, ' .

Pr(z(t + 1)lz(t), u(t))= Pr(z(t + l)l(t), u(t), (t- 1),,u(t- 1),...), ..

indicating that the transition probabilities depends only on the last state
and not on any prior history of the system.

Finally, we introduce a reward function,

R:UxX-- R,

such that R(u, z) corresponds to the (immediate) benefit derived from per-
forming action u in state z. In Chapter kwe were concerned with n-stage
decision problems and maximizing performance indices such as --

'I

V(u(1), ... , u(n); z(1),..., z(n)) - 2 R(u(i), z(i)).
i=-I

We were able to solve such problems using the following recurrence,

V.(z) = max[R(u,x)+ Vn..(f(z,u))J, n>2

VI(z) = maxR(u,z),
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where f is the deterministic state-transition function.
In the case of stochastic processes, there is generally some uncertainty

in the outcome resulting from performing a given action in a particular
state, and so we maximize ezpected value to account for this uncertainty.
We can extend the recurrence for the deterministic case to handle stochas-
tic processes by summing over the possible next states weighted by their
probability of occurring. The extended recurrence is defined by

V,(x/) = max 1" pj(u)(R(u, V,,_,(z,)], n > 2

VI(x,) = max 1 pi,(u)[R(uz,)].
X, EX

The above recurrence represents the .pplicatioz of Bellman's principle of
optimality, as discussed in Chapter Xto Markov decision processes. The
method of solving Markov decision processes by solving this recurrence is
referred to as value iteration since the value functions are determined iter-
atively [9].

There are other variations on this basic recurrence relation. For instance,
we could specify boundary conditions (e.g., initial amount of fuel or other
resource) by redefining V, to include some initial value. We could also define
a set of admissible controls thereby restricting which actions are allowed un-
der what circumstances. The primary limitation of value iteration concerns
its ability to handle processes of indefinite duration. Under some circum-
stances the above recurrence can be shown to converge asymptotically, so
that, in the limit as n -* oo, an agent using the policy defined by

i7 .i = agmxE Pi~~w , V-~j]

will act so as to mximize its average expected return [3]. However, in
certain cases, we can do much better, and, in the following, we consider a
method due to Howard [9] for solving processes of indefinite duration.

If a completely ergodic stochastic process is allowed to transition indef-
initely, the cumulative reward will increase without bound given a strictly
positiv reward function. A more appropriate performance index for pro-
cesses of indefinite duration is the average reward per transition. We define
the average reward per transition or system gain with respect to a given
policy. In the following, we always assume a current policy of the form,

0: X- U,
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allowing us to make the following abbreviations,

R(x) = R(i7(x), z)

Using these abbreviations, we can rewrite the basic recurrence used in
value iteration as follows.

V,(z 1 ) = pii[R(z,) + V., -(zi)]

= P, [R(--,)l + EC pjV._,(zj)]Xze XXe
z, EX z, EX

We introduce new notation for the expected immediate (quick) returns cor-
responding to the first summation term in the above equation,

Q(z,) = E pji[R(x,)],
:JEX

allowing us to simplify the recurrence once more as

V.(z,) = Q(.,) + F PijIv--I(XA]
X'EX

Note that the quick returns can be computed directly from the reward func-
tion and the state-transition probabilities. To evaluate the quick return for
an input other than that specified by the current policy, we simply add a
control argument,

Q(z.,u) = pjj(u)[R(u,,)J.
-- zEX

In considering processes with indefinite duration, we are interested in
how often a given process will end up in a particular state. Let wi(n) indicate
the probability that the system will be in state zi after n transitions given
that the initial state is known. Let ri be the limit of ri(n) as n --+ oo. Clearly
Egq" 1i = 1. For completely ergodic processes, the i, are completely
indsldmt of the starting state and provide us with the frequency that the
systin wM enter a given state given that it is allowed to run indefinitely.
Using these limiting state transition probabilities, we can define the system
gain (average reward per transition) with respect to a given poicy as

G = F T,[R(x,)].
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As n gets large, the quantity, Vn(z), increases without bound, but the
difference, V.(z)-V,.._(z), is bounded. As a consequence, we can determine
the equation of a line,

y(n) = gn + vo,

bounding the values of V.(z), where gn represents the steady-state compo-
nent of the behavior as n -. oo, and v0 represents the transient component,
depending only on the starting state. This bounding line is referred to as C
the asymptote of V.(z). The slope, g, of the asymptote is just the system
gain, G, and the y-intercept, vo, we denote V(z) (no subscript) for starting
state, z. For completely ergodic processes, the slope is independent of the
starting state. As n gets large, we have the following approximation,

V.(z) = nG + V(z).

Substituting in our recurrence, we obtain

nG + V(z,) = Q(z t ) + j p,3[(n - 1)G + V(z,)l
zXEX

nG + V(z,) = Q(x,) + (n - 1)G E r, + 1 pifV(xj)].
zEX zEX

Noting that E,,Ex pij = 1, we finally obtain a set of equations of the form,

G + V(zi) = Q(z1) + E pi[v(.T)],

one for each zi E X.- This constitutes a set of IXI linear simultaneous
equations in IXI + 1 unknowns: the values of G and the IXI V(zi). In order
to solve this system of equations, we can eliminate one unknown by setting
one of the V(zi) equal to zero. The values for the V(zi) obtained from the
solution to the set of simultaneous equation with, say, V(zIX1) = 0 will
differ from those defined in

V.(zi) = nG + V(zi)

by a constant amount, but this difference is not significant for processes
with a large number of transitions, and the values obtained for the V(z,)
will suffice for determining the relative merit of two policies, hence they are
referred to as relative values.
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We now have a method, referred to as value determination, for estab-
lishing the expected value of a given policy for a stochastic decision pro-
cess of indefinite duration. We now need a method of choosing an optimal
policy. In the following, we consider a method due to Howard [9] called
policy iteration which allows us to generate an optimal policy by successive
approximation. Policy iteration starts with an arbitrary policy, generates
an improved (higher gain) policy on every iteration, and is guaranteed to
terminate in a finite number of iterations with the optimal (highest possi-
ble attainable gain) policy. The policy iteration algorithm cycles between
the value-determination procedure outlined above and a policy-improvement
procedure that involves selecting an improved policy on the basis of the
relative values for the current policy. As Howard [9] puts it, "the value-
determination operation yields values as a function of policy, whereas the
policy-improvement routine yields policy as a function of the values."

The policy iteration algorithm is defined as follows.

1. Let k 4- 0.

2. Choose an arbitrarys policy, 170, compute the corresponding values for
the Q(zi), and then use the value determination method described
above to compute the values for the V(z,).

3. For each state, zi, find u, maximizing

Q(zi, u1) + 1: pi(u,)[V(zj)],
r3 EX

using the current value function. For each zi, if ui yields a better
return based on the current value function, that is we have

(Q(zi, Uj) + E 1i(ui~v(.T)]) > (Qz)+ E i~(T)

the v' +- u, otherwise u+- ik(z).

*WI &be chaice of initial policy does not affect whether or not the algorithm converges
ou the epIma policy, a good initial choice can often result in faster convergence. If there
is no e i reason for choosing any particular policy, Howard recommends choosing go
so that

o(z,) f= max Q(z,, V).

This is effectively the same as setting V(z,) = 0 for all z, E X, and then running the
policy improvement step in the algorithm.

205



4. Define a new policy such that

17k+(Zt) = U'i,.

5. If 17k = 77k+I, then exit returning 77k.

6. Using 17k+I, compute the values for the Q(zi), and then use these to
compute V(x) using value determination.

7. Letk -k +1.

8. Go to Step 3.

Step 6 and Step 2. both of which involve value determination are the
most expensive steps computationally. However, the solution o the set
of simultaneous equations required for value determination can be easily
handled by means of existing efficient linear programming algorithms. The
limiting factor is the size of the state and input spaces.

To illustrate how policy iteration works, we consider a variation on a
classic problem found in (9, 3]. The classic formulation involves a taxicab
driver searching for fares; we have changed the problem slightly to reflect
our interest in mobile robots. Our treatment here follows that of [9].

Consider the problem faced by a robot courier assigned the task of de-
livering files, office supplies, and other assorted small items in a three-story
office building. The robot is rewarded for making its deliveries and the re-
wards differ depending on where the robot is and how far it is required to
travel.

For the most part, the robot just waits around- for the next delivery
job, but it has a few options that can influence how quickly the next job
arrives and how much of a reward it is likely to obtain in carrying out this
job. Each floor of the building is dedicated to a different department of
a company, and each floor has its own separate reception area and copy
room. The offices on the first and third floors are equipped with computer
workstations linked by local area networks, and the robot can plug into the
netww oa a given floor using a receptacle located near the elevator. Using
their personal workstations, office workers can issue requests to the robot
through the network.

Let X = {1,2,3), corresponding to the first, second, and third floors
of the office building, and U = {c, r, n}, corresponding to the three options
open to the robot, wait in the copyroom, wait in the reception area, and
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U pj(u) Rj(u) Qi(u)
j= 1 2 3 j= 1 2 3

1 c 1/2 1/4 1/4 10 4 8 8.00

r 1/16 3/4 3/16 8 2 4 2.75
n 1/4 1/8 5/8 4 6 4 4.25

2 c 1/2 0 1/2 14 0 18 16.00

r 1/16 7/8 1/16 8 16 8 15.00
3 c 1/4 1/4 1/2 10 2 8 7.00

r 1/8 3/4 1/8 6 4 2 4.00

n 3/4 1/16 3/16 4 0 8 4.50

Table 6.1: Specification for the rob ghrier problem

plug into the local area network, where the last option is only available in
States i and 3. Since the reward depends not only on the action taken
and the initial state, but also upon the final state, we modify the reward
function to take a third argument, R : U x X x X -- R, so that Rj(u)
corresponds to the (immediate) benefit derived from performing action u in
state xi and ending up in state z3 . We also modify the definition of the
immediate (quick) reward function to reflect the dependence on the final
state,

Qi(u) = -E.i()1'(A
z.EX

The complete specification for the robot courier problem is shown in Ta-
ble 6.1 where the transition probabilities and rewards are shown in matrix
form.

We begin by assuming that the expected values for all states axe zero,

V(1) = V(2) = V(3) = 0,

so that the initial policy will depend only upon immediate rewards. Looking
at the last column in Table 6.1, it should be clear that the robot should wait
in the copyroom no matter what floor it finds itself on, and so we define the
initial policy, 'lo, as

77o(1) = o(2) = %(3) = c.
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The state transition probabilities and reward values for this policy are given
by the following matrices,

1/2 1/4 1/418
[pj= 1/2 0 1/2 [R[j]= I

1/4 1/4 1/2 7

From the general equations used in value determination,

G + V(xi) = Qj + E pij [V(xi)],

Z, EX

we construct the particular Equations for the current policy,

G+V(1) = 8+ v(1)+1V(2)+ V(3)

G+V(2) = 8+ 1V(1) + OV(?) + V(3)

G+V(3) = 8+ -v(1)+ iV(2) + 2V(3)

Setting V(3) equal to zero and solving, we obtain

V(1) = 1.33

V(2) = 7.47
V(3) = 0

G = 9.2

Tab42 show*s *the results of the calculations made in the process of
improving upon the initial policy, 77o. For each state, zi, we choose the
option, u, that maximizes the quantity,

Qi(u) + Z p,,(u)[V(X3 )],
zjEX

and asket the improved policy, ih, defined by

h(I) = c, rh(2) = -, rh(3) = r,

indicating that the robot should wait in the reception area in the second
and third floor, but wait in the copyroom on the first.
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u Q(u) + E.,EX Pij(U)[V(zj)]

1 c 10.53
r 8.43

n 5.52
2 c 16.67

r 21.62
3 c 9.20

r 9.77
n 5.97

Table 6.2: First round of policy improvement for the robot courier

If we perform another cycle of value determination and policy improve-
ment, we arrive at the policy, rh defined by /77(l) = r, ,7h(2) = r, rh(3) = r,

indicating the robot should wait in the reception area no matter what
floor it is located on. If we perform yet another cycle we obtain, q3, defined
by

q3(1) = r, .3(2) = r, 773(3) = r.

Noticing that ih = ir, we now have an optimal policy,

Y(l) = r, 77(2) = r, 71(3) =,

for the robot courier problem, reinforcing thi belief held by* many office
workers that the reception area is one of the busiest areas in an office and
one to be avoided if you wish to avoid work.

As might be expected, policy iteration is sensitive to a variety of changes
in the initial conditions. For instance, if you reverse the transition proba-
biliti., p2(r) and p2,(r), you obtain a different optimal policy,

,7(1) = c, 17/(2) -- c, 77(3) -- r.

In addition, the number of iterations (most importantly, the number of times
we have to perform value determination) depends critically on the choice of
an initial policy. If, for example, we start with the initial policy,

q(1) = n no(2) = r .o( 3 ) = n,
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policy iteration takes only two iterations instead of the three required for
nr(1) = tio(2) = i(3) = c. In many cases, the choice of an initial policy

that is close to optimal can improve the performance of policy iteration
dramatically.

In some cases, it is unrealistic to count consequences in the distant future
on an equal basis with more immediate consequences. For instance, we may
mistrust our model for making accurate long term predictions, or future
rewards may actually lose value due to some inflationary process. Most
biological organisms tend to discount longer term rewards and focus on
more immediate rewards. We can model this outlook on rewards v adding
a discounting factor to our value function.

V.(xi) = Q(z,) + A E P [V-_,(Xj)]
X.,EX

where 0 < A < I is the discount rate. In the case of discounting, the notion
of gain (average reward per transition) no longer makes sense, as the optimal
policy is simply the one that maximizes expected value in all possible states.

Value determination is actually simpler for stochastic processes with dis-
counting, as we no longer have to account for the system gain. Eliminating
the system gain and appealing once more to the asymptotic limit of Vn,
namely V, we obtain a set of equations of the form,

V(z,) = Q(zi) + A 1: P [v( )],
xEX

one for each z E X. This constitutes a set of IXI linear simultaneous
equations in IXI unknowns (the V(x,)) that can be easily solved for the
unknowns. Policy iteration works in the case of discounting exactly as before
with the substitution of the simplified value determination procedure.

If we add discounting to the robot urier problem, we get a different
policy depending upon the value of A. or 0 < A < 0.13, we get the policy,

7(1) = c, 7(2) = c, 17(3) = c,

for 0.13 : A < 0.53, we get

17(1) = c, 17(2) = r, r(3) =c,

for 0.53 < A < 0.77, we get

q(1) = c, 1(2) = r, 17(3) = r,
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and, finally, for 0.77 < A e 1.0, we get
j7(l) = r, Y7(2) = r, q(3) = ,,

As one might guess, the closer \ is to !, the more iterations of value de-
termination and policy improvement will be required to obtain the optimal
policy.

In Chapter 8, we consider a form of learning that is closely related to "  
" \

the approach used here to compute an optimal policy for stochastic decision 'x
processes with discounting. We will employ the same basic form of succes- 4
sive policy improvement. The main departure from the techniques of this
section is that value determination will be done without the aid of*"xl.As.
Value determination will occur over time as the agent interacts with its envi-
ronment obtaining rewards and punishments intermittently and occasionally
inappropriately. This sort of reinforcement learning provides a good model
of learning in biological organisms and also appears to be a good model for
many automated planning and control applications.

6.4 Fuzzy Set Theory and Fuzzy Control

Uncertainty arises in many different forms. Probability theory provides a
basis for reasoning about uncertainty due to randomness, but there are
other forms of uncertainty that cannot be easily captured using the tools
of probability theory. In this section, we consider some alternative tools
provided by fuzzy set theory and fuzzy controL

Fuzzy set theory provides a mathematical basis for capturing knowledge
in a form dose to that used in everyday zommunication. Using fuzzy set
theory, we can assign meaning to terms associated with sets for which there
are no clearly defined boundaries separating elements from non-elements,
terms like large, small, dose, far, hot, cold, short, and tall.

The standard interpretations of probabilities in terms of frequencies or
likdihoods make it difficult to model linguistic phenomena characterized
by war like "heavy" or 'tall." The word "tall" denotes a fuzzy set not
becam there is randomness in the process of measurement, but because
there is general dispute and uncertainty about whether a borderline case
belongs to the set or not.

Our interest here stems from the considerable success that fuzzy set the-
ory and its counterpart, fuzzy control, have had in practical applications.
Fuzzy control systems have been used in video cameras, automobiles, and
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high-speed public transportation systems, just to name a few of the more
successful applications. Fuzzy control and fuzzy decision-support systems
provide a focus on knowledge acquisition and representation similar to that
found in the work on so-called expert rule-based systems. We mention fuzzy
methods in this chapter because they have shown themselves to provide
a viable alternative to other more traditional approaches to dealing with
uncertainty in control, and because they share with other rule-based ap-
proaches to reasoning an emphasis on symbolic representations.

We begin with a brief introduction to fuzzy set theory [17]. Let X denote
the universe set of elements, and z an instance of this set. A fuzzy set A
in X is characterized by a membership or characteristic function from X to
the real interval (0,1],

-A: X - [0, 1].

The value of IA at x indicates the "degree" to which x is considered to be a
member of A. In standard set theory, 17A is either 0 or 1. In the sort of sets
that fuzzy set theory is primarily concerned with, such binary distinctions
are often difficult to make. For instance, let X be the set of all people,
and A be the set of "tall" people. Suppose you consider people over seven
feet to be tall, under six feet not to be tall, and between six and seven feet
to be to some degree (between zero and one) tall. In this case, you might
characterize the set of tall people using the following function,

1 if 7 > h(z)
IA(z)= h(z) -6 if6_>h(z) <7

0 otherwise

where h(x) denotes the height of x.
We now provide fuzzy versions of some common set-theoretic notions.

The fuzzy complement, A, of the set, A, is defined by the function,

-TA(W = 1 - 17A(Z).

The fuzy union, A U B, of two fuzzy sets, A and B, is defined

'AUB(Z) = max(ZA(Z),J"(z)),

and the fuzzy intersection, A n B, is defined

"A,.B(Z) = minZ.A(),"B(z)).
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Note that, in the case of boolean-valuer characteristic functions, these def-
initions coincide with the standard set-theoretic definitions of complement,
union, and intersection.

For building rule-based control systems, we are not so much interested in
a generalization of set theory as we are in a generalization of predicate logic.
The standard (Tarskian) semantics for predicate logic is based on standard
set theory; predicates denote sets, the (truth-functional) interpretation of
atomic sentences is defined in terms of membership, and the meaning of the
connectives, -, V and A, defined, respectively, in terms of complementation,
union, and intersection. In a similax manner, one can provide semantics
for fuzzy logic using fuzzy set theory. Since our objectives in this section
are modest, we only introduce those concepts that are necessary for our
discussion, and refer the reader to a more detailed treatment in [10].

The syntax for the propositional case is as follows. Let A be a set of
fuzzy propositional variables. We define the set of well-formed formulae
(wffs) inductively as consisting of any propositional variable, the negation
of any wf" (written -,o where V is a wif), the conjunction of any two wffs
(written (ift A W2) where W, and " are wffs), or the disjunction of any two
wffs (written (WI V W2) where ih and (p2 are w&fs).

Next, we provide the semantics for the propositional case. An inter-
pretation, M, is a function from propositional variables to the real interval
[0,1]. An interpretation, M, is said to be an a-model for a wff, W, (written
M I:=. W) under the following conditions.

* M A iff M(A) = a, where A E A

" M -'W iff M i.., W

* M = Pi A iff a = min(al,a2), where M o , and M 1=-., W2,

In analogy to two-valued propositional logic, a wfl, W, is said to be a-
sati sfutbe if it has an a-model, and is said to be a-valid (written a W) if all
mo" m a-models. We can also define an analog of semantic entailment.
A wf, p, is said to a-entail another wff, W, (written W, I=, *2) if for any
mod, M, M =.1 (P1 implies that a2/al >_ a, where M =., p.

For a particular control problem, we would construct a set of fuzzy propo-
sitional variables as follows. Let F be the set of fuzzy sets, and X the uni-
verse set (generally the state space of a dynamical system) for the problem
at hand. For each A c F and x C X, we define a propositional variable of
the form, A(z), as shorthand for z E A.
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Assigning A(z) a real number is like assigning a proposition a truth
value; such assignments restrict the interpretations we are willing to consider
and therefore restrict what formulae are valid. In a two-valued propositional
logic, if you are told that P must be true in all interpretations, then, subject
to that restriction, Q is true in all models for -PvQ. Similarly, in fuzzy logic,
if you are told that A(z) must be assigned 0.7 in all interpretations, then
B(z) must be assigned 0.4 in all models for which -,A(z) V B(z) is assigned ,

0.4. Note that, in the case of boolean-valued characteristic functions, the
above fuzzy semantics reduces to standard truth-functional semantics.

For the cases we consider in the sequel, we are interested in the unique
model, M, such that, for all A E F and z E X, M(A(z)) = ZA(z). Illus-
trating the connection to the fuzzy set-theoretic concepts introduced earlier,
note that M satisfies the following conditions)

_______________ M =Afl(X) A z)

M TAU ( FAi(z) V B(z)

for all A,B E F and z E X.
The primitive notions presented above provide us with all the logical

machinery we require for building simple fuzzy control systems. We could
use fuzzy logic directly to obtain assignments to fuzzy propositional variables
in an analog of the way in which boolean logic is used in some control
systems. Instead, we consider how fuzzy logic formulae are used to construct
fuzzy algorithms [18]. For our purposes, a fuzzy control system consists of
a set of statements (or rules) of the form,

IfIA 1 AA2  ... A A,,, then C,.

where the Ai are the antecedent conditions and C is the consequent action.
Generally, the antecedents correspond to fuzzy propositions involving the
system state variables, and the consequent corresponds to a fuzzy assignment
statement involving the system input variables.

For instance, suppose you are trying to control a robot to move parallel
to the p nar surface of a wall in the direction right facing the wall and
maintalag a distance of about one meter from the wall. You would need
fuzzy sets characterizing the distance separating the robot from the wall,
and the angle of the robot with respect to the surface of the wall. The dis-
tance to the wall might be captured using six fuzzy sets, corresponding to
being next to the wall, VERYNEAR, some distance but close, NEAR, some-
what further but still relatively close, SOMEWHAT-NEAR, even further,

214



1.0

0.c

0.0 1.0 2.0 3.0 4.0

Figure 6.8: Fuzzy membership functions for the wall-following problem

SOMEWHAT-FAR, further still, FAR, and very far VERY-FAR. Possible
characteristic functions for these six fuzzy sets are shown in Figure 6.8.

To control the robot, you might specify that, if the robot is within a
meter or so of the wall and moving nearly perpendicular but slightly toward
the wall's surface, then steer a little further to the right. Such a specification
would be represented by the rule,

R: If NEAR(z) A SOMEWHAT.TOWARD(z)
then u +- u + SOMEWHAT.JIGHT,

where NEAR, SOMEWHAT.TOWARD, and SOMEWHAT.RIGHT corre-
spond to fuzzy sets, z is the system state indicating the position and ori-
entation of the robot with respect to the wall, add u is .the system input
indicating the steering angle.

Fuzzy logic indicates how to interpret the antecedent of R1. For instance,
given that

NEAR(z) = 1.0

SOMEWHATTOWARD(z) = 0.9,

we ,he
NEAR(z) A SOMEWHAT.TOWARD(z) = 0.9.

However, the statements in a fuzzy algorithm are not formulae in a fuzzy
logic. What we require is a procedural interpretation. In particular, we have
to determine the result of executing RI?
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If SOMEWHAT-RIGHT were a constant, say 50, then the result of ex-
ecuting R1, might be that the value of u is increased by 5 over what it was
formerly, where the general rule might be, if the value of the antecedent is
greater than 0.75, then treat the consequent as a statement in a conventional
programming language and execute it accordingly.

In the case of SOMEWHATRIGHT being a fuzzy set, we will want to
consider a different evaluation strategy. Suppose that we define the fuzzy ,
set, SOMEWHATRIGHT, as follows,

0.2 if z = 1*
0.4 ifz=2
0.6 ifz=3 °

0.8 if z=4*
1.0 ifz=5 °

TSOMEWHAT-RIGHT(Z) = 0.8 if z = 6°

0.6 ifz=7*
0.4 ifz = 8*
0.2 ifz=9°

0.0 otherwise

Then we might define the result of executing Ri as another fuzzy set,
RESULTR1, defined by weighting the fuzzy set, SOMEWHATRIGHT,
using the value assigned to the antecedent condition.

0.2*0.9 ifz=u+l1
0.4*0.9 ifz=u+2
0.6*0.9 .ifz=u+3
0.8*0.9 if: =u+40
1.0* 0.9 ifz=u+5 5

TRESULT-R1(-) = 0.8 * 0.9 if z = U + 6°

0.6*0.9 if x = u+ "7
0.4*0.9 ifz=u+8*
0.2*0.9 ifz=u+9 °

0.0 otherwise

We still need a unique result, and one obvious possibility is to choose the
result with the highest rating, breaking ties randomly if necessary.

The method of using thresholds to determine whether or not to execute
the consequent of fuzzy rules is inadequate in the case in which there are
several rules all attempting to perform conflicting actions, say setting a
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control variable to different vaJues, and all having antecedent co-nditions

that pass the threshold. For instance, in addition to RI, we might have the

following rule,

R2: If NEAR(z) A SOMEWHAT-AWAY(x)
then u +- u + SOMEWHAT-LEFT.

As an alternative to thresholds, we could define a corresponding fuzzy result, i 7
RESULT-R2, for R1, and set u according to the following,

U 4,- &Mnx(: RESULT..Rl(x),TRESULTP,2(-))•  -

We can generalize on the above method for any number of rules. In

practice, the set of rules is represented using an n-dimensional table, with

one dimension for each state variable and some number of fuzzy sets to cover

the domain of each such variable. At each point in time, all of the rules are

evaluated to determine their corresponding fuzzy results, and the maximal

control action taken.
There are many different schemes for executing fuzzy algorithm. There

are methods that combine the results from several rules, using a variety of

weighting schemes. There are fuzzy algorithmic versions of integer program-

ming, dynamic programming, database query processing, as well as a host of

specialized techniques for financial decision making, natural-language pro-

cessing, circuit layout, and speech recognition, just to name a few. Our

purpose here is not to survey fuzzy methods, but simply to make the reader

aware of a large and active area of control, and provide a somewhat different

perspective on uncertainty than that offered by the probabilists.

6.5 Further Reading

For a more thorough treatment of state estimation techniques in general and

the Kalman filter in particular, the reader is encouraged to read Bar-Shalom

and ]artmanan [11, Brammer and Siting [41, Gelb [61, or Maybeck [141. It is

alm w worth returning to some of the original papers on the theory and
appbWto" of the Kalman filter. A number of the original papers appear in

a collection by Sorenson [16] which is particularly interesting for the broad

range of applications considered.
For approaches to geometrical reasoning under uncertainty involving

static estimation and using minimum mean-square parameter estimation
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techniques, see the work of Durrant-Whyte [5] and Smith and Cheeseman
[15]. Hager [7] presents a game-theoretic analysis of the errors that arise
in applying minimum mean-square estimation methods and develops al-
ternative techniques for stochastic geometrical reasoning that allow more
flexibility in modeling uncertainty.

Leonard and Durrant-Whyte (13] describe techniques to obtain estimates
of the distance separating a mobile robot from nearby walls, corners, and t
other environmental features that exhibit well-behaved sonar signatures.
These estimates are then used to update the robot's position with respect
to a global map. The discussion in Section 6.2 is based on their work.

While there are any number of more recent books on dynamic program-
ming and stochastic decisiin processes, the texts by Bellman [2] and Bellman
and Dreyfus [3] are well worth reading. The method of policy iteration dis-
cussed in this chapter is due to Howard [9], and his book is an excellent
source of examples as well as proofs of correctness for the basic method and
a number of interesting variations. Among the variations, Howard discusses
nonergodic (multichain) and continuous-time processes. For an introduction
to finite Markov processes, the texts by Kemeny and Snell [11] and Hoel,
Port, and Stone [8] are recommended.

The original paper by Zadeh [17] is still an excellent introduction to
fuzzy set theory. In a later paper, Zadeh [18] considers the use of fuzzy set
theory for reasoning about complex systems and decision processes. In this
same paper, Zadeh elaborates on the notion of a fuzzy algorithm, providing
a number of interesting examples. The text by Kaufman [10] covers some
of the mathematics of fuzzy logic and fuzzy set theory.
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9

Chapter 7

Planning Under Uncertainty

Thi.s chapter i. still r ry mitch in flir. It currrntly conqiqts of early dmf.
of a aouplk of introductory scction. along with sonic ciampic .qcctionq drwni

r'rbtim froyn conforrner and journal )wiwr.s. No fiirther apolxnic. will bi
madc for its State of disarray.

The approaches to planning that we considered in earlier chapters in-
volve generating possible states of affairs from some initial information and
a model. In this and the next two chapters. we focus on problems in which
the present and future states of affairs are not completely determined by the
model and the information at hautd. We have already seen some problems
of this sort. In the case in whiea a robot is uncertain of the outcome of an
action. but the outcome will he apparent once the action is completed, we
uiggested that the robot conxtrmct a conditional plan indicating what sub-

sequent course of action to take for each possible outcome. In this chapter.
we consider cases in which the agent has somewhat more information about
the possible outcomes before the action is- completed, and somewhat less
information about the actual outcome after the action is completed.

7.1 Decision Theory

Let 11 be a set of possible states. Suppose that we have some ineais of
assigning numerical values to possible states:

V:f)-R.
°©199J 0''homas Dean. All rights reserved.
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This function is ",eineraly referred to as a rnute or ut ii.v fmic ion. III some
cases. depending on our measure of value, it may be more convenient to
think of value in terms of its inverse. cost. li the case of value or utiit..
we generally seek to increase it: in the case of cost. we generall. seek to
decrease it.

If you could choose some w E Q. .vo would wajit to choose w such that
V(w) is uia-ximum:

arg max V(w). 4

Unfortunately, we cannot simply select at will from fQ. We assume. however,

that we can select our actions from a set of actions. A. Let [atl] denote the
state resulting from executing action a in state w. if the state is unimportant
or clear from context, we simply write [a].

Suppose that each action a E A has a unique outcome [a] E Q. Then
we could simply choose the action whose outcome is most desirable:

arg max V( [c]).
cE.A

Of course. an action seldom, if ever. completely determines a unique state.
'o represent an agent's uncertainty about the consequences of its actions. we

assume that the state resulting from a given action is governed by a random
process. lit this case, we let [] dcnote a randon variable with probabilit y
space S?. and assume that we have conditiona probability distributions of
tle form:

for all 0 E A. where C represents the agent's background knowledge. Now.
V([n]) is a real-valued .function of a randomn variable, and its expectation is

defined to be:
E(V([nl) )= EVY ) Pr([,] = ,IC). (7.1)

The agent will want to choose the action with the highest expected value:

arg max E(V([o])IjC). (7.2)
ac-A

One alumuption underlying the decision strategy captured in Equia-
tions 7.1 and 7.2 is that the agent is often going to find itself in the situation
of having to choose what action to take. lence. the agent wants to choose
actions so that its long-term payoff, as predicted by the value function and
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Figure 7.1: Simple decision tree

its expectations concerning outcomes is maximized. A decision that maxi-
mizes expected value is called all oplimal decision.

A significant portion of the next two chapters will involve variations oil
this basic idea of choosing actions on the basis of expectations about their
outcomes. so it is important that you understand it. You can picture the

decision process embodied in Equations 7.1 and 7.2 as a decision tree. in
which the root node corresponds to a choice by the agent of what action to

take. and the children of the root node correspond to a choice by nature of

what state should result from the agent's action. Figure 7.1 shows a simple
decision tree in which the agent's choices are represented by boxes called
dccision nodes, and nature's choices are represented by circles called chance
nodes. The terminal nodes in the decision tree are labeled with the values
assigned to the outcomes. Theedges leading out of chance-nodes are labeled
with the probabilities of the outcomes. The edges leading out of decision

nodes are labeled with the agent's choices.
In general, decision trees can be of any depth. not just depth 2 as in

the decision tree shown in Figure 7.1. Often decision trees are arranged
with Doehu alternating between decision and chance nodes. but this is not

requi^& There is no requirement that decision trees be symmetrical though
they alt.. appear so in textbooks. Indeed. we will often sacrifice symmetry
to redace the size of the decision tree and the computational effort required
to evaluate the optimal decision.

An example should help to make the approach to decision making de-
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Fignre 7.2: Alternative router. to the beach

scribed here more concrete. Suppose that you live in the city and are taking
your summer vacation at a beach some distance from the city. Suppose
further that there are two routes to the beach: a direct route that takes
sLx hours and roundabout route that takes ten hours. We will call these
the direct and detour routes. The direct route requires that you cross a
bridge which, as luck would have it, is undergoing major repairs this sum-
nier. There is a 50% chance that the bridge will be closed at the time you
wish to cross it. If you attempt the direct route and find the bridge closed.
You will have to backtrack to the detour route, and your total transit time
will be twelve hours.

Your decision involves choosing whether to try the direct or detour route
first. Figure 7.2 shows. the three possible outcomes of your decision. If you
choose the detour route, the trip will take ten hours. If you choose the
direct route, the trip will take either six hours or twelve hours depending
on whether or not the bridge is closed. We need to assign a value or cost to
each of the possible outcomes, and, in this case, a natural measure of cost
is timnwupent in transit.

F 7.3 provides a graphical representation of the decision problem
for cbho which route to take. Note that the terminals of the subtree
emanating from the end of the detour branch have the same cost. The
probabilities on the edges of this subtree govern whether or not the bridge is
closed, but this factor has no impact on the outcome if we take the detour.
Such uninteresting subtrees are generally eliminated and replaced with the
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Figure 7.3: Decision tree for tile vacation trip problem

value of the appropriate outcome.
Given a decision tree such as that depicted in Figure 7.3. we can calcu-

late the optimal decision and its expected cost using the following simple
procedure. Initially, all of the nodes in the tree except terminal nodes have
inull labels. Terminal nodes are labeled with the cost of outcomes.

1. For each chance node with a null label all of whose children have non
null labels. label it with the expected cost for the node calculated as
the sum over all children of the product of the probability of the child
(as indicated on the edge from the chance node to the child) and the
child's label.

2. For each decision node with a nill label all of whose children have non
itill labels, label it with the minimum cost of the labels of its children,
and strike from consideration all edges except that one leading to the
child with minimumn cost.

3. If ;b m. are any nodes with null labels. go to Step 1, otherwise find a
p.kfrom the root to a terminal node consisting of action edges that
have not been stricken from consideration. The sequence of actions
along this path indicates the optimal decision and its expected cost is
the label of the root.
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Figure 7.4: Evaluated decision tree for the vacation trip problem

If we are concerned with value instead of cost. substitute cost everywhere for
value, and maximum and maximize everywhere for minimum and minimize.

Figure 7.4 shows the labeled and marked decision tree for the vacation
trip problem obtained using the above procedure. The optimal decision is
to try the direct route first. and the expected transit time in this case is
9 hours.

We can extend the above analysis to handle sequences of actions of length
?I. Let & = at,42,...Cn, where 6 E A x.A x ... A. The result of executing
the sequence of actions al .2,.. -,ak in w is

[Io~ iI(...[o ul .

a bbreviated [01, a2,. . . , (InIW]. We denote the kth action in the sequence i =
f1, 02 .... -k,.. ,cv, as 6 k. The correslm(iug decision tree is shown in
Figure 7.5. There are two things to note about the tree shown in Figure 7.5.
First, the tree is likely to be quite large, O( IAr"19I) nodes. Second. the tree
is not vwy interesting in terms of capturing the structure of the decision
problm. We might as well just use the simple two-level decision tree shown
in Figure 7.1, and let the choice of what action to take range over the
complex actions in A x A x ... A.

There are cases. however, in which actions can alter an agent's deci-
sion making capability by providing additional information. For instance, if
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Figure 7.5: Sequential Decision Tree

you are interested in buying a used car, hiring a mechanic to check the car's
condition before taking a purchase will probably reduce the possibility that
you end up buying a car with high repair costs. By representing the con-
sequences of such information-gathering actions explicitly in our graphical
representations for decision problems, we can gain some additioual insight
into tile structure of such problems.

In our vacation. trip example, suppose the.re .is a state police station
located near the Idghway prior to the point at which we have to decide
between the direct and detour routes. We will assume that the state police
call provide us with information about the current status of the bridge.
Suppose that stopping at the police station requires getting off the highway
and tr*Waiag to a nearby town, and that the total time spent in acquiring
the ishmation about the bridge is estimated to be 30 minutes.

Now we have an additional decision to make besides simply whether to
take the direct or detour route. You can think of the trip to the police
station as particular type of test with two possible findings: the state police
believe that the bridge is open or they believe that it is closed. The findings
may not provide conclusive evidence with regard to the primary question
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we are interested in. naniely whether or not the bridge iF Josed. but let us
suppose in this case that the beliefs of the state police are veridical.

Ve represent possible findings of our test as a chance node in the decision
tree. The prolbailities correspond to oitr priors regarding the status of the
bridge, since at. this lime we have no befter information. Under each of the
two possible findings, we attach the tree shown in Figure 7.3 with one change:
the probabilities for the chance nodes corresponding to whether or not the
bridge is closed are now conditioned on the findings. Given our assumption
that the police know the true status of the bridge, the probability the bridge
is closed given the police say it is closed is 1, the probability the bridge is
closed given the police say it is open is 0, and so M.

Figure 7.6 shows the decision tree for the vacation trip problem with the
decision node corresponding to driving to tile police station or not. The two
options are labeled check and not chfk. We also label test options with

their associated costs. Information costs. Every time that you get opera-
tor assistance in dialing a long-distance number or consult an accountant
about your income tax you are paying for information. In the vacation trip
problem, the cost of the information regarding the status of the bridge is
in terms of increased driving time: 1/2 hour for the check option and no
increase in time for the not check option. in computing the optimal deci-
sion for a decision problem with decision nodes corresponding to tests. we
calculate the maximum values for the labels of such nodes accounting for
these costs.

In the case of decision problems with actions to acquire information, the
optimal decision is a conditional plan specifying what to do at each point
in time given the information available at the time. This conditional plan
is called the optimal policy in the decision sciences; The optimal policy for
the decision tree shown in Figure 7.6 is to check with the state police, and

then take the direct route if the police say the bridge is open and the detour
otherwise. For this policy, the expected transit time is 8 and 1/2 hours.

It is often useful to be able to assess the value of information so as to
make reasonable decisions regarding whether or not to pay for it. We can
quaatii* the value of information in decision-theoretic terms.

In the vacation trip example, we were able to compute the expected

value o( making the trip by selecting actions that minimize expected travel
time based on the information at hand. Let

E(TIC)

he lhe expected travel time, T. for the optimal course of action based on
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the background information. (0. In reasonig about whether or ]lot to Aop
at the state police station, we computed the expected travel lime given the
additional information obtained from the police:

E(TIIs.C").

where 1,5 represents the event of obtaining infortuation from the police re-
garding the status, S. of the bridge, either open or closed. The expected
value of the information obtained from stopping at the police station is

E(V(Is)t$) = E(TI$sC) - E(TIC).

where

E(TI/s,C) =

E(TIS = closed.'") Pr(S = closedto ) + E(T S = open. C ) Pr(S = openl C).

In the example, E(V(Is)IC) = 1.0, implying that we should be willing to
spend up to one hour to obtain the inlrmation regarding the status of the
bridge.

More generally. let E( V( [ )It) be the expected value of carrying out your
present policy. Suppose that, prior to carrying out your present policy,
someone offers to sell you information pertaining to some variable, X, used
in calculating E(V([]IC). To be more specific, suppose that the informant
is clairvoyant and knows the actual value of X. Let Ix correspond to the
event of obtaining the information regarding X.

The expected value of obtaining this information is given by

E(V(Ix)lt) = E(V([])llx,t ) - E(V(D)IC). (7.3)

To compute E(I'al( )fIrx. C), we evaluate the expectation given knowledge
about X for each possible value of X provided by the informant. summing
over these expectations weighted by our prior on X

S(O)jIx,C) = E EV(D)jx =z. P(=.,jcr. (7.4)
tEfix

It is important to note. as did Howard in the 1966 paper [19) in which he
introduced Equations 7.3 and 7.4. that we use the prior distribution Pr(.I'C)
for X because, until the informant provides the information about X, our
knowledge of X is based entirely on our background knowledge C.
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A good deal of the discussion in this and the next chapter will concerti
41soning ab)out the value of informiation and using the results of this rea-

soning to direct action. Before we can progress much further. we need to
provide somie additional machinery for probabilistic reasoning. lIn the next
section. we consider a particular framework for modeling the world in the
presence of uncertainty. We show how this framework can be extended to
handle decision nmaking, and thien we (lenlonstrate the power of the extended
framiework using apiplicationis involving sensing and mobile robotics.

Hlave to establish a generic nante for- what lhave been called Bayes Frets,
Bayesian networks, belief networks. probabilistic networks. influence dia-
yrains arid who knows what else.

7.2 Probabilistic Networks

A probabilistic network is a dlirected acyclic graph C=(E. E), where V is
a finite set of vertices. and E. the set of edges. is a subset of V x V. the
set of ordered pairs of distinct vertices. Before we discuss how to use these
probabilistic networks to build decision models, we introduce and define
sonme standard graph theoretic terms.

If ((?I - v) E !;. then tit is said to be a parent of v-1, and v2 a child of vi.
The set of aUl parents of v is denoted Pa( v) and the set of all children Ch( v).

A path of length n from vo. to v,~ is a seqnence io. r1 .. . -, such that
(ri-i. - I) E E for i = In. If there is a path from r, to vz. then r1 is
said to he an 4ncr.tor of v-2. The set of all ancestors of r. is denoted An( v).
it subset S C V is said to sepm te V' C V from V" C V if every path from
a vertex in V' to a vertex in T"' intersects S.

W~e can obtain an undirected graph from 1; by ignoring the ordering on
the pairs* of vertices 'in E. The graph so'obtained is called t'he undireted
graph corresponding to 9. If V' C I", then 1' induces a subgraph GV'
0U". Eri where Ev' is that subset of E restricted to V' x I ". A graph (V". E)
is complctc if for all t'1 - v E V either (v1, v-1) E E or (ti'2.ti) E E. If V' C V
induces a complete subgraph, then V' is said to be complete. A complete
qubwa that is maximal with respect to set inclusion is called a cliquec.

For the directed acyclic graph (VVE). we define its mar-al graph as the
undimee graph with the same vertex set in which tit is adjacent to 12 just
in case either ( 1 ,V2 ) E E. (V2 . vi) E E. or there exists 1-3 E V such that
1)0th 0-1.v3 ) E E and (V2, V3) E E.

The vertices in V correspond to random variables and are called chance
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nodes as in decision trees. The edges in E define the causal and informational
dependencies between the random variables. In tiLe models described here.
chance nodes are discrete-valued variables that encode states of knowledge
about the world. We use upper-case italic letters (e.g.. X) to represent
random variables, and lower-case italic letters (e.g.. x) to represent their
possible values. Let SIX denote the set of possible values (state sljxe) of
the chance node X. InI order to quantify a probabilistic network, we have to
specify a probability distribution for each node. If the chance node has no v:
parents, then this is its unconditional (marginal) probability distribution.
I'r( ); otherwise, it is a conditional probability distribution dependent on
the states of the parents. Pr(.VIPa X)).

If V = {X 1.- 2 . -.... .-X,}, we can write down the joint distribution using
the chain rule as follows:

Pr(Xt. X 2 . . . . . . -, ) =
Pr(x, I.V- .... - ) Pr,- I.. -,-2 . . . . . , )" .Pr(X 21.X1 Pr(X).

There are certain independence assumptions implicit in the structure of
probabilistic networks that enable us to simplify this expression somewhat.
A complete characterization of the conditional indepeudeucies embodied in
the structure of a given probabilistic network can be given in graph theoretic
terms. For a given G = (V. E) and subsets U'. V". S C V. V' is conditionally
independent of V" given S if S separates V' from V" in the moral graph for
9. From this characterization, it follows that a chance node is conditionally
independent of its ancestors given its parents:

Pr(XIAn(X)) = Pr(XIPa(X)).

If the indices. 1.., of the- variables. Xt, X 2 , .. ., X,- are consistent with
the partial ordering in G (i.e. (.Xi,Xi+k) E E D k > 0), then we can use
this conditional independence property to simplify our expression for the
joint distribution:

Pr(X, X2 -. . . . . . . X,) = fJ Pr(XIPa(X,)). (7.5)
i=1

The nice thing about Equation 7..5 is that the product terms &he right-
hand side are exactly the marginal and conditional probabilities required to
quantify the network.

In using probabilistic networks for planning and control. we generally
wish to compute the posterior distribution for some random variable given
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some evidence o some proposed action or rontemplated observation. lntu-
itively. we are 'aterested in upriating our beliefs given the evidence obtained
9o far, and reasoning hypothetically about possible future courses of action.
In the vacation trip example. before we start out on the trip. we hypoth-
esize about taking various routes and niaking inforniation gatliering side
trips. After stopping at the state police station, we update our beliefs re-
garding the status of the bridge by incorporating the evidence obtained from
I lie police.

To capture this process of updathig beliefs and reasoning hypothetically,
we introduce the notion of a belief function defined on each of the random
variables in 9 as

Bel(X) = Pr(XIl),

where C represents all of the evidence obtained so far. Whenever we ob-
lain new evidence, we extend C and update Bel(X) for all X of interest.
IHypothetical reasoning is handled by including additional conditioning in-
formation. as in

Bel(XIY) = Pr(XIY', C).
We can compute BeI(X) directly using the joint distribution defined in

Equation 7.5. For instance, suppose that V = {A.B.C}. and we have
obtained as evidence the actual value of B. To compute the belief function
on A given the evidence regarding B. we need Pr(AIB). By the definition
of conditional probability, we have

Pr( A, B)
Pr(AIB) =

Pr(A)

Ve can obtain Pr(A) by summing the joint distribution over all variables
except A as in

Pr(A)= Pr(A.B=b,C=c).
cerc bEfl

This is referred to as narVinali:ing the joint probability distribution to A.
We obtain Pr(A, B) in a similar manner as

Pr(AB) = 1 Pr(A,B,C = c).
eEfl¢

This particular method of computing belief functions can involve a num-
ber of arithmetic operations linear in the size of the joint probability space:

i Ifxl.
XEI"
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Figure 7.7: Simple tree-structured probabilistic network

In many cases, we can do significantly better from a computational stand-
point by exploiting the .tructure of tHie graph. In particflar, if t; is a tree
(i.e., for all v E l'. l'a(tv) < 1), then we can compute the belief function for
all variables iii V in time proportional to

I: (n H )
For trees. the only information required to compute the belief function at
a given node can be obtained from adjacent nodes in the graph. The com-
plexity arises from the local structure of the graph.

In the following, we describe how to compute the belief function for trees.
While trees occur infrequently in practice, the exercise provides some addi-
tional insight into probabilistic networks. Following the description of the
method for handling trees, we describe a uethod of transforming arbitrary
probabilistic networks into hyper graphs with tree-like structure that can be
hautdled by methods similar to those used for trees.

Consider how we might compute Pr(XjZ.Y'1 .... ,)',) given the tree-
structured probabilistic network shown in Figure 7.7. Applying Bayes rule,
we have

Pr(Z. I' ..... I 1X) Pr(X)
Pr(Z. .I

Marginalizing in the denominator, we have

rr(Z.: Pr(Z, 1 . .. ).r(X).
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Using conditioal independewe and applying Bayes rule again, we have

Pr(Z.Y I JX) = Pr(XIZ) Pr(Z) Pr 1 IX) .Pr(,iX)
Pr(X)

Substituting, we have

Pr(XI Z. I ..... ,,)=
llr( .\" IZ) l'r( Z) Pro )'I I- X '- Pr( l',IX )

eEux Pr(X = x1Z)Pr(Z)lP-YIX = .)..Pr(l,,X = x),

which requires only the marginal and conditional probabilities necessary to
quantify the probabilistic network shown in Figure 7.7.

For the problems we will be considering, evidence corresponds to the
instantiation of variables at the boundary of the network (i.e.. variables
with no parents or no children). The impact of evidence on variables not
on the boundary has to be assessed by propagating the effects of evidence
through intervening variables. ht Figure 7.7. the set {Z.Yj ..... Y,,) cor-
responds to the boundary. Some or all of the variables 1, the bound-
ary may be instantiated in response to observations made by the agent.
After each observation, the belief fuction will require updating. For in-
stance. having determined Pr( XIZ. I I ..... En), we can compute Bel(X) for

S= Z.31' = y= ..... Yn = y.
Let e represent all of the evidence obtained thus far. Removing X sep-

arates . into n + I subtrees associated with the single parent of X and its
n children. We partition e into n + 1 components corresponding to these
n + I subtrees. Let e+ be the evidence associated with the parent of X. -nd
eT be the evidence associated with the ith child of X. Figure 7.8 illustrates
this partition graphickby. Suppose that X can obtain Pr(Zle+) from Z,
and Pr(e lI) from Y. Given this information, we can compute Pr(Xle) in
a manner similar to that used in computing Pr(XIZ.". ) above:

Pr(Xle) = Pr(Xle+,e .. e) =
Pr(X je+ ) Pr(e- IX )... Pr(e- I.\)

rEOx Pr(.X = tie+) Pr(eIX x .r).. Pr(e I.X - .r)

where Pr(Xle + ) is obtained from Pr(XIZ) and Pr(ZIe + ) as follows:

Pr(Xle+) Pr(XIZ = -)Pr(Z = :le+).
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Figure 7.8: Partitioning the evidence bearing on X into subtrees

Evidence propagation occurs by local message passing. Each node keeps
track of r + I messages corresponding to the last messages received from
its single parent and each of its n children. The node corresponvling to X
recomputes Pr(XNe) only in the event that it receives a message from a
parent or child that differs from the last message received from that same
parent or child. Nodes corresponding to evidence ignore incoming messages.
If N recomputes Pr(Xle), it also recomputes appropriate messages to send
to its parent and children, and then sends these messages. The message X
sends to its parent Z is computed as

Pr(ejIZ)= ( Pr(.X = riZ)Pr(e IX

where e- indicates the evidence in the subtree rooted at X. The message
X sends to its kth child is comptaed a.q

Pr(Xe, =r( X e + .  .... e- pe-+1,...,e-).

where e+,,, indicates all of the evidence in the tree rooted at .X except that
found in the subtree rooted at Yk.. Note that the right-hand side of tlis
Pxpression can be computed in a mianner similar to that used in computing
llr(.\le) by simply eliminating the lPr(e I) factor.
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Figure 7.9: Propagating evidence in trees

All of these messages require only information available from the either
originating node or from messages sent by Iarents and children. If we assume
unit cost for updating the local information at stored at a node in response
to a new message. then the cost of updating Bel( X) for all X E V in response
to new evidence originating at a single node is proportional to V in the worst
case.

Consider the following example illustrating how evidence propagates
through a tree-structured network. The example extends the earlier ex-
ample concerning the status of a critical bridge in planning a vacation trip.
Siippose that we know some additional information regarding the status of
this bridge. In particular, siippose we know that the repairs to the bridge
that would result in its closing are contingent upon an increase in the state
transportation budget. This budget increase was to be voted on in the state
legislature earlier in the year. Unfortunately, we did not hear the outcome
of the vote. but the same increase was to be used to repave a portion of the
highway that will have to be traversed near the beginning of the trip.

We introduce three boolean-valued random variables: A representing
the proposition that the budget increase was approtvcd. C representing the
proposition that the bridge is clo.qcd, and R representing the proposition
that the highway portion in question was rrlmvcd. Suppose that we have a
prior distribution on the budget approval,

A = true 0.

A = false0.9

a conditional probability distribution for the bridge being closed given that
the budget is approved.
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Pr(C.4)
A = true A = false

C = true 0.7 0.2
C = false 0.3 0.8

and a conditional probability distribution for the highway being repaved
given that the budget is approved.

Pr(RIA)
A= true A = false

R = trte 0.6 0.1
R = fMse 0.4 0.9

The resulting network is shown in Figure 7.9. Now. suppose that during
the early part of our trip we discover that the portion of the highway iu
question has indeed been repaved. We want to update the network to reflect
the evidence: R = true. For the purposes of the trip example, we are
interested in

Del(C = true) = Pr(C' = trueR = true)

in order to determine whether to take the direct or detour routes. To update
('. we will also update A in the process of propagating the impact of the
evidence.

For the simple network shown in Figure 7.9. we cau easily compute the
beief function using the joint distribution,

Pr(A, C, R) = Pr(CIA) Pr( RIA) Pr(A),

As described earlier, by definition we have

Pr(C = true. R true)

Pr(C = truel? = true) - Pr(R = trie)

Marginalizing, we compute the numerator by summing over QA ,

Pr4C = true. R = true) =

PrjC = trueA = true) Pr(R - truejA - true) Pr(A = true) +
Pr(C = truelA = false) Pr(R = truejA false) Pr(A = false),

and the denominator by summing over f. 4 x ft¢.

Pr(R = true) =
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Pr(C'= truejA = true) Pr( R = truelA = true) Pr'A = true) +

Pr(C = truejA = false) Pr(R = truelA = false) L'r(A = false) +

Pr(C' = falseWI = true) Pr(R = truelA = true) Pr(A = true) +

Pr(C = falselA = false) Pr(R = truelA = false) Pr(A = false).

to obtain the value 0.4 for Pr(C = truelR = true). Now. consider how we
inight obtain the same value by local message passing.

Prior to obtaining any evidence A. just sends Pr(A) to C and R. and C' $
and R send the function that maps all of fC' to 1.0. After C' updates itself.
we have Pr(C = true) = 0.25. After obtaining the evidence R = true. R
computes

lPr(R = truedA) = Pr(R = trueIR = true) Pr(R = truejA) +
Pr(R = truelR = false) Pr(R = 'alsejA),

and sends this message to A.
In response to this message. A updates its belief using the new message

from R and the old one from C:

Pr(AIR = true) =
Pr(A) Pr(IR = truplA)

Pr(A = true) Pr(R = trueA = true) + Pr(A = false) Pr(R = true1A = false)

The message sent to C from A is just Pr(AIR = true), and C updates
its belief as

Pr(CIR = true) = Pr(CIA = true) Pr(A = truejR= true) +
Pr(CIA = fidse) Pr(A falselR = true),

from which we compute Pr(C = truejR = true) = 0.4. the same value
obtained using the joint distribution.

It is fairly straightforward to extend the above method for evaluating
probabOtc models to handle networks in which a given node has more
than ome parent, but there is at most one path between any two nodes
in tih corresponding undirected graph. Such networks are called singly-
connected. The extension involves keeping track of the evidence originating
from subgraphs associated with the nodes of parents. Since there is a one-to-
one correspondence between the parents and children of a given node and
the set of subgraphs resulting from removing that node, keeping track of
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Figure 7.10: A multiply-connected network

evidence is relatively simple iii singly-connected networks. The same cannot
be said for multiply-coiuzected net~work.e, networks in which there are cycles
in the corresponding undirected graph. Figure 7.10 shows a simple multiply-
connected network. Problems arise in trying to distribute the impact of the
evidence on A to B and C. In tie worst case, correctly routing evidence
about in a multiply-connected network requires a global perspective. Cooper
has shown that exact evaluation of general probabilistic networks is NP-hard

[9].
While computing the belief function for variables in probabilistic net-

works is intractable in the general case. we can often exploit the structure
inherent in particular networks to reduce the cost of computation. One ap-
proach involves finding a set of variables. {-XI, .... X,}, which, if removed
from the network. would render it singly connected (e.g.. the set IB} in
Figure 7.10). The belief function for a given ubde is taken as the weighted
sum of the belief functions computed for all possible instantiations of the
variables in {X1 ,....X,}. Calculating the weights is a rather complex, but
the real trick involveR liliiug a small set. of variables to render fhe net-
work singly connected. This is crucial since you have to calculate the belief
function for r!', IfIx,I variable instantial ions.

A second approach to evaluating general probabilistic networks also in-
volvw converting multiply-connected networks into singly-connected ones.
This approach involves constructing a Ityper graph whose vertices corre-
spond to the cliques of the chordal graph formed by triangulating the moral
graph for the given network. [[Say a little more about triangulation and
chordal graphs.]] From this hyper graph. we extract a maximal spanning
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BC

BCD

Figure 7.11: Join tree for a IIIultiply-connected network

tree which is referred to as a join tree. [[Say a little more about maximal
spanning trees.]] Figure 7.11 shows a join tree for the network of Figure 7.10.

Pr(A.D,C', D) = Pr(DIB.C')Pr(BIA)I'r(C'IA)Pr(A)

[[Say something about the messages passed in evaluating join trees. Pro-
vide some insight into Jenseu's variation on Lauritzen and Spiegelhalter
by updating the graph shown in Figure 7.11 (e.g., the role of the running
intersection property).]]

The cost of evaluating a probabilistic network using the join-tree ap-
proach is largely deternmined by the sizes of the state spaces formed by taking
the cross product of the state spaces of the nodes in each vertex (clique) of
the join tree. We can obtain an accurate estimate of the cost of evaluating
a probabilistic netiwork. t = (. E) as follows. Let C = {Ci} be the set. of
cliques in the chordaJ graph described earlier. where each clique represents
a subset of V. We define the function. Card : C - 11 ..... JCJ - 1}, so that
Card(Ci) is the rank of the highest ranked node in C'i. where rank is deter-

ined by the ma.x.imal cardinality ordering of V. [[Say a little more about
maximum cardinality ordering.]] We define.the function. Adj : C - 2 C, by:

Adj(Ci) = {Cil(C # Ci) A (Ci n Cj # 0)}.

The join tree for G is constructed as follows. Each clique C'i E C is
connected to the clique C in Adj(Ci) that has lower rank by Card(.) and has
the bloat number of nodes in common with Ci (ties are broken arbitrarily).
Whemw we connect two cliques Ci and Cj. we create the scpamtion set
,5ij = Ci n Cj. The set of separation swts S is all the '$SO's. W define the
function, Sep : C - 2S . by:

Sep(C'0) = {,-klSi E $,(j i)V (k = i)}.
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rilially. we define the Joiii-tr~e cu.5t as

where Q, stesaesaeof node ?).
S5ay somnething about the multiply-conrifctcd rna5e. Given that the squb.

xfquerit sections will refer to Jenxf nis variation on Lauritzen and 5Spiegel- -

hl~ater. that aiqoritlun should bre describewd as somne level deeper than already
atti initd. An extremely (if tailed description is probably not warranted given
that the material is readily available in a nuTMber of recenit textbooks (e.g.,
[12. .11]).

Introduce influence diagrrams arid relate theni to the decision tyres de-
scribed tarlier in the introductory sections.

The first two exam ples of applying Hayesian netuworks to plannaing arid
rorit ml problems come fromn [11]. The first examiple considers the rxdatively
simple problemn of recognizing locally distinctive places. The second example
considers, the problem of choosing between paths through known and unknown
territory. The latter examiple can be used to illustrate somne of the tradeoff
involved in u'orking with mnultiply connected networks.

7.3 Robot Navigation

A significant problem in designing mobile robot control systeums involves
coping with the uncertainty that arises in moving about in an unknown or
partially unknown environment and relying on noisy or ambiguous sensor
data to acquire knowledge about that environment. In this section. we
consider a control system that chooses what activity to engage in next on
he basis of expectations about how the information returned as a result of

a given activity will improve its knowledge about the spatial layout of its
environment. Certain of the higher-level components of the control systemn
are specified iii terms of probabilistic decision mnodels whose output is used
to mwediate the behavior of lower-level control components responsible for
moveamt and sensing. The objective it to design control systems capable
of directing the behavior of a mobile robot in the exploration and mapping of
its environment. while attending to the real-time requirements of navigation
and obstacle avoidance.

We are interested in building systems that construct and maintain repre-
sentations of their environment for tasks involving navigation. Such svsteuis
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should expend effort on the construction and maintenance of these repre-
sentations commensurate with expectations about their value for immediate
and anticipated tasks. Such systems should employ expectations about the
information returned from sensors to assist in choosing activities that are
most likely to improve the accuracy of its representations. Finally. in addi-
tion to reasoning about the future consequences of acting, such systems must
attend to the immediate consequences of acting in a changing environment:
consequences that generally cannot be anticipated and hence require some
auiount of continuous attention and cointinent in terms of computational
resources.

We start with the premise that having a map of your environment is

generally a good thing if you need to move between specific places whose
locations are clearly indicated on that map. The more frequent your need
to move between locations, the more useful you will probably find a good

map. If you are not supplied with a map and you find yourself spending an
inordinate amount of time blundering about. it might occur to you to build
one. but the amount of time you spend in building a map will probably
depend upon how much you anticipate using it. Once you have decided to
l)ui!d] a map. you will have to decide when and exactly how to go about
building it. Suppose that you are on an errand to deliver a package and
you know of two possible routes. one of which is guaranteed to take you to

your destination and a second which is not. By trying the second route. you
may learn something new about your environment that may turn out to be
useful later. but you may also delay the completion of your errand.

The mobile robot that we consider in the examples in the rest of this

chapter is a simple holonomic (turn-in-place) robot equipped with a numn-
ber of sensors. The most important sensor for our immediate purposes is
the ultrasonic sonar-sensor consideied in the previous chapter. The robot's
ultrasonic sensors provide it with information about the distance to nearby
objects. With a little care, the robot can detect the presence of a -ariety of
geometric features using these sensors. In gathering information about the
office environment, the robot will drive up to a surface to be investigated.
alp am of the sensors to the right or to the left of its direction of travel
along Ae surface, and then move parallel to that surface looking for abrupt
chaagu in the information returned by the aligned sensor that would indi-
cate some geometric feature such as a 90* corner. In doing this. it is possible
to keep track of the accumulated error in its movement and the 'ariation in
its sensor data to assign a probability to whether or not a feature is present.

We assume that the robot has strategies for checking out many simple
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geotretric features found ill typical office environments: we refer to these
stri.tegies as fcature detecrtors. Each feature detector is realized as a control
process that directs the robot's movement and sensing. On tile basis of the
data gathered during the execution of a given feature detector. a probability
distribution is deternijined for the randoim variable corresponding to the
proposition that the feature is present at a specific location.

The robot that we consider here is designed to explore its environment
in order to build up a representation of that environment suitable for route
planning. In the course of exploration, the robot induces a graph that cap-
I ures certain qualitative features of its environment. In addition to detecting
geometric features like corners and door jambs. the robot is able to classify
locations. In particular. it is able to distinguish between corridors and places
where corridors meet or are punctuated by doors leading to offices. labs, and
storerooms. A corridor is defined as a piece of rectangular space bounded
on two sides by uninterrupted parallel surfaces 1.5 to 2 meters apart and

bounded on the other two sides by ports indicated by abrupt changes in
one of the two parallel surfaces. The ports signal locally distinctive places
(LL)Ps) (after (231) which generally correspond to hallway junctions. Un-
interrupted corridors are represented as arcs in the induced graph while
junctions are represented as vertices. Junction" are forther partitioned into
classes of junctions (e.g.. L-shaped junctions where two corridors meet at
right angles. or T-shaped junctions where one corridor is interrupted by a
second perpendicular corridor). We will assume that the robot is given a

set of junction classes that it uses to classify and the label the locations
encountered during exploration.

In the following sections. we consider two of the main decision processes
that comprise the robot's control system. but first we consider briefly the
overall architecture iii which these decision processes are embedded.

In the following, we assume a mnulti-level control system composed of a set
of decision processes running cotcurrently under a multi-tasking prioritized
operating system. There is no shared state information; all communication
is handled by inter-process message passing. Run-time process arbitration is
handWin by dynamically altering the process priorities. Coordination among
procu is achieved through a set of message-passing protocols.

The different processes that make up the controller are partitioned into
levels (ee Figure 7.12). For each level, there is a corresponding arbitra-
tor designed to coordinate the different processes located at that level. At
Level 0, we find the processes responsible for control of the different sen-
sor/effector systems on board the mobile base. Each Level 0 process is
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Figure 7.12: Mobile robot control architecture

completely independent of the other processes, so no arbitration is needed.
At Level 1. we find the processes responsible for the low-level control of the
robot. Level 1 processes are coordinated using a simple priority scheme:
the obstacle avoidance process always takes priority over the other Level 1
processes. The activities of the feature recognition and corridor following
processes are coordinated by higher-level l)roceRs.

In the design shown in Figure 7.12. there is only one Level 2 process,
the LDP classifier. but. in a more complicated architecture. one could easily
imagine several processes on this level. At Level 3, we find the two pro-
cesses responsible for the robot's higher-level behaviors: the task manager
in charge of running user-specified errands. and the geographer in charge of
exploration and map building. Both the geographer and the task manager
are special-purpose route planners: the geographer tends to construct paths
through unknown territory and the task manager through known territory.
The activities of these two processes are coordinated by a Level 4 decision
proces that takes into account the possible costs and benefits to be derived
from dlmt strategies for mixing exploration and errand running. In the
foilmot9 we consider the decision processes at Levels 2 and 4.

7.3.1 Classifying Locally Distinctive Places

Upon exiting a corridor through a port. the robot will want to determine
what sort of LDP it has entered. If the robot is in a well-explored portion
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of its environment, this determination shonld mnatch its expectations as in-
dicated in its in ). If. on the oil her iand. the robot is in some unknown
or only partially-explored area. this determination will be .ised to extend
the map. possibly adding new vertices or identifying the current LDP with
existing vertices. In this section. we describe how the robot might classify
LDPs encountered during exploration.

Let L be the set of all locally distinctive places in the robot's environ-
ment. C = {E'1 -C 2 , . ... C,} be a set of equivalence classes that partitions L,
and F be a set of primitive geometric features (e.g.. convex and concave cor-
ners. flat walls). Each class in C can be characterized as a set of features in
F that stand in sonie spatial relationship Io one another. As the robot exits
a port. a local coordinate system is set tip with its origin on the imaginary
line dtfined by the exit port and centered in the corridor. The space about
the origit, enclosing the LDP is divided into a set of equi-angular wedges

IV. For each feature/wedge pair (f, w') in F x W, we define a specialized
feature detector d, ,, that is used to determine if the current LDP satisfies
the feature f at locatinn u, in the coordinate system established upon en-
tering the LDP. Let D be the set of all such feature detectors plus no-op,
a psendn-detector that results in no new information and takes no time or
effort to ,xecute.

The LDP-classification module maintains a a probabilistic assessniput of
the hypotheses concerning the class of the current LDP given the evidence
acquired thus far. At any given time, the robot will have tried some number
of feature detectors. Let Pt be the pool of detectors available for use at time
t: Pt is just D less the set of detectors executed up until t in classifying the
current LDP. The LDP-classiflcation module is responsible for choosing the

next feature detector to invoke from the set Pt. It does so using a decision
itiodel cast in terms of'au influence diagram.

The LDP-classification inwohile's inflitence diagram includes a set of chance
nodes corresponding to random variables, a decision node corresponding to
actions that the robot night take, and a value node represeuting the ex-
pected utility of invoking the different feature detectors in various circun-
stance. The chance nodes include a hypothesis variable, 11, that can take
on vaue from C, and a set of boolean variables of the form. -\1,.,, used to
represmt whether or not the feature f is present at location u,. Each Xf.,. is
conditioned on the hypothesis H according to the distribution Pr(X'.,,Ic')

determined by whether or not the class reluires the feature at the specified
location. The decision node, Pi, indicates the feature detectors available for
use at time t, and the value node. V, represents the utility of invoking each
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Figure 7.13: LDP-classificatiou imodule's influence diagram

feature detector. I" is dependent only upon the hypothesis and decision
itodes. The predecessors of Pt are just the feature detectors invoked so far,
thereby indicating temporal precedence and informational dependence. A
graphical representation of the influence diagram is shown in Figure 7.13.

The utility of invoking each detector is based on (i) the ability of the
detector to discriminate among the hypotheses, (ii) the cost of deploying
Ihe detector, (iii) the probability that the current best hypothesis is correct.
and (iv) the cost of misidentifying the LDP. The first two are used to select
from among ) - {no.op} and the last two are used to choose between the
best detector from D - {inoop} and no-op. The LDP-classification module
selects from D - {uo.op}, using the function, it : I- x H - R. defined by
1 (( w/u, h) =f

'c Discrim(df.u.) - 92(Cost(df,v,, h),

where mj and K2 are constants used for scaling, Cost(df.L, h) is a function
of the expected time spent in executing df,t, for an LDP of a given class.
and Discrim(df,,) is a variation on a standard discrimination function used
in pattern recognition, and defined by

nPr(C) F Prid,,. = ,IC,)- Pr(d,.,. = r)I,
i~sl vE{O.I)

where df... = v is meant to represent the proposition that the detector alj.,,,
returns the value t. The terms in the above formula are easily obtained.
Pr(d, -- vjC,) is the distribution associated with the corresponding X.,,
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node. and Pr(df.w = r) call be calculated us.ing

it1
Pr(df.,,. = tV) = Pr(dIf.,,. = rjCj) Pr(C,)

The LDP-classification module evaluates the influence diagram using
one of the methods described in Section 7.2 to obtain a decision poiicy and
an expected value function for choosing from among D - {no-op}. The $.
LDP-classification module can also choose to do nothing by selecting noop,
thereby committing to the class (' with the highest posterior probability
given the information returned by the feature detectors invoked thus far.
In a more realistic decision model. we might employ an additional set of
chance nodes corresponding to micro features and a more extensive the set
of feature than indicated here. We would also want to allow for a feature
detector to be invoked multiple times.

7.3.2 Expected Value of Exploration

One could imagine several decision inodelR for reasoning about the expected
value of exploration. In the simple model presented in this s,-ction, we
assume that the system of junctions and corridors that make up the robot's
environment can be registered on a grid so that every corridor is aligned
with a grid line and every junction is coincident with the intprsection of two
grid lines. In the following, the set of junction types. J, corresponds to all
possible configurations of corridors incident on the intprsection of two grid
lines. Intersections with at. least one incident corridor correspond to LDPs.
Since we also assume that the robot knows the dimensions of the grid (6i..,
the number of x and V grid lines), we can enumerate the set of possible maps
M = { l1, A 2 ,..., M ), where a map corresponds to an assignment of a
junction type to each intersection of grid lines. For most purposes, we can
think of a map as a labeled graph.

We can restrict Al by making a number of assumptions abont office
buildiup of the sort that the robot will find itself in (E.g.. all LDPs are
connertd). To further restrict At, the robot engages in an initial phase of
task-ddrw exploration. Each task specifies a destination location in X., Y
grid coordinates. The robot computes the shortest path assming that all
intersections have as many coincident corridors as is consistent with what
is known about the intersection and its adjacent intersections. The robot
then follows this path. acquiring additional information as it moves through
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Figure 7.14: The probabilistic model for map building

unknown intersections until it either finds its path blocked, in which case
it recomputes the shortest path to the goal taking into account its new
knowledge, or it reaches the goal.

The robot continues in this task-driven exploration phase until it is
likely-based on the spatial distribution of known locations-that all lo-
cations have been visited at least once. From this point on, given a task to
move to specific location, it is likely that it will be able to compute a path
through known territory. The robot now faces the decision whether to take
the known path or to try an alternative path through unknown territory.
In the model considered here, the robot has to choose between taking the
shortest path through known territory, and trying the shortest path consis-
tent with what is knoin. In the latter case. it win learn something new, but

it may end up taking longer to complete its task.
Let H be a random variable corresponding to the actual configuration of

the environment; H takes on values from M. Let J_,, be a random variable
corresponding to the junction type of the intersection at the coordinates,
(z, ), Ia the grid; J., can take .uu values from the set C defined previously.
Let X be as previously defined, a booleaa variable corresponding the
presim o a feature at a particular position. Let Sr,. be a random variable
corresponding to a possible sensing action taken at the coordinates. (z. y),
in the grid. Let C correspond to the set of sensing actioi.s taken thus far.
The complete probabilistic model is shown in Figure 7.14.
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In our simple model. the robot has to deride between the two alter-
natives, Pj, and Pu, corresponding to palhs through known and unknown
ierritory. To compute lPr(HILef). Pr( 11 ) is assumed to be uniform. Pr( Jr.,IH )
and Pr(Xf.,,IJ. ) are determined by the geometry, and Pr(S,.VIXf. ,.) ;- de-
fermined experimentally. Let T = IT,. T2- .. Tr} deote the set of all tasks
corresponding to point-to-point traversals, and E(ITiI) denote the expected
number of tasks of type T,. Let Cost(Ti. M.j, Mk) be the time required for
the task T using the map Mj, given that the actual configuration of the ,
environment is Alk; if M) is a subgraph of M,-, then Cost(Ti, M, ,1k) is just
the length of the shortest path in Ali. Let T' denote the robot's current
(ask. For evaluation purposes. we assume that the robot will take at imost
one additional exploratory step.

To ,omplete the deision model, we need a means of computing the
expected value of PKe and 1-'. In general. the value of a given action is the
sum of the immediate costs related to T* and the costs for expected future
tasks. Let

r

Futures( M,. I) = E(JTI) Cost(Tj. My. l,).

where A7 = MIrg.,.jPr(A!-£)"
If classification is perfect. the robot correctly classifies ainy location it

passes through, and M is the minimal assignment consistent with what it
has classified so far. In this case. the expected value of P" is

C'ost(T ° . .10. - ) + Futures( -).

If classification is imperfect. the expected value of PA is

m.
SPr(mAljC) [Cost(T, AP, Ali) + Futures(M, t)].

Handling Pu is just a bit more complicated. Suppose that the robot is
coutemplating exactly one sensing action that will result in one of several
posaible observations O1. 0. , then the expected value of Ptr is

E Pr(MAl.) Cost(T"', AP. M ) +
j--i

71 ft!

j==12:Ir(O,) NOVP( , 10, le)F,,t ures(Ali, l0i. C:1)
;=ffi j=1
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where T' is a modification of T tha accounts for the proposed exploratory
sensing action.

We use Jensen's [21] variation on Lauritzen and Spiegellialter's [2.5] algo-
rithm to evaluate the network shown in Figure 7.14. The time required for
evaluation is determined by the size of the sample spaces for the individual
random variables and the connectivity of the network used to specify the
decision model. In the case of a singly-connected network, the cost of com-
putation is polynomial in the number of nodes and the size of the largest
sample space-generally the space of possible maps. The network shown in

Figure 7.14 would be singly-connected if each feature. Xf, ., had at most
one parent corresponding to a junction. J,.,; a network of this form with
100 possible maps can be evaluated in about 10 seconds. assuming an 8 x 8
grid.

In the case of a multiply-connected network, the cost of computation is a
function of the product of the sizes of the sample spaces for the nodes in the
largest clique of the graph formed by triangulating the DAG corresponding
to the original network. By making use of the information gathered in the
initial exploratory phase. the robot is able to reduce the connectivity of the
network used to encode the decision model. Multiply-connected networks
accounting for approximately 50 possible maps require on the order of a few
minutes to evaluate.

The space of possible maps chosen may not include the map correspond-
ing to the actual configuration of the environment. To handle such possible
omissions. we add a special value, I. to the sample space for H. and make
all of the Pr(.I.,.,I.L) entries in the conditional probability tables 1/s where
.q is the number of junction types. If the robot ever detects that At ; .1.,
then it assumes that it has excluded the real map, and dynamically adjusts
its decision model by computing a new sample space-for H guided by the
results of the exploratory actions taken thus far.

7.3.3 Designing Robot Control Systems

One approach to desiguing control systems employing a decision-theoretic
perspetitve is described as follows. We begin by considering the overall
deciske problem, determining an optimal decision procedure according to a
precisely stated decision-theoretic criteria, neglecting computational costs.
We use an influence diagram to represent the underlying decision model and
define the optimal procedure in terms of evaluating this model.

In the case described above. the robot's overall decision problem in-
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Volves several component problems associated with specific classes of events
occurring in the environment. These component decision problems incluide
what action to take when approached by an unexpected object in a corridor.
what sensor action to take next when classifving a. junction. and what path
to take in combining exploration and task execution. Each of these prol)lems

is recurrent.
Problems involving what sensor action to take in classification or what

path to take in navigation are predictably recurrent. For instance, during

classification each sensor action takes about thirty seconds to a minute. so
the robot has that amount of time to decide what the next action should be
if it wishes to avoid standing idle lost in compltation. The freqlency with
which choices concerning what path to take occur is dependent on how long
the robot takes to traverse the corridor on ronutp to the noxt LDP. With the
current mobile platform operanting in the halls of the computer science de-
partment. moving between two consecutive LDPs takes about four minutes.
The problem of deciding what to (io when approached by an unexpected
object occurs unpredictably, and the time between when the approaching
object is detected and when the robot must react to avoid a collision is on
the order of a few seconds.

Hy making various (in)dependence assumptions and eliminating non-
critical variables from tile overall complex decision problem. we are able to
decompose the globally optimal decisi )n problem into sets of simpler compo-
nent decision problems. Each of the sets of" component problems are solved
by a separate module. The computations carrled out by thesp modules are
optimized using a variety of techniqnes to take advantage of the expected
time a,. for decision making. The different decision procedures coin-

municate by passing probability distributions back and forth. For instance.
the module responsible for making decisions regarding exploration and the

module responsible for classifying LDPs pass back and forth distributions
regarding the junction types of LDPs.

The control system described above combines high-level decision mak-
ing with low-level control and sensor interpretation to provide for na.viga-
tion. fl-tinue obstacle avoidance, awl 1(xploratcion in an unfamiliar environ-

ment. The basic controller handles multiple asynchronous processes con-
municating via simple message-passing protocols. The architecture supports
a variety of arbitration schemes from fixed-priority processor scheduling to
decision-theoretic control. This section has emphasized two decision pro-
cesses" one responsible for reasoning about the uncertainty inherent in deal-
ing with noisy and ambiguous sensor data. and a second responsible for
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assessing the expected value of various explorato,y actions. Our basic ap-
proach to desigiung robot control systotns involves constructing a decision

model for the overall probleim and then decomiposing it into compollent
models guided by the time criticality of the associated decision problems.

The third example involves sequential decision making, and for this u,e
hae to introduce some additional iachinery. In iarticular, the proTbabilistic
projection approach described in [1.3. 15] and particularly [14]. Relate this to
Tatman and Schacter's work on connecting influence diagranis and dynamic
pirnamnnhing methods for sequential decision meaking involving Markov pro-
cesses.

7.4 Change Over Time

Reasoning about change requires predicting how long a proposition, having
become true. will continue to be so. Lacking perfect knowledge. an agent
may be constrained to believe that a proposition persists indefinitely simply
because there is no way for the agent to infer a contravening proposition
with certainty. In this section, we describe a model of causal reasoning
that accounts for knowledge concerning cause-and-effect relationships and
knowledge concerning the tendency for propositions to persist or not as a
function of time passing. The model has a natural encoding in the form
of a network representation for probabilistic models. We will also consider
how our probabilistic model addresses certain classical problems in temporal
reasoning (e.g., the frame and qualification problems).

The common-sense law o; inertia [27] states that a proposition once made
true remains so until something makes it false. Given perfect knowledge of
initial conditions and a complete predictive model, the law of inertia is
sufficient for accuritely inferring the persistenie of propositions. In most
circumstances, however, our predictive models and our knowledge of initial
conditions are less than perfect. The law of inertia requires that. in order
to infer that a proposition ceases to be true, we must predict an event with
a contrmveing effect. Such predictions are often difficult to make. Consider
the faftwing examples:

* a cat Is sleeping on the couch in your living room

* you leave your untbrella on the 9:15 commuter train

* a client on the telephone is asked to hold
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Figure 7.15: Events precipitate change in the world

In each case. there is some proposition initially observed to he true. and the "
task is to determine if it will be trite at some later time. The cat may sleep
undisturbed for an hour or more. but it is extremely unlikely to remain in

htie same spot for more than six hours. Your umbrella will probably not be
sitting on the seat when you catch I lie train 1he next morning. The client

will probably hold for a few minutes. but on!y the most determined of clients
will he on the line after 1.5 minutes. Sometimes we can make more accurate
predictions (e.g.. a. large barking dog runs into the living room). but. lacking
specific evidence, we would like past experience to provide an estimate of
how long certain propositions are likely to persist.

Events precipitate change in the world, and it is our knowledge of events
that enables us to make useful predictions about the future. For any propo-
sition P that can hold in a situation. there are some number of general sorts
of events (referred to as efent types) that can affect P (i.e.. make P true
or false). For any particular situation, there are some number of specific
events (referred to as ctiit in tnces) that occur. Let 0 correspond to the
set of events that occur at time t. A correspond to that subset of 0 that
affect P. K(0) that subset of 0 known to occur at time t. and K(A) that
subset of A whose type is known to affect P. Figure 7.15 illustrates how
I hese sets might relate to one. another in a specific situation. In many cases,
A'(0) n A'(A) will be empty while A is not, and it may still be possible
to provide a reasonable assessment of whether or not P is true at t. In
this section, we provide an account of how such assessments can be made
probabilistically.

7.4.1 Prediction and Persistence

In the following, we distinguish between two kinds of propositions: propo-
sitions. traditionally referred to as fluents [28). which. if they become true.
tend to persist without additional effort, and propositions. corresponding to
the occurrence of events, which, if true at a point, tend to precipitate or
trigger change in the world. Let (P. t) indicate that the fluent P is true at
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t ine t. and (E. t) indicate that an e%-eut of I vpe E occurs at tildie t. we uise

ithe not ation Ep Itoindicate ant e%-ent corresponding to Itle flueit P becoimin~g
tru'le.

Given our characterization of fiueiits as propositions that tend to persist.
whether or not P is true at some timie I mnay' depend upon whether or not
it was true at t - -1. where .1 > 0. We can represent this dependency as
follows:'

Pr( (P. t)) = Pr((P. t)l(P. t - .1)) Pr( (P. t - 1)) + (7.6)
Pr( (P. t)I-(P. t - A)) Pr( -(P. t - A))

where -(P.t) S(-P.t).
The conditional probabilities Pr( (P. t)I(P. t - .1)) and Pr( (P. t)J-,(F. t - 1))

are related to the survivor function in classical queuing theory [351. Survivor
functions encode the changing expectation of a fluent remaining true over
the course of time. WVe employ survivor functions to capture the tendency of
propositions to b~ecomne false as a. conseqnence of events with contraveviing
effects. With survivor functions. one need not be aware of a specific instance
of an event with a contravening effect in order to predict that P will, cease
bePing true. As an example of a survivor function.

Pr( (P. t)) = r- A A p (P. t - 1))

indlicates that the probability that P persists dIrops off as a functioni of the
time since P was last observed to be true at an exponential rat,- determine([
1)'y A (Figure 7.16). The exponential decay survivor function is equivalent
to the case where

and
Pr( (P. t)1-(P, t - 1)) = 0.

Referring back to Figuire 7.15. suirvivor fminct ions acconnt for Ihlat qIIIWt of
A corresponding to events that uiake P false, assuming that A(A)={}

'7U siquality in Formulda 7.6 folows rroin flime yeisemlized additivi la-. if .

as z d" and exhaustive and B is any event, then

Pr( B) = Pr( 81.4,1 PH .4,).
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Figure 7.16: A survivor function with exponential decay

If we have evidence concerning specific events knxown to affect P (i.e.,
K(A) n K(O) i {)), Formula 7.6 is inadequate. As an interesting special
case of how to deal with events known to affect P. suppose that we know
about all events that make P true (i.e., we know lPr((Ep, t)) for any value

of t). and none of the events that make P false. In particular, suppose that
P corresponds to John being at the airport. and Ep corresponds to the
arrival of John's flight. We are interested in whether or not John will still
be waiting at the airport when we arrive to pick him up. Let a(t) = e - Al

represent Johins Iendency to hang around airports, where A is a measure of
his impatience. If f(t) = Pr((Ep, t)), then we can compute the probability
of P being true at I by convolving f with the survivor function a as in

Pr((P,t)) = f Pr((Ep, z))i(t - z)dz (7.7)

A shortcoming of Formula 7.7 is that it falls to account for evidence
concerning specific events known to make P false. Suppose. for instance.
that E-.p corresponds to Fred meeting John at the airport and giving him
a ride to his hotel. In certain cases.

Pr((P, 1)) = J 14 (Ep, z})c'j - z) [I.- j Pr((E.p,;r)dz] iL: (7.8)

provides a good approximation. Figure 7.17 illustrates the sort of inference
licensed by Formula 7.8.

There are some potential problems with Formula 7.8. The survivor func-
tion a was meant to account for all events that make P false. but Formula 7.8
counts am such event, John leaving the airport with Fred. twice: once in
the swu'm function and once in Pr( (E.p, t)). In certain cases, this can
lead to sipificaut errors (e.g., Fred always picks up John at the airport).
To combine the available evidence correctly, it will help if we distingnish the
different sorts of knowledge that might be brought to bear on estimating
whether or not P is true. We will also reinterpret the event type Ep to
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Figure 7.17: Probabilistic predictions

mean an event known to make P true. The following formula makes the
necessary distinctions and indicates how the evidence should be combined: 2

Pr((P. t)) = (7.9)
Pr((P,t)I(P,t - A) A -((Ep, 1) V (E-.p, t))) (N1)
* Pr((P.t - A) A -((Ep, 1) V (E.,p,t)))

+ Pr((P. t)l(P, t - A) A (Ep, 1)) (N2)
* Pr((Pt- A) A (Ep, 1))

+ Pr((P. t)I(P, - A) A (E.,p, t)) (N3)
* Pr((P, t - A) A (Ep, t))

+ Pr((P,t)l-(Pt- A) A -((Ep, t) V (E.,p,t))) (N4)
* Pr(-(P, t - A) A -,((Ep,) V (E.,p,t)))

+ Pr((P, t)l-(P, t - A) A (Ep, t)) (N5)
* Pr(-(P. t - A) A (Ep, 1))

+ Pr((Pt)l-(P.t- A) A (E.,p.t)) (N6)
* Pr(-(P, t - A) A (Ep, t))

Consider the contzibntion of the individual terms .corresponding .to the
conditional probabilities labeled NI through N6 in Fornmula 7.9. NI accounts
for iuzanum attrition: the tendency for propositions to become false given no
direct evidence of events known to affect P. N2 and N5 account for ,aowl
accretion: accumulating evidence for P due to events known to make P
true. N2 and N5 are generally 1. N3 and N6, on tlhe other hand, are
genmuy 0, since evidence of -P becoming true does little to convince us
that Pit trw. Finally, N4 accounts for spontaneous causation: the tendency
for pt flons to suddenly become true with no direct evidence of events
known to affect P.

21n order to jutify our use of the genralized additioa law in Formula 7.9. we mume

Ihat Pr((Ep, t) A (Ep. t)) = 0 for all 1.

250



By using a discrete approximation of time and fixing A. it is possible
both to acquire the necessary values for the terms N I through Nfi and to use
them in making useful predictions. If time is represented as the integers, and
A = 1. we note that the law of inertia applies in those situations in which the
terms NI. N2. and N5 are always I and the other terms are always 0. In the
rest of this section. we assume that. time is discrete and linear and that the
time separating any two consecutive time points is some constant A. Only
evidence concerning events known to make P true is brought to bear on r,
Pr( (Ep. t)). If Pr( (Ep, t)) were ised to summarize all evidence concerning
events that make P true, then N I would be 1.

7.4.2 Reasoning About Causation

Before we consider the issues involved in making predictions using knowledge
concerning N I through N6. we need to add to our theory some means of
predicting additional events. We consider the case of one event causing
another event. Deterministic theories of causation often use implication
to model cause-and-effect relationships. For instance, to indicate that the
occurrence of an event of type E, at time t causes the occurrence of an
event of type E2 following f by some 6 > 0 just in case the conjunction
P t A P2 .-. A P,, holds at t. we might write

( (' Pt AP2 ... ^A P,,,t ^) (El, t)) D (E2, t + 6).
If the caused event is of a type Ep. this is often referred to as pfrsi Atrnre

rauftation [29]. In our model, the conditional probability

Pr((E 2,t+6)1(PI AP 2 ... AP,,,t) A (El,t))= 7r

is used to indicate that. given an event of t'ype El occurs at time t. and ',
throitgh 11n are trie at t. an event of type E2 will occur following t by some
A > 0 with probability w.

li moving to a probabilistic miodel of cansation, there are some conipli-
catM6 that we have to deal with. Consider, for example. the two rules:

.o,.((P, t) A (E t)) D (ER, t + h)

and
((PA Q. 1) A (E. i)) D (ER, t + 6).

These two rules pose no problems for the deterministic theory of causation,
since P and Q are either true or false. and the rules either apply or not.
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In fact, the second rule is redundant However, in a probabilistic itiodel.
-P I and Q usually are not unanibigutusly true or false. Therefore. in the

probabilistic causal theory consisting of

Pr((ER.t + 6)1(P. t) A (E. t)) =

Pr((ER.t + 6)I(P A Q.t) A (E.t)) =72

the second rule can no longer be considered redundant. Since the second ,
rule is more specific than the first. it provides us with valuable additional
information. In a complete account of the causes for ER, we would also need

Pr((ER, t + A)t(P A -,Q,t) A (E,t)) = r3

and other information as well. Providing a complete account of the inter-
actions antoug causes and between causes and their effects is important. in
modeling change in a probabilistic framework. In the following two sections,
we will consider this issue in more detail.

7.4.3 An Example

The task in probabili.etic projertion is to assign each propositional variabe of
the f rm (,p. t) a certainty measure consistent with the constraints specified
in a problem. In this section. we provide examples drawn from a simple
factory domain that illustrate the sort of inference required in probabilistic
projection. We begin by introducing some new event types:

C = "The mechanic on duty cleans up the shop-
As = "Fred tries to assemble Widget17 in Rooml0l"

and fluents:

Wr = "The location of Wrench14 is Rooml0l
Sc = "The location of Screwdriver3l is RoomI0V

Wi = "Widgetl7 is completely assembled"

TWe asume that tools are occasionally displaced in a busy xhop, and that
Wr mW Se ae both subject to an exponential persistence decay with a half
life of omo day; this determines N I in Formula 7.9:

Pr((Wrt)I(U'rt - ..X) A "'((Ewr, t) V (E.wr, t))) = e \

pr((Sc,t)I(Sc, t-IA-((S,t)V(E-st)))= --.\
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%%here e - A - 0.5 when .1 is one day.
The other terms in Formula 7.9. N2. N3. N4. N.5. and N6. we will assume

to be. respectively. 1, 0. 0. 1. and 0. When the meclatic on duty cleatis up
the shop. he is supposed to put all of the tools in their appropriate places.
li particular. WrenchI4 and Screwdriver3l are supposed to be returned to
Roomiil. We assume that the mechanic is very diligent:

Pr((Eji,..t + )j(cl.t)) = 1.0

Pr((Es ,t+c)J(C1.t)) = 1.0 dv

Fred's competence in asseml)ling widgets depe(ds upon his tools being
in the right place. In particular. if Screwdriver3l and Wrenchl4 are in
ltooinl0l. then it is certain that Fred will successfully assemble WidgetlT.

Pr((EwA, t + t)I(Wr.t) A (Sc. t) A (As, t)) = 1.0

Let TO correspond to 12:00 PM 2/29/88. and T1 correspond to 12:00
PM on the following day. Assume that c is negligible given the events we
are concerned with (i.e.. we will add or subtract c in order to simplify the
analysis).

Pr((CI. TO)) = 0.7
Pr((As. Ti)) = 1.0

We are interested in assigning the propositions of the form (;, t) a cer-
tainty measure consistent with the axioms of probability theory. We will
work through an example showing how one might derive such a measure,
noting some of the assumptions required to make the derivations follow
from the problem spetification and the axioms of probability. In the follow-
ig. we will denote this measure of belief by Bel. What can we say about
Bel( (Wi, TI + c))? In this particular example. we begin with

Bel((1Wi, TI + ,))

= Pr((Ewi. TI +f))
= Pr((Ewi, T1 + f)(Wr. TI) A (Sc. TI) A (As. Ti))

* Pr((Wr. TI) A (Sc. TI) A (As. TI))

= Pr((Wr. TI) A (Sc. TI) A (As. Ti))

= Pr((Wr. TI) A (Sc. Ti))
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The first step follows from our interpretation of 'Wr. and the fact that
there is no additional evidence for or against 11'r at fi + c. The second step
employs the addition rule an(d the assumption that the assemlA 'v will fail to
have the effect, of (EWr, TI) if any one of (Wr,' i), (Sc. 'I1). or (As. '11)
is false. The third step relies on (ie fact that assemiblv is always success-
f[i given that the attempt is made and \Vrenchl4 and Screwdriver3l are
in Itooiuil. The last step depends on the assumption that the evidence
supporting (Wr A Sc. TI) and (As, TI) are independent. The assumption
is warranted in this case given that the particular instance of As occurring
at TI does not affect 1rA Sc at T1. and the evidence for As at TI is
independent of any events prior to TI. Note that. if the evidence for As
at T1 involved events prior to Ti, then the analysis would be more in-
volvel. It is clear that Pr((Wr. 11)) > 0.35. and that Pr((Sc. T1)) > 0.35;
unfortunately. we cannot simply combine this information to obtain an es-
tiate of Pr((I1 -rA Sc. T1)), since the evidence supporting these two ClarimjS
is dependent. We can, however, determine that

Pr((l'r. TI) A (Sc, T1))

= Pr(('r. TI) A (Sc, TI)I(Wr. TO) A (Sc. TO))Pr((Wr. TO) A (Sc. TO))

= Pr((Wr. Ti)I(Wr, TO) A (Sc. TO))

Pr((Sc, T1)I( Wr, TO) A (Sc, TO))Pr((Wr, TO) A (Sc. TO))

= l'r((IVr. TO)A (Sc. TO)) * 0..5 * 0.5

= Pr((Ewr, TO) A(Es,TO)) * 0.5 * 0.5

= Pr((Ew1., TO+ E) A (Es, TO+ c)j(ClI, TO))Pr((C. TO)) 0..5 * 0.5
= 0.7 * 0.5 * 0.5

= 0.175 •

assuming that there is no evidence concerning events that are known to
allect either Wi" or Sc in the interval from TO to Ti. that Wr and Sc are
independent, and that Ewr and Esc are conditionally independent of one
another given C.

Throughout our analysis, we were forced to make assumptions of inde-
pendea.'e In many cases, such assumptions are unwarranted or introduce

inconsitnetcs. The inference process is further complicated by the fact I hat
probabilistic constraints tend to propagate both forward and backward in
time. This bi-directional flow of e'vidence can render the analysis described
above useless, In the next section. we consider a model that simplifies speci-
fying independence assumptions. and that allows us to handle both forward
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and backward propagation of probabilistic constraints.

7.4.4 A Model for Reasoning About Change

In this section. we take a slight inodifical ion of Formula. 7..9 as the basis for a
model of persistence. Formula. 7.9 predicts (P. t) on the basis of (P. t - -1.
(Ep. t). and (E.p. t). where I is allowed to vary. In the model presented in
this section, we only consider pairs of consecutive time points, t and t + A,
and arrange things so that the value of a fluent at. time t is completely 
determined by the sta.te of the world at h in the past. In Formula 7.9, we
ititerpret Pve ltt of type ,p orcrurrii at f as providinig evidence for P heing
true at t. In our new model, we interpret events of type Ep occurring at t
as providing evidence for P heing true at t + A. This reinterpretation is not
strictly necessary, but we prefer it since the expressiveness of the resulting
models can easily be characterized in terms of the properties of Markov
processes. In our new model, we predict A - (P. t + ) by conditioning on

C - (P.t)
C2  (Ep.t)

C3  (E.p.t)

and specify a complete model for the persistence of P as

Pr(A) = PrAIC C"2 A C3 ) Pr(C 1 A C2 A C3 )

where the sum is over the eight possible truth assignments for the variables
C1. C2 . and C'3. Note that this model requires that we have probabiliti" of
tie form Pr( AIC, A ('2 A C;) and Pr( C1 A C2 A C.1) for all possible valuations
of the Ci.

In the following, we will iake use of a network model that will serve
Io clearly indicate the necessary indepedence assumptions. We will use the
generic term belief network to refer to a network that satisfies the following
basic properties common to all three of the above representations. A belief
network represents the variables or propositions of a probabilistic theory as
nodes in a graph. The variables in our networks correspond to propositional
variabbs of the form (,. t). Dependence between two variables is indicated
by a directed arc between the two nodes associated with the -ariables.

Because dependence is always indicated by an arc. belief networks make
it easy to identify the conditional independence inherent in a model sim-
ply by inspecting the graph. Two nodes which are linked via a common
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Figure 7.18: The evidence for P at time T + 6
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Figure 7.19: The evidence for Ep at time T + 6

neighbor, but for which there are no other connecting paths are condition-
ally independent given the common node. For instance, in the models de-
scribed in this section, (P, t - 6) is independent of (1'. t + 6) givent. (P. t).
Belief networks make it easy to construct and verify the correctness and
reasonableness of a model directly in terms of the corresponding graphical
representation. Our model for persistence can be represented by the net-
work shown in Figure 7.18. As soon as we provide a model for causation,
we will show how this simple model for persistence can be embedded in a
more complex model for reasoning about change over time.

Gemsaly, we expect that the cause-and-effect relations involving Ep
will be specified in terms of constraints of the form:

Pr((Ep,t + 6)(Ej, t) A(Qi* )) = r

Pr( (Ep, t +6)I(E 2, t) A(Q2, t)) =X2
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Pr((Ep,f4-b)I(E,.t) A, (Q,,t)) =

However. to specif'v a complete modelt. we will need some more infornia-
tion. To predict A - (Ep. t + 6). we condition on

C, _= (Ej.t)A(Q1.t)

C2  (E2, t) AMt)

C, (E,,. t) A 'Q,,,t)

and specify a complete model as:

Pr(A) = 1 Pr(AIC A C 2 A ... A C,,) Pr(C 1 A C2 A ... A C,)

Note that we need on I he order of 2" prolabilities corresponding to the 2"
possible valuations of the propositional variables (I through C, to specify
this model. The associated befief network is shown in Figure 7.19. Similar
networks would be constructed for event types other than those involving
propositions becoming true or false.

Now we can construct a complete model fc reasoning about change over
itne. 1: igure 7.20 illustrates the temporal belief network for such a complete

model. For ea h pivositional variable of the forim (,I). there is a node
in I!ie befief neiwork. '"he arcs are sl. cified according to the isolated jixod-
els for persistence and causation illustrated in Figure 7.18 and Figure 7.1M.
Following Pearl (1988), we cau write down the unique distribution corre-
sponding to the model showil ia 1 igure 7.20 as

Pr(xl. x2, ... r,) = Pr(xil.i) Pr(S')

where the x i denote the propositivi-al variables in the model. and Si is the
conjunction of the propos;tiov]i variables associated with those nodes for
which thwe exist arcs to x, in the network.

As . pecific instance of a temporal belief net%%ork. we reconsider the
factory example of Scion 7.4.3. We will need models for the persistence
of wrenches and screwdrivers remaining in place. and models for reasoning
about the conseqences of cleaning and assembling actions. Figure 7.21.i
shows a portion of a belief network dedicated to niodeling the persistence
of i r (i.e.. the proposition corresponding to Wrench14 being in Rooll01).
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[n order to completely specify the model for lWr persisting. we need the
following information:

Pr((IVr.t)j ...) 11r. t - A.) (Ew,.t - -1) (E-vv-.t-.)

_, True raise False

f -Aa True True False

0.0 True False True

0.0 False False False

e-A I  False True False

0.0 False False True
- True True True

- False True True

The first six entries entries in the table correspond to ternis NI-6 in For-

imla 7.9. Note that the entries corresponding to N2 and N-assumed to
he I in Section 7.4.3-are now the same as NI to account for our revised
interpretation of events of type Ep.

Figure 7.21.ii shows a. )ortion of a belief net for modeling the effects of
the assembly action. The complete model is specified as follows:

Pr((Ewi,_t)...) (Sc.t -E) (1'rt- c) I (As, t -f)

0.0 'alse False False
0.0 True False False
0.0 False True False
0.0 True True False
0.0 False False True
0.0 True 'False True

0.0 False True True
1.0 True True True

Finally, Figure 7.21.iii shows a portion of a belief net for modeling the
effects of the cleaning action. The complete model for the effect of cleaning
on tme location of Wreuch14 are shown below:

Pr((EA-,.t)l...) II (C.t-e )
0.0 False

1.0 TrueE

and sinilarly for the effect of cleaning on the location of Screwdriver31:
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IV TO+& T! TI+&

lPr((Es, t)l.. (CI t - 7,E

1.0 True

In the discussion of the general model, the amount of time separating
time pints was assumed to be the same for all pairs of consecutive time
poiatL In reamoning about the factory example, it will be useful to have the
time sentaing pairs of consecutive time points differ, and to have different
models for handling different separations. We will need time points close to-
gether for propagating the (almost immediate) consequences of actions. and
time points separated by several hours so aA not to incur the computational
expense of reasoning about intervals of time during which little of interest
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happens. To reduce the complexity of the network for the factory exam-
ple. we assume that evidence concerning the occurrence of actions such as
cleaning and assembling is always with regard to the end points of 21 hour
intervals. Figure 7.22 shows the complete network for the factory example.
Note that. since the evidence for actions appears only at 2.1 hour intervals.
we encode the models for action only at tie time points TO and TI: sim-
ilarly, since additional evidence for events of type Ep is only available at
TO + ( and TI + f, we use a simpler model for persistence at TO and TI il
which, for example. (11"r. TO + ,) is completely determined by (Itlr. TO). If
we assume a prior probability of 0 for all nodes without predecessors in Fig-
ure 7.22 excepting (C. TO) and (As. Ti) which are, respectively, 0.7 and 1.0,
then Pr((Ewi, TI + t)) is 0.175 in the unique posterior distribution deter-

mined by the network. This is the same as that established by the analysis
of Section 7.4.3. but. in this case. we have made all of our assumptions of
independence explicit in the structure of the temporal belief network.

It is straightforward to extend the model described above to account for
new observations and updating beliefs. Suppose we have the observations
(). 02., on, where each observation is of the form (0, t) and 0 is an event
type corresponding to a particular type of observation. We assume some

Prior distribution specified in terms of constraints of the form:

Pr((O,t)) = 0.001

There are also constraints indicating prior belief regarding the occurrence
of events other than observations. For instance, we might have

Pr((E,t)) = 0.001.

Observations are relted to events by constraints such as

Pr((E.t)(O.t)) = 0.70

and
Pr((E. t)-,(0. t)) = 0.025.

To updat an agent's beliefs you can either change the priors:

Pr((O.t)) = 1.0

or you can compute the posterior distribution:

Bel(A) = Pr(Atol, o2 ... o).
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Most of the standard techniques for representing and reasoninlg about evi-
dence in belief networks aplY directly to our model.

Need ,ntlerial on the expsi.r limittions of this model. Rlatfion to
.ifarkov processes and Alarko' chains.

Suppose that the instantaneous state of the world can be completely
specified in ternms of a vector of values assigned to a finite set of boolean
variables P = {PI, P2,..... P,,). and suppose further that the envirounent
can be accurately modeled as a Markov process in which time is discrete -
and the state space S1 corresponds to all possible valuations of the variables
in P. Giveu such a model including a transition matrix defined on 12. we
can generate a temporal belief network to compute the probability of any
proposition in P being true at any time I based upon evidence concerning
the values of variables in P at various thies. and do so in accord with the
transition probabilities specified in the Markov model. Conversely. given a
temporal belief network such that. for all t and P E P. all of the predeces-
sors of (P.t) are in the set {(P,.t - 6)}, the network is said to satisfy the
Markov property for temporal belief networks, and, from this network, one
can construct an equivalent Markov chain.

The reason that one might use a llueut-and-event-based tempora' be-
lief network model rather than an equivalent state-based Markov model is
because the belief network representation facilitates reasoning of the sort
required for applications in planning and decision support (e.g., computing
answers to questions of the form. "What is the probability of P at t given
everything else we know about the situation?"). These same answers can
be computed using the Markov model. but the process is considerably less
direct.

Satisfying the Markov property for temporal belief networks allows us
to establish the conu'ction between temporal belief networks and Markov
chains, but it sometimes results in unintuitive network structures. Introduc-
ing a delay between an action and its consequences may appear reasonable
give the intuition that causes precede effects. However, introducing a delay
betwee Ep and P simply to ensure the Markov property may seem a little
extm.& We can eliminate the delay between Ep and P by returning to the
mod* for persistence in Formula 7.9. The resulting networks do not satisfy
the Marhov property described in this section, but they are perfectly legiti-
mate temporal belief nets and provide a somewhat more intuitive model for
representing change than networks that do satisfy the Markov property.
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7.4.5 Fdndamental Problems in Temporal Reasoning

Given titat otir model addresses many of the same problems that coticern
logicians working on temporal logic. we will briefly mention how our model
deals with certain classic prol)lems in temporal reasoning: the frame. rami-
fication, and qualification problems. We will begin by considering the frame
problem stated in probabilistic terms: "Does our model accurately capture
our expectations regarding fluents that are considered not likely to change
as a consequence of a particular event occurring?" The answer is yes insofar t
as frame axioms can be said to solve the frame problem in temporal logic:
persistence constraints are the probabilistic equivalent of frame axioms.

In considering the ramification problem. we will consider two possible
interpretations. First. "Does our model enable us to compute appropriate
expectations regarding the value of a particular fluent at a particular point
in time without bothering with a myriad of seemingly unimportant conse-
quences?- The answer to this is a resounding no: our model commits us to
predicting every possible consequence of every possible action no matter how
implausible. A second interpretation (or perhaps facet is a better word) of
the ramification problem is "Does our model enable us to handle additional
consequences that follow from a set of causal predictions?" For instance, if
A is in box B and I move B to a new location, I should be able to predict
that A will be in the new location along with B. Our model provides no
provision at all for this sort of reasoning. The basic idea of Bayesian in-
ference can be extended to handle this sort of reasoning, but we have not
investigated this to date.

The last problem we consider concerns reasoning about exceptions in-
volving the rules governing cause-and-effect relationships. Does our model
solve the qualification problem? That is to say, "Does our model accurately
capture our expectations regarling the possible exceptions to knowledge
about cause-and-effect relationships?" The answer is yes: conditional prob-
abilities would seem to be exactly suited for this sort of reasoning. It should
be noted, however, that our model imposes a considerable burden on the
person setting up the model. The model described in this section requires
specifylng al possible causes for each possible effect and the probability of
each eft for every possible combination of possible causes. It is not clear.
however, that one can get away with less. Given the problems inherent in
eliciting such information from experts. it would appear that we will have
to automate the process of setting up our probabilistic models.

The third example is dmwn from [121 and roncerns thf .rqvicntial dr-
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ri..ion problem for the mobile target loalization (Af TL) problem. Be sure
to addirss the i. .ue concerning the duration of the time intr.rval s5eparating
point.' in the trmporal Bayes network. There are two possible approaches for
the :MITL problem. Either the intervals are of a fixed duration independent
of the action performed. or they are dcpendent on the action performed in
which case additional arcs have to be added between the action nodes for the
robot at one point in time and all of the other nodes at the next point in
time. In the first approach. the model is simpl, and control is tricky; in the
second approach. the model is complex and control is simple.

7.5 Sequential Decision Making

III this section. we consider an approach to building planning and control

systems that integrates sensor fusion. prediction. and sequential decision
making. The approach is based on Bayesian decision theory, and involves
encoding the underlying planning and control problem in terms of proba-
bilistic models We illustrate the approach using a robotics problem that re-
quires spatial and temporal reasoning under uncertainty and time pressure.

We use the estimated computational cost of evaluation to justify represen-
tational tradeoffs required for practical application.

In this seton, we view planning in terms of enumerating a set of possible
courses of action, evaluating the consequences of those courses of action,
and selecting a course of action whose consequences maximize a particular

performance (or value) function. We adopt Bayesian decision theory as the
theoretical framework for our discussion, since it provides a convenient basis
for dealing with decision making under uncertainty.

One interesting thing about most planning problems is that the results
of actions can increase our knowledge, potentially improving our ability to

make decisions. From a decision theoretic perspective, there is no differ-
ence between actions that involve sensing or movement to facilitate sensing
and any other actions, a decision maker simply tries to choose actions that
maximin expected value. In the approach described in this section, an

agent eqpd in a particular perceptual task selects a set of sensor views
by pk y ly moving about.

Havn committed to a decision theoretic approach. there are specific

problems that we have to deal with. The most difficult concern representing
the problem and obtaining the necessary statistics to quantify the underlying
decision model. In the robotics problems we are working on. the latter is
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relatively straightforward, and so we will concern ourselves primarily with

the former.
In building a decision model for cowtrol purposes. it is not enough to

write down all of your preferences and expectations; this information might
provide the basis for constructing some decision model. but it will likely be
impractical from a computational standpoint. It is frustrating when you
know what you want to compute but cannot afford the time to do so. Some
researchers respond by saying that eventually computing machinery will be ,-
up to the task and ignore the computational diffliculties. It is our contention,
however, that the combinatorics inherent int sequential decision making will
continue to outstrip computing technologies.

In the following, we describe a concrete problem to ground our discussion,
present the general sequential decision making model and its application
to the concrete problem, show how to estimate the computational costs
associated with using the model. and. finally, describe how to reduce those
costs to manageable levels by making various representational tradeoffs.

7.5.1 Mobile Target Localization

The application that we have chosen to illustrate our approach involves a
mobile robot navigating and tracking moving targets in a cluttered envi-
ronment. The robot is provided with sonar and rudimentary vision. The
moving target could be a person or another mobile robot. The mobile base
consists of a holonomic (turn-in-place) synchro-drive robot equipped with a
CCD camera mounted on a pan-and-tilt head, and 8 fixed Polaroid sonar
sensors arranged in pairs directed forward, backward, right, and left.

The robot's task is to detect and track moving objects. reporting their
location in the coordiuate system of a global map. The.environment consists
of one floor of an office building. The robot is supplied with a floor plan
of the office showing the position of pernanent walls and major pieces of
furniture such as desks and tables. Smaller pieces of rurnit tire, potted platts
and other assorted clutter constitute obstacles that the robot has to detect
and a

tha%' there is error in the robot's movement requiring it to
conth 4 estimate its position with respect to the floor plan so as not to
become lost. Position estimation (localization) is performed bv having the
robot track beacons corresponding to walls and corners and then use these
beacons to reduce error in its position estimate.

Localization and tracking are frequently at odds with one another. A
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particular localization strategy may reduce position errors while Making
tracking difficult, or improve tracking while losing registration with the
global map. The trick is to balance the demands of localization against
the demands of tracking. The mobile target localization (MTL) problem
is particularly appropriate for planning research as it requires considerable
complex.ity in terms of temporal and spatial representation. and involves
time pressure and uncertainty in sensing and action.

7.5.2 Model for Time and Action

In this section. we provide a decision model for the MTL problem. To
specify the model, we quantize the space in which the robot and its target
are embedded. A natural quantization can be derived from the robot's
sensoi y capabilities.

The robot's sonar sensors enable it to recognize particular patterns of free
space corresponding to various configurations of walls and other permanent
objects in its environment (e.g., corridors. L junctions and T junctions). We
tessellate the area of the global map into regions such that the same pattern
is detectable anywhere within a given region. This tessellation provides a
set of iocations C corresponding to the regions that are used to encode the
location of both the robot and its target.

Our decision model includes two variables ST and SR, where ST repre-
sents the location of the target and ranges over C, and SR represents the
location and orientation of I he robot and ranges over an extension of £ in-
cluding orientation information specific to each type of location. For any
particular instance of the MTL problem, we assume that a geometric de-
scription of the environment is provided in the form of a CAD model. Given
this geometric description and a model. for the robixt's sensors, we generate
L. SR, and ST.

The model described here is based on the approach of Section 7.4. Given
a set of discrete variables, X1. and a finite ordered set of time points, 7, we
construct a set of chance nodes. C = ,X x T, where each element of C
corresponds to the value of some particular x E X at some I E T. Let Ct
corresposd to the subset of C restricted to t. The temporal belief networks
discued In this section are distinguished by the following Markov property:

Pr(CtCt- 1.Ct-2 ... -) = Pr((' 1 Ct-1 ).

Let SR and ST be variables ranging over the possible locations of the
robot and the target respectively. Let AR be a variable ranging over the ac-
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Figure 7.23: Probabiistic model for the MTL problem

tions available to the robot. At any given point in time. the robot can make
observations regarding its position with respect to nearby walls and corners
and the target's position with respect to the robot. Let OR and OT be vari-
ables ranging these observations with respect to the robot's surroundings
and the target's relative location.

Figure 7.23 shows a temporal belief network for X - {=SR, ST, AR, OR, OT)
and T = {T 1,T2,T3,T4}. To quantify the model shown in Figure 7.23. we
have to provide distributions for each of the variables in X x T. We assume
that the model does not depend on time, and, hence,.we need only provide
one probability distribution for each x E X. For instance, the conditional
probability distribution for ST,

Pr( (ST, t)I(Sr t-l), (OTa t), (SR, t)),

is the same for any t E T. The numbers for the probability distributions
can be obtined by experimentatiosi without regard to any particular global
map.

In a practical model consisting of more than just the four time points
shown in Figure 7.23. some points will refer to the past and some to the
future. One particular point is designated the current time or Now. Repre-
senting the past and present will allow us to incorporate evidence into the
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Figure 7.24: Evidence and action sequences

11odel. By convention, the nodes corresponding to observations are meant
to indicate observations completed at the associated time point, and nodes
corresponding to actions are meant to indicate actions initiated at the as-
sociated time point. The actions of the robot at past time points and the
observations of the robot at past and present time points serve as evidence
to provide conditioning events for computing a posterior distribution. For
instance. having observed a at T, denoted (OR, T), and initiated a at T-1,
denoted (An/a, T-1), we will want to compute the posterior distribution for
,5R at T given the evidence:

Pr( (SR , T). w E flsh, I(On--a. T). (Aqma, T-1) ).

To update the model as time passes. all of the evidence nodes are shifted
into the pabt. discarding the oldest evidence in the process. Figure 7.2.1
shows a network with nine time points. The lighter shaded nodes correspond
to evidence. As new actions are initiated and observations are mFMe, the
appropriate nodes are instantiated as conditioning nodes. and all of the
evidence is shifted to the left by one time point.

The darker shaded nodes shown in Figure 7.21 indicate nodes that are
instantiated in the process of evaluating possible sequences of actions. For
evaluation purposes, we employ a simple tinze-sepamble value function. By
time separable, we mean that the total value is a (perhapb weighted) sumi
of the value at the different time points. If IV is the value function at time
1, thea the total value, V, is defined as

V =
tET

where -t : T - {xI0 < x < 1} is a decreasing function of time used to
discount the impact of future consequences. Since our model assumes a
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finite T. we already discount some future conseoliences by ignoring them
altogeiher; I just gives its a little more control over the iinniediate future.
For Ul. we use the following function

! =-I" P r( (S-"=Lai. 0 )) Pr( (S.5= • t) )Dist (w'. ,,.;,1

where Dist 11,SzTx fs7T- - R dietermines the relative Euclidean distance

between pairs of locations. The I. f'unction reflects how much uncertainty r
there is in the expected location for the target. For instance, if the distri-
bution for (ST, t) is strongly weighted toward one possible location in fsT,
then V1 will be close to zero. The more places the target could be and the
further their relative distance, the more negative Vf.

The actions in S!AR consist of tracking and localization routines (e.g.,
move along the wall on your left until you reach a comer). Each action
has its own termination criteria (e.g.. reaching a corner). We assume that
tle robot has a set of strategies, ,. consisting of sequences of such actions,
where the length of seqieices in S is liml|ited by the number of present and
future time points. For the network shown in Figure 7.24, we have

S C Il.Ax .Aq X f ta X f.?AR.

The size of S is rather important. since we propose to evaluate the net-
work IS1 times at every decision point. The strategy with the highest ex-
pected value is that strategy, V = ao.a,0 2 ,a 3 , for which V is a maxi-
mum. conditioning on (A,--o, Now). (A,.-al, Not$-l). (A,- 02, NotW.2), and
(A,a, Now3). The best strategy to pursue is reevaluated every time that
an action terminates.

We use Jensen's [21] variation on Lauritzen and Spiegelhalter's (25] al-
gorithm to evaluate the decision network. Jensen's algorithm involves con-
structing a hyper graph (called a cliquc tree) whose vertices correspond to
the (nmaximal) cliques of the chordal graph forned by triangulating the undi-
rected graph obtained by first connecting the parents of each node in the
netmk wd then eliminating the directions on all of the edges. The cost of
evaiuof a Bayesian network using this algorithm is largely determined by
the sft of the state spaces formed by taking the cross product of the state
spacs of the nodes in each vertex (clique) of the clique tree.

following Kanazawa [22], we can obtain an accurate estimate of the cost
of evaluating a Bayesian network, G = (V, E), using Jensen's algorithm. Let
C = {Cj} be the set of (maximal) cliques in the chordal graph described
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in the previous paragraph. %%here each clique represents a subset of V. We
define the function. card : C' - f 1 ... IC - I). so that card(C, ) is the rank
of the highest ranked node in (,. where rank is determined by the maximal
cardinality ordering of V (see .321). We define the function. adj : C - 2c'.

by:
adjtCi) = {C.1(C, $ C) A (C, n C # 0)}.

The clique tree for G is constructed as follows. Each clique Ci E C is
connected to the clique Cj in adj( C,) that has lower rank by card(.) and has •
the highest number of nodes in coninon with C, (ties are broken arbitrarily).
Whenever we connect two cliques C, and Cj. we create the separation set
5', = Ci n Cj. The set of separation sets S is all the Si, s. We define the
function, sep : C - 2S¢ by:

sep(C,) = {,S', i3'S E S.j = i) V (k =

Finally, we define the weight of Ci, wi = f[c', lf?,,, where fl,, is
the state space of node it. The cost of computation is proportional to

ZC.EC witsep(Ci)I. We refer to this cost estimate as the clique-trme cost.
The approach described in this section allows us to integrate prediction.

observation, and control in a single model. It also allows us to handle uncer-
tainty in sensing, movement, and modeling. Behavioral properties emerge as
a consequence of the probabilistic model and the value function provided,
not as a. consequence of explicitly programmuing specific behaviors. The
mai drawback of the approach is that. wluie the model is quite compact.
the computational costs involved in evaluating the model can easily get out
of hand. For instance, in our model for the MTL problem. the clique-tree
cost is bounded from below by the product of ITI, IflSTI 2, and I1SR12. In
the next'section, we provide 'several methods that, taken togither. allow us
to reduce computational costs to practical levels.

7.5.3 Coping with Complexity

To reduce the cost of evaluating the MTL decision model, we ise the fol-
lowing three methods: (i) carefidly tailor the spatial repreSntation to the
robot's sensory capabilities, reducing the size of the state space for the slpa-
tial variables in the decision model. (ii) enable the robot to dynamically
narrow the range of the spatial variables using heuristics to further reduce
the size of the state space for the spatial variables, and (iii) consider only
a few candidate action sequences from a fixed library of tracking strategies
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Figure 7.25: Sonar data entering a T junction

by taking into account the reduced state space of the sp;ial ,,riables. In
the rest of this section. we consider each of these three methods.

The use of a high-resolution representation of space has disadvantages
in the model proposed here: increasing the resolution of the representation
of space results in an increase in the sizes of f1sR and Q1sT. and thus raises
the cost of evaluating the network. Keeping the sizes of f/sR and QS7. small
makes the task of evaluating the model we propose feasible.

A further consideration arises from the real-world sensory and data pro-
cessing systems available to our robot. Finer-resolution representations of
space place larger demands on the robot's on-board system in terms of
both run-time processing time and sensor accuracy. To allow our robot to
achieve (near) real-time performance. it seems appropriate to limit the rep-
resentation to that level of detail that can be obtained economically from
the hardware available.

In our current implementation. we have'8 sonar transducers positioned
on a square platform, two to a side. spaced about 25 cm. apart. We take
distance readings from each transducer. and threshold the values at about
1 meter. Anything above the threshold is "long," anything below is "short.-
The readings along each side are then combined by voting, with ties going to
"long." In this way, the data from the sonar is reduced to 4 bits. Figure 7.25
shows the rmult of this scheme on entering a T junction. In addition. we use
the shaft eucoders on our platform to provide very rough metric information
for the decision model. Currently. 2 additional bits are used for this purpose.
but only when the robot is positioned in a hallway, which corresponds to
only one sonar configuration. So the total number of possible states for OR
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Figure 7.26: Tessellation of office layout

is 19. 1.5 for various kinds of hallway junctions and 4 more for corridors.
This technique results in a tessellation of space like that shown in Fig.

ure 7.26. Our expetiments have shown that this tessellation is quite robust
in the sense that the readings are consistent anywhere in a given tile. The
exception to this occurs when the robot is not well-aligned with the sur-
rounding walls. It these cases, reflections frequently make the data unreli-
able. One of the tasks of the controllers that underlie the actions described
in the previous sections is to maintain good alignment, or achieve it if it is
lost.

In additioil to reducing the size of the overall spatial representation, we
can restrict the range of particular spatial variables on the basis of evidence
not explicitly accounted for in the decision model (e.g., odometry and com-
pass information). For instance, if we know that the robot is in one of two
locations at time I and the robot can move at most a single location dur-
ing a given time step, then (SR, 1) ranges over the two locations, and, for
i > 1. (SR. i) need only range over the locations in or adjacent to those
in (SR. i-I). Simuilar restrictions can be obtained for ST. For models with
limited lookahead (i.e., small 1T), these restrictions can result in significant
computational savings.

Consider a temporal Bayesian network of the form shown in Figure 7.23
with n steps of lookahead. Let (X. i) represent an element of {SR. ST. AR. OR, OT) x
{ 1..... i). The largest cliques in one possible3 clique tree for this network
consist of sets of variables of the form:

{(SR, i), (SR, 41), (ST, i), (ST. 1))
3The triangulation algorithm attempts to minimize the size of the largest clique in the

resulting chordal graph. There may be more than one way to triangulate a graph so as to
nainimize the clique size.
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Number of time points
State space size j 3 5 t

Constant (6) 4091-1 78066 133794
(0.58) (1.11) (1.90)

Constant (16) 624944 1232176 2143024
(8.87) (17.49) (30.42)

Constant (30) 3846330 7669530 13404330 V
(54.60) (108.86) (190.26)

Linear (2t + 1) .5844 55088 433759
(0.08) (0.78) (6.16)

Quadratic (11 + 1) 3691 160701 3756559
1 (0.05) (2.28) (53.32)

Exponential (2') 2875 107515 4131611

1 (0.05) (1.53) (58.64)

Table 7.1: Clique-tree costs for sample networks

for i= 1 to i - 1, and the size of the corresponding cross product space is
tile product of Ifl(SR,I), fl.(SRiA)I' I(s.,j)I, and 11((sT, 4)1- For fixed state
spaces. this product is just IfSnI 2IflSTI . However, if we restrict the state
spaces for the spatial variables on the basis of some initial location estimate
and some bounds on how quickly the robot and the target can move about,
we can do considerably better.

Table 7.1 shows the clique-tree costs for three MTL decision model net-
works of size n = 3, 5, and 8 time points. For each size of model, we consider
cases in which II(s.,s and flGsr,j) are constant for all 1 > i > n, ad cases
il which I11(sR,I)I = JfI(ST,I)j = I and the sizes of the state spaces for sub-
sequent spatial variables, fl(S.,i) and 1 (.ST.i), for I > i > n grow by linear,
quadratic, and exponential factors bounded by IfsrTI = ISISRI = 30. For
these evaluations, IflA5I = 6. 19oI = 32, and lfl0o5 = 19 in keeping with
the ausry and movement routines of our current robot. The number in
bracbuaderneath the clique tree cost is the time in cpu seconds required
for ev 6Ado.

Our current idea for restricting the present location of the robot and the
target involves using a fixed threshold and the most up-to-date estimates for
these locations to eliminate unlikely l)ossilbilities. Occasionally, the actual
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locations will be mistaken'. eliminated, and the robot will fail to track the
target. There will have tu be a recovery strategy and a criterion for invoking
it to deal with such failures.

There are certain costs involved with evaluating Bayesian networks that
we have ignored so far. These costs involve triangulating the graph. con-
struCting the clique tree. and performing the storage allocation for building
the necessary data structuros. For our approach of d.ynalically restrict-
ing the range of spatial variables. the state spaces for the random variables
change. but the sizes of these state spaces and tile topology of the Bayesian
network remain constant. As a consequence. these ignored costs are incurred
once. and the associated computational tasks can be carried out at design
time. Dynamically adjusting the state spaces for the spatial variables is
straightforward and coinputationaly inexpensive.

The third method for reducing the cost .,f decision making involves re-
ducing the size of S. the set of sequences of actions corresponding to tracking
and localization strategies. For an n step lookahead. the set of useful strate-
gies of length n or less is a very small subset of (I.R'. Still. given that we
have to evaluate the network SI times. even a relatively small S can cause
problems. To reduce S to an acceptable size. we only evaluate the network
for strategies that are possible given the current restrictions on the spatial
variables. For instance, if the robot knows that it is moving down a corridor
toward a left-pointing L junction. it can eliminate from consideration any
strategy that involves it moving to the end of the corridor and turning right.
'Vith appropriate preprocessing, it is computationally simple to dynamically

reduce $ to just a few possible strategies in most cases.

7.6 Further Reading

Bayesian decision theory [5. R. 33]. Value of information [19]. It should be
noted that Howard's is not the only theory proposed for assessing the va1le
of information sources. In particular, information value theory is closely
related to the theory of experimental design (16, 30]. Experimental design
is concerned with the lroblem of maximizing the information gained front
porfonW ug exl riments under cost constraints. Information value theory
represents one approach to experimental design based on Bayesian decision
theory.

Influence diagrams [20]. Dynamic programming [7]. Conditioning [IJ].
Keiji's join-tree cost [22]. .Jensen's [211 variation on Lauritzen and Spiegel-
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lialter's clustering algorithm [25]. Causal poly trees [32]. Evaluating influ-
ence diagrams [34]. Influence diagrams for control applications [I].

The notion of locally distictive place as it is used in Section 7.3 is due
to Kuipers [23]. The design of the geographer module was based on the
work of Kuipers [24] and Levitt [26] on learning maps of large-scale space.
and the extensions of Basye et al [(6] to handle uncertainty.

See Dean and Kanazawa [13] and lanks [17] for competing approaches.
See Cooper et a/ (101 for a discussion of a related approach to probabilistic ,-

reasoning about change using a discrete model of time.
References to work on active perception [2, 3, 4].
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Chapter 8

Controlling Inference

This chapter describes approaches for desMigning systems that are capable of
taking their own computational resources into consideration (luring planning
and problem solving. In particular. we are interested in systems that manage
their computational resources by using expectations about the performance
of decision making procedures and preferences over outcomes resulting from
applying such procedlures. Careful management of computational resources
is important for complex prohlemn solving tasks in which the time spent in
decision making affects the (juality of the responses generated by a system.

Much of the work (described in this chapter can be seen AS a response to
a movement, started in the early 1980's, away fromn systems that inake uise
of complex representations and engage in lengthy deliberations, and towards
systems capable of making mnany very simple decisions quickly. This move-
mnent brougJt about the advent of the so-called "reactive systems" described
in C'haptr V ost reactive systems ate essentially programming languages
for buiilding systemis that must be responsive to their environment. Such
languiages generally allow for multiple asynchronous decision processes. fa-
cilitate communication among processes. and provide support for interrupts
and proces arbitration.

blao of the researchers huilding reactive systemns were interested in
robo~n esd decision-stipport appllications requiring real-time response. The
respoamiwness of reactive systems was, in stark contrast with the perfor-
inance of most planning and problem solving systems iii use at that time.
Most existing planning systems were essentially off-line data proces sing pro-
cedures that accepted as input some initial (and generally complete) descrip-

'0DIggo Thoias Dean. ADl rights rerved.
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tion of the current state of the environment. and. after some indeterminate
(and generally lengthy) delay, returned a rigid sequence of actions which. if
I he environment was particularly cooperative. might result in t lie successful
achievement of somue goal.

Reactive systents might be seen as ant extreme response to the shortcom-
ings of the existing planning systems. Reactive systems provided responsive-
ness at the cost of shallow and often short-sighted decision making. Since
there were no proposals for how to control decision making in time-critical ,-

situations. researchers turned away from the traditional approaches to plan-
,ing and attempted to incorporate more sophisticated decision making into
reactive systems. Unwilling to sacrifice response time. the researchers that
were trying to improve the decision-making capabilities of reactive systems
were forced to trade space for time. often without a great deal of attention
to the consequences.

Some of the dissatisfaction with complex representations and conpli-
cated deliberation strategies was due to misinterpreting asymptotic com-
plexity results as evidence of the existence of impassable computational bar-
riers. Proofs of NP-hardness certainly indicate that we must be prepared to
make concessions to complexity in the form of tradeoffs. The lesson to be
learned, however, is that we have to control inference, and not that we have
to abandon it altogether.

In the 19#'5. a great deal of effort was spent studying systems capable
of explicitly reasoning about their own decision-making capabilities. This
sort of reasoning about reasoning is generally referred to as meta-reasoning.
As the research in this area matured, some researchers were concerned with
how to learn to control decision making, while others were interested in the
basic mechanisms required to guide decision making under time pressure.
Many of the mechaniisms studied had in common the use oi expectations
regarding the performance of decision procedures to help in selecting from
among a set of such decision procedures.

As researchers began looking in the literature, it became clear that many
of the tools required for reasoning about the costs and benefits of applying
decision-making routines were already available. Indeed. researchers in the
decisian sciences had already considered some of the problems involved in
reasoulug about the costs and benefits of inference. However. with rare
exception.' the decision analysts assumed that the agent was possessed of

I1. J. Good was one of those exceptions, and. in an amazingly forward looking paper
(22]. Good talked about what he called $pe 11 rationality which involves an agent reasoning
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unlimited computational capabilities for reasonitig about its current knowl-
edge: the issue niost ofteni addressed concerned whether or not an agent
should consider adding to its current knowledge. We are interested in the
case of an agent currently biased tn act in a certain way and considering if
it should expend futrther computational resources and risk the consequences
of delay in order to deliberate furthpr about its options. It is ta1is basic idea
of an agent with limited coniputational capabilities, embedded in a con- ,.

plex environment with other agents aml processes not under its control. and
reasoning about the costs and benelits of continued deliberation that is the
subject of this chapter.

8.1 Decision Theory and the Control of Inference

We begin with the idea of a decision procedure: a procedure used by an agent
to select an action which, if executed. changes the world. Some actions are
purely computational. For our purposes, such computational actions corre-
spond to an agent running a decision procedure. and we refer to such action-,
as inferential. The results of inferential actions have no immediate effect on
the world external to the agent, but they do have an effect on the internal
state of the agent. In particular. inferential actions consume computational
resources that might be spent otherwise, and generally result in the agent
revising its estimations regarding how to act in various circumstances. In
addition to the purely computational actions, there are physical actions that
change the state of the world external to the agent. but that may also require
some allocation of computational resources.

Real agents have severely limited computational capabilities. and. since
inferential actions take time. an inferential action may end up selecting a
physical action that might have been appropriate at some earlier time. but
that is no longer so. Inferential actions are useful only insofar as they enable

an agent to select physical actions that lead to desirable outcomes. 2 Decision
theory provides us with the language required to talk precisely about what

it would mean for an action to lead to a desirable outcome. B-eore
can proceed further. we will need some precise language for talking about
possible outcomes and stating preferences among them. The language that

about its own abilities to reason.
2 Inferential actions are also useful for learning purposes. as in learning search strategies.

hut even here the actions are ultimatelY in -ervice to .electing physical actions that lead
lo desirable outcones.
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we adopt is borrowed directly fromn statistical decision theory.
Tb w I~uxiiwtg~yytphi . lhniild bE e d by (lie dixs,ssn of do;-

risioi thelory ini ('111,111 .1.1 r. 10i n i t l1 that cheipter is further
along.

hni e simplest case. we mnight conisider an agent facedl withI choosing
from anmom !a set, of coin pletel -v defi ed and imm/ediate v'attainable alterna-
tives (c..q.. a s ent might he faced with choosing tween seeing a inovie
or studying for an ani). The agent mxight iguor some of the implications
of its actions and focu on immediate rewards .g.. a relaxing respite fromt
work or an increase in ki 'ledge about a Jen subject). but. wore often
than not, the agent will be cernied wi ithe long-term implications or
consequences of its actions (e.g.. hie pSibility Of achieving a higii score
on au exam which in turn inight ra the chances of getting intoa gradu-

S %ate school). I general, we cannot uar tee these contsequeuzces: they are
12seldom immediately attainable d they ar usually only partiali" dfefinied.

If wye ignore the long-term mmi cations of our tiou3. the alternatives can
~ ~be viewed as rewards, and rational agent wo. d -*uply choose the reward

'..that it considers best. In e case in which the aent concerned about the
t ~)consequences of its ac * ns and those co' weqiience are n t - - lv under its

control, the pict ur s more coinpicatea. In tds case, Ahe'vfeu might have
g/ a probability rih'itio- tier the set of "~ssible consequeuces and some

wav of assig *n values to th-- individtaal consequences so as to ,formn expec-

I ~tat'ions regarding the value of the p, -3sible out'omnes or prospec resulting
fronm performling alternative actions.
- Let 11 correspond to a set of possible states of the world. We assumej hat the agent has a fuvr: ion.

that assigns a real nuniber to each state of the world. This is referred to as
the agent's utility function?- These numbers enable the agent to compare
various states of the world that inight result as a consequence of its actions.
It is assumed that a rational agent will act so as to maximize its nity.
The quastity, UT(w) where uw E 0. is generally mneant to account for both the
immediake costs and benefits of being in the state w and the delayed costs) and benefits derived from future possible states. We assume that there is
sonie process dleterministic or stochastic governing the transition b~etweenl

I See Chernoff and Moses [9]. Barnett [2]. or Pearl [171 for dincmionas regarding the
axionts or utilitY theory.
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states. and that this process is partially determined or biased by the agent's
choice of action. Inl lie case of a stochastic process. the agent cannot know
what state will result from a given action and hence the agent must make
use of expectations regarding the consequences of its ac*')ns. In order to
account for these longer-term consequences. it is often useful to think of the
agent as having a particular long-term plan or policy. In such cases. the
agent will genernily assign an ,prctnd litility to a given state based upon
the immediate rewards available iln that state and expectations about the
subsequent states. given that the agent continues to select actions based
upon its current policy'.

In addition to expectations about the possible future consequences of
its physical actions. an agent capable of reasoning about its computational
capabilities must also have expectations regarding the potential value of its
computations. and estimates of how long those computations are likely to
take. In most of the work discussed in this paper. an agent is assumed to
engage in some sort of mneta-reasoning. For our purposes, meta-reasoning
consists of running a decision procedure whose purpose it is to determine
what other decision procedures should run and when. We prefer the term
dcliberution scheduling [13] to the more general meta-reasoning and will use
the two interchangeably in this jIf tile meta-level decision procedure
takes a significant amount of time to run, it must be argued that this time is
well spent. In some cases. the time spent in meta-reasoning is small enough
that it can be safely ignored; in other cases, it may be useful to invoke a
meta-meta-level decision procedure to reason about the costs and benefits
of neta-reasoning.

Refcr back to the material in Chapter 7 on the value of i4 rkation.
Notethat so far we have not accounted for the computational cost of dc-

libcrating about the value of a particular information source. In information
processing systems. information costs in terms of the time and resources
expended in computing an answer to a query. Neither have we closely con-
sidered how an agent night compute an expectation such as Elfin.. We may
know how to compute such an expectation. but it may be that an agent can
not a" to compute it. In the following sections, we build on the basic idea
behid Jaformation value theory to account for systems that have limited
computational capabilities.

The rest of this chapter is organized as follows. In Section 8.2. we con-
sider a general approach to studying the contiol of reasoning that casts the
general problem in terms of search. In this same section. we also investi-
gate some of the practical issues that constrain how an agent might reason
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ashout its computational capal)ililies: liese constraints and the measures
taken to deal with them apply to all of the work discussed in this chap-
ter. Section 8.3 considers an approach to reasoning about computational
capabilities that relies oln a )articular class of algorithms for implement-
ing decision proce(ures. Sec tion 8.5 briefly considers soitte related issues in
design-time ineta-reasoning for compiling run-time systems for time-critical
applications.

8.2 Control of Problem Solving

In this section. we consider a general approach to reasoniug about decision-
theoretic control of inference due to Russell and Wefald [10. 411. As in
most decision problems. the basic goal is for the agent to maximize its
utility function U( ) on states of the world "; E l. We assume that the
agent has some set of base-level actions A that it can execute to affect
its environment. Borrowing Russell and Wefald's notation. we denote the
outcome of an action A performed in state w as (A. ,] or just (A] if the action
is performed in the current state.

At na1y given time the agent has a default action O E A which is the
action that currently appears to be best. In addition, the agent has a set of
computational actions {Si} which might cause the agent to revise its default
action. The agent is faced with the decision to choose from among the
available options: a, 51, 5 2 .. , Sk. Computational actions only affect the
agent's internal state. However. time passes while the agent is deliberating
and opportunities are lost, so the net value of computation is defined to be
the difference between the utility of the state resulting from the computation
minus the utility of the state resulting from executing as.

V( S.) = JT([,'J) - U([01).

If I li conilpUtatioi .Sj rpsiilts i, a revisetl assessni.ent of the best action, rvs5 ,
and a coummitmuent to )erform this action, then

U([S]) = [Sl]]).

where [aq,. (Sill indicates the outcome of the action ot,; in the state follow-
ing the computation Sj. Alternatively. if Sj is a partial computation (i.c..
a computation that doesn't immediately result in a revised assessment of
a. best action. but that provides intermediate results leading to a revised

284



assessilmelit ). t hen

t([,%])= P l'r(T)U([InT,[Sj.TJI).
T

%biere T raJiges o%.'r all possible colitplele coniputations following S, .J.T
denotes Ihe coniputation corresponding to 5 j intinediately followed by 1'.
anid Pr(T) is the probability that the agent will perform the computation
T.

Generally. the agent doesit know (he exact utilities or probabilities.
and so it must compute an estimate using somne amount of its computa-
tional resources. Let Qs denote the estimate of the quantity Q following a
computation S. In this case, we have

USS' ([Sj)= : irSS'(T)t'SS([aT .[Sj.T]).
T

where 5 is the total computation prior to considering Sj. and

SS' . [S'.TJ]) = maxt .S-5(,. [S.T]).

where the Ai range over all possible base-level actions in .4. By super-
scripting qnantities to indicate the computations required to generate the
corresponding estimates. Russell and Wefald are attempting to capture the
behavior of real agents with realistically limited computational capabilities.
At each point in time. the agent decides how to act based upon whatever
estimates it currently has. using a meta-reasoning decision procedure whose
time cost is assumed to be negligible. The meta-reasoning decision proce-
dure is responsible for deciding whether further deliberation is warranted.
and it does so on the basis of the estimated net value of computation,

Ss., (15) = f 1S.S([.5)_ (s,([,).

As Russell and NVefald point. ot.. bp fore 1 he computation ,j is performned
V'(S,) is just a random variable, and so the agent, not knowing the exact
value, computes an expectation 4

E[ VS'S'(Sj)l = E[tTS'sj([Sj]) - TS'S([o)]. (R.)

It is worth noting the difference between Equation 8.1 and the following
equation introduced in Chapter 7 in presenting Howard's value of informa-
tion theorye

E(V(Ix )Ie) = E(V([])IIx.C) - E(V([I)I,.).
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The important difference is that both terms in the right-hand-side expec-
tation in Equation 8.1 change as a conse(lnence of further inference. If an
agent had unlimited computational capabilities, it would not be compuit-
ing estimates. and only the first of the two terms would require expending
computational resources since it would be the case that

fS.s,([1)] fS

However, we are concerned with agents with limited computational capabil-
ities. and further computation will likely result in a better estimate of the
utilities for [a] as well as for [a'. (.5j)) for any action a' E A.

In order to simplify reasoning about the utility of combined compu-
tational and base-level actions. Russell and Wefald separate the intrinsic
utility, that is the utility of an action independent of time, from the time
cost of computational actions, defining the utility of a state as the difference
between these two:

([Aa,[Sj]]) = 0Ui[A8 ) - TC(Sj).

It should be noted, however, that determining an appropriate time cost
function can become quite complicated in applying Russell and WVefald's ap-

proach. In particular, costs concerning hard and soft deadlines will have to
be accounted for by this function. In the game-playing application explored

in [40], there are no hard deadlines on a. per-move basis, instead there is
a per-game time limit that is factored into the time cost. In many time-
critical problem solving applications, calculating the time cost can be quite
complicated (e.g., consider the sort of medical care applications investigated
in [281 and [251). Russell and Wefald assume that the time cost is indepen-
dent of both the computation itself and its recommendations. The former-is
certainly reasonable, and, since the recommendation is not known at meta-
reasoning time, the latter is also reasonable. However, one could easily

imagine employing an expected time cost based on some a priori knowl-
edge concerning possible recommendations. It should be noted that all of
the approaches described in this chapter make assumptions about time cost

similar to those of Russell and Vefald.
Porhas the nicest part of the Riissell and Wefald work is their careful

treatment of the criterion for deciding whether or not to expend further

resources on deliberation. If the agent is considering at most one additional
computational step, then it is only interested in computations that serve
to update the expected value of a given base-level action so as to supplant
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tile current default a .jon. The expected gain from a given computation is
itipasii'ed iit Ie ruits of I lie difFereuce bet wteu I Iie current expect atjion regard-
ing one action and tihe anticipated revised expectations regarding a second
act ion where one of the two actioiis is the default action. Intuitivelv. further
deliberation is called for whenever t he difrerence between the expected gain

in utility front a comi lita.-tio ai I he a.ssociated cost of delay is greater

than zero. Russell and Wefald identify two cases to consider in deciding to
perform a computation ainied at providing a revised assessment of the best
action to perform. In the first case. we suppose that there exists a coniputa-
tion S' which affects the agent's estimation of the utility of the alternative
action ii so that

E[V(,5j)]= p.-.jlx)(x- ([a]))dz - TC(5j. (8.2)

-S
where p,?.. is the probability density function for ('s ([3]). In the second
case. there exists a computation Sk which affects the agent's estimation of
the utility of the default action (v so that

UT1 [0)j) -S
E[V(S,)I = f p.,k(zT)(IE!3]) - x)dx - TC(Sk), (8.3)

where pa., is the probability density function for fTS'$([a]). If there are n
computational actions and in base-level actions, then each meta-level rea-
soing step will require computing each of Equations 8.2 and 8.3 nin times.
If the distributions governing utility estimates are simple in form (E.g., nor-
meal distributions), computing the integrals in Equations 8.2 and 8.3 can be
done quite efficiently-

There are a number of assumptions that Russell and Wefald make in
their analysis. First. it is assumed that the agent considers only single
computation steps, estimates their ultimate effect, and then chooses the
step appealing to have highest benelit. This is referred to as the mnela-
qrvt, wMUiption. Second, it is assumed that the agent will act as though
it willa/I at most one ntore search step. This is referred to as the single-
step uaimption. Finally. it is assumed that a computational action will
change the expected utility estimate for exactly one base-level action. In
Russell and Wefald's state-space search paradigm. this is referred to as the
subtree-independence assumption.

The assumptions stated in fhe previous paragraph may sem overly re-
strictive, but it is quite difficult to avoid these or similar assumptions in
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general. Pearl (37] identifies two assumptions that most practical liieta-
reasoning systems ascribe to: no cwi rniition. each information source is
evaluated in isolation from all tie others, and one.slep horizon, we consult
at most one additional information source before committing to a base-level
action. Assessments of information sources based on the no-competition and
one-step-horizon assumptions are referred to as myopic. and most practical
systems employ myopic decision policies.

\/ fA The next piece of research that we consider in this section is due to .

Etzioni [18], and it borrows from the Russell and Wefald work, and builds
on the early work of Simon and Kadane (13] on satisficing search. It is
particularly interesting for the fact that it attempts to combine the sort
of goal-driven behavior prevalent in artificial intelligence with the decision
theoretic view of maximizing expected ifikyv. In Etzioni's model. the agent
is given a set of goals {GI, .  . . . G,, }. a set of methods Al. and a deadline
B. The agent attempts to determine a sequence of methods

or4 = ni .1  2.1 ..... .-k,1 , l.21, 2.2 .. mk2, 2 ,•. rM.nr 2 .n-- .. mkn,n

e.4 . " where Ynij is the ith method to be applied to solving the jth goal. The idea%.' is that the aget will apply each method in turn until it either runs out of
methods or achieves the goal, at which point it will turn its attention to the
next goal. The expected ut'iB of 0' is

k -1

E[ )] = E[rmi,)] + .- + E[ (,nk)] HI ( - Pr(Mi)) +

k2-1

E[Ymm.2)] + + E[((in&2 ,2 )] 1(1 - Pr(mi,2 )) +
i-=1

E(Vml~)]+ + E((T(Mkn,n)J II (I - P(in)
j=1

In We~l simple mnodel, no provision is imade for switching hack and forth
betw goals, and, except for ignoring the remaining methods for a given
goal oe that goal has been achieved, no p~rovision is made for modifying the
search as new iniformnat ion becomies available. Etzioni defin s Ilie expected
OPPOH~IunilY cu41 (i') of a mtethod in for a deatilWne B as

E(i'B(m)] = E[ i a)J - E ST',)1
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where (rb is the Optimal method se(luence for a deadline B. and TC(nm is
the expected time to carry out method in. In addition, the expected gain
(GB) of a method ni for a deadline B is defined to be

E[Ga( in = E[9( i)l + E[,B(n?].

Ile then shows that by repeatedly choosing the method whose expected gain
is maximal an agent will construct an optimal method sequence.

From one point of view, Etzioni's work is not about meta-reasoniug at all;
his work is concerned with ordinary sequential decision problems. For these
problems. Etzioni points out that. in certain cases, the cost of determining
an optimal method sequence can be quite high. In other words. we can't
ignore the cost of iueta-level reasoning in the decision-making model. His
analysis showing that sorting methods on their marginal utility can often
result in optimal or near-optimal method sequences is exactly the sort of
analysis required to justify a particular meta-level reasoning.

I the case in which the agent has a single goal and multiple methods
for achieving it. the requisite meta-reasoning is easy. In particular, suppose
that there is a constant opportunity cost y per unit of time spent on the
goal. and for each method m E Al the agent has an expected time cost
E(TC( n)]. an expected utility estimate E[U(mn)], and a probability Pr(m)
of achieving the goal using that method. The expected gain of a method m
is just

E[G(m)] = E[U(m)]- "IE[TC(m)],

and the task is to find a so as to maximize
i-1

E{U~j] ~ 2 E[G(m,)] 1(I - Pr(rnk)).
is.,. E[G(rn,1>o kno

Etzioai claims, and it is easy to verify, that. by sorting the methods in
incresuig order using E as a key, an agent can construct an optimal
me( hod ordering.

is the above case, it is plausible to assume that the cost of meta-
reasoning (i.e.. the time spent calculating E for each method n7 and
sorting using the results) is negligible in comparison with the cost of ap-
plying a method. In the case of an agent faced with multiple goals even
where there is only one method for each goal. it is more difficult to make
such an assumption. By reducing the knapsack problem [20] to the problem
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of compliting the expected opportunity cost. Etzioni shows that computing
the expected opportunity cost of a method is NP-complete.

It is not too surprising that there are some hard problems lurking among
the deliberation scheduling problems that underlie decision- theoretic con-
trol of inference. It should be pointed out. however, that all we should
really be concerned with is the expected cost of meta-reasoning. and that.
in many practical applications. approximations are much preferred to even
polynoinial-time methods for computing exact solutions.

Etzioni suggests using Carey and Johnson's factor-of-two approxima-
tion [201. but it should be noted that the knapsack problem is a number
problem for which there exist pseudo-polynomial time algorithms and good
branch-and-bound approximations. These branch-and-bound algorithms
have exponential-time worst-case behavior, but their expected performance
is such that many practitioners consider knapsack tractable. In the next sec-
tion. we see how approximation algorithms for computationally expensive
problems can provide us with even greater flexibility in allocating processor
time to decision procedures.

While Etzioi's invocation of asymptotic complexity as a measure of
difficulty may not be particularly appropriate in this case, it does force
the reader to reconsider the assumptions regarding the time cost of meta-
reasoning. For instance, if n is small and the average time cost of the
methods in 31 is high, then it may even be reasonable to perform a meta-
computation whose worst-case behavior is exponential in n. It may even
be useful to add another level of meta-reasoning to reason about various
alternative scheduling algorithms.

Just what is the structure of the decision making process that we are
seeking to control? In the Russell and Wefald model, object-level decision
making involves fixed-duration computations that attempt to provide a bet-
ter assessment of a single base-level action. In the next section. we consider
problems in which the ineta-level reasoner sacrifices some of its control over
object-level decision making in order to simplify meta-level decision mak-
ing. In particular. we consider decision procedures that return estimates
thaS improve with additional allocations of processor time. The ability to
prempt decision procedures at any time during their computation simplifies
deliberaion scheduling in many cases.
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Figure 8.1: Plot.s r~latilig (i) tiMe 4;1)01. iii conmputation to t lie precision
of a prohabilistic calculation, and (ii) precision to the value associated with
getting the diagnosis correct and treating tihe patient accordingly (after [27]).

8.3 Flexible Computations and Anytime Algo- V
rithms

In this section. we consider two independently developed but closely related
approaches to decision-theoretic control of problem solving. The two ap-
proacies are due to Dean and loddy [13] and Horvitz [27]. Horvitz refers to
his decision procedures as flexible compulations and Dean and Boddy refer
to theirs as anytime algurithms, but the basic idea behind the two proposals
is the same, and we will use the two terms interchangeably.

In the ideal flexible computation, the object-related value of the result
returned by a decision procedure is a continuous function of the time spent
in computation. The notion of "object-related value" of a result is to be
contrasted with the "comprehensive value" of a system's response to a given
state; the latter refers to the overall utility of the response and the former is
some tieasure of -lie value of the result apart front its use in a particular set of
circuistances. Object-related value is exactly Russell and Wefald's intrinsic
utility. In some cases. the task of relating a result to the comprehensive
vale a the overall response can be quite complex. This is especially so
in caM is which there are several results from several different decision
procedevs. In these caes, it is often convenient to make the assumption
that the value function is separable so that the comprehensive value of the N..
system's response can be computed as the sum of the value of a sequence of
outcomes.

We assume that a flexible computation can be interrupted at any point
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Figure 8.2: Plots indicating (i) a discomiting factor for delayed treatment,
and (ii) the comprehensive value of computation aA a function of time (after
[271).

during computation-hence Ie name "anytime"-to return an answer whose
object-related value increases as it is allocated additional time. Horvitz
provides a good ex,'.i 'e of a flexible computation and an analysis of its
object-related value .rawn from the health care domain. Suppose that we
have an anytine .6orithm that computes a posterior distribution for a set of
possible dia'noses given certain information regarding a particular patient.
Figure P.1i Tfww424) shows a graph that relates the precision of the result
returned by this algorithm to the time spent in computation. The object-
rck ted value can be dctermined as a function of precision by considering the

expected utility of administering a treatment based on a diagnosis of a given
. precision ignoring when the treatment is administered (see Figure 8.1.ii).

The comprehensive value of computation is meant to account for the
costs and benefits related to the time at which the results of decision pro,
cedures are made use of to *initiate physical actions. Figure 8.2.i (from
[27]) indicates how a physician might discount the object-related value of a
computation as a function of delay in administering treatment. The com-
prehensive value of computation is shown in Figure 8.2.ii and is obtained
by combining the information in Figures 8.1.1i and 8.2.i. This method of
combit information assumes both time-cost separability and one-step

horliom.
Botk Horvitz and Dean and Boddy note that the most useful sort of flex-

ible computations are those whose object-related value increases monotoni-
cally over some range of computation times. Dean and Boddy [131 employ

decision procedures that are monotonic throughout the range of computa-
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tion times. and exploit this fact to expedite deliberation scheduling for a
qp~cial class of planning problofms referred to as tine-dqlWdft planng
J)II fHins. A planning problent is said to be titne-dependent if the tittle
available for respo|i(di|g to a giveii PvPit varies from situation to sitinatio,.
[n their niodel. a prPdictive conpoieltt. whose time cost is not considered.
predicts events and their time of occurrence on the basis of observations.
and the planning system is given the task of formulating a response to each -
event and executing it in the time available before the event occurs.

The model of Dean and Boddy generalizes on the multiple-goals/single-
method-for-each model of Etzioni described in the previous section. by al-
luwing each goal to have a separate deadline. If the respoues to the different
events are independent., the task of deliberation scheduling can be stated in
terms of maximizing the sumu

1 V(Response(e)),

where E is the set of all events predicted thus far. It is assumed that there
is exactly one decision proceditre for each type of event likely to be encoun-
tered, and that there are statistics on the performance of these decision
procedures. The statistics are summarized in what are called performance
profile, which are essentially the same as the graphs used by lorvitz in his
analysis (e.g.. see Figure 8.1.ii).

In Section 8.4. we define the class of time-dependent planning problems
precisely, and provide polynomial-time algorithms for deliberation schedul- 7/ j
ing for particular subdasses. These algorithms use a simple greedy strat-
egy working backward from the last predicted event, choosing the decision
procedure whose expected gain computed from the performance profiles is /
greatest.

It is worth considering why the NP-conpleteness result reported by Et- L
zioni does not apply in this more general case. In job-shop scheduling, if it is
posaible to suspend, and later resume, a job, then many otherwise difficult
probkon become trivial (23. 51. Such (preemptive) scheduling problems
are u swhat rare in real job shops given that there is often significant
overdbe Involved is suspending and resuming jobs (e.g., traveling between
workstations or changing tools), but they are considerably more common
with regard to purely computational tasks (e.g.. suspending and resuming
Unix processes). In many scheduling problems. each job has a fixed cost
and requires a fixed amount of time to perforut: spending any less than the
full amount yields no advantage. This is tie case in the decision procedures
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cousidered 1)~ Lwzionti. If. hiowever. (flie decision prove(Iires for coiput jg
approIpriatc actions are preemlpt ible and provide better answers depeiid-
ing upon ( lie timte available for deliberatiot. thei the task of deliberatioti
scILed ilig is considerab blv siiuplified. Any ,tittie decision procedures thtus pro-
vidle miore flexibility in responding to time-critical situations, and simplify'
lie task of allocal ing processor time in cases where there is contention amiong

several decision tasks.
For the iiitltiple-goals/siigle-iinetlhodI-for-eacht prolblent described in (lie

previous section. Etzioui suggests itsitig a factor-of-two ap~proximnation to
avoid potential coinbinatorics in deliberation scheduling. Rather than a]-
wayvs simply applying the factor-of-two approximation. we can design an
anytime approximation algorithm and allocate it some amount of processor
time based on expectations regarding its performance. The fully-polynomial
approxi'uiation schemie' of Ibarra and Kim (30J for solving the optimlization
version of the knapsack problem serves nicely as the basis for an anaytime
approx-imation algorithm for choosing method sequences. The simplest ap-
p~roach would be to classify the base-level problemis in terms of. say. the nium-
ber of goals and the length of time until the deadline, and gather statistics
on thp utility derived from invoking the approximation scheme with differ-
ent pretision requirements. Whether or not this more complicated approach
to deliberation scheduling performs better than the factor-of-two approxi-
ination will depend upon the specifics of the application and how efficiently
the algorithms are realized. It is easy to imagine applications. however. for
which the expected performance of the system will be improved by using
such a scheme.

The use of flexible computations can also simplify problems in which
one decision procedure produces an intermediate result that is used as input
to a second decision procedure, Boddy and Dean [41 investigate one such
problem involving a robot courier assigned the task of delivering packages
to a set of locations. The robot has to determine both the order in which
to visit the locations, referred to as a tour. and. given a tour. plan paths to
traverse in moving between consecutive locations in the tour. To simplify
the amais. it is assumed that the robot's only concern is time: it seeks t',

'S.. G&Mu and lohapon [201 for a discussion of fullyv-polynomial approximation schemes
for NP-tmmplse problems. For our purposes. a approximation scheme 5~ for a problem
11 takes as intstance In, and a precision requiremnut c > 0 and returns a candidate solution
i lit is wit loin t of i le optimnal msolu~to. Stich a schittue ips said to be fulloy polYnomiial just
in case the time complexity of S is bounded by a polYnomiai function of L. and the size of
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Figure 8.3: Performance profiles relating (i) the expected savings in travel
time to time spent in path planning. and (ii) the expected reduction in the
length of a returned tour as a function of time spent in tour improvement.

minimize the total amount of time consumed both in sitting idly deliberating
about what to do next, and in actually moving about the environment on its
errands. Furthermore, it is assumed that there is no advantage to the robot
in starting off in some direction until it knows the first location to be visited
on its tour. Finally. while the robot can deibrate about any subsequent
paths while traversing a path between consecutive locations in the tour. it
must complete the planning for a given path before starting to traverse that
path.

The two primary components of the decision making process involve
generating the tour and planning the paths between consecutive locations
in time tour. The first is referred to as tour improvement and the second as
path planning. Boddy and Dean employ iterative refinement approximation
routines'for solving 'each of these problems. and gather statistics'on their
performance to be used at run-time in guiding deliberation scheduling. The
statistics are summarized in what are called performance profiles. Figure 8.3
(from [41) shows the profiles for path planning and tour improvement. Fig-
ure 8.3.i shows how the expected savings in travel time increase as a function
of time spent in path planning. Figure 8.3.ii shows how the expected length
of the toUm decreases as a fraction of the shortest tour for a given amount
of tin* spent in tour improvement. In the analysis described in [4]. this
performance estimate is independent of the initially selected tour. We
sume that the robot starts out with an initial randomly selected tour. Given
the length of some initial tour. the expected reduction in length as a func-
tion of time spent in tour improvement. and some assumptions about the
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lerforinance of path planp:1,g. the robot can figure out exactly how much
iue io devote to tour inirovement in order to minimize the time spent in
stationary deliberation atid conubined deliberation and traversal.

There currently is no general theory about how to combine anytime
algorithms, and neither is there fikelv to be in the near future. For cases in

.wiich the decision problems are not independent. there is not a great deal

, -L I'/ that we can say. However. for le case of independent decision problems for
which anytime decision procedures exist, or for which a pipelined sequence
of anytime decision procedures exist. as in the robot courier problem. there
is a great deal of interesting research to be done: research that can draw
heavily on the scheduling and combinatorial optimization literature.

It is worth pointing out some connections between the Russell and We-
fald work and that of Dean and Boddy and Horvitz. The Russell and Wefald
work can be seen as trying tc construct an optimal anytime algorithim: a
single algorithm that operates by calculating a situation-specific estimate of
utiity using only local information. just as subscribed by information vue

V theory. It should be possible to apply the Russell and Wefald approach to
scheduling an ytime algorithms. For some purposes (e.g., the game-playing
and search applications described in [41]). the monolithic approach of Russell
and Wefald seems perfectly suited. For other applications (e.g.. the robotic
applications described in [,1] or the intensive-care applications described in
[28]). it is quite convenient to think in terms of scheduling existing approx-
ixnation algorithins.

Since this book is concerned with planning and control problems, we now
turn our attention to the general class of time-dependent planning problems
mentioned earlier. and investigate the deliberation scheduling issues that
arise with regard to various subclasses of this general class.

8.4 Time-Dependent Planning

We define a class of time-dependent problems in term of

1. A st of event (or condition) types. C

2. A met of action (or re.epo,,.,e) types, A / /":/z./ '/ - (-)

3. A set of time points. T / 4

4. A set of decision procedures. P
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5. A value fiinction. V

We assume that at each point in time the agent knows about some set of
pendintg events that it has Io formulate a response to. We are not concerned
with how the agent caine to know this information: suffice it to say that
he agent has some advance rjtice of their type and time of occurrence. To

represent its knowledge regarding future events, we say that the agent knows
about a set of tokens drawn from the set C x T. When we talk about events
or conditions. we will be referring to tokens and not types. Each condition.
c. has a type. type(c) E C. and a time of occurrence. time(c) E T. In the
following, all conditions are assumed to be instantaneous (i.e.. corresponding
to point events).

We evaluate the agent's performance entirely on the basis of its re-
sponses. Let Response(c) E A he the agent's response to the condition
c. Let V(alc) be the value of responding to the condition c with the action
a E A. To simplify the analysis. we make the strong assumption that the
value of the agent's response to one condition is completely independent of
the value of the agent's response to any other condition. Given this indepen-
dence assumption, we can determine the total value of the agent's response
to a set of conditions C as the sum,

V(Response(€)ft).
cEC

Since we are primarily interested in investigating issues concerning the
costs and benefits of computation. we abstract the problem somewhat more
in order to simplify the analysis. We require the agent to formulate a re-
sponse to every condition it is cbnfronted with. We further require that tie
agent perform all of its deliberations regarding a given event prior to the
time of occurrence of that event. There is no benefit to be had in coming
up with a response early.

For each condition type. c E C. there is a decision procedure in dp(c) E P.
The agnt knows how to select an appropriate decision procedure given
the type of an event. The decision procedures in P have the properties
of flezi computations that we discussed earlier. In addition. the agent
has expectations about the performance of these decision procedures in the
form of performance profiles. For each condition type. c E C. there is a
corresponding function p, : R - R that takes an amount of time. A. and
returns the expected value of the response to c generated by dp(c) having
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been run for Ithe specifie(l atliotint of ii,

iL( ) = E( V( Respoiise(c )Ic. alloc( 6. dp(c)))).

In tile following, we consider various restricted classes of decision proce-
du res. We begin by considering decision procedtires whose pprformailnce pro-
files can be rpresented or suitably a.pl)roximated by piecewise linear mono-
tonic increasing functions. We add the further restriction that the slopes of
consecutive line segments be decreasing. If the functions representing the .-

performance profiles were everywhere differentiable, this restriction would
correspond to the first derivative function being monotonic decreasing.5

Let C = {c1 .  c,} be the set of conditions that the system has to
formulate responses for. and i he the present time. Let pi be the function
describing the performance profile for the decision procedure used to com-
pute responses for the ith condition. We present an algorithm that works
backward from the time of occurrence of the last event in C. On every it-
eration through the main loop, the program allocates some interval of time
to deliberating about its response to one of the conditions, c. whose time of
occurrence, time(c). lies forward of some particular time t. The set of all
conditions whose time of occurrence lies forward of some particular time t
is denoted as

A(t) = (cl(c E C) A (time(c) _> t)).

The criterion for choosing which decision procedure to allocate processor
time to is based on the expected gain in value for those decision procedures
associated with the conditions in A(t). The criterion also has to account for
the time already allocated to decision procedures. Let "yi(z) be the slope of
the linear segment of pi at x unless pi is discontinuous at z in which case
I,(z) is the slope of the linear segment on the positive-side of r. We refer to
1,(x) as the gain of the ith decision procedure having already been allocated
.r amount of processor time.

Having allocated all of the time forward of t in previous iterations. fig-
uring out how nmch time to allocate on the next iteration is a bit tricky. It
is certaily bounded by t - i; we cannot make use of time that is already

'Is M we ngested a siuilar restriction referred to as diminu ,ing returns, and
44- cdefld a b6los: Vc E C. 3f.,et) = f M such that f is monotonic increasing, con-

itinuoqw, and pieewiime difle'entiahle. Vr.y E R +. nch that f'(ir anti f'(g) exist.
(r < y)D)(f'(l) 5 f'(r}). For this clas of problems. we provided an approximation
algorithm that uses time-slicing to come within c of optimal. The algorithm presented
here is exact given the restrictions on the form of performance profiles.
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Procedure DS
;; Initialize the bi's to 0.
for = I to ,

;; Set I to be the time of the last event in C.

;; Allocate time working backward from the last event.
until I = i,

;;Compute the amount of time to allocate next.
67 .- uin{I - i. -ilast(),mh,.altoc( {is,)}

S;; Find the procedure index with the maximum gain.
I - argiuiax)'y(6,)lc E A(t))

6t4  ;; Allocate the tie to the appropriate procedure.
6 - +

; L,;. ,Jrt' /" ;; Decrement time by the amount of allocated time.
td t - t - a

9,. / A. " ;; Set t to be the current time.

;; Schedule working forwards in continuous segments.
for i = 1 to n,

; ; Assume that time(ei) < time(c,) for all i < j.
. - ,, , run the ith decision procedure from t til + b,

;; Increment time by the amount of allocated time.t - t + 6,

Figure 8.5: Deliberation scheduling procedure

past. In addition, given that we are using the gain of the decision procedures
for conditions in A(t) as part of our allocation criterion, the criterion only
applies over intervals in which A(t) is unchanged. Let last(t) be the first
time prior to t that a condition in C occurs that is not already accounted

for in A(t):
last(t) = max(time(eflc E C - A(t))

Finally, given that the gains determine the slope of particular line segments
charMctefting the performance of the decision procedures. we have to be
carefiLm" to apply our criterion to an interval longer than that over which
the current gains are constant. Let minailoc({6j}) be the minimuni of
the lengths of the intervals of time for the next linear segments for the
performance profiles given the time allocated thus far. Figure ,.4 illustrates
min-alloc( {(6)) for a particular case.
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Figure 8.6: A simple example of deliberation scheduling

Figure 8.5 fists the procedure for deliberation scheduling for the class of
problems under consideration. The procedure, DS, consists of three iterative
loops. The first initializes tihe allocation variables, the second determines
how mnch time to allocate to each of the decision procedures. and the third
determines when the decision procedures will be run. For convenience. we
assume that the events in C are sorted so that time(ci) _5 time~cj) for all
i < j. This assumption is only made use of in determining when decision
procedures will be run.

Consider the following simple example to illustrate how DS works. Sup-
pose that we have two events to contend with..c .nd €2.Figure 8.6.i shows
the performance profiles for the decision procedures for c, and c2. DS starts
by allocating all of the time between cl and C2 to the decision procedure for
C2. The next interval of time to be allocated (A) is determined by the first
linear setMent of pl. and this interval is allocated to cl.

At this point, the slope of the second linear segment of p, is less than
the sope of the first segment Of P2. so the next interval (determined b '
what Is, Wet of the first linear segment of p2) is allocated to C2. The next
interval corresponds to the second linear segment of ul. and this entire
interval is allocated to l. Finally. the remainder of p, has slope 0. so
the remaining time is allocated to c2. Figure 8.6.1i shows the complete
history of allocations. and Figure .S.6ili shows how the decision procedures
are scheduled to run. Now we prove that DS is optimal.
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Figure 8.7: Performance profiles that foil DS

Theorem I The procedure DS is optimal in the sense that it generates a
set of allocations {6j} maximizing E! i{fij).

Proof: We proceed by induction on n, the number of conditions in C. For
the basis step, n = 1. the algorithm allocates all of the time available to
the only event in C, and hence is clearly optimal. For the induction step,
we assume that DS is optimal for up to and including it - 1 events. Our
strategy is to prove each of the following:

1. Let i' be the time of the earliest event in C. Using ' as the starting
time, DS optimally allocates processor time to the n- .1 (or fewer
assuting simultaneously occurring events) events in C occurring after
i.

2. DS optimally allocates processor time to all n events in C over the
period from i nntil the time of occnrrence of the first event in C. ar-
"mating for the processor time already committed to in the allocations
dewribed in Step 1.

3. Given Steps 1 and 2. the combined allocations result in optimal allo-
cations for C starting at i.

Step 1 follows immediately from the induction premise. To prove Step 2.
we have to demonstrate that DS solves the simpler problem of maximizing
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IP, ) sli)ject to the constraint I hat " = 1. where I is I he length
ot time separating i and the first event ini C. lor this demonstration, it is
enough to note that. as long as the set of events being considered (A(1))
reniains unchanged. during each iteration of the itiain loop. DS chooses an
interval with maximal gain. and. by making this choice. DS in no way re-
sricts its futtre choices given that all subsequent intervals are bound to
have I lie sante or smaller gaitts. 'This last point is due to the restriction that
lie slopes of consecutive line seguments for all performance profiles are de-
creasing. Note that, if we were to relax this restriction, the greedy strategy
iised by DS would not produce optimal allocations. Figure 8.-.i provides
a pair of perfornmance profiles such that DS will produce suboptimal allo-
cations. Figure 8.7.ii shows the allocations made by DS. and Figure 8.7.iii
shows the optimal allocations.

Step 3 follows fromt the observation that the allocation of the time from
lie occurrence of the first event to the occurrence of the last is independent

of any consideration of the first event or any time available for deliberation
prior to the occurrence of the first event. 0

Theorem I proves that the allocatiois made by DS are optimal in a well-
defined sense. We still have to show that the method for scheduling when
to run decision procedures is correct. In particular, we have to show that
DS generates a legal schedule, where a legal schedule is one such that for all
c E C the time allocated to the decision procedure for c is scheduled prior
to the time at which c occurs. To see that DS does generate legal schedules.
nole that DS ensures that the sum of the time allocated to all conditions
that occur prior to I for any t > i. is less than t - i. DS is guaranteed to
generate a legal schedule since it schedules all of the time for any condition
r before any condition occurring later.

In the time-dependent planning problems described above, the exact
linie of occurrence of conditions is known by the deliberation scheduler.
One can easily imagine variants in which the scheduler only has probabilistic
inforaation about the time of occurrence of events.

Foe instance, for each condition. ci, the scheduler might possess a prob-
ability deiity function.

pi(t) = Pr(occurs(t.c.)).

indicating the probability that a particular condition will occur at time. t.
For practical reasons. we will assume that for each condition. ci. there is a
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Figure -S.8: Unrcertainty nihoiit t le occurrence of conditions

latest. time. sii)( c), and an earliest lime. inf( c,), such that

p3 (sup(ci)) = P,(inf(CM) = 0.

While the sclwdmler does not know exactly when conditions will occur.
we assue that the exector will know when to carry out a given action. For
instance. cond~itions might have precursor events signialing their immediate
occurrence. The executor would simply take the best response available at
the titme the preciirsor event for a givfn condition is observed.

Our performance criterion for deliberation scheduling is no longer,

E V(Response(c)Ic)).
eEC

but rather,

F, j moccux3s t. c) )V( Response(e, t)Ic) dt.

where Response( e, I) imlicates the responise generated with respect t~o coll-
thitioi. c, given that c occurs at f.

In deciding how to a~ocate anm interval of processor time given uncer-
tainty about the occurrence of conditions, we have to account for the pos-
sibility that the event miay have already* occurred. Figure 8.8 depicts the
probs&M~y density functions for the time of occurrence of two conditions.
Lb. aims of the shaded regions indicate thle probability t hat the conditions

occnr in the future Df the time imrked 1.
We extend the A. notation to represent processor schedules. Let each bi

lbe a fuinction.
Aj:R - {0, 11,
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Procedure DS'(A)
;; Initialize the ,'s to 0.
for = 1 to n,

;; Set t to the latest possible time of occurrence.
- mnax{inf(ci)lci E C}

until t < i
;; Find the index with maximum expected gain.

- arg, inaxi E(V(A;16,f)li E (}
;; Allocate the time to the appropriate procedure.

- 6 + (nun.t-t.t)
;; Decrement time by the amount of allocated time.
t - t - min{A.t-i}

Figure 8.9: Deliberation scheduling with uncertain condition times

where bi(t) = I if the decision procedure for ci is allocated the processor at
t, and 6(t) = 0 otherwise. The expected value of a given schedule, bi, begin-
ning at t, and allocating processor time to deliberating about a condition,
ci. is just the sum over all times, t', in the future of t, of the probability that
ci occurs at t multiplied by the expected value of the response generated by
the decision procedure for ci given the processor time scheduled between t
and t'. We notate this expected value,

E(V(6ilt)) = i pilr),i(i6(t, r))dr.

where 6,-t, t') is the total amount of time allocated to ci by the sdiedule 6i
between t and t'. The expected value of augmenting a given schedule, i,
starting at t, by allocating the time from f - A to t to deliberating about ci
is defined by

E(V(16iR)) = pi(r)pf(6(. r. A)) dr - pi(")l(i(t. r)) dr.

where 6i(i ,A) is the total amount of time between I and t' allocated to q
by Ihe A-augmented schedule.

Figure 8.9 lists a procedure for deliberation scheduling for the class of
problems involving uncertainty in condition tines. The procedure listed in
Figure 8.9 takes a positive real number. A E R + . to be used as the length
of the interval of time allocated in each iteration of the main loop of the
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proreduire. The assignment. bi - 0. rpsilts in 6i(f) = 0 for all t E R. The
assignment. i - b + (t. t'). resitlts in b,(r) = I for all r in the interval
(t. t'). and for all r outside the interval (t. t') is the same as it was prior to
tlie assignment. In the following. wre make several comments regarding DS'.

The first comment concerns what exactly it is that DS* computes. DS'
provides an approximation to the optimal deliberation schedule. It is an
approximation because we allocate each interval of length On the basis of
expectations computed for a single point at the boundary of that interval: in 4:
general. this method will result in a suboptimal deliberation schedule. On
the positive side. the smaller the allocated intervals are. the better the ap-
proximation: the schedules generated by DS" converge to the optimal sched-
iles as A - 0. On the negative side. the smaller A is. the longer it takes to

compute the entire deliberation schedule.
In this chapter. we generally ignore the cost of deliberation scheduling.

assuming that. if the running time of the scheduling algorithm is linear in
the size of the input, then the cost of scheduling is negligible. In this case.
however, the cost of deliberation scheduling can be made arbitrarily large

by employing a small enough value for A. In practice, it will be necessary
to account for the cost of deliberation scheduling. In some cases. it will
reasonable to choose a value for A at compile time by experimenting with
various values and expected inputs. In other cases, it migLt be useful to
select a value at run time, using some simple criteria for selection: this
constitutes a simple example of meta- ineta-reasoning.

The second comment regarding DS' concerns the form of the final sched-
ule. Unlike the case in which we know exactly when each condition will
occur. we cannot coalesce all of the time allocated to a given condition into
a continuous interval. As a consequence. we have to assume the capability
of switching the processor rapidly between different decision procedures. lit
most multi-tasking operating systems, assuming this sort of rapid process
switching is reasonable.

The final comment regarding DS" concerns the notion of optimality which
we employ in rating performance. Claims of optimality are made assuming
that tMn' will be no further opportunities to modify the schedule. In prac-
tice. Imve, each time that a condition occurs. it will be useful to compute
a new deliberation schedule.

In the remainder of this section. we consider one more variant of time-
dependent planning. In this variant, we assume that there are no external
conditions requiring responses of the controller: instead, the controller has
some number of tasks it is assigned to carry out. The tasks do not have
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to he comipleted 1)'y an *yparticular Itime. b)11 the sooner theY are comtpleted
tule hel ter. As in the jprevioiis prohilems. we assume tha~t there is a decision
procedure for each task. Generally. the more time the controlier deliberates-" '-

about a given task. the less time it takes to carry out that task. We assume
that the outcome of deliberation concerning one task is independent of the
outcome of deliberation concerning an ' other.

T'he performance profiles relate the time spenit ini deliberation to thle T.
time savpd in execution. For istauuce. suplpose that the task is to na-vigate
from onie location to another. and1( I lie dlecision procedure is t~o plan " path
to follow between the two locations: up to a certain limit, thle more time
spent in pa-th planning. the less time spent in navigation.

lin the following. we consider a few special instances of this class of prob-
lems. lit the first instance, all of the deliberations are performed in advance
of carrying ont any task. This model mnight he appropriate in the case in
which a set of instruictions are couuupiled in advanice, and then loaded ilito
a rob~ot that carries out the instriict ions. D~eliberation scheduling is Simple.
For ea-ch task, tile scheduler allocates time to deliberation as long am thle
time spent in dleliberation results in a greater reduction in the time spent
in execution. All of the deliberation is then performed in advance of ally
execuition.

In tile second instance. the ordler in which the tasks are to be carried
out is fixed in advance, and all deliberation concerning a given taskc is per-
formed in advance of carrying out that task, but deliberation concerning
one task can be performed while carrying out another. lIt this instance,
deliberation scheduling is somewhat itore complicated. Wve consider delib-
erat1ion scheduling in terms of three steps, ininimal allocation, drad-lime
i'dioctionx, andl firee-time optimaization. In 'the minimal allocation step, we
proceed as in thle p~revious instance, lby determining a minimal allocation
for each task. ignoring the possibility of performing additional deliberation
during execution.

This mninimal allocation for a giveni task corresponds to that allocation
of ddbmrtion time minimizing the sui of deliberation and expected exe-
cutiom Uime. Figure 8.10.i shows four tasks and the time they are expected
to take, uaumsing no time spent i deliberation. Figure 8.10.Hi shows tile
performance p~rofiles for each of the four tasks. The dotted line in each
perforanaice profile indicates tile ninimni slope such that allocating dt-
liberation time will result in a nuet derrea-se itt the stain of dleliberation and
expectedl execution time for the nuiniuuual allocation. Figure 8.10.iii shows

lie minimal allocationis for each of the four tasks. where the bS, indicates t he
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Figure 8.10: Minimal allocations of processor time

tinie allocated to deliberation for ti.
Using the allocations computed in the dinilial allocation step. we coll-

struct a schedule ill whlich tasks begin as early as possible subject to the
constraint that all of the deliberation for a given task occurs in a continuous
block inimediately preceding the task and following any deliberation for the
previous task. Figurt 8.11.i shows the resulting schedule for the example of
Figure 8.10. Note that there are two additional types of intervals labeled in
Figure 8.11.i. This first type, notated fi, indicates the free time associated
with ti, corresponding to time when the system is performing a task but not
deliberating. The second type. notated di, indicates the dtad time associ-
ated with ti, correspo4ding to time when tile system is deliberating but not

performing any task.
fit the dead-time reduction step, we attempt to reduce the amount of

dead time in the minimal-allocations schedule by making use of earlier free
time. Where possible, we allocate earlier free time to perforning the deliber-
ati PWjviously performed during the dead time. starting with latest dead
tiu=a and working backward from the end of the schedule and using
the possible intervals of free time. Figure 8.11.ii shows 'he schedule
of 8.11-i modified to eliminate one of the dead time intervals. It is
,ot always possible to eliminate all dead tite intervals. In particular. any
deliberation time allocated for the first task will always correspond to dead
time.
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Following this )rocess of dead-time reduction. if there is any free time
left. we attetpt to allocate it for deliberating about other tasks. This is
just a bit tricky, since by performing additional deliberation we eliminate
previonsly available free time. Not only do we eliminate the free time we are
filling in by scheduling deliberation, but the deliberation reduces execution
time therpby eliminating additional free time. There is one special case for
whirli optimally allocating the additional free time is easy. This is the case
in which all of the performance profiles are piecewise linear composed of two 9
linear segments sucl, that slope of t lie first segment is the same for all profiles
and the slope of the second is 0. This corresponds to the specification of the
robot courrier problem described in the previous section, regarding the task
of optimally allocating processor time for planning several paths between
locations in a tour of such locations to be visited.

The reason that optimally allocating the additional free time in this case
is easy is explained as follows. If the slope of the first linear segment for all of
the performance profiles is greater than 1, then all of the time corresponding

- " nonzero slope will be allocated in making the minimal allocations, and any
additional allocations will yield no decrease in execution time. If the slope
of the first linear segment for all of the performance profiles is less than 1.
then all of the minimal allocations will be 0, and there will be no free time
to allocate.

There are many variations on the problems described above. This sec-
tion is meant as a sampler of problems and associated deliberation scheduling
techniques. Deliberation scheduling should be seen as a means of program-
muing in knowledge about how to improve run-time performance. There are
occasions. however, in which the time required to apply that knowledge is
not available at run time, and it becomes reasonable to make certain choices
concerning the allocation of computational resources at design time. In the
next section. we consider design-time tradeoffs for improving system perfor-
nance.

8.5 Compiling Problem Solving Systems

li the pmrviouu sections, we were concerned with the design of systemus lhat..
given exportations about the performance of decision-making routines, were

able to make appropriate tradeoffs at run-tite so as to maximize expected
utili. Another approach to building systems capable of good performance
in time-critical situations involves making certain inferences at design time
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Figure 8.12: Decision model for the diagnosis problem (after [261)

and caching those inferences for use at run time in order to improve the sys-
temn's response time. Other researchers have suggested compiling domain
models to guarantee bounded response time [31, 391. Generally, the result
of compilation is a table or circuit whose space requirements are an iupor-
taut factor in assessing the value of a given compilation method. Usually,
lie object is to improve response tine without sacrificing decision quality;

when this cannot be done (e.g., the storage requirements for caching are

substantial) it becomes necessary to consider tradeoffs. The approaches de-
scribed in this section are noteworthy for their use of a decision theoretic
criterion for trading space for response time.

Heckerman, Breese, and Horvitz [261 investigate a simple form of tradeoff
that involves improving response time by compiling' decision models. In
their model, 1he utility of a state depends on whether or not a particular
hypothesis H is true aud whether or not an action D is taken. We will
assume that, if H is true, the action D should be taken, and otherwise the
actius -D is appropriate. We can define a threshold probability of H, call
it pO, ad that the agent is indifferent about acting one way or the other:

pML( D) + (1 - p*)U(-'H. D) = p'l(H, -,D) + (1 - p')tT(.ll.-.D).

The agent is not able to observe H directly, and, hence, imust infer whether
or not H is true on the hasis of the observed evidence. El. E2 .... ,. 'hus
the agent should perform the action D if and only if

Pr(HIE .E 2 ... E,) > p*.
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The resulting decision niode' (depicted graphically ill Figure 8.12) is rep-
resented as an influenc diagrr,71 that captures the causal and informational
dependencies between chance variables (indicated as circles) and between
chance variables anid decision variables (indicated as boxes). and the value
of states of the world corresponding to particular instantiations of the chance
and decision variables (indicated as diamonds).

lieckernian. Breese. and llorvitz reformulate the decision probleil in
tprms of log-likelihood ratios, atid. by mia.kirig certain iudepetideiice asquitip- ,.
tions. they reduce the decision problem to computing

n|i- = w

where the w' are the weights accorded to the E;. The agent should perform
the action D if and only if W > 17 where I-V ' is the log-likelihood equivalent
of p*. We will refer to the strategy of computing the weights at run time as
the compute strategy.

As aii alternative to comnputing the sum of the weights of evidence at
run time, the agent might consider all possible combinations of evidence and
compile a table indicating whether or not to act for each possible combina-
tion. If" memory is inexpensive and response time critical, then this might
be an attractive alternative. la general. however, it will be prohibitively
expensive to compile a table for all possible combinations of the evidence.
and. hence. if the agent wants to speed its response time by compiling a
table. it will have to limit its attention to a subset of the evidence. Suppose
that the agent chooses rn pieces of evidence,

(E,, E ..... Z,, c._ {Ej,.. , E,,

to use in compiling a table of responses. For each of the 2 ' possible combi-
nations of the rn variables, we compute the sum.

I I',M= ,,

at romp& tim, and store ) in the table if II'M > It" and -1) uherwise.
At run time, the agent simply uses tihe evidence as an index to lookup the
appropriate entry in the table. We will refer to a strategy of compiling a
table for in pieces of evidence as a comple strategy.

Note that the advantage of the compute strategy is that it takes all of
the evidence into account: the disadvantage is that there may be some delay
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We

Figure 9.1:3: The probability that the total evidential weight will exceed
the threshold is determined by summing the area under the curve for the
distribution of I' given H and above the threshold weight IF. (after (261).

between the time that the evidence is observed and the time that the agent
responds to the evidence. The compile strategy may enable the agent to
respond more quickly, but at the cost of ignoring some of the evidence and
providing storage for a decision table whose size is exponential in the number
of pieces of evidence accounted for in the reduced model.

In the following, let o indicate the expected value of the agent
using the compute strategy for a single instance of the decision problem,
PCo9 *, and PCo-.H ,, indicate the coat due to computing delays in the case
in which H is true and the case in which H is not, and MC,°.,,,,. indicate the
one time cost of memory for the compute strategy. Assume similar quantities
for the compile strategy. In order to compare the compute strategy against
different compile strategies (i.e.. compilat n involving different subsets of
{El. E2 .  E,}), Heckerman, ct al. introduce formulae for determining the
,zct infrcrntial valuC of a given strategy.

NIT,.=Vp =
- Pl'.H)P.- Pm( C - Pr -H)PC...,.] - IfC,..,N.6

,Nl1;w,W,, =
- Pr(H)PCH..,nm - Pr(-,I)PC....,]- MC. .. ,ii,,

where the NI;,, depends upon the particular choice of evidence, and
p is a factor "that converts the expected value of each policy on a single
instance to a summary (present) value for a series of problem instances over
the life of the systen." Given the above, the agent designer should choose
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he compute stra-tPgy over the cornpile strat.-y if and only if

xrI.,Mt, > NI1ompi.,.

In the analysis presented in [26]. p ,-H .n. p r

linear functions of n. the total number of evidence variables in the complete
model. PC"H.,n and PComP,,. are linear functions of i. the total number
of evidence variables in the restricted compilation model, and M ,oil.- is
a linear function of 2

' . The formutdae for the expected value of using the
compute and compile strategies for a single instance of the decision problem
are given as follows:

EVCop46* -

Pr(V > WI.Olf )U(II, D) + Pr( V < IVIH)U(II, -D)] Pr(ll) +
tPr(tW > 1V-l )U(-,11. D) + Pr(h1' < 1'- I )U(hJI. -',D)] P",II)

E1Im,iem- =

[Pr( Wm > WIl )U(H, D) + Pr(;,, < WIH)U(H. -D)] PrcH) +

IPr( W,,, > WI-,H )U('-H. D) + Pr( I,,, _ W'*I-H )U( -'H. -"D)] Pr(-H )

The only trick to using the above to decide whether to use the compute
or compile strategy is determining the probabilities involving the weights
(e.g., Pr(W > W*IH)). Assuming that n is large (as it should he for us to
take seriously the cost of computing W), then we can compute the first two
moments for the each of the weights given H1 and combine them to approx-
imate the distribution of W given II using the central limit theorem. Using
the resulting approximations for Pr(WmIH), Pr(.Wm1iH), Pr(WIH), and
Ir(lVI-',H), we can determine the values for the terms needed to compute
EIa°,.,,,° and EV°,,a, (see Figure 8.13).

Heckerman, et al. go on to consider relaxing certain assumptions (specif-
ically, allowing multiple-valued hypothesis. evidence, and decision variables
and introducing alternatives to caching complete tables, in the forn of
caching situation/action rules in asyntmel rical trees), and methods for col-
siderimg what subsets of the set of all evidence variables to consider for
compilation. What they don't consider. and what might be worth pursuing,
are mixed strategies involving some amount of design-time compilation and
some amount of run-time inference.

If the basic methods described by Ileckerunan. et al. for evaluating the
expected performance of decision models used for time-critical applications
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Figure 8.14: Two influence diagrams indicating (i) a complete decision model
for reasoning about plans. and (ii) a reduced version of the decision model
obtained by absorbing chance nodes in the complete model.

turn out to be practical for realistic decision problems, then we will want (

to try out more sophisticated models for reasoning about plans and change 4

over time. _ Kanazawa and Dean [321 describe a model for reasoning about
time, causation, and action that can he cast as an influence diagram. Given
a set r of propositions and a set T of time points, we can define a set of
chance variables from *P x T representing the truth of various propositions
at different points in time. By quantifying the dependencies between these
chance variables, we can specify a model of change over time referred to as
a temporl Bayes nrt [14).

The model described in [32 generalizes on this basic model of change
over time to include actions so as to provide a decision model for selecting
platt. Figure 8.14A shows an example of such a model depicted as an influ-
ence dhqpam. Each row. except those corresponding to decision variables or
valu, functions, indicates a proposition or quantity that changes over tinge,
and each column indicates a different point in time. Kanazawa and Dean
consider possible tradeoffs involved in improving the performance of reason-
ing systems using such a model for decision making. In particular, they
consider trading accuracy for time by employing approximation schemes for
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evaluating probabilistic models [8. 21]. They also consider I ading ce for
Iiue 1 elininaling chance variables il Ilie decision niodei using a hod
of Conditioning called nt#A (ib.usilTjti)i [-12]. IJy elintinating chance variailes
at design time. it is possible to dramatically improve the time required to
evaluate the model. Such improvements occur for both exact and approx-

itnate eVallation techniques. Figure 8.14.ii shows a version of the model
shown in Figure 8.14.i obtained by repeated use of node absorption.

In general. iode absorption can result in an increase in the space re-
quired to store the model: there will be fewer nodes in the resulting graph.
but the space required to store the conditional probabilities quantifying the
dependencies may increase significantly. However, given the structure of
temporal Bayes nets. the net increase in space is generally acceptable and
more than offset b v the resulting reduction in evaluation time. It would
be interesting to extend the techniques of Hleckerman. et al. to evaluate at
design time various alternative approximation schemes and methods of sim-
plifying the decision lnodel. The biggest barriers to itaking such extensions
practical will likely be due to the conibinatorics of action selection and the

difficulties involved in obtaining an accurate model of the environment in
the first place.

8.6 Directions for Future Research

This chapter provides only a sketch of current work on problem solving
methods for time-critical applications. There is a great deal of excellent re-
search that we did not cover, simply becanse it did not fit into the structure
of the presentation. In particuilar. we did not say anything significant about
architectures for real-time control [1, 7], or rH'late how the search conlunity

is beginning to address real-time issues [24, 33, 44]. Regarding search, Hans-
son and Mayer's work (24] predicts that we will find many of the standard
techniqnes in heuristic search as emergent properties of mechanisms that
employ Bayesian inference and decision-theoretic control of inference. All of
this work is serving to shape a new field of research.

Tle next few years will see a marked increase in the effort directed at
time-critcal problem solving and resource-limited reasoning. We need to
extend the current approachex to handle computational models that reflect
the complexity of existing problem-solving systems. For instance, how might
an agent deal with multiple tasks. perhaps deciding to act with regard to
one task while continuing to deliberate abont others. We need experience
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with real applications so that the research will be driven by real issues
and not artifacts of our matheniatical models. We need to reconcile the
goal-oriented, resource- bounded perspective of artificial intelligence with the
idealized, optimizing perspective taken in the decision sciences.

This chapter makes use of loward's information value theory as a ba-
sis from which to start in analyzing systems with limited computational
resources. All of the approaches described in this chapter can be seen as ex-
tensions of the basic idea of assessing the value of information sources. The
approaches surveyed here depart from information value theory when they
attempt to account for the cost of inference, including the computational
cost of assessing the value of information sources. It would seem that the
theory of experimental design [19. 35] which is concerned with the problem
of maximizing the information gained from performing experiments under
cost constraints might provide a source of additional techniques that could
be applied in controlling inference for time-critical applications.

All of the approaches described in chapter make rather restrictive as-
sumptions in order to avoid the combinatorics involved in dealing with
unlimited decision-making horizons and complicated interactions between
information sources. For practical problems, it is unlikely that we will be
able to entirely relax the one-step horizon and no-competition assumptions
that characterize myopic decision policies. An interesting area for future re-
search involves identifying and dealing with restricted types of interactions
and providing a disciplined approach to extending decision-making horizons.
It would also be useful to explore methods of extending the anytime algo-
rithm approaches to handle more situation-specific information.

The research on compiling decision models is just beginning, and one area
that appears particularly interesting to investigate involves mixed strategies
for combining desip-time compilation and run-time inference. Another area
that was not covered in this survey, but is of considerable interest involves
learning control knowledge in the form of statistics to support decision-
theore k control of inference. Two of the papers covered in this chapter
[41. 114&omribe interesting techniques that address learning issues.

A about leamrning in general arid speedup learning in particular.
The work in time-critical problem solving will have far reaching inipli-

cations for the whole research community. Time is, after al. an issue in any
problem solving task. Theoretical results concerning agents with limited
computational resources should shed light on a number of basic representa-
tion issues. For instance, the notion of a "plan" as a persistent belief does
not make sense until you take computational considerations into account.
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Plans eniable a svslein t) aniorize tl e cost of deliberation over ali itte-,al
of itie. If" time were not all issue. t here %wotild be no jiistilicatioill 0111-

it ting to a plan. What are the tra( offs involved in generating a partial
plan? What are the costs and henefits of compiling a detailed plait to ui.e il
a sittuation in which there will be very lit tie I iiue for computing appropriate

responses. These are just a few of the questions that can be addressed once
we begin to accoutnt for the time spent ill problem solving.

8.7 Further Reading

Meta-reasoning (10. it. 1.5. 16. 21. 45].
Speedup learning [34. 36].
Early work in the decision sciences on the costs and benefits of inference

(17. 29. 381.
Examples of myopic decision making [3. 12].

318



Bibliography

[11 Agogino. A. ML. Srini. S.. and Schneider. K., Multiple Sensor Expert
System for D~iagnostic Reasoiiing, Mloitoring, and Control of Mdechan-
ical Systems, Aleclianical Sysetems. and Signal Processing, (1988).

[2] Barnett. V.. C'onipaintie Statistical Inference. (John Wiley and Sons.
New York. 1982).

[3] Ben-Basat. M.. Myopic Policies in Sequential Classification. IEEE
Transactions on Computers, 27 (1978) 170-174.

(41 Boddy, Mark and Dean, Thomas, Solving Time-Dependent Planning
Problems, Proceedings IJC'A1 11, Detroit. Michigan, IJU-AI. 1989. 97$9-
994.

[5] Bodin. L. and Golden, B., Classification in Vehicle Routing and
Scheduling. Net works'. 11 (1981) 97-108.

[6] Brachman. Ronald J.. Levesque, Hector J., and Reiter, Raymaond,
(Eds.), Proceedings of the' First International Conference on Pirinci-
ples of Knowliedge Representation anid Reasoning, (Morgan- Kaufmann,
Los Altos. California, 1989).

[7] Brifine, John S. and Feling, Michael RI., Decision- Theoretic Control of
PWbli.- Soving: Principles and Architecture, Proxeedings of the 1988
HWthshp on Uncertainty in Artificial Intdllige-re. Minneapolis. 1[,
IM, .3J7

[8) Chavez. R.. Martin. Fully Polynomial Randomized .4pproriniation
Schctnes for thc Bayesian Infererencing Problem. Report KSL-88-72.
Section on Medical Informatics. Stanford University School of Medicine.
1988.

319



'W

[9] (liertioff. Hlermian and Moses. Lincoln E.. Eknirctary Dfcision The.ory.
(JIohn WileY and Sons. New York. 1959).

[[0] Davis. Randall. Teiresias: Applicatins of Mleta-Level Knowledge.
Davis. Randall and Letiat. Douglas BI.. (s..Knou/f dge-Baoed S~ypq-
fmsi iii Artifirial !ntfiligenr. (McGraw- 11111 International Book Comi-

IpanYv. 1982). 227-490.

([I] tie Keer. Johan, Doyle, -Jon, Steele Jr., City L., and Stissnian. Ger-
aid Jay, AhORD: Explicit Control of Reasoning. Bracliuan. Ronald ..
and Levesque. Hector J.. (Eds.), Readings in Knowledge Representa-
lion. (Nforgan-Kaufinanii. Los Altos. C'A. 1985). chapter 19, 346-355.
Originally published in 1977.

[121 de Kleer. Johan and Williams. Brian C.. Diagnosing Multiple Faults.
Artificial Intelligence. 32(l) (1987) 97-130.

[13] Dean. Thomas and Boddy. Mark. An Analysis of Time-Dependent
Planning. Proceedings AAAI-88. St. Paul. .1innesota. AAAI. 1988. 49-
.54.

(14] Dean. Thomas and Kanazawa. Keiji, A Model for Reasoning About Per-
sistence andl Causation, Computational Intclligfnce. I(S) (1989) 142-
150.

(1.51 Doyl ve, Jon. A Modlel for Driberyition. ,ilction, and Introspe~xction, Tech-
nical Report Ari-T-. , MITl Al Laboratory, 1980.

(161 Doyl ve. Jon. Reasoning, Representation, and Rational Self- Government.
Ras. Zbigiuiew WV.. (Ed.).. Methodologies for Intelligent SYstem.s. 4, New
York. North-Iiolind, 1989; 367-380.

(17] Edwards. Ward. Dynamic Decision Theor 'y and Probabilistic htfornia-
tion Processing, Humnan Factors. 4 (1962) 50-73.

(181 Etzioni. Oren. Tractable Decision- Analytic Control. In Brachman et al.

(4J.114-125.

(19] Fedorov. V.. Throry of Optimal Erpe-rimental Dexign. (Atradernic Pre-ts.
New York. 1972).

(20] Carey. Michael R. and .Johi'ison. David S.. ('oiputittg nnd Intrvactibil-
jit: A (Guide to the '1/icory of NVP-('ortplfitex.-t, ("'. H. E"reemn anid
Comipany. New York. 1979).

:320



[211 Gonesereg u. Michael It.. An Ovprvip'v of Nietalevel Architeci lire.Pl)
reerliiiqs A .4A1-8-Y. WIbipsy~luti. D.C.. AAAI. 1983. 119-123.

(22] G;ood. 1. J1.. A Five Year Plan for Automatic Chess. .lfachinc Intclli-
gecc. 4 (1962).59-73.

[23] Graham. R. L.. Lawler. E. L.. Lenstra. J. K.. and Rinnoov' K an. A.
11. G'.. Optimization and Approximation in Deterinistic Sequencing ~
and Scheduling: A Surve., Pryvxediwjgs Dis-crete Optizmi:atIola. 1Vincou.
rer. 1977.

(241 flansson. Othar and Mayer. And(rPw. The Optimality of Satilifiring So-.
lutions. Proceedings of the 1.988 Work-thof, on Uncertainty iia Artificial
Intelligence. Ailinnirapoli.. 1IN. 1 98. 148-157.

[*25J Hayes-Roth. Barbara. Washington. Richard. Hewett. Rattikorn.
Hlewett. Michael. and Seiver. Adana. Intelligent Monitoring and Con-
trol. Prvxeedings IJC'AI 11. Detroit. Michigan. IJCAI. 19k9 243-249.

[26] lleckerinait, David E., Breese. .Johnx S.. and Horvitz, Eric J1., The Comn-
p~iiation of Decision Models. 11I'89. Windsior, Ontario. 19-49. 162-173.

(27] Hlorvitz. Eric J., Reasoning About Beliefs and Actions Under Compu-
tational Resource Constraints. Proceedings of the 1987 W~orkshop on
Uncertainty in Artificial Intelligcnce. Seattle. lWashington. 1087.

[28] Jlorvitz. Eric J., Stiernottadt. H. .Jarqiteq, and Cooper. Gregory F..
Bounded Conditioning: Flerible Inference for Decisions Under Scarce
Resoutrces. Techoqical Report KSL-89-4.2. Stanford Kniowledge Systems
Laboratory, 1989.

(291 Howard. Ronald A.. Information Value Theory-, IEEE Transactions on
Sy~*em. Science and Cybernetics. 2(1) (1966) 22-26.

(301 Rkm 0. 1I. and Kini. C.. E.. Fast Approximation Algoritlhms for the
Nimpwkc and Sumu of the Subset Probletus, Journal of the A0CM. 22
(INS) 403-468.

[311 Kaelbling. Leslie Pack. Goals am Parallel Program Specifications. Pro,-
rordinigs AAAI-88. 5t. Pat. .1/inne.qota. AAA[. 198R. 60O-65.

(:32] Kanazawa. Keiji and Dean. Thomas. A Model for Projection and Ac-
tion. Proeedings IC4I 11. Detroit. Vlichaigan. IJCAI. 1989. 985-990.

321



[331 Korf. Richard. Real-Time Heuristic Search: New Results. Prorcdings

.4AA.-88. St. Pail. 11in sota. AAAI. 1988. 139-144.

[:34] Laird. J. E.. Newell. A.. and Roseublooui. P. S., SOAR: An Architecture

for General Intelligence. Artificial Inhlligenc.. 33 (1987) 1-64.

[35] Meidenhall. XV.. lr odurtnn to Linear fodol. arid the De.sign and
A naly.U of Experiments. (Wadswort h. Belmont, California. 1969).

[361 Minton. S.. Carbonell. J. G.. Knoblock. C. A.. Kuokka. D. R.. Etzioni.
0.. and Gil. Y.. Explanation-Based Learning: A Problem Solving Per-
spective. Artificial Inlrlligcncc. 40 (19.R9) 63. 118.

[37] Pearl. Judea. Probabilislic Reas(.,iv:i in Intelliqent S.Ystents: Net-
works of Plausible lnference. (Morg;z-Kaufmann. Los Altos, Califor-
nia. 1988).

(38] Raiffa. Howard and Schlaifer. R.. Applied Statistical Decision Theory,
(l1arvard University Press. 1961).

[39] Roqrnschein. Stan. Synthsizing Inf-rination-Tracking Antomata from
Environment Descriptions. In Brachnan et al. [6], 386-393.

[40] Russell, Stuart J. and Wefald, Eric I., On Optimal Gaine-Tree Search
using Rational Meta-Reasouing, Proceedings IJC4I 11. Detroit. Michi-
gan. IJCAI. 1989. 334-340.

[41] Rosseil, Stuart J. and Wefald. Eric I., Principles of Metareasoning, In
Brachman et al. [6].

[42] Shaclter. Ross ".. Evaluating Influence Diagrams. Opcrationst Re-
scarch. 34(6) (1986) 871-882.

[.13] Simon, Herbert A. and Kadane. Joseph B., Optimal Problem-Solving
Search: All-or-None Solutions. Artificial Intelligence. 6 (1975) 235-247.

[44] Smith. David E.. A Derision- Theonrtic Appronch to the Control of Plan-
ming Search. Report No. LOGIC-87-11. Stanford Logic Group. 1988.

[45] Weyhrauch. R.. AN.. Prolegomena to a Theory of Mechanized Formal
Reasoning.. I rtificial Intclligcncc. 13 (1990) 133-170.

322



-w

Chapter 9

Learning in Planning and
Control

In the problems considered in previous chapters. we are given a model of the
physical process we are trying to control and a specific trgoal to achieve or
performance index to maximize. The model provided may not be the most
accurate model possible, but once given there is no attempt made to improve
upon it. In order to choose appropriate actions to take, the controller has
to predict the consequences of its actions as those consequences relate to
the goal or performance index provided in the problem specification. In this
chapter, we consider problems in which the system can use its experience.
the perceived record of its interaction with the environment, to improve
upon its performance by improving its ability to predict the consequences
of its actions.

The concept of learning, as it is used in everyday speech, is difficult
define precisely. Intuitively, leanting has something to do with changing
behavior in response to experience. However, if we were to equate learning
with changing behavior in response t6 experience, we would be obliged to
say that using sensor data to determine what action to take next was a form
of l.so. Rather than debate what is and what is not learning. we simply
coop-I word for our own purposes and equate it with certain forms of
funet appiwimation.

In the simplest form of function approximation for control. we assume
that some aspect of the environment can be modeled by a particular func-
tion. We generally assume that this function does not change over time. or.

O(1990 Thomnu Dean. AU rights reserved.
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if it does change, it changes 'cry slowly. The control system is given exam-

pdes in the form of inputs to Ih filliction aid Idheir corresponding outpilIs.
From these examples. the system is supposed to find an approximation to
the function of interest that agrees on the examples seen so far and gener-
alizes to those that it has not seen as .vet. This type of learning is called
superrised leat-ning since the control system is told exactly what is expected

for each input provided during learning.
We talk about approximai ions instead of exact functions for a nutubtlr

of reasons. By specifying in advantce a parameterized family of functions to
represent the function of interest, we call often sitiplify the search involved
in finding a candidate function. The paranteterized family of functions also
allows us to lniit the amount of storage used to represent the function of
interest. One drawback to the use of a restricted family oi functions is that
the function of interest may not belong to the specified family and so we
must choose the function that best approximates the function of interest..
A second reason for using approximations is that the control system has to
continually respond to its environment. and. at any given point in time. it
wiUl want to use whatever information it has so far to guide its choice of
action.

What constitutes a good approximation will depend od any number
of factors relating to the performance of the controller. For instance, the
amount of storage required to represent the function, the amount of time
required to evaluate the function for a given input. and how the results of
evaluating the function impact on the ability of the controller to achieve its
goal or maximize its performance index are all factors that have to be taken
into account in evaluating a given approximation.

In previous chapters. we represented control problems and their solu-
tions using a variety of functions. For instance, the'evolution of the state
of a dynamical system was represented as a function from states and inputs
to states. and a performance index was represented as a function from se-
quences of states and inputs to the real numbers. A typical control scheme
inight involve enumerating a set of possible courses of action. predicting
their consequences in terms of the state trajectories corresponding to the
predicted evolution of the system state. and then comparing the various
courses of action by applying a value function to tie corresponding state
trajectories. This is roughly the approach taken in Chapter 6 with respect
to stochastic dynamic programming and in Chapter 7 on using Bayesian
decision theory for planning.

In this chapter. we consider problems similar to those investigated in

323



Chapters 6 and 7. In particular. we model the dynamical system as a
stochastic process. and we assunie a separable value function in which the
total value of a state trajectory is the (temporally discounted) suni of the
value (reward) at each state. The big difference between the problems of
this chapter and those of the earlier chapters is that the controller will not
be given the state-transition probabilities for the dynamical system nor will
it be given the inmtediate reward function.

There are two basic approaches to building a controller for problems
in which the dynamics and rewards are not initially specified. In the first
approach, the controller attempts to learn the dynamics and rewards, and
then constructs an optimal policy for the resulting model as in Chapters 6
and 7. We call this approach the cxplicit-modcl approach. In the second
aplproach. the controller attempts to learn an optimal policy by construicting
an evaluation function to use in selecting the best action to take when in
a given state. The controller constructs this evaluation function without
recourse to an explicit model of the system dynamics. and so. while the
system cannot predict what the state resulting from a given action will be,
it can determine whether that resulting state is better or worse than the
state resulting from any other action. We call the second approach the
dirrct approach.

In the explicit-model approach, tIhe control system has to lean two func-
tions. First. it has to learn the dynamics. a function from states and actions
to distributions over states. Second, the system has to learn a function fron
states and actions to the real numbers. From these two functions. the system
constructs a third function, a policy or control law. from states to actions.

Of course, it is not as simple as. learn the dynamics and rewards. and
then construct a policy and follow it ever aftir. The control System has
to continue to operate while it is learning the dynamics and rewards, and
this introduces some complications reminiscent of the interaction between
observation and control in systems for which the separation property does
not hold. The problem is that the controller has to visit all of tile states
and try out all of its options in every state sufficiently often to construct an
accurate statistical model. This means that the controller has to systemati-
cally explore its environment and experiment with various policies in order
to ensure that it will construct an optimal policy.

In the direct approach. the system also learns two functions. First. it
learns a function from states to the real numbers. This function is essentially
the value function for a fixed policy introduced in Chapter 6. but here we
attempt to learn this function without the use of an explicit dynamical
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model. Second, the s vstem learis a fimction frnn slates aid actions to the
real nurnbers that is used for selecting what action to take next. Here again
the problem of exploration and experimentation comes lp. The calculation
of the value function assumes a fixed policy, but the controUer has to deviate
from the fixed policy in order to explore its environment in sufficient detail
to find the optimal policy.

In both the explicit miodel and direct approaches, the ultimate objective
is to learn all optimal policy, a (m'cliort lromi states to actions I hat mmaxinmizes
expected cumulative discoutted reward. The system does not, however,
learn by being given examples of states and the optimal actions to take
in those states. Rather, the system performs actions in states and is given
feedback in the form of rewards. This type of learning is called reinfor-cenent
learning.

Reinforcement learni-g is complicated by the fact that the reinforcement
in the form of rewards is often intermittent and delayed. The controller
may perform a long sequence of actions before receiving any reward. This
makes it. difficult. to attribute credit or blame to actions when a reward
finally is received. In chess or checkers, reinfurcement occurs in the form
of lost pieces or lost gaies. and the reason for losing a piece or a game is
seldoim coimipletely de to the last action taken before the loss. The problem
of attributing credit or blame in such circumstances is called the credit-
assignment problem, and any solution to the problems addressed in this
chapter will require a solution to the credit-assignment problem.

The rest of this chapter is organized as follows. First. we consider some
basic techniques for learning functions. We then return to the problem of
learning an optimal policy, concentrating on the direct approach described
above. In looking at the problem of learning an optimal. policy. a number
of coniputational issues become critical in considering problems with large
input spaces. We consider approaches that address the problem of coping
with large input spaces. We then take another look at learning optiimal
policies in terms of learning rules. Finally, we consider some issues concerned
with the ability of a learning system to perceive the true state of the world.

9.1 Function Approximation

We characterize a function-learning problem in terms of

0 a domain set X,
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* a range set 1'. and

* a set of candidate fuiirtions F = {fX - V}.

In the cases we are interested in. the domain is often the state or output
space of a dynamic system. and the range is often the input space of a
dynamic system or the real numberq in tie case of learning a value function.
In most cases. the set of candidate functions can characterized by a finite
set of parameters.

For instance. in the case in which X = Y = R. the set.

{Co +CIX + C2X2 + C3.rICoC.C2.C 3 E R}.

represents the set of all polynomials of degree 3 or less. and is characterized
by four real-valued parameters.

The size of the parameter set is often a good indication of the storage
requiired for a given finction learning prol)lem. In some ca.ses. the storage
required for a problem is equal to the size of the domain set. For instance,
suppose Ihat the domain set is a finite subset of the integers, X C Z, and
the range is the real numbers. Consider the set of candidate functions,

{, Ci~i(-T),C'iE R,

iexI

where i is the characteristic or indicator function for the singleton set
consisting of just i and defined by

1 if X= i
2"~z= 0 if X54i

In this case. we have one real-valued parameter for each element of X.
It may be difficult, impossible or even unnecessary to characterize the set

of candidate functions using a finite set of parameters. It may be difficult or
impMik if the function varies erratically or randomly over some portion
of i8W min. It may unnecessary if all we require is an approximation of
the f~ction. For the problems we are interested in. a good approximation
will suffice for acceptable control. For instance, in learning a value finction
for control. all the controller cares about is whether performing one action
is better than performing another: being able to compute an exact value or
even a value to 10 significant digits is not likely to improve the performance
of the controller.
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Let X be any set. {X,11 < I < n) partition N. and Y = R. Consider
the set of candidate functions.

I J,(X)ICi E R}I

where. in this case. I, is the indicator fmnction for the set .i,

I ifxEX,
( 0 ifx 'N

In this case. we have partitioned the domain into a finite set of regions and
assigned a single real-valued parameter to each region. This allows us to
represent exactly a class of piecewise-constant functions with n pieces where
the pieces correspond to the regions of the partition. We can approximately
represent a much larger class of functions.

You can probably think of several, more general methods of character-
izing classes of candidate functions. For instance, the set of regions need
not define a partition; the regions might intersect or the set might not cover
the entire domain. In addition. the set of regions need not remain static
thoughout the learning process; their boundaries might be characterized by
additional parameters.

The regions referred to above are often called receptive fields in the lit-
erature on artificial neural networks. In some cases. each receptive field is
characterized by two parameters. a point in the domain set. R'. and a diam-
eter. together describing an n-dimensional spherical region of the domain.
Each receptive field has associated with it a small amount of storage used to
represent some aspect of the behavior of the function in the region covered
by the field. These fields can be moved about to obtain a better approxi-
niation of the function. Large fields can be used to represent the behavior
of the function in regions where not much is going on. Several small fields
can be used to represent the behavior of the function in regions where a lot
is going on.

In addition to allowing the regions to vary, the behavior of the function in
a given region can be characterised by any finitely paraneterizable function.
The variety of learning problems is considerable, and it is not our purpose
here to survey those problems in any detail. In the following. we consider

'Let I. = {X-.X 2 ...... .). We say that f., partitions X just in cue. ., C X
for < < ,,.UX. = X. and X, n .X, = for i i and such that s#.
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a verv restricted sort of function learnig in order illustrate some b~asic
priniciples and priovide qoiie inacthiery Ila( will be of use in subsequent
sect ions.

In the following. wve assume that the range set is the real ntumlbers. and
consider only very simple sets of candidate functions of the loim.

F = mo()wi. Oid) E R}

where o, X - R is an arbitrar ' function, and we use the notation, u'j, for
the parameters to indicate that they are variable weights.

'T he set of functions. f4j}. are often called features in the literature.
Stich features inight iodel measurements taken by different sensors that
detect whether or not a specific property' holds of the input. x. lIn general,
each function. i, processes time input in somne manner and issues a real
number which is wveighted 1)y the parameter. uwj, and combined with the
other features. The funclions so represented are linear combinations of the
features though the features themselves need not be linear functions.

We caii rewrite

in vector notation as

{wO(x)fw. O(x) E R') ,

where the first term, called the pramneter vector, is defined by

time second term. called time feeduvetr 'lor. is defined by

OW )= (0'm1W. 03W r).-

and the implied operator separating the two vectors is the inner product.
To indicate a member of F. it is enough to specify a vector WE R".

Learning generally proceeds by incrementally adjusting the weights to spec-
ifv an updated parameter vector. At any given point, the learning system
will have seen a set of input/output pairs.
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where y(x) denotes the output of the fmnction we are trying to learn for the
input. x. One standard criterion for selecting weights is to determine the
parameter vector that minimizes tle tiean of the squared error. That is. we
wish to find w E R' mininiizing the simi.

1k

where the error tern. c(z). is defined as

((.r) = .r)- wO.r).

If we are willing to keep around the entire sequence of input/ouput pairs.
we could compute the parameter vector minimizing the mean of the squared
error directly. The mean of the squared error is a convex function of the
weights and hence it has a. unique minimum. As a consequence. we can
coirpute tlle paramneter vector minimizing the sum of the squared error by
simply setting the gradient,

to 'ero and solving the resulting system of equations for the weights. Al-
te, i atively. we can use gradient-descent search methods to find the weights.

Re all that gradient-descent search proceeds by making small changes to the
parameter vector in the direction indicated by the negative gradient.

It is generally assumed. however. that either the system cannot afford
the storage to keep around all of the training data. or that it would be useless
to keep around all of the training data given that the function we are trying
to !earn changes gradually over time. In keeping with this assumption. we
arp interested in methods that proceed by making small changes to the
p",ameter vector on the basis of the last example.

Let wt and xt denote. respectively. Ihe parameter vector and the example
at ime t. In a manner similar to that employed in gradient descent. we make
ad ustments to the parameter vector omi the basis of the last example. using
th" following update rule.

Wt+i = Wt + /,ft(.rt)O(.rt).

where the error term in this case is defined as

= /(x) - wo(.r).
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miid I Ilie scalar. 1. is I lie leariiiig rate or g(ii of I lie uipdate rule. This tipd(ate
Ii 111 is ca lied Ithe hcast Innl squarr- ( [NI S) rue anid is dlie to Widrow an
hloff [21). T'his rtile is also closely' related to thle 1wirtptron learninig rule of
Rosenblatt developed for patterit classification [1n].

If there is storage available, we can improve the estimate of thle gradient
by taking into accounit more than just the last examuple. ('eieraliziiig oil the
LNIS rule. we have the rule.

tr

t=t-k-l

accounting for tile last k examples.
In order for tile a bove learning Inethlodl to converge to a fixed parameter

vector closely approximating t lie fiuction of interest, the seqluenice of train-
ing examples has to represent a. sufficiently varied subset of tlte set of all
such examples. Exactly what constitutes a. sufficiently varied set of exam-
ples will depend utpon the class of functions being learned. lbut. intuitively,
you want examples drawn from across the domain with more examples in
regions where the behavior of the function is more complex.

Experiment 1 To ilustrate the performance of the functiQni-learning ap-
p~roachl described above, sup)pose that the target function is the cubic poly-
nomial.

g(x) = 1.20 - 0.2x~ + 3.1x 2 
- 0.9z3I.

and the examples are drawn (pseuido) randomnly from the set.

Figure 9.1Ai shows the performance of the LMIS update rule with k = c (i.e.,
uise all of the examples encoun tered so far) and J3 = 0.1.2 The approximation
after .100 examples is

w(z) = 1.311442 - 0.290810x + 2.90071-9z' - 0.763296x3.

Figure 9.1.H1 k = 1 shows the performance of the LNIS update rule with
k = 1 (i.e.. use only the last example encountered) and 3 = 0.1. The
app~roximnation after 400 examples is

wo(x) = 1.292668 - 0.238687-.r + 2.966245xr2 - O859~

'Hideki Isozaki supplied the data for the graphs shtown in Figure 9.1.
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Figure 9.1: Performance of the generalized LMS rule

331



Now we have techniques that will allow us to select a good approximation
from a set of candidate functions given a set of training examples. We can
utilize any a priori knowledge we have of the function of interest to bias
the learning process by selecting appropriate features to constrain the set of
candidate functions. In selectin a set of features to represent the problem.
one can make the learning problemn I rivial (e.g.. yout select the fiinction of
interest as one of the features) or impossible (-.g., the function of interest
cannot be closely approximated by a linear combination of the features).

The performance of a function approximation technique is measured in
terms of the amount of storage required. the time. required for each update.
and the expected accurracy of the approximation (e.g.. the mean squared
error) as a function of the number of training examples seen so far. There
are a host of other function approximation techniques. but their perfor-
1a.ce invariably depends ipou starting with a good representation. Thp

linear method utilizing the LMS rnle described above is probably the best
iderstood method, and, despite its limitations (r.g., it can only be used

to represent functions that can be described as a linear combination of the
features), it is often the method of choice in building practical learning sys-
tems.

The learning methods discussed in this section can also be viewed as
special-purpose memories. In the case of there being one parameter per
member of the domain set, learning corrsponds to just filling in the entries
in a large table. In some cases. the set of features allow the learning system
to generalize from the set of examples seen so far to those that it has yet
to see. It ia this notion of generalization, that people often closely associate
with learning. Once again, the ability of a system to generalize depends
critically upon the representation chosen.

9.2 Policy and Value Learning

As indicated in the introduction to this chapter. we intend to narrow the
scopimtn discussion to focus on learning ait opt imnal policy for a stochastic
wqv" decision making task. We are interested in any route to the goal
of lvhg an optimal policy, but t lie discussion of Chapter 6 suggests one
relatively straightforward approach. The approach is to learn the tranisi-
tiun probabilities and the reward function altd then employ Howard's policy
iteration technique to compute the optimal policy.

Let X be the state space of the dynamical system. and U be the input
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,pace. Assuming iiat it is possible to directly observe the state of the
dynamical system, tite controller would start by executing a random walk
(i.e.. it would select. its actions according to a uniform distribution). Let
6: X x U; x X - Z be the liTmsition-satIistics function. and It : X x U x
X - R x Z be the rf waryl.statistics function. Initially, let 6(.r. u.x') = 1).
and p(x. u. x') = (0.0) for all r. .r' E X and u E U. Every time that the
controller performs an action, a. in state. x. resulting in next state. x'. the
controller would update the trausition-statistics function by incrementing ,
(x. u,.r') by one. Similarly. every time the controller receives a reward.

r, in state. x', having started in state. .r, and performed action. u, tihe
controller would update the reward-statistics function so that ?t(x, u,.r') =
(.q + r. it + 1), where prior to the update p(;r, u. .r') = (.s, it). After a period
of time determined by how accurate a model is required. we would compute
estimates of the transition probabilities.

Pr(z(t + 1) = z'lz(t) = x. u(t) = u) M . X')

and rewards,

R(zu.z')= . where j(x,u.z')= (a.n),

and use policy iteration to compute the optimal policy given the estimates
for the rewards and transition probabilities.

In theory, the approach outlined above is perfectly reasonable. There
are, however, disadvantages. First, it may not be desirable for a robot to
perform a random walk during the training period; the robot might become
a nuisance or damage itself. Second. the transition probabilities may change
gradually over time: *a robot with a fixed training period may construct an
initially optimal policy, but that policy might become significantly subopti-
mal as the transition probabilities change over time. Third. policy iteration
is coimputationally rather expensive. We consider each of these three disad-
vantages in turn.

With regard to performing a randoin walk during training, the robot
has to explore the space of possible state transitions thoroughly enough to
obtaim reliable statistics. This does not mean. however, that (lie robot has
to perform actions that are obviously dangerous or socially incorrect, since
those actions will, presumably. never be a part of an optimal policy anyway.
One obvious method for avoiding dangerous or antisocial behavior is to
build the learning system on top of a base controller that only exhibits safe.
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socially correct behavior. III this case. the out puts of the Inaruing systeln

are the inputs to the base controller. This basic idea of building a learning
system oIL top of an existing controller applies to any approach to learning.

With regard to the transition probabilities changing over time. there
is no need to have a fixed training period in the scheme outlined above.
The controller could continually gather statistics on the rewards and tran-
sition probabilities and periodically update its policy. The only problem is
that the controller may not obtain adequate statistics if it always follows
what it believes to he the optimal policy. Hence. in addition to periodi-
caly updating its policy, the controller will have to periodically engage in
some exploratory behavior in order to assure that its estimated rewards and
transition probabilities are accurate.

The problem in dealing with computational costs is a bit more trou-
bling. Policy iteration is polynomial in the sizes of the state and input
spaces. Value determination, which is performed once in each iteration of
the policy iteration procedure. requires solving a system of IXI simultaneous
linear equations. If most of the ransition probabilities are not zero. simply
representing this system of equations takes O( IX12) space. but keep in mind
that. in the case of mostly nonzero transition probabilities, it will require
0( IX x U x XI) space just to store the transition probabilities.

This problem arising from the sizes of the state and input spaces is often
called the curse of dimensionality. Generally, the state and input spaces can
be viewed as a cross product of subspaces. For example, we might represent
the state space. X. as an n-dimensional product space.

.= [J x-

where {X,. X 2 ,... -,, are the component snbspaces. Each subspace. Xi,
might represent a different property of the environment (e.g.. the robot's
current position. orientation, or amount of remaining fuel). Some of the
component subspaces might represent a finite discretization of an infinite
space.

Individually the sizes of the suhspaces might he modest. but the prospect
of quatifying over a product space of size.

lxI= ixil.

can be daunting from a computational perspective. This can he especially
frustrating if large portions of that product space are unreachable (e.g.. if the
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robot's battery is completely dis tlarged it cannot have a positive velocity).
or uninteresting (f.g.. the robot might b- able to detect light. bt. for most
tasks. the intensity of light has no influence on the robot's choice of action
as it. navigates using sonar).

The curse of dinensionahity raises a deep issue that will not go away: it
is not problem that can be solved. In the following section. we return to this
issue. but for the time being we ignore it and consider some approaches that
circumvent some of the problems that arise regarding computing optimal ,
policies.

Suppose. for the sake of argument. that the controller has a time- and
storage-efficient procedure that, given a state and an action, returns a
(next) state according to the distribitions specified by the dynamical sys-
tem. Given this pro-cedure. which we refer to as the tmnsition omle, and
a reward function. we can now compuite an optimal policy by using the
following simple stochastic approximationi (Monte Carlo) routine for value
determination in the standard policy iteration algorithm.

lHere is the stochastic value determination routine. For each x E X,
compute V(z) as follows. Use the transition oracle to determine nz state
transition histories of length k,

X1., UI, 1 . X 1,2 . Ul,2-. .... k I ,A.

X2.1, U23, Z2,2 , U2, 2 , ... , U2,k-I. Z 2 ,k

Xm.1, U,.1 Z.n2, Um,2,. • •, m.k-I - X.,.k

where rBj = x for 1 < j < m, the actions are determined by the current
policy.

I(x,.i, um,,) =

and the state transitions are obtained from the transition oracle. We obtain
the approximate value of the state. z. given the policy. Y1. as

1 m 1 
k

V(") - A'R(xJ.i, , xj.i+1).
n.j---- i---1

Tids approximation converges to the true value in the limit as it and k tend
to infinity. If in addition to the transition oracle. we are given a time- and
storage-efficient means of computing rewards, a reward oracle. then we can
compute the optimal policy in a very space efficient manner by some careful
programming.
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Of course. the point of this oracle busiUess is that we do indeed have
s'Idi oracles, at least in a, ianiier of speaking. The world is our oracle: tile
rewards and state transitions that it visits upon us are exactly the state
transitions and rewards of the physical process that we attempt to capture
in our dynamical models.

In the remainder of t0is sectio,. we consider methods for learning opti-
nial policies that rely upon performing experiments in the real world rather
than upon explicitly modeling the dynamics and rewards. These methods
emphasize storage efliciency. and. ill some cases, were originally conceived
of as models of learning in biological organisms. In light of the issues that
arise with regard to high-ditnensional state and input spaces. this focus
on storage-efficient methods is likely to have important engineering couse-
quences as well.

In the following approach, we assume that the controller has adequate
storage for a value function. V : X - R. In addition, we assume that the
controller has storage for a function to be used in computing the policy.
This tight just be a policy function. q : X - U, or it might be something a
bit more complicated, for instance, a function from states and actions to the
real numbers providing some expectation of cumulative reward. We assunime
very little in the way of computation at each state transition. We begin by
considering how to learn the value function for a fixed policy. starting with
a very simple case.

Consider a finite-state. deterministic dynamical system with a fixed pol-
icy. We assume that every state is reachable from every other state. and
proceed as we did in the previous section on function approximation. Let
X = {1.2.....,n). and v E R". Since v changes over time. we provide a
temporal index. vi, to distinguish between thd values at 'different points in
time. Siuilarly, let xt and rf denote. respectively, the state and the reward
at time f. Let Vt(i) = vtrij, where vf~i] indicates the ith component of the
vector vt. We define the vector of features.

W() = (o1(.r). 62(X) ..... (,(X)).

wheir

;() = 0 if X i

Consider the following simple update rule.

Vt+I = Vt + frt+I - \'d.rt)J0(.rt).

336



In this case. if the system is allowed to rin ind finitely. the parameter vector

will converge to a fixed value given by V(xt = (,t+ i
To handle sequential decision problems of indefinite duration with dis-

counting rate. A. for rewards, we employ the following variation on the above
rule.

Vt+1 = Vt + [rt+I + AVt(xr+ 1 ) - Vt(.t)](0(.Tt).

Here also the parameter vector converges to a fixed value. but. in this case.
the value is identical with tlat obtained using the value determination rou-
tine of Chapter 6.

The above equations should look vaguelv familiar. They have the same
basic form as the LMS learning rule introduced in the previous section. II
the discounting case, the error term is just the difference between the current
estimate of the state value. V(zt). and the revised estimate of this value.
rt+1 + AVt(xt+ 1 ). The abo, , '- sinip!ifies to just

V t+1 (xt) = rt+l + AVt(xt+i).

The stochastic case is somewhat. more complicated. We assume a com-
pletely ergodic Mrkov process so that every state is visited infinitely often.
In this case, the revised estimate of the value of the state, xt = i, should be

rj+i + A E-' . pVt(j),
J=I

where p,, is the transition probability defined for the current policy. Of
course, we do not have the transition prcha;i2ities so instead we simply
make use of what we do have. The update rile for the stochastic case is
exactly the same as the rule for t lie deterministic case with one variation,

Vt+i = Vt + 3[rt+1 + AVt(.'t+i) - Vt(rt)].(xt),

we introduce a learning rate. 0 < 3 < 1. as in the LMS learning rule. In the
stochUtic case, the values do not converge to the values indicated by value
determination. Instead, they fluctuate about the expected values according
to the mst recent state transitions. The variance in these fluctuating values
is bounded, and can be made arbitrarily small by an appropriate choi,'e of
3. or reduced asymptotically to zero by choosing an appropriate .chadule
for .3 (.-. ! = ).

Note the revised value estimates in the above equations are just a special
case of estimating long-term ret uins on the basis of some number of observed
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rewards. In general. we can make use of any number of ohserved rewards
using estihates of the form.

\'t(x,) = rt+1 + Art+2  + + I rt+,-1 + , 't+(.rr+).

Estimates wil h more observatious are generallv better in that t heyv provide
more accurate esti'ates and speed learning, but they also require more
memory and computation.

Experiment 2 Provide an examlple illutstrating the steady-state perfor-
miance of an ertimation routine using the above update rule. Use the mean
of the squared error as an evaluation metric and the robot-courier problem
a.q a test. case.

Now that we have a method for comlpting the value function for a given
policy. the iiext step is to develop a niitlhod for improving the current policy.
To that end. we introduce the idea of learning the expected value of actions.
For each state. r. and action. u. we allocate nientory, W(x. u). for storing
an estimate, called an action value, of the expected value of performing that
action in that state. Initially all the action values are zero. The update rule
uses the value function introduced in the previous paragraphs.

Wt+I(Xt. ut) = Wt(xt, it) + ct[rt+l + AVt(zt+i) - Vt(xt)],

where ut is the action taken at time 1, and all other actions values. Vt+i(;r, it)
"'h that either x # xt or u 6 ut, remiain the same. The intuition behind
t .d is as follows.

Recall that V is the estimated value function with respect to a particular
policy. If ut is the action indicated by the current policy in state xt, then the
error. [rt+l + \Vtdxt+l) - Vt(xt)], should be zero on average. On the other
liand. if ,ti is some action other than that recouniended by tie current
policy, then the error will he greater than, less than, or equal to zero on
average. depending oIL whether or not taking that action al Ihen following
tie ctrimt policy thereafter results in a higher. lower, or identical expected
vaht& compared to that for the reconinended action.

Note that. assuming the controller sticks to a fixed policy, the values
specified by W with the exception of those corresponding to the recoiu-
inendations of the fixed policy 'vwill not converge; rather. they% are ikely to
increase or decrease without bound.

These values do. however. provide its with useful information in deciding
how to improve the current policy, the relative values tell its w[hat actions to



change in tie current policy in order to define aii improved i licv. Consider
the following approach.

1. Following the current policy and updating only the value function,
perform a number of steps so that. the values for the current policy are
good approximations of the actual value function.

2. Set Wt(x. u) = 0 for all x E X and a E U where t is the current time.

3. Following a random policy. and. tIpdating only the action values. per-
form a number of steps so that the relative action values are in keeping
with the actual expected action values with high probability.

4. Using the relative action values. choose a new policy.

77(x) = arg max W(x. u).
U

and set it to be the current policy.

.5. Go to Step 1.

The above method directly niinics lhe policy iteration routine intro-
duced in Chapter 6 using stochastic methods instead of exact methods for
the value determination and policy improvement steps. One drawback is
that it is likely to take a very long time to converge to an optimal pol-
icy. As ain alternative to this method, researchers have tried approaches
that involve running stochastic value determination and policy improve-
ment continuously. Instead of switching back and forth between a current
estimated best policy and a random policy, these approaches generally em-
ploy a stochastic policy that, on average, chooses actions from the eurrent
estimated best policy, but. according to a fixed distribution, occasionally
deviates and experiments with actions other than those recommended by
the current policy. It generally helps if the value function is only updated
if the action selected is the same as the action recommended by the current
policy.

No one has as yet proved that these alternative approaches converge to
the on.L-ual policy. though they do appear to converge in practice. However.
there is one learning method that has been shown to converge in the limit.

Tlds method is also interesting because it is a stochastic variant of the
value iteration approach described in Chapter 6 rather than policy iteration
approach.
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Rec!ll that valie itPration ic a terhnique that uses sluccessive approxi-
mation to compute a value fnction that converges ii the limit to the vahle
function for the optimal policy. The policy at each point in time is deter-
mined by the actions that maxinize the current estimate for the optimal
value function. Instead of learning be0 h a value function and a set of action
values. the controller learns just the action values. but, in this a))roach. tile
action value, are updated by the following learning rule.

W,+t(.,,. U,) = W,(., u,) + oI,., u,)[,',+l + \ nIax W ,+l. u) - W,(X,)].

where. ii order to guarantee convergence, we have to vary the learning rate.
at. over time according to a schedule satisfying certain requirements.

Note that in order to guarantee that the procedure will find the optimal
policy in the limit. it is enough to to guarantee that W converges to the
optimal value function in the limit. To guarantee that W converges to
the optimal value function in the limit. it is sufficient that. for each pair
consisting of a state. z. and an action. u. the following statements hold.

1. The controller attempts action. u. in state. x, an unbounded number
of times as t - oo.

2. The learning rate ni(x, u) tends to zero as t - oo.

3. The sum trd . u) increases without bound 00.

Actually. these are very modest requirements. The first statement just re-
quires that the controller not permanently ignore portions of the space of
states and actions. The second and third restrictions are satisfied by a
learning schedule of the form. aC(z. u) = I"

Experiment 3 Provide an example illustrating the performance of the two
learning approaches described above. Once again, use the mean of the
squared error with respect to the optimal value function as the performance
metric and the robot-courier problem as the test example.

At this point, we can learn an optimal policy. We have a method that is
guarantt, to converge in the limit and that appears to work well in practice
for simple problems. The learning methods considered in this section are.
generally time- and space-efficient with the exception of the memory required
for storing the re(uisite functions. Since these functions generally require
O(I.I) space. it it is worthwhile considering methods to reduce this storage
overhead. The next section is concerned with exactly this issue.
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9.3 Coping With Large Input Spaces

Let X be the domain of the function we are interested in learning. Suppose
that 1X1 is large; so large that it is impractical to allocate storage for each
x E X in the case of a finite X or for each region of a reasonable finite
discretization in the case of an infinite X. If the function we are trying
learn has complex behavior throughout its domain and that behavior does
not generalize, then we are in trouble. However, if we are only interested *.
in the behavior of the function in certain regions of X (we assume that we
do not know these regions in advance or otherwise we would simply restrict
the domain), or the behavior of the function is only occasionally of sufficient
complexity to warrant significant amounts of storage for its approximation.
then we can. at least in certain circumstances. learn a good approximation
usipti an amount of storage significantly less than that required by X.

The basic idea is quite simple: we employ hashing techniques to map a
large space into a significantly smaller one. The smaller space is represented
by a finite number of storage elements containing the parameters for the
family of candidate functions. Learning proceeds by adjusting these param-
eters using your favorite learning rule. LMS in the cases that we consider.

The method was originally conceived of as a computational model of
motor learning in the cerebellar cortex. It was discovered by James Albus
[1] and David Marr [8] independently, but it is generally referred to as the
CMAC approach. after the name given to it by Albus, the Cerebellar Model
Articulation Controller [2].

As was mentioned. the basic idea is to map a large space onto a smaller
one using hashing. As with all hashing techniques, there is always some
danger of rollision, the results of mapping different elements of the larger
space onto the same element of the smaller space. In some cases, this is
a good thing (e.g.. when the value of the function is the same for each
element of the larger space). but. in others. it degrades performance. To
avoid the bad consequences of hashing. CMAC employs several mapping
functions each of which maps each point in the domain into a different
storp element as shown in Figure 9.2. The output of CMAC for a given
elermm of the domain is the average of the values in the storage elements
determined by all of the mapping functions. In the following, we introduce
notation to describe CMAC more precisely.
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Figure 9.2: Mapping a large domain onto a smaller one
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We begin by defining in p~artition$ of thle set X.

X'21. X. 2, X1. 3, -

X2.1. X2,.2. X2.3 ....

A sinmple anid effective inetliod of generating t le in part it ions for X R"
is to create ani initial p~artition,. and then mnodify it to create the fit - I 'r
reinaining partitions. Each of remtaining pa rtitions is generated by uniformly
displacing tile regions of the initial partition by a fixed offset. so that no two
partitions have tile saute region boundaries.

We need to define a function inapping X to time smaller set {1. 2..ii}.
To provide tile redundancy required to avoid tile problems caused by hashing
collisions, we define in functions, Mapi : X - {1, 2..i), 1 < i < in, one
for each of the in partitions. Time it iapping function is definied,

Mapi( x) = Ilali( Regioni( x)).

where Hash : Z - {1, 2...., n} is the hashing function. and Regioni : -

Z is defined as
Regioni(z) = j such that x E Xi.j.

In the case of X = R4, if the regions of Ilime p~artitions are isotlietic
rectangles (d-dimensional rectangular regions aligned with the coordinate
axes), then computing the region containing T is simple.

lit the simplest case of learning a scalar-valued function. we introduce a
pa ramnet er vector.

W (11? 1, U12. , W,)

and a feature vector.

0(7) (=1W ( 6(X)- -7).

w here
=fI if 3j. 1 5j ! rn A Niap,(xi)

0 otherwise

The output of CMAC is defined as the average of t he contents of the storage
elements determined by the in mapping functions. which is just the quantity.

k = Mlap,(.m
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or

in the case that all in mapping functions determine different storage elements
for tile input x.

The learning rule for ('MAC is just

wt+l = Wr + 3h((:t)<(Xr)

where the error at time t. f(x ). is just the difference between the output of
the function we are trying to learn given the training example presented at
time t. and the output of CMAC given the same training example,

E,(x,) = .x,) - I wO(Xt).
In

assuming here that all Pi mapping functions determine different storage
elements for the input x,.

The intuition behind this rule is fairly straightforward. Each element.
x, of the domain determines in overlapping regions: one from each of the in
partitions. Suppose for the sake of argument that these regions map onto in
distinct storage elements.3 These in storage elements will be used to encode
the approximate value of y(x), as well as the approximate values of y for the
nearby neighbors of x. Elements of the domain that are very near x will likely
determine the same Pi regions, and, hence, the same ni storage elements.
Elements that are further from z will determine few regions in common with
those of x. and hence will have few storage elements in common.

When updating the approximate value of y for z. we will also disturb the
approximate values of y for the neighbors of z, but, at least statistically, this
disturbance will be in proportion to how near the neighbors are. Very near
neighbors will feel the impact of the updates most strongly: more distant
neighbors. because they will tend to have fewer storage elements in common
with z, will feel it less strongly. Implicit in this method is the assumption
that the function we are trying to learn is relatively smooth: if the function
varie too much in a given region. then CMAC may not be able to find a
good approximation. because CMAC has only a limited amount of storage
available to represent the function over the whole domain.

'If the hashing function is doing its iob correctly,' the total number of distinct gtorage
clements determined by the mapping functions for a given input should be a significant
fraction of f.
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Experiment 4 Apply ('MAC to a simple function approximation problem.

The basic idea behind CNIAC 'ait le used in a successive refineueat.
strategy to achieve a nice iradeol" between the speed and the accuracy of
learning. The strategy is described as follows. Suppose that you want to
learn a function, call it Yl. To do so you construct a CMAC systeiu in
which the partitions consist of regions which are rather large. This CMAC
system will find an approximation to yi. call it f1, very quickly. but the
approximation is likely to be a poor one. given the coarseness of the llapping.
To correct for the inaccuracies of fl. we build another CMAC system to
learn Ihe function. Y2 = yi - fl. but this system makes use of partitions
consisting of somewhat smaller regions. This second C(MAC system will
find an approxima'ion to .q2, call it f2, more slowly than the first C(MAC.
but it will still represont Y2 more accurately Ihan fj represented Yl, and the
sum of the two functions. 1j + f2, will be a better approximation of yl than
f, alone. We can continue in this manner to define a sequence of C(MAC
systems each using finer partitions than the one before it in the sequence,
and each providing a correction for the function corresponding to the sum of
functions provided by the CMAC systems occurring earlier in the sequence.

One way to implement the above strategy is for the learning system
to apply each CMAC system in stages, starting with the system using the
coarsest partitions and proceeding to those using finer partitions. Each
CMAC is run for a fixed number of steps using a learning schedule that
lends to zero. This sequential implementation has the disadvantage that
it cannot adapt if the function of interest changes slowly over time. An
alternative implementation is to run all of the CMAC systems in parallel.
using a different fixed learning rate for each CMAC such that the finer
the partition the slover the learning (smaller the fixed rate). This parallel
approach tends to learn somewhat slower than the sequential approach. but
the parallel approach is still quite fast and its ability to adapt to handle
t ime-varying functions makes it useful in a number of applications for which
the staged approach would not be effective.

VW rWr to the general approach of building learning systems using
seven& C)iLACs employing successively finer partitions as inulti-resolution
CMAIX. It tum out that implementing multi-resolution C(MAC is actually
no mom difficult than implementing the version of CMAC described ear-
lier: in some respects it is easier. We describe the basic construction in the
following paragraphs.

Suppose that we wish to build a multi-resolution CMA' consisliug of
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m (CNIACs with successivel, finer parlitinis. Becautse there are sevpral
.MA(s. we need only one partition per C.IAC to achieve the redundancy

nece.ssarv to offset the conse(ienceq of hasfhing collisions. As in the earlipr
version of CMAC, we assume mi part itions and in mapping functions. In Ilie

case of multi-resolutiou (MAC. we require that the partitions are arrangzed

in a sequence so that the ith partition represents a finer partition than the
I- partition.

For the ith CMAC. we define the parameter vector.

w j = (11i.. w ,2 ..... 1.i ),

and the feature vector.

O (X ) = (,i.£(). O,.2( X) .

where
Sif Map(.r) = j

= 0 otherwise

Each of the rn CMACs determines a function.

f, = wi', for 1 <i<M.

intended as an approximation to some other function,

fimzyi, for l < i<n,

where Yi is just the function we have set out to learn, y, and the other in - 1
finctions are defined as follows.

yi+l = y-fi. for 1 s i< m-I.

The out put of Luulti-resolutiou CMAC is the approximation.

!-f +f2 + '"+f,.

Lomeming proceeds siullaneously, using t,,sC rules.

w + 1 -= wij + d3fc.t(j)O,(xt). for I < i < Il.

where 3,i is the learning rate for the ith ('MAC. and the error for the ith

CMAC is defined by.

),.t(.r = .yi(xt) - w.tO,(x), for I < i < m.
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Experiment 5 Apply multi-resolution ('MAC to a simple function approx-
iniation problem and compare it wit 1i the version of CMAC described earlier.

("MAC is a simple. fast, anid effrctive technique for approximating func-
tions. 1here are imore powerful techniques that can solve more difficult
problems. but CMAC is a practical method that should be a part of any
engineers repertoire of techniques. We rank it alongside the Kalman filter.
proportional derivative control. stochastic dynaliic prograinuuing. and plan- 6.
ning b'y task reduction as useful component techniques for building useful
planning and control systems.

The CMAC methods described in this section by no means nullify what
was referred to as the curse of diniensionality in Section 9.2. If we have a
three-dimensional domain. but the output of the function of interest is ih1-
dependent of. say, the third dimension. then ('MAC' still has to allocate the
storage necessary to represent all three dimensions. lit addition. in order to
construct a good approximation. CMAC has to sample the three-dimensional
space instead of the smaller and completely adequate two-dimensional sub-
space. An example mentioned earlier illustrates the sort of frustration that
can result from this behavior.

Suppose we want a robot to learn a navigation function. The robot has
four sensors, a compass or bearing setisor. a position sensor for longitude,
a position sensor for latitude, and a light-level sensor. We want the robot
to learn a function from the resulting four-dimensional input space to some
space of actions. Having taken great pains to teach the robot how to navigate
when the light is at one level, we find out that the robot is not able to
navigate when the light is at any other level. What we would like is simply
to tell the robot to ignore the light level thereby reducing the dimensionality
of the learning pioblem.

What seems easy enough to accomplish in the above example is quite
difficult to achieve in general. It is hardly ever the case that one sensor
is entirely irrelevant. lit most cases, there will lbe sumbspaces of the imai
space that can replaced with spaces of reduced dimensionality. Determining
them subspace reductions in dimensionality can be complex. however. li
buikfing useful learning systems. the curse of dimensionality will probably
always plague us. In lieu of general-purpose solutions, it is hoped that
special-purpose techniques will suffice to achieve satisfactory performance
for practical problems.
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9.4 Rule-Based Learning

In the beginning of this chapter. we int roduced learidng in terms of approx-
iniating functions. The chapter as a whole focusses 1)rirnaril on learning
value functions. In this section. we generalize on this idea of learning value
functions to consider a variety of rule-based learning problems.

Value functions are used to derive policies. What we are really interested
in learning is optimal policies. All of I he techniques that we considered in
Section 9.2 can be thought of as attempting to select an optimal policy front
a parameterized class of policies. In each case. the parameterized class is
represented as a set of rules of the- form. if the current state is .. then perform
action u. where each rule has an associated parameter or rule strength. In
Section 9.2. the rule strengths were just the action values.

This parameterized class of policies is quite simple. Each rule represents
a. condition/action pair, in which the condition corresponds to the cnrrent
state of the world and the action corresponds to some control action.

In the following, we generalize to allow rules of the form.

If A, A A2 A ... A A,,, then C, A C2 A ... A Cm,

where the antecedents. {A,}, and the consequents. (Ci}. are ground atomic
formulae in some appropriate representation language. We associate with
each such rule a corresponding weight. We could introduce variables to
represent rules with quantifiers. but we will not do so here in order to keep
the discussion as simple as possible. Neither will we consider the details
of any particular representation language though there are some interesting
issues with regard to the choice of representation language. Instead. we
employ a simple database model for our discussion.

We assume a database consisting of ground atomic formulae. The con-
tents of this database change over time. as determined by the sequence of
rules applied and the information provided by the system's sensors. Let
Contentor) denote the contents of the database at time t.

Fa each rule, r. let Antecedents(r) be the set of antecedents of r.
ConssqmUt( r) its cousequents. and W( r. t) its weight or strength at time t.
We asmue an arbitrary threshold. r E R. used to determine which rules are
applied. A rule. r. is applied at time. t. just in case the following criterion
is satisfied.

Antecedents( r) C Contents(t - 1) A W(r. t) > r.
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We will consider some alternative criteria for rule applicationl ill just a l)it.
A rule is said to be atirr at t ime. t. (lenoted Active( r. t). just in case it is
applied at t. The set of conclusions available at time I is just the union of
the consequents of all the rules active at 1.

Conclusions( t) = U Consequents(r).

Active(.,t)

Control actions are initiated using pyrwceduyii attachment. Procedural at-
tachment refers to the practice of associating procedures with the presence or
absence of tuples in a relational database or formulae in a predicate-calculus
database. li most procedural attachuitent schemes, there is a program de-
signed to monitor the contents of the database. When a formula is added
to or deleted from the database. the monitor program checks to see if there
is a procedure associated with the addition or deletion of the formula. and.
if so. runs the appropriate procedure.

Finally. we define the contents of the database at t as the union of the
sensory information and conclusions available at t,

Contents(t) = Sensors(f) U Conclusions( l),

where Sensors(t) is a set of ground atomic formulae summarizing the data
available from the sensors at t.

At each point in time, the rule strengths are updated. For each rule. r,
applied at time t, the system performs the following steps. comprising what
is generally called the bucket-brigade algorithm [(i1.

1. For each rule. r'. active at time t - I such that

Antecedents(r) rl Conseqienits(r') #0

update the strength of r' using the following rule.

W(r'. t + 1) = aAW(r. t).

where a E R is a number between zero and one. similar in its use here
to the learning rate described in earlier sections.

2. Update the strength of r using the rule.

W(r.t + 1) = W(r.t) - cA"(r. t) + R(1).

where R(I) is the reward at time I.
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1 1° l 2 3 1 f I 7 1 8 1 9
W(FA1. 1) 100 80 100 100 so 100 100 80 101.6 101.6

W(RI.) 100 100 0 o too 00 so 108 108 88 120.
WtRi.t) 1O 100 1U 1U I 0 110 1 72 72 1 7 .2 1'o..6

S01m4 t) 4) {} f 4 1 { 1 {} { } {~
Contentst) 7_1) (B) (C) (..D) (B) (C) ( . DI {B) (C) A I(

R(t) 0 0 0 ;0 o 1 0 60 0 0 e' 5

Table 9.1: Changes in rule st rengt hs over time

For all the rules not applied at t. there is no change,

W(r.t+ 1) = W(r.t).

To illustrate the datahase model and the bucket-brigade algorithm, consider
the following simple example.

Let the set of rules be as follows,

RI: If A, the,, B, 100
R2: If B, then C, 100
R2: If C.', then D, 100,

where the number on the far right indicates the rule strength at t = 0 in
sone arbitrary units. Let a = 0.2. Suppose that whenever D is added to
tile database, the system performs anl action that is immediately rewarded
at a level of 60. employing the same units used for rule strengths. Table 9.1
shows the evolution of the rule strengths for 10 time steps. If the same
cycle of sensor input and rewards found in Table 9.1 is allowed to continue
indefinitely, the strengths of all three riles will converge to 2 = 300. If
the rewards are stochastic but average 60. then the rule strengths will never
converge but will average 300.

Expl iment 6 Provide an example showing how the bucket-brigade algo-
rithm might be applied to the problem of learning to fill tanker trucks. given
the flow model described in Chapter 5.

The bucket-brigade algorithm is oflpu used for classification and pre-
diction problems. In classification problems. the system is given a set of
features describing its input and asked to assign the input to one of a finite
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wiomber of categories. For i lista ,ie.t a, aq-SeIIil -li ue vislial inis i-'lion qYw-
tei tuight, classify iteitis on a conveyor belt as ready to ship. defective but
r,-pairable. or defective atid not worth repairing. For le inspection systpin.
the features itight correspond to superficial visual attributes, such as the
alignment of external parts, or the uninber and distribution of flaws oni a
painted surface. In general. not all of the features given to the systemn will
be relevant to making the classification.

In prediction problems. the system is given a set of features describing
the state of the system at the current time and asked to predict the state of
t he system or some particular aspect of the state of the system at some future
time. For instance, a system designed to regulate the flow of gas through a
commercial pipeline might need to predict transient leaks that prevent the
_.ysten from delivering gas at the appropriate pressures. in this case. the
features might correspond to the current demand for gas. outside tempera-
ture. time of day. and pipeline inlet and outlet pressures. The predictions
made by the system are used to prevent or reduce the effects of transient
leaks by anticipating demand and regulating pipeline inlet pressure.

The simple thresholding method for applying rules descrbed above is
not appropriate for most applications. it the case of classification problems
wLre many of the rules correspond to conflicting hypotheses regarding the
class of a particular instance, there may be several rules whose strengths
are greater thian the threshold. but it would not make sense to apply more
than one of them to a given input. A similar case arises in control problems
in which there are two or more rules vying to set the same parameter to

different values. Nor is it generally appropriate only to apply the rule with
the greatest strength: parallel rule invocation is often useful in building
effective rule-based control systems.

In most practical applications, the decision as to what -rule or rules to
apply involves criteria in addition to rule strength. In classification prob-
lems. the specificity of the rules* antecedents is often taken into account.
For instance, using a specificity criterion, given the database. {A. B1, and
the two rules.

RI: IfA A B. thien C. 100
R2: If B. then D 100,

only the Irst rule would be applied. since, though both rules have their
antecedent conditions satisfied. the first has a more specific antecedent con-
dition than the second.

Most rule application strategies also involve a component of stochastic
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selection. As we saw in regard to learning optimal policies in stochastic
sequential decision problems. the systeni has to experiment with a variety
of rules in order to be assured of finding the optimal one. Similarly, for
learning classification and prediction rules, it is necessary to occasionally
try rules that are not doing particular well just in case those rules have not
as yet had sufficient opportunities to demonstrate their utility.

The bucket-brigade algorithm is often used to select a set of promis-
ing rules from a larger set. In rule selection. a set of candidate rules are
applied in a set of experiments, their strengths adjusted using the biicket-
brigade algorithm, and the subset of rules with rule strengths above a certain
threshold are selected as promising. Rule selection addresses just one issue
in designing effective learning systems. There is another issue that we have
overlooked up until now. This issue concerns where the rules come from.

In sequential decision problems. we are given a set of rules of the form,
if the current state is x. then perform u. which can be used to specify
all possible policies. Even in this case, the number of such rules is often
dauntingly large. In some problems, the number of possible rules is infinite
or so large that it is unthinkable to generate and store all of them at once.

There are many techniques for generating new rules given an existing
set of rules. Some of them involve methods for generalizing and specializing
antecedents and consequents to form new rules. Other techniques use genetic
operators to construct rules by combining parts of two or more existing rules.
A detailed discussion of such techniques is beyond the scope of this chapter.
Suffice it to say that effective generation of new rules is an active area of
learning research with many open problems. In the last section of this
chapter. we provide some references for further reading.

Generally, a complete leatning system observes a two-phase cycle of ac-
tivity. In the first phase, a set of candidate rules is generated using as a
basis whatever rules survived the last selection phase. In the second phase.
the set of candidate rules is subjected to a series of experiments designed
to identify the most useful rules and eliminate the less effective ones. In
this chaer, we have focussed primarily on the problem of rule selection.
became the corresponding area of research is the best developed and most
directly relevant to the problems considered in this book.
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9.5 Learning and Observability

Ii his (liapler. we 'oriu' ol, tlip prhliii of learning ail 01p)imial policy for
a stochastic d'viainical system with rewards. In some cases. it iiiav be I)os-
sible to divide tile problem into componient probleIIs. For instance, if the
dynamical system satisfies a separation property. it may make sense to con-
sider two separate learning problems: one concerned with observation, learn
how to determine what state you are in. and one concerned with control. ,
learnt what action to take given that you know what state you are in. You
can divide control still further into system identification, learn a model of
the system dynamics and rewards, and regulation, learn an optimal control
law given the dynantics and rewards.

In practice. however. breaking the problem into pieces may not be tile
most effective way to proceed. With regard to observation, you probably
do not have to know exactly what state you are in as knowing the proper
equivalence class will suffice for some appropriate equivalence relation. With
regard to control, for tile sort of robotics and automation problems that we
are most interested in. observation and control are not separable, in which
case the optimal policy for an ideal observer will not be of much use. With
regard to identification, as pointed out in earlier sectionb. it may not be
necessary to predict the evolution of the state in order to determine how to
act: if we lktow the value function for a given policy, it is possible to improve
that policy without the use of a model

In Section 9.2. we considered condition/action rules of the form. if the
current state is x. then perform action u. However, for the techniques in-
volving learning action values that we discussed, we might just as well have
considered rules of the form, if our perceptions of the current state are y,
then perform actioil a. This assumes. of course, that the set of possible
actions includes perceptual actions, otherwise there would be no way for a
robot to influence its perception of the current state.

As we mentioned earlier, if the dynamical system is separable, we might
try to learn an optimal observer and an optimal policy separately. Alterna-
tively, we might proceed as though there was a one-to-one mapping between
the robot's perceptual states and the states of the world. If this actually was
the can, then we effectively have an ideal observer since there is no need to
know or make use of the mapping from perceptual states to world states.

If such a one-to-one mapping does not obtain, then there will be states
of the world that the robot cannot distinguish between using its perceptual
apparatus. Perceptual states that map to two or more world slates are said
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to be amlbiguous. This amnbiguity itiay iiot be a problem: there is no need to
distinguish between two states if tihey require the same response. However.
if the two states require very different responses. then performance could
be adversely affected. There are two problems associated with ambiguity
leading to adverse performance. First. how do you detect it. and. second,
having detected it what can you do about it.

If you know that the dynamical system is deterministic, then detecting '

ambiguous perceptual states is rather easy. For a deterministic system,
if the perceptual state is unambiguous. the action values, assuming a fixed
policy, should converge to fixed values (at least in the linit). However, if the
perceptual state is ambiguous. then the action values will vary between those
for each of the corresponding world states. Detecting ambiguous perceptual
states in a deterministic system can be handled by carefully monitoring the
variance in the action values. Detecting ambiguous perceptual states in a
stochastic system can be managed with more sophisticated statistical tests.

Once you know that a given perceptual state is ambiguous and that the
variance is sufficient to warrant doing something about it, you still have to
decide how to deal with the ambiguity. You may be able to simply perform
appropriate perceptual actions in order to move to an unambiguous percep-
tual state. In general, however. t.is may not be a good idea. For example,
it may be that achieving a goal or maximizing a performance index requires
that the system pass through perceptually ambiguous states. In general,
we recommend simply treating perceptual states as world states, includ-
ing perceptual actions as possible actions, and using one of the stochastic
methods described in Section 9.2. If the dynamical system is deterministic,
then it will behave like a stochastic system if there is perceptual ambiguity,
but this stochastic behavior will not prevent the system from learning an
optimal policy.

Experiment 7 Apply Watkiu's stochastic dynamic programming method
to learning a navigation function given uncertainty about the robot's posi-
tion. Assume a Kalman filtering state estimation front end that provides an
estimate of the robot's location to serve as input to the control system.

9.6 Further Reading

For more on the update rule of Widrow and Hoff. the perceptron learning
rule of Rosenblatt. and discussion of other learning issues consult the text by
Nilsson on learning machines (131 or the first part of the text by Duda and
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Hart o,. pattern classification and scelle analysis [4]. For an introduction
to so. e of the issues in function approximation. the paper by Poggio and
Girosi provides a comparison of a variety of techniques [14].

Our treatment of learning in terms of stochastic decision problems fol-
lows that of Barto, Sutton. and Watkins (31]. For more on solving credit-
assignment problems in sequnential decision tasks, consider the paper by
Sutton [17]. The specific method of learning action values considered in
this chapter is due to Watkins [19]. The theory of learning automata is
also relevant to the issues addressed here and the text by Narendra and
Thathachar is an excellent introduction to this area of research [12]. Sutton
considers some of the issues involved in combining exploration and predic-
tion to speed learning [18]. Whitehead and Ballard [20] discuss some issues
regarding oberal-ility in learning to solve seflnential decision tasks.

Albus" CMAC method is described in (2]. A multi-resolution (CMAC
method is analyzed in [I1], amid the variation on this method suitable for
learning time-varying functions is described in [16].

Holland et ni describe the hucket-brigrade algorithm for credit assign-
ment in rule-based systems [61. For more on the application of nile-based
techniques to problems in planning and control, see Laird et al for a general
architecture for l)robl solving [7], Minton et al for a perspective that con-
siders certain forms of learning as akin to theorem proving [9], anti Mitchel
al for an approach to learning plans by generalizing past experience (10].
Also see llammond for a different perspective on learning plans that de-
viates from the miore conventional rule-based approaches [5]. Much of I lie
work on learning plans is related to the work on speedup learning discussed
in Chapter 8. Many of the techniques for speedup learning can be char-
acterized in terms of learning to solve problems efficiently by caching the
(generalized) solutions to selectd problem instances.
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